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CENOZOIC

Q uaternary  sediments.

Franklin intrusions: Ty pically  massive, laterally  extensive, diabasic sills with 
columnar jointing (~3–50 m thick , rarely  up to 100 m). Some sills are 
composite with internal intrusive contacts. Two ty pes: 1) An older, more 
primitive ty pe is commonly  lay ered, with microdiabasic lower and upper border 
zones and olivine-enriched basal cumulate (olivine gabbro to feldspathic 
wehrlite) that may  be capped by  a thin, (1–2 m) feldspathic py roxenite 
cumulate. The olivine cumulate is commonly  covered with bright orange 
lichen, weathers chocolate brown, and shows a characteristic lay er-parallel 
ribbed weathering. U pper ½  to ¾ of sills composed of massive olivine and 
pigeonite gabbros, a magnetite gabbro with common pitted weathering 
(magnetite oik ocry sts) and a granophy ric horizon containing abundant ocelli of 
granophy re and coarse, bladed clinopy roxene cry stals. 2) Y ounger (based on 
cross cutting relationships), more evolved, diabasic sills showing enrichment in 
magnetite, ilmenite, quartz and alk ali feldspar towards their cores, but are 
rarely  lay ered. Some sills are porphy ritic and contain 10–15% 
plagioclase>clinopy roxene>olivine phenocry sts and glomerocry sts up to 
5 mm. Less common, 1–40 m wide dy k es. Irregular to very  linear (generally  
oriented NNW ). Commonly  associated with fault breccias or drag folds in host 
metasediments. Dy k es commonly  connect to sills; some associated with 
calc-silicate contact metamorphic rock s (reddish garnet rimmed by  bright 
green vesuvianite), black  Fe-oxide sk arns, and minor sulphides.
Natkusiak Formation (n{N1–n{N3)

 Sheet-flow member: Blue-green to orange-weathering, laterally  extensive, 
subaerial basalt flows; individual flows 15 to 50 m thick . Flow structure varies 
from colonnade-entablature to a massive base with ty pically  vesicular flow 
tops. R are interflow scoria, spatter, fumarolic concretions, volcanic neck s and 
platy  to disseminated native copper. Maximum thick ness of 200 m, limited by  
erosional preservation.
Lower recessive member: Massive to parallel-stratified volcanic-pebble 
conglomerate overlain by  thin, parallel- to cross-bedded, quartz-rich 
volcaniclastic sandstone. Framework  composed of volcanic, carbonate and 
sandstone clasts; matrix-rich in quartz sand grains. Conglomerate sub-unit 
varies in thick ness from 40 to 100 m; sandstone sub-unit from 5 to 10 m.
Lower member: Dark  green to grey  weathering, dominantly  subaerial flows, 
vary ing from fine massive basalt to coarse sub-ophitic basalt. P illowed and 
hy aloclastic breccia are common at unit’s base indicating emplacement into 
shallow water. Thin (1 to 10 m) sheet flows with massive bases and vesicular 
flow tops, or discontinuous lobate flows. Degree of vesicularity  varies 
throughout. Thick ness 40 to 70 m.
Shaler Supergroup (n{K2–n{Kj)

 Kuujjua Formation: Two principal lithofacies: coarse quartzarenite ty pified by  
stack ed tabular co-sets of simple and compound planar crossbedding and a 
less abundant fine-grained assemblage of interbedded fine sandstone, 
dolomitic siltstone and mudstone forming lenses up to 20 k m wide. R are 
basaltic peperites. ~120 m thick .
Kilian Formation (n{K2–n{K4)

 Upper Evaporite-Carbonate member: Base is dolosiltite and dololutite with 
10–20% ripple crosslaminated gy psiferous siltite. Bedding-parallel and 
crosscutting satinspar veinlets and desiccation crack s common. Changes 
up-section from creamy  grey  to pink ish grey , reflecting increase in hematitic 
siltstone relative to carbonate. Nodular sulphate more common in middle part 
of member. U pper consists mainly  of parallel-laminated red dolomitic 
mudstone and wavy - to lenticular-bedded, buff- to pink -weathering dolosiltite 
-no sulphate. Diagenetic redox horizons, desiccation crack s, halite 
pseudomorphs and tepee structures are ubiquitous. P resent only  in the 
southwest domain of the Minto Inlier. ~80 m thick .
Tan Carbonate member: Tan to green-grey , flaggy  weathering dolostone and 
limestone. Gradation between parallel-laminated lutite and flat to wavy  and 
hummock y  bedded siltite. Lutite-rich lay ers are generally  plane parallel 
laminated with rare siltite lenses (starved ripples?). Bed bases ty pically  
scoured grading up to lutite-rich tops. Intraformational clast breccia commonly  
infilling swales and gutters. Black  chert nodules throughout and stromatolites 
at several horizons. One distinctive bioherm, from the middle of the tan 
carbonate member, is laterally  traceable from U luk hak tok  along the Kuujjua 
R iver V alley  to where it cuts across the Natk usiak  plateau. ~60 m thick .
Clastic-carbonate member: V ariegated (red, green, grey  and black ) 
pin-stripe-laminated mudstone and siltstone, particularly  at its base. 
Desiccation crack s common in mudstone and wavy  bedding and ripple 
crosslamination in coarse siltstone-fine sandstone interlay ers. W avy -flaser 
bedded and small-scale crossbedded, 4 m thick , buff-weathering, fine-grained 
quartzarenite near top. W avy -bedded dolosiltite and laterally  link ed 
stromatolite interbeds are common and increase upsection. ~120 m thick .
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DESCR IP TIV E NOTES
The map area (NTS 87-H/3) lies within the Minto Inlier, a ~300 k m long by  100–150 k m wide belt of gently  folded sedimentary  
and igneous rock s of early  Neoproterozoic (late Tonian-early  Cry ogenian) age. The Neoproterozoic sedimentary  strata 
belong to the Shaler Supergroup, an approximately  4 k m thick  succession of shallow marine carbonate rock s and evaporite 
rock s with interbedded terrigenous rock s that were mainly  deposited in a shallow intracontinental epeiric sea, referred to as 
the Amundsen Basin (R ainbird et al., 1994; R ainbird et al., 1996a; Thorsteinsson and Tozer, 1962; Y oung, 1981). The basin 
is considered to have formed within the supercontinent R odinia and exposures of similar rock s, in what are now the 
Mack enzie Mountains of the northern Cordillera, suggest that it extended for more than 1000 k m to the southwest 
(Long et al., 2008; R ainbird et al., 1996a). The sedimentary  succession is intercalated with mafic sills of the ca. 720 Ma 
Frank lin igneous event (Heaman et al., 1992). The sills are of variable thick ness up to 100 m, but most are 20–60 m thick . In 
many  cases, individual sills extend for 20 k m or more along-strik e with little significant change in thick ness. Sills constitute 
any where from 10 to 50 per cent of the stratigraphic section. Sills of similar ty pe and age also occur in the Coppermine 
Homocline, Brock  Inlier and Duk e of Y ork  Inlier to the south (R ainbird et al., 1996b; Shellnutt et al., 2004) and coeval, 
geochemically  similar intrusions and volcanic rock s associated with the Frank lin event extend from Greenland to the 
western Y uk on (Deny szy n et al., 2009; Heaman et al., 1992; Macdonald et al., 2010). The Shaler Supergroup in Minto Inlier 
is capped by  a succession of flood basalt flows and interflow sedimentary  rock s (Natk usiak  Fm), more than 1 k m thick , which 
are the extrusive equivalent of the sills (Baragar, 1976; Jefferson et al., 1985). R are north-northwest-strik ing dy k es are 
interpreted to have intruded along sy n-magmatic normal faults, to feed sills and possibly  the flood basalts (Bédard et al., 
2012). Three magma populations are identified in the lavas, which have correlatives in the different sill subty pes. The oldest 
sills and corresponding basal lavas are enriched in incompatible trace elements and may  have olivine-enriched bases. 
Y ounger diabasic sills correspond to the major sheet-flow units of the lava succession. Basal strata of the Shaler Supergroup 
(R ae Group) are exposed only  at the northeastern end of Minto Inlier, near Hadley  Bay, where they  unconformably  overlie 
P aleoproterozoic sedimentary  rock s, which, in turn, unconformably  overlie Archean granitic rock s (Campbell, 1981; 
R ainbird et al., 1994). The irregular edge of Minto Inlier is defined by  an erosional unconformity  that separates the 
Neoproterozoic rock s from lower Cambrian sandstone and siltstone that passes upward into a thick  succession of mainly  
dolomitic carbonate rock s, ranging in age from Cambrian to Devonian (Thorsteinsson and Tozer, 1962). Structurally, the 
Minto Inlier is relatively  simple, composed of the open, northeast-trending Holman Island sy ncline and a smaller W alk er Bay  
anticline to the northwest. Beds ty pically  dip no more than 10 and there is generally  no penetrative cleavage or other 
apparent outcrop-scale fabric. The origin of the folding is unk nown but it occurred after deposition of the early  
Neoproterozoic rock s and before uplift, erosion and deposition of overly ing lower Cambrian siliclastic rock s, which are not 
folded. All rock s are dissected by  east-northeast to east-trending faults that form a horst and graben sy stem with up to 200 of 
metres of stratigraphic separation on individual faults. The zone of faulting is about 100 k m wide and stretches from the head 
of Minto Inlet in the west to W y nniatt Bay  in the east and is spectacularly  imaged as prominent lineaments on recently  
published aeromagnetic maps (e.g. Kiss and Oneschuk , 2010).

NTS 87-H/3 is underlain by  stratigraphic units from the middle to upper Kilian Formation, Kuujjua Formation and 
Natk usiak  Formation of the Shaler Supergroup. Together with diabase sills, the strata comprise the gently  south-dipping 
northern limb of the Holman Island Sy ncline, whose axis lies under Q uaternary  cover along the southern edge of the map 
sheet. Exposures of the Kilian Formation are limited to the northwestern corner of the map sheet area (tan carbonate 
member), where it underlies a thick  diabase sill that forms a prominent southeast dip slope down to the Kuujjua R iver. The 
upper Kilian Formation, Kuujjua Formation and basal Natk usiak  Formation are best exposed along a prominent cuesta that 
faces north-northwest along the south side of the Kuujjua R iver. The Kilian generally  is quite recessive but a good 
stratigraphic section that includes the tan carbonate member ( 3) , upper evaporite member ( 4) and entire 
Kuujjua Fm. ( j) is located at U TM 584746E, 7899309N (for details,  R ainbird, 1991; section 86-11). A good exposure 
of the Kuujjua Formation is located at U TM, 587842E, 7901748N, where a basaltic volcaniclastic unit similar 
to that described on the geological map of adjacent NTS87G/3 (CGM 104; R ainbird et al. 2013) forms its base. Another 
good section of the upper Kilian and Kuujjua formations is exposed to the south of an area of faulting, at 
U TM, 596987E, 7897382N. The Kuujjua Formation is much thinner here, indicating diminished accommodation space, 
which has been attributed to pre-eruptive thermal doming (R ainbird, 1993). The Natk usiak  Formation generally  is not well 
exposed on this map sheet, except along cliffs at the top of section 86-11. Of note in this area, is the presence of quartz-
arenite lenses and lay ers separating basal lava flows of the lower member ( 1), thus indicating that rivers which 
deposited the Kuujjua Formation sandstones continued to flow and deposit terrigenous detritus at the same time that 
eruptions were occurring. The lower recessive member ( 2) is exposed only  along the western edge of the map sheet and 
wedges out toward the northeast (W illiamson et al., 2013). Approximately  3 diabase sills are exposed within the map area 
and are of the ty pe 2 (diabasic) described in the legend. 

Northeast-strik ing faults that displace the upper Kilian, Kuujjua and lower member ( 1) of the Natk usiak  Formation are 
evident at U TM, 596928E, 7902294N and U TM, 593750E, 7902850N. The fault at the first location appears not to have 
affected map unit 3, indicating that the faulting occurred during early  stages of eruption of the Natk usiak  volcanic rock s. 
Northwest-strik ing faults, mark ed by  prominent topographic lineaments but with limited offset, occur at two localities further 
to the west. 

Holocene alluvial deposits and Late W isconsinan proglacial and glacial deposits overlie much of the bedrock  in this map 
area (  CGM 56; Hodgson, 2012).
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Elevations in metres above mean sea level
Shaded relief image derived from the digital elevation model

supplied by  GeoBase.
Illumination: azimuth 225º, altitude 45º, vertical factor 1x

P roximity  to the North Magnetic P ole causes the magnetic compass
to be erratic in this area.

Magnetic declination 2014, 18º43'E, decreasing 52' annually .
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Le feuillet SNR C 87-H/3 contient les roches des
Formations de Kilian moy en à supérieur, Kuujjua et
Natk usiak , appartenant tous au super-Groupe de Shaler
d’âge néoprotérozoïque. Ceux-ci sont injectés par ~3
filons-couches de diabase (ty pe 2), espacés à
intervalles régulières. Les strates sont inclinées
doucement vers le sud et constituent le flanc nord du
Sy nclinal de Holman Island. La partie nord-ouest de la
carte est dominée par un filon couche épais qui pend
vers le sud-est au même angle que la topographie,
jusqu’a la rivière Kuujjua. U n cuesta qui s’élève du côté
sud de cette rivière expose les strates sédimentaires du
Kilian supérieur et les lits entrecroisés des arénites à
quartz du Kuujjua Formation, qui reposent en
discordance sur les roches du Kilian. Au sommet de la
falaise affleurent les coulées basaltiques du Natk usiak .
Dans cette région, on remarque particulièrement
l’interlitage des grès du Kuujjua et les basaltes du
Natk usiak , indiquant que les rivières à l’origine du grès
du Kuujjua existaient encore lors de l’initiation du
volcanisme.

Résumé
NTS 87-H/3 is underlain by  the middle to upper Kilian,
Kuujjua and Natk usiak  formations of the Neoproterozoic
Shaler Supergroup.  Together with ~3 diabase sills (ty pe
2), spaced at regular intervals within the host
sedimentary  rock s, the strata comprise the gently  south-
dipping northern limb of the Holman Island Sy ncline.
The northwest of the map area is dominated by  a thick
sill, which forms a prominent SE dip slope down to the
Kuujjua R iver. Sedimentary  strata are best exposed
along a prominent cuesta that faces north-northwest
along the south side of the Kuujjua R iver. The upper
Kilian Formation and crossbedded quartzarenite of the
disconformably  overly ing Kuujjua Formation are
prominent along the cuesta’s face together with
conformably  capping basalt flows of the Natk usiak
Formation. Of note in this area, are quartz-arenite
lay ers in basal lava flows of the Natk usiak , indicating
that rivers which formed the Kuujjua sandstones
continued to deposit detritus during volcanism.
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