CANADA
DEPARTMENT OF MINES
AND
TECHNICAL SURVEYS

GEOLOGICAL SURVEY OF CANADA
WATER SUPPLY PAPER No. 247

GROUND-WATER RESOURCES

OF THE

RURAL MUNICIPALITY OF MANITOU LAKE
 NO. 442

SASKATCHEWAN

Records Collected by C. O. Hage
Compilation by G. S. Hume and C. O. Hage

CANADA
DEPARTMLINT OF GINES aND RESCURCES

MINES AND GEOLOGY BRANCH BURIAU OF GLOLUGY AND TUPOGRAPHY

GEOLOGIC.AL SU.iVEY

WATER SUPPLY PAPER NO. 247

GROUND-WATER RESOURCES
OF THE
RURAL MUNICIPALITY OF MANITUU LAKE, NO. 442,
SASKATCHLWAN

Records Collected by C. O. Hage Compilation by G. S. Hume and C. O. Hage

Page
Introduction 1
Publication of results 1
How to use report 2
Glossary of terms used 2
Bedrock formations of west-central Saskatchewan and east-central Alberta 4
Water analyses 9
Introduction 9
Discussion of chemical determinations 9
lkineral constituents present 9
Water analyses in relation to geology 11
Glacial drift 11
Bearpaw formation 12
Pale Beds 12
Variegated Beds 13
Ribstone Creek formation 13
Rural Municipality of Maniteu Lake, No. 442, Saskatchewan 14
Physical features 14
Geology 14
Water supply 14Township 43, ranges 26,27 , and 28 , west 3 rd
meridian 14
" 44, range 26 , west 3rd meridian
" 44, range 26 , west 3rd meridian 15 15
44, " 27, " " "
15
15
 15
45 , ranges 27 and 28 , southeast of Battle River, west 3rd meridian 16
" 46, range 25, and township 47, range 25, south of Battle River, west 3rd meridian 16
46 , rangse 26 and 27 , and 47, range 26, southeast of Battle River, west 3rd meridian 16
Analyses of water samples 16
Records of wells in Rural kunicipality of Manitou Lake, No. 442, Saskatchewan 16

Inlustrations

Map - Rural Municipaility of Manitou Lake, No. 442,Saskatchewan:
Figure 1. Map showing bedrock geolngy;2. Map showing topography and the locationand types of wells.

INTRCDUCTICN

Information on the ground-water resources of east-central Alberta and western Saskatchewan was collected, mostly in 1935, during the progress of geological investigations for oil and gas. The region studied extends from Edmonton in the west to Battleford in the east, and from township 32 on the south to township 59 in western Alberta, township 63 in eastern Alberta, and in part as far north as township 56 in western Saskntchewan.

This region is crossed by North Saskatchewan and Battle Rivers, and includes other more or less permanent streams. Nost of the lakes within the area, however, are alkaline, and water is obtained in wells from two sources, namely, from watermbearing sands in surface or glacial deposits, and from sands in the underlying bedrock.

A division has been made in the well records, in so far as

 possible, between glacial and bedrock water-bearing sands. In investigations for $0 i l$ and gas, however, the bedrock wells were used to trace the lateral extent of geological formations, with the result that the records deal more particularly with this type of well. No detailed studies were made of the glacial materials in relation to the water-supply, nor were the glacial deposits mapped adequately for this purpose. In almost all of the region investigated in Alberta, and in all but the northeast part of the region studied in Saskatchewan, water can be obtained from bedrock. In a few places, however, the water from the shallower bedrock sands is unsatisfactory, and deeper drilling may be necessary.The water records were obtained mostly from the well owners, some of whom had acquired the' land after the water supply had been found, and hence had no personal knowledge of the water-bearing beds that had been encountered in their wells. Also the elevetions of the wells were taken by aneroid barometer and are, consequently, only approximate. In spite of these defects, however, it is hoped that the publication of these water records may prove of value to farmers, town authorities, and drillers in their efforts to obtain water supplies adequate for their needs.

In collecting this information several field parties. were employed. These were under the direction of Professors R. L. Rutherford and P.S. Wairen of the University of Alberta, C. H. Cricknay of Vencouver, and C, O. Hage, until recently a member of the Geological Survey. The oil and gas investigations of which these water records are a part were undertaken under the general supervision of G. S. Hume.

Jublication of Results
The essential information pertaining to ground-water conditions is being issued in reports, that in Saskatchewan cover each municipality, and in Alberta cover each square block of sixteen townships beginning at the 4th meridian and lying between the correction lines. The secretary treasurer of each municipality in Saskatchewan and Alberta will be supplied with the information covering that municipality. Copies of the reports will also be available for study at offices of the Provincial and Federal GGoverment Departments. Further assistance in the Interpretation f the reports may be obtained by applying to the Chief Geologis.tl. Geological Survey, Ottawa. Technical terms used in the reports are defined in the glossary.

How to Use the Report

Anyone desiring information concering ground water in any particular:- locality will find the available data listed in the well records. :"These should be consulted to see if a supply of water is likely to be found in shallow wells sunk in the glacial drift, or whether a better supply may be obtained at greater depth in the underlying bedrock formations. Thl wells in glacial drift commonly show no regional level, as the sands or gravels in which the water occurs are irregularly distributed and of limited extent. As the surface of the ground is uneven, the best means of comparing water wells is by the elevations of their water-bearing beds. For any particular well this elevation is obtained by suotrating the figure for the depth of the well to the watermbearing bed from that for the surface elevation at the well. For convenience both the elevation of the wells and the elevation of the water-bearing bed or bods in each well are given in the well record tables. Where water is obtained from bedrock, the name of the formation in which the water-bearing sand occurs is also listed in these tables, and this information should be used in conjunction with that provided on bedrock formations, pages 4 to \mathbb{S}, which describes these formations and gives their thickess and sequence. Where the level of the watermbearing rand is known, its depth at any point can easily be calculated by substracting its elevation, as given in the well record tables, from the elevation of the surface at that point.

With each report is a map consisting of two figures. Figure 1 shows the bedrock formations that will be encountered beneath the unconsolidated surface deposits. Figure 2 shows the position of all wells for which records are available, the class of well at each location, and the contour line or lines of equal surface elevation. The elevation at any location can thus be roughly judged from the nearest contour line, and the records of the wells show at what levels water is likely to be encountered. The dopth of the well can then be calculated, and some information on the character and quantity of water can be obtained from a study of the records of surrounding wells.

GLOSSARY OF TERHS JSED

Alkaline. The term "a".an line" has been applied rather loosely to some ground waters that have a peculiar and disagreeable taste. In the Prairie Provinces, water that is commonly described as alkaline usually contains a large amount of scdium sulphate and magnesium sulphate, the principal constituents of Giauberis salt and Epsom salts respectively. Most of the so called a:"nine waters are more correctly termed sulphate waters, many of which may be used for stoci without ill effect. Water that tastesstrongly of common salt is described as salty.

Alluvium. Deposits of earth, clay, silt, sand, gravel, and other material on the flood plains of modern streams and in lake beds.

Aquifer or Water-bearing Horizon. Λ porous bed, lens, or pocket in unconsolidated deposits or in bedrock that carries water.

Buried premGlacial Stream Channels. A channel carved into bedrock by a stream before the advance of the continental icemaneot, and subsequently either partly or wholly filled in by sands, gravels, and boulder clay deposited by the icemsheet or later agencies.

Bedrock. Bedrock, as here used, refers to partly or wholly consolidated deposits of gravel, sand, silt, clay, and marl that are older than the glacial drift.

Coal Seam. 'The same as a coal bed. A deposit of carbonaceous material formed from the remains of plants by partial decomposition and burial.

Contour. A line on a map joining points that hare the same elevation above sea-level.

Continental Ice-Sheet. The great ice-sheet that corered most of the surface of Canada many thousands of years ago.

Escarpment. A cliff or a relatively steep slope separating level or gently sloping areas.

Flood Plain. A flat part in a river walley ordinarily above weter but covered by weter when the river is in flood.

Glacial Drift. The loose, uncomelidated surface deposits of sand, gratel, and clay, or a mixture of these, that were deposited by the continental ice-sheet. Clay containing boulders forms part of the drift and is referred to as glacial till or boulder clay. The glacial drift occurs in several formsa
(1) Ground Moraine. A boulder clay or till plain (includes areas where the glacial drift is very thin and the surface uneven).
(2) Terminal Moraine or Moraine. A hilly tract of country formed by glacial drift that was laid down at the margin of the continental icemsheet during its retreat. The surface is characterized by irregular hills and undrained basins.
(3) Glacial Outwash. Sand and gravel plains or deltas formed by streams that issued from the continental ice-sheet.
(4) Glacial Lake Deposits. Sand and:"chaiplains formad in glacial lakes during the retreat of the ice-ineet.

Ground Water. Sub-surface water, or water that occurs below the surface of the land.

Hydrostatic Pressure. The pressure that causes water in a well to rise above the point at which it is first encountered.

Impervious or Impermeable. Beds, such as fine clays or shale, are considered to $b e$ impervious or impermeable when they do not permit of the perceptible passage or movement of ground water.

Pervious or Permeable. Beds are pervious when they permit of the perceptible passage or movement of ground water, as for example porous sands, gravel, and sandstone.

Pre-Glacial Land Surface. The surface of the land before it was covered by the continental ice-sheet.

Recent Deposits. Deposits that have been laid down by the agencies of water and wind since the disappearance of the continental icesheet.

Unconsolidated Deposits. The mantle or covering of alluvium and glacial drift consisting of loose sand, gravel, clay, and boulders that overlie the bedrock.

Water-table. The upper Imit of the part of the ground wholly saturated with water. This may be very near the surface or many feet below it.

Wells. Holes sunk into the earth so as to reach a supply of water. When no water is obtained they are referred to as dry holes. Wells in which water is encountered are of three classes.
(1) Wells in which the water is under sufficient pressure to flow above the surface of the ground.
(2) Wells in which the water is under pressure but does not rise to the surface.
(3) Wells in which the water does not rise above the water table.

BEDROCK FORMATICNS OF WEST-CENTRLL SASKATCHENH AND EAST-CTNTRLL ALBERTA

The formations that outcrop in west-central Saskatchewan are an extension of similar formations that occur in east-central Alberte. They are of Jpper Cretaceious age, and consist entirely of relatively soft shales and sands, with some bands of hard sandstone and layers of ironstone nodules. The succession, character, and estimated thickness of the formations are. shown in the following tables

Formation	Character	Thickness
		Te
Edmonton	Grey to white, bentonitic sands and sandstones with grey and greenish shales; coal seams prominent in some areas, as at Castor, Alberta.	$\begin{aligned} & 1,000 \text { to } \\ & 1,15 \end{aligned}$
Bearpaw	Dark shales, green sands with smooth black chert pebbles; partly nonmarine, with white bentonitic sande, carboneceous shales or thin coal seams similar to those in Pale Beds: shales at certain horizons contain lobster claw nodules and marine fossils; at other horizons are abundant selenite crystals.	300 to 600 thins rapidly to the northwest
Pale and Variegated Beds	Light grey sands with bentonite; soft, dark grey and light grey shales with selenite and ironstone; carbonaceous shales and coal seams; abundant selenite crystals in cortain layers.	950 to 1,000 in Czar-Tit - Hills aren; may be thinner elsewhere
Birch Iake	Grey sand and sandstone in upper part; middle part of shales and sandy shales, thinly laminated; lower part with grey and yellow weathering sands; oyster bed commonly at base.	100 in west, but less to east and south
Grizzly lear	Mostly dark grey shale of marine origin, with a few minor sand horizons; selenite crystale and nodules up to 6 or 8 inches in diameter	Maximum, 100
Ribstone Creek	Grey sands and sandstones at the top and bottom, with intermediate sands and shales; thin coal seam in the vicinity of Wainwright; mostly non-marine, but middle shale in some areas is marine.	Maximum, 325 at Wking; thins eastward
Lea Park	Dark grey shales and sandy shales with nodules of ironstone; a sand 70 feet thick 110 feet below the top of the formation in the Ribstone area, Alberta.	050 to 1,100

Edmonton Formation

The name Edmonton formation was first applied to the beds containing coal in the Edmonton area, and later to the same beds in adjoining areas. The formation has a total thickness of 1,000 to 1,150 feet, but is bevelled off eestward and the east edge of the formation
follows a northwest line from Coronation through Tofield to a point on North Saskatohewan River about midway between Edmonton and Fort Saskntchewan. No Edmonton beds occur northeest of this line, but the formation becomes progressively thicker to the southwest due to the fact that the beds incline in that direction and the surface bevels across them.

The Edmonton formetion consists of poorly beded grey and greonish clay shales, coal seams, and sands and sandstones that contain clay and a white material kown as bentonite. This material when wet is very sticky and swells greatly in volume, and when dry tends to give a white appearance to the beds containing it. Such beds are relatively impervious to water, and at the surface produce the "burns" of barren ground where vegetation is scanty or absent.

Water is relatively abundant in the Edmonton formetion, which contains much sand, commonly in the form of isolated lenses distributed irregularly through the formation, Consequently, there is little uniformity in the depth of wells eren within a small area. Water also occurs commonly with coal seams and, unlike the sand lenses, these beds are much more regular and persistent. In contrast with the water from the bentonitic sands, which is generally "soft", water from the coal seams, es the water from the shallow surface deposits, may be "hard". The basal beds of the Edmenton formation usunily wontain fresh mater, but this may become brackish locally where the underlying Bearpaw beds contain highly alkaline or selty water.

Bearpaw Formation

In southern Alberta, where the Bearpaw formation is thickest, the beds composing it are mainly shales thet have been deposited in sea water. In the area north of township 32 the formation thins to the northwest and becomes a shoreline deposit composed of shales containing bentonite, impure sands, and thin coal seams. In some areas, as at Ryley and near Monitor, and in the Neutral Hills, the Bearpaw contains pebble beds. At Ryley these are consolidated into Ω conglomerate, but mostly the pebbles are loosely distributed in shale or sandy beds.

In the area immediately north of township 32 the Bearpaw occupies a widespread belt beneath the glacial drift, but farther northwest the belt narrows, and at Ryley and northwestward it is only a fow miles wide. This belt crosses North Saskatchewan River about midway between Edmonton and Fort Saskotchewan. Bearpaw beds form the main bedrock deposits of the Neutral Hills. Farther south, where they hate an exposed thickness of at least 400 feet, they contain green sands, and beds of marine shale interfinger with the bentonitic shales and sands of the underlying formation. To the north, on the banks of North Saskatchewn River, the dirision between the Bearpaw and the overlying and underlying formations is indefinite, and the thickness of beds of Bearpew age is relatively small.

The water in the Ryley area is from the Bearpaw formition, and is salty. In other areas to the south the marine Bearpaw formation carries green sand beds that yield fresh water, but commonly a much better supply is found by drilling through the Bearpaw into the underlying Pale Beds.

In Saskatohewan, Bearpaw beds occur southeast of Maclin and south of Luseland and Kerrobert. Only the basal beds are present, and these contain green sands that are commonly water-bearing.

Palle and Variegated Beds
Underlying the Bearpaw formation is a succession of bentonltic sands, shales, and sandy shales containing a few coal seams. The upper part of this succession, due to the ber mitic content, is commonly light coloured and has been described as the Pale Beds, whereas the lower
part is darker, and is known as Variegated Beds. In part, dark shales are present in both Pale and Variegated Beds; others are greenish, grey, brown, and dark chocolate, carbonaceous types. The sands may also be yellow, but where bentonite is present it imparts a light colour to the beds. Both Pale and Variegated Beds are characterized by the presence of thin seams of ironstone, commonly dark reddish, but in part purplish, Selenite (gypsum) orystols are, in places, abundant in the shales.

The best sections of Pale Beds exposed in the region are in the Tit Hills, southwest of car. These hills carry a thin capping of Bearpaw shales, beneath which, and around Bruce Lake, more than 200 feet of Pale Beds are exposed. The total thickness of Pale and Variegated Beds in the Tit Hills area is about 970 feet. Variegated"Beds outcrop near Hawkins on the Canadian National Railway west of Wainwright, but no area exposes the complete succession, which is considered to comprise about 200 feet of beds.

Records of wells drilled into the Pale and Variegated Beds do not, in geners.l, indicate lateral persistence of sands for long distances, nor any uniform average depth to water-bearing sands in a looal area. This points to the conclusion that the sands are mainly local lenses, but as such lenses are numerous, few wolls fail to obtain water. In the Cadogan area many flowing wells have been obtained from sands about midway in the succession. In western Saskatchewan Paleland Variegated Beds ocour over a wide area from Maclin and Kerrobert northeast through Wilkie to the Eagle Hills, south of Battleford. Numerous outcrops occur in the area south of Unity at Muddy Lake, but south and east around Biggar these beds are almost wholly concealed by glacial drift.

The water from the sands of the Pale and Variegated Beds is generally soft. The supply, apparently, is dependent in part on the size of the sand body that contains the water and in part on the ease with which water may be replenished in the sand. Small sand lenses surrounded by shalea may be filled with water that has infiltrated into them, but when tapped by a well the supply may be very slowly replenished. In many instances such wells yield only a small supply, although this is commonly persistent and regular.

Birch Lake Formation

The Birch Lake formation underlies the Variegated Beds, but in many areas the division is not sharp. The type area of the formation is along the north shore of Biroh Lake south of Innisfree, where a section 65 feet thick, composed mostly of sand, is exposed. The total thiokness of the formation in this area is about 100 feet, and although this is dominantly sand a central part is composed of alternating thin sand and shale beds. At the base of the formation, in a number of places, is an oyster bed, and this is exposed in a road cut in a section 73 feet thick on the east side of Buffalo Coulé in sec. 3, tp. 47, rge. 7, W. 4th mer. In both upper and lower parts of the formation the sand is commonly massive and outcrops tend to consolidate into hard, nodular masses from a foot to a few feet in diameter. Apparently these are formed through the deposition of salts from the water that finds an outlet at the outorops. In fact, in some areas the sand may be traced along the side of a hill by the presence of small springs or nodular masses of sandstone.

The Birch Lake formation occurs under the drift and in outcrops in a large area south of North Saskatchewax River and northeast of a line from Willingdon to Innisfree and Minburn. East of this area the southwest boundary is more irregular, but outcrops are persistent on the banks of Battle River from a feiles north of Hardisty to and beyond the mouth of Grizaly Bear Coulée in tp. 47, rge. 5. It is believed, too, that a large area near Edgerton and Chauvin is underlain by the Biroh Leke formation and that it extends southeastward into Saskeonewan around Manitou Lake nand southeast to Vera.

It is thought that the Birch Lake formation thins eastward from its type section at Birch Lake, and that it loses its identity in western Saskatchewan. Deep wells drilled at Czar, Castor, and elsewhere no longer show the Birch Lake as \& clearly recognizable sand formation, so that its southern limit beneath younger formations is unknown. Wherever it occurs as a sand, however, it is water-bearing, although in some areas the sand is apparently too fine to yield any considerable volume of water. In other areas, however, it persistently Fields good wells. There is no apparent uniformity in the character of the water, which is either hard cr soft in different wells in the same general area. Direct contact, with sumface waters that contain calcium sulphates may in time change a "sof"" water well to a"hard" water well, and many wells are not sufficiently cased to prevent the percolation of water from surface sands into the well, and hence into the deeper, soft water producing sands. In part this accounts for the change in character of the wreter in a well, a feature that has been noticed by many well owners.

Grizzly Bear Formation

The type locality for the Grizzly Bear formation, which underlies the Birch Lake beds, is near the mouth of Grizzly Bear Coulée, a tributary of Battle River with outlet in tp. 47, rge. 5. The formation is mainly composed of dark shalosutrat were deposited in sea water. At the mouth of Grizaly Bear Coulée two shale sections, each about 100 feet thick, are separated by a zone of thin sand beds. It is now eecognized that the upper section is the Grizzly Bear shale, and that the lower one, very similar in character and also deposited in sea water, occurs in the next lower formation, the Ribstone Creek. The Grizzly Bear shale contains a thin nodular zone about 50 feet above the base, that is, at about the centre of the formation. This zone is sandy, and is believed to yield water in various wells. Other thin sands, in places wetermbearing, are also present. The impervious nature of the Grizzly Bear shales makes the overlying Birch Lake send a strong acquifer, as water collects in the sand abcra the shele. The contact of the Birch Lake and Grizaly Bear formations cain be trased in some places by the occurrence of springs issuing from the base of the Birch Lake sand even where this is not exposed.

Grizaly Bean sha"es occur in a road out on the south side of Battle River near the highway bridge at Fabyan. The shales in this area are about 100 feot thick. It is thought they extend as far west as the Viking gas field, where they have been recognized in samples from deep wells. It is probable, however, that the shales thin westwardrand thicken eastward so that their general form is a wedge between both higher and lower sand beds. The position of the thin edge of the wedge to the west is unknown, but evidently the Grizzly Bear marine shale underlies a large area in east-central Alberta extending into Saskatchewan mainly in the area south of Battle River.

Ribstone Creek Formation

The type area of the Ribstone Creek formation is on Ribstone Croek near its junction with Battle River in tp. 45, rge. 1 , W. 4th mer. At this place the lower sand beds of the formation are well exposed. The upper part of the lower sand member of this formation outorops on the north side of Battle River, in the northeast part of sec. 26, tp. 47, rge. 5, near the mouth of Grizzly Bear Coulee; Above it, higher on the bank and at a short distance from the river, there is a I2 foot zone of carbonaceous and coaly beds in two layers, each about 2 feet thick, separated by feet of shale. Above this are 90 feet of dark shales that are thought to have been deposited in sea water, that is, they are marine shales. These marine shales in turn are overlain by a sandy zone about 20 feet thick containing oysters in the basal part. This sandy zone is the upper sand member of the Ribstone Creek formation.

It thickens to the east and west frm the Grizzly Dear area but is probably at no place much more than 50 feet thick.

The lower sand member of the Ribstone Creek formation also varies in thickness from a minimum of about 25 feet. On the banks of Vermilion Creek, north of Mannville, the basal sand is at least 60 , and may be 75 ,feet thick. It is overlain by shaiy sand and sandy shale beds, which replace the shnle beds in the central part of the formation as exposed at: the mouth of Grizzly Bear Coulee. In the Weinwright area, where the formation has been drilled in deep wells, the basal sand is 60 feet thick, with the central part composed of shale containing sand streaks. The upper sand member is about 20 feet thick in this area. The total thickness of the formation in the Wainwright area is 100 to 200 feet, but this increases to the west and in the Tiking aree exceeds 300 feet.

The Ribstone Creek formation is widely exposed in a northwest-mending belt in eastmoentral Alberta. The southwest boundary of this northwest-trending belt passes through the mouth of Grizzly Bear Coulée in tp. 47, rge. 5 , and beyond to the Two Hills area in tp. 54, rge. 12, whereas the northeast boundary crosses North Saskatchewan River southwest of Elk Point and extends northwest to include an area slightly north of St. Paul des Metis and Vilna to tp. 60, rge. 14. Within this belt water wells are common in the Ribstone Creek sands, which are almost without exception water-bearing in some part of the formation. The ifmits of the belt to the northeast determine the limits of water from this source, but to the southwest of the belt, as here outlined, water may be obtained in this formation by drilling through fine younger beds that overlie it. The Ribstone Creek sands are a prolific source of water in many places and hence the distributinn of this formation is of considerable economic importance. Where the formation consists of upper and lower sands with a central shale zone only the sands are water-bearing, although thin sand members may occur in the shale. Where the formation is largely sand the distribution of water may be in any part of the formation, although the upper and lower sands are perhaps the better aqufiers. To the east of Alberta, along Battite Kiver and Big Coulée in Saskatchowan, the Ribstone Creek sands are marine. Marine conditions apparently become more prevalent to the southeast and it is believed that in this direction the sands are gradually replaced by marine shales. Thus at some distance southeast of Battleford the Ribstone Creek formation loses its identity and its equivalents are shales in a marine succession.

Lea Park Formation

The Lea Park formation is largely a marine shale, and only in the upper 180 feet is there any water. In the Dina area south of Lloydminster the upper beds of the Lea Park consist of silty shales about 110 feet thick underlain by silty sands 70 feet thick. Below these sands are marine shales only, and these yield no fresh water either in east-central Alberta or west-central Saskatchewan. The sand in the upper Lea Park formation is thus the lowest freshwater aquifer within a very large area. The extent of this sand in the Lea Park, particularly to the northeast, is not known, but as the strate in eestcentral Alberta have a southwest inclination, progressively lower beds occur at the surface to the northeast. Thus at a short distanoe beyond the northeast boundary of the Ribstone Creek formation, as previously outined, the sand in the upper Lea Park reaches the surface, and represents the last bedrock aquifer in that direction. Farther northeast water must be obtained from glacial or surface deposits only. In Alberta this area without fresh water in the bedrock includes the country north of North Saskatchewan River in the vicinity of Frog Lake and a
llarge area extending to and beyond Beaver River. In this area, however, more fresh water streams are present than farther south, and bush lands
help to retain the surface witters. The area northeast of North Saskatchewan River in Saskatohewan is almost wholly within the Lea Park formation, where water can be found only in surface deposits.

WATER ANALYSES

Introduction

Analyses were made of water samples collected from a large number of wells in west-central Saskatchewan. Their purpose was to determine the chemical characteristics of the waters from different geological horizons, and thereby assist:in mexing correlations of' the i : strata in wich the whers occur. Although this was the main objective of the analyses, it wasalso realized that a knowledge of the mineral content of the water is of interest sand value to the consumer. The analyses were all made in the laboratory of the Water Supply and Borings Section of the Geological Survey, Ottawa.

Discussion of Chemical Determinations

The dissolved mineral constituents vary with the material encountered by the water in its migration to the reservoir bed. The mineral salts present are referred to as the total dissolved solids, and they represent the realdue when the water is completely evaporated. This is expressed quantitatively as "parts per million", which refers to the proportion by weight in 1,000,000 parts of water. A salt when dissolved in water separates into two chemical units called "radicals", and these are expressed as such in the chemical analyses. In the one group is included the metallic elements of oalcium (Ca), magnesium (Mg), and sodium (Na), and in the other group are the sulphate (SO 4), chloride (Cl), and carbonate (CO3) radicals.

The analyses indicate only the amounts of the previously mentioned radicals, thus negleoting any silica, alumina, potash, or iron that may be present. It will be noticed that in most instances the total solids are accounted for by the sum total of the radicals as shown by the analyses. Actually, the residue when the water is completely evaporated still retains some combined water of crystaliization, so that the figures for the "total solids" are higher than the sum total of the radicals as determined. TThese radicals are also "oalculated in assumed combinations" to indicate the theoretical amounts of different salts present in the water. The same method was followed in each analysis, so that the table presents a consistent record of the different compounds present.

Mineral Constituents Present

Calcium. Calcium (Ca) in the water comes from mineral perticles present in the surface deposits, the chief source being limestone, gypsum, and dolomite. Fossil shells provide a suurce of calcium, as does also the decomposition of igneous rocks. The common compounds of calcium are oralcium carbonate $\left(\mathrm{CaCO}_{3}\right)$ and calcium sulphate $\left(\mathrm{CaSO}_{4}\right)$.

Magnesium. Magnosium (Mg) is a common constituent of many igneous rocks and, therefore, very prevalent in ground water. Dolomite, a carbonate of calcium and magnesium, is also a source of the mineral. The sulphate of magnesia (MESO_{4}) combines with water to form "Epsom salta" and renders the water unwholesome if present in large amounts.

Sodium. Sodium (Na) is derived from a number of the important rock-forming minerals, so that sodium supphate and carbonate are very common in ground waters. Sodium sulphate ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) oombines with water to form "Glauber"s salt" and excessive amounts make? the water unsuitable for drinding purposes. Sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ or "black alkalim. waters are mostly soft, the degree of softness depending upon the ratio
of sodium carbonate to the calcium and magnesium salts. Waters containing sodium carbonate in excess of 200 parts per million are unsuitable for irrigation purposes ${ }^{1}$. Sodium sulphate is less

1

"The extreme limit of salts for irrigation is taken to be 70 parts per 100,000, but plants will not tolerate more than 10 to 20 parts per 100,000 of black alkali (alkaline carbonates and bicarbonates)" Frank Dixey in "A Practical Handbook of Water Supply", Thos. Murby \& Co., 1931, p. 254,
harmful.
Sulehates. The sulphate $\left(\mathrm{SO}_{4}\right)$ salts referred to in these analyses are calcium sulphate (aSO ${ }_{4}$), magnesium sulphate (Mg_{4}), and sodium sulphate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$.

Chloride. Chlorine (C1) is with a few exceptions, expressed as sodium chloride (NaCl), that is, common table selt. It is found in all of the analyses, most of the waters containing less than 200 parts per million, but some as much as 2,000 or 3,000 parts. These waters have a brackish taste.

Alkalinity. The alkalinity determined in these water

 analyses is based on the assumption that the only salts present in the samples that will neutralize acids are carbonates, and that, consequently, the degree of alkalinity is proportional to the amount of the carbonate radical (CO_{3}) present.Hardness. The hardness of water is the total hardness, and has been determined by the amount of a standard soap solution equired to form a lather that will stand up (persist) for 2 minutes. Hardness is of two kinds, temporary and permanent. Temporary. hardness is caused by calcium and magnesium bicarbonates, which are soluble in water but are precipitatcd as insoluble normal carbonates by boiling, as shown by the scale that forms in teakettles. Permanent hardness is caused by the presence of calcium and magnesium sulphates, and is not removed by boiling. The two forms of hardness a are not distinguished in the water analyses. Waters grade from very softy to very hard, and can be classified according to the following system :

The"Examination of Waters and Water supplies", Thresh \& Beale, pagè 2I, Fourth Ed. 1933.

A water under 50 degrees (that is, parts per million) of hardness may be said to be very soft.
A water with 50 to 100 degrees of hardness may be said to be moderately soft.
A water with 100 to 150 degrees of hardness may be said to be moderately hard.
A water with more than 200 and less thar. 300 degress of hardness may be said to be hardis.
A water with more than 300 degrees of hardness may be said to be very hard.

Hard waters are usually high in calcium oarbonate. Almost all of the waters from the glacial drift are of this type, especially those pos associated with sand and gravel deposits that come close to the surface.

In soft water the calcium carbonate has been replaced by sodium carbonate, due to natural reagents present in the sand and clays. Bentonite and glauconite are two such reagents known to be present. Montmorillinite, one of the clay-forming minerals, has the same property of softening water, owing to the absorbed sodium that is available for chemical reaction.

Piper, A. M. "Ground Water in Southwestern Pennsylvenia", Penn. Geol. Surv., 4th series.

If surface water reaches the lower sands by percolating through the higher beds it may be highly charged with calcium salts before reaching the bedrock formations containing bentonite or glaconite. The completeness of the exchange of anlofum arbonate for sodium carbonate will, therefore, depend upon the length of time that the water is in contact with the softenang reagent, and also upon the amount of this material present. The rate of movement of underggound water will, consequentizy, be a factor in determining the extent of the reaction.

The amount of iron prosent in the water was not determined, owing to the possibilities of contamination from the iron casings in the wells. Iron is present in most waters, but the amount may be small. Upon exposure to airia red precipitate forms, the water becomes acid, and, hence, has a corrosive action. When iron is present in large amounts the water has an inky taste.

WATER ANALYSES IN RELATI(N TO GEOLOGY

Glacial Drift

The quality of the water from glacial drift depends largely on the nature of the deposit from which it.comes and on the depth of the aquifer below the surface. Glacial deposits may be divided roughly into three types.
(1). Sand and gravel beds that form the surface deposit, such as outwash material and glacial lake sands.
(2). Buried outwash and interglacial deposits between two tills of boulder clay.
(3). Pockets or lenses of sand anc gravel irregularly distributed through the till.

Water from surface sand doposits is normally How in dissolved salts, the total being generally less than 1,000 parts per million. Where large amounts of limestone occur in the glacial sand and gravel beds a characteristic constituent of the glacial water is calcium carbonate, the amount present varying from 300 to 700 parts per million.

Water from buried outwash deposits contains more dissolved salts than the surface sands, as the water in order to reach them has to percolate through overlying"till. Rain water contains carbonic acid, which sots as a solvent and dissolves a great deal of calcium, magesium, and sodium from the rock-forming minerals. Sulphate salts are commonly present, though their proportions vary greatly in the different waters. The shales that are incorporated in the drift are high in calcium sulphate, so that the amount of shale present will modify the quality of the water. The oxidized upper part of the drift contains less sulphate than the deeper, less oxidized boulder clay. The character of the water in the buried outwash deposits will, therefore, depend largely on the compoettion and amount of till that overlies it.

Water from irregularly distributed sand and gravel beds will vary in its content of dissolved salts depending upon the character of the material surrounding the reservoir beds. As the water in this type of deposit does not flow to any marked extent, It is apt to be more highly impregnated with soluble salts than where the underground movement is more rapid. Soft water in the drift is mostly confined to shallow wells in sands low in calcium carbonate. Waters from glaciel lakirclays are sometimes high in soluble salts: The sample from a well in glacial lake clay on N.W. $\frac{1}{4}$ sec. 27, tp. 42, rge. 17, has 11,040 parts per million of soluble salts, largely magnesium sulphoate and sodium sulphato. The sample from SE, $\frac{1}{4}$ sec. 23, tp. 42, rge. 16 , which is believed to come from glecial lake silts, has a very different composition. The total solids in it are only 440 parts per million, of which 250 are calcium carbonate. The great difference in these waters is due to the high soluble salt content that is associated with the lake clays but absent in the silts. Average drift water contains between 1,000 and 3,000 parts per million of dissolved minersl salts.

Bearpaw Formation

The Bearpaw formation consists of dark marine shales and beds of green sand. Water from these sands has a total solid count ranging from 300 to 1,600 parts per million and a hardness of more than 300 degrees. Calcium corbonate is very marked in all samples, due, perhaps, to the proximity of the water sande to the glacial drift. Sodium sulphate is the chief soll present, followed by calcium carbonate, magnesium sulphate, magnesium carbonate, and sodium chloride in decreasing mountr. These waters are distinguished from the overlying drift waters by being relatively low in total dissolved solids, and in containing no calcium sulphate and only moderate amounts of sodiun sulphate, magnesium sulphate, and magnesium carbonate.

Pale Beds

Pale Beds underlie the Bearpaw formation. Total solids in waters from these beds vary from 700 to 1,300 parts per million. The water is, in most instances, soft, as it contains sodium carbonate in excess of calcium and magnesium carbonates, but when mixed with surface water high in calcium carbonate, it will become hard. The high concentration of sodium salts, especially sodium carbonate, in contrast with the calcium and magnesium salts distinguishes this water from that in Bearpaw sands. The Pale^Beds include much bentonite, and it is this minersl that actscas a water softener within the formation. The following analyses are typical of waters from the Pale Beds:

SE. sec. 16, NE. sec. 3, SW...sec.7, SE. sec. 21
Salts tp.38, rge. 21 tp.39, rge. 25, tp.37, rge.24, tp. 38, rge. 23

CaCO_{3}	73	18	53	35
CaSO_{4}	-	-	-	-
MgCO_{3}	52	14	45	-
MgSO_{4}	-	-	-	-
$\mathrm{Na}_{2} \mathrm{CO}_{3}$	297	679	464	58
$\mathrm{Na}_{2} \mathrm{SO}_{4}$	297	158	266	437

	$-13-$			46
NaCl	31	45	130	
Total solids	760	1,020	940	1,260
Hardness	100	20	30	75

Varlegated Beds

In Senlac Rural Municipality, Saskatchewan, are a number of wells that have water very similar in character to that found in the Bearpaw formation. These wells tap an horizon that corresponds with the Variegated Beds in Alberta, although they have not been separated from the Pale Beds. They are less bentonitic than the PaleiBeds and darker in colour. The water is hard and has a low dissolved solid content. The three analyses given below show a great deal of similarity and suggest a common horizon.

Solts	$\begin{aligned} & \text { Nw. sec. } 21, \\ & \text { tp. } 41, r \text { ge. } 26 \end{aligned}$	$\begin{aligned} & \text { NW. sec. } 3, \\ & \text { tp. } 41, \text { rge. } 28 \end{aligned}$	SE: sec. 28, tp. $40, r g e .2$
CaCO_{3}	250	365	125
CaSO_{4}	-	-	-
MgCO_{3}	1109	80	155
CMSSO_{4}	149	104	69
$\mathrm{Na}_{2} \mathrm{CO}_{3}$	\square	-	-
$\mathrm{Na}_{2} \mathrm{SO}_{4}$	98	132	386
NaCl	12	12	18
Totelisolids	640	640	780
Hardness	600	600	500

Ribstone Creek Formation

Chemical analyses of water from the Ribstone Creek formation vary more than in the Pale Beds, the reason being that at several different horizons the sedinents show cunsiderable lateral variation. The formation includes both marine and non-marine beds, thin coal seams being present in the basal part of the formation around Paynton, whereas south of Lashburn, on Battle River, marine fossils were found in strata considered to be at approximately the same horizon. The water analyses show similarities within limited areas, but long distance correlations camnot be made safely except for the saline waters that occur in the flowing wells at Vera, Muddy Lake, and at the south end of Tramping Iake. Analyses of these waters are given in the following tabie:

Saltr	$\begin{gathered} \text { SE:Sec. } 25, \\ \text { tp. } 41, \mathrm{rge} \\ 24 \end{gathered}$	$\begin{aligned} & \text { SE. .sec. } 22, \\ & \text { tp. } 41 ; \mathrm{rge} \\ & 24, \end{aligned}$	$\begin{gathered} \text { NE.sec. } 36, \\ t p .41, r g e, \\ 24, \end{gathered}$	$\begin{gathered} \text { SW. sec. } 7 \\ \text { tp. } 41, \mathrm{rge} \\ 24, \end{gathered}$	$\begin{array}{\|c\|} \hline \text { SE } \cdot \sec \cdot 30, \\ t \mathrm{tp} \cdot 38, r g e \\ 22, \end{array}$	$\begin{gathered} \text { SW. sec } 10, \\ \text { tp. } 35, \\ \text { rge. } 20, \end{gathered}$
CaCO_{3}	73	73	73	198	108	SO
CaSO_{4}	-	-	-	\%	m-	\cdots
MgCO_{3}	38	38	38	52	69	52
MgSO_{4}	\cdots	-	-	-	-	-

$\mathrm{Na}_{2} \mathrm{CO}_{3}$	129	119	129	11	106	125
$\mathrm{Na}_{2} \mathrm{SO}_{1}$	55	55	61	61	49	43
NaCl	2,929	3,036	2,690	2,863	3,531	3,861
Total solids 3,840	3,460	3,120	3,200	3,860	4,460	
Hardness	135	90	110	100	130	130

The similarity in these anlayses suggests a common source bed. The distance between the Tramping Lake well and the Vera wells is about 40 miles. This water, which is thought to come from the basal sand of the Ribstone Creek formation, is not typical of water from the same stratigraphical horizon in the vicinity of Battle River, one reason boing, possibly, that at Battle River the stream das cut through the Ribstone Creek formation exposing the sand members along its banks. This may cause a more rapid movement of the underground water in this area than farther south, and it is known that the rate of flow is a controlling factor that gnverns the change of calcium carbonate to sodium carbonate when the softening reagents of bentonite or glauconite are present in the sand.

Some of the soft waters from the Ribstone Creek formation cannot be distinguished from those of the Pale Deds, whereas others are aufte different. The following analyses illustratetsome of the different types of water from this formation:

Salts	Se.sec. 11, tp. 46, rge 28 ?	nd Agent ittle ine I.R.	SWI. sec. 24, tp. 46, rge 21	NE.sec. 36, tp. 43, rge 18	$\begin{aligned} & \text { Se. sec } \\ & 26 . \mathrm{tp} \\ & 43, \mathrm{rge} \\ & \mathrm{IB} \end{aligned}$	NE.sec 36 . tp 41, rg - 24	$\begin{aligned} & \text { NW.se } \\ & 22 \cdot t \\ & 42 \cdot \mathrm{r} \\ & 23 \end{aligned}$
CaCO_{3}	90	90	410	73	35	73	125
CaSO_{4}	-	-	-	-	-	-	-
MgCO_{3}	$\bigcirc 7$	59	163	38	31	38	97
MgSO_{4}	-	-	64	, -	: -	-	-
$\mathrm{Na}_{2} \mathrm{CA}_{3}$	217	392	-	283	592	129	196
$\mathrm{Na}_{2} \mathrm{SO}_{4} \quad 1$	1,644	777	2,518	225	522	61	1,541
NaCl	249	63	76	12	83	2,690	71
Total solids	5 2,220	1,340	3,000	620	1,280	3,120	11,900
Hardness	280	160	1 750	110	35	110	600

The above chemical analyses show such a wide range in the dissolved salts present in the different waters in the Ribstone oreek formation that they cannot be used for correlation purposes over a large area.

Conclusions

(1) In most instances water from glacial drift is auite different from water from bedrock.
(2) Some of the bedrock horizons carry waters that show definite chomical characteristics.
(3) Most waters from glacial till carry total solids ambunting to between 1,000 andns,000 parts per million."
(4) Bedrock waters are commonly low in dissolved salts. Exceptions to this are to be found in water from the Ribstone Creek formation.
(5) Water from the Bearpaw formation is hard. An average of ten wells gave a total solid content of 1,100 parts per million.
(6) Water from the Variegated Bods resembles that from the Bearpaw formation.
(7) Waters from the Pale Beds is mostly soft. An average of ten wells gave a total solid of 1,000 parts per million.
(8) All soft waters contain sodium carbonate ($\mathrm{Na}_{2} \mathrm{CO}_{3}$), which is present in water from the Pale Beds and Ribstone Creek formations but absent from the Dearpaw formation and Variegated Beds.

RURAL haNICIPhLITY CF MinNTCU LAKin, NU. 442, SABKATCHEWAN

Physicsl Features

Manitou Lake, with an elevetion of 1,971 feet, occupies a large area in the southeast ccrner of this municipality. Batte River forms the northern boundary. It has rather steep southerly banks, which in the northwest pant rise 260 to 300 feet above tho river, but in the northeasterly part rise only 150 to 200 feet to a terrace about 2 miles wide. At the south edge of the terrace is a steep embankment 200 to 250 feet high. To the south and west of Menitou Lake is an area of sand and sand dunes, evidently representing a glacial lake deposit. Elsewhere, except in Battle River Vriley, the municipality is mantled by boulder clay.

Geolory

Lea Park shales occupy the lewer part of Battle River Vallay and outcrops at a few places. High up on the valley sides are a few outcrops of Ribstone Creek sandstones. Shales, believed to be Grimzly Bear, outcrop at only ore place on NE. sec. 30, tp. 46, rge. 25. Both Birch Lake sandstones and overlying Variegated Beds are believed to underlie considerable areas of drift.

Water Supply

Most of the wells obtain water from sands and gravel in the drirt, which in this municipality varies in thickness up to at least 150 feet and possibly considarably more in the higher areas. Beneath the dritt, as indicated above, are various fomations from Variegated Bads in the higher areas to Lea Park shales in Battle River Valley. The main source of water in deep wells appears to be sands in the Ribstone Creek formation. The deepest of these wells is 350 feet, but others that commence at lower altitudes reach the same water-bearing beds at depths of 100 feet or less. It is certain that, except in those areas underlain by only Lea Park shales, the Ribstone Creek sands are a potential source of water for the whole municipality.

Township 43, Ranges 26, 27, and 28. A large area around the south end and southwest of Manitou Lake is covered with sand, and is of no agricultural use. A well 157 feet deep at Artland, owned by the Canadian National Railway, obtained a good supply ff water at an elevation of 1,851 feet in sand presumably of Ribstone Creek age, Another well, on NE. sec. 28, tp. 43, rge. 28, at a depth of 276 feet, or an elevation of 1,843 feet, obtains soft water probably from the same horizon. Still another well, on sec. 2h, tp. 43, rge. 28, 300 feet deep, or at an elevation of 1,744 feet, also yields soft water, probably from a sand in the lower part of the Ribstone Creek formation. All other wells produce from sand or gravel beds in the glacial drift. One horizon, at an elevation of 1,980 to 1,990 feet, appears to be fairly continuous, and undoubtedly will be waterm bearing over a much wider area than is now producing.

Township 44, Range 26. One well in this township, on NE. section 26, was drilled to a depth of 350 feet and found water at an elevation of 1,895 feet, presumably in the Ribstone Creek formation, but the sand was so fine that it plugged the well casing. All other wells produce from glacial sand and gravel deposits, mostly between elevations of 2,040 and 2,090 feet, but with exceptions both above and below these levels. The depth to the base of the glacial drift is not known, but all wells in the drift are above the level of Hanitou Lake, at an elevation of 1,971 feet. On NE, section 24 there is a dry hole 190 feet deep. The bottom of this hole has an elevation of 1,993 feet and, presumably, the well did not quite reach the source of the spring on NE, section 18, which has an elevation of 1,975 feet. It is not known from what type of aquifer this spring is derived, so that it is uncertain if it represents a widespread water-bearing horizon. The probability is that if the well had been drilled a very little deeper it would have passed into Grizaly Bear shale, in which case it would have been necessary to deepen it another 100 feet to the Ribstone Creek sand encountered in the well on NE. section 26.

Township 44, Range 27. Three wells in this township

 were drilled to sands in the Ribstone Creek formation, but it is not known that all produce from the same horizon. Two wells, one 273 feet deep on SE, section 5, and the other 278 feet deep on SE, section 6, encountered water at elevations of 1,835 and 1,820 feet respectively. The difference here in the elevation of the water horizon may be due in part to the fact that they were based on surface elevations that were taken by aneroid barometer and are only approximate, and also to inexact information regarding the depths at which the water horizon was encountered, It is almost certain, however, that both wells produce from the same horizon. The other well, on NE. section 26 , drilled to a depth of 260 feet, or an elevation of 1,872 feet, may produce from a higher aquifer not present in the other wells, in that the water flowed, rising above 2,132 feet, the surface elevation. It is impossible to explain this flow, as the Ribstone Creek formation does not rise to this elevation anywhere in this region. Several wells yield water from sand and gravel beds in the glacial drift at elevations of 2,045 to 2,075 feet. The depths to these beds at any particular location cannot be predicted, but as they occur in considerable abundance in the drift between these elevations, the chances of encountering one or more in a well are rather good.Township 44, Range 28. One well in this township, 105 feet deep, obtains soft water at a depth of 50 feet, or an elevation of 1,846 feet, from a sand presumably of the Ribstone Creek formation, Other, shallewer wells obtain water in what are considered to be glacial sands, without showing any uniformity of elevation that would characterize a continuous aquifer. It is, thus, probable that wells in the glacial drift in this township will obtain water at quite different elevations, and it is certain that, where sufficient water cannot be found in the drift, wells drilled to the Ribstone Creek sands will find water.

Township 45, Range 26. All wells in this township of which records are available obtain their water supply from sand and gravel deposits in the glacial drift. The supply is not always good, and the aquifers show a very considerable range in elevation in respect to the relatively flat prairie country. Deeper wells in the drift would undoubtedly find further supplies, and drilling into the Ribstone Creek sands, which should be reached at an elevation of about 1,870 to 1,890 feet, should encounter still more water.

Township 45, Ranges 27 and 28, Southeast of Battle River.
At least three wells in this area have reached sands in the Ribstone Creek formation. One of these, on NE. sec. 8, tp. 45, rge. 27, drilled to a depth of 210 feet, obtained soft water at an elevation of 1,902 feet, but the sand was se fine it plugged the well. The other two wells are close together, and from what is known of the structure are believed to be slightly lower stratigraphically than the first well. They are on SW. and NW. sec. 2, tp. 45, rge. 28, and encountered the water-bearing Ribstone Creek sands at elevations of 1,873 and 1,886 feet respectively. All wells in the drift encountered sand beds at various levels, and one well, 125 feet deep on NE, section 14, bottomed in glacial clay without encountering water. This well would have to be drilled to a depth of about 285 feet to reach the Ribstone Creek sands productive in sec. 2, tp. 45, rge. 28, but at that level would undoubtedly find a good supply of water.

Township 46, Range 25, and Township 47, Range 25, South of Battle River. A well-marked embankment 250 to 300 feet high in the north of township 46 slopes from the higher prairie level to a terrace that, in turn, is bounded on the north by the steep slope of Battle River Valley. In a road-cut on sec. 31, tp. 46, rge. 25, there is a poor outcrop of what is beliéved to be Grizzly Bear shale. The edge of this formation evidently follows around on the face of the embankment, and the terrace below is presumably underlain by the Ribstone Creek formation, with Lea Park shales in Battle River Valley.

So far as known, all wells on the prairie level above the terrace obtain water from sands of galcial origin. The aquifers show no uniformity of level, which means that each is a small deposit in the drift without any considerable lateral extent. On the terrace, however, several wells reach the sands of the Ribstone Creek formation and obtain water at an elevation of about 1,870 feet. A few wells also obtain water from sands at slightly lower elevations, but it is by no means certain that these are all Ribstone Creek sands. It would seem that the upper Ribstone Creek sand may have been ereded, prior to glacial deposition, by a stresm valley immediately in front of and parallel to the terrace embankment, but that it was not removed in an area between this pre-glacial valley and the valley of Battle River where it now has been encountered in $a f e w$ wells. It is certain, however, that water will occur in Ribstone Creek sands everywhere in tp. 46, rge. 25, but owing to the elevation of the surface the wells would be 300 to 400 feet deep.

Township 46 , Ranges 26 and 27 , and Township 47, Range 26.

 seutheast of Battle River. In this area a few wells penetrate the drift te the underlying formations, but most of the water, especially in tp. 46, rge. 26, is obtained from glacial gravels and sands. These aquifers show no unfformity of level, and are probably small, iselated. depesits that cannot be anticipated at any definite level in any particular well. A well in NE, sec. 2, tp. 47, rge. 26, evidently reached the Ribstone Creek sands at a depth of 90 feet, or an elevation of 1,839 feet. This is apparently a lower sand than that which gields water in some of the wells to the east. In tp. 46, rge. 27, three wells, on SE. sec. 13, SE. sec. 14, and NE. sec. 25, cbtain water at elevations of $1,940,1,955$, and 1,937 feet respectively, suggesting a formational aquifer ineneath the drift. The elevations seem high, however, for Ribstone Creek sands, and possibly in this area there is a sand in the overlying Grizaly Bear shale. The alternative explanation is that the wells are in sands in the drift.| ated in assumed | | | Source |
| :---: | :---: | :---: | :---: |
| $\mathrm{Na}_{2} \mathrm{CO}_{3} \mathrm{Ha}_{2} \mathrm{SO}_{4}$ | | | |
| 258 | 49 | 187 | Ribstone Creek |
| 460 | 145 | 74 | dibstone Creek |
| 588 | 106 | 8 | |
| | 286 | 26 | Ribst one Creek |
| 389 | 722 | 23 | Ribstone Creet |
| | 11754 | 61 | Glacial drift |
| 136 | $\begin{array}{r}1130 \\ \hline 366\end{array}$ | 40 50 | |
| | 133 | 17 | Ribstone Creek
 Glacial |
| | 1 | 58 | Not typical |
| 130 | 1231 | 86 | Ribstone Cruel |

$$
\underset{\sim}{\sim} \infty
$$

Oino N
 $\stackrel{i}{\infty}$
Rinoininouninunn n
 N
 ホoming
ตボ○
 －NNNTㄱ
－ 8
๙N్NNNN్NNNNN゙N N
mMy winnoporaf f
Nowniny voo + Minn N

