CANADA
DEPARTMENT OF MINES
AND
TECHNICAL SURVEYS

GEOLOGICAL SURVEY OF CANADA

WATER SUPPLY PAPER No. 27

PRELIMINARY REPORT
GROUND-WATER RESOURCES
OF THE
RURAL MUNICIPALITY OF POPLAR VALLEY
NO. 12

SASKATCHEWAN

By
B. R. MacKay and H. H. Beach

LIRRARY
$d^{\prime}, ~ / 1, ~ m, ~ N A T I O N A L ~ M U S E U M ~$ OF CANADA

OTTAWA
1936

CANADA
DEPARTMENT OF MINES
bureau of economic geology
GEOLOGICAL SURVEY

GROUND WATER RESOURCES OF THE RURAL MUNICIPALITY
OF POPLAR VALLEY
NO. 12
SASKATCHEWAN

B.R. MacKAY and H.H. BEACH

WATER SUPPLIY PAPER NO. 27

CONTENTS

Page
Introduction 1
Glossary of terms used 5
Names and descriptions of geological formations referred to.. 8
Water-bearing horizons of the municipality 10
Water-bearing horizons in the unconsolidated deposits 11
Water-bearing horizons in the bodrock 13
Ground water conditions by townships:
Township 1, Range 28, west of and meridian 16
Township 1, Range 29, " " " " 17
Township 1, Range 30, " " " " 18
Township 2, Range 28, " " " " 19
Township 2, Range 29, " " " " 21
Township 2, Range 30, " " " " 22
Township 3, Range 28, " " " " 23
Township 3, Range 29, " " " " 25
Township 3, Range 30, " " " " 26
Statistical summary of well information 29
Analyses and quality of water 30
General statement 30
Table of analyses of water samples 34
Water from the unconsolidated deposits 35
Water from the bedrock 36
Well records 38

Illustrations

Map of the municipality.
Figure 1. Map showing surface and bedrock geology that affect the ground water supply.

Figure 2. Map showing relief and the location and types of wells.

GROUND WATER RESOURCES OF THE RURAL MUNICIPALITY OF POPLAR VALLEY, NO. 12, SASHATCHENAN INTRODUCTION

Lack of rainfall during the years 1930 to 1934 over a large part of the Prairie Provinces brought about an acute shortage both in the larger supplies of surface water used for irrigation and the smaller supplies of ground water required for domestic purposes and for stock. In an effort to relieve the serious situation the Geological Survey began an extensive study of the problem from the standpoint of domestic uses and stock raising. During the field season of 1935 an area of 80,000 square miles, comprising all that part of Saskatchewen south of the north boundary of township 32, was systematically examined, records of approximately 60,000 wells were obtained, and 720 samples of water were collected for analyses. The facts obtained have been classified and the information pertaining to any well is readily accessible. The examination of so large an area and the interpretation of the data collected were possible because the bedrock geology and the Pleistocene deposits had been studied previously by McLearn, Warren, Rose, Stansfield, Wickenden, Russell, and others of the Geological Survey. The Departrient of Natural Rosources of Saskatchewan and local woll drillers assisted considerably in supplying several hundred well records. The base maps used wore supplied by the Topographical Surveys Branch of the Department of the Interior.
-2-

Publication of Results

The essential information portaining to the ground water conditions is being published in reports, one being issued for each municipality. Copies of these reports are being sent to the secretary treasurers of the municipalities and to certain Provincial and Federal Departments, where they can be consulted by residents of the municipalities or by other persons, or they may be obtained by writing direct to the Director, Bureau of Economic Geology, Department of Mines, Ottawa. Should anyone require more detailed information than that contained in the reports such additional information as the Geological Survey possesses can be obtained on application to the director. In making such request the applicant should indicate the exact location of the area by giving the quarter section, township, range, and meridian concerning which furthor information is desired.

The reports are written principally for farm residents, municipal bodies, and well drillers who are either planning to sink new wells or to deepen existing wells. Technical terms used in the reports are defined in the glossary, How to Use the Report

Anyone desiring information about ground water in any particular locality should read first the part dealing with the municipality as a whole in order to understand more fully the part of the report that deals with the place in which he is interested. At the same time ho should study the two figures accompanying the report. Figure 1 shows the surface and bedrock geology as related to the ground water supply, and Figure 2 shows the relief and the location and type of water wells. Relief is shown by lines of equal elevation called "contours". The elevation above seamlevel
is given on some or all of the contour lines on the figure. If one intends to sink a well and wishes to find the approximate depth: to a water-bearing horizon, he must learn: (1) the elevation of the site, and (2) the probable elevation of the watermbearing bed. The elevation of the well site is obtained by marking its position on the map, Figure 2, and estimating its elevation with respect to the two contour lines between which it lies and whose elevations are given on the figure. Where contour lines are not shown on the figure, the elevations of adjacent wells as indicated in the Table of Well Records accompanying each report ben be used. The approximate elevation of the water-bearing horizon at the wellsite can be obtained from the Table of Well Records by noting the elevation of the watermbearing horizon in surrounding wells and by estimating from these known elevations its elevation at the well-site. ${ }^{\frac{1}{-}}$ If the watermbearing horizon is in bedrock the depth to water can be estimated fairly accurately in this way. If the water-bearing horizon is in unconsolidated deposits such as gravel, sand, clay, or glacial debris, however, the estimated elevation is less reliable, because the water-bearing horizon may bo incined, or may be in lenses or in sand beds Which may lie at various horizons and may be of small lateral extent. In calculating the depth to water, care should be taken that the water-bearing horizons selected from the Table of Well Records be all in the same geological horizon either in the glacial drift or in the bedrock. From the data in the Table

[^0]of Well Records it is also possible to form some idea of the quality and quantity of the water likely to be found in the proposed well.

- -5

GLOSSARY OF TERMS USED

Alkaline. The term "aikaline" has been applied
rather loosely to some groundwaters. In the Prairie
Provinces, a water is usually described as "alkaline" when it contains a large amount of salts, chiefly sodium sulphate and magnesium sulphate in solution. Water that tastes strongly of common salt is described as "salty". Many "alkaline" waters may be used for stock. Most of the so-called "alkaline" waters are more correctly termed "sulphate waters".

Alluvium. Deposits of earth, clay, silt, sand, gravel, and other material on the flood-plains of modern streams and in lake beds.

Aquifer or Water-bearing Horizon. A water-bearing bed, lens, or pocket in unconsolidated deposits or in bedrock. Buried premGlacial Stream Channels. A channel carved into the bedrock by a stream before the advance of the continental ioe-sheet, and subsequently either partly or wholly filled in by sands, gravels, and boulder olay deposited by the ice-sheet or later agencies.

Bedrock. Bedrock, as here used, refers to partly or wholly consolidated deposits of gravel, sand, silt, clay, and marl that are older than the glacial drift.

Coal Seam. The same as a coal bed. A deposit of carbonaceous material formed from the remains of plants by partial decomposition and burial.

Contour. A line on a map joining points that have the same elevation above sea-level.

Continental Ice-sheet. The great ice-sheet that covered most of the surface of Canada many thousands of years age.

Escarpment. A cliff or a relatively steep slope separating level or gently sloping areas.

Flood-plain. A flat part in a river valley
ordinarily abovo water but covered by water when the river is in flood.

Glacial Drift. The loose, unconsolidated surface deposits of sand, gratel, and clay, or a mixture of these, that were deposited by the continental icemsheet. Clay containing boulders forms part of the drift and is referred to as glacial till or boulder clay. The glacial drift oocurs in several forms:
(1) Ground Moraine. A boulder clay or till plain (includes areas where the glacial drift is very thin and the surface uneven).
(2) Terminal Moraine or Moraine. A hilly tract of country formed by glacinl drift that was laid down at the margin of the continental ice-shoet during its retroat. The surface is characterized by irregular hills and undrained besins.
(3) Glacial Outwash. Sand and gravol plains or deltas formod by streams that issued from the centinentel 10e-sheet.
(4) Glacial Lake Deposits. Sand and olay plains formed in glacial lakes during the retreat of the ice-sheet. Ground Water. Sub-surface water, or water that occurs below the surface of the land.

Hydrostatic Pressure. The pressure that causes water in a well to rise above the point at which it is struck.

Impervious or Impermeable. Beds, such as fine olays or shale, are considered to be impervious or impermeable when they do not permit of the perceptible passage or movement of the ground water.

$-7=$

Pervious or Permeable. Beds are pervious when they permit of the perceptible passage or movement of ground water, as for example porous sands, gravel, and sandstone.

Pre-Glacial Land Surface. The surface of the land before it was covered by the continentel icemsheet.

Recent Deposits, Deposits that have been laid down by the agencies of water and wind since the disappearance of the continental ice-sheet.

Unconsolidated Deposits. The mantle or cevering of alluvium and glacial drift consisting of loose sand, gravel, clay, and boulders that overlie the bedrock.

Water Table. The upper limit of the part of the ground wholly saturated with water. This may be very near the surface or many feet below it.

Wells. Holes sunk into the earth so as to reach a supply of water. When no water is obtained they are referred to as dry holes. Wells in which water is encountered are of three classes.
(I) Wells in which the water is under sufficient pressure to flow above the surface of the ground. These are called Flowing Artesian Wells.
(2) Wells in which the water is under pressure but does net rise to the surface. These wells are called NenFlowing Artesian Wells.
(3) Wells in which the water does not rise above the water table. These wells are called Non-Artesian Wells.

NAMES AND DESCRIPTIONS OF GEOLOGICAL FORMATIONS, REFERRED TO IN THESE REPORTS

Wood Mountain Formation. The name given to a series of gravel and sand beds which have a maximum thickess of 50 feet, and which occur as isolated patohes on the higher parts of Wood Mountain. This is the youngest bedrock formation and, where present, overlies the Ravenscrag formation.

Cypress Hills Formation. The name given to a series of conglomerates and sand beds which occur in the southwest corner of Saskatchewan, and rests upon the Ravenscrag or older fomations. The formation is 30 to 125 feet thick.

Ravenscrag Formation The name given to a thick series of light-coloured sandstones and shales containing une or more thick lignite coal seams. This formation is 500 to 1,000 feet thick, and covers a large part of southern Saskatchewan. The principal coal deposits of the province occur in this formation.

Whitemud Formation. The name given to a series of white, grey, and buff coloured clays and sands. The formation is 10 to 75 feet thick. At its base this formation grades in places into coarse, liny sand beds having a maximum thickness of 40 feet.

Eastend Formation. The name given to a series of finemgrained sands and silts. It has been recognized at various localities over the southern part of the province, from the Alberta boundary east to the escarpment of Missouri coteau. The thickness of the formation seldom exceeds 40 feet.

Bearpaw Formation. The Bearpaw consists mostly of incoherent dark grey to dark brownish grey, partly bentonitic shales, weathering light grey, or, in plaoes where much iron
-9-
is present, buff. Beds of sand occur in places in the lower part of the formation. It forms the uppermest bedrock formation over much of western and southwestern Saskatchewan and has a maximum thickness of 700 feet or somewhat more. Belly River Formation. The Belly River consists mostly of non-marine sand, shale, and coal, and underlies the Bearpaw in the western part of the area. It passes eastward and northeastward into marine shale. The principal area of transition is in the western half of the area where the Belly River is mostly thinner than it is to the west and includes marine zones. In the southwestern corner of the area it has a thickness of several hundred feet. Marine Shale Series. This series of beds consists of dark grey to dark brownish grey, plastic shales, and underlies the central and northeastern parts of Saskatchewan. It includes beds equivalent to the Bearpaw, Belly River, and older formations that underlie the western part of the area.

The rural municipality of Poplar Valley is an area of about 310 square miles lying along the International Boundary immediately to the east of the third meridian, in the south-central part of the province. The municipality consists of six full and three fractional townships, described as tps. 1. 2, and 3, ranges 28, 29, and 30 W . 2nd mer. The Rockglen-Big Beaver branch of the Canadian Pacific railway crosses the northern part of the municipality. The villages of Rockglen and Fife Lake, located on this line, are practically the only centres of population within the area.

The northwest-southeast diagonal divides the municipality into two areas in which not only the topography but the character of the surface deposits and the ground water conditions show marked differences. From an approximate elevation of 2,500 feet above sea-level in the bottoms of the creeks in the extreme southeast corner the ground surface rises irregularly to elevations ranging between 2,700 and 2,800 feet throughout the greater part of the area, and reaching heights exceeding 3,000 feet in isolated points west of the town of Rockglen. A southeasterly trending drainage system consisting of Poplar river and numerous intermittent tributaries extends in dendritic pattern over the southwestern half of the municipality. These streams have eroded deep valleys and tend to give a "badlands" appearance to this part of the Wood Mountain uplands. The topography of the northeastern half of the municipality is much more gently rolling. Streams are less numerous and the sides of the valleys have more gentle slopes. A broad, flat plain extends over the greater part of township 3, ranges 29 and 30, which is covered in part by Fife lake. The topography shown on Figure 2 must be considered as only approximate, many minor discrepancies having been found to exist between elevations of points as indicated by the contours on the map and those as determined by barometric
observations made in the course of this investigation. Accordingly, in several instances it will be found that the elevations given for well sites do not agree with the contour elevations.

Water-bearing Horizons in the Unconsolidated Deposits The water-bearing horizons of this municipality occur in Recent stream deposits, Glacial drift, and Ravenscrag bedrock formation.

Many thousands of years ago a great continental ice-sheet passed in a southwestorly direction over the province of Saskatchewan and deposited a layer of till or boulder clay. The drift is 100 feet or less thick. The southwestern half of this municipality forms part of a "driftless" area lying well within the oxtensive glaciated territory. It is entirely barren of glacial deposits or other evidences of glacial action such as are apparent throughout the northeastern half of the municipality. This "driftless" area has been described by Wickenden ${ }^{1}$. Throughout this area the Ravenscrag

Trans. Roy. Soc., Canada, 3rd ser., vol. 25, sec. 4, pp. 45m47 (1931).
formation is either exposed at the surface or is covered by a thin veneer of soil or Recent sands and gravels. A few scattered boulders lying on the bedrock surface constitute the only evidence of glaciation along the northwest-southeast diagonal of the area. In a northeasterly direction from the diagonal, however, an increasing thickess of boulder clay is encountered. It is known to have a thickness of 40 to 50 feet in the extreme northeast corner of the municipality. With the gradual melting and retreat of the icemsheet a more irregularly surfaced and generally more porous layer of drift was deposited. Such areas of rolls, hillocks, and undrained depressions, generally termed "moraine", wore formed in places where the ice front paused in its retreat for any considerable period of time. A moraine forms a belt 1 to 2 miles in width which
extends from the northwost corner in a southeasterly direction northeast of the diagonal of the municipality. With the continued melting of the ice, lakes were formed in the lowlands. Fife lake is a remnant of a previously existing lake which covered most of township 3, range 29, and extended east and west into the adjoining townships. A layer of some 30 to 45 feet of compact, bluish grey, lake clay interspersed with sand beds covers the boulder clay throughout this lake basin. At other places swiftly moving streams carried considerable amounts of sands and gravels away from the ice front and spread them out in thin layers as outwash gravels. An area of outwash deposits occurs northeast of the village of Fife Lake. Along the smaller creeks the deposits of alluvium are generally too thin to form a source of ground water supply. Several wells located on the flats beside the larger streams have encountered gravels at shallow depths, from which are obtained sufficient quantities of water of good quality for household needs and for a few head of stock, from which are obtained sufficient quantities of water of good quality for household needs and for a few head of stock. In areas where only silts are found the supply is generally less and in some instances contains large amounts of mineral salts in solution.

Due to their porous nature outwash sands and gravels form very good reservoirs of water at shallow depths. Dug wells not exceeding 30 feet in depth in the area mentioned above yield sufficient quantities of water for 10 to 20 head of stock. The water is soft or moderately hard and quite suitable for household use. The proximity of these beds to the surface has caused the supply to decrease markedly during periods of scanty rainfall. The beds of sands, and more occasionally gravels, interspersed through the lake clay area form the sources of supply at depths not exceeding 40 feet. Individual wells yield sufficient water for household use and for 20 to 30 head of stock. The water
is generally suitable for drinking although iron and dissolved mineral salts form objectionable impurities in some areas.

The boulder clay or till does not in general yield a large supply of ground water. Shallow wells sunk near knolls and gravel ridges form sources of household supply on many farms, but where larger quantities of water for stock are required it is usuallly necessary to sink wells into the underlying bedrock. The small seepages derived from the compact boulder clay itself are often highly charged with mineral salts in solution which in some places render the water unfit for drinking. The sand and gravel pockets scattered through the upper part of the drift, however, yield small supplies of water of much better quality.

The belt of moraine is considerably more porous in character than the till: due to the presence in it of more extensive sand and gravel beds, and, consequently, yields much larger supplies. Wells sunk to depths of 15 to 25 feet at many places along the morainic belt yield sufficient supplies of hard, slightly mineralized water for household use and for a few head of stock. Here again, drilling or boring into the bedrock seems advisable where larger supplies for stock watering are required. Water-bearing Horizons in the Bedrock The uppermost bedrock formation known to exist in the municipality consists of light brownish coloured quartzite gravel interbedded with layers of sand occurring in a few scattered areas over the upland parts of the Wood Mountain plateau. These gravels, termed the Wood Mountain beds, generally occur above an approximate elevation of 2,900 feet above sea-level. They have been observed on the uplands to the north and to the south of the village of Rockglen, and in sec. 29, tp. 2, range 29. The thickness of these beds is variable, being only a few feet in some places and 40 or 50 in others.

No information has been obtained of wolls having been sunk into these beds in this municipality. The porosity of the gravels and the character of comenting matorial suggest, however, that these beds will probably yield fair supplies of hard, slightly mineralized water at shallow depths.

The Ravenscrag formation immediately underlies the Wood Mountain beds and forms the uppermost bedrook formation throughout the remainder of the municipality. As has been described above it either outcrops at the surface or is covered only by a very thin veneer of soil throughout the southwestern half of the municipality, and occurs at increasing dopths in a northeasterly direction. The Ravenscrag formation consists of beds of buff-grey sands, shales, and clays and thin seams of lignite coal. The total thickness of the formation in this municipality has not been determined, but is probably not less than 300 or 400 feet over much of the area. The coarse grey sand beds and the coal seams form aquifers in this formation. Individual beds may not extend over any large area, but they are sufficiently numerous in the formation to constitute fairly extensive water-bearing horizons throughout the entire municipality. Three such general horizons have been traced in the Ravenscrag in this municipality. This uppermost horizon is west of the "A" line on Figure 1. It occurs at elevations between 2,875 and 2,790 feet above sea-level throughout the highland area of the wost-central part of the municipality. The second or "B" horizon is known to be present below the area of the "A" horizon and also to extend throughout the lower land of the central part of the municipality. It occurs at an elevation ranging from 2,740 to 2,680 feet above sea-level. It is present west of the "B" line in the central and western part of the municipality and also east of the "B" line in the northeastern corner. A third horizon, designated as the "C" horizon, occurs beneath the lowland areas of the municipality between the two "B" lines and at an
elevation ranging from 2,630 to 2,580 feet above seamlevel. As deep drilling has not been nocossary in this municipality the areal extent of the "C" horizon boneath the "A" and "B" horizons has not been proved. In only a few localities has it been found necessary to sink wells below the uppermost horizon existing in any one part of tho municipality. Water is generally obtained at depths of 45 to 75 fect from the surface and at no place have wells been sunk to depths exceeding 150 feet from the surface. The yield to be expected from individual wells sunk into the bedrock varies in different localities, but is usually sufficient for at least 20 head of stock and several wells supply 100 head. Much of the water from the Ravenscrag in the "driftless" area is soft or moderately hard and although often containing small amounts of "soda" is not highly mineralized. In the drift covered areas, however, a hard "alkaline" water is more common. The mineral salts producing this quality are probably reached from the overlying boulder clay during the downward percolation of surface waters. Several residents in the northern townships use two wells to advantage; one a shallow well sunk into a sand or gravel pocket In the drift for household supply and a deeper well into the bedrock for watering stock.

Many springs occur along the outorops of sandy beds and coal seams in the bottoms and along the sides of the valleys and deeper coulés of the "driftless" area. These springs form a small but constant supply of good water on many of the small farms in the district.

WATER CONDITIONS BY TOWNSHIPS

Township 1, Range 28

The Glacial drift in this township, which forms part of an extensive moraine, is confined to the northeastern corner. Although no wells are drawing their supply from the drift it is probable that small supplies of hard water, suitable for household use, will be found at shallow depths in wells located at bases of slopes or on gravel knolls and ridges. A shallow well sunk into the sand and gravel deposits in the bottom of a coulée in NE. $\frac{1}{4}$, section 1 , yields a soft, clear water in sufficient quantities for 17 head of stock. Most of the ground water supply of the township is, however, derived from productive horizons of the Ravenscrag bedrock formation. Coal seams form the aquifers in most of the wells. These aquifers occur at elevations ranging from 2,700 to 2,660 feet above sea-level in the northwest corner of the area. Throughout the remainder of the township a fairly continuous coal seam occurs at elevations of 2,640 to 2,580 feet. This latter horizon is encountered at depths of 12 to 50 feet in the valleys. It was found necessary, however, on the higher land in section 10 to drill to a depth of 110 feet, and in section 14 to 85 feet, before production was obtained. The yield in all places is reported to be sufficient for at least 10 head of stock, and many wells particularly those located in valleys, yield supplies suffioient for 50 head of stock or more. Springs also form important sources of water in the valleys. One spring issuing from a coal seam in SE. $\frac{1}{4}$, section 19, waters 300 head of sheep and 30 head of cattle. Much of the water from the bedrock is soft or moderately hard. Iron occurs in the water from several of the wells along the western boundary of the township. In no instance, however, does the iron or other mineral salts in solution cause the water to be unfit for drinking.

Township 1, Range 29

The ground water supply of this township is derived entirely from the Ravenscrag bedrock formation. Coal seams form the aquifers in most of the wells, but sandy beds aro produotive in some places. Throughout the broad valleys occupied by Poplar river and its tributaries in the southeastern and central parts of the township little difficulty has been experienced in obtaining an adequate water supply for all household and stock requirements at depths not exceeding 40 feet. A coal seam aquifer is believed to extend continuously at elevations between 2,610 to 2,580 throughout the central parts of the township. It has been encountered in wells located in sections $4,9,12,13,15,16,18$, 21, 22, and 28, and will probably be found to be productive in the intervening areas in sections 8, 10, 11, 14, 19, and 20. In many of the wells the coal seam was penetrated at depths of 10 to 20 feet, but in sections 12, 13, and 15, depths of 40 to 65 feet were necessary before water was obtained. The yields from all wells in this large area are amply sufficient for 20 or more head of stock. The water is soft to moderately hard and, although often containing small amounts of iron, is reported in all instances to be quite suitable for household use and for watering plants. In the northeastern corner of the township wells sunk to depths of 35 to 65 feet yield sufficient supplies of water for 20 to 30 head of stock. The water is hard and reported to be slightly "alkaline", but not unsuitable for household use.

Information was obtained on only one well in the northwestern sections of the township. A well located in SW. $\frac{7}{4}$, section 32, derives its water from the bedrock at a depth of 83 feet. Other wells located in immediately adjoining townships to the north and west have struck small to fairly large supplies at depths not exceeding 35 feet. It is probable that throughout this part of the township the "B" horizon (See Figure 1) will be found to be praductive
at depths not exceeding that of the well in section 32 .
Township 1, Range 30
This township is entirely devoid of glacial deposits. A thin layer of Recent sands, silts, and gravels varying from 5 to 35 feet in thickness covers the floors of Poplar River valley and many of its tributaries. Very shallow wells sunk into these deposits supply drinking water for many farms throughout the lowland areas of the township. The character of the water is variable. In places where the well is largely in olay or silt the water is hard and may contain considerable amounts of iron or other mineral salts in solution. Wells in sand and gravel yield a soft or medium hard water.

Most of the ground water used for both domestic and stock purposes in this township is derived from the Ravenscrag bedrock formation that underlies the top soil or Recent stream deposits throughout the entire township. Coal seams form the water-bearing horizons in most of the wells.

Throughout the lowland area of the east-central part of the township coal seams occurring at the "B" horizon (See Figure 1) form what are believed to be fairly continuous aquifers. Wells sunk to depths not exceeding 35 feet in the lowlands encounter soft to medium hard, drinkable water sufficient for 20 or more head of stock. In SE. $\frac{1}{4}$, section 23, and NE. $\frac{1}{4}$, section 24 , it was found necessary to sink wells to depths of 80 feet before a coal aquifer was tapped and any large supply was obtained. Throughout the remainder of the township the "A" horizon has been encountered in many wells. Coal seams again form the producing aquifers, and with few exceptions occur at elevations between 2,760 and 2,700 feet above sea-level. This horizon is tapped at very shallow depths in the valleys. On the uplands in sections 4 and 5 it is generally necessary to bore to depths of 70 to 80 feet before water is found. Similarly in the northern highland sections, remote from the valleys,

Wells sunk to dopths of 50 to 75 foet aro common. In SE. $\frac{1}{1,}$ soction 34, it was necossary to bore to a depth of 118 feet bofore the wator-boaring cool sean was tapped. This aquifor is belioved to extend continuously over the northoastorn quarter of the township at an approximate olovation of 2,790 foct above soa-levol. The water from the "A" horizon is generally hard and many residonts call it slightiy "alkaline". In all places in the township, howevor, the wator dorived from the Revenscrag formation is usod for drinking.

$$
\text { Township 2, Range } 28
$$

An irregular mantle of glacial till or bouldor clay covors the northeastern half of this township. Southwest of the till is a belt 2 miles wido of moraine. The southwest corner has no glacial cover. Tho glacial drift thickens in a northeasterly direction and is 30 foot thick in tho northoast corner.

Tho boulder clay itself does not generally yield more than small seepages of highly mineralized, often undrinkable water and the more productive sand and gravel pockots intorsporsed through the clay are of limited areal oxtent. The fow shallow wells that have boen sunk to tap water-bearing pockots in the drift yiold only small supplios sufficient for houschold needs. The water is generally inferior in quality to supplies obtainable at shallow depths in the Recent sands, silts, and gravels lying along the bottoms of some of the largor coulées. Two wells located in SW. Ip section 26, and NE, $\frac{1}{4}$, section 36, are producing drinkablo water sufficient for 20 head of stock from sand and gravel bods in the drift at depths of 28 and 25 feet. The moraine is composed of boulder clay in which are intorspersed irregular pockets of sands and gravols. In the oastern half of the belt these gravels can be expocted to yield fair supplios of drinkable water during periods of ample precipitation. Low gravol knolls and ridges having greater relative porosity than the boulder clay covoring intervening areas form botter sites for shellow wolls. In the western half of the belt
of moraine the glacial drift is too thin to bo a potontial source of more than vory small soepages of wator. Apart from the northeastern cornor the glacial doposits of this township cannot be looked upon as a source of any adoquatc supply of ground water. Rosidents are much botter advised to sink wells through the drift to aquifers in the underlying bedrock.

The Ravenscrag bedrock formation either outcrops at the surface or is covered by only a thin veneer of soil in the southwest corner of the township and is found immediately boneath the mantle of glacial drift throughout the remainder of the area.

What is believed to be a continuous water-bearing horizon in the Ravenscrag, at elevations ranging from 2,535 to 2,490 foet above sea-level throughout the northeastern half of the township is formed in some places by a coal scam and in others by a bed of sandy shale or sand. The depth to this horizon depends essentially upon the elevation of the surface at the particular well site, but in most places throughout the area the aquifer is tapped at depths of 60 to 85 feet below the surface. The yield is generally large, several individual wells giving sufficient water for 30 to 50 head of stock. The water is hard and although in many places it contains iron it is nowhere regarded as being unsuitable for domestic use. A coal seam forming another extensive aquifer has been tapped at elevations between 2,630 and 2,580 feet above sea-level in NE. $\frac{1}{4}$, section $9, S E$. $\frac{1}{4}$, sections 16 and 20 , SW. and NE. $\frac{1}{4} 1$ s, section 30, and SE. $\frac{1}{4}$, section 31. In creek bottoms this horizon has been encountered at depth as shallow as 12 feet, but most of the wells were sunk to depths of 60 to 75 feet before the horizon was tapped, and one well on the higher land in SW. $\frac{1}{4}$, section 30, was drilled 136 feet before production was obtained. The quality of the water is similar to supplies derived from the lower aquifer extending under the lowlands. The yield from the wells located at the southern part of the area underlain by this aquifer is large but in the northwest
corner of the township several of the wells do not yield more than enough water for houschold needs and 10 head of stock.

A single well located in SE. $\frac{1}{4}$, section 7, taps a water-bearing coal scam at a depth of 56 feet. The aquifer lies at an elevation of 2,684 feet above sea-level and is believed to mark the eastern extent of the "B" horizon, which is known to be productive in the townships adjoining on the west and south. The aquifer will probably be found to be productive at similar depths throughout the southwestern quarter of this township. The woll in section 7 yields sufficient quantitios of hard, drinkable water for household requirements and for 35 head of stock.

$$
\text { Township 2, Range } 29
$$

The many streams flowing through this township have cut deep valleys and have created a rugged topography which does not lend itself to extensive cultivation. Glacial drift in the form of moraine covers the northoastern part of the township, producing a more gently rolling type of country on which are situated several farms. Tho drift is composed of boulder clay interspersed with beds of sand and gravel. Water is obtained largely from the sandy beds in wells sunk to depths of 15 to 30 feet from the surface. The water is of good quality, and the yield is sufficient in most instances for at least 50 head of stock. One well, situated in NW. $\frac{1}{4}$, section 25 derives a large supply of hard, drinkable water from the Ravenscrag bedrock formation at a depth of 148 feet from the surface. Soveral wells in the township adjoining on the east sunk to this horizon indicate that this aquifer may be fairly extensive over the northeast corner of this township. Throughout the remaining part of the township water is undoubtedly to be found at shallow depths in the recent deposits of sand and gravels lying along the stream valleys and from the water-bearing horizons of the Ravenscrag bedrock formation. Coal seams are believed to form the most extensive aquifers in
the bedrock, but as no wells have been sunk in the southwestern holf of the township the areal extent or the depths to this aquifer are unknown. The data obtained in areas adjoining the southwostern half of this township suggest that wells sunk to depths not exceeding 80 feet in this area can be expected to yiold sufficient supplies for at least 20 head of stock.

A few small areas of brown gravels of the Wood Mountain formation occur as remnants on the tops of some of the hills. No wells have been sunk into these gravels in this area. The porous character of the beds suggest, however, that they might yield small supplies of water at shallow depths.

$$
\text { Township 2, Range } 30
$$

This township lies entirely within the area of "no drift", and hence the water supply of the area is derived wholly from the Recent stream deposits and from the Ravenscrag bedrock formation which either outcrops at the surface or is covered by a thin veneer of soil. Thin beds of reddish brown Wood Mountain gravels overlie the Ravenscrag in some places on the uplands in the northern part of the township. No wells are known to have been sunk into these gravels in this area. The beds are loosely consolidated and would act as reservoirs in periods of ample rainfall. Shallow wells penetrating these beds should yield at least small supplies of drinkable water.

Beds of sand, gravel, and silt extend along the bottoms and over the lower slopes of many of the valleys. The total thickness of these recent deposits varies considerably over smali areas, being practically absent in some localities and having a thickness of more than 30 feet in others. Where gravel is present shallow wells sunk to depths of 15 to 30 feet yield soft or medium hard water in sufficient quantities for domestic requirements and for 20 to 50 head of stock. In areas where sands and silts form the stream deposits in the valleys little water can be expected and it
scoms advisable to sink wells through the recent deposits into the undorlying Ravenscrag formation. A fairly continuous waterbearing horizon occurs in a coal soam at olovations betwoon 2,780 and 2,750 in the township to the south. This horizon wes struck in a well in SE. $\frac{1}{4}$, section 5, at a depth of 72 foot.

As fow wells have been sunk throughout the remainder of the township the water conditions existing in the bedrock can only be inferred from data gathered in the adjacent areas where the geological conditions aro similar. Little difficulty should be experienced in obtaining fairly large supplies of drinkable water at depths not exceeding 100 feot in any part of the township.

Springs are common along tho valley slopes in many
parts of the area. They are situated imediately below outcrops of coal seams and coarso sand beds in nearly all places, and aro believed to derive their supply from these beds. The presence of these springs further suggests the possibility of an amplo ground water supply in the aquifers in the bedrock.

$$
\text { Township 3, Range } 28
$$

The mantle of glacial drift that overlies the entire township shows considerable variation ovor small areas both in the character and thickness. Moraine made up of yellow boulder clay interspersed with poclots and occasionally fairly oxtensive beds of sands and gravels covers the northeastern quarter of the township. Due to the irregular distribution of the porous beds in the moraine it is practically impossible to trace a water-bearing horizon over more than a small area. Several holes may be sunk in the drift before a productive sand bed is encountered. Low gravel and sand ridges and knolls have proved to bo tho most suitable well sites on several farms, and shallow wells located near the bottoms of slopes can be expected to yield fair supplies of hard water. Mineral salts sometimes occur in solution in the waters from the drift in sufficient concentration to render them slightly
"olkaline", although still fit for household usc. Iron forms a more objectionable form of impurity in many of these waters. An area of 2 square miles of glacial outwash sands and gravels occurs northeast of the town of Fifo Lake. Shallow wells, not exceeding 30 feet deop, yield a moderately hard water, containing small amounts of iron, in sufficient quantitios for housohold requirements and for a few head of stock. The proximity of these beds to the surface, however, has caused the supply to docrease considerably during the periods of drought. These gravels form the present source of water for the town of Fife Lake.

Recent lake sands covering parts of sections 7, 18, and 19, to depths up to 40 feet, can be expected to yield water similar in quality to supplies from the glacial outwash gravels at shallow depths. In this area, however, residents desiring large supplies have found it advisabie to sink wells into the underlying bedrock.

The most extensive water-bearing horizon known to exist in the bedrock in this township occurs at elevations ranging from 2,630 and 2,590 feet above sea-level throughout the southern third of the township. It is also believed to form the aquifer in NW. $\frac{7}{4}$, section 17. A bed of coarse sand forms the aquifer in most wells sunk to this horizon, but coal has been found to be the water-bearing horizon in a few of the southern wells. The depth of well necessary to reach this aquifer varies with the elevation of the ground surface. Along the southern border the aquifer is struck at depths of 60 to 85 feot, in section 12 at 100 feet, and in the central part of the township at depths of 40 to 65 feet. It secms probable that should the town of Fife Lake be obliged to increase its water supply this aquifor could be tapped by wells sunk to depths not exceoding 75 feet. The yields from most of the wells to this horizon is amply sufficient for 20 head of stock and several wells have watered 40 to 75 head of stock for considerable
poriods of timc. Tho water is hard and occasionally contains small amounts of iron, but is quite satisfactory for houschold usc.

In soction 13, 14, 24 and 25, wells sunk to depths ranging from 40 to 80 foot encountor a highor or "B" horizon (Soe Figure 1) at clevations betwoon 2,730 and 2,700 feet above sea-level. The yield is quite large and the water is of good quality. This horizon may prove to be productive in the extreme northeast corner of the area at somewhat greater depths. Along the western border and the northwest corner of the township several horizons believed to be of local occurrence have been penetrated. No continuous horizons have been traced, but it is probable that fairly large supplies of water will be obtained generally throughout this part of the township at depths varying from 40 to 75 feet.

Township 3, Range 29
The greater part of this township lies within the basin previously the site of a glacial lake and now occupied in part by Fife lake. The area surrounding the lake for several miles is covered to depths of 20 to 30 feot by recent lake deposits, which are underlain by sends and silts interbedded with beds of bluish grey clay. Individual wells sunk to depths not exceeding 50 feet throughout the lake sands area in general supply sufficient water for 20 or more head of stock. In several areas the dissolved mineral salt content of the water is high. Residents located in sections 10, 11,15 , and 18, and particularly in and near the village of Constance, report the water from wells sunk into the lake sands to be too highly "alkaline" for household use. This condition appears to be more prevalent in wells sunk to depths of 40 and 50 feet than from the recent sand beds encountered nearer the surface. In general, however, the shallow wells deriving their supply from the lake sands are better sources of drinking water than wells sunk into the underlying bedrock.

The southern sections of the township are in part covered by moraine. The presonce of small, irregular pockets of sands and gravels make the moraine quite porous, but the thinness of the drift cover restricts it to being a source for only small supplies of water for houschold use. Most of the water throughout this part of the township is derived from aquifers in the underm lying bedrock.

The Ravenscrag formation underlies the drift throughout the entire township. It is believed that a fairly continuous water-bearing horizon underlies the greater part of the township at elevations ranging between 2,665 and 2,600 feet above sea-level. Throughout the eastern half of the township this horizon is encountered at depths of between 35 and 60 feet. In the northern parts of sections 23, and 24, where the surface elevation is greater, it was found necessary to sink wells to depths of 100 to 120 feet in order to tap the aquifer.

Along the southern boundary beds of sand and thin coal seams forming aquifers are encountered at this same horizon at depths ranging from 50 to 110 feet below the surface. The yield from the bedrock wells is in general much larger than from wells deriving their supply from the overlying lake sands. Many wells yield sufficient water for 25 or more head of stock. The water is generally hard and contains iron and is not usually as suitable for household use as wator from shallower sources.

Township 3, Range 30

The glacial drift is confined to the northeastern half of this township. An area of lake sands extends for a maximum distance of 1 mile to the wost from Fife lake. Water is being obtained at shallow depths in these sands, but the quality is poor and the supply small. Moraine blankets the romaining part of the drift-covered, northeast half of the township. Ground water occurs in the pockots and beds of sands and gravels occurring in the
boulder clay. Only one woll, located in NE. $\frac{7}{4}$, section 14 , is known definitely to be deriving its supply from such sand beds in the moraine. This well yields sufficient quantities of hard, olear water for household use and for 40 head of stock. Further prospecting along low ridges and at the bases of slopes should produce similar supplies. The drift thins in a southwesterly direction and terminates along the northwost-southeast diagonal of the township.

The Ravenscrag bedrock formation either outcrops at the surface or is covered by only a few feet of soil throughout the rugged southwestern half of the township, and it underlies the glacial drift over the remaining area. Residents in driftcovered areas who have been unable to obtain a sufficient water supply for stock requirements in the glacial drift have continued their wells into the underlying Ravenscrag bedrock. Small supplies of water, sufficient for 5 to 25 head of stock, are to be expected from wells tapping the coal seams and thin sand beds interbodded in the clays and shales of this formation, at depths not generally exceeding 50 feet from the surface. The rugged character of the southwestern half of the township makes tho tracing of continuous water-booring horizons in the bedrock difficult. The prosence of many continuously flowing springs in the walleys suggests that the coal seams and sand beds of the formation are watermbearing. Residents sinking wells to depths of 30 to 50 feet on the lower slopes of the hills and encountering these aquifers can be assurred of fairly large supplies of water. The quality is variable in different parts of the area, but is generally suitable for household requirements. Wells sunk in the valley plains often yield water that is highly charged with dissolved minoral salts. In many places the water is unfit for human consumption. Such conditions have been found in a few wells in the vicinity of the village of Roseglen.

Beds of light brown gravols aro known to occur at shallow dopths over small areas in tho uplands to the northeast of Roseglen village. No wells aro known to have boon sunk into those deposits but it is probable that due to their porous nature they will yield at least small supplios of water of fairly good quality.

STATISTICAL SUNMARY OF WELL INFORMATION IN RURAL MUNICIPALITY OF POPLAR VALLEY, NO. 12, SASKATCHEWAN

Township	1	1	1	2	2	2	3	3	3	Total No.
West of 2 mer. Range	28	29	30	28	29	30	28	29	30	cipality
Total No. of Wells in Township	19	41	47	37	20	21	77	39	47	348
No. of wells in bedrock	18	41	43	32	3	19	25	25	43	249
No. of wells in glacial drift	0	0	0	4	17	0	52	14	4	91
No. of wells in alluvium	1	0	4	1	0	2	0	0	0	8
Permanency of Water Supply										
No. with permanent supply	16	37	40	26	12	12	63	38	47	291
No. with intermittent supply	2	1	0	6	1	0	6	0	0	16
No. dry holes	1	3	7	5	7	9	8	1	0	41
Types of Wells										
No. of flowing artesian wells	0	0	0	0	0	0	0	0	0	0
No. of non-flowing artesian wells	5	6	9	16	3	6	27	24	16	112

No. of non-artesian wells
Quality of Water
No. with hard water
No. with soft water
No. with salty water
No. with "alkaline" water

Depths of Wells

No. from 0 to 50 feet deep
No. from 51 to 100 feet deep
No. from 101 to 150 feet deep
No. from 151 to 200 feet deep
No. from 201 to 500 feet deep
No. from 501 to 1,000 feet deep
No. over 1,000 feet deep
How the Water is Used
No. usable for domestic purposes
No. not usable for domestic purposes
No. usable for stock
No. not usable for stook
Sufficiency of Water Supply
No. sufficient for domestic needs
No. insufficient for domestic needs
No. sufficient for stock needs
No. insufficient for stock needs

ATALYSES AND QUALITY OT TAR喼

deneral Statement - +

Samples of water from representative wells in surface denosits and bedrock were taken or analyses. Ercept as othorwise stated in the table $3 f^{\circ}$ analyses the samples were analysed in the laboratory of the Dorings Division of the Geolocianl Survey by the usual staniard methods. The quantities of the followins constituents were determined; totat? dissolved minera so.ids,calcium oxide, magnesium oxide, sodium'oxide by differ nce, sulphate, chloride, and alkalinity. The alkalinity reserred to here is the calcium carbonato equivalent of all acin used in neutralizing the carbonales of sodium, calcium, and maknesium. The results of the analyses are given in parts per million--that is, parts by weight of the constituents in $1,000,000$ parts of water; for example, 1 ounce of material dissolved, in 10 gallons of water is equal to 825 parts per million. The samples were not examinded for bacteria, and hous a water that may be termed suitaple for use on the basis of its minepal salt content might be condemned account of its bacteria content. Waters that s are high in pacteria content have usually been polluted by surface waters.

Total Dissolved Mineral Solids

Tue term "total dissolved mineral molids" as here used refer to the residue nomaining when a sample of water is evaporbificita dinyness. It is generally considered that waters that have less than 1;000 parts per million of dissolved sqiids are suitable for ordinary uses, bute in the Prairie Pravinces this figure is often exceoded. Neary all metefs that contain more than 1,000 parts per million of tatal outids have a taste due to the dissolved mineral matter. Residents
accustomed to the waters may use those that have much more than 1,000 parts por million of dissolved solids without any marked inconvenience, although most persons not used to highly minoralized water would find such wotors highly objectionable.

Mineral Substancos Present

Calcium and Nognosium
The calcium ($\mathrm{C} \Omega$) and magnesium (Mg) content of wator is dissolved from rocks and soils, but mostly from linestono, dolomite, and gypsum. The ce.lcium and magnosium solts impart hordness to water. Tho magnesiun salts are laxativo, ospocially magnosium sulphato (Epsom salts, MgSO ${ }_{4}$), and they are more detrimental to heclth than the lime or calcium salts. The calcium salts have no loxativo or othor dolotorious effocts. The scale found on the inside of steam boilers and tea-kettlos is formed from thesc minoral salts. Sodium

The salts of sodium are next in importanco to thoso of calcium and magnesium. Of these, sodium sulphato (Glauber's salt, $\mathrm{Na}_{2} \mathrm{SO}_{4}$) is usually in excess of sodium chloride (comnon salt, NoCl). Theso sodium salts aro dissolved from rocks and soils. Whon there is a largo amount of sodium sulphato present the wator is laxative and unfit for domestic uso. Sodiun carbonate ($\mathrm{Na}_{2} \mathrm{CO}_{3}$) "black alkali", sodium sulphate "whito alkali", and sodium chloride are injurious to vegetation. Sulphates

Sulphates (SO_{4}) are one of the common constituents of natural water. The sulphate salts most comonly found are sodium sulphate, magnesium sulphate, and calcium sulphate (CaSO_{4}). When the water contains large quantitios of the sulphate of sodium it is injurious to vagotation.

Chlorides

Chlorides are coumon constituents of all natural water and are dissolved in small quantities from rocks. Taey usually occur as sodium chloride ad if the quantity of salt is inach over 400 parts per million the water has a brackish taste. Iron

Iron (Fe) is dissolved from many rocks and tae surface deposits derived from thex, and also froif well casings, water pipes, and other fixtures. Nore than 0.1 part per million of iron in solution will settle as a red precipitate upon exposure, to the air. A water that contains a considerable amount of iron will stain porcelain, enamelled ware, and clothing that is washed in it, ana when used for drinaing purposes has a tendency to cause constipation, but the iron can be almost completely removed by aeration and filtration of the water.

Hardness

Calcium and magnesium salts impart hardness to water. Hardness of water is commonly recognized̈ by its soap-destroying powers as shown by the difficulty of obtaining latner with soap. The total hardness of a water is the hardness of the water in its original state. Total hardness is divided into "permanent hardness" and "temporary hardness". Permanent hardness is the hardness of the water remaining after the sample has been boiled and it represents the amount of mineral salts that cannot be removed by boiling. Temporary hardness is the difference between the total hardness and the permanent hardness and represents the amount of mineral salts that ban be recoved by boiling. Temporary hardness is due mainly to the bicarbonates of calcium and magnesium and iron, and permanent hardness to the sulphates and chlorides of calcium and magnesium. The permanent hardness
can be partly elimineted by adding simple chemical softeners such as ammonia or sodium carbonate, or many prepared softeners. Water that contains a large amount of sodium carbonate and small amounts of calcium and magnesium salts is soft, but if the calcium and magnesium salts are present in large amounts the water is hard. Water that has a total hardness of 300 parts per million or more is usually classed as excessively hard. Many of the Saskatchewan water samples have a total hardness greatly in excesss of 300 parts per million; when the total hardness exceeded 3,000 parts per million no exact hardness determination was made. Also no determination for temporary hardness was made on waters having a total hardness less than 50 parts per million. As the determinations of the soap hardness in some cases were made after the samples had been stored for some time, the temporary hardness of some of the waters as they come from the wells probably is higher than that given in the table of aualyses.

	$\begin{gathered} \sim \\ w \end{gathered}$	\because	$\begin{aligned} & \text { H } \\ & \text { n } \end{aligned}$
	\pm	き	2
氝			
			증
	©	©	©
	§	$\underset{ }{-}$	®
	®	픈	き
管			
运慮			
道			
0 －			
$\underset{\substack{e \dot{e} \\ E \in-1}}{ }$			
	ふิ	\％ó	$\begin{aligned} & \text { 星 } \\ & \text { in } \end{aligned}$
	$\stackrel{\sim}{\sim}$	～	오
\|岂	\sim	\sim	\sim
\％	$\stackrel{\sim}{\sim}$	\％	\％
易㤩	m	m	m
苟苟	안	$\underset{\sim}{-1}$	$\stackrel{\text { m }}{ }$
$\dot{8}$	完	易	\％
$\stackrel{\circ}{\circ}$	－	～	m

[^1]
Water from the Unconsolidated Deposits

No samples of ground water were collected for analysis by the Geological Survey in this municipality, the three submitted being made by the Provincial Analyst, Regina. Eight analyses were made of waters taken at widely separated localities in municipality No. 13, which adjoins this municipality on the west. Since a close similarity exists in the mode of occurrence and character of the source beds, the quality of the waters from the two areas should also be similar. The following generalizations are based to a large extent upon the analyses of the waters of municipality No. 13.

Throughout the area overlain by glacial lake sands in the northmeentral part of the municipality drinkable water is generally obtainable at shallow depths. Wells less than 30 feet in depth yield a water that is hard and contains small amounts of mineral salts, generally sulphates, in solution.

The second analysis given on the accompanying table is of water from a well sunk to a depth of 22 feet in the lake sands in SW. $\frac{3}{4}$, sec. 11, tp. 3, range 29. Calcium and magnesium sulphates are the principal salts in solution, but are not in sufficient quantities to make the water unfit for drinking. At greater depths in the lake sand area a more highly "alkaline" water is enoountered. The third analysis of water from a 40 foot well located in the village of Constance, is believed to be representative of the waters of poorer quality to be found in these sands. The dissolved mineral salts are essentially the same, but in a much groater concentration than in the upper parts of the lake sands. The great concentration, 5,140 parts per million, of dissolved solids renders this water unfit for dxinking and it cannot be considered to be beneficial to stock.

Water from very shallow wells sunk into gravel pockets in the glacial till and moraine is moderately hard and low in dissolved mineral salts. Such water, if uncontaminated by sewage or decaying organic matter, is of excellent quality for household use. Wells
sunk entirely in boulder clay or encountering only small, isolated sand pockets generally yield water that is highly mineralized. Sodium sulphate and magesium sulphate are the salts usually present in solution in the largest amounts, and due to their laxative effects the water is unfit for drinking. Gravel beds occurring in the bottoms of coulses and valleys form good sources of drinking water. Fine sands and silts, however, tend to retard the circulation of ground water and lend to the concentration of mineral salts, and thus render the water of much poorer quality. Wells situated near the bottoms of slopes and on or near low gravel ridges yield water of better quality than wells sunk on the flat areas in the driftcovered districts.

The water of Fife lake is of much better quality than is generally found in the lakes over the southern part of the province. This condition may be largely due to the absence in the surrounding area of thick deposits of glacial drift that in many places appear to contribute much of the salts found in "alkali" lakes; the lake may be fed by springs that come from the bedrock and are only slightly mineralized.

Water from the Bedrock
The Ravenscrag bedrock formation, which either outcrops or underlies a veneer of soil or glecial deposits throughout the entire municipality, is the source of most of the ground water used in the district. Two general types of water are obtained from the bedrock; a hard water containing varying amounts of sulphate salts in solution, and a much softer water in which sodium carbonate, "soda", magnesium carbonate, and calcium carbonate are the dominant salts in solution. In areas where the Ravenscrag is covered by any considerable thickness of glacial deposits, composed largely of boulder clay, the waters from the upper 100 feet of the
bedrock are generally of the first type. Throughout the "driftless" area and from greater depths in areas where the Ravenscrag is overlain by boulder clay the softer, sodium carbonate waters are found. These waters are of excellent quality compared with supplies found throughout the greater part of the province. The total dissolved solid content is generally less than 300 parts per million, and the total hardness has been found to be less than 200 parts per million in many places. Iron is often found in waters derived from the coal seams and forms the most objectionable constituent in the waters of the district. Nuch of the iron may be removed by allowing the water to stand for a period of time in a trough or other container that allows a large water surface to be exposed to the air. Agitation of the water is also helpful in removing iron. One method that has proved successful in several places is to allow the water to pass over a sheet of corrugated, galvanized iron suspended between the pump and the trough. The iron upon being oxidized by contact with the air setties as a brown precipitate in the bottom of the trough.

The first analysis given on the accompanying table is of water derived from sand in the Ravenscrag at a depth of 26 feet, in a well located in NW. $\frac{1}{4}$, sec. 30, tp. 3, range 28. Although this water is moderately soft the influence of the overlying drift is noted in the prosence of sulphate salts rather than the carbonates which are indicative of waters from the bedrook in the "driffless" area.

WELL No.	LOCATION					TYPE OF WELL	$\begin{gathered} \text { DEPTH } \\ \text { OF } \\ \text { WELL } \end{gathered}$	Altitude Well (above sealevel) level	Height to which Water will Rise		PRINCIPAL WATER-BEARING BED			CHARACTER OF WATER	$\begin{gathered} \text { TEMP. } \\ \text { OF } \\ \text { WATER } \\ \text { (in } \left.{ }^{\circ} \mathrm{F} .\right) \end{gathered}$	USE TO WHICH WATER IS PUT	Yield and remarks
	1/4	Sec.	Tp.	Rge.	Mer.				$\begin{aligned} & \text { Above (+) } \\ & \text { Below (-) } \\ & \text { Surface } \end{aligned}$	Elev.	Depth	Elev.	Geological Horizon				
1	NE.	1	1	28	2	Dug	5	2,710	- 1	2,709	5	2,705	Stroam gravel	Soft, clear	-43	D, S	Sufficient for 17 head stock.
2	NE.	2	"	*	${ }^{\prime \prime}$	Bored	42	2,650	- 39	2,611	40	2,610	Ravensczag coar	Hard, iron	43	D, S	" " 30 "
3	Nwi.	4	"	"	"	Dug	27	2,565	- 20	2,545	27	2.536	" sand	" chear	42	U, s	" " 20 " " Well goes dry
4	Niv.	6	"	"	"	Bored	70	2,632	-60	2,572	70	2,36	" cosil	$" 1$	44	N	Sufficient " 20 "
5	Wivi.	10	"	"	"	"	116	2,720	- 20	2,710	116	2,604	" "	Hard, clear	43	D, 3	" " 50 " ". 60 anê óz foot
6	Nw.	14	"	"	"	"	85	2,950	- 75	2,675	85	2,66	" clay	Med. hard, clear	42	D, 3	Wells forn auxiliary supoly. Insufficient for 15 head stock.
7	SE.	16	"	"	"	"	54	2,720	- 25	2,695	54	2,666	Glacial sand	Hard, clear	42	D, S	Dufficient for 20 head stock.
8	SE.	17	${ }^{\prime \prime}$	"	"	Dug	12	2,630	- 10	2,620	12	2,61 ${ }^{\text {¢ }}$	" "	Soft, clear	42	D, S	" " 10 " " . Spring on same
9	SW.	18	"	1	"	Spring	4	2,625	+ 1	2,626	4	2,627	Ravenscrag coal	${ }^{\prime \prime}$	44	D, S	quarter. $\text { Sufficient } 50 \text { " " . }$
10	SE.	19	"	"	"	"	4	2,590	0	2,590	4	2,501	"	ifed. hard, clear		D, S	" " 300 " ". 3 other springs nearby.
11	SP.	25	"	"	"	Bored	50	2,800					" clay				nearby. Dry hole.
12	SW.	25	"	1	"	"	88	2,725	-78	2, 247	88	2,73	" coal	Hard, clear	43	D, S	Sufficient for 16 head stock.
13	NE.	32	"	"	"	Spring		2,680			20	2,66ф	"	"	47	D, S	from " coal mine. " " Water flows
1	SW.	1	1	29	2	Bored	40	2,480	- 28	2,452.	48	2,436	" "	$\begin{aligned} & \text { Soft, clear, } \\ & \text { iron } \end{aligned}$	41	D, S	Large supply. 30 foot dry hole in clay.
2	SW.	4	"	"	"	Spring	8	2,625	+ 1	2,6:6	8	2,61.		Hard,"alka-	41	D, S	Sufficient for 12 head stock.
3	NE.	5	"	"	$!$	Dug	12	2,700	- 6	2,504	12	2,568	" sand	Soft, clear	48	D, S	" "household only. 60 foot dry
4	SIIT.	6	"	"	"	"	13	2,770	- 10	2,760	13	2,75	Ravenscrag sand	" "	42	D, S	hole struck coal. Sufficient for 30 head stock.
5	NiS.	6	"	"	"	Spring	4	2,750	+ 1	2,751	4	2,746	" coal	"	56	D, S	Large supply.
6	SW.	9	"	"	"	Spring	5	2,565	$\dagger 1$	2,566	5	2,560	" "	Hard, iron, "alkaline"	41	D, S	" - Several similar springs.
7	NW.	9	"	"	"	Dug	18	2,600	- 10	2,590	18	2,582	"	Hard, iron, "alkaline"	42	D, S	" " . 2 similar wells.
8	NS.	12	"	"	"	Bored	65	2,645	- 60	2,585	65	2,580	" sand	Soft, cloudy	42	D, S	Sufficient for 14 head stock.
9	SE.	13	"	"	"	"	46	2,655	- 40	2,615	46	2,609	" ${ }^{\prime}$	Med. hard, clear	40	D, S	Insufficient for 12 head stock.
10	SW.	13	"	"	"	"	64	2,635	-61	2,574	64	2,571	"	Herd, iron, clear	40	D, S	Sufficient for 15 head stock.
11	NW.	15	"	"	"	"	27	2,575	- 14	2,561	27	2,548	" coal	Hard, iron, "alkaline"	43	D, S	" " 40 "
12	SS:	16	"	"	"	"	43	2,580	- 30	2,550	43	2,53\%	"	Soft, iron, sulphur	43	D, S	" " 20 " " 53 foot well
13	S\%.	18	"	"	"	Dug	14	2,610	- 11	2,599	14	2,59 6	" shale	Hard, clear	45	D, S	Insufficient for 20 head stock.
24	NH.	21	"	"	"	"	14	2,630	- 7	2,623	14	2,616	" sand	Soft, clear	42	D, S	Sufficient for 21 head stock.

wELL No．	location					TYPE OF WELL	$\begin{gathered} \text { DEPTH } \\ \text { OF } \\ \text { WELL } \end{gathered}$	$\begin{aligned} & \text { Altitude } \\ & \text { Well } \\ & \text { (above sea } \\ & \text { level) } \end{aligned}$	Height to which Water will Rise		PRINCIPAL WATER－BEARING BED			CHARACTER OF WATER	TEMP．OFWATER（in ${ }^{\circ} \mathrm{F}$. ）	USE TO WHICH WATER IS PUT	YiELD AND REMARKS
	1／4	Sec．	Tp．	Rge．	Mer．				$\begin{gathered} \text { Above (+) } \\ \text { Below (-) } \\ \text { Surface } \end{gathered}$	Elev．	Depth	Elev．	Geological Horizon				
$\begin{aligned} & 15 \\ & 16 \end{aligned}$		21	1	29	2	İug	16	2，615	－ 9	2，606	16	＜，549	Ravenacrag＿cosl	Hard，slight－ ly alkaline	44	，I	Good supply but organic taste．
		21	－	${ }^{\prime \prime}$	＂	＂	15	2，615	－ 6	2，509	15	2，600	＂sand	Med．hard， clear Soft，clear	43	D，S	Large supply．Another good mell 24 feet deep．
17	相．	22	$"$	＂		Bored	33	2，5 5	－ 25	2，540	33	2.532	＂		42	D，S	Sufficient for 20 head stock．
18	＋5．	26	＂	＂		＂	65	2，575	－ 45	＜，530	65	2，510	＂coal	Hard，clear， ＂alkaline＂	40	I，S	＂＂ 20 ＂＂．
19	－	28	＂	＂	＂	DuE	22	2，665	－ 16	1， 0.9	22	2，643	＂clay		43	I，S	＂＂$\hat{0}$ i
20		28	＂	1	＂	II Drilled	22	2，630	－ 19	2，611	22	$2,608$	11 coal	Soft，clear	43	D，S	$\text { " " } 25 \text { " } \quad \text {. }$
21		32	＂	$"$	＂		83	2，725			80	2，645	\cdots ？			N	No information．
22	\＄ 2	35	＂			Bored	33	2，575	－ 25	2，550	33	$2,542$	11 sand	Hard，clear， ＂alkaline＂ Soft，clear	42	$\mathrm{D}, \mathrm{~S}$	Sufficient for 13 head stock．
1		1.	1	30	2	Bored	30	2，731	－ 24	2，707	30	2，701	Ravenscrag coal		41	D，S	Sufficient for 20 head stock．
2	SW	2	＂	＂	＂	puct	32	c，770	－ 28	2，742	$j 2$	2，738	81 if	Hard，clear	41	D，S	＂ $10 \quad$＂．Also 12 foot re11 in clay yielding hard rater． Sufficient for 20 head stock ； 14 foot well for
3		4	$"$	＂	＂	Bored	83	2，805	－67	2，738	72	2，733	＂	＂iron	40	D，S	
4	NW．	5	＂	＂	＂	＂	88	2,850	－ 74	2.775	88	2，752	ay	＂＂	40	D，S	house use． Sufficient for 24 head stock， 28 foot well for
5	．	6	＂	＂	＂		16		－ 10				coal	＂alkaline＂	4	D，	house use．
5						－	16	2，870	－ 10	2，86	16	2，854		Soft，c lear	42	D，S	Sufficient for 20 head stock．Continuously
6		10	＂	＂	：	Bored	35	2，742	－ 25	2，717	35	2，707	＂sand	Hard，clear	42	D，S	flowing spring nearby． Sufficient lor 30 head stocix．
7		12	＂	＂		Pug	12	2，730	－ 8	4．722	12	2，710	Rocent stresm gravel Ravenscrag sand	Soft，clear	39	D，S	＂＂household needs
8	SE。	13	＂	11	＂	＂	25	2，700			25	2，675		Hard，clear	39	D，S	＂＂local needs．
9	Ste．	15	＂	＂	${ }^{\prime \prime}$	Bored	52	2，750	－ 35	6，715	52	2，698	＂＂	Soft，clear	42	D，S	Large supply．
10	SE．	17	＂	${ }^{\prime}$	＂	＂	18	2，755	－8i	＊，747	18	2，737	Recent ．saind	Hard，＂alka－ line＂	44		Sufficient for 26 head stock． 12 foot mell
11	Su．	17	＂	＂	＂	＂	28	2，755	－24	\＆．731	20	2，727	＂clay	Hard，＇91ka－	43	D，S	for house． Sufficient for 6＂＂continously
12	sw.	$k 1$	$"$	＂	＂	Dug	28	2，787	－ 8					line"			flowing spring on same quarter．
			－						－ 8	4．179	28	2，759	Ravenserag coal	$\begin{aligned} & \text { Hard, "elka- } \\ & \text { line" } \end{aligned}$	43	D，S	Sufficiont for local needs．
13	Si．	23		＂	${ }^{\prime}$	＂	36	2，050	－ 24	2，326	36	2，814	＂＂	Hard，iron	42	D，S	100 head stock． 16 foot mell
14	No．	\＆3		＂	，	＂	38	2，895	－ 262	2，869	38	2，857	＂				red gravel－now dry． Suffictient for local needs．
								－，08	－26	4，86）	3	2，857		Hard，iron， cloudy	42	D，S	Sufficient for local needs．
15	St．	23		＂	＇	Bored	98	k，750	－ 80	\＄，670	80	2，670	$" 1$	Soft，iron，	39	D，S	Large supply． 78 foot dry hole
16		24			＇	＂	78	2，700	－68 2	2，632	78	2，622	＂coarse	clear Hard，iron，	40	D，S	Sufficient for 20 head stock．
17	NW．	45			1	\＄aring	5	＜，795	＋ 1	4.796	5	2，740	send Ravenscrag coal	cloudy Hard，clear		D，S	Sufficient for local needs； 14 foot well for
18 s	SW．	31		\％	11	bored	36	2，735	－ 72	2，728	5	－， 699	Ravenscras coal	hard，clear			Sufficient for local needs； 14 foot well for house use．
												2，69		＂	40	－S	Large supply； 14 foot well for house use．
12	都。	33				pug	8	2，680	－ 42	2，676	8	2，672	Recent sand	ifed．hard	45	D，S	

$\begin{aligned} & \text { WELL } \\ & \text { No. } \end{aligned}$	LOCATION					TYPE OF WELL	$\begin{gathered} \text { DEPTH } \\ \text { OF } \\ \text { WELL } \end{gathered}$	Alfitude Well (above sealeyel) evel)	Height to which Water will Rise		PRINCIPAL WATER-BEARING BED			CHARACTER OF WATER	$\begin{gathered} \text { TEMP. } \\ \text { OF } \\ \text { WATER } \\ \left(\text { in }{ }^{\circ} F_{.}\right. \text {) } \end{gathered}$	USE TO WHICH WATER IS PUT	YIELD AND REMARKS
	$3 / 4$	Sec.	Tp.	Rge.	Mer.				$\begin{aligned} & \text { Above }(+) \\ & \text { Below (}- \text {) } \\ & \text { Surface } \end{aligned}$	Elev.	Depth	Elev.	Geological Horizon				
20	Nivi.	34	1	30	2	Bored	46	2,040	- 36	2,804	46	2,794	Ravenscrag coal	Hard, iron	40	D, S	Sufficient for 15 head stock.
21	S ${ }^{\text {a }}$	34	"	"	"	"	118	2,870	-100	2,770	118	2,752	" sand		42	D, S	" " 12
22	Sif.	35	"	"	:	"	16	2,005	- 4	2,001	16	2,789	$" \quad \operatorname{cosi}$	clear Hiard, iron,	44	D, S	" " 50 " ". 10 foat mell
23	Sti.	36	"	"	"	"	42	2,015	- 20	2,795	42	2,773	$\because \quad$ "	cloudy Herd, iron,		i, 3	in coal and spring on same quarter. Large supply.
24	Nai.	36	"	"	"	"	73	2,800	- 68	2,734	73	2,727		clear Hard, clear, "alkaline"	43	D, $\mathrm{S}^{\text {c }}$	Small supply, 40 foot rell nearby also, dry
1	NE.	1	2	<8	2	Bored	39	2,540	- 17	2,573	39	2,55	" clay	Hard, iron, reddish	42	D, S	Sufficient for 15 head stock. Excellent household supply.
2	SE.	7	"	"	"	Dug	56	2,740	- 45	2,695	56	2,684	13 coal	reddish Hard, clear	44	D, S	```household supply. Sufficient for }30\mathrm{ head stock.```
3	NE.	9	"	\because	"	Bored	60	2,695	- 40 ¢	2,647	60	2,63	" \quad	Hard, iron,	40	D, S	Large supply.
4	SE.	13	"	"	"	"	50	2,550	- 20	2,530	50	2,500	" red sand	Hard, clear, "alkaline"	40	i) s	" "
5	Su.	15.	"	"	"	"	90	2,610	- 80	2,530	90	2,520	" sand	Hard, clear	44	D, S	" . 2 dry holes in clay 30 and
6	NNO.	15	"	"	"	"	70	2,605	- 50	2,555	70	2,53	coal	" "	44	D, S	70 foot deep. Sufficient for 40 head stock.
7	$5 \frac{1}{2}$.	16	"	"	"	"	120	2,610	- 90	2,520	120	2,490	"	$\begin{aligned} & \text { iron } \\ & \text { Hard, clear } \end{aligned}$		D, S	Sufficient for local needs.
8	NE.	16	\cdots	"	"	Dug	10	2,613	-8	2,605	10	2,603	Stream sand	" "	42	D, S	Sufficient for local needs.
9	NiJ.	18	"	"	"	"	36	2,790	- 30	2,760	30	2,760	Ravenscras sand	"*alkaline*	42	D, S	Small supply. 30 foot bored well for stock.
10	SE.	20	"	"	"	Driilad	60	2,640	- 45	2,595	60	2,530	" coal	" clear		D, S, I	Sufficient for local needs.
11	Sili.	20	"	"	"	"	61	2,620	- 49	2,571	61	2,559	Ravenscrag: sravel (?)	Clear		D	Small supply.
12	NE.	20	"	"	"	Bored	85	2,630	- 75	2,555	85	2,545	sfravel (?) Ravenscrag coal	Hard, clear,	40	D, S	Sufficient for 15 head stock.
13	Sis.	22	"	"	"	"	65	2,550	- 30	2,520	65	2,485	"	Hard, clear,	39	D, S	" " 20 " " . Several shal
14	SE.	23	"	"	"	"	60	2,570	- 30	2,540	60	2,510	" "	iron Hard, clear,	40	İ, S	wells yield small seepages. Large supply. 14 foot dug rell also used
15	SE.	24	"	"	"	"	55	2,595	- 5	2,590	55	2,540	sand	iron Hard, clear,	40	D, S	Sufficient for 10 heac slock.
16	SWi.	26	"	;	"	Dug	28	2,510	- 26	2,484	28	2,482	Glacial gravel	iron Hard, clear	44	D, S	" 20 "
17	NE.	27	"	"	"	Bored	82	2,630			82	2,548	Ravenscrag sand	Hard, iron, *akaline"	40	D, S	$" \quad " 50 \quad " \quad w_{\text {min }}$
18	NE.	30	"	"	"	"	75	<,675	- 65	2,610	75	2,600	coal	alkaline ${ }^{\text {Hard, clear, }}$	42	D, S	" household needs only.
19	Sif.	30	"	"	"	"	136	2,750	-126	2,624	1.36	2.612	* "	iron Hard, claar,	44	D, S	Large supply, 30 foot well in sand is nom dr
20	Sis.	31	"	"	${ }^{\prime}$	- Dug	12	≤ 2650	- 5	2,645	10	2,640	" $\sin \alpha$	iron Soft, clear	42	D, S	Sufficient for 10 head stock.
21	NW.	36	"	$*$	"	Bored	50	2,680	- 40	2,640	50	2,630	Revenscrag sand	Hard, iron,	40	D, S	Sufficient for 30 head stock; laxative.
22	NE.	36	\cdots	"	-	*	25	2,700	- 20	2.600	25	2,675	Glacial "	"alkaline* Soft, clear	42	D, S	Large supply.

WELL No.	LOCATION					TYPE OF WELL	$\begin{gathered} \text { DEPTH } \\ \text { OF } \\ \text { WELL } \end{gathered}$	Altitude WELL (above sealevel) lev	Height to which Water will Rise		PRINCIPAL WATER-BEARING BED			CHARACTER OF WATER	TEMP.OFWATER(in ${ }^{\circ} \mathrm{F}^{\text {. }}$	USE TO WHICH WATER IS PUT	YIELD AND REMARKS
	3/4	Sec.	Tp.	Rge.	Mer.				$\begin{aligned} & \text { Above (+) } \\ & \text { Below (-) } \\ & \text { Surface } \end{aligned}$	Elev.	Depth	Elev.	Geological Horizon				
1	SW.	6	2	29	2	Dug	29	2,710	- 23	2,687	29	2,601	Batonserag sand	Hard, cloudy	42	Dis	Sufficient for 20 head stock. 30 foot well
2	NE.	23	"	"	"	Bored	15	2,805	-10	2.875	15	2,870	Glactal *	Sotti, clear	49	D, 5	士arge supply.
3	SE .	24	"	"	"	"	25	<,800					" "				Dry hole.
4	NW.	25	"	"	,	"	143	<,000	-136	2,60́4	143	2,654	Ravenscrag clay	Hard, -ciear. *alkaline*	-44	1, 5	Guficient worlocel-needa.
5	SE.	26	"	"	"	"	24	2,890	- 22	2,868	24	2,866	Glacial sand.	Soft, clear	42	D, S	```" " 20 head stock. }79\mathrm{ foot dry. hole in clay.```
6	SW.	27	"	"	"	Spring	10	2,020	$\dagger 1$	2,821	10	2,310	Ravenscrag coal	Hard, clear	48	D, S	Sufficient forr 100 head stock.
7	Now.	34	"	*	"	Bored	60	2,775	- 50	2.725	60	2,715	Glacial: clay	$\begin{aligned} & \text { Hard, clear, } \\ & \text { iron } \end{aligned}$	41	D. 5	Very small supply; dry in summer.
8	SW.	36	1	*	\because	Lreg	28	2.740	- 2	2.738	28	2,712	"	Soft, clear	42	D, S	Sufficient for 50 head stock.
1	Miv.	3	2.	30	2	Dug	71	2,695	- 50	2,845	70	2.825	Ravanocrat and	Harda clear	42	D, 5	Sufficient for 15 head stock. Several test holes 85 to 135 feet deeo.
2	SE.	4	1	"	"	"	13	2,365	- 10	2,855	13	2,852	\cdots	\cdots -	44	$\mathrm{D}_{2} \mathrm{~S}$	Sufficient for 6 " *
3	Niv:	4	"	\because	"	" ?	40	2,925					Ravenscrag clay				Dry hole.
4	SE.	5	"	"	$"$	Bored	72	2,815	- 32	2,783	72	2,743	1 cogl	Hard, iron, *alkaline*	40	D, S	Sufficient for 12 head stock. 37 foot well on SW. $\frac{1}{4}$ gives large supply.
5	NE.	5	"	"	*	Dug	18	2,015					$"$				Dry hole; spring on this quarter.
6	WW.	9	"	"	"	"	30	2,900	- 26	2,874	30	2,870	* clay	Hard, clear		D,	Sufficient for household needs only.
7	NE.	10	\because	"	"	Bored	96	2,065	- 66	2,799	96	2,769	Ravenscrag sand	Soft, clear	44	D, 5	68 foot 7 mell " gives seasonal supply.
8	NT.	20	"	$"$	"	Dug	28	2,990	- 23	2,967	28	2,9:62	Stream? gravel	"		D, S	Sufficient fur local needs.
9	Nini.	25	"	"	"	"	18	2,700	- 12	2,688	18	2,682	" sand	" 1	42	S	" 40 head stock; spring nearby.
1	NE.	3	3	28	2	Bored	86	2,710	- 74	2,636	86	2,624	Ravenscrag sand	Hard, clear	44	S	$\begin{aligned} & \text { " " } 16 \text { " " ; poor drinking } \\ & \text { water. } \end{aligned}$
2	SE.	4	"	"	"	"	75	2,650					" clay				Dry hole. Three 14 foot wells yield small supply.
3	SE.	4	"	-	"	"	80	2,675			80	2,595	17 ?	Hard, cloudy		D, S^{-}	Sufficient for local neods.
4	Nif.	5	11	"	"	"	76	2,670	- 60	2,610	76	2,594	" gravel	" clear	43	D, S	Sufficient för 75 head stock.
5	NE.	6	"	\cdots	"	${ }^{\prime}$	60	2,660	- 30	2,630	60	2,600	- sand	"aikaline"	43	D, S	Large supply.
6	Nar.	8	"	:	"	"	56	2,650	- 46	2,604	56	2,594	" "	Hard, clear	43	D, S	Sufficient for 20 head stock.
7	SE.	8	"	"	"	Dug	12	2,650	- 9	2,641	12	2,638	${ }^{\prime \prime}$	" "	43	D, S	local needs. About 15 such
8	Nit.	9	"	"	"	Bored	32	2,660	- 9	2,651	29	2,631	and gravel Glacial sand and grevel	iron ${ }_{\text {Soft, " }}$	42	D, S	rells in village of Fife Lake Sufficient for 22 head stock.
9	SWi.	10	11	"	\because	"	62	2,720	- 42	2,678	62	2.658	and grevel Ravenserag coal	Med. hard,	43	D, S	* . " local needs.
10	NWi.	10	"	"	"	*	45	2,680	- 27	2,653	45	2,635	4 sand	Soft, clear	43	D, 5	" "6 head stock.

$\begin{gathered} \text { WELL } \\ \text { No. } \end{gathered}$	location					$\begin{gathered} \text { TYPE } \\ \text { OFLL } \end{gathered}$	$\begin{gathered} \text { DEPTH } \\ \text { OF } \\ \text { WELL } \end{gathered}$	$\begin{gathered} \text { ALrirupe } \\ \begin{array}{c} \text { Lablut } \\ \text { (above sea } \\ \text { level) } \end{array} \end{gathered}$	Height to which Water will Rise		Principal water-bearing bed			CHARACTEROF WATER	TEMP.OFWATER(in 0 F.)	USE TO WHICH IS PUT is PU	Yield and remarks
	3/4	Sec.	Tp.	Rge.	Mer.				$\left\lvert\, \begin{gathered} \text { Above }(+) \\ \text { Below } \\ \text { Surface } \end{gathered}\right.$	Elev.	Depth	Elev.	Geological Horizon				
11	.	10	3	28	2	Bored	45	2,645	- 33	<,612	45	2,600	Ravenscrag sand	Hard, iron,	43	D, S	Sufficient for local needs. 30 foot mell in sand yields salty water.
12	NE.	12	"	"	"	Drilled	100	2,690	-85	607	100	2,590	" "	Herd, clear	42	$D, \mathrm{~s}$	
13	SE.	13	"	"	"		15	2.680	- 12	2,66\%	15	$\begin{aligned} & 2,66 \\ & 2,73 \end{aligned}$	Glacial Gravel		44	D,	Sufficient for 15 head stock.
14	Niv.	23	*	"	"	Bore	36	2,770	- 27	2,74	36		Ravenscrag sana	${ }^{\text {iron }}$	44	D,	
15	S3.	14	"	"	"	.	40	2,76	*-37 ${ }^{\prime}$	20		2,72				D,	$" \quad \text { " } 30 \text { " } \quad \text { ". }$
			"	"	"	-							serid		44	D, 3	Small supply. Similar well nearby.
16	SW.	14					67	2,760	- 62	2,693	67	2,693	" "		43	D, S	Sufficient for 20 head stock. 20 foot well forms anxiliary supply Sufficient for 60
17	SE.	16	"	"	\cdots	"	45	2,660	- 20	2,640	15	2,64	cial sand	clear Hard, iron,	43	D,	
18	SE.	17	"	"	$"$	Dug	40	2,660	- 34	2,526		2,620		rusty	4		Sufficient for 60
				"				2,740			40			Hard, clear	43	D, S	gives soft water. Sufficient for 5 head stock.
19	SW.	17	"		"	Bored	60				60	2,68ф	" sand	" ${ }^{\text {iron }}$	42	D, S	
20	N:	17	1	"	*	"	60	2,685	- 52		60	2,62 $=$	Ravenscras sand	Hard, clear	43	D, $\mathrm{S}^{\text {d }}$	Sufficient for 5 head stock.
21	NE.	18	"	"	\because	"	85	2,750	- 80	2,670	35	2,66 $=$		-	42		$\begin{array}{ccccccc} \text { " } & " & 3 & " & " & . & 1 \mu c i \\ \text { ary hole. } & 12 \text { foot } \\ \text { Sufficient } & " & 6 & " & " & . \end{array}$
22	313	10	"	"	\cdots	"	42	2,735	- 36	2,699	42	2,69 $=$	Glacial gravel	" "	40	$\text { D, } \mathrm{S}$	Small supply. Sufficient for 12 head stock.
23	SW.	19	"	"	"	"	52	2,740	- 40	2,700	52	2,688	Ravenscrag coal	"	42	D, S	
24	NiN.	19	"	"	\cdots	"	70	2,700	-63	$\left\|\begin{array}{l} 2,637 \\ 2,633 \end{array}\right\|$	70	2,630	Glacial gravel	" "			
25	Sin.	20	"	"	\because	Dug	12	2,640	7		12	2,6	" "	Soft	42		" " household needs only.
26	Nre.	20	"	"	"	Bored	45	2,765	- 40	2,7	45	2, 72		Sort, ",	42	D,	10 to " 50 feet deep on this quarter. 14 dry holes
			"	"						2,	45	2,720	Ravenscrag sand	Fard, iron, "alkaline	42	N	Spring supplies local needs.
27	ST.	21			"	Dug	5	2,675	- 4	2,6\%1	5	2,670	Glacial sand	Soft, clear,	44	D, S	Sufficient for 11 head stock.
28	NE.	22	"	:	:	Bored	90	2,920	-60	2,860	90	2,830	Ravenscrag sand	iron Soft, clear	44	D, s	Sufficient for 30 head stock. Dry hole 24
29	SE.	24	$"$	"	"	"	80	2,790	-68	2,722	80	2,710	\cdots clay	Hard, clear	42		feet deep.
30	NE.	25	"	"	"	"	60	2,760									icient for 12 heal
								2,760	- 45	2.	60	2,700	" sand			N	Water turned dark colou
31	52.	26	"	"	"	Spring		2,790	+ 1	2,791			Glacial gravel	Hard, clear	45	D, S	
32	SE.	27	"	"	"	Bored	110	2,950	-98	2,892	110	2،8'0	Ravenscrag s	\because		D,	
33	\$W.	28	"	"	"	Dug	21	2,820	- 17	2,803	21	2,799	Glacial send				
34	SE.	30	$"$	"	"										4	S	Sufficient for 21 head stock.
		30				Bored	40	2,860	- 30	2,830	40	2,820	" "	Soft, "	43	D, S	Small supply.
35	NE.	30	$"$:	"	;	60	2,915	- 40	2,875	60	2,855	Ravenscreg coal	Hard, cleer,	41	D, S	Sufficient for at least 20 heed stock.
36	NV.	30	"	"	"	"	26	2,900	- 18	2,8̇己2	26	2,374		iron Soft, clear			well also used for stock.
37	NW.	34	"	$"$	"	"	102	2,880	- 99	2,781	102	2,778	" ،				Large supply, contaminated by organic materia \#
															41	D, S	Sufficient for 10 head stock.

WELL No．	LOCATION					TYPE OF WELL	$\begin{gathered} \text { DEPTH } \\ \text { OF } \\ \text { WELL } \end{gathered}$	Altitude Well （above sealevel） －	Height to which Water will Rise		PRINCIPAL WATER－BEARING BED			CHARACTER OF WATER	TEMP．OFWATER（in ${ }^{\circ} \mathrm{F}_{\mathrm{s}}$ ）	USE TO WHICH WATER IS PUT	Yield and remarks
	1／4	Sec．	Tp．	Rge．	Mer．				$\begin{array}{\|c} \text { Above }(+) \\ \text { Below (-) } \\ \text { Surface } \end{array}$	Elev．	Depth	Elev．	Geological Horizon				
38	SE．	35	3	28	2	Iug	15	2，910	－ 9	2001	15	2.825	Glacial	Soft，clear	42	D，S	Sufficient for 31 head stock． 200 foot mell into bedrock not being used．
1	Sil．	1	3	29	2	Bored	110	2.710	－ 207	2，603	110	2，500	Ravenscreg ？	Hard，iron，	42	S	into bedrock not being used． Small supply；poor drinking water．
2	56.	4	＂	＂	＂	＂	76	2，715	－66	2,649	76	2，639	send	Hard．claar，	－42	5	＂＂＂＂＊Shallot
3	1码。	5	＂	＂	＂	＂	52	2，710	－ 22	2，630	52	2，653		iron Fard，iror， ＂alkaline＂	43	5	Well for house use． Butficient for 15 head stock，unfit－fon bouse hold use． 20 foot well for house use．
4	Wer：	5	＂	＂	＂	Dug	38	2，770	－ 30	2，740	36	2，73i	＂gravel	Hard，clear	43	D，S	Sufficient for 10 head stock．
5	SE．	7	＂	＂	${ }^{\prime \prime}$	Bored	130	2,785	－100	2，605	130	2，655	＂stand	Hard，iron	43	D，S	＂＂ 10 ＂＂． 122 foot well encountered similar conditions
6	SWW．	8	$!$	＂	＂	Hug	22	2，760	－ 19	2，741	22	2，738	Glacial gravel	Soft，clear	43	D	encountered similar conditions． Sufficient for household anly．
7	NW．	9	＊	＂	＂	Bored	52	2，675	－ 46	2，629	52	2，623	Ravenscrag coal	Hard，iron， clear	42	S，	＂＂ 16 head stock，poor drinking water．
8	SE．	10	$!$	＂	\cdots	a	40	2，670	－ 32	2，638	40	2，630	Glacial clay	Hard，iron， 6白aline	43	D，S	Water．${ }^{\text {Sufficient for } 20 \text { head stock．}}$
9	NE．	10	＂	＂	＂	＂	40	2，365	－ 28	2，637	40	2，62	＂sand	Hard，clear， ＊alkaline	43	D，S	Sufficient for at least 5 head stock．Also 35 foot dry hole．
10	SW．	11	＂	＂	＂	＂	22	2，645	－ 19	2，626	22	2，623	＂	Hard，iron	47	D	35 foot dry hole． Sufficient for household only．\＃
11	SW．	11	\prime	$"$	＂	＂	25	2，640	－ 10	2，622	25	2，61）	＂clay	＂soda	47	D	＂＂＂
3	SE．	13	＂	＂	＂	＂	45	2，665	－ 25	2，640	45	2，620	＂？	Hard，iron， clear	42	D．S	＂at least 25 head stock．
14	NT．	14	＂	＂	＂	＂	38	2，655	－ 35	2，620	38	2，617	Ravenscrag coal	Hard，clear，	41	D，S	＂＂＂ 30 ＂＂
15	NE．	15	＂	＂	＂	${ }_{\text {ugg }}$	12	2，670	－7	2，663	12	2，65	ulacial gravel	Hard，clear， ＂alkaline＂	42	D，S	Sufficient for 25 head stock．Haul water．
16	SW．	18	＂	＂	＂	＂	20	2，655	－ 16	2，634	20	2，635	；sand	Hard，clear＇， ＂alkaline＊	42	S	＂＂ 3 ＂
17	SE．	23	＂	＂	＂	Bored	52	2，660	－ 39	2，621	52	2，608	＂gravel	Soft，soda	43	D，S	Sufficient for 15 head stock，unfitfor housem hold．
16	NE．	23	＂	＂	＂	＂	100	2，705	－ 72	2，633	100	2，605	Ravenscrag sand	Hard，clear		D，S	Sufficient for local needs．
19	SWV．	24	＂	＂	＂	＂	55	2，720	－ 48	2，672	55	2，665	Ravenscrag coal	＂	42	D， 9	Sufficient for 27 head stack． 47 foot well gives similar supoly．
20	Niv．	24	＂	＂	＂	：	120	2，700	－100	2，600	116	2，584	\cdots＊	＂iron	40	D，S	gives similar supply． Sufficient for 20 head stock．
21	576．	25	＂	＂	＂	＂	48	2，680	－ 42	2，638	48	2，632	Glacial sand	＂clear	43	D，S	Sufficient for 7 head stock．
22	STF．	27	＂	＂	＂	＂	50	2，645	－ 40	2，605	50	2，595	＊Pgravel	＂＂	42	D，S	Sufficient for 20 head stock．
23	NW．	29	＂	＂	＂	＂	86	2，645	－ 66	2，579	86	2，559	Ravonscrag sand	"	43	D， 5	Sufficient for 20 head stock．
24	NE．	33	＂	＂	＂	＂	35	2，650	－ 26	2，624	35	2，615	Glacial sand．	Hard，clear	43	D，S	Sufficient for household use．
25	SW．	35	＂	＂	＂	Dug	13	2，645	－ 11	2，634	13	2，632	＂sand	Soit，clear	47	D，S	Small supply．
26	SE．	35	＂	＂	＂	Bored	60	2，665	－ 45	2，620	60	2，605	Ravonscrag＂	Hard，clear，	43	D，S	Sufficient for 15 head stock．
27	SE．	36	＂	＂	＂	＂	52	2，860	－ 42	2，818	52	2，008	Ravenscrag sand	${ }^{\prime}$	43	D，S	Sufficient for 30 head stock．
12	STW．	11	\because	n	＂	＂	40	2，554	－ 30	2，024	40	2，614	Glacial sand	"" "alkaline"	44	S	Sufficient for local needs．Also another 25 foot well．\＃．

[^0]: 1 If the well-site is near the edge of the municipality, the map and report dealing with the adjoining municipality should be consulted in order to obtain the needed information about nearby wells.

[^1]: Fater samples indicated thus，$¥ 1$ ，are from glacial drift．
 Water samples indicated thus，f 2 ，are from bedrock，Ravenscrag formation．
 parts per million，they represent the relative amounts in which the
 For interpretation of this table read the section on Analyses and quality of Water．

