GROUND-WATER RESOURCES

 OFO'LEARY MAP-AREA, PRINCE COUNTY, PRINCE EDWARD ISLAND

By
E. B. Owen and E. I. K. Pollitt

> OTTAWA
> 1950
> Reprinted 1965

CLNADA
DEPLRTMENT OF MINES LND TECHNICAL SURVEYS

GEDLOGICAL SURVEY OF ChiNhDF
Water Supply Paper No. 306

GROUND-WATER RESOURCES
OF
OLEELRY MAP-LREL., PRINCE COUNTY,
PRINCE EDWIRD ISLAND

By
E. B. Owen and E. I. K. Polift

OTTAWA
1950

CONTENTS

Page
Introduotion 1
Publioation of results 1
Glossary of terms used 1
General disoussion of ground water 4
Goneral discussion of ground-water analysos 7
O'Leary map-area, Prinoe oounty, Prince Edward Island 10
Physicol features 10
Geology and water supply 10
Bedrock formations and their water-bearing
properties 10
Unconsolidated deposits and their water-bearing
properties 12
Water supply of the villago of 0'Loary and other communities 14
Lnalyses of water somples 14
Conclusions 15
Summary of well data 17
Trble of analyses of well waters from O'Leary map-area, Prince county, Prince Edward Island 18

Illustrations

Map - O'Leary map-area, Prince county, Princo Edward Islands It back
Figure 1. Mnp showing surfece doposits;
2. Map showing the topogrephy, and location and types of wolls:
2i. Community of St. Chrysostom, map showing topography, and looation and types of wells;
2B. Community of Wost Point, rap showing topography, and location and types of wells;
2C. Community of Portage, map showing topography, and loontion and types of wells;
2D. Village of O'Leary, me.p showing topography, and location and types of wells;
2E. Cormunity of Coloran, map showing topography, and loontion and types of wolls.

This report doals with ground-water conditions of a moparea in the province of Prince Edward Island investigated by the Geological Survey of Canada during the field season of 1949. It is one of a sorios of ground-water reports which it is hoped will eventually cover all of Prince Edward Island.

As ground-wator conditions are directly related to the geology, the surface deposits were studied and mapped by E.B. Owen, assisted by W. T. Hatfiold in 1948. E. I. K. Pollitt, assisted by R. K. Mudford, colleoted the water data in 1949. Thanks are here extended to these assistants for their hearty comoperation. 111 available information pertaining to the water wells in the area was recorded and water samples wero taken for analyses. The olevation of the surface of the water in certain wells was measured. It is intended to repeat these measurements ench yoar to determine any fluctuations in the water-table.

Thanks are here extended to the farmers throughout the area for their co-operation and willingness to supply information regarding their wells. Valaable assistance was also given by well drillers in tho area, particularly Hr. Vaughan H. Groom of the Trask Well Drilling Company. The writers also wish to express their approciation to lir.S. G. Ives, manager for the Commissioners of Sowers and Water Supply, Charlottetown, for his kind assistance.

PUBLICATION OF RESULTS

It is planned that the essential information pertaining to ground-water conditions will be issued in reports covering oach of ten map-areas in the province of Prince Edward Island. The proper authorities will be supplied with the information pertaining to their respective arcas. In addition, pertinent data on most of the wells in oach map-area will be compiled. Owing to the great number of wells, the compilation sheets will not ordinarily accompany the reports. However, information regarding partiouler wells may be obtained from the Chicf Geologist, Geological Survey of Canada, Ottawa.

With each report are two maps. Fig. 1 shows the distribution of difforent types of surface deposits, and Fig. 2 shows the position of all wells for which rocords are arailable, together with the class of well at each location.

In order to facilitato plotting and locating wells, each lot was subdivided in Fig. 2 into areas about 1 mile square. These subdivisions were numberod vertically from north to south and lettered horizontally from wost to east. Wells were numbered consecutively for each subdivision.

GLOSSARY OF TERMS USED

Alluvium. Recent deposits of clay, silt, sond, gravel, and othor material doposited in lake beds and in flood plains of . modern streams.

Aquifer. A porous bed, lens, pooket, or deposit of material that transmits water in sufficient quantity to satisfy pumping wells, flowing artesion wells, and springs.

Bedrook. Bedrock, as here used, refers to consolidated deposits of gravel, sand, silt, olay, or marl that are older than the glooinl drift.

Contour. A line on a map passing through points that have the samo elevation above sea-level.

Continental Ioe-sheot. The great, broad ioe-sheot that oovered most of the surfeoe of Cenada many thousands of years ago.

Esoarpment. A oliff or relatively steop slope separating lovel or gently sloping aroas.

Effluent Strean. A stream that receives water from 0 zono of saturation.

Flood Plain. A flat part in a river valley ordinarily above water, but oovered with water when the river is in flood.

Glacial Drift. A goneral term that inoludes all the loose unconsolidatod materials thet wore deposited by the continental ioe-sheet or by waters associated with it. It includes till, deposits of stratified drift, and scattered boulders and rook fragments. Several forms in which glaoial drift occur are as follows:
(1) End Moraine (Reoessional Moraine). A more or loas discontinuous ridge or saries of ridges oonsisting of glacial drift that was laid down by the ioe at the margin of a moving ioe-sheot. The surfece is charactorized by irregular hills and undrained basins.
(2) Ground Moraine. A widely distributed moraine oonsisting of glacial drift deposited at the base of en ice-sheet. Tho predominant material is till, whioh is clay containing stones. The topography may vary from flat to gently rolling.
(3) Kame Moreine. Assorted deposits of sandy and gravelly stratified drift laid down at or close to the ioe margin. The topography is similer to that of an end moraine.
(4) Drumlin. A smooth oval hill that has its long axis paraliel with the direotion of ico movement at that place. It is oomposed mainly of glacial till.
(5) Esker. An irregular-crested ridge or series of discontinuous ridges of stratified drift doposited by a glacial stream that flowod benesth the continental ice-sheet. It is composed mainly of sand and gravel.
(6) Glaoiomiluvial Deposits. Silt, sand, and gravel outwash, doposited by streams resulting from the melting of the ice-sheet.
(7) Glaoio-leoustrine Deposits. Clay, silt, and sand deposited in glaoial lakes during the retreat of the ice-sheet.
(8) Kame. An isolated mound or conical hill oomposed of stratified sand and gravel deposited in a orack or orevasse within the ice or in 0 depression along the ice front.
(9) 收rine Doposits. Doposits laid down by the soa during tho submorgonoc that followod the withdrawal of tho last ioomshoct. Tho doposits consist ohiofly of olcy, silt, and sand, and heve omargod beachos of send and gravel assooiatod with them.
(10) Shorelino. A discontinuous osocrpmont that indicatos the formor margin of a glacial loke or soa. It is accompanicd by soattered deposits of send and gravel loaatod on formor boaches and bars.

Ground Wator. Subsurface water in tho zone of scituration below the wrtor-tablo.

Hydrostatio Pressure. The prossure that ocuses wator in a well to riso abovo the point at which it was first encountorod.

Influent Stream, A stream that foeds wator into a zono of saturation.

Imporvious or Impormonble. Beds such as fine clay or shole are considored to be imporvious or impomooble when they do not permit the poroeptiblo passoge or novement of ground wator.

Pervious or Permeable. Beds are pervious or permeable whon they permit the perceptiblo passage or movement of ground water, as for oxample, porous sands, gravel, and sandstone.

Porosity. The porosity of 0 rock is its property of contrining intorstioos or voids.

Pre-glecial Land Surface. Tho surfaco of the land. as it existod bofore the ice-shout covered it with drift.

Recent Deposits. Deposits that he.ve been laid down by the agoncios of water and wind since the disappearanoo of the continental ice-sheet; for oxemple, alluvium in stroam valleys.

Unconsolidated Doposits. The mantle or covering of loose, unoemented material overlying tho bedrock. It consists of Glacial or Rocont deposits of bouldors, gravel, sand, silt, and clay.

Water-tablo. The uppor limit of the part of the ground saturated with wator. This may bo noar the surface or many foot bolow it. Water moy bo retained above the main watermtablo by a zonc of impervious material; suoh water is said to be perchod and its upper limit to be a perched water-table.

Wells. Holes sunk into the ground so es to obtain a supply of water. When no woter is obtained they are roferred to as dry holes. Wells yielding water are divided into four olasses:
(1) Flowing Artesian Wells. Wells in which the water is under sufficient hydrostatio pressure to flow above the surface of the ground at the well.
(2) Non-flowing Artesion Wells. Wells in whioh the water is undor hydrostatic pressure sufficient to raise it above the level of the aquifer, but not above the level of the ground at the well.
(3) Non-artesian Wells. Wells in which the water does not rise above the water-table or the aquifer.
(4) Intermittent Non-artesian Wells. Wells that are generally dry for a part of each year.

Zone of Saturation. The part of the ground below a water-table saturated with water.

GFNERAL DISCUSS ION OF GROUND WATER

Almost all the water reoovered from beneath the earth's surfince for both domestio and industrial uses is metrorio water, that is, water derived from tho atmosphere. Most of this water reaches the surface as rain or snow. Part of it is carriod off by stroams, part evaporates either directly from the surface and from tho upper mantle of soil or indirootly through transpiration of plants, the remaindor infiltrates into the ground to be added to the ground-water supplies.

The proportion of the total precipitation that infiltrates from the surfice into the zone of saturation will depend upon the surfice topography and the type of soil or surfaoe rock. More water will be obsorbed in sandy or gravelly areas, for example, than in those oovered with clay. Surface run-off will be greater in hilly areas than in those that rere relativoly flat. In sandy regions where the reliof is great, the first preoipitation is absorbed and run-off only commenoes after continuous heavy rains. light, continued procipitation will normolly furnish more water to the underground supply than brief torrential floods, during which the run-off will nearly equal the precipitation. Frozen soil is quite impermeable and moisture falling upon it will not usually find its way below the surfoce. Accordingly, during the winter, very littlo water reaches the zone of saturation. Light rains falling upon the surfooo of the earth during tho growing season may be wholly absorbed by growing plants. The quantity of moisturo lost through direot evaporation depends largely upon temperature, wind, and humidity. Ground water in aroas overlain by pervious material may bo rechargod by influent streams oarrying run-off from aroas overlain by rolatively impervious material.

The average monthly and annual preoipitation (in inches) at Charlottetown, Hamilton, and Sumerside, observed over periods of 65, 16 , and 18 years respectively is as follows: 1

[^0]| | Yrs. obs. | Jon. | Feb. | Mar. | Apr. | May | Juno | July | Aug. | Sept. | Oot. | Nov. | Doo. | Annual |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C. | 65 | 3.76 | 3.01 | 3.15 | 2.78 | 2.66 | 2.58 | 2.98 | 3.35 | 3.40 | 4.07 | 3.75 | 3.98 | 39.47 |
| H. | 16 | 3.03 | 2.60 | 3:75 | 3.27 | 2.52 | 2.60 | 2.94 | 3.45 | 3.12 | 3.12 | 3.75 | 2.97 | 37.12 |
| S. | 18 | 2.68 | 3.11 | 3.10 | 2.75 | 2.86 | 2.77 | 3.62 | 3.59 | 3.32 | 3.36 | 3.70 | 3.80 | 38.66 |

[^1]If Summorsido is usod as an example and it is borno in mind that a layer of water 1 inch doep ovor an area of 1 square mile amounts to approximately 14,520,000 imperial gallons, it will be seen that an a.vorage of $561,343,200$ imperial gallons of wator fall on each square mile in the Summerside aroa in 1 yoar. Although it would not be possible to determine the ennunl reoharge of the ground-water supply of the area, if it were assumed that only 10 per oont of the total preoipitation renched the zone of saturation, it will be soen that the annual recharge for 1 square mile would be $5,613,432$ gallons. If thore is a daily oonsumption of 200 gallons por farm and 35 gallons por person in the communities, on ostimnte of the total consumption for 0'Leary map-area (200 square miles) shows it to be only 7.2 per oent of the estimated annual reoharge. If, on the other hand, 360 gallons per farm are consumed as well as 60 gallons per person in the oommunities, then 12.8 per oent of the recharge is used annually. It seoms roasonable to oonolude that preoipitation is adequate to furnish supplies of ground water for O'Leary map-area and possibly the entire province.

The monthly and annual prooipitation from 1947 to 1949 at meteorologioel stations within the aroa is given on page 6.

In most regions of the world where preoipitation is offeotive there is on underground horizon known as the ground-water lovel or "water-table", which is the upper surface of the zone of water saturation. The water that onters from the surface into the rocks of the earth is drawn down by gravity to where it oither reaches the zone of saturation or comes in contact with a relatively impervious layer of rook. Such a. layor may stop furthor downward percolation resulting in perohed water and oreating a porched watertable. If a water-table is at or noar the surface there will be a lake or swamp, if it is out by a valley there will be a stream in the valley. The terms "influent" and "effluent" are used with reforence to streams and their rolation to the water-table. An influent stream feeds water into a zone of saturation and on offluent stream reoelves water from a zono of saturation. The ground water in the zone of saturation is almost constantly on the move, percolating toward some point of disoharge, whioh may be a spring or a pumping well.

All rocks and soils are to some degree porous, that is, the individual grains or partioles of which they are oomposed are partly surrounded by minute interstioes or open spaces that form the reoeptaoles and conduits of ground water. In most rocks and soils the interstioes are connected and large onough for the water to move from one opening to another. In some rocks or soils, however, they cre largely isolated or are too small for the water to peroolate. The porosity of a material varies direotly with the size and number of its interstioes, whioh in turn depend chiofly upon the shape and c.rrangement and the degroe of assortment of the constituent particles. A fine-grainod rook such as shale, limestone, or dolomite may have such small interstices that the contained water will not flow readily and wells penetrating them may derive little or no water. Such rooks are oonsidered imporvious. More oocrsegrained materials such as sand, gravel, or sandstone readily yield thoir weter to wells and are oalled watermbearing beds or aquifers. A clean watermbearing gravel constitutes one of the best sources of wator. This is true whether the water is derived from the zone of saturation or from a bed of gravel oonfined between or below beds of more impervious material.
PRECIFITATION IN INCHES AT VARIOUS OBSERVATION STATIONS 1

Station	Year	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Total
Alliston	1947 1948 1949	$\begin{aligned} & 1.0 \\ & 2.8 \\ & 1.9 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 1.4 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.8 \\ & 3.1 \end{aligned}$	$\begin{aligned} & 2.9 \\ & 2.4 \\ & 2.6 \end{aligned}$	5.6 2.8 1.1	$\begin{aligned} & 4.2 \\ & 2.0 \\ & 1.5 \end{aligned}$	2.6 1.8 1.8	0.5 1.7 4.1	$\begin{aligned} & 4.3 \\ & 2.2 \\ & 2.1 \end{aligned}$	1.3 0.7 1.6	$\begin{aligned} & 1.8 \\ & 4.0 \end{aligned}$	3.5 1.9 1.0	31.6 26.6
Charlottetown	1947 1948 1949	$\begin{aligned} & 4.0 \\ & 2.8 \\ & 3.2 \end{aligned}$	3.1 2.0 4.3	2.2 2.6 4.5	4.1 3.2 3.3	5.8 3.5 2.5	5.2 3.1 2.8	2.6 3.4 1.7	1.3 3.4 4.2	4.7 3.7 4.5	1.2 3.2 2.3	4.5 5.6 4.3	4.7 3.7 2.8	43.4 41.2 40.4
Charlottetown Airport	$\begin{aligned} & 1947 \\ & 1948 \\ & 1949 \end{aligned}$	2.8 2.5	1.6 4.2	$\begin{aligned} & 2 . \\ & 5.4 \\ & 5.7 \end{aligned}$	3.4 3.5 4.2	5.8 3.8 2.9	5.0 3.2 2.0	2.5 3.5 2.1	1.3 3.2 5.0	5.1 3.5 4.4	$\begin{aligned} & 1.1 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.6 \\ & 4.4 \end{aligned}$	3.4 3.2 2.9	42.5
Ellerslie	$\begin{aligned} & 1947 \\ & 1948 \\ & 1949 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 2.9 \end{aligned}$	4.5 1.9 3.0	$\begin{aligned} & 1.5 \\ & 1.4 \\ & 7.2 \end{aligned}$	3.3 1.9 3.2	$\begin{aligned} & 3.6 \\ & 2.4 \end{aligned}$	5.1 4.7 4.1	1.4 3.2	1.9 3.5	4.8 2.6 4.6	2.0	3.0 5.4	3.0 2.1	
Summerside	$\begin{aligned} & 1947 \\ & 1948 \\ & 1949 \end{aligned}$	3.5 3.0 2.5	3.3 1.5 4.1	1.8 1.8 4.8	$\begin{aligned} & 2.9 \\ & 2.8 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.0 \\ & 2.9 \end{aligned}$	$\begin{aligned} & 5.1 \\ & 4.1 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 4.9 \\ & 2.0 \end{aligned}$	1.7 6.4 3.6	4.0 3.0 4.5	2.1 2.2 1.8	3.3 3.7 4.4	3.3 2.6 2.6	$\begin{aligned} & 36.4 \\ & 39.0 \\ & 39.6 \end{aligned}$
Summerside Airport	$\begin{aligned} & 1947 \\ & 1948 \\ & 1949 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 3.1 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 3.6 \end{aligned}$	3.5 3.3 3.2	$\begin{aligned} & 4.4 \\ & 4.3 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 4.9 \\ & 1.9 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 6.3 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.1 \\ & 4.7 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 2.4 \\ & 2.1 \end{aligned}$	$\begin{aligned} & 2.8 \\ & -2.5 \end{aligned}$	2.8 2.9 3.1	$\begin{aligned} & 32.3 \\ & 40.3 \end{aligned}$

$1_{\text {Extracts }}$ from the Mionthly Weather Map, Leteorological Service, Dominiox of Canada

The most common wells and those that in drift-oovered areas yield the largest aggregate supply of ground water are watertable wells that is, they derive their water from the zone of saturation. Many shallow water-table wells become dry during the late summer, winter, or periods of extreme drought. In most oases this is due to the lowering of the water-table below the bottom of the well. The grouping together of a number of water-table wells within a limited area will also lower the yield of any one of the wells. This is espeoially true if the water-producing formations are of low permeability. When a well penetrates an aquifer oonfined by impervious beds, water flowing under pressure will rise in the well to a level equivalent to the hydrostatio pressure exerted at the point of its entranoe into the aquifer. If the hydrostatio pressure is great enough to force the water to the surface, a flowing artesion well is formed.

Springs are formed by the water-table, or some aquifer containing water, outoropping at the surface of the ground. The water emerging from water-table springs is free water flowing down the gradient of the water-table. In many cases these springs oocur as slow seeps along the lower edges of stream valleys. A large number in one area could maintain a swamp. A group of artesian springs ooourring in one area oould provide suffioient water to maintain e lake or form the souroe of a stream.

GENERAL DISCUSSION OF GROUND-WATER ANALYSES

The mineral content of ground water is of interest not only to consumers but also to industries seeking wator of speoific quality. Both the kind and quantity of mineral matter dissolvod in a natural water depend upon the texture and chemioal composition of the rocks with which tho water has been in contoot. Pollution is oaused by oontact with organic matter or its decomposition produots. Analyses of well waters for mineral content are made by the Bureau of Mines, Department of Mines and Toohnioal Surveys, Ottawa.

In any givon area, an attempt is made to seoure samples representative of the waters of all main aquifers. The quantities of the various constituents for which tests are made are given as "parts per million", which refers to the proportion by woight of each constituent in 1,000,000 parts of water.

The following mineral oonstituents include all that are cormonly found in natural wators in quantities suffioiont to have any practical effect on the value of the waters for ordinary uses.

Silica (SiO_{2}) may be derived from the solution of almost any rook-forming silioate, although its chief source is from the feldspars. It is commonly determined in the analyses of water for use in stoam boilers, as silion is olassed as an objeotionable enorustant.

Calaium (Ca) is dorivod originally to a great extent, from the deoomposition of lime feldspars. The ohiof souroes of coloium dissolved in ground water are from the solution of limestono, gypsum, and dolomite. The common compounds of colotum are
caloium ocrbonate $\left(\mathrm{CaCO}_{3}\right)$ and oaloium sulphate (CaSO4), noither of which has injurious effects upon the consumer, but both of whioh oause hardness. Caloium oarbonate is aotive in the formntion of boiler soale.

Magnesium (Mg) is derived originally from many igneous rocks although its chiof source for ground water is dolomite, a carbonate of caloium and magnesium. The sulphato of magnesium (MgSO_{4}) oombinos with wator to form "Epsom salts" and ronders the water unwholesome if prosent in largo amounts.

Sodium (Na) is found in all natural waters in various combinations, olthough its salts constitute only a small part of the total dissolved mineral matter in most waters in humid regions. Sodium salts may be present as a result of pollution by sewege or of contamination by sea water, oither directly or with that enolosed in marine sediments. Moderate quantities of these constituents have little effeot upon the suitability of a water for ordinary uses, but water contdining sodium in oxcoss of about 100 parts per million may roquire careful oporation of steam boilors to prevent fooming. Wators oontaining large quantities of sodium salts aro injuricus to orops and are, therefore, unfit for irrigation. The quantity of sodium salts may be so large as to render a water unfit for nearly all uses.

Potmsium (K), like sodium, is dorived originally from the alkaline feldspars and micas. It is of minor significance and is sometimes included with sodium in chemical analyses.

Iron (Fe) is almost invariably presont in well waters, but rarely in large amounts. It is dissolved in combination from many rocks as well as from iron sulphido doposits with whioh ground water comes in contact. It may also be dissolved from well casings, water pipes, and other fixtures in quantities large onough to be objeotionable. Upon exposure of the water to the atmosphere the iron separates as the hydrated oxide causing a yellowish brown discoloration. Exoessive iron in wator causes staining on porcolain or enamelled ware and renders the water unsuitable for laundry purposes. Water is not considered potable if the iron content is more than 0.5 part per million.

Sulphates $\left(\mathrm{SO}_{4}\right)$. Deposits of gypsum constitute the principal source of sulphates dissolved in ground water. They ooour chiefly as the salts of caloium, mognesium, and sodium, Sulphates cause permanent hardness in woter and aid in the formation of injurious boiler soale. Sodium and magnosium sulphates are laxative when present in quantities of moro than 900 parts per million.

Chloride (Cl) is nearly all either of organio origin or derivod from marino rocks and sediments. It oocurs usually as sodium ohloride and less oommonly as caloium chloride and magnesium ohloride. Sodium chloride is e characteristio constituent of sewage, and any looally abnormal quantity in ground water suggests pollution from this source. However, in view of the many sources from whioh chlorides may be derived, such abnormal quantities should not, in thenselves, be taken as positive proof of pollution. Chlorides impart a salty taste to water if presont much in excess of 300 parts por million.

Nitrates $\left(\mathrm{NO}_{3}\right)$ aro of minor importance in the study of ground water. Relatively large quantities in a water may represent pollution by sewage, or drainage from barnyards, or even fertilised fields. It is recommended that a baoteriological test be made of water showing an appreciable nitrate content if it is to be used for domestic purposes.

Carbonate (CO_{3}) forms a large peroentage of the solid oompounds held in solution by the average ground water. The two chief sources are the decomposition of feldspars and the solution of limestone. Water oarrying oarbonio acid in solution is the primary agent in rock deoomposition. Carbonates aro indioated in the table of analyses as alkalinity. Caloium and magnesium carbonate oause hardness in water, whereas sodium oarbonate causes softness.

Bicarbonate (HCO_{3}). Carbon dioxide dissolved in water renders the insoluble oaloium and magnesium oarbonates soluble as bioarbonates. The latter are docomposed by boiling the water, which ohanges them into insoluble carbonates that form a ooating on the inside of cooking utensils.

Total Dissolved Solids (Residue on Evaporation). The term 'total dissolved solids' is applied to the residue obtained when a sample of water is evaporated to dryness. Waters are considered high in dissolved mineral solids when they contain more than 500 parts per million, but may be acoepted for domestio use up to that point if no better supply is available. Residents aooustomed to the waters may use those that oarry muoh more than 1,000 parts por million of total dissolved solids without inoonvenience, although persons not used to highly minernlized waters would find them objeotionable.

Hardness is a condition impartod to waters ohiefly by dissolved calcium ond magnesium compounds. It here refers to the amount of soap that must first bo used to procipitate the above oompounds before a lather is produced. The hardness of wator in its original state is its total hardness, and is olassified as 'permanent hardness' and 'tomporary hardness'.' Permanent hardness remains after the water has beon boiled. It is ouused by mineral salts that cannot be removed from solution by boiling, but it con be reduced by treating the water with natural softeners, such as armonia or sodium carbonate, or with many manufactured softeners. Temporary hardness oan be eliminated by boiling and is due to the presence of bicarbonates of colcium and magnosium. Wators oontaining larger quantities of sodium oarbonate than caloium and magnosium oompounds are soft, but if the latter compounds are more abundant the water is hard. The following tablel may be used to indicate

[^2]the degree of hardness of a water:
Total Hardness

Parts per Million	Charnoter
- 50	Very soft
$50-100$	Moderately soft
100-150	Slightly hard
150-200	Moderately hard
200-300	Hard
300 ond over	Very hard

OILEARY MAP-AREA, PRINCE COUNTY, PRINCE EDWARD ISLAND

PHYSICAL FEATURES

orLeary map-area is located in the west part of Prinoe county on Prinoe Edward Islond. It has an area of about 200 square miles. The village of Olleary, the largest of several small communities within the area, is 75 miles northwest of the city of Charlottetown.

The surface of OLloary map-area is relatively flat. A gently undulating to rolling offeot in some parts is due ohiefly to downoutting by streams sinoe the retreat of the ioe rather than to glaciation.

The oontral part of the maparea is covered mainly by olay till, and the largest deposits of sandy till ocour along the west shore and in the southeast oorner. All but a very small part of the shoreline is covered by Pleistooene marine deposits, which are most widespread in the eastern part where they extend farthest inland. A few small gravelly sandy till deposits are found through out the central part of the map-area. Recent deposits of dume sand oocur along the south shoreline.

A prominent topographio feature is a series of discontinuous ridges or bluffs that roughly parallel the present shoreline and oan be traced intermittently throughout the maparea. These bluffs represent emerged marine shorelines. In general they follow the $25-, 50-$, and 75 -foot oontours.

Surface elevations increase from sea-level to a maximum of 180 feet in the oentral and northem parts of the area, the increase being more gradual in the east.

The area is well drained by Pierre Jaoques, Enmore, Trout, and Mill Rivers, as well as by numerous small oreeks. Pierro Jaoques River flows southerly aoross the west part of the area and Enmore River flows southwesterly aoross the east-contral part. Trout and Mill Rivers flow easterly aoross the north part. Most of the streams are permanent, but do not onrry much water. The source of much of the water is in wooded and swampy areas undorlain by relatively impervious olay till. A fow springs, somo of whioh issue from sandstone, aro soatterod along stream valleys. Some streams have been dammed, and are utilized to operate small saw or grist mills. However, as more land is oleared and swamps drained, many of the permanent streons will become intermittent, and it will beoome inoreasingly diffioult to operate such industries.

GEOLOGY AND WATER SUPPLY

Bodrook Formations and Their Watermbearing Propertios

The entire provinoe of Prinoo Edward Island is underlain by Upper Carboniferous or possibly Permian formations. They consist of soft, dark red sondstone, soft, thin-bedded, red shale, hard pebble-conglomerate, and irregular beds of impure limestone containing pebbles of bright red shale. These latter are described looally as ling conglomerates.

Sandstone, beoause of its relativoly high porosity, constitutes the most satisfoctory bedrook souroe of ground water. E. D. Ingalll notes that in most instanoes ground water was

[^3]encountered in sandstone during the drilling of five deep holes under the direotion of the collagioal Curvery of Canigda in 1908-9。 Where sandstone was looated under beds of less permeable shale, the water was sometimes under pressure and rose a considerable distanoe in the well. The greatest depth at which fresh water was encountered in theso holes was at 1,560 feet in well No. $4,1 \frac{1}{4}$ miles from Little Sands, Kings county. Below the fresh water horizons, the water was inoreasingly brackish and finally quite saline. In holes drilled adjacent to the sea-oonst, the water encountered rose in the oasing to an elevation corresponding to that of the sea water, and the rise and fall of the tides produced a direot effect upon it.

Although soft, red shales are not a satisfactory source of ground water in themselves, their looation in bedrock suggests the possible prosence of aquifers containing ground water under pressure as ground water locatod beneath such a shale bed will generally rise a considerable distance in the well from the point where it was first encountered. The presence of impermeable shale beds near the surface may result in the oreation of perched watertables. Because of the limited extent of these shale beds, shallow wells deriving their water from above the shale in such looalities are not satisfactory and will go dry rapidly during drought.

Beds of limestone and conglomerate are not extensive and are unimportant as souroes of ground water. Their relative im permeability causes them to behave like the shale bods in that ground water ocourring immodiately below is under pressure and will rise in the well when encountered.

O'Leary map-area is wall supplied with ground water for both domestic and stock purposes. Over 92 por oent of the wells in the area are bored and 74 per cent obtain their water from depths of 40 feet or less. A survey of tho well records sllows thet over 97 per oent of the wells have a permanent water supply. The ohief sources of ground water in O'Leary map-area are bodrock formations, and of these the sandstone only is of any importanoo. Of the 1,342 wells and springs in the aroa about 61 per oent are known to have their aquifers in sandstone. Although the oharacter of the bedrook in 37 per cent of the wells is unknown it is, without doubt, sandstone as no other type of bedrock was found to be a favourable source of ground water. The term "unknown" is used when the information of the owner is soanty in regard to the character of the aquifer, or when the well was bored during a previous owner's ocoupanoy. The information regarding the charaoter of the aquifer was derived solely from the statements of the owners and the drillers.

All drilled wells in the area obtain their water from sandstone but, acoording to drillers' reports, various thickesses of shale are encountered between the sandstone beds. This is clearly shown by the four deep wells drilled at Mount Pleasant Airport. The impervious shale beds prevent the water in the sandstone from rising to a higher level or from percolating downward.

When the shale is penetrated by drilling, water is encountered in nearly all underlying sandstone beds. The yield of these four drilled wells at the Airport is as follows s No. 1 - $40-60$ gallons a minute; No. $2-70-80$; No. $3-90-100$; No. 4 - 30-40. The compilation of these wells is as shown:

No.	Elevation	Depth	Depth to water	Aquifer	Quality of water
1	108	240	-15	Sandstone	Slightly hard, olear
2	105	290	-12	$" 1$	$"$
3	94	350	-25	$"$	$"$
4	91	150	-9	$"$	$" 1$

In the oase of bored wells, sandstone is also the prineipal aquifer. In boring wells it is necessary in many cases to drill through the liny conglomerate or the pebble-conglomerate before a satisfactory supply of water is obtained. Many owners report that after the drill has penetrated a layer of hard rook it drops from 3 to 6 inohes into water. According to information received from well drillers the apparent "drop" is the result of the hand drill passing through the relatively hard pebble-oonglomerate or limy conglomerate into the softer sandstone. The contrast between the different types of rook is all the more apparent if the sandstone is saturated with water.

A few wells are dug through the overlying unconsolidated deposits to sandstone, from which water is obtained. Most of these wells are shallow, as the sandstone is fairly olose to the surfaoe and lies directly below the surface deposits without my intervening shale or conglomerate zones.

Springs generally oocur where porous lenses or beds are exposed by natural slopes, cliff faces, or stream valleys. Some springs used for domestic and stook purposes obtain their water from sandstone. The best illustration of bedrook springs is to be found along the cliffs of the present shoreline. Here the water soeps downward through porous layers of rook until some impervious shale zone is reached. The water then flows along the top of the shale layer, following the hydraulio gradient, and issues at the face of the oliff. Some of these springs are under sufficient hydrostatio pressure to flow as steady streams from the rock, but most are merely slow seeps where the water-table outorops at the surface。

Unconsolidated Deposits and Thoir Water-bearing Properties

During the Pleistocene or glacial epooh, great acoumulations of ice formed at one or more centres in northern Canada. This ioe moved out in all direotions and covered large regions with what has been called the Continental Ioe-sheet. As the ice advanced, it pioked up, transported, and redoposited great quantities of loose rook debris. This material is unoonsolidated and is commonly called glacial drift. The ice-sheet advanced and retreated several times and after each retreat left an nooumulation of drift on the surface over which it had passed.

This drift, together with dune sand, stream flood plain deposits of alluvium, and swamp deposits of muck and peat, constitute, to a large extent, the unconsolidated deposits on the Island.

Most of the glacial drift oonsists of boulders and pebbles of various sizes, some foreign, but predominontly of Island bedrook, embedded in a matrix of olay or sandy olay. This material is known as a till. The following are the more important types of unconsolidated deposits with their water-bearing properties that occur in O'Leary map-area: (1) glaoial deposits; (2) marine deposits; (3) marine beach deposits; (4) glacio-fluviol deposits; (5) reoent deposits, consisting of beaoh sand and gravol, dune sand, stream alluvium, and muck and peat.

Only 2 per cent of the total number of wells obtain their water from these unoonsolidated deposits.

Glaoial Deposits. This type oonsists of glacial drift varying chiefly from a olay till to a sandy till in different parts of the area. Gravelly, sandy till is not extensive and is not an importont souroe of ground water. Although the zone of saturation with its accompanying water-table exists in olay till, the interstices in the till are extremely small and much of the contained water is not recoverable by wells. Swamp conditions are oommon in clay till areas. Sandy till yields a more satisfactory supply of water, but is not sufficiently extensive in the area to form an importont source. No wells were found to draw their water solely from the glacial deposits.

Marine Deposits. Those deposits consist ohiefly of silt and send with a few soattered interbeds of olay. They are very porous and yield thoir wator freely to shallow dug wells. Perohod water, although not common, is present in these areas. Such localities oannot be oxpected to yield a satisfactory supply of ground water unless the woll passes through the perohed zone and enters the true zone of saturetion.

Areas ovorlain by gleoio-fluvial and marine beach deposits are of relctively small extent and, although they consist of well stratified silt, sond, and gravel that are very porous and should yield good supplies of water, do not oonstitute importont souroes of ground water.

There are no drilled or bored wells in these marine deposits. All the dug wells are shallow, but the yield is fairly consistent. Half the total number of springs listed as the sole source of water supply of a farm are found in these sand and gravel deposits. The greatest number of wells with this type of aquifer are looated in lot 8.

The water-bearing properties of alluvial doposits are variable, but in general suoh deposits form favourable aquifers.

Dune sand deposits are very porous and should yield satisfactory supplies of ground water to wells that penetrate the water-table. They provide the water supply for the fishing community of Wost Point, from shallow dug wells. Although the supply is not groat, the water level appears to remain fairly constant and no well is known to become intermittent.

The possibilities of obtaining flowing-artesian wells in O'Leary map-area are not good. The porous sandstone beds as Well as the deposits of Pleistocene marine sand and gravel provide an excellent intake area for ground water, but the relief is so slight there is very little possibility of the ground water eventually returning to the surface at lower elevations in flowing artesion wells.

Springs occur throughout the aroa, but only those springs are shown on the map which constitute the sole source of water supply of a farm.

WATER SUPPLY OF THE VILLAGE OF O'LEARY AND OTHER COMMNNITIES

All commuities in O'Leary map-area obtain their water from privately owned wells. With the exception of West Point the supply comes mainly from sandstone. All wells have a permanent supply of water.

O'Leary

O'leary, the largest of all the communities, has sixty-six wells. All but three of these wells are of the bored type. Over 65 per cent obtain their water from depths of from 21 to 40 feet. All known aquifers are sandstone, and although the aquifer is not listed for fifty wells, it is presumed also to be sandstone. The average depth of clay till in O'Leary is 13 feet.

St. Chrysostom

St. Chrysostom has twentymeight wells. Twenty-seven of these wells are bored and twentymone obtain their water from depths of 40 feet or less. All known aquifers are sandstone.

Coleman
There are fourteen wells in Coleman. All but one of these wells are bored, and nine receive their water from between depths of 21 and 40 feet. All known aquifers are sandstone. The average depth of clay till in Coleman is 15 feet.

West Point

West Point has eleven wells. With one exception all wells are dug. Depths are mainly less than 20 feet. Recent dune sand is the source of water of all dug wells.

Portage

Portage has seven wells, five of which are bored. Depths range from 18 to 120 feet. The known aquifer is sandstone.

ANALYSES OF WATER SAMPLES

Thirtymone samples of well waters from O'Leary mapmarea were analysed for their mineral content by the Bureau of Mines. The samples were taken from depths of from 0 to 138 feet, and nearly all
are from sandstone. fill wators were found to be suitable for domestic and form use.

Amounts (in parts per million) of dissolved mineral matter in waters oollected in O'Lenry mop-area:

Constituent	Quantity		
	Maxinum	Average	Minimum
Total dissolved solids	357.0	177.4	80.0
Silioa.	21.2	8.9	2.0
Colcium	57.9	32.0	2.7
Magnosium	22.5	7.2	1.1
Alkalis (sodium and potassium).	44.0	14.8	6.9
Sulphate	37.9	9.8	2.9
Chloride	43.2	17.1	0.0
Nitrate	32.8	10.3	0.0
Bioarbonate	219.8	127.7	48.8
Total hardness	191.6	109.5	14.1

Conolusions

This invertigation warrants tho following conolusions:

1. Ground-water supplies of o'Leary map-area are abundant for domestic, stock, and field uses. Most farms have wolls in their pastures and potato fifelds, which supplement the wator supply for oattle as well as providing an adequato supply for irrigation of field crops.
2. Prooipitation appears sufficient to ensure adequate supplios of ground water.
3. The ohief source of ground water is sandstone. The sandstone is soft and allows penetration by hand drills. In order to reaoh water in sandstone, it is ofton necossary to bore through overlying hard limy oonglomerate and (or) pebble-oonglomerate.
4. A few wells are dug in marine sands and grevel:
5. Dune sand deposits provide on ample water supply for the cormunity of West Point.
6. No suitable aquifers for ground water are present in glacial till aroas.
7. Conditions that produce flowing-artesian wells are not present in the map-area.
8. All villages and commuities in O!Leary map-area have an abundant and permanent water supply.
9. The quality of ground wator dexived from eandestome quite suitable for domestio and farm use.
10. The presence of large forested areas are of vital importanoe in maintaining a sufficient supply of ground water. It was notod that the forests in the map-area are gradually being deploted and voryd little effort is being made toward reforestation. It is suggested that, wherever possible, some plan of reforestation be carried out. This would undoubtodly onsure an abundant supply of ground water for the future.

Lots																	Total No. \& of in Area Total	
	5	6	7	8	9	10	11	12	13	14	15	011.	St.c.	c.	P.PT.	p.		
Total number	49	256	155	232	181	84	51	44	207	37	20	66	28	14	11	7	1342	
Bored	45	249	143	200	172	80	44	37	106	36	20	63	27	13	0	5	1240	92.4
Dug	1		8	28	7	2	6	1	0	0	0	0	1	1	10	0	70	
Drilled	1	2	3	2	1	0	1	5	0	0	0	3	0	0	1	2	21	1.6
Springs	2	0	1	2	1	2	0	1	1	1	0	0	0	0	0	0	11	0.8
Wells 0-20 feet deep			15	42	24	12	17	11	43	8	6	1	8	1	10	1	224	
21-40	28	168	66	133	113	59	30	24	:50	23	9	43	13	9	0	1	769	57.4
41-60	11	48	42	45	36	8	1	2	9	3	4	15	5	4	0	2	235	17.5
61-80	6	13	23	10	7	5	0	2	5	3	1	4	2	0	0	0	81	6.0
81-100	2	4	6	1	1	0	1	0	0	0	0	1	0	0	0	1	17	1.3
101-120	0	0	1	0	0	0	0	0	0	0	0	1	0	0	1	2	5	0.4
over 120	0	0		0	0	0	1	4	0	0	0	1	0	0	0	0	7	0.5
depth unknown	0	0	1	,	0	0	1	1	0	0	0	0	0	0	0	0	4	0.2
Wells that yield hard water	32	$\begin{array}{r}172 \\ 84 \\ \hline\end{array}$	114	215	154	71	133	25	70 37	23	17	44	19		1		1003 336	
Soft water Salty water	17 0	84	41	17	27	13	18 0	19	37	$\begin{array}{r} 14 \\ 0 \end{array}$	3 0	21	8 1	8	9	0	336	25.0 0.2
Wells with aquifer in sandstone	28	183	98	125	118	50	36	31	73	24	10	16	12	7	1	4	816	60.8
In marine sand of	0	0	0	12	1	2	2	1	± 1	0	0	0	0	0	0	0	19	1.4
In recent sand	0	0	0	12	0	0	0	0	'0	0	0	0	0	0	10	0	10	0.7
Unknown	21	73	57	95	62	32	13	12	33	13	10	50	16	7	0	3	497	37.1
Non-artesian wells	46	254	151	228	169	82	50	38	106	36	20	63	28	14	10	5	1310	97.6
Non-flowing artesian wells	1	2	3	2	1	0	1	5	0	0	0	3	0	0	1	2	21	1.6
Springs	2	0	1	2	1	2	0	1	1	1	0	0	0	0	0	0	11	0.8
Wells with permanent supply	45	253	151	223	170	81	50	44	105	37	19	66	28	14	11			
Hells with non-permanent supply	4	3	4	9	11	3	1	0	2	0	1		-	,	0	0	38	2.8

O'L. -- O'Leary
St.C.-- St. Chrysostom
V.Pt. $\mathrm{F}=-\mathrm{Hest}$ Point
P. -- Portage
498 \＃

		$$	$\underset{\sim}{\infty}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0-1 \end{aligned}$	$\begin{gathered} 0 \\ -i \\ 0_{i}^{2} \end{gathered}$	0 0 + +1	$$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & +1 \\ & 0 \\ & 0 \\ & 0 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & -1 \end{aligned}$	－	0 0 0 0 \sim	$\stackrel{0}{\circ}$
		\cdots	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\underset{\sim}{*}$	$\begin{aligned} & \text { N } \\ & \text { o } \\ & 0 \end{aligned}$	$\begin{aligned} & 10 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \bullet \\ & \stackrel{\rightharpoonup}{*} \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & 0 \\ & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\stackrel{\oplus}{\oplus}$	0	0 4 4	\bigcirc
	$\begin{aligned} & (\text { EOOOD } 88) \\ & \text { ssouplig } 85 \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{+}{+} \\ & \stackrel{+}{*} \end{aligned}$	$\begin{aligned} & 10 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 10 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\sim}{\infty}$	$\begin{aligned} & 10 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { b } \\ & \text { H } \\ & \text { H } \end{aligned}$	$\begin{aligned} & \text { Mo } \\ & \text { - } \\ & \text { - } \end{aligned}$	0	10 0 0	－
	（80）8j E8） ¢7FUTT B4TV	$\begin{aligned} & \mathfrak{0} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & \infty \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \underset{\sim}{6} \\ & 6 \\ & \hline \end{aligned}$	0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \sim \\ & \omega \\ & \underset{\sim}{\omega} \end{aligned}$	$\begin{aligned} & 0 \\ & 6 \\ & 6 \\ & \hline \end{aligned}$	O － －	$\begin{aligned} & 0 \\ & 8 \\ & 8 \\ & \hline \end{aligned}$	－
	$\begin{gathered} \left(\varepsilon_{00 H}\right) \\ \text { eq8uOq4BO5q } \end{gathered}$	∞ ∞ － \sim	0 $\stackrel{\sim}{0}$ \sim \sim	0 0 0 \sim	0 -1 0 -1	H $\stackrel{\mathrm{C}}{-1}$ H	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{*} \end{aligned}$	0 0 0 － -1		+4 \cdots + +4	e 0 0 0	+ 0 0 -1	N O 0
	$\begin{gathered} \left(\varepsilon_{O N}\right) \\ 070 L 7 J N \end{gathered}$	－	0 － －	\cdots	$\stackrel{+}{\circ}$	∞ 0 0	$\stackrel{\circ}{0}$	－	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\sim}{*}$	0

Constituents as Analysed

	498 \＃		
	ssoupary 8\％		
	（ 800 Bj SB） ssoupazy ву		
	（E0080 5b）	＋10	
	（ $\varepsilon_{0} \mathrm{OH}$ ） 		
	（土0） өрなエロ โบจ		
	${ }^{\circ} \mathrm{F} 0 \mathrm{~s}$ ） eqbudtns		
	（ BN 8B） sftbyty		
	$\begin{gathered} (8 \mathrm{~F}) \\ \text { umfseus } \end{gathered}$		
	$\begin{gathered} (80) \\ \text { unToTB } \\ \hline \end{gathered}$		
	dobt		
	（\％ors） Botits		
		笑	9
	工eITnby		8
		N \quad ¢	告
	प07580040		\sim^{*}
	707		
	2 aumo		
	zequms otdurs	$\stackrel{\sim}{\sim} \sim_{\sim}^{\sim}$ N ${ }_{\text {N }}$	

[^0]: ${ }^{1}$ Data from "Climatic Summaries for Soleoted Meteorologioal Stations in the Dominion of Canada", Vol. I, Motororologioal Division, Dopartmont of Transport, Canada.

[^1]: C.-- Charlottotown: H.-- Homilton; S.m- Summerside

[^2]: $l_{\text {Thresh, J. C., and Beale, J. F.: Tho Examination of Waters }}$ and Water Supplies; London, 1925, p. 21.

[^3]: IIngall, E. D.: Boring on Prinoe Edward Island; Gool. Surv., Canada, Sum. Rept. 1909, p. 30.

