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EXECUTIVE SUMMARY

FORECASTING THE HOUSING SECTOR AND MORTGAGE MARKET:
A REVIEW OF METHODOLOGIES

In econometrics and time series analysis substantial effort has been devoted to developing 
forecasting methodologies in recent years. As a result a forecaster now has several models 
to use for forecasting. They include the conventional simultaneous-equation econometric 
model (SEM), the univariate autoregressive integrated moving average (ARIMA) model, 
the transfer function model, and the vector autoregressive (VAR) model. The primary 
objective of this study is to review these models and examine their strengths and drawbacks 
as a tool for forecasting the Canadian housing sector and mortgage market.

Regardless of which model one uses for forecasting, there are common issues in its 
construction and maintenance:

(1) Specification of equation(s) in the model—guided by the data and, in the case of 
an econometric model, also by relevant economic theory;

(2) Availability and collection of the data;
(3) Initial estimation and evaluation of the model; and
(4) Validation of the estimated model—diagnostic checking, ex post forecasting, simu­

lation, and tracking tests of the model.
One has to address these issues very carefully if one wants to build and maintain a reliable 
forecasting model.

In Chapter 2 we have considered the conventional econometric model. It was perhaps 
the most popular forecasting tool until the 1970s. The major distinguishing feature of 
the econometric model is that a model builder can appeal to economic theory for model 
specification. Thus one considers the presumed interdependence and causality relationships 
between the variables, and imposes structure on data sets by specifying how variables may 
be related to one another. One may then be able to produce superior forecasts by utilizing 
a priori information on the interaction among the variables in the model.

Forecasting wth an econometric model in practice is not based on the model and data 
alone. A forecaster using an econometric model makes judgemental “add factor” adjust­
ments to model parameters as well as the model forecasts. It is because of the subjective 
adjustments (1) that forecasts based on an econometric model cannot be duplicated by 
others and (2) that their reliability as measured by the standard errors cannot be com­
puted.

There are several reasons why econometric approach to forecasting may not yield reliable 
forecasts:

(1) One requires forecasts of the exogenous variables to obtain forecasts of the en­
dogenous variables. Inaccuracy in the forecasts of the former cause the conditional 
forecasts of the latter to be inaccuraite;



(2) Some variables could be erroneously regarded as being exogenous;
(3) In dealing with unobservable variables like permanent income and expected infla­

tion, one often utilizes their crude proxies in the model; and
(4) Economic theory seldom provides a model builder with a guide for dynamic speci- 

flcation.

Also reviewed in Chapter 2 is the theoretical framework of the housing sector and mort­
gage market model. The housing sectors of the major Canadian macroeconometric models 
are briefly reviewed in the context of this conceptual framework. Availability and quality 
of the housing and mortgage data are also critically reviewed.

Chapter 3 examines the autoregressive integrated moving- average (ARIMA) model as 
a forecasting tool. In contrast to the econometric model an ARIMA model requires little 
economic theory for its specification; it explains a time series in terms of its own past values 
and current and past error terms. However simple the approach may be, several researchers 
have found that, even without being judgementally adjusted, ARIMA forecasts perform 
as well as those judgementally adjusted forecasts based on large elaborate econometric 
models. Moreover, unlike the forecasts based on an econometric model, one can easily 
compute standard errors of ARIMA forecasts so that a precision measure can be attached 
to point forecasts. An ARIMA model of Canadian housing starts that we have built is 
seen to be remarkably accurate in ex post forecasting.

As a forecasting tool, the univariate ARIMA model shares the following strengths with 
other time series models:

(1) It generates very accurate forecasts at least for the short run;
(2) It is possible to estimate an ARIMA model on data up to any point in the past and 

then produce forecasts so that one can check easily the forecasting accuracy of the 
model; and

(3) It imposes none of the controversial theoretical restrictions that the conventional 
econometric model may contain.

In Chapter 4 we investigated the transfer function model as a forecasting tool. Fore­
casting with an ARIMA model yields forecasts of a single series without using information 
contained in other related series. In many forecasting situations in which other variables 
systematically influence the series to be forecast, one can build a transfer function model 
that contains more than one time series and introduce explicitly the dynamic characteris­
tics of the series.

We have built a transfer function model of Canadian housing starts with the housing 
price index as an independent input variable. However, ex post forecasts from the transfer 
function model were not as accurate as those from the ARIMA model when judged in 
terms of such criteria as the mean absolute percentage errors (MAPE) or the root mean 
square percentage errors (RMSPE) of forecasts. Two reasons can be put forward for poor 
performance of the model relative to the ARIMA: (1) although the housing price variable
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does influence housing starts, it may not contain information about the variation in the 
starts variable above and beyond that already imbedded in the starts and (2) the forecasts 
of housing price variable based on its ARIMA model may not have been very accurate. As 
the forecasts of endogenous variables require forecasts of exogenous variables in the SEM, 
the forecasts of the output variable are conditional on the forecasts of input variables in 
the transfer function model.

In Chapter 5 we have considered the technique of vector autoregression (VAR) suggested 
by Sims for macroeconomic modelling. As the name implies, the VAR model regresses each 
variable in the system on the past values of its own and as well as other variables.

Like the ARIMA and transfer function models, the VAR model is formed from the 
regularity in the movements of time series and do away with the theoretical restrictions 
on the econometric models. Difficulties experienced in the conventional modelling of the 
housing and mortgage markets indicate that, despite or perhaps because of its atheoretical 
nature of approach, the univariate ARIMA and VAR models are very strong competitors 
in forecasting to the conventional econometric model.

Most VAR models of the Sims type in macroeconometrics use several variables and 
include several lagged values for each variable. The number of parameters to be estimated 
in a VAR model increases very rapidly as one increases the number of variables and/or 
the order of the model. Hsiao’s refinement on the Sims VAR or the Bayesian procedure 
of the VAR modelling should partially mitigate the number-of-parameters problem in the 
VAR modelling. We have built different types of VAR models of Canadian housing starts 
and mortgage approvals. When judged by ex post forecasting accuracy, the Bayesian VAR 
seems to outperform the Sims and Hsiao types of VAR models in forecasting.

As a competitor to the conventional econometric forecasting, the VAR method has sev­
eral advantages.

(1) It generates very accurate forecasts at least for the short term and maybe for the 
medium term;

(2) Unlike the SEM and the transfer function model it does not employ a dubious 
exogeneity definition; and

(3) It provides a conceptually straightforward and remarkably simple method of yielding 
forecasts that do not assume any particular values of exogenous variables.

It is well-recognized in the literature that VAR models forecast well in the short run 
but their ability to forecast may quickly deteriorate so that the conventional models offer 
superior predictions further in the future. Forecasting results reported in this report indi­
cate that time series models forecast the housing starts remarkably accurately up to the 
twelve-month horizon.

Little is available in the literature on the comparisons of the long-term forecasting per­
formance between the conventional econometric and time series models. Forecasts based
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on the time series models and the econometric models tend toward the mean of the series 
, to be forecast as the forecast horizon increases. However, the SEM may outperform the 

VAR in the long-term forecasting, benefiting from the judgemental adjustments of the 
forecasters.
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1. INTRODUCTION

The housing and mortgage markets are characterized by cyclical fluctuations and dise­
quilibrium. Volatility of the housing sector is readily seen from the annual growth rate in 
the housing starts. It ranged from -26.4 to 26.0 per cent in Canada over the period from 
1961 to 1989 while the growth rate in real GDP varied from -3.65 to 7.14 per cent. It is 
also widely recognized that the national housing market in an economy consists of many 
segmented local markets which may be in disequilibrium in the short run due to immobile 
housing stock and other factors. Such characteristics partly explain why activities in the 
housing and mortgage markets in Canada are difficult to forecast well.

The primary objective of this study is to review major forecasting methods that may 
be employed in forecasting the housing sector and mortgage markets in Canada at the 
macroeconomic level. Most forecasting activities in economics in recent years have been at 
the macroeconomic level using simultaneous-equation econometric models. Scepticism has 
been expressed about the value of a large-scale macroeconomic model as a forecasting tool 
in the short run; see, for example, Stekler (1968) and Sims (1980). Outside the economics 
discipline, on the other hand, Box and Jenkins (1970) have popularized a class of time series 
models as a tool for forecasting. Time series models have become a strong competitor to 
the conventional econometric forecasting.

In this study we concern ourselves with the assessment of major model-based forecasting 
methods. One can classify models into two groups: those based on the econometric models 
and those on time series models. The models in the first group include:

(1) the multiple linear regression model, which is based on the relationship between 
one dependent (or effect) variable and a set of independent (or cause) variables as 
suggested by economic theory; and

(2) the simultaneous-equation econometric model (SEM), which consists of structural 
equations describing the relationships among the endogenous and predetermined 
variables as the relevant economic theory would suggest.

On the other hand, the second group includes several different models.

(1) The univariate autoregressive integrated moving average (ARIMA) model, often 
referred to as the Box-Jenkins model, is used for forecasting a single time series 
from its own past history.

(2) The transfer function model relates an (output) time series, to be forecast, to a set 
of (input) variables. This model enables a time series to be forecast not only from 
its own past history but also from the past history of other related variables. This 
model resembles the multiple linear regression.



(3) The vector autoregressive integrated moving average (VARJMA) model is an ex­
tension of the univariate ARIMA model, representing a multiple time series with 
mutual interaction or feedback. Its special case is the vector autoregression (VAR).

The econometric approach in its pure form appeals to economic theory in building an 
econometric model, and may be termed “theory based.” Data is used at the stage of 
model estimation. On the other hand, the time series approach relies heavily on the data 
in model building, and is thus “data based.” Of course, the time series analyst does rely 
on economic theory for suggestions as to which variables could be jointly modelled in the 
transfer function or VAR modelling.

Regardless of whether one uses an econometric or time series model for forecasting, there 
are common issues in the construction and maintenance of a model:

(1) Specification of equations in the model—guided by the purpose of the model to be 
served and, in the case of an econometric model, also by the relevant subject matter 
consideration;

(2) Assembly of the necessary data;
(3) Initial estimation of the unknown parameters in the model; and
(4) The validation of the model—diagnostic checking, simulation, and tracking tests of 

the estimated model.

One has to address these issues very carefully if one wants to obtain reliable forecasts 
from the estimated model.

Recognizing the regression model as a special case of an econometric model, the SEM 
together with the three time series models axe considered in this report. Of these four 
models two are of a system type and the remaining two are of a single-equation type. 
The conventional SEM or VAR model is of a system type in the sense that it contains 
two or more equations in it. The econometric model contains as many equations as there 
are endogenous variables, and yields joint forecasts of all endogenous variables given the 
future values of predetermined variables. On the other hand, the VAR model treats all 
variables in the system as being endogenous and generates joint forecasts of all variables 
in the system given their current and past values.

The univariate ARIMA and transfer function models are of a single-equation type. But 
one can use them to model the housing and mortgage markets by building a system in 
which each equation deals with only one endogenous variable. A successful example of this 
approach is provided by Mills and Stephenson (1987) in a time series forecasting system 
of the UK money supply.

The plan of this report is as follows. Chapter 2 examines the simultaneous-equation 
econometric model as a forecasting tool, and formulates the conceptual framework for the 
economic model of the housing sector and mortgage market. It also reviews the housing 
sectors of selected Canadian macroeconometric models and examines the data availability.
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Chapters 3, 4, and 5 axe concerned with the time series models. In Chapter 3 we discuss 
the ARIMA model and present the forecasting results based on a multiplicative seasonal 
ARIMA model of Canadian housing starts. Chapter 4 deals with the transfer function 
model; it also presents a transfer function model of housing starts with the housing price 
indexes as an input variable. Chapter 5 is concerned with three different types of the VAR 
model: the Sims, Hsiao and Bayesian types. It also compares the housing starts forecasts 
generated from different types of bivariate VAR models of housing starts and mortgage 
approvals. Some concluding remarks are contained in Chapter 6.
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2. FORECASTING WITH AN ECONOMETRIC MODEL

Since the pioneering work of Tinbergen (1939) and Klein (1950) on macroeconomic mod­
elling, the simultaneous-equation econometric model (SEM) has become a very important 
tool for forecasting and policy analysis. The 1960s and 1970s saw the rapid development 
of macroeconomic models, aided by the development of econometric methods, enormous 
advances in computing power and the availability of good quality economic data. This 
chapter examines the SEM as a forecasting tool.

In section 2.1 we briefly describe the standard simultaneous-equation econometric model. 
Section 2.2 discusses major distinguishing features of the forecasting approach with an 
econometric model. In Section 2.3 we provide the conceptual framework for the housing 
sector of an economy and briefly review the housing sectors of selected macroeconomic 
models and the national housing models. Section 2.4 examines the availability and quality 
of data on the housing and mortgage market variables.

2.1 The Simultaneous-Equation Econometric Model

Economic theory often hypothesizes that a set of endogenous variables are jointly inter­
dependent and simultaneously determined by a set of predetermined variables. Endogenous 
variables can be thought of as the variables of interest, while predetermined variables are 
lagged values of endogenous variables and exogenous variables which are supposed to be 
determined outside the model.

Typically, a simultaneous-equation econometric model is represented by a system of 
G structural equations containing G endogenous variables, Yi,Y2, ... ,Ya, and K predet­
ermined variables, Ai, X2,..., Xk- In practice, many structural equations are nonlinear in 
variables because different functions such as ratios and logarithms of some of the variables 
appear in the model. A general expression of the t-th structural equation is

/.•(y<,xt;0;) = utf i = 1,..., G; < = 1,...,T, (2.1)

where /< is a known general function, 8i is a vector of structural coefficients in the *-th equa­
tion, y't = (Yn,... ,Ytc) and x't = (Xu,.. .,XtK) are 6?-, and AT-vectors of observations 
on endogenous variables Yi,...,Yg and predetermined variables, Xi,..., Xk, respectively, 
and uti is the random disturbance in the *-th equation, all at time t. The 0’s are called 
structural coefficients. Economic theory provides a priori information about the 8 coeffi­
cients so that they are “identified.”

When the SEM is dynamic and its predetermined variables include lagged values of 
endogenous variables, it specifies how the time paths of the endogenous variables are 
generated by the time paths of the exogenous variables over time. Suppose that the first 
G predetermined variables in the model are one-period lagged endogenous variables and 
the remaining K — G predetermined variables are exogenous so that we may partition the
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vector of observations on the predetermined variables at time < as x'( = The
SEM in (2.1) can then be written as

= i = < = 1,... ,T, (2.2)

An econometric model such as (2.1) or (2.2) involves an explicit representation of the 
presumed causality or feedback relationships among the variables in the model. It is with 
this specification that economic theory plays a major role in econometric modelling. In 
the econometric approach to modelling and forecasting the forecaster’s major concern is 
to formulate a model which is derived from economic theory. However, the “theory-based” 
approach in its pure form may not be practical for several reasons.

Economic theory may provide competing hypotheses. For “nested hypotheses” we may 
choose a particular hypothesis on the basis of standard statistical tests on the parameters 
on which we have hypotheses. A good deal of research effort has been spent recently on the 
choice between competing hypotheses of the non-nested type in regression models. See, 
e.g., Pesaran (1974), Fisher and McAleer (1981), and McAleer and Pesaran (1986). In 
practice, however, the model builder cannot express with confidence a preference for one 
model over any other.

Theory may suggest as relevant variables for which no data are available on them. For 
example, variables like permanent income and expected inflation may be considered as 
determinants of asset demand for houses. In dealing with such unobservable variables one 
often utilizes a crude, theoretically unjustified procedure to incorporate their proxies into 
the model.

Theory seldom provides the forecaster with a guide as to the formulation of dynamic 
structure in the model. Econometricians have recognized the importance of dynamic struc­
ture in modelling and spent a great deal of research effort on the introduction of lags 
into the econometric models. Their effort has produced a wide range of alternative lag 
structures including the geometric and rational distributed lag models. However, little 
theoretical justification seems to exist for imposing particular lag structures in practice, 
and an appeal to the data is necessarily made for help.

Economic theory appears has less to say about the time series structure of error terms. 
Typically in macroeconometric modelling a white noise error structure is assumed at the 
stage of model specification although tests of this assumption are subsequently made. In 
fact, error terms are added on to structural equations for estimation after a model structure 
is developed in deterministic terms.

The typical treatment of time series error specification in econometric work has been 
the first-order autoregression

ut = put-i + e*,
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where e< is “white noise.” Greatly stimulated by recent development in time series analy­
sis, model builders have considered higher order autoregressive and moving-average error 
structures in the context of the regression model and SEM.
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2.2 Forecasting with an Econometric Model

Once a SEM is specified, it can be consistently estimated by a single-equation method 
such as the two-stage least squares (2SLS) or by a system method such as the three-stage 
least squares (SSLS). If the model size is large and contains many predetermined variables, 
these methods may not be applicable because of a limited sample size. We discuss in this 
section how an estimated model is used for econometric forecasting.

A. Forecasting with a SEM.

Klein (1968) defines forecasting as “the attempt to make scientific statements about 
nonsample situations on the basis of relationships determined from sample observations.” 
Two types of forecasts can be distinguished: ei ante and ex post. For ex ante forecasts, 
one assembles as much relevant information as possible and extrapolates into the unknown 
future before an event unfolds. For ex post forecasts, one uses relevant information to 
forecast data already in existence. Ex post forecasting is a useful tool for diagnostic 
checking of the fitted model.

Two other types of forecasts can be distinguished: unconditional and conditional The 
unconditional forecast is formulated as an unqualified forecast of the future event. On the 
other hand, the conditional forecast is a qualified forecast based on the assumption that 
some exogenous events simultaneously occur. Econometric forecasting is concerned with 
the ex ante conditional forecasts.

Suppose that at time T, called the forecast origin, h-step ahead forecasts of the variables 
of interest are required for some future time T + h. If the model is static and all its 
predetermined variables are exogenous, and if the values of the predetermined variables to 
be assumed at T + h are specified, the forecasting problem becomes one of estimating the 
values that the endogenous variables of the model will assume at time T + h. Thus one 
can obtain the forecast of yr+h given Xr+fc by setting the future structural error terms 
vix+h to zero and solving numerically the following nonlinear system:

fi{yT+hiX-T+h',Qi) =Q, l = l,...,G (2.3)

for the forecasts yr+ft- The vector 0; in (2.3) is an estimate of 0,-, the vector of structural 
coefficients. Most of the statistical properties of the forecasts yr+ft thus obtained are not 
known.

If the system is dynamic, the one-step ahead forecast of yr+i a-t the origin T can be 
obtained by numerically solving

/.(yT+1, yr, ZT+1; 0.) = o, i = l,...,G (2.4)

for yr+i) where 0< is an estimate of 0,- in (2.2), zt+i stands for the vector of the future 
values of the exogenous variables at time T +1, and the expected value of the future error 
it is set to zero.
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The /i-step ahead forecasts can be obtained from the following recursion:

fi(yT+h,yT+h-i,VT+h',Qi) = Q, i = (2.5)

Thus h-step ahead forecasts are conditional on the current value yr of endogenous vari­
ables, and the future values zr+i, • • ■, %T+h of the exogenous variables up to time T + h.

B. Forecasting with an Econometric Model in Practice^

Forecasting with an econometric model in practice is based not just on the estimated 
model and the data. Evans, Haitovsky, and Treyz (1972) describe three distinct steps 
involved in econometric forecasting: forecasting future values of exogenous variables, ad­
justments made to individual equations, and the model solutions.

Future values of most exogenous variables are unknown at the time of forecasting and 
have to be forecast as well. The problem of forecasting endogenous variables has been 
translated into that of forecasting exogenous variables.

Future values of some exogenous variables may be known at the time forecasts are made; 
policy variables belong to this category. For other exogenous variables one may have to 
obtain their forecasts judgementally. One may also attempt to forecast them on the basis 
of all information available at the time of forecasting. A set of available information is 
the past history of the variables. If that history spans over a reasonably long period of 
time, one could employ a time series model to forecast the future values of the exogenous 
variables.

Adjustments are made to individual equations of the estimated model by subjectively ad­
justing the intercept terms and/or other parameter estimates. These “add factors” can be 
justified on the grounds that they incorporate into the forecasts any information/judgement 
on the factors that the forecaster has not explicitly brought into the model. Good informa­
tion may be available about exogenous shifts and structural breaks—changes in legislation 
and institutional arrangements may be known in advance so that the forecaster modifies 
the model.

Finally, the (estimated and adjusted) model is solved to obtain forecasts of the endoge­
nous variables. However, if the forecaster has an a priori assessment of the likely range of 
future values, and if the forecasts obtained as the model solution fall outside the range, 
the forecaster may modify them, either directly or by readjusting the fitted structural 
equations and resolving the model.

Degree of judgemental adjustments in forecasting varies from one forecaster to another 
and also depends on the state of the economy at the time forecasts are made. According 
to McNees (1988), the weight for judgmental adjustment in econometric forecasting in 
the U.S. varies from 20% for Chase Econometrics to 30% for of Wharton Econometric
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Forecasting Associates. Such heavy use of judgmental adjustment in economic forecasting 
can be justified on the grounds that the forecaster takes into account all the information 
available at the time of forecasting and improves the accuracy of the forecasts. The quality 
of the forecast will then reflect the quality of the information used regardless of whether 
or not such information has been incorporated into the model building or through the add 
factor.

Until the 1970s the simultaneous-equation econometric model was perhaps the most pop­
ular forecasting tool. Major distinguishing feature of the econometric forecasting approach 
is that economic theory plays a role in model specification. Forecasters tend to build a 
large econometric model with the belief that small models are unrealistic and incapable of 
answering many important questions.

An econometric model has several advantages as a forecasting tool:
(1) It is a useful device by which current and past values of endogenous and exogenous 

variables as well as forecasts of exogenous variables are systematically transformed 
into forecasts of endogenous variables;

(2) As long as the model parameters are believed to remain unchanged in the future, 
forecasts can be made as far into the future as required given the forecasts of future 
exogenous variables;

(3) It also leads to forecasts of related variables that are consistent with one another 
since they must jointly satisfy the restrictions of the model, particularly its identi­
ties; and

(4) It may also be used for purposes other than forecasting. For example, the SEMs cam 
be used to assess the effects of various policy alternatives by simulating the time- 
paths of endogenous variables under particular assumed time-paths of the exogenous 
variables.

On the other hand, drawbacks of an econometric model as a forecasting tool include the 
following:

(1) It tends to incorporate many “incredible” restrictions on the parameters particularly 
when the model is large;

(2) Time series problems such as autocorrelated structural disturbances cannot be sys­
tematically taken into account and often ignored; and

(3) Standard errors as a measure of forecast accuracy cannot be calculated because 
forecasts are subjectively adjusted by add- factoring.

There are several sources of forecast errors associated with econometric forecasting.
(1) The most obvious sources of errors are the error terms themselves in the model 

equations. It is sensible to set the future values of the disturbance terms to zero, 
their expected value. But their realized values will be different from their expected 
values used for generating the forecasts of endogenous variables.

(2) Forecasts of the exogenous variables are required to solve the model to obtain the 
forecasts of the endogenous variables. Errors in forecasting the exogenous variables
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outside the SEM will undoubtedly affect the forecast accuracy of the endogenous 
variables.

(3) Sampling errors in the parameter estimates will surely affect the forecast accuracy.
(4) The model itself is subject to specification error. There is no “true” model.
(5) Judgemental adjustment of forecasts is a source of errors even if it is meant to 

reduce the size of errors.

Many researchers have tried to assess the performance of econometric forecasting relative 
to alternative forecasting methods. A common approach to evaluate an econometric model 
is to regard it and a univariate ARIMA or other naive model as competitors, and compare 
their forecast performance directly. The findings in the early 1970s indicate that the 
econometric models, unaided by judgemental adjustment, have not done well. Cooper 
(1972) compared one-quarter ahead post-sample forecasts of autoregressive models with 
those from seven quarterly U. S. macroeconometric models, and found that the former 
generally had smaller forecast errors than the latter. Nelson (1972) also found that ARIMA 
models outperformed the FRB-MIT-Penn model of the U.S. economy in ex post forecasting 
outside the sample period.

The forecasting performance of macroecpnometric models has improved over the years. 
A more recent comparison by Longbottom and Holly (1985) between the forecasting abil­
ities of ARIMA models and the London Business School model of the U.K. economy has 
shown that for many variables the SEM outperforms the ARIMA models in both ex ante 
and ex post forecasts though for some variables the time series model is better. With the 
econometric models of the U.S. economy McNees (1988) has found that for key macroeco­
nomic variables the judgementally adjusted econometric forecasts have outperformed the 
univariate ARIMA models.

The heavy use of judgemental adjustment in macroeconometric forecasting poses a seri­
ous problem when one wants to assess the relative performance of alternative forecasting 

•methods. The ability of a model to forecast well must be distinguished from the ability 
of an experienced and knowledgeable forecaster, aided by a well-built model, to forecast 
well. It appears that a forecaster, aided by an econometric model, can do better than the 
simple ARIMA models for a longer term forecast horizon.
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2.3 The Housing Sector Model

2.3.1 Economic Theory of Housing

In this and the following sections we formulate a conceptual framework of the housing 
market within which the housing sector in macroeconometric models and national housing 
models can be assessed, in particular for forecasting purposes. The ultimate framework 
will reflect our understanding of the current conception of this sector, based on our review 
of recent literature in the field of housing economics.

A. The Basic Theory.

All theoretical and empirical research in housing is now based on a common understand­
ing of the basic elements of housing economics. That basic theory is articulated in Smith 
(1974), Arnott (1987), and Olsen (1987). The following is a brief review of those elements.

i) . Demand: The demand for “housing” as a commodity is viewed as a stock demand 
derived from the flow demand for specific housing services from that stock. In this sense, 
housing is treated within the mainstream of capital theory. Because of the many attributes 
of housing that contribute to those services (size, quality, etc.), demand for the stock is 
generally taken to be the demand for a single commodity providing a composite of those 
attributes. (Some recent work has stressed the demand for those attributes individually 
via hedonic indexes). Moreover, because housing is both an asset and a consumer good, 
the need to explain demand fully must reflect these dual motives. For renters, the demand 
is dealt with as the demand for a consumer good. However, the alternative of ownership 
is always available.

ii) . Supply: Historically, the supply of housing was assumed to be new construction 
because it constitutes a flow. Within the newer stock-flow conception, the actual supply is 
understood to be the flow of services from the existing stock. New construction plays a role 
by adding to the stock, albeit with a lag, based on the usual profitability considerations 
(expected price relative to total construction plus land costs). Hence stock adjustment 
models axe typical. Because of the fixity in the housing stock, the supply of housing 
services is inelastic in in the short run. In the long run, the elasticity is much greater 
because new construction increases the stock of housing services.

iii) . Nature of the Market: To the extent that the housing stock is assumed to be 
homogeneous, the market is assumed to clear efficiently, and the price in the market is 
assumed to reflect the equilibrium or market clearing price.

iv) . Finance: The market for housing must be viewed in close proximity to the market for 
finance. That is because the size of the outlay necessary to acquire the stock requires debt 
financing via mortgages in most cases. Most models incorporate interest rates explicitly 
within the demand function. Further, the costs and availability of mortgage credit would 
affect the housing market.
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B. Unresolved Issues in the Basic Theory.

A number of issues are not fully resolved by the basic theory. They include:

i) . Demand: How to deal with the whole question of uncertainty, and of expectations 
particularly with respect to price and interest rates, remains a contentious but important 
matter.

ii) . Supply: It is now recognized that there are crucial short run changes on the supply 
side, involving quantity adjustments (vacancies/crowding), conversions, demolitions, up­
grading, etc. that must be accounted for, both in determining price and in understanding 
tenure choices.

iii) . Price: The pricing of the stock is problematic because only a small proportion of 
the stock is transacted in any year.

iv) . The Market: Because of the differentiated nature of the commodity, in terms of 
type (single, multiple), location, and so forth, there is some question as to whether it can 
be treated as a homogeneous commodity in a unitary market. In fact, most theorists treat 
the situation as a complex of closely related, interdependent markets.

v) . Equilibrium: The nature of lags, on both the demand and the supply side, suggest 
that equilibrium prices will rarely be observed. This is likely the case within a locationally 
unique housing market (an urban area or Census Metropolitan Area), and certainly the 
case nationally.

vi) . Public Policy: Housing has come to be viewed as a social good, indeed a right. 
It therefore commands significant attention by policy-makers at all levels. Moreover, the 
limited tax base of municipalities encourages them to pursue policies for housing designed 
to augment their revenues, often in ways that distort the housing market. These policies 
are rarely introduced into housing models.

vii) . Finance: The “traditional” view of housing supply as equivalent to new construc­
tion had direct consequences for the treatment of financial markets. What was hypothe­
sized was a link between selected financial variables (mortgage rates, approvals, etc.) and 
the housing starts. The nature of the mortgage markets was never formally modelled. In­
deed, the complexity of that market has no doubt deterred such efforts. Moreover, under 
the newer stock adjustment paradigm, this view of causality is inappropriate. Clearly, 
there is much room for theoretical advance in this area.

None of these qualifications require a change in the basic theoretical structure of the 
housing market, but they do impose on analysts the need to elaborate the basic model 
with much greater care than would be required for most other markets.
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C. Macro vs. Market Approaches: Some Contrasts.

For very practical reasons, the elaboration on this basic model by housing economists 
has in fact proceeded on two quite distinct planes.

The first of these planes is essentially macro-forecasting focused, driven by the need to 
predict key variables in the housing sector that axe of primary interest to economic policy­
makers (starts, level of investment, mortgage rates, prices and rentals, vacancies, etc.). As 
such, this literature is concerned less with how the housing market works, and more with 
aggregate housing outcomes. In Canada, there have been few if any macro models explic­
itly dedicated to forecasting housing outcomes at the macro level. What we do have are 
segments of larger macro models devoted to explaining key housing outcomes. Explaining 
those outcomes tends to be largely eclectic, however, with only the most simplistic theo­
retical foundations because the size of the larger models limits the number of variables and 
equations in the housing sector. The emphasis is necessarily highly aggregative, almost 
exclusively at the national level. Finally, because housing markets are spatially disjoint, 
the aggregate data used in these models tend to reflect non-comparable and disequilibrium 
circumstances. Interpreting the results can be problematical in consequence.

Equilibration is achieved via an unspecified black box of stock adjustments and trans­
formations. In addition, complex capital market adjustments as well as public policies 
(national and local) that impact on the housing market tend to be handled in a somewhat 
cavalier fashion.

As we shall see in the next section, there have been important theoretical advances over 
the past five years that permit refinements to be made to this basic model, making it of po­
tentially greater use for housing analysis even at this aggregate level. Of particular interest 
has been the analysis of what is going on inside the black box. Improved understanding 
of the role of capital markets and of public policy are also available.

The second plane of housing analysis focuses more on the functioning oi housing as a 
market process. The work here tends to be less comprehensive, focusing on particular 
outcomes, such as type of unit, tenure choice, etc. Moreover, location of the housing 
assumes much greater importance, as does the crucial question of market interdependence. 
Because of this micro focus, the models are generally of a long-run equilibrium nature. 
It should be added that the specificity of this micro work makes it difficult to apply the 
findings on a national basis. The models are much more data intensive. Problems of quality 
of data, lack of comparability between markets, timeliness, and analytical complexity, etc. 
render these models of limited use for macro-forecasting. Systematic application of the 
models to all housing markets is only rarely pursued.

Nevertheless, such models, rooted in the work of Muth (1988), permit much more de­
tailed analysis of how the housing market works, and in particular have encouraged diverse 
investigations into what lies within the black boxes, via stock adjustments, including re­
pairs, demolitions, etc.

13



The problem for forecasters (and ultimately for policy-makers) lies in reconciling these 
two planes. Ideally, we would like a consistent modelling approach which covers both 
of them, meeting the practical needs of the macro models, and satisfying the theoretical 
requirements of the less aggregative models. Some work in this area has commenced, but 
essentially at a relatively abstract level [Caxruthers (1989)]. In practice, reconciliation, if 
pursued at all, tends to take place on the basis of casual empiricism only.

In the following section we report on recent developments (theoretical and empirical) 
in each of these areas, and to see where more formal reconciliation might begin to take 
place. We begin with an elaboration of the basic framework of the macro model. Recent 
developments in macro-modelling will then be reviewed in the context of this model. In 
other words, we shall consider how they improve the conceptual rigour of the model. We 
then turn to an analysis of recent developments in the micro sphere that, in our judgement, 
hold out promise for improving the macro model.

2.3.2 Framework of the Macro Housing Sector Model 

A. The State of the Art in Canada.

Our search of the literature began with a review of existing macroeconometric models 
in Canada. We were fortunate in being able to draw on very competent assessments [Foot 
(1985) and Grady (1985)]. What is clear is that because housing is a small component of 
those models, little attention has been paid to building a theoretically rigorous housing 
sector. In an important sense, this is a serious failing for the macro models themselves, 
because housing has a major impact on key macro variables because of the contribution 
of housing to macro instability, as well as the crucial link between the monetary and real 
sides of the economy that takes place within the housing sector.

All housing sector models are based on essentially the same basic housing paradigm 
briefly described in the preceding section, namely stock demand impacting on existing 
fixed supply to determine price, with supply adjustment (primarily new construction) in 
response to price.

Using this paradigm, Foot concluded that the housing sector in existing Canadian macro 
models does not build upon micro foundations in a serious way. Specifically, these models 
neglect portfolio analysis and are weak on interest rates, market segmentation, the resale 
market, the index of housing prices selected, and the major lags that are inherent in this 
sector.

It is useful at this stage to provide a more detailed assessment of the housing sector 
in Canadian macro models. Grady provides excellent summaries of them [pp. 253-293]. 
Virtually all are almost exclusively preoccupied with estimating the level of investment in 
residential construction. He divides the models into two broad categories:
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(A) . Essentially, housing starts axe linked to mortgage approvals. Note, however, that 
this approach gets the direction of causality in the housing market wrong; normally housing 
starts would precede mortgage approvals.

(1) Candide 2.0 (Economic Council of Canada): Demand (function of mortgage ap­
provals, demographic variables, and the relative cost of owning as opposed to rent­
ing) and supply (vacancy changes, government policy) determine single and multiple 
starts.

(2) RDX2 (Bank of Canada): Demand is a function of availability of mortgage funds.
(3) FOCUS (University of Toronto): Demand is a function of availability of mortgage 

funds.

(B) . Housing starts are modelled directly;

(1) Based only on demand considerations;
i) TIM (Informetrica): Demand driven stock adjustment model.

ii) DRI (Data Resources of Canada): Demand driven stock adjustment model.

(2) Considering both demand and supply;
i) RDXF (Bank of Canada): Price (MLS) responds to the gap between demand 

supply (starts).
ii) QFS (Department of Finance): Similar to RDXF.

iii) CHASE (Chase Econometrics): Demand (real effective purchasing power and 
mortgage rate) and supply (sales price relative to construction costs) determine 
starts per capita.

iv) MTFM (Conference Board of Canada): Demand, supply (profitability of starts) 
and government assistance.

Grady’s negative conclusion based on his comprehensive evaluation is worth noting:

“Housing is a problem sector. ...It may well be that the only viable option is to start from 
scratch and build a structural model of the housing market that will reflect the behaviour 
of all agents and clearly specify demand and supply in all sub-markets.” [p. 237]

More recently, the Department of Finance has introduced a new macro model, Cana­
dian Economic and Fiscal Model (CEFM), which is described in some detail by Stokes 
(1987). Although based on the same basic stock-flow paradigm, the model goes some way 
to incorporate key improvements indicated in the literature. In particular, the supply 
side is enhanced to include a specific production function for new housing; the crucial 
links between the financial and real sides of the markets are enhanced; expectations are 
incorporated explicitly; and both short run (disequilibrium) and long run (equilibrium) 
outcomes are considered.

The basic structure of the model is as follows:
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(1) Two markets are identified (new and existing housing) and two types (single and 
multiple);

(2) In the short run, stock is fixed. Production of new housing is explicitly considered 
as addition to stock;

(3) A traditional explanation of stock demand is provided.

Given fixed stock, the price for existing housing, and expected price appreciation can be 
derived. (Rent estimation is more difficult because of rent control.)

(1) Starts respond to the supply of new housing, and depend on profitability, itself a 
function of expected selling price and cost of construction;

(2) Stock includes demolitions and completions (a function of starts plus time); and
(3) Construction expenditures are then a function of new housing (current plus past 

starts) plus other costs.
Clearly this is a much more satisfactory model of behaviour in the housing market.

Our own analysis indicates that the supply side, especially for new housing, remains 
particularly weak in most models (except CEFM), neglecting key issues such as production 
functions, key cost elements, and technological changes. In addition, the process of stock 
adjustment is simplistic in virtually all models.

In no model did we find a satisfactory submarket for finance. In other words, despite its 
importance, the behaviour of the mortgage market has not been introduced endogenously 
into housing models. The reasons are clear. It might well be simply impossible to specify in 
a few key equations what is a very complex market dominated by oligopolistic institutions 
that engage in both price and quantity management, and model-builders may have been 
discouraged from devoting significant efforts to this subsector. [Hatch(1975) provides a 
somewhat dated but valuable description of the Canadian mortgage market.]

The only other attempt to model the housing sector on an aggregative basis has been 
that of Clayton (1987). In reality, this is essentially a forecasting exercise, and the “model” 
is rather mechanistic. It consists of the following elements:

(1) Derivation of household projections from population projections, estimating house­
holds by age, type, then by tenure and ultimately by dwelling type. Regional 
projections are also provided. The method of analysis is the cohort method, and 
the variables are not endogenous to a housing sector model. Rather, trends are 
identified in an admittedly subjective manner. This holds as well for tenure choice, 
which is therefore not a function of explicitly modelled market outcomes. The same 
is true for dwelling type.

(2) Estimate replacement demand by tenure and dwelling type. These numbers are 
crude because there are no good data.

(3) Estimate level of vacancies. Again crude estimates only.
(4) Projection of requirements for new housing by tenure and dwelling type, based on 

new demand (1), replacement demand (2) and changes in vacancy (3).

16



Clearly, this exercise falls at the outer limits of macroeconomic forecasting. It includes 
virtually no traditional economic variables, such as prices, incomes and mortgage rates. 
Significantly, there is no reference to any macro models or even theoretical literature in 
the text. Because it takes a long view, it might be argued that these traditional macro 
variables are of less use, because they are concerned with shorter run developments. But 
it is difficult to accept that economic variables play no role in the long run, or more 
accurately, that they can be incorporated implicitly through the subjective judgements 
regarding weighting factors and so forth.

However, the methodology might also be taken as a reflection on the utility of current 
models for practical forecasting purposes. In any event, the study is of no particular use 
in explaining the workings of the housing sector, either in macro or in market terms.

B. Developments Elsewhere in Macro forecasting Models.

Other than the CEFM there is little evidence of important advances in macro modelling 
of the housing sector in Canada. Work in other countries has proceeded, however, with 
explicit forecasting housing models well beyond the level of what appears to have been 
achieved in Canada.

One innovative study by Williams (1984) for Australia makes use of some of the advances 
in the literature. An intermediate term model with 13 equations takes into explicit account 
the links between portfolio choice, housing prices and new construction. A generalized asset 
adjustment model provides a good explanation of the asset price of the existing stock (and 
associated land). New construction is a response to asset prices, and the elasticity of total 
starts with respect to asset price is found to be 1.4, with important policy implications 
regarding restricting housing prices. A number of serious data gaps preclude completely 
satisfactory estimation, however. Finally, and significantly, the author is of the opinion 
that:

“The model developed in this paper could be expected to yield richer results if esti­
mated for regions. The concept of an average value of dwellings in Australia has obvious 
limitations, [p. 153].”

A number of other essentially market (as opposed to forecasting) models, but with 
macro modelling implications are reviewed in a later section. However, one important 
macro-forecasting study by Goodman and Gabriel (1987) is worth particular notice, as it 
may well represent the state of the art in such models.

Their study is a specific investigation into the reasons for the poor forecasting perfor­
mance of U.S. residential construction activity in the 1980s. Their emphasis is on the 
importance of structural changes that have occurred, and the fact- that they are omitted 
from most models. They proceed to evaluate the key influences on residential construction, 
taking into accotmt these structural changes as well.
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In summary, they find that:

(1) New financing instruments, such as ARMs, have had a modest impact;
(2) Affordability and expectations have had a positive impact;
(3) Changes in federal tax treatment had a positive impact;
(4) Tax-exempt bond financing of mortgage credit had a positive impact but it had 

largely displaced conventional mortgages;
(.5) Demographic changes, especially the decline in household formation in the early 

1980s had a negative impact, but this variable rebounded when household growth 
resumed later in the decade; and

(6) Regional economic development changes that favoured the higher cost Northeast 
led to a reduction in construction activity.

They also find that traditional explanatory variables were important, especially income 
growth and interest rates. The reason the forecasts were poor was that these variables were 
not correctly forecast.

C. A Modified Paradigm.

In this section, we propose to provide a modification of the traditional model [as summa­
rized by Foot (1985)] to incorporate several of the newer ideas emerging from the literature, 
some of which have already been introduced into the CEFM model and the foreign models.

The revised framework is shown in Figure 2.1.1 The following are the basic elements of 
the modified paradigm:

(1) The demand for housing services is a function of prices, (permanent) income, demo­
graphic factors, financial variables (mortgage rates and conditions), policy variables, 
and key macro forces (inflation, employment).

(2) The demand for housing services is translated into a demand for the stock of housing 
necessary to provide those services.

(3) The supply of stock in the short run is the existing net stock. This stock consists 
of the existing gross stock, plus improvements (rehabilitation) less removals (demo­
litions, depreciation). New investment is not equivalent to the immediate supply of 
housing services, but a lagged response of stock augmentation to signals provided 
in the short term housing market. The process by which new investment works its 
way into actual housing stock proceeds from approvals to starts to completions.

(4) New housing investment also impacts directly onto macroeconomic variables (ag­
gregate demand) and monetary variables because of the scale of this activity.

1 Figures and tables are at the end of each chapter.
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(5) The interaction between demand and supply of housing stock constitutes the process 
of shorter run stock adjustment. Mismatches in the adjustment process produce 
vacancies, and households adjust via mobility. The result is a filtering of the stock 
through demanders, some of whom in turn change their tenure status, from owners 
to renters and the reverse. Prices and rents are determined in response to these 
adjustments, although they rarely reflect equilibria.

(6) The mortgage market is treated endogenously so as to (try to) predict somewhat 
more rigorously the role of key financial variables.

This modified paradigm differs from the traditional one primarily in its emphasis. For 
example:

(1) It proposes to give much greater emphasis to the stock adjustment process, and to 
the various transactions that underlie that process. This modification is essential if 
we seek to link developments in existing housing markets to the traditionally more 
heavily emphasized new construction activity. Because of their interdependence in 
the stock-flow model, this linkage is vital. Such a framework points to more empha­
sis on estimating key variables in the stock adjustment process, such as vacancies, 
renovation activity, and removals. It also emphasizes the nature of transactions and 
price developments for existing homes than has occurred to date.

(2) Our framework also underscores the unique position of capital markets. This has 
the intention of encouraging new models to incorporate much of the new thinking 
about housing as an asset, and the impact on the demand for housing of influences 
that work their way through capital markets, such as inflation, tax changes, and so 
forth. The rapidly changing structure of capital markets has altered significantly the 
impact of those variables, which requires that models of the housing sector, which 
are so dependent on financial variables, be capable of reflecting those changes.

(3) Finally, the very substantial literature on tenure choice, as well as its policy im­
portance, points to attempting to incorporate that decision directly within the 
framework of the housing model.

It is this modified framework that has guided our review of the various literatures that 
follows. We shall modify it further after our more comprehensive review of the micro 
literature in the following section.

Conceptually, the major problem with the housing sector in all the available Canadian 
macroeconometric models is that the link to the micro foundations of housing economics 
is weak at best [Grady (1985), 280-82]. In addition, there is no analysis below the national 
level of aggregation. This problem is acute in the housing sector, because the various 
submarkets will necessarily be in diverse stages of disequilibrium in the short run, because 
there is no trade or rapid factor flow mechanism for short run adjustment between markets.
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Aggregating over these markets in the long run is less problematical, as there is mobility 
of persons and fungible capital over time. But these models are by nature short run, and 
the housing sector is necessarily inadequately handled as a result.

2.3.3 Framework of the Micro Market Model

The level of our understanding of housing markets, and the state of the art in theoret­
ical, and empirical terms was well summarized by Smith, Rosen and Fallis (1988). Their 
focus, however, was primarily on market oriented research, and only peripherally on macro 
models.

Their goal was to see how new contributions have addressed special problems that are 
intrinsic to the unique characteristics of the housing sector. They stressed that they were 
not able to subsume all the diverse research within one general model. They did observe 
increasing overlap between models, suggesting an eventual convergence in our understand­
ing of the nature of housing markets. This fact is important, for it confirms that at this 
stage it is very unlikely that a general model of the housing sector can be constructed for 
macroeconomic forecasting purposes that in any fundamental sense represents the working 
of the housing market. Rather, the macro models will continue to be eclectic and not 
theoretically satisfying for the foreseeable future.

The key findings of their review may be briefly summarized:
(1) There has been a shift from demand and supply for housing services, to stock 

demand and supply.
(2) The emphasis on stock permits greater focus on stock adjustments (maintenance, 

filtering), and permits an explicit consideration of disequilibrium situations (vacan­
cies), the consequences for the prices of the stock, and thereby, the impact on new 
construction.

(3) There has also been growing emphasis on the heterogeneity of the stock via char­
acteristics and the use of hedonic indexes to measure those characteristics.

(4) The fact that housing choice spans time periods has been explicitly considered.
(5) The demand for housing as an investment as well as a consumption good, requiring 

portfolio analysis has been addressed.
(6) Finally, work on general equilibrium models has continued, but these remain highly 

theoretical, abstract and hard to solve. In other words, they are still not too appli­
cable for macro-modelling.

With respect to macro considerations, they pointed to several areas of advance. One 
involves work on the impact of financial variables (on the instability of construction and 
hence on costs), with emphasis on institutional factors and information imperfections in 
addition to interest rates. Another focus has been on the impact of inflation, directly on 
the demand for housing, and indirectly on the mortgage market (the tilt problem).
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Our own extensive review of work since 1985 basically confirms these impressions. How­
ever, we have chosen to summarize the literature on the basis of our modified framework, 
to provide more explicit focus to model-builders and forecasters.

On the demand side, debate has continued over the correct elasticity coefficient. Harmon 
(1988) finds that for alternative measures of permanent income, the results remain quite 
stable. However, the meaning of those coefficients has been contested, due to problems 
with grouped data [Rosenthal (1986)], or with the mixing of multiple decisions, such as 
household formation, tenure choice and quantity demanded, into the demand equation. 
Denton, Robb and Spencer (1986) have developed a model of expenditure that includes 
tenure choice. Dynarski and Sheffrin (1985) stress that transitory income must also be 
considered, because it has been found to play a key role in explaining tenure choice and 
homeowner mobility. In addition, the debate over stock vs. flow demand continues. A 
recent empirical study by Glennon (1989) attempts to integrate this debate into the housing 
as consumption plus investment framework, by relating stock demand to the latter, and 
flow demand to the former. Muth (1986) presents a strong case for adaptive over rational 
expectations.

Most of the recent work on housing demand has focused on demographic variables. 
One important idea that bears consideration is the argument by Mutchler and Krivo 
(1989) that demographic variables are in fact dependent on housing stock, particularly 
via household formation, as well as the reverse, and hence the treatment of demography 
must become endogenous to housing models. Certainly for long run models, this is an 
important consideration. It would also appear from several studies, that the demands of 
the elderly and of the young for housing will require much greater analysis than has been 
accorded thus far, given their growing weight in the housing market.

The consequences of inflation for housing demand, and especially for estimates of income 
elasticity, remains an active question, especially with the evolution of portfolio choice 
models. Pelser and Smith (1985) have developed a model considering the impact of inflation 
on tenure choice as well, based on a user cost model. Surprisingly little work has taken 
place on the impact on demand of taxes other than national levies. Given the proliferation 
of local development charges by school boards and municipalities, this area will require 
careful study, as the amounts are large, as will be the impacts on housing.

The supply side of the housing market continues to receive much less attention, perhaps 
reflecting the underdeveloped supply side in many macro models. The production or cost 
function for new construction is most neglected. Despite the growing importance of land 
costs in housing prices, the role of land in macro models remains invisible. Similarly, 
other inputs, such as labour and materials costs, infrastructure, productivity, etc. remain 
peripheral topics. Much more analysis has focused on new residential construction and 
investment outlays. A recent study by Topel and Rosen (1988) begins to address the 
issue, by offering a model based on dynamic marginal cost pricing. Little new work was 
discovered on the important macro question of economic instability and its impact on 
housing investment, despite the volatile swings in the economy since the early 1970s.
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Consistent with the growing recognition that the flow of housing services depends on 
the size and composition of the available net stock of housing, much research has been 
undertaken to help define and measure the volume of net stock available out of the existing 
gross stock. Hendershott and Smith (1988) have provided a general framework by stressing 
the role of inventory adjustment as a way to examine previously unrecorded additions to the 
housing stock. Much detailed analysis has gone into additions (other than construction) 
to and removals from gross stock. The role of renovations and rehabilitation has been 
studied, primarily from a theoretical perspective, although some empirical work [Boehm 
and Ihlanfeldt (1986)] is available. The removals end has focused on improving estimates 
of depreciation [Malpezzi, Ozanne and Thibodeau (1987)], and on housing mortality.

The growing emphasis on the stock-flow model has also made it imperative that the 
means by which the stock is allocated be more fully understood. The process of stock 
adjustment has been approached from a variety of perspectives. One looks at the pro­
cess in its entirety, by exploring models of adjustment in the housing market. A recent 
long run model of the U.S. housing market [Gahvari (1986)] computes an explicit inter­
temporal elasticity of substitution between housing and other consumption goods. Turner 
and Struyk (1985) employ the Urban Institute Market Simulation Model, with its 10 year 
forecasting framework, to project the long-term effects of U.S. policy. An explicit model 
of the resale market has been introduced by Rosen and Smith (1986) which features stock 
demand and stock supply impacting on prices.

Less attention has been focused on the behaviour of players in the housing market as 
part of the adjustment process. However, the actual behaviour of sellers of stock has been 
explicitly analyzed in Sweden [Aguilar and Sandelin (1984)]. Work on transactions more 
generally has introduced search and bidding models. The housing market as a contracts 
market has been considered, adding new insights to the adjustment process. In addition, 
the role of intermediaries in these transactions has come under scrutiny [e.g., Jud and 
Frew, (1986)].

Because of the lags in adjustment in the housing market, many of the models of stock 
adjustment have had to explicitly consider quantity as well as price adjustments. A key 
variable in this process is vacancy rates. One creative way to deal with this issue, via 
vacancy transfer modelling, has been proposed by Emmi (1984). Of course, adjustments 
are also made by households, through their changing of residence, or mobility. There has 
been little work explicitly on that subject in North America, although Quigley (1987) 
has analyzed the impact of financial variables on mobility. Some research in Holland has 
stressed mobility, which will undoubtedly be more systematically examined here in the 
future.

A very useful way of linking vacant units and mobile households within the housing 
market adjustment process is through filtering. Baer and Williamson (1988) have devel­
oped a model that offers a unifying framework for this research. They also identify areas 
for future research on this topic. The importance of filtering for policy is highlighted by 
Weicher and Thibodeau (1988).
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An important mechanism that has profound impact on stock adjustment is the choice 
of tenure. For policy purposes, distinguishing the situation of owners from renters is of 
great importance. Both considerations have helped promote a voluminous literature on 
tenure choice. Krumm (1987) demonstrates rather convincingly that such choices must 
be seen in an intertemporal context, and that evidence based on one particular point in 
time are misleading. In addition, the relevant income and wealth variables influencing 
tenure choice have been debated rather extensively. Finally, several studies have pointed 
to the condominitim phenomenon as a useful intermediate stage between the traditional 
transition from renting to owning.

The role of finance continues to be explored. Most of the empirical research has examined 
the impact of key financial variables rather than the working of the mortgage market itself. 
For example, estimates of the elasticity of supply of mortgage lending and the impact on 
housing have been computed by Muth (1986). Credit rationing is found to be important 
in the short run, but not in the long run. Little advance on both the descriptive works of 
the 1970s [Anderson and Ostas (1977)] or the theoretical-empirical works of that period 
[e.g., Smith and Sparks (1970)] has been noted. The latter is of importance because it 
articulates a model of the mortgage market, relating mortgage rates directly to NHA and 
bond rates, and indirectly to portfolio adjustments of financial institutions. A more recent 
study by JafFee and Rosen (1979) exploring the efficacy of stabilization policies was also 
based on a model of particular interest. Rather than a single equation model with a single 
“price” variable, they introduce both the contract rate and other mortgage, terms. Also, 
they compare partial to instantaneous adjustment processes, and find that the former 
performs better.

Thus, there are elements upon which a full model of the mortgage market could be 
constructed and inserted into a larger housing model. To date, we have found no evidence 
that this has been done. The changing role of financial variables is explored in important 
papers by Friedman (1989) and Kahn (1989), which emphasize institutional and other 
changes in monetary variables, that make historical relationships extremely unreliable for 
predicting the future. The close interdependence between financial and housing markets, 
both of which tend to be in disequilibrium, has been examined by Goodwin (1986).

Specific housing market outcomes are analyzed in several important articles. Hender- 
shott (1988) attributes the increase in house prices in the 1980s primarily to negative 
productivity growth and increased ownership to rising income. The impact of vacancy 
rates is found to be less than previously thought by Gilderbloom (1986).

From a more macro perspective, where the entire structure of housing prices in the 
nation is important, it is important to understand how in fact prices in one market impact 
on others. Rosenthal (1986) examines the spatial interdependence of housing markets, and 
finds that in the short run, because of the complexity of the linkages, there is little spillover 
of prices. If this is validated, then the necessity to address markets individually for short 
term forecasting becomes very strong indeed. A model that explains some 70% of intercity 
variations in home price appreciation has been introduced by Manning (1986).
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2.4 The Data

The feasibility of constructing an econometric model of the housing sector and mortgage 
market depends not only on the economic theory one may appeal to for its specification 
but on the availability and quality of the data to be used. Hence our study included an 
examination of the principal sources of data available for econometric modelling of this 
sector at the national level.

We grouped the housing sector and mortgage market variables into five categories re­
lating to: demand for stock, supply of new housing, supply of stock, market clearing, and 
finance. We were particularly concerned with the frequency of availability of the data. 
We were also concerned with data quality. We ascertained data quality by consulting 
both with producers of the data, and with users, especially those involved in building and 
maintaining major Canadian macroeconometric models.

A. Demand for Stock.

The data on the price of existing dwellings are available monthly, quarterly, and annu­
ally from the Multiple Listing Service (MLS) of the Canadian Real Estate Association. 
Although very broad in coverage, the proportion of MLS listings varies cyclically. We were 
unable to ascertain to what extent this variability distorted market price estimates.

For rents there are two major sources of data: the Consumer Price Index (monthly and 
annual) and CMHC survey reports (semi-annual). The former source maintains superior 
quality control over time, but lacks the large sample size of the latter. In addition, it was 
suggested that the survey reports provide a better indication of market rents (as opposed 
to pure price movements). It should also be recognized that there is a general consensus 
that the rent component of CPI has a downward bias.

Data on assets of households are very poor. They are not produced on a regular basis, 
and coverage is incomplete. The sources axe Statistics Canada and FAMEX.

Most surprising is the poor quality of the data on the number of households, which 
is by definition equal to the stock of occupied dwellings. Annual data is available from 
HFE/HIFE and the Science, Technology, and Capital Stock Division of Statistics Canada, 
although they axe deemed by users to be highly suspect. The former derives its data 
from estimates of total population and average household size, while the latter estimates 
net housing stock, and by making an allowance for vacancies, derives the occupied stock; 
consequently, they independently provide different estimates of the same variable.

The property tax data of households obtained from StatsCan’s Provincial Accounts ap­
pear to be satisfactory.
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B. Supply of New Housing.

The supply of new housing depends very heavily on the profitability of the activity on 
the part of landlords and builders.

New house price indexes (monthly, quarterly, and annual) axe available from StatsCan. 
CMHC also provides monthly and quarterly data on the average unit selling price of newly 
completed, single-detached dwellings. Both sources provide a starting point for price data.

With respect to land, labour, and materials costs there are annual data provided by 
the Construction Census of StatsCan although the quality could not be ascertained. In 
addition, monthly and annual indices of labour costs and materials costs are also available 
from StatsCan. The labour cost indices are based on contracted union wage rates which 
clearly underestimate the costs of labour. The materials cost indices do not reflect the true 
costs to the builders because different builders receive different rates. The cost indices from 
StatsCan appear to be of questionable quality.

Annual tax rate data for the construction industry appear to be adequate although 
obtaining data on the residential sector alone is more costly. Annual data on capital con­
sumption allowances are limited to the entire construction industry, which is too inclusive 
to be of use for analyzing the residential subcomponent alone. The quality of annual profit 
estimates is inconclusive, although a great deal of caution was advised when using them. 
Moreover, only the Construction Census gives a breakdown for the residential subcompo­
nent.

If input costs data are of poor quality, measures of housing activity are of very high 
quality. Monthly, quarterly and annual data on the housing starts and housing completions 
are available from CMHC. It also provides monthly and annual data on new construction 
expenditures. It reports data on the estimated construction costs of new and existing 
structures but only .for those that are NHA financed. Since the value of land is not included, 
the series underestimate the true construction expenditures. CMHC also publishes annual 
figures for the housing stock that is supplied through public programs.

C. Supply of Stock.

Annual gross stock data from StatsCan is viewed by users as extremely problematical, 
so much so that at least one person argued that as a result of this gap, it is not possible to 
build an econometric model of the housing sector at this time. It is also to be noted that 
the construction census data of StatsCan is reported with a 2 year lag.

Annual removals data must rely on demolition reports from StatsCan which appear to 
be extremely suspect due to problems in reporting. Consistency is also a problem due 
to increasing coverage over time. Most regard the annual survey data on renovations 
as quite poor. Quarterly and annual depreciation data at replacement cost are available
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from StatsCan, and appear to be adequate. Annual net stock data suffer from the same 
shortcomings as the gross stock data.

D. Market Clearing Variables.

CMHC’s annual and semi-annual vacancy data are biased downwards due to a very tight 
definition. Sales data are available from MLS monthly, quarterly, and annually. They are 
subject to systematic bias, as was noted under prices of existing dwellings. The alternative 
source, Teela, is judged to be sloppily compiled and is not well-regarded either by users or 
producers of data.

Annual data on tenure (HFE) and on type of housing (CMHC, Construction Census) 
are generally very acceptable.

E. Finance.

Data on mortgage rates (CMHC) are available monthly and quarterly, mortgage ap­
provals (CMHC) monthly, quarterly, and annually, credit availability (Bank of Canada) 
monthly and annually, and carrying charges (HIFE) annually. They are all considered 
quite good.

F. Conclusion.

Our examination of data availability reveals that despite some areas of satisfactory data, 
many variables are seriously deficient in data availability and/or reliability for purposes of 
econometric modelling. This is especially the case with data that are available annually. 
The less frequent sources (Census, FAMEX) are more reliable, but can only be used as a 
check on the other sources.

Data on many key housing and mortgage variables are available on a quarterly or 
monthly basis, and should provide a basis for constructing a small-scale econometric model 
of the housing sector and mortgage market. The available data base is clearly inadequate 
for building a comprehensive quarterly econometric model. Data on many important series 
including housing stock and several flow variables which affect it-removals, depreciation, 
additions and alterations-are available only on the annual basis. Even the available an­
nual data are of poor quality. Data availability would certainly constrain the econometric 
modelling of the housing sector and mortgage market.

The quality of forecasts is affected greatly by the quality and scope of the data used in 
modelling. It is strongly recommended that CMHC create and maintain a comprehensive 
data bank of the housing and mortgage market variables. Some series may have to be 
constructed or estimated from more than one source. For others such as households CMHC 
may have to start collecting their data.
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3. FORECASTING WITH A UNIVARIATE MODEL

A simple but flexible approach to forecasting is to forecast the future values of a variable 
of interest on the basis of its own past history. One may first fit a time series model to the 
data and then extrapolate the series into the future using the fitted model. The model is 
“data based” in that it is specified from its goodness-of-fit to the data series. Unlike the 
econometric modelling considered in the preceding chapter, economic theory plays little 
role in model specification.

Of the many classes of time series models which yield extrapolative forecasts, the uni­
variate autoregressive integrated moving average (ARIMA) model also referred to as the 
“Box-Jenkins” model has been found very useful in practice.2 In this chapter (1) we report 
on an ARIMA model of Canadian housing starts we have built and (2) discuss the advan­
tages and drawbacks of an ARIMA model as a forecasting tool. Detailed discussions on 
ARIMA models are available in many books including Box and Jenkins (1970), Vandaele 
(1983), Granger and Newbold (1986), and Park (1989).

3.1 An ARIMA Model of Housing Starts

A. Multiplicative Seasonal ARIMA Modelling,

The autoregressive moving average (ARMA) model of a time series relates the current 
value of a variable to its own past values and the current and past values of random errors. 
Thus the ARMA process of order (p,g) is often written as

Zt = + • • • + <f>pZt-p + — 9\Ut-\ — • • • — Qqut-q, (3.1a)

relating Zt , the value at time t of a time series, to its past values Zt-\,..., Zt-p, and the 
current and past random errors ..., ut-q. The ^-’s and 0j’s axe the autoregressive
and moving-average parameters, respectively. The Uj’s are serially uncorrelated random 
errors with zero mean and constant variance a2, and referred to in time series analysis as 
“white noise.”

For simplicity in notation we introduce a backward shift operator B on the time subscript 
so that B Zt = Zt-i- Thus we may write (3.1a) as

Zt — <j>\BZt — • • • — <f>pBpZt — Ut — 9\But — • • • — 9qB<Iut 

or, more compactly, as
4>{B)Zt=9{B)ut, * *

(3.1b)

(3.1c)

2The literature contains a large number of extrapolative forecasting procedures. Makridakis et al. (1982) 
report on 24 extrapolative time series methods used in a forecasting competition.* ... .. . , ;• .... •. • ■ ••.. ij-. _... . i:''. ■ • V;V1 • :
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where <f>(B) and 0(B) are polynomials in B of order p and q, respectively:

<f>(B) = 1 — 4>iB-------- <t>pBV

and
0(B) = 1-0^---------0qBq.

The ARMA(p,g) process in (3.1) is assumed to be “(weakly) stationary” in the sense 
that the mean, variance and autocorrelations do not change over time. The practical 
consequence of this property is that the mean, variance and autocorrelations of the process 
can be consistently estimated from a single series of observations.

Common in economic time series like housing starts is a rather smooth trend indicating 
a slow change in its mean over time. It is often possible to transform such a nonstationary 
series into a stationary one by differencing it d times:

Zt = (l-B)dXt,

where d is a nonnegative integer. If the ARMA(p,g) process Zt in (3.1) has been obtained 
by differencing the original Xt series d times, Xt is obtained by summing up the Zt series 
d times, and referred to as an autoregressive integrated moving average (ARIMA) process 
of order (p,d,q).

Using the notation for an ARMA model in (3.1), we may define an ARIMA(p,d,<jr) model 
by

(1 — <f>iB---------<f>pBP)(l-B)dXt = (l-01B----------OqBq)uu (3.2)

where the u*’s are a white noise process with mean zero and variance a2. A slight extension 
of (3.2) is to allow a constant term 8 in it:

(1 _ _------^Xl - B)dXt = 6 + (1 — 0\B----------OqBq)uu (3.3)

Economic time series often displays an exponential trend with gradual change in its 
spread over time. In such circumstances the logarithmic transformation of the original 
series may induce stationarity in variance.

Also common in an economic time series is a component called “seasonality.” It is any 
cyclical or periodic variation in a time series that repeats itself with a fixed period. Many 
monthly or quarterly economic time series have strong seasonal components. The hous­
ing starts series has seasonality with the seasonal span of twelve months. Multiplicative 
ARIMA models are useful in modelling times series in which seasonal variations with a 
known period of s occur.

If the monthly or quarterly series under consideration trends in annual steps, seasonal 
differencing may be necessary to induce stationarity in mean. The seasonal differencing
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may have to be applied D times to remove seasonal trend from the series. Regular or 
nonseasonal differencing of order d, (1 — 5)d, may be required of the seasonally differenced 
series to induce stationarity in mean. The multiplicative seasonal autoregressive integrated 
moving average model of order p, d, q, P, D, Q, denoted by ARIMA (p, d, q) x (P, D, Q)s, is 
written as

^(P)$(P)(1 - B)d(l - Bs)DXt = 6(B)Q(Ba)ut, (3.4)

where $(!?*) and Q(BS) are polynomials in Bs of degree P and Q, respectively, defined 
by

$(PS) = 1 - QiB*-------- $pBPa

and
0(Pa) = l-0iPa---------GqBQa,

and the polynomials <f>(B) and 6(B) axe as defined in (3.1). The ARIMA model in (3.4) is 
the type that we have built for Canadian housing starts.3

The time series plotted in Figure 3.1(a) is the monthly housing starts in Canadian urban 
centres of 10,000 or more (CANSIM series D849795) from January 1965 to December 1989.
The data are in total number of units and unadjusted for seasonal variations. A visual 
inspection of the time series plot indicates that it has a slowly changing trend in mean 
and variance as well as a strong seasonal component indicated by peaks and valleys at 
multiples of 12 months. We have taken the common logarithms of the original series to 
induce stationarity in variance. The “logged” series are plotted in Figure 3.1(b).

At the stage of identifying an ARIMA model we have used various data analytic tools 
to arrive at initial guesses of the data transformation, the degrees of differencing to induce 
stationarity, and the orders of the AR and MA polynomials in the model. Data analytic 
tools for identification include time series plots, sample autocorrelation function, sample 
partial autocorrelation function, extended sample autocorrelation function [Tsay and Tiao 
(1984)], and inverse autocorrelations [Cleveland (1972)].

A model selection procedure based on these tools has been found generally effective par­
ticularly when supplemented by the model selection criteria such as Akaike’s (1969, 1970) 
final prediction error (FPE) criterion and Akaike’s (1974) information criterion (AIC).
Since the ARIMA model is specified on the basis of data alone, however, the model builder 
often has to resort to his judgment. A brief review of various model selection techniques ' 
in time series analysis is given by Shibata (1985).

We have decided to fit an ARIMA model to the 288 observations over the period January 
1965 to December 1988, leaving 1989 as a post-sample period to be used for checking the 
forecasting ability of the fitted model. The sample ACF and PACF of the transformed

3Earlier univariate ARIMA modelling applied to the housing market includes the textbook examples in 
Abraham and Ledolter (1983), Pankratz (1983), and Vandaele (1983). More recently, Sklarz ei al. (1987) 
and Puri and Van Lierop (1988) have built ARIMA models to the U.S. monthly housing starts series and 
found their forecasting performance satisfactory. . ~ yy; ■/ y vy-’vyy

30



series shown in Figures 3.2(a) and (b) indicate nonstationaxity in mean. A very large 
and significant partial autocorrelation at lag 1 and slowly declining autocorrelations at 
seasonal lags of 12, 24, and 36 suggest differencing of the transformed series both regularly 
and seasonally once each. This has reduced the total number of observations to T = 275.

The sample ACF and PACF of the differenced series in Figure 3.3 suggest a multiplicative 
ARIMA(1,1,1) x (0,1, l)i2 or ARIMA(1,1,1) x (3,1,0)i2 model. We write these tentative 
models as Model 1:

(1 - - B)(l - B12)LOGHSt = (1 - - 0iR12)ut

and Model 2:

(l-faB^l-SiB12-$2B24-$3B36)(l-B)(l-B12)LOGHSt = (l-0iR)(l-0iB12)ut, 

where LOGHSt is the common logarithm of the original housing starts at time t.

Once an ARIMA(p, d, q) x (P, £), Q)a model is identified, its parameters can be estimated 
by the conditional least squares (LS) method. Under the normality assumption of the 
random errors, one can also obtain approximate maximum likelihood (ML) estimates. The 
approximation arises because of the assumptions to be made about the initial values of 
the Xt's and u<’s. See Box and Jenkins (1970). Exact ML estimates can be computed 
in a number of ways, suggested by Newbold (1974), Dent (1977), Ansley (1979), and 
others. Although these estimators are asymptotically equivalent in the sense that they have 
the same probability distributions in large samples, their estimates can be considerably 

. different from one another.

ML estimates for the tentative Model 1 are summarized in Table 3.1(A).4 The AR 
coefficient estimate is significant and satisfies the stationarity. On the other hand, both 
MA coefficients are significant and satisfy the “invertibility” conditions although 8i = .9192 
is close to the noninvertibility boundary.5

No model is “true.” Estimated models should be thoroughly checked for adequacy. Tools 
for diagnostic checking include the residual autocorrelations and partial autocorrelations, 
the Box-Pierce-Ljung portmanteau statistic for lack of fit and Lagrange multiplier tests 
against a variety of specific alternatives. A survey of diagnostic tests used in both univariate 
and multivariate time series modelling is given by Newbold (1983b). Although the Box- 
Pierce-Ljung statistic was consistent with the hypothesis that the residuals series from the 
fitted model were like a white noise process, their sample ACF and PACF had a significant 
coefficient at lag 36 and indicated that Model 2 was perhaps a better specification.

4The computing reported in Chapters 3 and 4 are the results from the SCA-UTS program of the Scientific 
Computing Associates. Their estimation method is based on a conditional maximum likelihood approach.
See Liu et al. (1986).
5 An ARM A model is said to be invertible if the series of coefficients in its pure AR representation converges
as the time lag goes to infinity. In Model 1 the invertibility conditions are —1 < 6 < 1 and — 1 < © < 1. • ^ '
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Parameter estimates for the tentative Model 2 were

(£1 = 0.6996 with t = 8.60
= -.1621 with t = —2.04

$2 = -.0661 with t = —0.90

$3 = -.2503 with t = —3.85

0i = 0.9003 with t = 18.19

0i = 0.6850 with t = 9.82,

and SEE = .0658. We note that seasonal AR(2) parameter estimate is not significant at 
a = .05.

An additional check for model adequacy was made by imposing constraints. Estimating 
an ARIMA(1,1,1) X (3,1,1)12 model with no constant and a constraint $2 = 0> we found 
the SAR(l) parameter estimate to be statistically insignificant. On the principle of parsi­
mony, we chose the ARIMA(1,1,1) x (3,1, l)i2”model with constraints that $! = $2 = 0:

(1 - - $3£36Xl - B)(l - B12)LOGHSt = (1 - 0i£)(l - QiB12)ut. (3.5)

The results of estimating the model in (3.5) are presented in Table 3.1 (B). All coeffi­
cient estimates are significant, satisfy the stationarity and invertibility conditions, and the 
residual standard error is reduced from SEE=.0676 to SEE=.0656. The fitted model is 
then

(l-.7232B)(l+.2mB36)(l-B)(l-B12)LOGHSt = (l-.9174B)(l-.7773£12)ut. (3.6)

The sample ACF and PACE for the residuals of the estimated model (3.6) are shown 
in Figure 3.4. Autocorrelations and partial autocorrelations remain significant at lag 34. 
However, the Box-Pierce-Ljung statistics are Q(12) = 4.9, Q(24) = 12.2, and Q(36) = 
25.2, and strongly support the hypothesis that the residuals behave like white noise. The 
estimated model in (3.6) appears to be adequate.

One may note that the estimate of non-seasonal MA(1) parameter is close to the bound- 
ary of the non-invertibility region. In general, many economic time series only tend to 
become stationary after differencing, and differencing often results in an MA component 
in which the parameters are very close to the boundary of the non-invertibility region. 
An ARIMA model in which some of the roots of the MA polynomial are equal to one is 
perfectly valid and it may not be necessarily sensible to require that the estimates of the 
MA parameters satisfy the invertibility conditions.

3.2 Forecasting with an ARIMA Model

Once we have built an adequate ARIMA model, we can derive forecasts from it in 
a mechanical way. Although the mechanics of obtaining forecasts are described below
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with the basic ARMA model, the same principles apply in dealing with the multiplicative 
seasonal ARIMA model.

Assume for the time being that the model parameters are known and that we require 
at time T an /i-period ahead forecast of an ARMA process Zt . If the model holds in the 
future, then

•Zr+fc = (friZr+h-i H------ b <t>pZx+h—p + ut+h - Oiur+h-i --------OqUT+h-q (3.7)

At the time T when we make forecasts we may have a set of available information, called 
the “information set,” that can be used for forecasting Zr+h- For example, the information 
set, denoted Jr, may consist of the full history of the series up to time T: Zt, Zt-i,__

If the white noise process u* is normal, the “optimal” (in the minimum mean square 
error sense) forecast at time T of Zx+k conditional on the information set It is simply its 
conditional expectation

fT(h) = Et[Zt+Ii\It] (3.8)

where frih) stands for the /i-period ahead forecast at time T and Et[ • ] denotes the 
conditional expectation taken at time T. Taking the conditional expectation of (3.7), we 
write:

/r(/i) = EriZr+h) = tiEriZr+h-i) H------1- (fipEriZr+h-p)
+ EriuT+h) - OiEriuT+h-i)---------OgEriuT+h-q) (3.9)

The conditional expectation of the future given It is its forecast value while that of 
the current or past Zt is equal to its realized value. On the other hand, since the ut’s are 
serially independent, the conditional expectation of the future ut is zero while that of the 
current or past ut is equal to its realized value.

It is easily seen that the h-step ahead forecast error, e^/i), is given by

eT(/i) = Zx+h - frih)
= (1 + ipiB +---- 1- rpk-iBtl~1)uT+h, (3.10)

where the ip's are the coefficients obtained when we express the process Zt in terms of the 
current and past random errors alone. Thus the h-step ahead forecast error has mean zero 
and variance

Var[eT(h)] = (1 + + • • • + V’Li) ^ (3-n)

Unlike the forecasts based on an econometric model, we can easily compute the standard 
errors of ARIMA forecasts so that a precision measure is attached with point forecasts. 
If the ut process is normal, then ex{h) is normal with mean zero and variance given in
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(3.11), and provides a basis for forecast intervals. For example, a 95% forecast interval is 
given by

frih) ± 1.96[(1 + ipl + ■“ + V’fc-i) c2]172. (3.12)

The above discussions on forecasting have been made with an assumption that the full 
history of the ARIMA process is known. In practice, its full history is not available. That 
the available data set consists only of T observations, Xi,...,Xt poses two problems. 
First, forecast errors ui, 1*2,..., ur are no longer available and have to be estimated. If we 
build up the sequence of forecasts from the beginning of the data series and if the ARIMA 
process under consideration is invertible, forecast errors arising from estimated ut series 
should be negligibly small. Second, since the full history of the series is not available, the 
model parameters are unknown and have to be estimated. Thus, the conditional expecta­
tions and the forecast variance have to be estimated. Ambiguity in model specification and 
errors in estimation make forecasts biased and the true value of forecast variance underes­
timated. In general, howelver, identification and estimation of an ARIMA model becomes 
more accurate as the length of the time series to analyze increases.

The fitted model (3.6) was used to forecast the housing starts series in 1989. Multiplying 
out (3.6) and rearranging terms, we can write the h-step ahead forecast function at origin 
T as

ET(LOGHST+h) = 1.7232ET(LOGHST+h-i) - .7232ET(LOGHST+h-2)
+ ET(L0GHST+h-i2) - l.7232ET(LOGHSr+h-is)
+ .7232Et(LOGHSr+h-u) - .2U9ET{LOGHST+h-36)
+ .3651Et(LOGHSr+h-37) - .1532ET(LOGHST+h-3&)
+ .2mET(LOGHST+h-48) - .3651ET(LOGHST+h-49)
+ .1532ET(LOGHST+h-5o) + Et(ut+Ii)
- .9172Et(ut+Ii-i) - ■7773ET(uT+h-i2)
+ .7129£l7’(uT+fc-i3) (3.13)

in terms of conditional expectations. If we want the forecasts in the original units rather 
than their logged values, we have only to take the anti-logarithm of the forecasts of the 
LOGHSt series.

Table 3.2 presents a 12-month forecast profile together with a set of 95% confidence 
forecast intervals at the origin December 1988 for the 12 months of 1989. Since they have 
been generated from the model in (3.6) based on the 1965-1988 data, they are strictly 
post-sample forecasts. Figure 3.5 contains the plots of these forecasts. It is remarkable 
that even with all the changes and fluctuations in the housing starts in 1989, the 12-month 
forecast profile traces the actual values in 1989 remarkably well. Further, the forecasts did 
not deteriorate at all with the forecast horizon.

Actual forecast errors ranged in absolute value from a mere .081 % for the 10-month- 
ahead forecast for October 1989 to 1.737% for the 1-month-ahead forecast for January
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1989. For the sample period January 1965 to December 1988 the standard deviation of the 
transformed series was .1584 while that of the residual series was .0656. When the series 
to forecast contains a large noise component, the forecasts are judged to be remarkably 
accurate. We conclude that the ARIMA model in (3.6) fits the housing starts data of 
Canada remarkably well.

Since 1974 Nelson (1984) has been forecasting three major U.S.macroeconomic variables 
including GNP using ARIMA models and has been providing benchmark forecasts for 
comparison with forecasts from large-scale econometric models. McNees (1988) finds that 
although Nelson’s forecasts were not judgementally adjusted at all, their performance 
was comparable to those judgementally adjusted forecasts of the prominent commercial 
forecasters.

It is widely recognized that simple ARIMA models perform as well in short term fore­
casting as those judgementally adjusted forecasts based on large elaborate econometric 
models. We have also found that the ARIMA model which we have built in the present 
study forecasts Canadian housing starts remarkably well up to the twelve-month horizon.

As one can readily see from the preceding discussion of an ARIMA modelling and fore­
casting, its strengths as a forecasting tool include:

(1) It generates very accurate forecasts at least for the short run;
(2) It provides a remarkably simple method of obtaining forecasts;
(3) It is possible to build an ARIMA model using data up to any point in the past and 

then produce forecasts so that the forecasting accuracy of the model can be easily 
checked;

(4) Dynamics of the variables are identified more precisely;
(5) Error structures are more readily identified and incorporated into modelling;
(6) Seasonality in time series is brought into modelling in a systematic manner; and
(7) The standard errors as a measure of forecast accuracy can be calculated at each 

forecast horizon.

It is not, therefore, surprising that an ARIMA model does perform remarkably well for 
forecasting, at least in the short run or when economic activity is relatively stable.

On the other hand, the univariate ARIMA forecasting method has the following weak­
nesses:

(1) Forecast accuracy may fall off quickly as the forecast horizon increases;
(2) Nonlinearities of the economy may not be easily picked up by the ARIMA model; 

and
(3) It may not do well in times of structural change or when economic activity is 

unstable due to exogenous shocks such as wars or unexpected policy changes.
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Forecasting ability of an ARIMA or other time series models comes from the dependence 
of successive observations in a time series. As the forecast horizon increases, the degree 
of correlation between the variable to be forecast and the observed data series tends to 
decrease, and the forecasting accuracy of an ARIMA model deteriorates over longer fore­
casting horizons.

A sudden change in structure in times of exogenous shocks such as a labour dispute or 
oil embargo is the most difficult type of nonstationarity to handle in time series modelling. 
The change may produce a short term transient effect or a long term change in the model 
structure. Hillmer (1984) shows how one outlier can affect several consecutive forecasts 
unless adjusted. Change, Tiao and Chen (1988) discuss ARIMA modelling in the presence 
of outliers. A variation of the ARIMA model, put forward by Box and Tiao (1975) and 
called “intervention analysis,” can be used when certain known events have affected the 
time series being forecast.

It is clear that ARIMA models provide a very simple framework for forecasting time 
series in which the specification of a model is based on the data alone. This may be a 
useful methodology particularly when it is difficult to identify the main factors determining 
the variable to forecast and model their relationship.
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Table 3.1 37

(A) SUMMARY OF A UNIVARIATE MODEL OF HOUSING ! 
(In Common Logarithm)

VARIABLE TYPE OF ORIGINAL DIFFERENCING
VARIABLE OR CENTERED

1 12
LOCHS RANDOM ORIGINAL (1-B ) (1-B )

PARAMETER VARIABLE VALUE STD T
LABEL NAME ERROR VALUE

1 THETA1 LOCKS .9192 .0370 24.83
2 THETA12 LOCHS .8462 .0340 24.91
3 PHI1 LOCHS .7118 .0670 10.63

TOTAL SUM OF SQUARES........................................  .731151E+01
TOTAL NUMBER OF OBSERVATIONS .... 288
RESIDUAL SUM OF SQUARES...................................  .124591E+01
R-SQUARE ............................................................................ .821
EFFECTIVE NUMBER OF OBSERVATIONS . . 274
RESIDUAL VARIANCE ESTIMATE ... . . .454712E-02
RESIDUAL STANDARD ERROR.................................................. 674323E-01

(b) SUMMARY OF A UNIVARIATE 
(In Common

MODEL OF HOUSING STARTS 
Logarithm)

VARIABLE TYPE OF ORIGINAL DIFFERENCING
VARIABLE OR CENTERED

1 12
LOCHS RANDOM ORIGINAL (1-B ) (1-B )

PARAMETER VARIABLE VALUE STD T
LABEL NAME ERROR VALUE

1 THETA1 LOGHS .9174 .0421 21.78
2 THETA12 LOGHS .7773 .0435 17.86
3 PHI1 LOGHS .7232 .0734 9.86
4 PHI 3 6 LOGHS -.2119 .0621 -3.42

TOTAL SUM OF SQUARES . • • o • • • • • 731151E+01
TOTAL NUMBER OF OBSERVATIONS . . 9 9 288
RESIDUAL SUM OF SQUARES 102034E+01
R-SQUARE . . .831
EFFECTIVE NUMBER OF OBSERVATIONS 
RESIDUAL VARIANCE ESTIMATE . . . 
RESIDUAL STANDARD ERROR.......................

238
.428716E-02 
.654764E-01



Table 3.2 38

FORECAST PROFILE WITH 12-MONTH HORIZON 
(In Common Logarithm)

MONTH
1989

LOWER
LIMIT

FORECAST
VALUE

UPPER
LIMIT

ACTUAL FORECAST PERCENTAGE 
VALUE ERROR ERROR

Jan 3.936 4.064 4.192 4.136 .072 1.737

Feb 3.786 3.951 4.116 3.990 .039 .982

Mar 3.846 4.032 4.218 4.085 .053 1.290

Apr 3.997 4.196 4.395 4.240 .044 1.046

May 4.094 4.303 4.512 4.282 -.021 -.489

Jun 4.057 4.273 4.489 4.240 -.033 -.779

Jul 4.000 4.222 4.444 4.215 -.007 -.156

Aug 3.998 4.225 4.453 4.190 -.036 -.850

Sep 3.959 4.191 4.423 4.213 .022 .531

Oct 3.959 4.194 4.430 4.198 .003 .081

Nov 3.982 4.221 4.461 4.193 -.028 -.662

Dec 3.918 4.161 4.404 4.140 -.021 -.515

Note: Forecasts are for the 12 months in 1989 based on the data 
upto and including December 1988.
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Figure 3.1 (B) Housing Starts in-Logarithm
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Figure 3.2 (A) 41

SAMPLE AUTOCORRELATIONS OF HOUSING STARTS
(In Common Logarithm)

TIME PERIOD ANALYZED..............................................1 TO 288
NAME OF THE SERIES.................................................... LOGHS
EFFECTIVE NUMBER OF OBSERVATIONS ... 288
STANDARD DEVIATION OF THE SERIES . . . .1593
MEAN OF THE (DIFFERENCED) SERIES . . . 4.1014
STANDARD DEVIATION OF THE MEAN .... .0094
T-VALUE OF MEAN (AGAINST ZERO) . . . . 436.8426

1-12 .79 .47 .22 .13 .14 .15 .11 .06 .09 .28 .52
ST.E. .06 .09 .10 .10 .10 .10 .10 .10 .10 .10 .10
Q 181 245 259 264 270 276 280 281 283 307 389

13-24 .47 .22 .02 -.03 .01 .03 - .00 -.03 .01 .20 .44
ST.E. .12 .13 .13 .13 .13 .13 .13 .13 .13 .13 .13
Q 572 587 587 587 587 587 587 588 588 601 662

25-36 .40 .13 -.07 -.12 -.08 -.07 - .11 -.16 -.12 .05 .27
ST.E. .14 .15 .15 .15 .15 .15 .15 .15 .15 .15 .15
Q 803 808 810 815 817 819 823 831 835 836 861

-1.0 -.8 -.6 -.4 -.2 .0 .2 .4 .6
___ i______ i_______i______ i_

.8
____ i_

1 .79 +
-----1---------- ,------ -—|--------- ,-----------p.

IXX+XXXXXXXXXXXXXXXXX
2 .47 + IXXX+XXXXXXXX
3 .22 + IXXXXX
4 .13 + IXXX +
5 .14 + IXXX +
6 .15 + IXXXX+
7 .11 + IXXX +
8 .06 + IX +
9 .09 + IXX +

10 .28 + IXXXX+XX
11 .52 + IXXXX+XXXXXXXX
12 .62 + IXXXXX+XXXXXXXXX
13 .47 + IXXXXX+XXXXXX
14 .22 + IXXXXX+
15 .02 + IX +
16 -.03 + XI +
17 .01 + I +
18 .03 + IX +
19 .00 + I +
20 -.03 + XI +
21 .01 + I +
22 .20 + IXXXXX+
23 .44 + IXXXXX+XXXXX
24 .54 + IXXXXXX+XXXXXX

.62

.11
504

.54
.14
753

.36
.15
904

1.0



Figure 3.2 (B) 42

SAMPLE PARTIAL AUTOCORRELATIONS OF HOUSING STARTS
(In Common Logarithm)

1-12 .79 -.41 .05 .18 .01 - .03 -.09 .10 .21 .38 .21 -.05
ST.E. .06 .06 .06 .06 .06 .06 .06 .06 .06 .06 .06 .06

13-24 -.28 -.10 .01 .04 - .01 - .07 .06 .05 .01 .13 .17 -.02
ST.E. .06 .06 .06 .06 .06 .06 .06 .06 .06 .06 .06 .06

25-36 -.17 -.16 .00 .01 - .02 - .08 -.03 .01 -.04 -.04 .12 -.02
ST.E. .06 .06 .06 .06 .06 .06 .06 .06 .06 .06 .06 .06

-1.0

C
O•l V
O•l -.4 -.2 .0 .2 .4

V
O•

C
O• 1.0

+-
1 .79 + IXX+XXXXXXXXXXXXXXXXX
2 -.41 XXXXXXX+XXI +
3 .05 + IX +
4 .18 + IXX+XX
5 .01 + I +
6 -.03 + XI +
7 -.09 +XXI +
8 .10 + IXX+
9 .21 + IXX+XX

10 .38 + IXX+XXXXXX
11 .21 + IXX+XX
12 -.05 + XI +
13 -.28 XXXX+XXI +
14 -.10 +XXI +
15 .01 + I +
16 .04 + IX +
17 -.01 + I +
18 -.07 +XXI +
19 .06 + IXX+
20 .05 ■ + IX +
21 .01 + I +
22 .13 + IXXX
23 .17 + IXX+X
24 -.02 + I +
25 -.17 X+XXI +
26 -.16 X+XXI +
27 .00 + I +
28 .01 + I +
29 -.02 + XI +
30 -.08 +XXI +
31 -.03 + XI +
32 .01 + I +
33 -.04 + XI +
34 -.04 +' XI +
35 .12 + IXXX
36 -.02 + XI +



Figure 3.3 (A) 43

SAMPLE AUTOCORRELATIONS OF TRANSFORMED HOUSING STARTS
(In Common Logarithm, d = D = 1)

1 12
DIFFERENCE ORDERS......................................... (1-B ) (1-B )
TIME PERIOD ANALYZED............................................... 1 TO 288
NAME OF THE SERIES..................................................... LOGHS
EFFECTIVE NUMBER OF OBSERVATIONS ... 275
STANDARD DEVIATION OF THE SERIES . . . .0916
MEAN OF THE (DIFFERENCED) SERIES . . . -.0003
STANDARD DEVIATION OF THE MEAN .... .0055
T-VALUE OF MEAN (AGAINST ZERO) .... -.0589

•12 -.11 -.07 -.04 -.04 -.12 . 03 . 05 ■-.00 .00 .10 .05 -.50
E. .06 .06 .06 .06 .06 .06 . 06 .06 .06 .06 .06 .06

3.6 5.1 5.5 6.0 10.2 10.4 11 .1 11.1 11.1 14.1 14.8 88.0

■24 -.05 .04 .03 .01 .08 -.05 -. 03 .07 *01 -.00 .00 .13
E. .08 .08 .08 .08 .08 .08 . 08 .08 .08 .08 .08 .08

88.6 89.1 89.3 89.4 91.2 92.1 92 .3 94.0 94.0 94.0 94.0 99.1

36 .04 -.02 -.07 -.01 -.00 .06 -. 01 .01 -.02 -.12 .06 -.24
E. .08 .08 .08 .08 .08 .08 . 08 .08 .08 .08 .08 .08

99.5 99.6 101 101 101 102 . 102 102 102 107 108 126

-1.0 -.8 -.6 -.4 -.2 0
___

.2 .4 .6 .8 1.0

1
T

-.11
------ 1-- ------- ,-----

XXXI +
i

2 -.07 +XXI +
3 -.04 + XI +
4 -.04 + XI +
5 -.12 XXXI +
6 .03 + IX +
7 .05 + IX +
8 .00 + I +
9 .00 + I +

10 .10 + IXXX
11 .05 + IX +
12 -.50 XXXXXXXXXX+XXI +
13 -.05 + XI +
14 .04 + IX +
15 .03 + IX +
16 .01 + I +
17 .08 + IXX +
18 -.05 + XI +
19 -.03 + XI +
20 .07 + IXX +
21 .01 + I +
22 .00 + I +
23 .00 + I +
24 .13 + IXXX+



Figure 3.3 (B) 44

SAMPLE PARTIAL AUTOCORRELATIONS OF TRANSFORMED HOUSING STARTS
(In Common Logarithm, d = D = 1)

1-12 -.11 -.09 - .06 - .06 - .15 -.02 .02 -.01 -.00 .09 .09 -.49
ST.E. .06 .06 .06 .06 .06 .06 .06 .06 .06 .06 .06 .06

13-24 -.21 -.07 - .03 - .07 - .10 -.09 -.05 .05 -.01 .10 .10 -.12
ST.E. .06 .06 .06 .06 .06 .06 .06 .06 .06 .06 .06 .06

25-36 -.09 -.04 - .08 - .07 - .02 -.03 -.08 .06 .03 -.09 .12 -.33
ST.E. .06 .06 .06 .06 .06 .06 .06 .06 .06 .06 .06 .06

-1.0

C
O•1

V
O•l -.4 -.2 .0

C
M• .4

V
O• .8 1.0

+-----
1 -.11 XXXI +
2 -.09 +XXI +
3 -.06 + XI +
4 -.06 +XXI +
5 -.15 X+XXI +
6 -.02 + I +
7 .02 + IX +
8 -.01 + I +
9 .00 + I +

10 .09 + IXX+
11 .09 + IXX+
12 -.49 XXXXXXXXX+XXI +
13 -.21 XX+XXI +
14 -.07 +XXI +
15 -.03 + XI +
16 -.07 +XXI +
17 -.10 +XXI +
18 -.09 +XXI +
19 -.05 + XI +
20 .05 + IX +
21 -.01 + I +
22 .10 + IXXX
23 .10 + IXX+
24 -.12 XXXI +
25 -.09 +XXI .+
26 -.04 + XI +
27 -.08 +XXI +
28 -.07 +XXI +
29 -.02 + XI +
30 -.03 + XI +
31 -.08 +XXI +
32 .06 + IX +
33 .03 + IX +
34 -.09 +XXI +
35 .12 + IXXX
36 -.33 XXXXX+XXI +



SAMPLE AUTOCORRELATIONS OF RESIDUALS

Figure 3.4 (A) 45

TIME PERIOD ANALYZED . . .

NAME OF THE SERIES . . . .

EFFECTIVE NUMBER OF OBSERVATIONS . . 238
STANDARD DEVIATION OF THE SERIES . o .0642
MEAN OF THE (DIFFERENCED) SERIES . .0000
STANDARD DEVIATION OF THE MEAN . . .0042
T-VALUE OF MEAN (AGAINST ZERO) . . -.0094

1-12 --.01 .00 .04 .03 -.04 .04 .03 -.01 -.07 .04 .04 -.07
ST.E. 06 .06 .06 .06 .06 .07 .07 .07 .07 .07 .07 .07
Q .0 .0 .4 .6 .9 1.3 1.5 1.5 2.8 3.2 3.6 4.9

13-24 --.06 .04 .01 .01 -.01 -.09 -.08 .07 -.03 .01 .04 .03
ST.E. .07 .07 .07 .07 .07 .07 .07 .07 .07 .07 .07 .07
Q 5.9 6.2 6.3 6.3 6.3 8.5 10.2 11.3 11.6 11.6 12.0 12.2

25-36 .07 -.02 -.05 .02 -.02 .03 -.05 .01 -.06 -.16 .05 -.03
ST.E. .07 .07 .07 .07 .07 .07 .07 .07 .07 .07 .07 .07
Q 13.5 13.6 14.3 14.4 14.4 14.7 15.5 15.5 16.6 24.2 24.9 25.2

-1.0
4.—

-.8 -.6 -.4 -.2 .0 .2 .4 .6 .8 1.0

1 -.01 + I +
2 .00 + I +
3 .04 + IX +
4 .03 + IX +
5 -.04 + XI +
6 .04 + IX +
7 .03 + IX +
8 -.01 + I +
9 -.07 +XXI +

10 .04 + IX +
11 .04 + IX +
12 -.07 +XXI +
13 -.06 +XXI +
14 .04 + IX +
15 .01 + I +
16 .01 + I +
17 -.01 + I +
18 -.09 +XXI +
19 -.08 +XXI +
20 .07 + IXX+
21 -.03 + XI +
22 .01 + I +
23 .04 + IX +
24 .03 + IX +



SAMPLE PARTIAL AUTOCORRELATIONS OF RESIDUALS
Figure 3.4 (B) 46

1-12 -.01 .00 .04 .03 -.04 .04 .02 -.01 -.07 .03 .04 -.07
ST.E. .06 .06 .06 .06 .06 .06 .06 .06 .06 .06 .06 .06
13-24 -.07 .03 .03 .02 -.02 -.10 -.07 .08 -.04 .01 .05 .04
ST.E. .06 .06 .06 .06 .06 .06 .06 .06 .06 .06 .06 .06
25-36 .08 -.03 -.07 .02 .01 .02 -.09 .02 -.04 -.17 .05 -.05
ST.E. .06 .06 .06 .06 .06 .06 .06 .06 .06 .06 .06 .06

o
• -.8 VO•l -.4 -.2 .0 .2 .4 .6 00• 1.0

+-
1 -.01 + I +
2 .00 + I +
3 .04 + IX +
4 .03 + IX +
5 -.04 + XI +
6 .04 + IX +
7 .02 + IX +
8 -.01 + I +
9 -.07 +XXI +

10 .03 + IX +
11 .04 + IX +
12 -.07 +XXI +
13 -.07 +XXI +
14 .03 + IX +
15 .03 + IX +
16 .02 + IX +
17 -.02 + I +
18 -.10 XXXI +
19 -.07 +XXI +
20 .08 + IXX+
21 -.04 + XI +
22 .01 + I +
23 .05 + IX +
24 .04 + IX +
25 .08 + IXX+
26 -.03 + XI +
27 -.07 +XXI +
28 .02 + IX +
29 .01 + I +
30 .02 + I +
31 -.09 +XXI +
32 .02 + I +
33 -.04 + XI +
34 -.17 X+XXI +
35 .05 + IX +
36 -.05 + XI +



FORECAST PROFILE WITH 12-MONTH HORIZON
Figure 3.5 47
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4. FORECASTING WITH A TRANSFER FUNCTION MODEL

We have seen in the preceding chapter that forecasts with a univariate ARIMA model of 
a time series are based on its own history alone. In many forecasting situations the series 
to be forecast may be systematically influenced by other series. In such circumstances one 
may be able to make more accurate forecasts by taking into account the past history of 
other related series as well.

An extension of the univariate ARIMA model to consider two or more series jointly is 
the “transfer function model.” In this chapter we (1) briefly describe a transfer function 
model of Canadian housing starts that we have built, and (2) discuss the advantages and 
drawbacks of the transfer function model as a forecasting tool. Discussions on transfer 
function models are found in several books including Box and Jenkins (1970), Granger 
and Newbold (1977), and Makridakis et al..

4.1 A Transfer Function Model of Housing Starts

A. The Transfer Function Noise Model.

Let Yt be housing starts and Xt housing price, both at time t. A realistic formulation 
of the relationship between between housing starts and the housing price may require that 
many lagged values of the housing price be included in the model. A change in the housing 
price may have an effect on the starts which is distributed over a number of periods, and 
a realistic formulation of the relationship may require that many lagged values of housing 
price be included in the model. If the lag pattern persists through time, the current value 
of housing starts is seen as the sum of effects from current and past housing prices. A 
dynamic relationship between the two variables may be represented by

Yt = V0Xt + ViXt-\ + • • " + VfnXt-m + 6*
= v{B)Xt+eu (4.1)

where v[B) = Vq+viB-\------the Vj's are fixed parameters, and the et’s are serially
uncorrelated random errors with mean zero and variance a2. In the times series literature 
Xt and Yt are often referred to as the “input” and “output” series, respectively, while the 
polynomial v(B) as the transfer function. The Vj's in v(B) are called the impulse response 
weights.

In practice, the maximum lag m may have to be fairly large to provide an adequate 
representation of the relationship between the two variables X and Y. Several suggestions 
have been made on possible constraints to impose on the lag structure, thereby achieving a 
more parsimonious representation. One suggestion is that we approximate the polynomial 
v(B) by a ratio of two polynomials in B, and write (4.1) as

Yt = ^lXt + et, (4-2)
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where
= uq + uj\B + ■ • ■ +

and
S(B) = l-SlB---------6rBr.

This is referred to as the rational distributed lag model. In parallel to the stationarity 
concept of an ARMA model, the model in (4.2) is said to be “stable” if ail roots of the 
polynomial S(B) are greater than one in absolute value. This condition ensures that the 
values of Xt in the distant past give negligible influence on Yt.

Suppose that the error term et in (4.2) is an ARMA(p,q) process of the form

<f>(B)et = 9(B)ut, (4.3)

where ut is a white noise process and <f>(B) and 6(B) are as defined in ARIMA models. 
Substituting (4.3) into (4.2), we write the model as

Yt ■4(g) y . <>(£)„ (4.4)

The model is called the transfer function noise model, or the transfer function model for 
short. In many applications the Yt, Xt, and et series may be integrated processes.

Since housing starts and housing price are seasonal with a period s of 12 months, a 
seasonal transfer function model is to be developed by including seasonal operators in the 
noise. As for univariate models it is found necessary to difference the series seasonally as 
well as nonseasonally to induce stationarity in e<. Further, the transfer function v(B) may 
include seasonal components. Thus (4.4) is extended to the form of

ujBW) „ ,
‘ S(B)A(B‘) T

We now report on the results of building a transfer function model of Canadian housing 
starts with the housing price series as an input variable.6 This formulation of the transfer 
function model is consistent with the housing paradigm discussed in Chapter 2; in the

6We have also attempted to build a transfer function model of Canadian housing starts with the conven­
tional 5-year mortgage interest rates as the input variable using the data from 1981 to 1989. The estimation 
results indicate that mortgage interest rates do not affect housing starts. This finding is consistent with the 
Stansell-Mitchell (1985) study of the U.S. housing markets. They have examined the causal relationship 
between six different variables which describe mortgage rates and terms and single family housing starts 
in the U.S. Their results indicate that neither credit rationing nor mortgage rates affect housing starts. 
They have found some evidence that housing prices have a causal relationship to housing starts, possibly 
reflecting speculative motives. Other work on transfer function modelling of the housing market includes 
Hillmer and Tiao (1979), Wang and Ma (1981), and Puri and Van Lierop (1988).
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short run, stock demand impacts on the existing fixed supply of stock to determine price 
and the housing industry responds to price through new construction.

We have used monthly single-family housing starts in Canadian urban centres of 10,000 
or more (CANSIM index D849796) and the new housing price indexes (CANSIM index 
D636200) as the output and input series, respectively. As the price index series is available 
since 1981, the sample data consists only of 108 monthly observations from January 1981 
to December 1989. As in Chapter 3 on ARIMA modelling, 12 observations of 1989 were set 
aside for post-sample forecasting, and the remaining 96 observations were used for transfer 
function modelling. The length of the series may not be long enough for efficient modelling 
since both series contain seasonal variations.

As with univariate ARIMA modelling an iterative procedure of identification, estimation, 
and diagnostic checking is used in the transfer function modelling. Model identification 
is more difficult in the transfer function modelling, and different tools are required for 
identification than those used in ARIMA modelling.

Identification is concerned with (1) the estimation of the transfer function u(R), (2) the 
identification of the ARIMA model for the noise term et, and (3) the determination of the 
polynomials 6(B) and oj(B).

The impulse response weights vj's in the transfer function v(B) can be estimated in two 
different ways. Box and Jenkins (1970) suggest that a univariate ARIMA model of the 
form

X‘ = UBf' = T(B)0“ (4'6)

is built for the input variable Xt. The model is then inverted, i.e., T~1(B)Xt = ait, and 
the “prewhitened” residual series at is obtained. One then applies the prewhitening filter 
T~1(B) to the output series Yt to obtain the filtered series fit = T~l(B)Yt. The filtered 
fit series is not necessarily white noise.

The cross correlation function (CCF) between at and fit is proportional to v(B). Thus 
the sample CCF between d*, the residuals from the fitted ARMA model of Xt, and fit, the 
Yt series filtered with the estimated T(B), should provide an estimate of v(B). Although 
v(B) thus obtained is not an efficient estimate, it provides the basis for identifying the 
transfer function v(B). So now we turn to the ARIMA modelling of housing starts.

B. Univariate ARIMA Modelling of Housing Starts.

Visual inspection of the time series plot in Figure 4.1 indicates that housing starts series 
is nonstationary. We have taken the common logarithm of the series to induce stationarity 
in variance. A plot of the logged series and its sample ACF suggest that regular and 
seasonal differencing of order 1 each is required to induce stationarity in mean.
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The sample ACF and PACF of the differenced series suggest the a seasonal MA(1) as a 
tentative model:

(l-B)(l-B12)LOGSHSt = (l-Qi2B12)ut, (4.7a)

where LOGSHSt stands for the common logarithm of single-family housing starts at time 
t. The model was estimated both with and without an intercept term, and the one without 
was chosen as the intercept term was insignificant.

Estimation results are shown in Table 4.1(A). The fitted model is

(1 - B)(l - B12)LOGSHSt = (1 - .9548i2-B12)^, (4.7b)

The moving-average parameter is estimated to be 0.9548, which is very close to the non- 
invertibility boundary.7 Diagnostic checking based on the residuals was satisfactory except 
for a significant autocorrelation and partial autocorrelation at lag 7.

The seasonal MA(1) model was further checked by overfitting and obtaining the following 
seasonal ARMA(1,1) model:

(1 + .4134B12)(1 - B)(l - B12)LOGSHSt = (1 - .3765B12)u1, (4.8)

with R2 = .936 and SEE = .05484. Both coefficient estimates seemed reasonable and were 
statistically significant. No autocorrelations and partial autocorrelations were significant 
although they were large at lags 3 and 7. Although the model appeared to be adequate, 
it did not forecast as well as the seasonal MA(1) model for the 12 months of 1989. The 
forecasts from the latter model are given in Table 4.4(B) and are used as the basis for 
checking the forecasting performance of the transfer function model of housing starts.

C. Univariate ARIMA Modelling of Housing Price Indexes.

Visual inspection of the time series plot in Figure 4.2 indicates that the housing price 
index series is nonstationary. To induce stationarity in the series we took its common 
logarithm and applied regular differencing twice to the logged series.

Examination of the sample ACF and PACF from the differenced series we have identified 
the input series to be a regular ARIMA (1,2,1) model:

(1 - ^B)(l - B)2PRICEt = (1 - 9xB)au (4.9a)

where PRICEt is the common logarithm of the original housing price index.

7 For estimation of an ARIMA model the TSP and SHAZAM programs use a full ML method with the 
so-called backcasting while the SCA-UTS uses an approximate ML method even if its “exact” method is 
specified as an option for estimation. Differences in parameter estimates from different computer programs 
for the same model (4.7) and the same data are remarkable: ©12 and its standard error are 0.9548 and 
0.0739 for SCA-UTS, 0.8595 and 0.0390 for TSP, and 0.8598 and 0.0376 for SHAZAM.
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ML estimates of the model in (4.9a) are summarized in Table 4.2. The fitted model is

(1 - .5899.B)(1 - BfPRICEt = (1 - .9010J5)at. (4.9b)

Both parameter estimates are significant and fit is very good as indicated by R2 = .998. 
Autocorrelations and partial autocorrelations were significant at lags 6 and 16.

The following multiplicative ARIMA model is one of several additional models estimated:

(1 - .67682?)(1 + .6O38012)(1 - B)(l - B12)PRICEt = a*. (4.10)

Both parameter estimates were significant and satisfied the stationarity conditions. The fit 
was very good when judged by R2 = .998. Autocorrelations were large, if not significant, 
at several lags and partial autocorrelation was insignificant at lag 12. However, its post­
sample forecasting for the 12 months of 1989 was inferior to that of the model in (4.9). 
Therefore, the ARIMA(1,2,1) model is used to filter the input and output series.

D. Transfer Function Modelling of Housing Starts.

The sample CCF of the prewhitened input series and the filtered output series lacked the 
clarity we would need for identifying the transfer function. We have, therefore, resorted 
to an alternative identification method.

We may estimate the linear model (4.1) with a relatively large value of m by least 
squares. Since e* is not necessarily a white noise process, Liu and Hanssens (1982) suggest 
to include a model of autoregressive disturbance terms of the form (1 — <j)\B)et = Ut or 
(1 — <j>\B){\ — <f>iB3)et = ut to improve the efficiency in the least squares estimation of 
the impulse response weights. They call this approach the linear transfer function method. 
Using the Liu and Hanssens method, we tentatively identified a transfer function model as

(1 - B)(l - B12)LOGSHSt = (v0 + v1B + --- + vAB4)(l - B)2PRICEU

where the preliminary estimates of the v's were vq = 2.38, Vi = .49, $2 = -69, V3 = —.63, 
and £4 = 2.83. Only two estimates vq and £4 were significant.

Once an estimate of v(B) is available, we can identify an ARMA model of the noise 
component by examining the sample ACF and PACF of the estimated noise series:

et=Yt-v(B)Xt,

where Ft = (1 - B)(l - Bl2)LOGSHSt and = (1 - B)2PRICEt. We have tentatively 
identified the multiplicative ARIMA model:

e* = (l -0iB)(l -0i012)ut
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Once the orders of the transfer function and the noise component are specified, the fully 
identified model can be estimated efficiently by maximizing the corresponding likelihood 
function. When the identified model was estimated by the ML method, the t-statistics for 
the three numerator parameters a>i, u>2, and u>3 were not significant. These parameters 
could be deleted from the model with little loss in explanatory power.

The transfer function model to estimate is then

(1 - J3)(l - B12)LOGSHSt = (w0 + w4B4)(l - BfPRICEt + (1 - 9XB){\ - QaB12)^.
(4.11a)

Estimation results of this model are summarized in Table 4.2. The fitted model is

(1 - B)(l - B12)LOGSBSt = (2.3845 + 2.8852B4)(1 - B)2PBIC£t
+ (1 + ,2138B)(1 - .94431B12)ut. (4.11b)

Note that all parameter estimates are significant and the model fit is good when judged 
by R? = .938.

The estimated model was checked for adequacy. Residuals from an adequate model 
should behave like a white noise series. The sample ACF and PACE of the residuals 
and the Ljung-Box Q statistics are useful tools for diagnostic checking. The sample CCF 
between the residuals and prewhitened Xt series (d*) is also a useful diagnostic tool. If 
the model is adequate, sample cross correlations should be insignificant at all lags.

The sample CCF between the pre-whitened input and the residuals is shown in Table 
4.3 and plotted in Figure 4.3. No cross correlations are significant at the 0.05 level of 
significance, and indicate that the housing price index is an exogenous input as required. 
Sample ACF and PACF of the residuals are shown in Figure 4.4(A) and (B), respectively. 
No coefficients are significant, and the Ljung-Box Q statistics are consistent with the 
hypothesis that the residuals are white noise. Study of the sample ACF, PACF, and CCF 
does not reveal any strong remaining structure.

Some further insight into the model may be gained by examining the correlation matrix 
of the parameter estimates. Although high correlations also arise as a result of the par­
ticular data series being modelled, they are also consistent with model misspecification or 
parameter redundancy. We find that all correlation coefficients are small, the largest being 
0.25 between Cjq and w*. We conclude that the fitted transfer function model is adequate.

As a final point we examine what has been gained by use of a transfer function model 
over a univariate model for housing starts. The univariate model is

(1 - B)(l - B12)LOGSHSt = (1 - .9548B12)ut

as the noise process.
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from Table 4.1(A). This compares in structure to the noise component of the transfer 
function model

c* = (1 + .21385)(1 - .9443B12)u1.

The residual standard error for the ARIMA model is .05678 while that for the transfer 
function model is .05371. Although the reduction in the residual standard error is not 
large (about 5 per cent), the transfer function model explains a higher proportion of the 
variability in the housing starts data.
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4.2 Forecasting with a Transfer Function Model

Once we have obtained an adequate transfer function model, we can use it for forecasting 
the future values of the output variable. Although the mechanics of generating forecasts are 
described briefly below using the basic transfer function model with stationary input and 
output variables, the same principle should apply to the multiplicative seasonal transfer 
function model with integrated input and output variables.

Assume for the time being that the model is fully known and that at time T we require 
an /i-period ahead forecast of I*. The “known” transfer function model is of the form

Y, «(*)Y , *(*)„
6(B)Xi + *

(4.12a)

and can be written as
6m(B)Yt=um(B)Xt+d*(B)ut, ... (4.12b)

where 6*(B), u)*(B), and 0*(B) are polynomials in B. If the model holds in the future, we 
can write Fr+fc from (4.12b) as

Yr+h = SZYr+h-i H-------1- S^Yr+h-v + ^Xr+h--------- w*„Xr+fe-.s*
+ UT+h - 0lUT+h-l---------0q*UT+h-q* • (4-13)

As with the ARIMA model, the conditional expectation of Fr+fc given the information 
set Jr = {Ft, Yt-i ,.. •; Xt, Xt-i ,... } is its minimum mean square error forecast at time 
T if the Ut series are normal. Thus we can compute the /i-step ahead optimal forecast by 
taking the conditional expectation of (4.13):

/r(/i) = Et(Yt + h) = 6*ET(Yr+h-i) H------ 1- K*ET(Yr+h-r*)
+ U)oET(XT+h)---------^s*ET(XT+h-s*)
+ ET(uT+h) ~ 8iEt(uT+Ii-i)---------Oq*ET(uT+h-q*), (4-14)

where frih) stands for the /i-period ahead forecast and Et[ • ] the conditional expectation, 
both at time T.

Note that (4.14) includes the conditional expectation of the Xt series. Thus the forecast 
of Ft requires that of Xt-

Given that the Xt series is an ARIMA process, its conditional expectations or forecasts, 
Et(Xt+Ii) = Xt+h., can be computed as described by (3.9) in Sections 3.2.

If the Xt and ut processes are normal, then the /i-step ahead forecast error erih) is 
normal, and an interval forecast can be obtained. For example, a 95% interval forecast is 
given by

/t(/i) ± 1.965£7[er(/i)], (4-15)
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where SE[eT(h)] is the standard error of forecast and depends on the model parameters 
as well as the variances of Xt and u*. As the forecast horizon h increases, forecast variance 
in (4.19) increases and so does the width of an interval forecast.

The fitted transfer function model is

(1 - £)(1 - B12)LOGSHSt = (2.3845 + 2.885254)(1 - BfPRICEt
+ (1 + .21382?)(1 - .9443B12)u<

and that the input model is

(1 - .5899B)(1 - BfPRICEt = (1 - .90105)at.

Multiplying out the transfer function model, we write the h-step ahead forecast function 
at origin T as

ET{LOGSHST+h) = ET{LOGSHST+h-\) + ET{LOGSHST+h-12)
— Et(LOGSH Sr+h-iz) + 2.38A5Et(PRIC Et+k)

- 4.7690ET(PRIGEr+h-i) + 2.3845ET{PRICET+h-2)

+ 2.8852Et(PRIC Er+h-e) + E{uT+h)

+ .2138E(«7’+a_i) - .9443jB(ur+/,_i2)
■+.2019JS(tir+&-13), (4-16)

where Et\-\ stands for conditional expectation. Conditional expectations of the price 
series are obtained from its univariate ARIMA model as

EriPRICEr+h) = 2.5899ET(PRICET+h-i) + 2.1798ET(PRICET+h-2)

— .5899Et(PRICEt+hs) ~ ^T(aT+fc)

— .9018£/r(o'T+/i-i). (4-17)

Forecasts and their related statistics obtained from (4.16) are shown in Table 4.4(A) for 
lead time h = 1,2,..., 12. They correspond to forecasts made at December 1988 for the 
twelve months of 1989. Standard errors of forecasts, actual values, and forecast errors are 
in the next three columns. Forecast errors as percentage of actual values range in absolute 
value from .446 for October 1989 to 4.503 for June 1989. Although the turning points were 
reasonably well forecast, forecasts were consistently above the actual values. We should 
note that in computing these forecasts of housing starts, forecasts of the housing price 
index obtained from the ARIMA(1,2,1) model in (4.17) were used as the input.

For comparison, we have generated twelve-month ahead forecasts of housing starts using 
a univariate ARIMA model in (4.7):

(1 - B)(l - B12)LOGSHSt = (1 - .9548£)ut.
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Forecasts and their related statistics from this model are presented in Table 4.4(B).

Define the mean absolute percentage error of forecasts and the root mean square per­
centage error of forecasts, respectively, as

where Ft and At are the forecast and actual values and n is the number of forecasts; 
MAPE’s are 19.22 and 12.50 for the transfer function and ARIMA forecasts, respectively, 
while RMSPE’s are 56.89 and 42.95, respectively. Clearly, the transfer function model did 
not forecast as well as the ARIMA model.

We note in Table 4.4(B) that the standard errors of forecasts are larger for the transfer 
function model than for the univariate model for all lead times except for h = 1. We would 
expect that the transfer function model should improve short-term forecasting performance 
by taking account of the additional information contained in the input series. However, 
the forecasts of the input must be used rather than the actual observations at longer leads.

Forecasts based on a transfer function model should be more accurate than those based 
on a univariate model (1) if the input variables explain a significant proportion of variation 
in the output variable and (2) if the input variables can be forecast accurately. Although 
the fitted transfer function (4.16) explains a higher proportion of housing starts than the 
univariate ARIMA model, the influence of the housing price on the starts does not seem to 
be strong enough to yield forecast improvement through the transfer function modelling.

As a forecasting tool the transfer function model has the following advantages:

(1) It generates accurate forecasts at least for the short run;
(2) Using information contained in other related series, the transfer function model can 

generate more accurate forecasts than the univariate ARIMA models; and
(3) It is possible to estimate a transfer function model using data up to any point in 

the past and produce forecasts at any horizon so that forecasting accuracy of the 
model can be checked.

On the other hand, a few drawbacks have to be considered.

(1) Forecasting with a transfer function requires forecasts of the input variables. Fore­
cast errors in the input variables may make the forecasts from the transfer function 
model very inaccurate.

(2) Like the conventional econometric model the transfer function model requires that 
the input variables be exogenous. If the input variables are not exogenous, transfer 
function modelling and forecasting are invalid.

MAPS = E^iiopKAt-FOM,!
n

and
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Table 4.1 58

(A) SUMMARY OF AN ARIMA MODEL OF HOUSING STARTS
(Single-Family Units in Common Log, d = D = 1)

VARIABLE TYPE OF ORIGINAL DIFFERENCING
VARIABLE OR CENTERED

1 12
LNSHS RANDOM ORIGINAL (1-B ) (1-B )

PARAMETER VARIABLE VALUE STD T
LABEL NAME ERROR VALUE

1 THETA12 LOGSHS .9548 .0739 12.92

TOTAL SUM OF SQUARES.......................................................449533E+01
TOTAL NUMBER OF OBSERVATIONS .... 96
RESIDUAL SUM OF SQUARES.............. .257596E+00
R-SQUARE...................................................... .931
EFFECTIVE NUMBER OF OBSERVATIONS . . 83
RESIDUAL VARIANCE ESTIMATE..................................... 322404E-02
RESIDUAL STANDARD ERROR..................................................567807E-01

(B) SUMMARY OF AN ARIMA MODEL OF HOUSE PRICE INDEXES 
(Base = 1981 in Common Logarithm, d = 2)

VARIABLE TYPE OF ORIGINAL
VARIABLE OR CENTERED

PRICE RANDOM ORIGINAL

DIFFERENCING

1 1 
(1-B ) (1-B )

PARAMETER VARIABLE VALUE STD T
LABEL NAME ERROR VALUE

1 THETA PRICE .9010 .0563 16.01
2 PHI PRICE .5899 .1092 5.40

TOTAL SUM OF SQUARES.......................................................126748E+01
TOTAL NUMBER OF OBSERVATIONS .... 96
RESIDUAL SUM OF SQUARES.................................... .188733E-02
R-SQUARE............................................................................ .998
EFFECTIVE NUMBER OF OBSERVATIONS . . 93
RESIDUAL VARIANCE ESTIMATE ..... .202938E-04
RESIDUAL STANDARD ERROR............................. . .450487E-02



Table 4.2 59
SUMMARY OF A TRANSFER FUNCTION OF HOUSING STARTS 

(Single-Family Units in Common Log, d = D = 1)

VARIABLE TYPE OF 
VARIABLE

LNSHS . RANDOM

PRICE RANDOM

ORIGINAL 
OR CENTERED

ORIGINAL

ORIGINAL

DIFFERENCING

1 12 
(1-B ) (1-B )

1 1 
(1-B ) (1-B )

PARAMETER VARIABLE VALUE STD T
LABEL NAME ERROR VALUE

1 WO PRICE 2.3845 .9157 2.60
2 W4 PRICE 2.8852 1.0610 2.72
3 THETA1 LOGSHS -.2138 .1079 -1.98
4 THETA12 LOGSHS .9443 .0732 12.90

TOTAL SUM OF SQUARES ..........................................
TOTAL NUMBER OF OBSERVATIONS . . . . 
RESIDUAL SUM OF SQUARES.......
R-SQUARE .............................................................................
EFFECTIVE NUMBER OF OBSERVATIONS . .
RESIDUAL VARIANCE ESTIMATE ........................
RESIDUAL STANDARD ERROR...................................

.449533E+01 
96

. 239441E+00 
.938 

83
. 288484E-02 

. 537107E-01



Table 4.3 60
CROSS-CORRELATIONS BETWEEN PREWHITENED PRICE INDEXES

AND TRANSFER FUNCTION RESIDUALS

TIME PERIOD ANALYZED 14 TO 96
NAMES OF THE SERIES RX RY
EFFECTIVE NUMBER OF OBSERVATIONS . . 83 83
STANDARD DEVIATION OF THE SERIES . . .0044 . 0486
MEAN OF THE (DIFFERENCED) SERIES . . .0004 . 0040
STANDARD DEVIATION OF THE MEAN • • • .0005 . 0053
T-VALUE OF MEAN (AGAINST ZERO) • • • .9134 .7536
CORRELATION BETWEEN RY AND RX IS .02
CROSS CORRELATION BETWEEN RX (T) AND RY(T-L)
1-12 -.07 .15 -.07 -.16 .09 .22 --.08 .07 -.08 -.07 .03 -.00
ST.E. .11 .11 .11 .11 .11 .11 .11 . 12 .12 .12 .12 . 12
13-24 .17 - .00 -.13 .05 .02 -.07 .09 .05 -.08 -.03 -.15 .02
ST.E. .12 .12 .12 .12 .12 .12 .13 . 13 .13 .13 .13 .13
25-36 -.14 .18 -.00 -.08 -.07 -.10 .05 .10 .09 .05 -.14 .01
ST.E. .13 .13 .13 .13 .14 .14 .14 . 14 .14 .14 .14 .15
CROSS CORRELATION BETWEEN RY (T) AND RX(T-L)
1-12 -.06 .06 -.13 -.03 -.09 .01 --.13 .10 -.18 -.04 -.10 .04
ST.E. .11 .11 .11 .11 .11 .11 .11 .12 .12 .12 .12 .12
13-24 .11 .00 -.09 .11 -.11 .12 .03 - .06 .01 i01 -.04 -.02
ST.E. .12 .12 .12 .12 .12 .12 .13 .13 .13 .13 .13 .13

25-36 .02 - .01 .02 -.09 .06 -.02 .02 .03 .01 -.03 -.00 -.04
ST.E. .13 .13 .13 .13 .14 .14 .14 .14 .14 .14 .14 .15



Table 4.4 61

TWELVE-MONTH AHEAD FORECASTS OF HOUSING STARTS 
(In Common Logarithm)

(A) Based on a Transfer Function Model

TIME FORECAST STD ACTUAL ERROR PERCENT SQUARED
1989 ERROR VALUE ERROR % ERROR

Jan 3.824 .0548 3.770 -.054 -1.444 2.086
Feb 3.737 .0855 3.699 -.038 -1.038 1.078
Mar 3.842 .1076 3.803 -.040 -1.045 1.093
Apr 4.038 .1259 4.285 -.064 -1.612 2.600
May 4.149 .1428 4.067 -.082 -2.022 4.087
Jun 4.197 .1574 4.016 -.181 -4.503 20.275
Jul 4.081 .1706 3.985 -.096 -2.406 5.788
Aug 4.032 .1828 3.998 -.033 -.836 .699
Sep 4.011 .1942 3.943 -.068 -1.721 2.961
Oct 3.952 .2050 3.934 -.018 -.446 .199
Nov 3.942 .2152 3.902 -.040 -1.030 1.061
Dec 3.869 .2249 3.827 -.043 -1.118 1.251

(B) Based on an ARIMA Model

TIME
1989

FORECAST STD
ERROR

ACTUAL
VALUE

ERROR PERCENT
ERROR

SQUARED 
% ERROR

Jan 3.766 .0568 3.770 .004 .104 .011
Feb 3.683 .0803 3.699 .015 .412 .169
Mar 3.768 .0983 3.803 .035 .922 .849
Apr 4.013 .1136 3.974 -.039 -.971 .943
May 4.141 .1270 4.067 -.073 -1.804 3.254
Jun 4.119 .1391 4.016 -.103 -2.558 6.542
Jul 4.026 .1502 3.985 -.041 -1.020 1.041
Aug 4.002 .1606 3.998 -.003 -.081 .007
Sep 3.974 .1703 3.943 -.031 -.795 .632
Oct 3.973 .1796 3.934 -.038 -.973 .946
Nov 3.955 .1883 3.902 -.053 -1.358 1.844
Dec 3.884 .1967 3.827 -.057 -1.501 2.252



Figure 4=1 Single-Family Housing Starts in Common Logarithm
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Figure 4.2 Housing Price Index (Base=1981) in Common Logarithm
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CROSS-CORRELATIONS BETWEEN PREWHITENED PRICE INDEXES 
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Figure 4.4 (A) 65
SAMPLE AUTOCORRELATIONS OF TRANSFER FUNCTION RESIDUALS

TIME PERIOD ANALYZED ..............................
NAME OF THE SERIES ...................................
EFFECTIVE NUMBER OF OBSERVATIONS 
STANDARD DEVIATION OF THE SERIES 
MEAN OF THE (DIFFERENCED) SERIES 
STANDARD DEVIATION OF THE MEAN .

96
RY
83

0486
0040
0053

T-VALUE OF MEAN (AGAINST ZERO) • • 4 • .7536

1-12 -.06 -.03 -.08 .12 .11 -.04 -.10 -.10 -.11 .04 .06 -.17
ST. E. .11 .11 .11 .11 .11 *11 .11 .12 .12 .12 .12 .12
Q .4 .4 1.0 2.3 3.4 3.5 4.4 5.3 6.5 6.7 7.1 10.0

13-24 .02 .08 .10 -.07 -.15 -.01 .03 .18 -.00 -.09 -.12 .04
ST. E. .12 .12 .12 .12 .12 .13 .13 .13 .13 .13 .13 .13
Q 10.1 10.8 11.9 12.5 15.0 15.0 15.1 18.6 18.6 19.6 21.3 21.5
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SAMPLE PARTIAL AUTOCORRELATIONS OF TRANSFER FUNCTION RESIDUALS

Figure 4.4 (B) 66

1-12 l o • o> -.03 -.09 .11 .12 -.03 -.08 - .11 -.17 -.00 .09 -.14
ST.E. .11 .11 .11 .11 .11 .11 .11 .11 .11 .11 .11 .11

13-24 .06 .12 .05 -.07 -.17 -.09 -.04 .20 .09 .01 -.08 -.11
ST.E. .11 .11 .11 .11 .11 .11 .11 .11 .11 .11 .11 .11

25-36 -.06 -.12 .00 .04 .06 .13 -.07 .00 .02 -.05 .10 -.10
ST.E. .11 .11 .11 .11 .11 .11 .11 . 11 .11 .11 .11 .11

-1. 0 -. 8 -. 6 -. 4 -. 2 .0 .2 .4 .6 .8 1.0
+■------- +.——+■------- +•------- +•---------1----- —+- —---- 1—------- 1—------ +---------1-
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24 -.11 + XXXI +



Figure 4.4 (C)
SAMPLE AUTOCORRELATIONS OF TRANSFER FUCNTION NOISES

67

TIME PERIOD ANALYZED............................................... 14 TO 96
NAME OF THE SERIES..................................................... NT
EFFECTIVE NUMBER OF OBSERVATIONS ... 83
STANDARD DEVIATION OF THE SERIES . . . .0805
MEAN OF THE (DIFFERENCED) SERIES . . . .0043
STANDARD DEVIATION OF THE MEAN .... .0088
T-VALUE OF MEAN (AGAINST ZERO) .... .4857
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Figure 4.4 (D) 68

SAMPLE PARTIAL AUTOCORRELATIONS OF TRANSFER FUCNTION NOISES

1-12
ST.E.
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5. FORECASTING WITH A VECTOR AUTOREGRESSIVE MODEL

In macroeconomic modelling the vector autoregressive (VAR) model, proposed by Sims 
(1980), has been considered as a viable alternative to the conventional simultaneous- 
equation econometric model (SEM). One may regard the VAR model as a reduced form 
in which each endogenous variable is regressed on its own past values as well as the past 
values of other variables in the system. Further, a VAR model may serve as a practical 
method of forecasting particularly in the absence of firm a priori theory concerning model 
specification.

Two extensions of the Sims VAR system have been proposed in the literature. One 
refinement of it, proposed by Hsiao (1981) reduces the number of parameters to be esti­
mated in a VAR model. Unlike the Sims VAR in which all the variables in the system 
share a common lag, the Hsiao system allows the variables in the system to have different 
lag lengths in each equation. A second extension to Sims’s work is found in the Bayesian 
approach of Litterman (1979) in which a priori information about the model parameters 
is incorporated into model estimation.

In this chapter we investigate the VAR models. We first illustrate the three types of 
VAR models by building bivariate VAR systems of Canadian housing starts and mortgage 
approvals. We then compare their forecasting abilities by examining their ex post forecasts.

5.1 The Sims VAR System

Suppose that there are M related time series of interest. A set of joint observations on 
them at time t may be denoted by an M x 1 vector x* = (Xti,Xt2,. • • ,XtM)'- The data 
at hand consists of T joint observations Xi,X2,... 3Xt- A vector autoregression of order p 
is defined by

x< = $iXt_i + • • • + $pXi_p 4- Ut, (5,1)

where
^n,« •••

• • •

•••

is an M X M coefficient matrix. The random disturbance term u< is a vector white noise 
with mean zero and covariance matrix E.

A typical equation in a VAR(p) system may be expressed algebraically as

Xtj = H-------H
4------ f- 4------ h
4- utj, (5.2)
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where the number of <f> coefficients is M p. Note that all M variables are treated sym­
metrically in that each variable is determined by its own lagged values and the lagged 
values of other variables (i.e., cross lags) in the system. Thus the system looks like a set 
of multiple linear regressions containing the same set of regressors, and each equation may 
be estimated separately by conditional least squares.

We have built a bivariate VAR model of Canadian housing starts and mortgage ap­
provals. The data used are 252 monthly observations from January 1968 to December 
1988 of Canadian housing starts (CANSIM index D84975) and the conventional mortgage 
loan approvals (CANSIM index D2653). The starts series is the same one as that used 
in Chapter 3 for ARIMA modelling. Natural logarithms of both series were differenced 
consecutively and seasonally once each to induce their stationarity.

Although the Sims VAR system is easily estimated by least squares, no specific guide 
is available for selecting the number of lags to include. Since the variables exhibit strong 
seasonality, a large value of p is needed for the estimated model to pick up the seasonal 
effect. However, the degrees of freedom available for estimation deplete rapidly as the 
order p increases. Using Akaike’s (1974) AIC criterion, we have set the order of VAR to 
be p = 36. The number of parameters to be estimated in an equation is then a total of 73 
including the constant term.

Estimation results are presented in Table 5.1.® Own lag coefficient estimates are found 
to be statistically significant at lower and seasonal lags while most cross lag coefficient 
estimates are insignificant even at seasonal lags. Except for those from the recent past 
the lagged values of mortgage approvals do not appear to help explain housing starts. 
Forecasts from the fitted VAR model will be discussed in Section 5.4.

5.2 The Hsiao VAR System

Most VAR models used in macroeconometrics include several endogenous variables and 
several lagged values for each variable. The main disadvantage of VAR models is that 
the number of parameters to be estimated increases very fast as one increases the number 
of variables and/or lagged values. Hsiao’s (1981) refinement on the Sims VAR mitigates 
the degrees-of-freedom problem by allowing the lag lengths of different variables in each 
equation to be different. In fact, there is no a priori reason why all the variables have a 
common lag length in all equations in the model.

Let Xi be the first endogenous variable in the system, for example, the housing starts 
series of above. Following Hsiao’s modelling strategy, we initially specified the housing 
starts equation as the autoregression

Xti = <i>n(B)Xti + un, (5.3) 8

8The RATS program, Version 3.1, of VAR Econometrics was used for vector autoregression estimation 
reported in this chapter.
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where <f>u(B) is a polynomial in the operator B. The order p of <f>u(B) was determined 
by minimizing Akaike’s (1969, 1970) FPE over a range of possible orders from 1 to 48:

FPE(p)=* + PpSSX(p\

where T = 227 is the number of effective observations after differencing and SSR(p) is the 
sum of squared residuals from the fitted AR(p) model. The minimum FPE = 0.02935 was 
obtained when the lag was 36. The intercept term was omitted in the autoregression since 
it was not significant in the Sims VAR model.

Once the order of autoregression was set, the second variable of the system X2, the 
mortgage approvals, was added to the autoregressive equation (5.3) to obtain the bivariate 
relationship of the form:

Xti = <}>ii(B)Xti + <j>\2{B)Xt2 + ut\. (5-4)

The order of <j>\2{B) of X2 was then determined by minimizing FPE over a range of pos­
sible orders from 1 to 48 while the order of <f>ii{B) of X\ was held fixed at the previously 
determined 36. If FPE in the bivariate regression were not less than that in the autore­
gression of Xi, then the mortgage approvals variable X2 would not have helped forecast 
the housing starts variable Xi (i.e., X2 does not “Granger-cause” Xi), and X2 would 
have been discarded from the Xi equation.9 The minimum FPE = 0.02647 was achieved 
with the cross lag length of 22. The optimal length of own lags was then re-evaluated by 
re-estimating (5.4) for a range of possible orders from 1 to 48 while keeping the length of 
cross-lags fixed at 22. The minimum FPE was found to remain at the same order of 36 for 
own lags as before.

The regression equation for mortgage approvals was determined similarly. The minimum 
FPE = 0.05364 was found when the order of own lags was 36 and that for cross lags 8.

The Hsiao system identified above has turned out to have the same length of own 
lags as the Sims VAR, but, as expected, the cross lags are much shorter in the former 
than in the latter. The estimation results of the two-equation system by Zellner’s SUR 
method is presented in Table 5.2. As in the case of the Sims VAR, coefficient estimates 
of own lags are significant at lower and seasonal lags. Many cross lags have been omitted 
at the model specification stage by the criterion of minimizing FPE. Standard errors of 
coefficient estimates in the Hsiao VAR are found much smaller than those in the Sims 
VAR. Overfitting and underfitting the lags in the system indicated that the fitted model 
was adequate.

5.3 The Bayesian VAR System

In the Bayesian approach to VAR modelling forecasters specify a model like (5.1) with a 
computationally feasible long lag and impose some form of Bayesian priors on all coefficients

9Building a VAR model of housing starts and mortgage rates was abandoned because the mortgage rates 
were found to not “Granger-cause” housing starts.
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in the system. We have built two Bayesian VAR models of housing starts and mortgage 
approvals, and we present them in this section. For surveys of recent developments in 
the Bayesian VAR modelling see Todd (1984), Doan, Litterman, and Sims (1984), and 
Litterman (1986b).

In the first Bayesian VAR model of housing starts and mortgage approvals we employ the 
same dependent variables as in the Sims and Hsiao system, i.e., the stationary differenced 
series. Since the variables are in differences, we have introduced the priors around the 
specification of a white noise process with a drift:

At,-= 6 + = 1,2. (5.5)

Very little is known a priori about the drift parameters, and we use noninformative priors 
for them. When compared to (5.1), the white noise specification in (5.5) implies that all 
lag coefficients are equal to zero. For the lag coefficients in each equation, therefore, we 
employ independent normal priors with zero means. Their prior standard deviations are 
not unique in specification.

The basic type of prior standard deviations would be based on the notion that the more 
recent values of a variable are more likely to contain useful information for forecasting than 
the less recent values. Thus the prior standard deviations are specified with the following 
characteristics:

(1) They decrease as the lags increase; and
(2) They are larger for the own lag coefficients than the cross lag coefficients of other 

variables in the system.
One can specify prior standard deviations with such characteristics in terms of a few 
“hyper-parameters”:

s(hhh) ='r9(h)f(ij)(si/sj), (5.6)

where s(i,j, h) is the prior standard deviation for the h-th. lag coefficient of the j-th variable 
in the i-th equation; s; and sj are the standard errors of autoregressions of variables i and 
j, respectively; g(h) is the decay parameter for the tightness on lag h relative to the first 
lag [ <7(1) = 1]; and 7 is the overall tightness, which is equal to the standard deviation of 
the first own lag.

The above basic type of the prior standard deviations applies to variables which are non- 
seasonal or which have been seasonally adjusted. Since the decay in standard deviation 
with an increasing lag may dampen the parameter estimates at the important seasonal 
lags, we have decided to set g(h)=l for all lags; i.e., the prior standard deviations do not 
decay with lags. The standard deviations are then

s(i,j,/i) = 7/(i,j)(sf/sj) (5-7)

and
if i = j
otherwise.
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Given the values of the two hyper-parameters 7 and u;, the priors and the data axe combined 
to estimate a VAR model of (5.1) using Theil’s mixed estimation method or Zellner’s 
seemingly unrelated regression (SUR) procedure. Although the SUR approach yields a 
gain in efficiency, we have used Theil’s method for computational ease.

The hyper-parameters are not specified a priori but chosen empirically by searching 
over a range of their possible values and using a forecast criterion. Given a pair of values 
for 7 and u, the model parameters are estimated, and the fitted VAR is used to make 
post-sample forecasts. As a selection criterion we have used the mean absolute percentage 
error (MAPE) or the root mean square percentage error (RMSPE) of one to ten period 
ahead forecasts.10

With a limited search over possible values of 7 and u>, the minimum values of MAPE = 
7.22 and RMSPE = 8.61 were obtained at 7 = 0.5 and oj = .2. A finer grid search over 
the 7 and u> parameters would have provided a smaller MAPE or RMSPE, but was not 
attempted due to the time constraints. It was noted, however, that forecasting performance 
was not overly sensitive to changes in the u parameter.

Table 5.3 presents the Bayesian VAR model fitted with the values of hyper-parameters 
as given above. Note that most coefficient estimates are not statistically significant from 
the prior means of zero except for a few at the first own lags or own seasonal lags. Standard 
errors of coefficient estimates are found to be smaller than those in the fitted Hsiao VAR.

We have also attempted an alternative Bayesian VAR formulation. Recall that we have 
transformed the data to induce stationarity in the preceding three VAR models. Such 
transformation may not be needed in a VAR. Fuller (1976, p.374) shows that no gain in 
asymptotic efficiency is achieved in autoregression by differencing even when the series 
are integrated. Furthermore, when different series have different orders of integration, 
differencing does not provide a satisfactory way of building VARs of nonstationary time 
series [Harvey (1989), p.469]. Thus we have also built a Bayesian VAR of the series in 
levels and used the priors on the model parameters around the random walk with drift 
model:

At,-= £ + At-i,,-+ Ut,-. , (5.8)

The prior mean of the coefficient of the first own lag is set to be one. The prior means for 
all other parameters axe set to zero.

The seasonality in the series was treated as being deterministic and by including 12 
monthly dummy variables in the system. This is an approach advocated by Doan (1990). 
Noninformative priors are employed for the coefficients of the seasonal dummies. The prior

10We have used the chosen criterion due to time and computational constraints. One could compute 
MAPE or RMSPE for each variable using many forecasts at each forecast horizon, and choose the values 
of the hyper-parameters on the basis of the best overall results. Doan, Litterman, and Sims (1984) suggest 
that a search be made for the values of hyper-parameters that would minimize the sum of one-step-ahead 
RMSPE.
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standard deviations of other parameters were set to follow a normal harmonic decay so 
that g(h) = l/hm (5.5).11

The final fitted model chosen after a limited search over the possible values of the hyper­
parameters 7 and u is presented in Table 5.4. The values of 7 = 2.5 and u; = .3 gave the 
minimum values of MAPE = 7.06 and RMSPE = 8.83. It is interesting to note that 
the coefficients of cross lags as well as own lags are significant at the first and/or second 
lags in both equations. Mortgage approvals do help explain the variations in housing 
starts. Further, none of the coefficient estimates at seasonal lags are significant. Seasonal 
variations in the series appear to have been captured adequately by the seasonal dummies.

5.4 Forecasting Performances of VAR Models

Given a VAR model, one can use it to obtain the joint forecasts of all variables in the 
system. As in the case of univariate ARIMA and transfer function models, the expectations 
of ~x.T+h conditional upon the history Xt of the vector process up to time T is the optimal 
h-period ahead forecast in the sense of the minimum mean square error:

iT(h) = EtIxt+IiIXt],

where fr(h) is the optimal h-step ahead forecast and Et is the conditional expectation 
operator, both at time T. We can recursively calculate the h-step ahead forecasts from

fr(h) = Erix-T+h)
= - 1) + ■ • ■ + *PfT(h -p), h = 1,2,... (5.9)

where fr(h — 0 = xT+fc-i f°r i>h.

If the random errors are a normal white noise process, forecast errors are also normal:

xr+i-fT(k)~J'T[0,S(<l)]. (5-10)

where E(/i) is the forecast error covariance matrix which depends on the $j’s among 
others. Hence one can construct a confidence region for a set of forecasts or for a single 
point forecast. For example, a 95% confidence interval forecast for a single component of 
XT+h can be obtained from (5.10) as

/r (h)± 1.96<Tm(h),

where f^{h) is the m-th component of fr(^) and crm(h) is the standard deviation of the 
point forecast and equal to the square root of the m-th diagonal element of E(h).

11 Raynauld and Simonato (1988,1990) tried to modify the features of the basic Bayesian VAR methodology 
to account for the seasonal components in the times series. Their so-called “toothsaw” pattern of decay was 
also tried, but the fitted VAR did not perform as well in forecasting as the one fitted with a simple decay. 
No decay in standard deviations was also tried. Unlike in the case of a VAR in differences, forecasting 
ability was not as good as in the case of the reported the Bayesian VAR with decay..
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In practice, the parameters of the VAR model are unknown and estimated. We may 
replace the unknown parameters in the forecast expressions, and the forecast intervals thus 
obtained axe only approximate 95% forecast intervals.

In order to assess the forecasting performance of the VAR models, ARIMA forecasts 
of housing starts in 1989 were obtained. The ARIMA model fitted with the data from 
January 1968 to December 1988 is similar to “Model 2” in Chapter 3 except that the 
AR(1) term is now omitted:

(1 + .2383B12 + .1227B24 + .2557R36)(1 - B)(l - B12)LOGHSt 
= (1 - .2043B)(1 - .546LB12)ut. ,

All coefficient estimates are significant except the seasonal AR(2) parameter estimate. 
Various diagnostic checks indicated that the fitted model was adequate.

Table 5.5 presents the one- to ten-month ahead forecasts of housing starts (in levels) 
based on the four VAR models as well as those based on the above ARIMA model. Actual 
ARIMA forecast errors ranged in absolute value from 0.68% for the ten-month ahead 
forecast for October 1989 to 11.35% for the eight-month ahead forecast for August 1989. 
Although the one-month ahead forecast is poor and off by 11%, ARIMA forecasts do not 
appear to deteriorate as the forecast horizon increases.

The Sims VAR has generated very accurate forecasts for a short-term horizon. After 
the three-month ahead forecast, its forecasting ability has deteriorated rapidly and yielded 
forecast errors ranging in absolute value from 9.74 % to 32.47% relative to the actual 
housing starts. In terms of individual forecast errors, MAPE, or RMSPE, it did not 
outperform the simple univariate ARIMA model.

The Sims VAR is easy to specify and estimate. Its main disadvantage as a forecasting tool 
arises from the degrees of freedom problem. When the model includes many parameters 
to estimate, the resulting loss in efficiency of the parameter estimates gives rise to large 
standard errors in forecasts. This loss in efficiency explains the poor performance of the 
Sims VAR in forecasting housing starts of 1989.

The fitted Hsiao VAR model has performed much better than the Sims VAR in fore­
casting. It has generated very accurate forecasts for the short run horizon up to three 
months. Although its forecasts deteriorate as the horizon increases, its forecast errors are 
consistently much smaller than the unrestricted Sims VAR for all forecast horizons from 
four to ten months.

As we have seen in the preceding section constructing a Hsiao VAR model is more costly 
in computing than a Sims VAR; the former gives explicit attention to the lag length of each 
variable in each equation. But Hsiao’s approach reduces the degrees of freedom problem in 
VAR modelling and yields more efficient parameter estimates and more accurate forecasts
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than the Sims VAR. In terms of MAPE and RMSPE, however, it is not found to have had 
an advantage over the univariate ARIMA model in forecasting housing starts.

As discussed in Chapter 2 substantial work has been done in comparing ex ante macroe­
conomic forecasts of large-scale SEMs with ARIMA forecasts. Recently, Litterman (1986) 
and McNees (1986, 1988) have used Bayesian VAR models for forecast comparisons. Lit­
terman finds that forecasts from his small Bayesian VAR model of the U.S. economy are 
as accurate, on the average, as those from the prominent commercial forecasting services 
using elaborate large-scale SEMs. McNees has also similar findings that a small Bayesian 
VAR model of the U.S. economy forecasts very well for some variables, even over long 
horizons.

The Bayesian VAR models of housing starts that we built performed favourably in 
comparison with the other two VAR models. In the difference form it has generated 
forecast errors in absolute value ranging from 0.95% for a 4-month ahead forecast (April 
1989) to 12.17% for a one-month ahead forecast (January 1989). Except for the one- and 
two-month ahead forecasts, the Bayesian VAR has produced forecast errors which are less 
in absolute value than those from the Hsiao VAR. Further, MAPE and RMSPE were much 
smaller for the Bayesian VAR than for the Hsiao VAR.

The Bayesian VAR model in the level form performed as well as that in the difference 
form. Except for the one-month ahead forecast for January 1989, the Bayesian VAR in 
levels seems to have performed better than that in differences in terms of the size of 
individual forecast errors as well as MAPE and RMSPE.

One important advantage of VAR models over the conventional SEM is that one can 
estimate a VAR model using data through any point in the past, produce forecasts as far 
ahead as desired, and check for forecasting accuracy of the model. This is exactly what 
we have done in this chapter.

In contrast to the conventional econometric model all types of VAR models considered 
above share the following strengths as a forecasting tool:

(1) A VAR model does not require judgemental adjustment of model parameters or 
forecasts;

(2) It does not employ a dubious exogeneity distinction among the variables to forecast;
(3) It provides a conceptually straightforward and simple method of generating uncon­

ditional forecasts that do not assume future values of exogenous variables; and
(4) It does not impose controversial theoretical restrictions that the conventional SEM 

may contain.

The Bayesian VAR model performed favourably in comparison with the ARIMA fore­
casts. The main disadvantage of the Bayesian VAR over the ARIMA or the Hsiao VAR is 
that it is by far the most expensive model to construct. Further, the effective treatment of 
seasonality in time series in the Bayesian VAR modelling is still in the exploratory stage
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within the current time series literature. When the methodology of treating seasonally 
develops fully in VAR modelling, the Bayesian VAR forecasts should become a strong 
competitor to the ARIMA forecasts.
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Table 5.1 78

SUMMARY OF A SIMS VAR MODEL OF 
HOUSING STARTS AND MORTGAGE APPROVALS
(1) STARTS EQUATION (2) APPROVALS EQUATION 

VARIABLES VARIABLES
LAG STARTS APPROVALS STARTS APPROVALS
1 -.343* .113* .232* -.101
2 -.318* .173* -.026 -.154
3 -.280* .176* -.050 -.091
4 -.200* .121* -.192 -.019
5 -.146 .109 -.115 -.032
6 -.090 .051 -.257 -.034
7 -.066 .040 -.145 .058
8 .007 .011 -.076 -.021
9 -.137 .054 -.005 . 137

10 .038 -.115 -.111 . 017
11 -.029 .083 -.069 .043
12 -.689* -.034 -.058 -.581*
13 -.317* .028 -.043 -.030
14 -.145 .089 .049 -.245*
15 -.174 . 104 .030 -.014
16 -.185 .036 -.121 -.093
17 -.036 .066 -.018 -.133
18 -.107 .077 -.043 -.078
19 -.040 -.080 -.016 -.127
20 . 141 -.110 -.067 -.214*
21 -.046 -.054 -.153 .021
22 .054 -.110 -.153 -.023
23 -.005 .028 -.149 .181
24 -.289* -.032 -.130 -.286*
25 -.159 .039 -.051 .005
26 -.031 .023 .020 -.085
27 -.153 .011 .015 .061
28 -.114 -.017 -.024 . 034
29 -.045 .024 -.059 .007
30 -.042 .062 .102 -.065
31 -.104 -.027 .077 -.146
32 .036 .019 .112 -.181
33 -.051 .003 .002 -.105
34 -.129 .017 .012 -.097
35 .007 .045 .046 . 159
36 -.321* .011 -.150 -.258*

CONSTANT .002 R**2=. 
SEE =.

634
1539

-.001 
R**2=. 
SEE =.

534
2256

Note: The asterisk * indicates that the coefficient estimate is
significant at the 0.05 level of significance.



Table 5.2 79
SUMMARY OF A HSIAO VAR MODEL OF 

HOUSING STARTS AND MORTGAGE APPROVALS
(1) STARTS EQUATION (2) APPROVALS EQUATION 

VARIABLES VARIABLESLAG STARTS APPROVALS STARTS APPROVALS
1 -.388* .102* .172* -.147*2 -.329* .181* -.089 -.150*
3 -.246* .148* -.116 -.1284 -.127 .088 -.169 -.042
5 -.096 .051 -.194* -.002
6 -.090 -.011 -.323* -.0667 -.089 .041 -.214* .0568 -.064 .042 -.187* .0329 -.178* .084 .115

10 -.015 -.084 .023
11 -.004 .064 .052
12 -.683* -.006 -.598*
13 -.332* -.013 -.088
14 -.125 .085 -.209*
15 -.102 .075 -.027
16 -.085 .013 -.112
17 .004 .037 -.118
18 -.083 .012 -.155*
19 -.060 -.085 -.128
20 .119 -.129* -.198*
21 -.011 -.074 -.052
22 .049 -.129* -.060
23 .055 .144*
24 -.254* -.346*
25 -.133* -.057
26 -.030 -.073
27 -.119* .027
28 -.096 .048
29 -.022 -.044
30 -.015 -.036
31 -.085 -.064
32 -.073 -.099
33 -.018 -.066
34 -.129* -.046
35 -.003 .185*
36 -.294* -.257*

R**2=. 652 R**2=. 518
SEE =. 1457 SEE =. 2122

Note: The asterisk * indicates that the coefficient estimate is
significant at the 0.05 level of significance.



Table 5.3 80

SUMMARY OF A BAYESIAN VAR MODEL OF 
HOUSING STARTS AND MORTGAGE APPROVALS 

(IN DIFFERENCES)
(1) STARTS EQUATION (2) APPROVALS EQUATION 

VARIABLES VARIABLESLAG STARTS APPROVALS STARTS APPROVALS
1 -.081* .001 .001 -.0292 -.041 .005 -.003 -.0313 -.018 .001 -.002 -.042
4 -.021 -.000 -.002 -.009
5 -.043 .001 .002 -.024
6 .007 -.001 -.006 -.0297 .009 .002 -.003 .024
8 -.002 .002 -.001 -.0009 -.027 .002 .005 .048

10 .037 -.003 -.002 .012
11 -.030 .002 .001 -.01512 -.275* -.004 -.002 -.238*
13 -.047 -.002 -.010 -.001
14 .022 -.001 .003 -.056
15 .003 .001 .000 .024
16 -.009 -.001 -.000 .005
17 .018 .001 -.000 -.034
18 -.029 .001 .004 .019
19 -.010 -.003 .001 -.004
20 .056 -.004 .006 -.048
21 -.002 .000 -.005 -.020
22 .016 .001 -.003 .024
23 .029 .001 -.002 .075
24 -.023 .002 .002 -.057
25 -.007 .003 .003 .013
26 .011 -.001 -.001 .03227 -.036 -.003 . 001 . 008
28 -.002 -.001 -.000 .003
29 .012 -.000 -.005 .009
30 .022 .002 .002 .003
31 -.028 .001 .000 -.029
32 .026 .004 -.002 -.007
33 -.008 -.001 .002 .006
34 -.073 .001 .000 -.019
35 .033 -.002 .005 .063
36 -.134* -.002 -.007 -.097*

CONSTANT -.002
R**2=. 355

-.002
R**2=. 296

SEE =. 1705 SEE =. 2316
Note: The asterisk * indicates that the coefficient estimate is

significant at the 0.05 level of significance.



Table 5.4 81

SUMMARY OF A BAYESIAN VAR MODEL OF 
HOUSING STARTS AND MORTGAGE APPROVALS 

WITH SEASONAL DUMMY VARIABLES 
(IN LEVELS)

(1) STARTS EQUATION (2) APPROVALS EQUATION 
VARIABLES VARIABLES

LAG STARTS APPROVALS STARTS APPROVALS

1 .619* .086 .213* .825*
2 .011 .144* -.225* -.011
3 -.025 -.064 .047 .010
4 .088 -.020 -.088 .038
5 -.041 .071 .039 -.023
6 .030 -.064 -.063 -.009
7 .043 -.004 .081 .082
8 .075 -.012 .023 -.050
9 -.065 -.006 .021 .093

10 .070 -.056 -.000 .079
11 .031 .027 -.004 .059
12 -.001 -.044 -.013 -.015
13 -.032 -.008 -.017 -.012
14 .044 .003 .062 -.125
15 -.017 -.000 .015 .151*
16 -.000 .001 .013 -.059
17 -.053 .011 .026 -.057
18 -.085 -.009 .040 .013
19 -.011 -.025 .002 -.036
20 .090 -.003 -.018 -.059
21 -.075 .023 -.055 .012
22 -.023 .015 -.004 .072
23 .092 .009 .001 .114
24 .035 -.002 -.003 -.082
25 -.012 .001 .006 .020
26 -.055 -.008 -.005 -.004
27 -.032 -.002 -.011 .027
28 .021 .009 -.006 .021
29 .014 .010 -.002 -.011
30 -.015 .010 .020 -.009
31 -.048 .009 .006 -.042
32 -.018 .012 -.005 -.026
33 -.022 .004 .003 -.031
34 -.055 .000 .008 .002
35 .082 -.010 .007 .046
36 -.003 

R**2=. 
SEE =.

-.006
880
1246

-.009 -.031
r**2=,848
SEE =.1787

Note: The asterisk * indicates that the coefficient estimate is 
significant at the 0.05 level of significance. All 12 seasonal 
dummies were significant in the starts equation while none of 
them were significant in the approvals equation.



Table 5.5 82

ONE- TO TEN-PERIOD AHEAD FORECAST ERRORS OF 
HOUSING STARTS BASED ON FIVE MODELS

TIME
1989

ACTUAL
VALUE SVAR

FORECAST ERRORS BASED ON 
HVAR BVAR BVAR

(DIFFERENCE)(LEVEL)
ARIMA

Jan 13,678 794
(5.81)

1,056
(7.72)

1,664
(12.17)

2,506
(18.32)

1,504
(11.00)

Feb 9,774 103
(1.05)

-90
(.92)

845
(8.64)

1,087
(11.12)

459
(4.69)

Mar 12,150 -673
(-5.55)

-847
(-6.97)

324
(2.67)

1,227 
(10.09 )

1,066
(8.77)

Apr 17,392 -1,693
(-9.74)

-1,179
(-6.78)

164
(.95)

1,643
(9.44)

816
(4.70)

May 19,127 -6,210
(-32.47)

-3,888
(-20.33)

-2,197
(-11.49)

814
(4.25)

-1,869
(-9.77)

Jun 17,697 -3,926
(-22.19)

-2,894
(-16.36)

-1,106
(t6.25)

-477 
(-2.69) (

-1,863
-10.53)

Jul 16,421 -3,773
(-22.98)

-3,330
(-20.64)

-821
(-5.00)

-204
(-1.24)

-661
(-4.03)

Aug 1,543 -4,635
(-29.94)

-3,350
(-21.63)

-2,587
(-16.71)

-22
(-.14)(

-1,757
-11.35)

Sep 16,338 -2,879
(-17.62)

-963
(-5.90)

810
(4.96)

1,526
(9.34)

301
(1.84)

Oct 15,764 -3,244
(-20.58)

-1,268
(-8.04)

532
(3.38)

622
(3.95)

-108
(-.68)

MAPE 
RMS PE

16.79
19.66

11.53
13.53

7.22
8.61

7.06
8.83

6.73
7.72

Note: Figures in parentheses are forecast errors in percentage
relative to the actual.



6. CONCLUSIONS

The primary purpose of this study is to review several model-based forecasting methods 
that may be used for forecasting the housing sector and mortgage markets. The models 
considered are (1) the simultaneous-equation econometric model (SEM), (2) the univariate 
autoregressive integrated moving average (ARIMA) model, (3) the transfer function (TF) 
model, and (4) the vector autoregression (VAR) model.

Regardless of which model one uses for forecasting, there are common issues in its 
construction and maintenance:

(1) specification of equation(s) in the model guided by the data and, in the case of an 
econometric model, also by relevant economic theory;

(2) availability and collection of the data;
(3) initial estimation and evaluation of the model; and
(4) validation of the estimated model—diagnostic checking, ex post forecasting, simu­

lation, and tracking tests of the model.

One has to address these issues very carefully if one wants to build and maintain a reliable 
forecasting model.

Until the 1970s the simultaneous-equation econometric model had been used very widely 
as a macroeconomic forecasting tool. Specification of an econometric model involves ex­
plicit representation of the presumed interdependence and causality relationships among 
the variables in the model. It is with model specification that economic theory plays a role 
in econometric modelling.

Forecasting with an econometric model in practice is not based on the model and data 
alone. A forecaster using an econometric model makes judgemental adjustments to model 
parameters as well as to the model forecasts. It is because of the subjective adjustments 
that (1) forecasts based on an econometric model cannot be duplicated by any other except 
the forecaster and (2) the standard errors of forecasts as a measure of forecast reliability 
cannot be computed for the point forecasts.

There are several reasons why the econometric approach to forecasting may not yield 
reliable forecasts:

(1) One requires forecasts of the exogenous variables to forecast the endogenous vari­
ables. Inaccuracy in the forecasts of exogenous variables causes the conditional 
forecasts of endogenous variables to be inaccurate;

(2) Some variables could be erroneously regarded as being exogenous;
(3) In dealing with unobservable variables like permanent income and expected infla­

tion, one often utilizes their crude proxies in the model; and
(4) Economic theory seldom provides a model builder with a guide as to dynamic spec­

ification. One often includes the lagged endogenous variables in the structural 
equations on an ad hoc basis.

83



In contrast to the structural econometric approach, ARIMA and other time series mod­
els use little economic theory in model specification. Even without being judgementally 
adjusted, however, ARIMA forecasts have been found to perform as well as those judge­
mentally adjusted forecasts based on large elaborate econometric models. Moreover, unlike 
the forecasts based oil an econometric model, one can easily compute standard errors of 
ARIMA forecasts so that a precision measure is attached to point forecasts.

As a forecasting tool, the univariate ARIMA model shares the following strengths with 
other times series models:

(1) It generates very accurate forecasts at least for the short run;
(2) It is possible to estimate an ARIMA model using data up to any point in the past 

and then produce forecasts so that the forecasting accuracy of the model can be 
checked; and

(3) It imposes no controversial theoretical restrictions that the conventional econometric 
model may contain.

Forecasting with an ARIMA model yields forecasts of a single series without using in­
formation contained in other related series. In many forecasting situations in which other 
variables influence the series to be forecast, one can build a transfer function model that in­
corporates more than one time series and explicitly introduces the dynamic characteristics 
of the series.

Forecasts based on a transfer function model may be more accurate than those based 
on a univariate ARIMA model if the input variable explains a significant proportion of 
the variation in the output variable. Note that, as the forecasts of endogenous variables 
require forecasts of exogenous variables in the SEM, the forecasts of the output variable in 
the transfer function model are conditional on the forecasts of input variables. Accuracy 
of the forecasts of the output variable is, therefore, partly affected by that of the forecasts 
of the input variables.

As with the ARIMA and transfer function models, the VAR model is formed from the 
regularity in the movements of time series without appealing to economic theory. Difficul­
ties experienced in the conventional econometric modelling of the housing and mortgage 
markets indicate that, despite or perhaps because of its atheoretical approach, the univari­
ate ARIMA and VAR methods of forecasting are promising competitors to econometric 
forecasting.

Most VAR models of the Sims type in macroeconometrics use several variables and 
include several lagged values for each variable. The number of parameters to be estimated 
in a VAR model increases very quickly as one increases the number of variables and/or 
the order of the model. Hsiao’s refinement on the Sims VAR or the Bayesian procedure 
of VAR modelling should partially mitigate the number of parameters problem in VAR 
modelling. The Bayesian VAR seems to outperform the Sims and Hsiao types of VAR 
models in forecasting.
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As a competitor to the conventional econometric forecasting, the VAR method has the 
following strengths:

(1) It generates very accurate forecasts at least for the short term and maybe for the 
medium term;

(2) Unlike the SEM and the transfer function model, it does not employs a dubious 
exogeneity definition; and

(3) It provides a conceptually straightforward and remarkably simple method of yielding 
forecasts that do not assume any particular values of exogenous variables.

Lawrence Klein (1982) has the view that “VAR models are alright for predictions one 
quarter ahead, but VAR predictions quickly deteriorate so that the conventional models 
offer superior predictions further in the future.” His view does not necessarily apply to 
all forecasting situations. Clearly, forecasting results presented in this report indicate that 
time series models forecast housing starts remarkably well not just up to the three-month 
horizon but at least up to the twelve-month horizon. Housing starts many months ahead 
may not be as much dependent on the observed series as those not so many periods ahead. 
As the forecast horizon increases, therefore, the forecasting ability of an ARIMA model 
may deteriorate rather quickly.

Little is known about the relative performance of alternative methods in long-tem fore­
casting. As the forecast horizon increases, forecasts based on ARIMA, VAR or econometric 
models tend toward the mean of the time series being forecast. It is only because the fore­
caster makes subjective adjustments of the expected future values of exogenous variables 
and the mechanical forecasts of the model that econometric models appear to outperform 
the time series models in long-term forecasting.

When alternatives exist, choices have to me made so that an appropriate forecasting 
method is used for the specific forecasting situation being considered. In Table 6.1 we 
present a ranking of the four forecasting methods in terms of a number of major criteria 
for good forecasts. Some criteria are statistical while others are practical in nature: data 
requirements, ease of model specification, ease of model estimation, time/cost of modelling, 
ease of computing forecasts, computation of standard errors of forecasts, incorporation of 
judgemental adjustments of forecasts, accuracy in short-term forecasting, accuracy in long­
term forecasting, and ease of model updating.

This set of criteria is not exhaustive, and one may add other possible criteria. Nor are the 
criteria necessarily of equal importance in assessing goodness of forecasting methodologies. 
With the shortcomings of a simple average or sum, however, a ranking of the methods 
emerges in the order of ARIMA, TF, SEM, and VAR when the ranks are summed over the 
listed criteria. There is no such thing as the best approach or method. What is important 
is to understand how various forecasting methods differ from each other so that forecasting 
users can make a rational choice for their needs.
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The Bayesian VAR method is not yet fully developed for dealing with seasonality in 
modelling and forecasting. On the other hand, the transfer function modelling approach is 
not very much different qualitatively from the ARIMA modelling. CMHC desires to provide 
short term as well as longer term forecasts of housing and mortgage market variables at a 
fairly detailed level. Building a modest- scale econometric model is the first step toward 
forecasting several key variables at a longer term horizon. ARIMA models can be used for 
short-term forecasting.

*
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Table 6.1 Ranking of Four Forecasting Methods*

Models

Criteria SEM ARIMA TF VAR

Data requirements 4 1 2 3

Ease of specification 3 1 2 4

Ease of estimation 3 1 2 4

Time/cost of modelling 3 1 2 4

Ease of computing forecasts 4 1 2 4

Computation of standard 
error of forecasts®

4 2 2 2

Judgemental adjustments of 
forecasts#

1 2 3 4

Accuracy in short-term 
forecasting

4 2 2 2

Accuracy in long-term 
forecasting

1 3 3 3

Ease of updating 3 1 2 4

Sum of ranks 30 15 22 33

Notes: * Ranking of four models is given by an ordinal 
scale of 1 to 4. The most preferred model is 
given the highest rank 1 while the least pre­
ferred the rank 4.

@ One can but seldom does introduce judgemental 
adjustments of forecasts in time series models.

# Standard errors cannot be computed for SEM fore­
casts due to their judgemental adjustments.
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