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FITTING BOX-COX TRANSFORMATION MODELS TO 
LABOUR FORCE SURVEY DATA 

S. Kumar and J.N.K. Rao 
Statistics Canada and Carleton University 

Box-Cox transformation models are fitted to estimated proportions asso-
ciated with a binary response variable. The survey design is taken into 

account by adjusting the standard chisquare (x 2 ) or the likelihood ratio 
(112 ) test statistic. The methods are applied to some data from the 
October 1980  Canadian Labour Force Survey (LFS). Comparisons are made to 
a previous analysis of the same data utilizing logistic regression models 
(Kurnar and Rao, 1984). 

1. 	INTRODUCTION 

The analysis of variation in the estimated proportions associated with a 

binary response variable is of considerable interest to researchers in social, 

behavioral and health sciences. Logistic regression (or logit) methods for bino-

mial proportions are inappropriate for analysing sample survey data due to clus-

tering and stratification used in the survey design. Kumar and Rao (1984) utilized 

an adjustment to standard X2  or G test, based on certain generalized design 

effects, that takes account of the survey design and analysed some data from the 

October 11980  LFS. The sample consisted of males aged 15 -64 who were in the labour 

force and not full-time students. They arrived at a simple logit model explaining 

the variation in estimated employment rates in the age-by-education cross-clas 

sification. Their model is given by: 

jk - ln[Jk/(l_Jk)] = - 3.10 + 0.2111 A - 0.00218 A + 0.1509 

j- 1, .., 10; 	k 	I, .., 6 

where f 	 is the fitted employment rate in the (j,k) -tb cell of the two-way
jk  

table obtained by dividing the age interval [15, 641 into ten groups [10 + 5j 

11+ + 5j], j - 1, .., 10 and forming the education levels, Ek,  by assigning to 

each person a value based on mCdian years of schooling (Ek - 7, 10, 12, 13, 14 

and 16), and A. is the mid-point of the interval [10 + 5j, 14 + 5j]. 	The 
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' 	fitted unemployment rates 	are more precise than the corresponding
jk  

survey estimates 
1k' 

 especially for cells with a small sample. Moreover, 

the bias of 
1•k' 

 as an estirnat€ of the population proportion 'Jk' should 

be small since the model (1) provided an adequate fit. 

Although the logit model (1) provided an adequate fit, it might be 

worthwhile to explore the possibility of a non-logit model providing a sim- 

pler or better fit. One such model was proposed by Guerrero and Johnson 

(1982) by utilizing a Box-Cox power transformation of the odds ratio 

f./(1-f.), i 	1, .., I s  where I is the total number of cells in a table and 

f 1  is the population proportion of responses in i-th cell. Their model is 

given by: 

= (f/(l-f)) 	- 	I - 1, .. , I 	(2) 

S 
VW I 	x..., 

	

i-i 	ii J 

where 8 is the s-vector of unknown parameters, 	(x 1 .,.., x 1 ) ', with 

Is the s-vector of known constants derived from the factor levels as 
it 

in (1), and 

	

(1nf 1 /l-f 1 	if A 	0 

lf(f/(1fflAj] 	
if x 

The model (2) includes the logit model as a special case (A = 0). 

Guerrero and Johnson (1982) applied model (2) to some data from the National 

Survey of Household Income and Expenditures, Mexico to explain the variation 

in female participation in the Mexican labour force. They found that a value 

of A - -6.63 provided a significantly better fit than the logit model (A - 0). 

However, ,they have ignored the survey design and applied standard methods for 

binomial proportions. 
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In this article, the Box-Cox transformation model is fitted to the 

1980 LFS data on unemployment rates, by taking account of the survey design. 

It is shown that the fitted transformation model is very close to the logit 

model (1) so that the previous logit analysis cannot be improved upon. 

We hope to apply the transformation model to Survey of Consumer Finances data 

on female participatTon rates, and make analysis similar to that of Guerrero 

and Johnson (1982), but adjusting the test statistics to account for the survey 

design. 

2. SUMMARY OF THEORY 

2.1 Estimates of A, 8 and f. 

For general sample designs, it is difficult to obtain appropriate 

likelihood functions. Hence, it is a coninon practice to use a "pseudo" 

maximum likelihood estimate of 6' 	(A, 8 1 ) or f - (f 1 , .., f1 ) 

obtained as the solution of "pseudo" likelihood equations for 8 and 

A given by: 

-1 

	

= E x . [1 + A(x8)) 	w 
I 	I 
(P. - f.)0, 	U - 1,.., S 

u 	uu 	i • 
i-i 	- - 

4) 	 i 	Z( ' ) 2  w 	
i 	

f 1 )=O, A = 0 

i-1 

(Li) 

• - 	8 )(l + A x
'
B ) 	+ • ln(l + Ax

'
8 )

-1 I w(P-fj) = o., 

A i 0, 

where f. 	f.(). 	The equations (4) are obtained from the corresponding 

binomial likelihood equations by replacing n il /n i  by the survey estimate 

P. of f. and n i /n by the corresponding survey estimate, w, of I-th cell 

proportion, where nil 
 is the number of sample responses from i-th cell 

and n is the corresponding sample size (En 1 - n). The solution 
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of (Li)  is obtained iteratively by a quasi-Newton 

procedure. This would require the evaluation of partial derivatives of 

and 4'  with •respect to Band A (A , 0) - see the appendix. The estimate of 

f is given by f 1 	f 1 (8. 

2.2 Estimated Variances and Covariances 

LetV denote the estimated covariance matrix of the survey es-

timates p, and let B be such that 

D(f)D(i-f)B=(afJae) 
	

(5) 

where (fi) is the lx(s+- l) ntrix of partial derivatk.es 

and f./3X evaluated at 6, and D(f) - diag(f 1 , . ., f1), D(-) 

dia(l-f 1 , .., l-f). The formula for (ef/as) is given in the 

Appendix. The estimated covariance matrix of o  is given by: 

V(0) = (B'L B)(B'D(w)VD(W)B)(BB) 1 , 	(6) 

where 	A - diag(w1f1(i-f1), .., w1 f1 (l-f1 )), D(w) 	diag (w 1 , .., w1 ). 

The estimated covariance matrix of fitted proportions, f, can be 

obtained from v(e) as follows: 

v(f) 	D(f)D(l-f)BV(0)B'D(f)D(!-f) 
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' 	The diagonal elements of v(f) provide the variance estimates 

of f. or I - f. 0 	, .., I). 

It is also of interest to find the standard errors of the 

residuals r1a  P. - f. since the standardized residuals r./S.e.(r 1 ) 

may be used to detect any outlying cell proportions. The estimated 

covariance matrix of r 	(r 1 , .., r)' is given by 

= AVA', 	 (8) 

where 

A - I - D(f)D(l-f)B(B'tB) 1 B'D(W) 	 (9) 

and I is the identity matrix. The diagonal elements V 11 (r) of 

(8) provide the variance estimates of r. , I - 1, .. , T.  

2.3 Goodness-of-fit-testS 

The standard chi-squared test of goodness-of-fit of the model 

(2) is given by: 

x2  - n 	
- f.) 2w. 	I 

X 	(say).. 	 (io) 
Il f (1 - f 1 ) 	i-I 

The likelihood ratio test statistic is given by: 

I 	 (l-P1)1 	' 	2 
- 2n Z w.IP Jn-+ (l-P1)ln ---- 	= E C (say), 	(11) 

Il  'L1 	f 	(lf)J 	-1 

where G - -2nw.ln(l-f.) at P. - 0 and G 	-2nw 1 lnf. at P 1  - 1, 
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Under independent binomial sampling, it is well known that both 

and G 2  are asymptotically distributed as a X variable with I - 	- 

degrees of freedom, but for general designs this result Is no longer 

valid. 	In fact, X 2 (or G 
2 
 ) is asymptotically distributed as 

where 6. (i = 1, .., i -  s - I) are certain "generalized design 

effects" and the W. are independent x2  variables each with I degree of 

freedom (d.f.)(Roberts, 1984). Under binomial sampling, 61 for all i and 

E6.W. reduces to x2  with I - s - 1 degrees of freedom. 

A first-order correction to X 2  (or G2) is obtained by treating 

x = x 2 /o or 	- G2 /ó •  as 	with I- s - 1 degrees of freedom 

tinder the hypothesis that the model (2) is true, where 

I 
s - 1)6 	n E v. . ( r)w./[f. 0- 

1=] 

A better approximation is obtained by treating 

2 	c 	
G2 	

c 	2 	l-s-1 
X 

	

	 as x with ') 	

l+a2 	

d.f., 
2 S 

1+a 	1+a 

where 

2 	
I-s-i 

E 62 	 l) 6 2 1/(I_s_06 2  

a 

is the square of coefficient of variation (C.V.) of the 4 . and 

I 	I-..- 	 - 
= 	E VL 

1=1 j=l 

where V..(r) is the (i,j) the element of the covariance matrix of 

V(r). 
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In the logit case (A - 0), Kurnar and Rao (1984) have 

also given a Wald StatIstic for goodness-of-fit of the model 

which is asymptotically x with (1 - 5) d.f. It seems more 

complex to construct a similar Wald Statistic for the goodness-

of-fit of the transformation model (2). 

2.4 Nested Hypothesis 

We are often interested in testing the nested hypothesis 

H:82  = 0 given the model (2): v 1 (X) - x 1i 
 

+ 	i(2)2' 
where 	

l 
 is r x 1 and 82  is q x I and Xi(1) - (x 11 , .., x.), 

x il 
	r+1,i' .., x 1 ), r+q • s. 	The "p5eudo m.l.e." under H are 

obtained from (4) byreplacing 8 by 8l  x! by x! (1)  and s by r, 

and using iterative calcualtions. The chisquare and likelihood ratio 

tests of H are respectively given by 

I 	(ff) 2  
E w. -,- 

1-1 	f. I  (l-f.) I 

and 

(14) 

G2 (211) - 2n E w.[f1ln J-+ (1-f )ln  
1-1 	' 	f 	

I 	1-f1 

- p 

where f. - f. (A,$j) and 81  and Aare the pseudo m.l.e. of 81  and 

A under H. Under independent binomial sampling, bothX 	(20) and 

G2 ( 2Il °) are asymptotically distributed as x with q degrees of 

freedom, but for general designs this result is no longer valid 
(Roberts, 1984). 

A simple adjustment to X 
2  (20) or G 

2  (211) is obtained, as in 

the case of goodness-of-fit, by treating x2(211)/6(H)  or 

as X with q d.f. under H, where 

qó, (H) - n Z V 1 (r(H)) w1/tf1(1-f1)] . 	(16 
1-1 



' 	In (16 ) V..(r(H)), the variance estimate of the residual 

r,(H) 	f - f,ls obtained as the i-th diagonal elennt of the 

covariance matrix of the r(H): 

V(r(H)) = D(f)D(!-f)(b 2A2B 2 )D(f)D(1f), 	(17) 

where 

82 = 82 - BI(BBi) 1 (BIB2) 

A2  - ( 2 )_ I  (BD(w) VD(w)B 2 ) 	(8B) 

Df 	af 
D(f)D(l-f) (B 1  IB 2 ) = [( 	) I  

- 	

- - 

and 

!; 	 ' 	= 

Again, a better approximation is obtained by treating 

4(2)1) 	
2(2II) 	

or G2(211) 	
- G2(2j1) 	

(18) 
S 	

6•(H)[l+a2(H)l 

as x2  with v(H) 	q/[l+a2(H)]  d.f. under H, where 

2 (H) = [z 6 1 2 (H) -qô(H)]/ q6 2  a 	 (H) 

and 

q 2 	i 	I 

	

(H) = z 	z V. . 2 (r(H))(nw.)(nw.)/[f.f (1-f )(I-f )), 
i=l j-1 IJ - 	 I 	J 	Ij 	i 	j 

where V..(r(H)) is the (i,j) -th elernit of covariance matrix 

of the r..(H) given by (17). 



3. APPLICATION TO LFS 

We now apply the results of Section 2 to LFS data described 

in Section 1 and previously analysed by fitting the logit model (I). 

Prompted by the model (1), we consider the following transforma-

tion model (2): 

+a A.+ A + B3Ek. 	j 	1, .L, 10; 
jk 	0 	l J 	2j 

6. 	(19) 

Table 1 provides the pseudo m.i.t. of 0' - ( x, B') and the tast. statistics 

x2 , x2/o., X , G , G 22/6. and 	under the model (19).  The corres 

ponding values under the logit model (A - 0) are also given for 

comparison. 

It is clear from Table 1 that the value of X2(or 62) or the 

value of the adjusted statistic i2/c  (or  62/6) for the transfor-

mation model is essentially equal to the corresponding value under 

the logit model. Thus the transformation model provides no Improve-

ment In fit over the logit model. This is also clear from the value 

of A (- 0.016) which is not significantly different from A - 0 when 

compared to its standard error (0.085). The estimates of regression 

coefficients are essentially equal under the two models, but the C.V. 

of B. is much larger than the corresponding C.V. under the logit 

model, due to the large C.V. associated with X and the fact that 

depends on X. 

As in the case of the logit model, we would reject the model 

(19) if the survey design is Ignored and the value of X2  (or 
Q2) 

 is 

referred to X 	 (55) - 73.3, the upper 5 point of x2  variable 

with I-s-1 - 55 d.f. On the other hand, the value of X2/6 (or 62/6.,) 

when compared to 73.3, indicated that the model is adequate, the signi-

ficance level (or P-value) being approximately equal to 0.40. More-

over, In the present context with s (-4) relatively small compared 

to I (60), the simple correction X/d 	(Fellegi, 1980), depending only 

on the average cell deff d ,,is very close to X2/6, requiring the 
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Table 1: 	Pseudo m.l.e. and Test Statistics uder the 
- 

Transformation 

Model 	(19) and the corresponding Logit Model (x 	0) 

Transformati:n Model Logit Model 

Bo  - 3.28 (0.975) - 3.10 (0.247) 

0.219 (0.068) 0.211 (0.013) 

B2  -0.00227 (0.0009) -0.00218 (0.00017) 

8 3  0.1579 (0.038) 0.1509 (0.0115) 

A 0.016 (0.085) - 

99.6 99.8 

102.6 102.5 

1.75 1.85 

57.1 53.8 

G2 /6 58.8 55.3 

- 2 2 
d.. 	for or 55 56 

40.7 23.4 

L+2.0 23.9 

d.f, 	for X 	 or G 39.2 24.2 

0.40 1.31 

54.6 47.7 

56.4 48.9 

1.905 1.905 

52.3 52,4 

53.9 53.8 



knowledge of estimated covariance matrix of the survey estimates 

p. 
jk 

The value of Satterthwaite correction X (of G) is larger 

than the corresponding value under the logit model due to a smaller C.V. 

of the 6, , i.e., the a-value under the transformation model . The 

value of X2  (or G2 ) when adjusted to refer to x2 	(55) denoted as 

X5 (O.O5) (or  G..(0.05))  in Table 1, is also not significant. 

Given the model (19),  it is of interest to test for the possi-

bility of a simpler model, involving only the linear effects of age 

and education, providing an adeqqate fit, i.e. test the hypothesis 

H:8 2  - 0. 	In the logit case, the test statistic X2(21l)/6, (H) or 

G2(2L1)/o(H) turned out to be bighly significant, but  the possibi-

lity of a transformation model with a A- value significantly diffe-

rent from zero and providing adequate fit under the simpler model 

' 	exists. We obtained A - 0.223 under the simpler model, but 

x 2 (211)/6..(H) 	208.6 or G 2 (211)/6,(H) - 181.4 

Is highly significant, when referred to X Dl 	6.6, the upper 

1% point of x2  variable with q 	1 d.f. 

4. DIAGNOSTICS 

Kumar and Rao (198 1+) developed diagnostic procedures for the 

logistic regression to detect any outlying cell proportions and in-

fluential points in the factor space, after making necessary adjust-

ments to account for the survey design. The diagnostic procedures 

for the transformation model are analogous to those for the logitic 

regression model. 
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APPENDIX 

p 
A.1 	partial Derivatk'es 2f.Ici&. and  

	

I 	J 	I 

f. 
I . f 	Q1l/A 

x = - 

a8. 	JI I 
J 

af. 

aA 	f (Q.lr,Q. - Q. + 
l)A2 Q11/A 

- = 

where Q. 	1 + XE x..8.. 
j 	ii .1 

	

A.2 Partial Derivathtes of 	and 0 with respect to 8. and A 

a ~, up
- 

I. 	

[_fx 	

w1f.2 
1  i• —=z 

' 	 UI 1=i 	- Q2+l/A j i  

I 	
I 

1w.(P.-f)(1-Q.) 	w.f 1 2 (Q 1 -1-Q 1 1r)Q 1 ) 
E 	

I 
= 	

L 
 AQ 	 A4 +1/A 	

] 

-1 

I I I 	 _______________ + 	
II 	 Ix 1 	i 	

[xw.(._f.)('_Q.) 	

w.f2(l-Q.+Q.lnQ.)1 

38. 	2 E 	 Q2+1/A 	ji 
j 	A 	-1 	Q 

L [(Q - 1 -Q InQ.)w.(P.f.1 3A 	
A . 3 	Q 	i 	I 	I 	I 	I 

I 1 	2 	2] 
- 	 tlT (1Q.)2w.(P1f.) + 
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