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STATISTICAL DISCLOSURE CONTROL FOR PUBLIC USE MICRODATA FILES - A GUIDE

JEAN-LOUIS TAMBAY

ABSTRACT

Statistics Canada has been producing Public Use Microdata Files (PUMFs) from survey master files since
the 1980s. Two key features in the production of PUMFs are the assessment of risks of disclosure at the
unit and datafile levels and the implementation of measures to bring this risk to an acceptable level. This
brief guide aims to provide the reader with a meaningful appreciation of the risks and issues surrounding
PUMF data and to serve as a starting point for further study. The first half gives a general overview of
concepts and issues, and the second half presents current techniques for the estimation of disclosure risk.

While the guide was primarily aimed at Survey Methodologists, the first half is addressed to a more general
audience.

Key words: Confidentiality, Disclosure Risks, Public Use Microdata Files (PUMFs)



CONTROLE DE LA DIVULGATION STATISTIQUE POUR LES FICHIERS DE MICRODONNEES A
GRANDE DIFFUSION - UN GUIDE

JEAN-LOUIS TAMBAY

RESUME

Statistique Canada diffuse des Fichiers de microdonnées a grande diffusion (FMGD) a partir de fichiers
maitres depuis les années 80. Deux composantes principales de la production de FMGD sont [’évaluation
du risque de divulgation aux niveaux de I'unité et du fichier et la mise-en-ceuvre de mesures pour maintenir
ces risques a des niveaux acceptables. Ce guide condensé vise a offrir au lecteur une bonne appréciation
des risques et des enjeux concernant les données des FMGD et de servir de point de départ pour une étude
approfondie. La premiére partie donne un apercu genéral des concepts et des enjeux, et la deuxiéme
présente des méthodes courantes pour I'estimation du risque de divulgation. Ce guide a été rédigé
principalement pour les méthodologistes d’enquéte, mais la premiére partie s adresse a un auditoire plus
large.

Mots clé : Confidentialité, risques de divulgation, Fichiers de microdonnées a grande diffusion (FMGD)



Introduction

This paper gives an overview of Statistical Disclosure Control concepts and methods for
anonymized microdata files, called Public Use Microdata Files (PUMFs) at Statistics Canada. It
has two parts. Part I, a general summary, introduces a few key concepts, presents factors affecting
the disclosure risk and outlines common strategies to protect PUMF data. Part Il discusses methods
to measure the disclosure risk and identify units at risk and proposes approaches for individual and
household level data. The report was primarily written to familiarize Survey Methodologists with
issues and tools concerning the protection of PUMF data confidentiality and to serve as supporting
reference material for other Statistics Canada documents. In its treatment and discussion of
subjects, particularly in Part II, the report reflects the author’s points of view. For the sake of
completeness, a few concepts and techniques not covered in the main text are presented in
Appendix A. While the paper includes references to protected internal documents its contents are
not confidential.

I. General Concepts and Methods
1.1 Types of disclosure

Microdata files are files of records pertaining to individual respondent units, where respondents
can be persons, households or businesses. In hierarchical microdata files the respondents are
linked into higher order units, e.g., individuals by household or students by school. All microdata
must be regarded as confidential and protected against identity and attribute disclosure. Identity
disclosure occurs when a particular data record is correctly associated with a particular unit in the
population. Aftribute disclosure occurs when it is possible to associate a particular attribute with
a particular population unit. Identity disclosure leads to attribute disclosure but attribute disclosure
can occur without identity disclosure. When an individual is known to be in a microdata file, what
is called response knowledge, then attribute disclosure can occur if every respondent sharing
certain characteristics known about that individual also share another attribute (e.g., a dentist is
known to be on a file where every dentist reported taking antidepressants). Response knowledge
increases the risks of both identity and attribute disclosure. Since it is unavoidable with census-
like data, a designation that includes administrative data, PUMFs typically hold sample data. With
sample data the focus is on preventing identity disclosure, but one should keep attribute disclosure
in mind — especially when dealing with highly sensitive personal information.

A related concept is that of residual disclosure, which is disclosure that occurs by combining
released information with previously released or publicly available information — including
aggregate results obtained through venues such as remote access or Research Data Centres

(RDCs).

1.2 Factors affecting disclosure risk

The risk of re-identification is affected by factors such as: (a) characteristics of the population and
sample, (b) attributes of the data, (c) availability of related outputs, and (d) motivation and
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opportunity of intruders. Characteristics of businesses are different from those of households or
people. Many large businesses are recognizable and difficult to “mask”, which is why Statistics
Canada has not released a business PUMF!. Units with a hierarchical structure are also hard to
protect because the amount of identifying information provided by linked units surpasses that
provided by the units individually (e.g., rare combinations of spouses’ ages/occupations, presence
of twins) and because linked respondents can more easily find each other in a microdata file. For
those reasons surveys with geographically clustered samples often suppress cluster membership
information on their PUMFs.

Other aspects of the sample design can affect disclosure risk. Higher sampling rates are associated
with higher re-identification risks. The selection of the sample from a source such as an
administrative file or another survey adds a level of risk. Administrative data providers will have
a list of the population, which could help them ascertain sample membership and identify surveyed
units. Supplemental surveys, whose sample comes from another survey, have to deal with
additional risks from linking respondents from both survey PUMFs and pooling their data.
Likewise, the linking of longitudinal or panel surveys respondent data across time increases the
likelihood of a re-identification; which is why it is difficult to produce “safe” yet analytically useful
longitudinal PUMFs.

Disclosure risk is also affected by the attributes of the data, such as whether they are qualitative or
quantitative; whether they are available on other, e.g., administrative, sources; if they come from
such sources; and how accurately or consistently they are recorded on various sources. For
disclosure control purposes data variables are classified as direct identifiers, indirect identifiers
and sensitive variables. Direct identifiers are those variables, such as names, addresses and SINSs,
that can directly identify respondents. They are removed from PUMFs. Indirect identifiers arc
variables that may be known about respondents and that, taken together, may serve to identify
some of them. Examples are province of residence, sex, age, marital status, place of birth, ethnicity,
education, occupation, household size and dwelling type. Persons with unique combinations of
such variables (e.g., female 76 year old professor with a degree in architecture) may be identified
if on a PUMF. Disclosure control measures often target indirect identifiers, which are also called
key variables. Sensitive variables represent characteristics that are not considered to be known
about respondents and are generally not useful to identify them. Some sensitive variables can
possess attributes of indirect identifiers. While exact income is rarely known, except perhaps by
some holders of administrative databases, approximate income can serve as an indirect identifier.
Note that the inclusion of administrative data on survey PUMFs makes it easier for database
holders to link respondents to their database; which is why it is preferable to coarsen or perturb
these data on PUMFs. Some quantitative variables, while not particularly identifying, may benefit
from having extreme values masked (e.g., height/weight).

Survey data include two other types of variables. Design variables, such as strata and cluster
identifiers, and survey weights, and paradata, which are data about the process by which the data
were collected. Except for survey weights, which are essential for analysis, these variables are
considered to be risky and/or for internal use and are usually not on Statistics Canada PUMFs..

1 A dummy (perturbed) file of small and medium enterprise data was produced so that researchers with researcher
data centre access could test program code at their workplace.
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Survey weights can become problematic when they reveal withheld sensitive information such as
detailed geography (e.g., if low weights relate to a small region), links between units (if household
members share the same weight) or identifying characteristics (e.g., a released estimate of 137
blind musicians is tied to one musician on the PUMF with a survey weight of 137). Other issues
with survey weights are given in de Waal and Willenborg (1997). Replicate weights, such as
jackknife and bootstrap weights, can reveal cluster membership (Mayda, et al., 1996) and are
usually not released for clustered surveys at Statistics Canada. The generalized bootstrap technique

can be used to generate replicate weights without revealing sample design information (Beaumont
and Patak, 2012).

The example with the musician above points to another factor contributing to risk: the availability
of related outputs through other venues such as remote access or RDCs. Those outputs may
undermine PUMF disclosure control measures such as suppression and perturbation (e.g., top-
coding) — possibly leading to a residual disclosure. Options to reduce this risk include imposing
restrictions on related outputs (e.g., disallow results based on few respondents, round totals,
suppress maximums) and modifying the PUMF data (e.g., round or perturb values and weights,
keep a subsample of respondents). The subsampling of respondents also mitigates the risks from
response knowledge, and is a useful way to control the risks for areas or subgroups that are
oversampled (at minimum, by imposing a maximum sampling rate for PUMF units).

Microdata threat and risk assessments usually involve three intruder scenarios. The first is an attack
by an intruder or hacker trying to re-identify PUMF respondents. The intruder’s aim may be to
gain notoriety, to discredit the statistical agency or simply to acquire confidential information. The
attack can be opportunistic, where one is interested in identifying anyone and is seeking out
vulnerable respondents, or targeted, where one is trying to find the identity of specific respondents.
Except for response knowledge situations, addressing the former usually takes care of the latter.
The second threat is an attempt by a database holder to link PUMF records to his datafile. The aim
may be to enrich the content of his database or to single out certain individuals (e.g., a health
insurer trying to link his client database to health survey microdata). A linkage attempt would
require the two files to have variables in common; preferably with no data discrepancy. A third
threat is that of spontaneous recognition, which occurs when a PUMF user accidentally or
otherwise recognizes a respondent, for example, a public figure, a relative or an acquaintance. This
is more likely to happen if the respondent has unique characteristics that makes him stand out, and
the PUMF user can be quite certain of having identified the right person.

Marsh, et al. (1991) considered identification from database holders, journalists and hackers. They
presented four conditions for a user to know a re-identification was successful: (a) identifying key
variables to be recorded the same way on both datasets, (b) presence of the individual in the PUMF,
(¢) population uniqueness of the combination of key values and (d) verification of population
uniqueness. Specifically, Pr(identificationfattempt) = Pr(a)Pr(b|a)Pr(c|a,b)Pr(dla,b,c). To assess
the risk for a 2% PUMF from the UK Census they estimated these probabilities, respectively, as
(0.6)(0.02)(0.02)(0.001) = 2.4*107. Dale and Elliot (2001) updated the values to
(0.18)(0.02)(0.048)(0.001) = 1.73*107".



1.3 Protecting PUMF data

Statistical agencies can take statistical and non-statistical measures to protect the confidentiality
of their PUMFs. Non-statistical measures include regulating PUMF access by technical and other
means (e.g., restrict access to researchers from accredited institutions); stipulating how the data
can, and cannot, be used in PUMF license agreements (e.g., prohibition from linkage); and
instituting administrative, financial or legal penalties for failure to respect those agreements®. In
general, making access to PUMF data easy and anonymous increases the risk of disclosure by
spontaneous recognition or response knowledge by a family member or acquaintance.

Other protection measures target the PUMF content. The first step consists of limiting the amount
of identifying information present. This means variables and their level of detail, but also
information such as cluster (household) membership. Geographic detail is particularly singled out
and some agencies have rules or practices governing the geographical detail on their PUMFs. The
second step usually involves applying protective measures at the global (file) level. Coarsening
and perturbing the data (e.g., round values, add noise, swap data between records) hampers record
linkage and other re-identification attempts. Some measures may target records from small areas
or subpopulations only, while others (e.g., top-coding) may target extreme values for quantitative
variables. Next, data suppression or perturbation is applied at the local (record) level to units at
greatest risk of identification. These units may be identified by the application of a population-
based rule (e.g., bivariate categories with less than 1000 people), a disclosure risk measure (see
Part II), or simply based on subject matter knowledge and experience (e.g., rules for age-dependent
characteristics). Additional disclosure control measures may be taken, for example internal
attempts at record linkage, which may lead to more data suppression or perturbation to bring down
the match rate. Rules for PUMFs at the U.S. Census Bureau (Lauger, ef al., 2014) include
geographical area population thresholds (usually 100,000), rounding for dollar amounts, a
minimum population size of 10,000 for values of categorical variables, and top-coding for
continuous variables using the half-percent/three-percent rule (topcodes must include 20.5% of all
cases and, for variables that apply to subpopulations, include either 3% of nonzero cases or 0.5%
of all cases).

In finalizing the PUMF and related documentation decisions need to be made on the amount of
detail to provide. Some aspects of the survey design may be deemed sensitive, for example the
relation between low weights and subregions, or how neighbouring units are selected within a
cluster. To confound intruders it may be decided not to flag imputed values on the PUMF.
Information about the perturbation strategy that may be useful to hackers, such as the scope and
levels of perturbation and swapping, may be provided in general terms only — although maximum
perturbation rates may be given to discourage re-identification attempts. Conversely, there 1s
support in the statistical community for more openness on the disclosure control strategy based on
the notion that a good data protection strategy should not rely on the withholding of information
about its particulars. Information loss measures such as the impacts of perturbation on aggregates
or on relationships between variables may be provided to users (for examples of loss measures see
Domingo-Ferrer and Torra (2001)).

2 At the Australian Bureau of Statistics (2009) consequences of failing to comply with the Confidentialised Unit
Record File (i.e., PUMF) undertaking include fines of up to $AUS 21,600 and/or imprisonment of up to 2 years.
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I1. Disclosure Risk Measures and their Application

As noted above, the protection of microdata includes the application of data suppression or
perturbation to individual units identified as being at risk based on different criteria. Here we focus
on criteria that relate to the application of disclosure risk measures. We present three risk measures,
introduce the concepts of multiplicity and special uniques, and show how these can be combined
to protect individual and household level data. We also give an example of how Census data were
analyzed to develop population size risk thresholds for health microdata.

2.1 Estimating the disclosure risk

Disclosure risk measures for microdata typically focus on the successful re-identification of
respondents using a set of identifying key variables whose values are known to an intruder.
Attention is mainly directed at units whose combination of values for those key variables is unique
in the sample (sample uniques). Some measures estimate the probability of being unique in the
population given that one is unique in the sample (union uniques), others the probability of a
match to a PUMF respondent being correct. For notational purposes the set of key variables, which
are categorical or made to be, may be concatenated into a single key that takes K values (e.g., with
2 sexes, 10 age groups, 6 marital statuses and 20 occupations K=2400). The number of units with
the £ combination of values in the sample is f and the corresponding number of units in the
population is F%. Sample uniques have fi=1, union uniques have f;=1 and Fi=1. Three approaches
to measuring risk are discussed.

a) Poisson Negative Binomial Approach

In the individual risk methodology of Benedetti and Franconi (1998) disclosure scenario
assumptions are that (a) a register of the population is available to an intruder, (b) data are from a
sample and weights are available, (c) the register contains a set of key variables that are also in the
sample, (d) the intruder tries to link units on both files using those variables, (¢) the intruder has
no extra information than what is in the register, and (f) re-identification occurs when a link
between a unit in the sample and the register is established and the link is correct. In the worst
case, it is assumed that a re-identification attempt is made (Pr(attempt)=1) and the key variables
are recorded the same way on both files (no data discrepancy). In this scenario each of the f; sample
units can be linked to each of the Fi register units sharing the key value £.

Conditional on a re-identification attempt the probability of a link being correct is 1/F. For a
sample unit i with key value k=k(i) the estimated re-identification risk is 7x =E(1/F/f). Following
work by Bethlehem, Keller and Pannekoek (1990) a superpopulation approach is proposed where
the Fy follow a Poisson distribution and the f; given Fj follow a Binomial (F,p) distribution. This
gives a Negative Binomial posterior distribution for Fi given fi. Polettini (2003) obtains an
expression for the risk in terms of the Hypergeometric function with parameters involving fx and
pr. The py are estimated by fi /Fx = wi!, the inverse of the average sample weight for units with
key value k. When fx =1, pr=wi", the inverse weight for sample unique i, and 7% =In(w:)/(w~1); but
as fi increases calculating 7 becomes very cumbersome.



Unlike other approaches, this measure does not only cover sample uniques. A critique is given in
Rinott (2003). He notes that under full information (¥} are known) and f; =1 the 7% overestimate
the true rx=1/Fk =pi/fr , with severe overestimation for small px (around 0.01). Conversely, the risk
can also be underestimated because Fy overestimates Fi, especially for small f. Note also that,
given fi, rr depends entirely on the average cell weight wi and ignores all other information from
the table. Thus for sample uniques a maximum risk threshold r* can be converted to a minimum
weight threshold w*, so that with a low enough sampling fraction uniques will never be deemed
to be at risk. The measure is incorporated in the u-ARGUS microdata protection program, with an
approximation used for large fx (Hundepool, er al., 2014).

Global risk measures can be produced at the domain or file levels. The expected number of re-

identifications is X f& 7 and the expected re-identification rate is X fi 7/ Xk fr. In n-ARGUS,
setting a file-level maximum re-identification rate of &* leads to treating all records with Fi>r*,

where r* is set so that X fi min(Fi,r*)/Zx fi < &*.
b) Poisson Log-linear Model Approach

An approach that gives better results was developed by Skinner and Holmes (1998). They focus
on two record-level risk measures for the worst case situation of sample uniqueness (and assuming
no data discrepancy). The measures are r;;=Pr(F3=1|fi=1), the probability of also being unique in
the population, and »2=E(1/Fi/fi=1), the probability of a correct match. Summing these measures
over the set of sample uniques give file-level measures 7;*=Zsu r 1, the expected number of union

uniques in the sample, and 72*=Xsu r2, the expected number of correct matches for the sample
uniques. With K large enough these two values will closely approximate the actual number of

union uniques, t/=2 I(fi=1,Fi=1), and t=2 [(fi=1)/Fr.

The model assumes F~ Poisson(Ax) and Bernoulli sampling with inclusion probability 7 for units
in cell &, such that f; ~ Poisson(mk A) and Filfx ~ Poisson(Ax(1-my)) + fi. This gives record-level
measures r, = e 7% and r,; = (1 — e WA /(1 — )4, , with corresponding file level
measures. As in Small Area Estimation, one borrows strength with log-linear model log(4x)=x « B
where x; is a design vector depending on the key variables in cell k and B is a parameter vector.
Using maximum likelihood estimates of B risk measures are generated by replacing A by e*kP in
previous expressions. Skinner and Shlomo (2008) developed goodness-of-fit criteria that minimize
the bias of the 7.

This approach gives reasonably good estimates of risk. Furthermore, the parameters Ax can be
estimated under complex sampling schemes using pseudo-maximum likelihood estimation (Rao
and Thomas, 2003). Shlomo and Skinner (2009) have shown how to adjust the log-linear model
for misclassification. However, the model generation aspect is intensive, making it less attractive
in an environment where a large number of scenarios (sets of key variables) are contemplated. A
global risk measure using this log-linear model is freely available in the R-Package sdcMicro
(Templ, Kowarik and Meindl, 2015). The sdcMicro program covers several disclosure risk
measures and techniques, including those in p-ARGUS, and the SUDA and DIS-SUDA scores
(see section 2.2).



¢) Data Intrusion Simulation (DIS)

Skinner and Elliot (2002) estimate the probability that, for a given set of key variables with no data
discrepancy, an intruder who matches an arbitrary unit in the population against a sample unique
in the PUMF is correct. Among unique matches, the probability of a correct match is given by 6 =

Pr(CM|UM)=2x I(i=1)/Zx Fi(fi=1). For Bernoulli sampling with probability z, 0 can be estimated
by simulating a scenario where one successively removes each unit from the sample, copies it back
to the sample with probability 7, and registers if the unit would be a true or false unique match to
the sample. The resulting estimate is 8 = m/[m+2n(7'-1)], where n; = Z; 1(fi=/). Skinner and
Carter (2003) adapted the estimator to Poisson sampling with probabilities 7; (=1/w), giving 8 =
m/[nmi+2n(wy—1)], where W is the average weight of units in the n> sample pairs. This risk value,
calculated for a file or domain, can be assigned to every sample unique herein. Note that when
n1>0 and m=0 the estimated risk for uniques becomes 100%.

This approach, like the previous one, makes use of the distribution of key values to calculate the
risk — although to a much lesser degree. And it has also been adapted for misclassification (Elamir
and Skinner, 2004). However, assigning the risk value to sample uniques can present some
peculiarities. The risk for, say, a dentist who is a sample unique may be affected by whether civil
and electrical engineers are placed in the same or different occupation categories. Sometimes,
increasing the detail for key variables can decrease the risk. And the risk’s variance can be quite
high. However, the measure generally behaves as expected, and its simplicity makes it a very
attractive tool when considering a large number of scenarios or when comparing strategies, like
different levels of geographical detail.

d) Studies on re-identification risk using 2001 Canadian Census data

Two studies tried to establish geographic area population size cut-offs for public health microdata
using 2001 Census data. In El Emam, Brown and AbdelMalik (2009) Census PUMF data were
used to simulate region sizes in 5,000 increments. For different sets of (up to 5) key variables,
population size cut-offs were set at where the relationship between the geographic population size
and the proportion of uniques flattened out. These cut-offs were modelled on the total number of
combinations for the values of the key variables (K), giving cut-offs of 1588K%%2, 1436K°*® and
1978K°3% for Western, Central and Eastern Canada, respectively. In E1 Emam, et al. (2010) urban
Forward Sortation Area data were used to predict when the percentage of uniques exceeded 0%,
5% and 20% (representing different levels of security). For example, the 5% model was defined
as logit(mos)y=boPOP+b1K+b2(POP*K), where mos is the probability that the area of size POP has
>5% uniques. The model could be used to determine if mos>0.5, in which case the area is too small
and must be suppressed/aggregated. With this framework, data custodians could determine the
amount of geographic suppression or aggregation in relation to the risks of disclosing a particular
dataset.



2.2 Multiplicity, Fingerprints and Special Uniques

The above measures relate to the risk of re-identification for a given set of identifying variables
(or key). PUMFs usually hold several indirect identifiers and it is not realistic to assume that an
intruder will know more than a few of them (and without discrepancy). Risk values can be
calculated for different scenarios involving different keys. Boudreau (1995) hypothesized that
most population uniques are also unique for a subset of variables. Given a set of m identifying
variables, he defined a unit’s multiplicity as the number of 3-way combinations (i.e., 3-way tables)
among those variables for which the unit is sample unique. The maximum multiplicity is (%),
which is 120, 455 and 1140 for m=10, 15 and 20, respectively. A simulation gave a good
relationship between multiplicity and uniques, which led to the suggestion of treating units whose

multiplicity is above some threshold value.

A method for the determination of multiplicity thresholds is needed. Some surveys use arbitrary
thresholds, for example they focus on the x% of records with the highest multiplicities, ignoring
key aspects of the design such as the sample rates. For the Census long form sample, with
population size N and sample size #~0.2N, the following approach was proposed in Kanagarajah,
et al. (2009). For a sample unique with key value £, the estimated proportion of units in the
population with this key value is p=1/n. The number of units not in sample with this key value is
assumed to follow the Binomial(N-n,p) distribution. Since N-n is large and (N-n)p=4, the
Binomial distribution can be approximated by a Poisson distribution with =4, giving probability
of uniqueness close to e *=0.0183. For a sample unique, an overestimate of the probability of being
unique in the population is 0.0183 times its multiplicity. So a unit can be declared to be population
unique if its multiplicity is above ¢/0.0183 for some user-specified g (<1). Note that this approach
does not take into consideration the number of identifying variables present which, as seen above,
has a great impact on the multiplicity range.

A concept similar to multiplicity was proposed by Willenborg and Kardaun (1999). Fingerprints
are combinations of values for identifying variables that are unique in the sample, and for which
no proper subset of variables is unique. Records with “many short” fingerprints are deemed to be
risky.

In examining the percentage of sample uniques that are union uniques Elliot, Skinner and Dale
(1998) noted that the expectation that an increase in (geographical) detail increased the risk was
not supported by empirical data. They distinguished special uniques from random uniques (i.c.,
uniques generated by the sampling process). Special uniques are unique at more aggregate
geographical levels. As the detail increases, an increase in random uniques can mask the effects of
increasing population uniques, possibly leading to a smaller than expected increase in risk. They
determined that special uniques tend to be less sensitive to changes in sampling fraction or
geographical detail, and appear with a smaller number of variables (shorter fingerprints), than
random uniques. This concept was used in the development of the Special Uniques Detection
Algorithm (SUDA) program (Elliot, Manning and Ford, 2002). SUDA generates all possible key
subsets from K variables looking for Minimal Sample Uniques (MSUs — similar to fingerprints).
From each MSU a score is generated which relates to the number of higher dimensional tables, up
to a maximum of M dimensions, in which the unit will also be sample unique (e.g., a sample unique
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based on 3 variables will also be sample unique in all 4-way and 5-way tables involving those 3
variables). The scores are summed at the unit level. The scores are ad hoc, but they open up the
possibility for differential treatment of records based on their ‘risk’ level. Elliot and Manning
(2004) developed a method that runs DIS to calibrate SUDA. Their empirical results show a strong
relation between a unit’s DIS-SUDA score and its probability of being population unique.

Without resorting to multiplicity the p—ARGUS program (Hundepool, et al., 2014) offers three
ways of processing multiple risk scenarios from a set of identifying key variables. In the risk model
approach the risk 7 from the Poisson Negative Binomial model is calculated for cells & in tables
that are specified by the user, and risk thresholds are applied in each table as explained in section
2.1a. Specified tables cannot have variables in common, which is a severe limitation. In the two
other approaches multiple tables are generated by p—ARGUS and user-specified thresholds for
sample frequencies f are used to identify cells, and thus units, at risk. In the first case key variables
can be assigned identification levels 1 to 5 (or less). For example, with three identification levels
used, all 3-way tables containing at most one level-3 variable, at most two level-2 variables and at
most three level-1 variables are generated. A single, user-specified, threshold for the f; is applied
in every table. Alternatively, users can specify a maximum number of table dimensions and all
tables containing up to that number of dimensions are generated. For each number of dimensions
a different threshold for the f; can be specified by the user.

Statistics Canada’s internal program CoMicDIS (Tambay, 2016) combines DIS and multiplicity.
From the user-supplied list of key variables all 3-way and, if requested, 2-way tables are generated.
For each table the DIS value @ is assigned to sample uniques; other units get 6=0. A unit’s risk is
defined based on its five “worst” tables as s = 1—(1—9[11)(1—9[21)(1—9[3])(1—9[4])(%9[5]). If tables
are independent @5 measures the probability of a correct match among the five riskiest attempts.
For units with 85 above user-specified thresholds variables to suppress are identified which will
make the risk acceptable. Users can also identify domain variables which, unlike key variables,
are included in every table (increasing their number of dimensions). Users have two ways of
incorporating domain variables in the calculation of 6. For example, with domain variable
province, 3-way tables can be produced separately for each province or the province variable can
be used to turn every 3-way table into a 4-way table. The first case results in province-specific
values for 8 while the latter generates a single (national) 8 for 4-way uniques. As an option,
domain-specific multiplicity thresholds can be generated based on the expected number of units at

risk (sum of 8s), so that units failing either their risk threshold or their multiplicity threshold are
treated.

A comparison of the SUDA, Negative Binomial (ui-ARGUS) and Poisson Log-linear Model
approaches was done at the Office for National Statistics (Shlomo and Barton, 2006). The Poisson
Log-linear model approach, although more complex, gave the best estimates for disclosure risk
compared to true risk. With the p-ARGUS approach the disclosure risk was underestimated, and
the per-record risk measure was found not to have enough variability to be correlated with the true
per-record risk. SUDA provided a relative per-record disclosure risk measure that was correlated
with the true risk, and presented an ordering of units according to their disclosure risk.
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2.3 Discussion

“Although there is no shortage of [Statistical Disclosure Limitation] methods which have
found application by government statistical agencies, a common scientific methodology for
assessing disclosure risk and making decisions based upon these assessments has found less ready
adoption in agency practice.” (Skinner, 2012)

“Although there is abundant theoretical and empirical research, our review reveals lack of
consensus on fundamental questions for empirical practice: how to assess disclosure risk, how to
choose among disclosure methods, how to assess reidentification risk, and how to measure utility
loss.” (Prada, et al., 2011)

We presented three approaches to measuring disclosure risk for microdata and showed how
concepts such as multiplicity can be used to identify units at risk over a range of scenarios
corresponding to different subsets of identifying variables. As noted above, there is no consensus
on methods to assess the risk. This could in part be because risk measures tend to focus on small
aggregates, mostly sample uniques, where sampling theory performs poorly and modeling
becomes unavoidable. In many ways, protecting PUMF data seems to be more an art than a
science. Even with a good measure, the risk will depend on how scenarios are created: how key
variables are defined, how they are combined, at what (domain) level risk is evaluated. Empirical
investigations with CoMicDIS showed that scenarios can affect risk outcomes substantially when
dealing with hierarchical data. There is also the issue of what constitutes an acceptable risk at the
unit or file level. Is it 10%, 1%, 0.1%, ...? And how should the risk account for factors such as the
likelihood of an attempt at disclosure, the likelihood of a unique individual being in a register or
in an intruder’s circle of acquaintances, the likelihood that a particular key is known to the intruder,
the likelihood — and the magnitude — of a data discrepancy, the likelihood of verifying a match?
Estimates for some of those values were given at the end of section 1.2, which resulted in risks
near 2*1077. The presence of a data discrepancy does not eliminate the risk of a correct match;
Winkler (1997) asserts that re-identification with PUMFs is far easier than people may think when
powerful record linkage methods are used. Finally, risk measures assume that intruders only have
the set of key variables at their disposal. But once an intruder has identified units of interest he
may try to use other PUMF variables, even sensitive variables, to improve his re-identification
results.

Thus, while disclosure risk measures play an important part in the identification of units at risk,
they have limitations and should not be relied on exclusively. Rather than focus on absolutes (e.g.,
is the calculated risk above x%) the measures should be considered as a tool, to examine the relative
impact of different dissemination strategies, to identify units and domains at greatest risk of re-
identification and requiring the most attention, or even to see how a PUMF’s overall level of risk
compares to those of recently released PUMFs. A comprehensive strategy for the treatment of
units at risk should include other practices such as the application of agency rules, the analysis of
quantitative variables, the simulation of re-identification attempts and the use of subject matter
knowledge and experience to identify potentially problematic cases. Attempts at re-identification
or record linkage may be warranted in situations such as when related files are publicly available.
Some agency rules are given in Lauger, et al. (2014) and in Schulte Nordholt (2001). Rules and
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guidelines at Statistics Canada are outlined in its Handbook for creating PUMFs (Statistics Canada,
2016). Finally, in vetting the dissemination of PUMFs, Disclosure Review Boards can bring their
expertise into the PUMF creation process.

2.4 Special case: Treatment of hierarchical household data

The protection of hierarchical household data is particularly difficult. The pooling of members’
data significantly increases the amount of identifying information provided. The analysis of
members’ data individually is not a satisfactory strategy. Approaches for dealing with the problem
are given.

In u-ARGUS (Hundepool, et al., 2014) the household risk is defined as the probability that at least
one individual in the household is re-identified. Assuming independence of re-identification
attempts within a household 4, the household risk is derived from the individual member risks

as Fn =1 — [lien (1 — 7). As with individual-level data (section 2.1a) a global measure of the

expected re-identification rate is obtained as Z |h|fn / Zx |h|, where |A| is the size of household A.
This re-identification rate can be used to define a threshold »* for the household risk, so that unsafe
households are those with F>r*. In what they consider a strongly prudent approach, this threshold
is converted into an individual level threshold by dividing it by the household size. Thus, a
threshold of »*/|A| is applied to individual level risks for all persons in households of size |h|. A
major shortcoming of this approach is that it does not consider within household relationships. For
example, a household with a 25 year-old male married to a 75 year old female may not show up
as identifiable if these individuals are otherwise unexceptional.

Greenberg and Voshell (1990) created household level key variables for their risk analyses. Some
variables were created by combining household class with other characteristics (e.g., Class One,
White Husband, Indian Wife). The list of variables and categories used is given in Appendix B.

An approach tried by Boudreau and Manriquez (2006) consisted of creating hierarchical versions
of key variables by concatenating the individual values of household members following a certain
order. For example, the hierarchical age variable may be a concatenation of every member’s age
group, starting with the household head, his/her spouse, their children by decreasing age, etc. Risk
analysis would be done by domains defined by region and household size. This approach
incorporates the household structure, but in a limited sense. For example, in a three person
household the concatenated values could be for a couple and their child, a parent with two children,
three unrelated individuals... Using those key variables the authors examined the conditional
probability of population uniqueness and the conditional probability of exact matches. They
concluded that for households of size 4 and more the possibility of re-identification was nearly
certain.

Tambay, Carrillo-Garcia and Kanagarajah (2015) used data perturbation to create a hierarchical
PUMF from the National Household Survey. Households and individuals at risk were identified
using both the CoMicDIS and rules-based approaches. For example, bounds were imposed on
household size, on differences in spouses’ ages, on the numbers of different places-of-birth, mother
tongues, and visible minorities per household. Additionally, CoMicDIS was run on individual and
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household key variables. For the household analyses, households were separated into four types:
one-person households, one-couple households, multi-couple households and other households.
For each type a different set of key and domain variables was created and used. In one-couple
households domains were defined by province, rural indicator, sexes of the couple and a household
class variable. There were 24 key variables including household size, household income group,
the couple’s joint education, occupation or ethno-cultural characteristics, combined characteristics
of their children or other members, dwelling characteristics, etc. Some variables, like the age-sex
distribution of children, had hundreds of categories. As expected, the risk was much, much higher
when working at the household level. Nearly 40% of one-couple households and all multi-couple
households exceeded their risk threshold. Another lesson from this endeavour was that the
possibilities for coming up with a set of household key variables were nearly endless, and these
significantly affected the risk outcomes. When dealing with person level data decisions do have to
be made in coming up with risk scenarios (e.g., how to create categories for quantitative key
variables, whether to consider chronic health conditions as key variables, what domains to use...)
but the amount of flexibility pales in relation to that when dealing with household level data.

When dealing with household level data the vast possibilities for risk scenarios, and their impact,
strongly favour the use of multiple approaches and methods. Furthermore, while global recoding
and local suppression may be acceptable strategies for protecting individual microdata, the use of
data perturbation is almost unavoidable when protecting hierarchical household microdata.
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Appendix A. Definitions

Inferential Disclosure: Inferential disclosure can occur when sensitive information can be
inferred with high confidence from statistical properties of the data. For example, a model that can
provide very accurate estimates for a sensitive variable given externally available covariates.
Inferential disclosure relates more to aggregate or model outputs than to microdata.

Dummy files: Heavily perturbed microdata files created from survey Master Files for program
testing purposes. Dummy files allow researchers with access to Master Files (at RDCs or indirectly
through remote access) to validate their programs externally. Also called synthetic files (preferably
synthetic (dummy) files) at Statistics Canada, where their creation is subject to the Guidelines for
the creation of synthetic data files (Statistics Canada, 2002).

Information Loss Measures: Numerical assessment of the impact of disclosure control measures
such as data suppression or data perturbation on information content. E.g., percentage of values
suppressed, or impacts of perturbation on aggregate results. See Domingo-Ferrer and Torra (2001)
for examples.

K-anonymity: A dataset satisfies k-anonymity for £>1 if, for each combination of key variables,
there are at least k records in the dataset sharing that combination. This concept is not used in
protecting PUMF data at Statistics Canada as sample uniques are allowed. The concept is also
criticised for not protecting against attribute disclosure if all £ individuals share the same value for
another characteristic.

Microaggregation: A method for protecting quantitative microdata that replaces data for groups
of k records by an average value for the group (e.g., £ =3 or 5 or 10). Protection is offered if no
member’s data dominates the group. Groups are formed using criteria of maximal similarity.
Microaggregation can be univariate (different groupings for different variables) or multivariate
(one grouping for several variables). The former is simpler and entails less data loss, but the latter
offers better data protection.

Post-randomization (PRAM): A perturbation of categorical microdata using a probability
mechanism. For a variable ¢ with K categories, perturbed values X are generated using transition
probabilities px =Pr(X= [| {=k), e.g., Pr(race=black|race=white). PRAM is fully described by the
transition matrix P with elements pu. P is known, so characteristics of true data can be estimated
from the perturbed file.

R-U Confidentiality Map: A R-U confidentiality map is the set of paired values (R,U) of
disclosure risk and data utility that correspond to various strategies for data release. R is a
numerical assessment of the risk of unintended disclosures following the dissemination of the data.
U is a numerical assessment of the usefulness of the released data for legitimate purposes (the
opposite of Information Loss). E.g., after applying additive noise to quantitative data one can set
R as the expected percentage of records that can still be correctly re-identified and U as the
reciprocal of the variance-covariance inflation.

Synthetic datasets: Instead of releasing original data on PUMFs, multiply imputed synthetic
datasets are created by replacing sensitive values with repeated draws from a model fit to the
original data. The resulting microdata file is non confidential yet analytically useful. At Statistics
Canada the term synthetic data is still used to describe dummy files. See Drechsler (2011).
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Appendix B. Categorical breakdowns of household variables used in analysis (Greenberg and Voshell, 1990)

11. Household Class
a. Householder has Spouse Present (Class One)
b. Householder has No Spouse Present, Living with One or More Other Persons (Class Two)
c. Single Person Household (Class Three)

1. Tenure
a. NA
b. Owner Occupied
c. Renter with Cash Rent
d. Renter with No Cash Rent

2. Household Type

a. Everyone in Household Related
b. At Least Two but Not All Persons in Household Related
c. Single Person Household
d. Otherwise
3. Race

Class One, White Husband, White Wife

Class One, White Husband, Black Wife

Class One, White Husband, Indian Wife

Class One, White Husband, Asian / Pacific Islander Wife
Class One, Black Husband, White Wife

Class One, Black Husband, Black Wife

Class One, Black Husband, Indian Wife

Class One, Black Husband, Asian / Pacific Islander Wife
Class One, Indian Husband, White Wife

Class One, Indian Husband, Black Wife

Class One, Indian Hushand, Indian Wife

Class One, Indian Husband, Asian / Pacific Islander Wife
Class One, Asian / Pacific Islander Husband, White Wife
Class One, Asian / Pacific Islander Husband, Black Wife
Class One, Asian / Pacific Islander Husband, Indian Wife
Class One, Asian / Pacific Islander Husband, Asian / Pacific Islander Wife
Class Two, Male Householder, White

Class Two, Female Householder, White

Class Two, Male Householder, Black

Class Two, Female Householder, Black

Class Two, Male Householder, Indian

Class Two, Female Householder, Indian

Class Two, Male Householder, Asian / Pacific Islander
Class Two, Female Householder, Asian / Pacific Islander
Class Three, White

Class Three, Black

Class Three, Indian

NS XESEHFMTOTOIITFRTIIR MO0 T

bb. Class Three, Asian / Pacific Islander
cc. Otherwise
4. Ethnicity
a. Class One, Both Spouses Spanish
b. Class One, Male Spouse Spanish
c. Class One, Female Spouse Spanish
d. Class Two, Male Householder Spanish
e. Class Two, Female Householder Spanish
f. Class Three, Spanish
g. Otherwise
5. Children
a. NA

b. Householder with Own Children Under 6
c. Householder with Own Children Ages 6 - 17
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d.
e.

Householder with Own Children, Some Under 6 and Some 6 - 17
Householder without children

6. Marital Status

PopoTw

Now Married
Widowed
Divorced
Separated
Never Married

7. Payment (Rent or Mortgage Plus Utilities, Tax, Insurance, Etc.) 0,[1-50),[50-75),[75-100),[100-125),[125-

150),[150-175),[175-200),[200-250),[250-300),[300-400),[400-500),[500-600).[600-700),[ 700-800),[ 800-
900),[900-1000),[1000-0)

8. Employment / Unemployment

WIS OTOS3ITAT IR OO0 TO

Class One, Both Spouses Unemployed

Class One, Husband unemployed, Wife Employed

Class One, Husband Unemployed, Wife Not in Labor Force
Class One, Husband Employed, Wife Unemployed

Class One, Husband Not in Labor Force, Wife Unemployed
Class One, Both Spouses Not in Labor Force

Class One, Husband Not in Labor Force, Wife Employed
Class One, Husband Employed, Wife Not in Labor Force
Class One, Both Spouses Employed

Class Two, Male Householder Unemployed

Class Two, Male Householder Not in Labor Force

Class Two, Male Householder Employed

. Class Two, Female Householder Unemployed

Class Two, Female Householder Not in Labor Force
Class Two, Female Householder Employed

Class Three, Unemployed

Class Three, Not in Labor Force

Class Three, Employed

Other

9. Veteran Status

10.

20 smmpanooe

1sa

mpaoco

o

12. Household Income (-0,01,[1-1K),[1K-3K),[3K-5K),[SK-7K),[7K-9K),[9K-1 1K),[1 1K-13K),[ 13K-15K),[15K o)

Class One, Husband Veteran

Class One, Wife Veteran

Class One, Both Spouses Veterans

Class Two, at Least One Male in Household is Veteran

Class Two, at Least One Female in Household is Veteran

Class Two, at Least One Male and at Least One Female are Veterans
Class Three, Veteran

Otherwise

bility

Class One, Husband Disabled

Class One, Wife Disabled

Class One, Both Spouses Disabled

Class Two, Male Householder Disabled
Class Two, Female Householder Disabled
Class Three, Disabled

Otherwise

13. Social Security 0,[1-500),[500-1000),[1000-1500),[1500-2000),[2000-2500),[2500,%0)

14. Public Assistance 0,[1-500),[500-1000),{1000-1500),[ 1500-2000),[2000-2500),[2500,00)

15. Other Income 0,[1-500),[500-1000),[1000-1500),[1500-2000),[2000-2500),[2500-5000),[ SK-10K),[ 1 0K~
15K),[15K,0)
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