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Model based inference using ranked set samples 

Omer Ozturk and Konul Bayramoglu Kavlak1 

Abstract 

This paper develops statistical inference based on super population model in a finite population setting using 
ranked set samples (RSS). The samples are constructed without replacement. It is shown that the sample mean 
of RSS is model unbiased and has smaller mean square prediction error (MSPE) than the MSPE of a simple 
random sample mean. Using an unbiased estimator of MSPE, the paper also constructs a prediction confidence 
interval for the population mean. A small scale simulation study shows that estimator is as good as a simple 
random sample (SRS) estimator for poor ranking information. On the other hand it has higher efficiency than 
SRS estimator when the quality of ranking information is good, and the cost ratio of obtaining a single unit in 
RSS and SRS is not very high. Simulation study also indicates that coverage probabilities of prediction intervals 
are very close to the nominal coverage probabilities. Proposed inferential procedure is applied to a real data set. 

 
Key Words: Ranked set sampling; Finite population; Mean square prediction error; Sampling cost model; Coherent 

ranking; Concomitant ranking; Visual ranking. 

 
 

1  Introduction 
 

In many survey sampling studies, it is very common that the sampling frame has additional auxiliary 

information in addition to characteristic of interest. Under a fairly strong modeling assumption, this auxiliary 

information improves the statistical inference. For example, ratio and regression estimators use covariate 

information under a linearity assumption to estimate the population mean or total. The auxiliary information 

can also be used under a weaker assumption in a ranked set sample (RSS) and judgment post stratified (JPS) 

sample. These samples use auxiliary information to increase the information content of each measured unit 

through a ranking process. The ranking process is performed in a small set of size H  formed by combining 

the measured unit with an additional 1H   unmeasured units from the population. Ranking process is 

performed either before or after measurement and determines the relative position of each measured unit. 

Ranking information can be obtained from either a visual inspection or some other form of ranking process. 

A reasonable ranking mechanism requires some sort of monotonic relationship between the ranking variable 

and response, which is much weaker than the strong linearity assumption of regression and ratio estimators. 

A balanced ranked set sample of set size H  and cycle size d  can be constructed by first selecting 

=n Hd  simple random samples of size H  from the population and ranking the units in each sample 

without measurement from smallest to largest. In these n  ranked sets (samples), one then measures the units 

with rank 1 in the first d  sets, the unit with rank 2 in the next d  sets and so on. This yields samples of H  

different sets of judgment order statistics, each of which has d  independent and identically distributed 

judgment order statistics. 

A sharp contrast exists between an observation from SRS and RSS, where the observation from an SRS 

sample provides information only about the unit on which it was measured while the observation from an 

RSS sample, in addition to the information that the measured unit provides, also provides limited 



2 Ozturk and Bayramoglu: Model based inference using ranked set samples 
 

 
Statistics Canada, Catalogue No. 12-001-X 

information about the other  1H   unmeasured units in the set through the relative position (rank) of 

measured unit. Since ranking process does not require a formal measurement and is usually less expensive 

in comparison with formal measurement, the RSS sample provides substantial amount of reduction in 

sampling cost. 

A JPS sample differs from an RSS sample in that the ranking step comes after the construction of an 

SRS sample. Construction of a JPS sample of size n  requires a set size .H  Once the set size H  is 

determined, one first draws a simple random sample of size n  and makes a measurement on each of the n  

units. For each measured unit in the sample, one then selects additional 1H   units to form a set of size 

.H  The units in this set are ranked from smallest to largest without measurement and the rank of the 

measured unit in the set is recorded. The JPS sample then consists of n  measured values, together with their 

ranks. 

Both RSS and JPS samples induces a stochastic structure among measured units in which observations 

in judgment class h  are usually smaller than the observations in judgment class ,h < .h h  This stochastic 

ordering feature spreads the measured units in the support of the distribution and creates a better 

representative sample than a simple random sample. The nature of stochastic ordering in a JPS sample is 

significantly different from the stochastic ordering in an RSS sample. A JPS sample consists of a simple 

random sample and an associated rank vector. This rank vector is loosely related to the sample and may be 

ignored if desired. On the other hand, an RSS sample is measured as judgment order statistics, judgment 

ranks can not be separated from the observed values. An RSS sample can not be treated as an SRS sample. 

Both JPS and RSS sampling designs have generated extensive research interest in a finite population 

setting. Patil, Sinha and Taillie (1995) used ranked set sample to estimate population mean for a population 

of size N  when the sample is constructed without replacement. Takahasi and Futatsuya (1998) showed that 

the ranked set sample estimator of the population mean is more precise than the simple random sample 

estimator when samples are drawn without replacement from a finite population. Deshpande, Frey and 

Ozturk (2006) described three different sampling designs and constructed nonparametric confidence 

intervals for population quantiles. Al-Saleh and Samawi (2007), Ozdemir and Gokpinar (2007 and 2008), 

Gokpinar and Ozdemir (2010), Ozturk and Jozani (2013), Frey (2011) and Ozturk (2014, 2015, 2016a) 

computed inclusion probabilities and constructed Horwitz-Thompson type estimators for population mean 

and total based on a ranked set sample. These research papers show that an RSS design yields a substantial 

amount of improvement in efficiency over the usual simple random sampling design. Ozturk (2016b) 

developed estimators for population mean based on a JPS sample where he showed that the estimator needs 

a finite population correction factor similar to the one used in a simple random sample. 

All available research in literature in JPS and RSS sampling designs in a finite population setting 

considers design-based approach. To our knowledge, super population model has not been used. In this 

paper, we develop a model-based statistical inference using RSS sampling design for population mean and 

total in a finite population setting. Similar results, with some additional variation due to random judgment 

class samples sizes, can also be established for a JPS sampling design. Because of the random judgment 

class sample sizes, the estimators based on a JPS sample are less efficient than the estimators based on an 

RSS sample. For this reason, the JPS sample is not considered further in this paper. Section 2 clearly defines 
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the model and describes the sampling designs for RSS under super population model. We show that 

estimators of population mean and total are model-unbiased and their mean square prediction errors (MSPE) 

are smaller than the MSPE of the same estimators of an SRS sample. Section 3 constructs unbiased 

estimators for the MSPE and provides approximate confidence intervals for the population mean and total. 

Section 4 introduces cost models to account the effect of additional cost (excess of the cost of construction 

of SRS sample) in construction of RSS sample. Section 5 provides empirical evidence about the 

performance of the estimators. Section 6 applies the proposed estimators to an example in a finite population 

setting. Section 7 provides some concluding remarks. 

 
2  Sampling designs 
 

We consider RSS sampling designs from a super population model to draw statistical inference in a finite 

population setting. Let Y  be the characteristic of interest. The copies of ,Y 1, , ,NY Y  are considered as 

independent identically distributed (iid) random variables from a super population. Basic assumption for 

this super population model can be stated as  

     2
1Model: , , independent identically distributed with = , = .N M i M iY Y E Y V Y   (2.1) 

The subscript M  in model (2.1) is used to highlight that the mean and variance are computed based on a 

super population model, not the randomization distribution as in Ozturk (2016b). In this super population 

model,   and 2  represent unknown infinite population parameters. 

In super population model, a particular realization, 1, , ,Ny y  of random variables 1, , NY Y  from 

model (2.1), is considered as a finite population. Let  1= , ,N
NP y y  denotes this finite population. 

Ranked set sample is constructed from .NP  Without loss of generality, we assume that 

     1 2< < < Ny y y  are ordered values of 1, , Ny y  where  iy  is the thi  largest value of Y  in .NP  

Throughout the paper, H  and d  are used to denote the set and cycle sizes, respectively. 

To construct a ranked set sample, one selects a set of H  experimental units, 1 , , ,Hs sy y  at random 

from NP  and ranks them based on their Y  values in an increasing magnitude without actual measurement. 

Ranking process can be performed either using visual inspection or some auxiliary variables and hence 

subjected to ranking error. The unit that corresponds to the smallest ,Y  1 ,y  is identified and measured 

where the square bracket in the subscript, [1], denotes the rank of the smallest unit (rank 1) in the set 

      * *
1 2, , , .Hy y y  The remaining unmeasured units are denoted with     * *

2 , , .Hy y  After  1y  is 

measured, none of the H  units in the set       * *
1 2, , , Hy y y  are returned to the population. One then selects 

another set of H  experimental units at random from the remaining population N HP   and ranks them 

without measurement. This time, the unit that corresponds to the second smallest ,Y  2 ,y  is identified and 

measured in         * * *
21 3, , , , .Hy y y y  This process is continued until a simple random sample of size H  is 

taken from the reduced population  1N H HP    and the thH  smallest unit is identified and measured in the 

set         * * *
1 2 1, , , , .HHy y y y  This is called a cycle. A cycle selects H  disjoint sets, each of size H  and 

only measures H  units. The remaining  1H H   units are used only for ranking purposes. The cycles are 

repeated d  times to yield a ranked set sample of size =n dH  units. A ranked set sample can then be 

represented as  
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           * * * *
, , 1 1 1= , , , , , , , = 1, , , = 1, , ,h i H h ii h i h i H iW y y y y y h H i d      (2.2) 

where only   ,h iy = 1, , , = 1, , ,h H i d   are measured. The other values are used to obtain the rank of 

the measured values. Units in sets , ,h i HW  and , ,h i HW    are all independent if either h h  or ,i i  but the 

units in , ,h i HW  are all correlated since they are ranked in the same set. Under model (2.1), means, variances 

and covariances of judgment order statistics are given by  

 

         

  
 

2

[ , ] [ ]

[ ]

= , Var = ,

if , are from the same set
Cov , =

0 otherwise.

M h i h M h i h

h h h i h i

M h i h i

E Y Y

Y Y
Y Y

 

  






  

It should be noted that since all sets are disjoint no units can be used more than once in any one of the 

sets. Hence all sample units are distinct. Since the sets are independently ranked   ’sh iY  are mutually 

independent. Observations having the same rank ,h   ,h iY = 1, ,i d  are identically distributed. 

Estimator of the population mean   based on RSS data in equation (2.2) can be defined as follows. 

  
=1 =1

1
= .

H d

R h i
h i

Y Y
dH

  (2.3) 

It can be immediately observed that the estimator RY  is model unbiased. In other words, under the model 

(2.1),   = 0,M R NE Y Y  where 1
=1

= .
N

N iN i
Y Y  

We now consider the mean square prediction error (MSPE) of the estimator RY  under model (2.1)  

    
2

2

=1

1
MSPE = = .

N

M R M R i M R N
i

Y E Y Y E Y Y
N

   
 

   

Since the predictor RY  is model unbiased for ,NY   = 0,M R NE Y Y  the mean square prediction error 

(MSPE) of RY  is the same as  Var .M R NY Y  
 

Theorem 1: Let   , = 1, , , = 1, , ,h iY h H i d   be a ranked set sample from a finite population .NP  Under 

a super population model in equation (2.1), the mean square prediction error of the estimator RY  is given 

by  

      22 2
RSS

=1

1
= MSPE = .

H

M R h
h

N n
Y

Nn nH
   


   (2.4) 

We note that expression on equation (2.4) is very similar to the sample variance of an infinite population 

RSS sample. Only difference is due to the coefficient .N n
Nn
  In infinite population setting the fraction N n

Nn
  

in equation (2.4) becomes 1 .n  Hence,  1 n
N  is the finite population correction (fpc) factor for the variance 

of RSS sample mean. If the sample size is not small in comparison with the population size ,N  the fpc, 

,N n
Nn
  makes a correction on the variance of an RSS sample mean. This correction would be substantial if n  

is relatively large with respect to .N  If n  is small, fpc is close to 1 and the impact of finite population 

correction factor is minimal. 
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Corollary 1: Assume that n  and N  increase in such a way that the ratio n
N  approaches to a limit at ,a

= .lim n
n N a  

(i) If > 0,a 2
RSS  converges to a simple form  

                  22 2

=1

1
= 1 ,lim

H

hRSS
n h

n a
H

   


     

(ii) if = 0,a  
12 2= ,limn RSS hHn   which is the same as the variance of the sample mean of a 

balanced ranked set sample in an infinite population setting,  

(iii) if a  is strictly positive, then  
12 2< .limn RSS hHn   

 

The corollary indicates that when sample and population sizes grow at a certain rate, variance of sample 

mean of an RSS  2
RSS  sample in a finite population setting reduces to simple form. If a  is strictly positive, 

variance of an RSS sample mean is smaller than the variance of an RSS sample mean in an infinite 

population setting. 

 
3  Unbiased estimators 
 

In this section, we construct an unbiased estimator for 2
RSS.  By rewriting the estimator for 2

RSS  in a 

slightly different form, we obtain 

                                                      

  

 

 

22 2
RSS

=1

22 2

=1

22

=1

1
=

1 1 1
=

1 1
= .

H

h
h

H

h
h

H

h
h

N n

Nn nH

H
n N nH

N nH

   

  

 

    
 

        

   
 







  

Let  

                                                         

  

 
    

2*
1 [ ]

2 2
=1 =1 =1

2*
2

2
=1 =1

1
=

2

1
= .

2 1

H H d d

h i h j
h h h i j

H d d

h i h j
h i j i

T Y Y
d H

T Y Y
d d H














  

Using these definitions, one can easily establish the following result. 
 

Theorem 2: Let   ,h iY = 1, , , = 1, ,i n h H   be an RSS sample of set size H  from a finite population. 

An unbiased estimator of 2
RSS  is given by  

                                                       2 * * *
2 1 2

1
ˆ = .RSS

H
T T T

n N
    

 
 (3.1) 
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Theorem 2 indicates that the variance estimator is unbiased for any sample and set sizes regardless of 

the quality of ranking information. Unbiased estimator of the variance of RY  allows us to construct 

confidence interval for population mean and total. Using normal approximation,  1 100%  confidence 

interval for the population mean is given by  

 2
, 2 RSSˆ ,R n HY t     

where ,df at  is the tha  upper quantile of t  distribution with degrees of freedom .df  The degrees of freedom 

n H  is suggested to account the heterogeneity among H  judgment classes. The choice of =df n H  

is also suggested in Ahn, Lim and Wang (2014) in infinite population setting. 

 
4  Cost model 
 

Efficiency improvement of the RSS estimator results from the relative position (rank) information of the 

measured observation among unmeasured 1H   units in a set. This extra information comes at the cost of 

sampling a set of size H  and obtaining the subsequent ranking. Ranking can be performed either using 

concomitant (auxiliary) variable or visual inspection of the physical units in each set. Hence, these two 

approaches, visual and concomitant ranking models, may lead to different cost structures. In either case, 

there needs to be some sort of consistency in ranking process to develop a meaningful cost function. Patil, 

Sinha and Taillie (1997) defined a coherent ranking process in which ranking of a set is consistent for all 

subsets and supersets. Under a coherent ranking scheme, the rank order of H  units would remain identical 

when ranking any of their subsets or supersets containing them. For further detail in coherent ranking, 

readers are referred to Patil et al. (1997) or Nahhas, Wolfe and Chen (2002). 

Concomitant ranking uses an auxiliary variable to rank H  units in a set. The quality of ranking depends 

on monotonic (not necessarily to be linear) relationship between the variable of interest and auxiliary 

variable. On the other hand, visual inspection can be performed in different ways. One of the strategy is to 

use pairwise comparison. Under coherent ranking, not all  2
H  pairwise comparisons are necessary for a 

visual ranking. For example, in a set of size = 3,H  if unit 1 is judged to be smaller than unit 2 and unit 2 

is smaller than unit 3, we reasonably assume unit 1 is less than unit 3 without a comparison. In order to 

differentiate the impact of the cost structures of the concomitant and visual ranking schemes, we denote the 

estimator in equation (2.3) with RCY  for concomitant ranking and RVY  for visual ranking. 

For visual ranking, we use visual inspection model of Nahhas et al. (2002). This model always compares 

the selected unit with the largest element previously ranked. It chooses a unit at random and compares it 

with the unit previously judged to be largest. If it is judged to be larger, then it becomes the largest among 

all judged units. Otherwise, it is compared with the next largest previously judged unit until it is assigned a 

rank. The number of required pairwise comparisons under this ranking strategy with a coherent ranking 

scheme is an integer valued random variable having the support  2
1, , 1, , .HH H H    The expected 

number of pairwise comparison for this ranking scheme is approximately equal to   =f H  

   2 1 4.H H   The reader is referred to Nahhas et al. (2002) for further development on expected 

number of pairwise comparisons. 
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We now introduce cost definitions for three models; concomitant, visual ranking and simple random 

sampling models: =CC  total cost for concomitant ranking, =VC  total cost for visual ranking, =SC  total 

cost for simple random sampling, =ic  cost of sampling a single unit, =qyc  cost of quantification of the 

variable of interest  Y  for one unit, =qxc  cost of quantification of concomitant (auxiliary )X  variable for 

one unit, =rc  cost of one pairwise comparison. We assume that overhead cost in SRS model to be zero, 

but the overhead cost (in excess of the overhead cost of SRS) of RSS concomitant (visual) ranking model 

is absorbed in   .qx rc c  Total cost for these three models are then given by  

       = , = , = ,S s i qy C c i qx qy V V i qyC n c c C n Hc Hc c C n Hc f H c       

where ,S Cn n  and Vn  are the total (measured) observations in SRS, RSS concomitant and RSS visual 

ranking models. Readers are referred to Nahhas et al. (2002) for further details on these cost functions. 

We now fix the total cost on these three models = = = .S C VC C C C  Under this fixed cost, we look at 

the relative efficiency of RCY  and RVY  with respect to SRS sample mean SRS .Y  Let  

    2

2
=1

1 1
RP = , = 1 ,

1

H

h
h

D
D H

 


 
    

where RP is the relative precision of RSS sample mean with respect to SRS sample mean in an infinite 

population setting. Under super population model, we can establish the following efficiency result. 
 

Theorem 3: Let   ,h iY = 1, , ,h H = 1, , ,i d  be a ranked set sample from a finite population .NP  For 

a fixed cost, under super population model and coherent ranking scheme, the following efficiency results 

are established.  

 

   
 

   
 

 

SRS
RC SRS

RC

SRS
RV SRS

RV

Var
RE , = 1, if RP

Var

Var
RE , = 1, if RP .

Var

i qx qy

i qy

i r qy

i qy

Y Hc Hc c
Y Y

Y c c

Y Hc f H c c
Y Y

Y c c

 
 



 
 



  

The fractions on the right hand side of the inequalities in the above theorem is the ratio of the cost of 

selecting and measuring a single unit in RSS and SRS, respectively. If the cost of sampling a unit and cost 

of ranking a set are negligible (free), the cost ratio becomes 1. One of the basic assumptions, in settings 

where RSS is used, is that ranking cost of units is relatively cheap with respect to the cost of measurement. 

Hence, it is not unreasonable to assume that cost ratio will be very close to 1 for settings where use of RSS 

is appropriate. It is established in the literature that RP is always greater than or equal to 1 (see Dell and 

Clutter (1972), Patil et al. (1997), Nahhas et al. (2002)). It is equal to 1 only under random ranking. The 

values of RP for normal population for different values of   (correlation coefficient between response Y  

and auxiliary variable )X  and set sizes are given in Table 4.1. It is now reasonable to say that RSS estimator 

under super population model is more efficient if the cost of sampling and ranking a unit is relatively cheap 

in comparison with measurement cost. 
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Table 4.1 
Relative precision (RP) of RSS sample mean with respect to SRS sample mean under infinite population setting 
for normal distribution  0, 1 .N   is the correlation coefficient between response and auxiliary variable, and 
H  is the set size 

 

  = 2H  = 3H  = 4H = 5H  = 6H  
1.00 1.467 1.914 2.347 2.770 3.186 
0.90 1.347 1.631 1.869 2.073 2.251 
0.75 1.218 1.367 1.477 1.561 1.628 
0.50 1.086 1.136 1.168 1.190 1.207 

 
5  Empirical results 
 

In this section, we conduct a simulation study to check the finite sample properties of the estimator for 

different values of simulation parameters. Data sets are generated from normal  = 10, = 4   and log 

normal  = 0, = 1   super populations. We consider two different finite populations with population 

sizes =N  150 and =N  1,000 to see the impact of population sizes on the estimators. Sample and set size 

combinations  ,n H  are selected to be (10, 2), (15, 3), (20, 4), (25, 5). The quality of ranking information 

is modeled through a perceptual error model in Dell and Clutter (1972). The Dell and Clutter model 

considers two variables, the variable of interest Y  and a correlated ranking variable .X  The ranking 

variable is modeled through an additive model = ,X Y    where   is a random noise generated 

independently with respect to .Y  To implement the perceptual error model, we generate a set (size )H  of 

simple random sample,  1 2= , , , ,HY Y YY   from the true population of interest with mean   and variance 
2.  Another set (size )H  of random numbers are generated from a normal distribution with mean zero and 

variance, 2,   1 2= , , , .H    The perceptual error model is then defined by =i i iX Y    

= 1, 2, , .i H  The random numbers  ,i iX Y  are ranked with respect to the first components   iX  and 

the second components are taken to be the judgment ranked order statistics   .iY  The quality of the ranking 

information is controlled by the correlation coefficient between Y  and ,X    2

22

1 2
= corr , = .Y X 

   
 

Since the units are ranked based on concomitant variable ,X  the ranking model is equivalent to concomitant 

ranking in Section 3. In the simulation study, we used = 1  for perfect ranking and =  0.75, 0.50 for 

imperfect ranking. 

In each replication of the simulation, a finite population of size NP  is generated from the normal super 

population with specified mean   and standard deviation ,  1= , , .N
NP y y  A ranked set sample is 

then constructed from this finite population, a realization from normal super population, with specified set 

and cycle sizes. The quality of ranking information in each RSS sample is controlled generating random 

noise vector   with specified   (or equivalently )   in the perceptual error model. The simulation size is 

taken to be 50,000. 

Simulation results are presented in Tables 5.1, 5.2, 5.3 and 5.4. There are several features that need to 

be discussed in these tables. For different   and sample size combinations  , ,n H  the relative efficiencies 

of the RSS estimator with respect to the SRS estimator are given by  

 
 
 

SRS
RC

RC

RE =
V Y

V Y
 (5.1) 
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where  SRSV Y  and  RCV Y  are the MSPE of SRS and RSS sample means from the simulation study under 

a super population model in equation (2.1), respectively. In equation (5.1), the relative efficiency values 

 RCRE  greater than one indicate that the RSS estimator is more efficient than the SRS estimator. In all 

these tables, the RSS sample mean estimator performs better than the SRS estimator. Its efficiency is an 

increasing function of set size H  and correlation coefficient   as expected. Under the concomitant cost 

model, if the cost ratio of obtaining a unit in RSS and a unit in SRS is less than the RP values in Table 4.1, 

the RSS sample mean has higher efficiency than the SRS sample mean. 

The impact of the finite population size N  can be observed by comparing the efficiency results in 

Tables 5.1 and 5.2 for the normal super population and Tables 5.3 and 5.4 for the lognormal super 

population. When > 0.50, relative efficiencies  RCRE  are higher in Table 5.1  = 150N  than Table 5.2 

 = 1,000 .N  In Table 5.1, finite population correction factor is smaller than the finite population correction 

factor in Table 5.2. Hence, the reduction in MSPE is smaller in RSS estimator. Similar effect is also 

observed in Tables 5.3 and 5.4. 

The simulation study also investigated the properties of the MSPE estimator of RSS sample mean 

estimator. Theoretical value of the MSPE estimator is given under the heading 2
RSS  when =  1.0. The 

simulated (unbiased) MSPE estimate is given in columns 5 (6) in Tables 5.1-5.4. It is very clear that 

simulated and unbiased MSPE estimates are almost identical when 1   as expected. Under perfect 

ranking  = 1  theoretical MSPE values, and the simulated and unbiased MSPE estimates are all close to 

each other within the simulation variation. 

The coverage probabilities of the confidence intervals are given under the heading  RCC Y  in column 7 

in Tables 5.1-5.4. In Tables 5.1 and 5.2, the coverage probabilities of the confidence intervals based on t 
approximation are reasonably close to the nominal coverage probability 0.950. On the other hand, the 

coverage probabilities in Tables 5.3 and 5.4 are smaller than the nominal coverage probability 0.95 for 

lognormal super population. The coverage probabilities are getting closer to nominal values when the 

sample size increases. This indicates that for skewed populations, sample sizes should be large enough to 

have a reasonable coverage probability for the confidence intervals. 
 

Table 5.1 
MSPE estimate and relative efficiency of RSS sample estimator, and coverage probability of a 95% confidence 
interval of population mean. Data sets are generated from a normal super population with = 10, = 4  and 
population size =N 150 
 

     Est. from equations Est. from simu. UE estimates Coverage prb. Relative eff. 

H    2
RSS  2

SRS   RCV Y  2
RSS̂   RCC Y  RCRE  

2.0 0.50 - 1.493 1.355 1.365 0.949 1.102 
3.0 0.50 - 0.960 0.840 0.833 0.947 1.143 
4.0 0.50 - 0.693 0.572 0.578 0.948 1.213 
5.0 0.50 - 0.533 0.435 0.432 0.948 1.226 
2.0 0.75 - 1.493 1.195 1.205 0.949 1.250 
3.0 0.75 - 0.960 0.675 0.674 0.947 1.423 
4.0 0.75 - 0.693 0.433 0.436 0.946 1.600 
5.0 0.75 - 0.533 0.302 0.304 0.945 1.768 
2.0 1.00 0.984 1.493 0.974 0.984 0.948 1.534 
3.0 1.00 0.451 0.960 0.455 0.451 0.940 2.111 
4.0 1.00 0.234 0.693 0.233 0.235 0.936 2.971 
5.0 1.00 0.124 0.533 0.125 0.126 0.922 4.273 
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Table 5.2 
MSPE estimate and relative efficiency of RSS sample estimator, and coverage probability of a 95% confidence 
interval of population mean. Data sets are generated from a normal super population with = 10, = 4  and 
population size =N 1,000 
 

    Est. from equations Est. from simu. UE estimate Coverage prb. Relative eff. 

H    2
RSS  2

SRS   RCV Y  2
RSS̂   RCC Y  RCRE  

2.0 0.50 - 1.584 1.461 1.455 0.950 1.084 
3.0 0.50 - 1.051 0.931 0.924 0.949 1.129 
4.0 0.50 - 0.784 0.665 0.670 0.950 1.180 
5.0 0.50 - 0.624 0.524 0.522 0.950 1.191 
2.0 0.75 - 1.584 1.304 1.295 0.949 1.215 
3.0 0.75 - 1.051 0.770 0.765 0.948 1.365 
4.0 0.75 - 0.784 0.525 0.526 0.951 1.494 
5.0 0.75 - 0.624 0.392 0.395 0.951 1.590 
2.0 1.00 1.075 1.584 1.075 1.076 0.950 1.473 
3.0 1.00 0.541 1.051 0.538 0.541 0.951 1.954 
4.0 1.00 0.325 0.784 0.327 0.325 0.949 2.398 
5.0 1.00 0.215 0.624 0.217 0.215 0.948 2.877 

 

Table 5.3 
MSPE estimate and relative efficiency of RSS sample estimator, and coverage probability of a 95% confidence 
interval of population mean. Data sets are generated from a log-normal super population with = 0, = 1  
and population size =N 150 
 

    Est. from equations Est. from simu. UE estimate Coverage prb. Relative eff. 

H    2
RSS  2

SRS   RCV Y  2
RSS̂   RCC Y  RCRE  

2.0 0.50 - 0.436 0.400 0.400 0.852 1.089 
3.0 0.50 - 0.280 0.243 0.242 0.869 1.153 
4.0 0.50 - 0.202 0.160 0.162 0.883 1.262 
5.0 0.50 - 0.156 0.117 0.116 0.886 1.336 
2.0 0.75 - 0.436 0.371 0.372 0.855 1.176 
3.0 0.75 - 0.280 0.216 0.217 0.867 1.300 
4.0 0.75 - 0.202 0.146 0.146 0.874 1.388 
5.0 0.75 - 0.156 0.103 0.103 0.878 1.514 
2.0 1.00 0.362 0.436 0.361 0.364 0.839 1.207 
3.0 1.00 0.201 0.280 0.197 0.198 0.849 1.423 
4.0 1.00 0.128 0.202 0.128 0.127 0.847 1.586 
5.0 1.00 0.086 0.156 0.085 0.085 0.845 1.833 

 

Table 5.4 
MSPE estimate and relative efficiency of RSS sample estimator, and coverage probability of a 95% confidence 
interval of population mean. Data sets are generated from a log-normal super population with = 0, = 1  
and population size =N 1,000 
 

    Est. from equations Est. from simu. UE estimate Coverage prb. Relative eff. 

H    2
RSS  2

SRS   RCV Y  2
RSS̂   RCC Y  RCRE  

2.0 0.50 - 0.462 0.432 0.433 0.851 1.070 
3.0 0.50 - 0.307 0.263 0.263 0.868 1.164 
4.0 0.50 - 0.229 0.189 0.190 0.882 1.208 
5.0 0.50 - 0.182 0.141 0.141 0.889 1.296 
2.0 0.75 - 0.462 0.413 0.413 0.852 1.119 
3.0 0.75 - 0.307 0.240 0.238 0.868 1.276 
4.0 0.75 - 0.229 0.171 0.170 0.878 1.337 
5.0 0.75 - 0.182 0.129 0.129 0.884 1.415 
2.0 1.00 0.389 0.462 0.387 0.386 0.839 1.195 
3.0 1.00 0.228 0.307 0.225 0.227 0.852 1.364 
4.0 1.00 0.154 0.229 0.155 0.155 0.857 1.479 
5.0 1.00 0.113 0.182 0.113 0.113 0.862 1.614 
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6  Example 
 

In this section we apply the proposed estimators to a data set which contains a sheep population in a 

research farm at Ataturk University, Erzurum, Turkey. Data set contains birth weights, mothers’ weights at 

mating and the weights at the 7th month after birth for 224 lambs. The entire data set is given in Hollander, 

Wolfe and Chicken (2014, page 709). Variable of interest is the weights  Y  at the 7th month after birth for 

224 lambs. We use birth weights  1X  and mothers’ weights  2X  at mating as auxiliary variables to 

perform ranking process. The ranking variables are positively correlated with the variable of interest .Y  

The correlation coefficient   = corr ,X Y  between 1 ,X Y  and 2 ,X Y  are 0.8425 and 0.5941, 

respectively. The histogram of the variable of interest, ,Y  is roughly symmetric. Mean and variance of Y  

are =NY  28.125kg and 2 =NS  15.23kg2, respectively, where  224 22
=1

= 223.n i N
i

S Y Y  We treated 

these 224 lambs as a realization from a super population having finite mean   and variance 2.  We 

constructed samples based RSS sampling design using this finite population. Samples are generated for 

sample and set size combinations,  , ,n H  (10, 2), (15, 3), (20, 4), (25, 5). Simulation size is taken to 

be 50,000. 

In this example, we incorporate the sampling cost to RSS and SRS sampling designs with concomitant 

ranking in RSS. We first need to determine reasonable costs associated with various aspects of RSS. Weight 

measurement is obtained from seven-month-old lambs. These animals are very active and measurement cost 

is substantial. The measurement process usually require three people for separating the lamb from the flock, 

bringing it to scale, holding it firm during the measurement. Suppose that the farm employs the workers in 

an annual salary of $50,000. This corresponds to a rate of approximatley $25 per hour per person. Assume 

that the measurement of a lamb takes about 5 minutes. The measurement cost for a lamb then would be 

about  = 3 25 12 6qyc   for three workers. Ranking will be performed using auxilairy variables 1X  and 

2.X  These variables are maintained in the data base for some other purposes. Only cost to sampling would 

be due to personal cost for ranking. Ranking will be performed in the office by selecting sets at random 

from the data base and ranking them based on auxiliary variables. Suppose that ranking a set of size H  

takes about 1/2 minute. This leads to ranking cost of = $0.21.qxHc  We may assume that cost related to 

identification of a unit in the population is negligible  = 0 .ic  Under these stipulations, the cost ratio of 

selecting and measuring a unit in RSS and SRS is given by    ratio = =i qx qy i qyHc Hc c c c    

 6 0.21 6 = 1.035.  Since this ratio is less than all entries in Table 4.1, we anticipate that RCY  provides 

higher efficiency than SRS.Y  

Table 6.1 presents the estimated MSPE and relative efficiency of RSS esimator as well as the coverage 

probability of the confidence interval of   for different   and sample size combinations. It is clear that the 

RSS estimator outperform the SRS estimator for all simulation parameter combinations. Estimated MSPEs 

and coverage probabilities also show similar behaviors as in Section 3. The estimated MSPE values are very 

close to the simulated MSPE values. The coverage probabilities of the confidence intervals based on t 

approximation appear to be very close to the nominal coverage probabiliy, 0.950. 
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Table 6.1 
MSPE estimate and relative efficiency of RSS sample estimator, and coverage probability of a 95% confidence 
interval of population mean of a sheep population of size =N 224 

 

 Est. from equation Est. from simu. UE estimate Coverage prb. Relative eff. 

H    2
SRS   RCV Y  2

RSS̂   RCC Y  RCRE  

2.0 0.59 1.453 1.279 1.275 0.946 1.136 
3.0 0.59 0.946 0.776 0.774 0.948 1.219 
4.0 0.59 0.693 0.536 0.537 0.948 1.293 
5.0 0.59 0.540 0.399 0.402 0.948 1.353 
2.0 0.84 1.453 1.107 1.105 0.945 1.312 
3.0 0.84 0.946 0.600 0.602 0.946 1.576 
4.0 0.84 0.693 0.377 0.382 0.946 1.839 
5.0 0.84 0.540 0.263 0.264 0.944 2.056 

 
 
7  Concluding remarks 
 

We have developed a model based statistical inference for population mean and total based on RSS 

samples in a finite population setting where samples are constructed by using a without replacement 

sampling design. It is shown that the sample mean of RSS samples are model unbiased and they have smaller 

mean square prediction error (MSPE) than the MSPE of a simple random sample mean. We constructed 

unbiased estimator for the MSPE and prediction confidence interval for the population mean. A small scale 

simulation study showed that estimators are as good as or better than SRS estimators when the quality of 

ranking information in RSS sampling is low or high, respectively, and the cost ratio of obtaining a unit in 

RSS and a unit in SRS is not too high. The coverage probabilities of the prediction intervals are also very 

close to the nominal coverage probabilities. Proposed sampling designs and inferential procedures are 

applied to a data set containing a sheep population in an agricultural research farm. 
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Appendix 
 

Proof of Theorem 1: We write mean square prediction error (MSPE) as  

    

2 2

=1 =1 =1 =1

1 1 1
MSPE = = .

N H d N

M R M R i M h i i
i h i i

Y E Y Y E Y Y
N dH N

       
   

     
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Let ,iZ = 1, , ,i N nH  be the responses on N nH  population units that are neither measured nor 

used in ranking in any one of the randomly selected sets of size H  in the construction of the RSS sample. 

Then the MSPE can be written  

                         

2

*
[ ]

=1 =1 =1 =1 =1

1 1 1
MSEP =

H d H d H N nH

M R M h i h i h i i
h i h i h h i

Y E Y Y Y Z
dH N N






        
      

where *
[ ] ,h iY  , ,h h   are responses on unmeasured units that are used in ranking of units in a set. Hence, 

*
[ ]h iY   and  h iY  are correlated, but they are uncorrelated with .iZ  Let  

 ,

=
=

1 .

h h

N n
h h

nc

h h



 

  

  

Using the definition of , ,h hc   we combine *
[ ]h iY   and  h iY  under the same summation and write the MSPE as 
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(A.1)

 

The expression A  reduces to  
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h h h h h hh
h h h h
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d N n
H

N n

 



 




      
  

 


  

In a similar fashion, the expression B  reduces to  

                                      

 
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= 2 2 2

H H H H

h h h t h t h h h t h t h h h h h h
h t h h h h h

H H H H

h t h t h h
h h ht h h t

H H

h
h h

d
B c c c c c c

N

d N n

N n

d N n
H H H H

N n

  

  

  

   
   


  

       

         

      
 

   

   

   
2 .h 

    
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By inserting expressions A  and B  in equation (A.1), we conclude that  

                        

     

       

  

2

2

2
=1

2 22 2 2
2

=1 =1

2
2

22

=1

MSPE = 1

2 2 2

1
=

H

M R h
h

H H

h h
h h

H

h
h

d N n
Y H

N n

d N n
H H H H

N n

N nH

N

N n

Nn nH



   



  

      
  

              

   
 

    
 



 



  

which completes the proof. Note that to establish the last equality we used the fact that 2 =  

     22
=1 =1

.
H H

hhh h
H H      

 

Proof of Theorem 2: We first look at the expected values of *
1T  and *

2T  under the super population model 

in equation (2.1)  

                                   

        

   

2 2 2* 2
1

2 2
=1 =1 =1

2*
2

2
=1

1 1 1
= =

1
= .

H H H

h h h
h h h

H

h
h

H
E T

H H H

E T
H

    




    


  

It is now easy to establish that  * * 2
1 2 = .E T T   The proof is then completed by inserting these 

expressions in equation (3.1). 
 

Proof of Theorem 3: We sketch the proof for  RC SRSRE , .Y Y  From the total cost function, we write  

 = and = ,S R
i qy i qx qy

C C
n n

c c Hc Hc c  
  

where C  is the fixed total cost. Using these expressions, we have  

                       

   
 

 
   

RCRE , SRS =

= .

R S

S r

i qy

i qx qy i qx qy

n N n
Y

n N n ND

N c c C

N Hc Hc c C ND Hc Hc c


 

 
     

  

We now establish that  RCRE , SRS 1Y   if and only if  

                                  

   1 =
RP

RP

i qx qy
i qy i qx qy

i qx qy

i qy

Hc Hc c
c c Hc Hc c D

Hc Hc c

c c

 
    

 




  

which completes the proof. 
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Linearization versus bootstrap for variance estimation of the 
change between Gini indexes 

Guillaume Chauvet and Camelia Goga1 

Abstract 

This paper investigates the linearization and bootstrap variance estimation for the Gini coefficient and the change 
between Gini indexes at two periods of time. For the one-sample case, we use the influence function linearization 
approach suggested by Deville (1999), the without-replacement bootstrap suggested by Gross (1980) for simple 
random sampling without replacement and the with-replacement of primary sampling units described in Rao and 
Wu (1988) for multistage sampling. To obtain a two-sample variance estimator, we use the linearization 
technique by means of partial influence functions (Goga, Deville and Ruiz-Gazen, 2009). We also develop an 
extension of the studied bootstrap procedures for two-dimensional sampling. The two approaches are compared 
on simulated data. 

 
Key Words: Composite estimator; Horvitz-Thompson estimator; Influence function; Intersection estimator; Replication 

weights; Two-sample survey; Two-dimensional sampling design; Union estimator; Variance estimation. 

 
 

1  Introduction 
 

The Gini coefficient (Gini, 1914) is one of the best known concentration measure often desired in 

economical studies. If 1  denotes a quantitative positive variable such as the income and  1F   denotes its 

distribution function defined on  , ,    the Gini coefficient is  

 
   

 
1

1
= ,

2

v u dF u dF v
G

udF u




  

provided   0.udF u   The Gini coefficient measures the dispersion of a quantitative positive variable 

within a population. Statistical institutes generally make use of the Gini coefficient to evaluate the income 

inequalities of a country at different periods of time, or of different countries at the same time. In the last 

decades, the Gini coefficient has also been considered in economic and sociodemographic fields (see for 

example Navarro, Muntaner, Borrell, Benach, Quiroga, Rodriguez-Sanz, Vergès and Pasarin, 2006; 

Bhattacharya, 2007; Lai, Huang, Risser and Kapadia, 2008; Barrett and Donald, 2009), biology (Graczyk, 

2007), environment (Druckman and Jackson, 2008; Groves-Kirkby, Denman and Phillips, 2009) or 

astrophysics (Lisker, 2008).  

There is an extensive literature on variance estimation for the Gini coefficient with observations obtained 

from survey data, see Langel and Tillé (2013) for a review. Glasser (1962) and Sandström, Wretman and 

Waldèn (1985) considered the case of simple random sampling. Sandström, Wretman and Waldèn (1988) 

listed possible variance estimators for a general sampling design, including a jackknife variance estimator. 

This latter approach was further investigated by Yitzhaki (1991), Karagiannis and Kovačević (2000) and 
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Berger (2008). Linearization variance estimation was studied by Kovačević and Binder (1997), and Berger 

(2008) demonstrated the equivalence between linearization and a generalized jackknife technique first 

suggested by Campbell (1980). Qin, Rao and Wu (2010) proposed bootstrap and empirical likelihood based 

confidence intervals for the Gini coefficient. They studied these methods both theoretically and empirically 

in the particular case of stratified with replacement simple random sampling. However, bootstrap variance 

estimation has not been compared with alternative methods for the change between Gini indexes.  

In this article, we consider linearization versus bootstrap to estimate the change between Gini indexes. 

The paper is structured as follows. In Section 2, we first consider the estimation of the Gini coefficient in 

the one-sample case. The notation is defined in Section 2.1, and the substitution estimator of the Gini 

coefficient is presented in Section 2.2. The linearization variance estimator is given in Section 2.3, with 

application to the simple random sampling (SI) design and to a multistage sampling design. The main 

principles of the weighted bootstrap are briefly reviewed at the beginning of Section 2.4, and the without-

replacement bootstrap (BWO) suitable for SI sampling is introduced in Section 2.4.1, while the bootstrap 

of primary sampling units (BWR) suitable for multistage sampling is introduced in Section 2.4.2. In 

Section 3, we consider the estimation of the change between Gini indexes in the two-sample case. The 

notation is defined in Section 3.1, and we briefly review the principles of composite estimation which is 

applied in Section 3.1.1 for the two-dimensional SI design (SI2) and in Section 3.1.2 for a two-dimensional 

two-stage sampling design (MULT2). The composite estimator of the change between Gini indexes is 

presented in Section 3.2. The linearization variance estimator by means of the partial influence functions is 

given in Section 3.3, with application to the SI2 design and to the MULT2 design. An extension of the BWO 

for the SI2 design and of the BWR for the MULT2 design are then presented in Section 3.4. Linearization 

and the proposed bootstrap methods are compared in Section 4 through a simulation study. Section 5 

concludes. 

 
2  One sample case 
 

2.1  Notation 
 

Let U  denote some finite population of size N  whose units may be identified by the labels = 1, , .k N  

Suppose that the variable 1  is measured on the population ,U  and let 11 1, , Ny y  denote the values taken 

by 1  on the units in the population. Let 11 = ky
k U

M 
  denote the discrete measure taking unit mass on 

any point 1ky  in the population and 0 elsewhere, with 1ky  the Dirac mass at 1 .ky  Most of the parameters 

of interest 1  studied in surveys can be written as a functional T  of 1 ,M  namely  1 1= .T M  For 

instance, the total 1 1=y k
k U

t y
  equals 1 1.dM  In practice, a sample s  (with or without repetitions) is 

selected by means of a sampling design   ,p   and we observe the values 1ky  for k s  only. A substitution 

principle is used for estimation (see Deville, 1999, and Goga, Deville and Ruiz-Gazen, 2009). Let k  denote 

the expected number of draws for unit k  in the sample; in case of without-replacement sampling, this is the 

probability that unit k  is selected in the sample. Let 11
ˆ = kk y

k s
M w 

  denote the discrete measure taking 
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mass kw  on any point in the sample and 0 elsewhere, where 1=k kw    is the sampling weight. Substituting 

1M̂  into 1  yields the estimator  1 1
ˆ ˆ= .T M  

For a without-replacement sampling design, the substitution estimator for a total is the so-called Horvitz-

Thompson (HT) estimator HT
11

ˆ = .k ky k s
t w y

  The HT variance estimator is  

   1 1
HTHT
1

ˆ = ,
kl k l

y
k s l s kl k l

y y
v t

   


  (2.1) 

where  = Pr ,kl k l s   denotes the probability that units k  and l  are selected jointly in the sample, and 

= .kl kl k l     In the particular case of simple random sampling without replacement (SI) of size ,n  

we have HT
1,1

ˆ = syt N y  with 1
1, 1= ,s k

k s
y n y

  and formula (2.1) yields  

    
1 1

2HT 2 2HT 2
1 1,1 , ,

1 1 1
ˆ = where = .

1
k sy y s y s

k s

v t N S S y y
n N n 

     
  (2.2) 

For a with-replacement sampling design, the substitution estimator for a total is the so-called Hansen-

Hurwitz (HH) estimator HH
11

ˆ = .k ky k s
t w y

  We consider the important case of multistage sampling, where 

the N  units are grouped inside IN  non-overlapping Primary Sampling Units (PSU) 1 , , ,INU U  and 

where a with-replacement first-stage sample Is  of size m  is selected. Let Ii  denote the expected number 

of draws for the PSU iU  in .Is  A second-stage sample is  is then selected inside any Ii s  by means of 

some sampling design   .ip   Let k i  denote the expected number of draws for unit k  in .is  The estimated 

measure is then 1
1 1

1
ˆ = .k

I i
yIi k ii s k s

M    
    We have HH 1

1
ˆˆ =

I
iIiy i s

t Y 
  where 1

1
ˆ = ,

i
i kk ik s

Y y 
  and 

an unbiased variance estimator for HH
1

ˆ
yt  is  

  
2

HH
1HHHH

1

ˆ ˆ
ˆ = .

1 I

i y
y

i s Ii

m Y t
v t

m m


   

   (2.3) 

 
2.2  Estimating the Gini coefficient 
 

If the variable 1  is measured on the population ,U  the Gini coefficient is  

 
1 1

1
1

1
= ,

2

k l
k U l U

k
k U

y y
G

N y
 



 


  

see for example Nygård and Sandström (1985). It follows that 1G  is zero if 1  is constant on the population, 

which occurs when the total of 1  is equally distributed among all the population individuals. In the 

opposite case, when only one individual owns the whole amount of 1 , 1G  is maximized and equal to 

1 1 :N  the total of 1  is then concentrated in one point only, which means maximum inequality among 

members of the population. 

If all individuals k l  have different values for the variable 1 ,  the Gini coefficient 1G  is  
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      1 1 11

=1
1

1 1

2 1 2 11 1
= =

N
k N kk

k k U

y y

y k N y F y
G

t N t N


 
  

 (2.4) 

with    1 1 1 Ny y   the ordered values and    1
1

1 = 1 kN yk U
F N 

 
   the finite population distribution 

function; see Sandström, Wretman and Waldèn (1988) and Deville (1997) for further details on the 

derivation of (2.4). Nygård and Sandström (1985) called the term 1 N  the Gini finite population 

correction and gave several reasons to make this correction, such as the non-negativity of the lower bound 

of 1.G  As is frequently done in the literature (see for example Glasser, 1962), this correction is ignored in 

the sequel. We redefine the Gini coefficient as  

                                         
       

 

1 11 1 1

1
1 1

2 12 1
= =

Nk N kk U

y

F y ydM yy F y
G

t ydM y


 


 (2.5) 

where the finite population distribution function  1NF   is a functional family  

                                   
 

   1 1

1

1
= 1N yF y dM

dM y
 

 (2.6) 

indexed by .y  Substituting 1M̂  into (2.5) and (2.6) yields the estimator  

                                        
    

 

  1 1 1 1 1

1
11

ˆ ˆ ˆ2 1 2 1
ˆ = = ,

ˆ

N k N k kk s

k kk s

F y ydM y w F y y
G

w yydM y




 


 (2.7) 

where  

                                  
 

     11 1

1

1 1ˆ ˆ= 1 = 1
ˆ kN ky y y

k k s
k s

F y dM w
wdM y

  


 
 (2.8) 

is the substitution estimator of the distribution function 1 .NF  
 

2.3  Linearization variance estimation 
 

We give below some brief details about the influence function linearization (IFL) (Deville, 1999), which 

consists in giving a first-order expansion of the substitution estimator  1 1
ˆ ˆ= T M  around the true value 

 1 1= ,T M  to approximate the error by a linear estimator of some artificial linearized variable. More 

precisely, the first derivatives of T  with respect to 1M  are the influence functions  

  
   1 1

1
0

IT ; = ,lim
y

h

T M h T M
M y

h




 
  

and  1 1 1= IT ;k ku M y  is the linearized variable for all .k U  Suppose that  T   is homogeneous, namely 

there exists some positive number   dependent on T  such that    1 1=T rM r T M  for any real > 0.r  
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Assume also that  1lim < .N N T M   Under some additional regularity assumptions upon  T   and 

the sampling design (e.g., Goga and Ruiz-Gazen, 2014), Deville (1999) establishes that  

  1 2
1 1 1 1

ˆ = ,k k k p
k s k U

w u u o N n  

 

   
     

so that the error 1 1̂   can be approximated by the error of the HT estimator for the total of the linearized 

variable 1 .ku  For a without-replacement sampling design, using a sample-based estimator 1ˆ ku  of the 

linearized variable 1ku  in the HT variance estimator yields the variance estimator  

   1 1
HT

1LIN

ˆ ˆˆ = ,
kl k l

k s l s kl k l

u u
v 

   


  (2.9) 

where  = Pr ,kl k l s   denotes the probability that units k  and l  are selected jointly in the sample, and 

= .kl kl k l     Several results of asymptotic normality have been proved for specific sampling designs, 

see Hájek (1960, 1961, 1964), Rosén (1972), Sen (1980), Krewski and Rao (1981), Gordon (1983), Ohlsson 

(1986, 1989), Chen and Rao (2007), Brändén and Jonasson (2012), Saegusa and Wellner (2013) and 

Chauvet (2015), among others. If the sampling design is such that the substitution estimator 1̂  satisfies a 

central-limit theorem, an approximately  1 2 %  confidence interval is  1 lin 1
ˆ ˆ ,z v    

 1 lin 1
ˆ ˆz v     where z  is the upper %  cutoff for the standard normal distribution.  

In case of the Gini coefficient, we have = 0  and the linearized variable is  

   1 1 , < 1 1
1 1 1 1

1 1

1 1
= 2 ,

k k U
k N k k

y y

y y G G
u F y y

t t N

  
   (2.10) 

where    1 1 1 1

1
1 , < { < } 1 <= 1 1l k j kk U y y j y yl U j U

y y


    denotes the mean of the 1 jy  lower than 1 ,ky  see 

Deville (1999). Kovačević and Binder (1997) derived the same expression by means of the estimating 

equations linearization method; using the Demnati and Rao (2004) linearization approach also leads to the 

same result. The estimated linearized variable is  

   1 1 , < 1 1
1 1 1 1

1 1

ˆ ˆ1 1ˆˆ = 2
ˆˆ ˆ

k k s
k N k k

y y

y y G G
u F y y

t t N

  
   (2.11) 

where     1 1 1 1

1
1 , < 1< <= 1 1 .l k j kk s l j jy y y yl s j s

y w w y


    

In the particular SI case, the linearization variance estimator for the Gini coefficient is  

    1 1

2
HT 2 22

1 1 1,LIN ˆ ˆ, ,

1 1 1ˆ ˆ ˆ= where = ,
1

k su s u s
k s

v G N S S u u
n N n 

     
  (2.12) 

and where 1
1, 1ˆ ˆ= .s k

k s
u n u

  In the particular case of multistage sampling and with-replacement sampling 

of PSUs, the linearization variance estimator for the Gini coefficient is  
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   1

2
HH

1 ˆHH 1
1 1 1LIN

ˆ ˆ
ˆ ˆ ˆ= where = .

1 I i

i u
i kk i

i s Ii k s

m U t
v G U u

m m





 


   

   (2.13) 

 

2.4  Bootstrap variance estimation 
 

The use of bootstrap techniques in survey sampling has been extensively studied in the literature. The 

main bootstrap techniques may be thought as particular cases of the weighted bootstrap (Bertail and 

Combris, 1997; Antal and Tillé, 2011; Beaumont and Patak, 2012); see also Shao and Tu (1995, Chapter 6), 

Davison and Hinkley (1997, Section 3.7) and Davison and Sardy (2007) for detailed reviews. Under a 

weighted bootstrap procedure, the measure 1
ˆ = k yks

M w   is estimated, conditionally on the sample ,s  

by the bootstrap measure  

 *
1

ˆ = kk k y
k s

M w D 

  (2.14) 

where  = k k sD D   denotes a (random) vector of resampling weights. We note *E  and *V  for the 

expectation and variance with respect to the resampling scheme. In case of without-replacement sampling, 

the vector D  is generated in such a way that  

  HT HTHT
* *1 1

ˆ ˆandk k k k k ky y
s s

E w D y t V w D y v t  
   
      (2.15) 

so that the two first moments of the HT-estimator are approximately matched. In case of with-replacement 

sampling, the vector D  is generated in such a way that  

  HH HHHH
* *1 1

ˆ ˆandk k k k k ky y
s s

E w D y t V w D y v t  
   
      (2.16) 

so that the two first moments of the HH-estimator are approximately matched.  

Under any weighted bootstrap technique, the plug-in estimator of  1 1= T M  is  * *
1 1

ˆ ˆ= ,T M  and the 

variance of  1 1
ˆ ˆ= T M  is estimated by  

     2
* * *

* 1 * 1 * 1
ˆ ˆ ˆ= .V E E    (2.17) 

Since the variance estimator (2.17) may be difficult to compute exactly, a simulation-based variance 

estimator may be used instead. More precisely, C  independent realizations 1 , , CD D  of the vector D  are 

generated, and we denote  * *
1 1

ˆ ˆ=c cT M  with *
1

ˆ
cM  the Bootstrap measure associated to the vector .cD  

Then  1̂V   is estimated by  

  
2

* *
1 1 1

=1 =1

1 1ˆ ˆ ˆ=   .
1

C C

B c c
c c

v
C C

  




    
   (2.18) 

Two types of confidence intervals are usually computed. The percentile method makes use of the ordered 

bootstrap estimates  
*
1

ˆ , = 1, ,c c C   to form a  1 2 %  confidence interval    
* *
1 1

ˆ ˆ[ , ]L U   with =L C  
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and  = 1 .U C  The bootstrap t  involves the estimation of the pivotal statistic =t  

1 1 BWO 1
ˆ ˆ( ) / ( )v    by its bootstrap counterpart * * * *

1 1 BWO 1
ˆ ˆ ˆ= ( ) / ( ) ,t v    where * *

BWO 1̂( )v   is 

obtained by applying the bootstrap procedure to the resample *.s  The bootstrap t  is computationally very 

intensive since a double bootstrap is required, and is thus less attractive for a data user. Therefore, we do 

not pursue this approach further and we focus on the percentile method.  

Linearization methods provide variance formulas applicable to general sampling designs, but involve 

possibly intricate computation of derivatives for complex parameters of interest such as the Gini coefficient. 

Unlike the linearization, the bootstrap avoids theoretical work by re-calculating the existing estimation 

system repeatedly. Replicate weights are supplied with the data set, and may be easily used to produce 

variance estimates for a wide range of statistics. However, a bootstrap technique is usually not suitable for 

general sampling designs. That is, a particular sampling design usually requires a tailor made resampling 

scheme. In this paper, we focus on two particular bootstrap techniques, which will be generalized in 

Section 3 to the two-sample context. 

 
2.4.1  Without-replacement bootstrap for SI sampling 
 

When the sample s  is selected by means of SI, we consider the without replacement bootstrap (BWO) 

introduced by Gross (1980). The approach is readily extended to stratified simple random sampling (STSI) 

with a finite number of strata. Suppose that N n  is an integer. Then the vector D  is obtained by, first 

creating a pseudo-population *U  of size N  by duplicating N n  times each unit k  in the original sample 

,s  and then by selecting a SI resample *s  of size n  in *.U  

The bootstrap measure is given by (2.14), where the resampling weight kD  is the number of times unit 

k s  is selected in *.s  The building of *U  may be avoided by noting that under the BWO procedure, the 

vector D  follows a multivariate hypergeometric distribution. Therefore, the resampling weights may be 

directly generated. It can be shown that the BWO procedure leads to  

  
1

HT HTHT
* *1 1

1

1
ˆ ˆ= and = ,

1
k k k k k ky y

s s

n
E w D y t V w D y v t

N





  
         (2.19) 

where  HTHT
1

ˆ
yv t  is given in (2.2), so that equation (2.15) is approximately matched for a large sample size.  

Several solutions have been proposed to handle the case when N n  is not an integer, see Chao and Lo 

(1985), Bickel and Freedman (1984), Sitter (1992b), Booth, Butler and Hall (1994), Presnell and Booth 

(1994), among others. The generalization of BWO variance estimation for unequal probability sampling 

designs is considered in Särndal, Swensson and Wretman (1992) and Chauvet (2007).  

 
2.4.2  With-replacement bootstrap for multistage sampling 
 

When the sample s  is selected by means of multistage sampling and with-replacement unequal 

probability sampling of PSUs, we consider the bootstrap of PSUs (BWR) introduced by Rao and Wu (1988). 
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A with-replacement resample *
Is  of size 1m   is selected by means of simple random sampling with 

replacement (SIR) in the original first-stage sample .Is  The bootstrap measure is  

 1

*

1 1*
1

ˆ = = ,
1

k k

iI

y k k yIi k i
k s k si s

m
M w D

m
    

     (2.20) 

where the resampling weight kD  equals   11m m   multiplied by the number of times the PSU containing 

k  is selected in * .Is  

The resampling size 1m   is used to reproduce the usual unbiased variance estimator in the linear case 

(see Rao and Wu, 1988). It can be shown that the BWR procedure leads to  

  HH HHHH
* *1 1

ˆ ˆ= and = ,k k k k k ky y
s s

E w D y t V w D y v t  
   
     (2.21) 

where  HHHH
1

ˆ
yv t  is given in (2.3), so that equation (2.16) is exactly matched. The BWR procedure is 

particulary simple, since involving a resampling for the first-stage of sampling only, the sub-samples of 

Secondary sampling Units (SSUs) being left unchanged inside the resampled PSUs. 

 
3  Two-sample case 
 

3.1  Notation and composite estimation 
 

Suppose now that two variables 1  and 2  are measured on the population ,U  and let 1 , ,d dNy y  

denote the values taken by , = 1, 2,d d  on the units in the population. The variables 1  and 2  may 

typically refer to some characteristic of interest collected at two different times 1  and 2 .  We consider the 

estimation of parameters   that can be written as a functional  1 2= , ,T M M  where 

 = .dkd yk U
M 

  For instance, the linear case 2 1= y yt t t   corresponds to the difference between the 

totals 2 2=y k
k U

t y
  and 1 1= .y k

k U
t y

  

Let 1s  and 2s  be two samples of sizes 1n  and 2 ,n  respectively, selected from the same population U  

according to some two-dimensional sampling design  ,p    (see Goga, 2003). The variable 1  is measured 

on 1,s  while the variable 2  is measured on 2 .s  Plugging sample-based estimators ˆ
dM  in   yields the 

substitution estimator   1 2
ˆ ˆ= , .T M M  Unlike the one-sample case, several estimators ˆ

dM  are possible. 

In what follows, we focus on the general class of composite estimators introduced by Goga, Deville and 

Ruiz-Gazen (2009). We note 1 1 2= \ ,s s s 3 1 2=s s s  and 2 2 1= \ .s s s  For  1 , 3, 2 ,     we note 

, k   the expected number of draws for unit k  in s  and , ,
ˆ = ,dkd k y

k s
M w 


   where 1

, ,= .k kw  
   The 

composite estimators of 1M  and 2M  are  

        co co
1,1 1,3 2,2 2,31 2

ˆ ˆ ˆ ˆ ˆ ˆ=  1  and =  1  ,M a a M a M M b b M b M      (3.1) 

where a  and b  are some known constants. The choice = = 0a b  leads to the intersection estimator with 
int

1,31
ˆ ˆ=M M  and int

2,32
ˆ ˆ= ,M M  where the overlapping sample 3s  only is used.  
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When estimating the parameter 2 1= ,y yt t t   the composite estimator is  

   
2 1

co
co coˆ ˆ, = ,y yt a b t t   (3.2) 

where  
1

co co
1

ˆˆ =yt ydM y  and  
2

co co
2

ˆˆ = .yt ydM y  It may be rewritten as  

         2 2 2 3 1 1 1 3 2 3 1 3

co

, , , , , ,ˆ ˆ ˆ ˆ ˆ ˆ, = ,y s y s y s y s y s y st a b b t t a t t t t        (3.3) 

where , ,ˆ = .dy s k dkk s
t w y


  The variance of the composite estimator is  

          2 2 2 3 1 1 1 3 2 3 1 3

co

, , , , , ,ˆ ˆ ˆ ˆ ˆ ˆ, = , ,1 , , , ,1 .y s y s y s y s y s y sV t a b b a V t t t t t t b a         (3.4) 

Finding the vector  opt opt,a b   which minimizes the variance in (3.4) leads to the optimal composite 

estimator (Goga, Deville and Ruiz-Gazen, 2009, Section 3.6). Note that this is not an estimator per se, since 

it depends on unknown quantities which need to be estimated in practice. However, this is a useful 

benchmark which we will use for the appraisal of simpler composite estimators.  

A variance estimator is obtained by substituting in (3.4) an estimator of the variance-covariance matrix. 

The derivation of variance estimators is detailed in Sections 3.1.1 and 3.1.2 for two examples of two-

dimensional sampling designs. 
 

3.1.1  Two-dimensional SI design 
 

The two-dimensional SI design (SI2) of fixed size  1 3 2, ,n n n   assigns equal probabilities to all 

 1 2= ,s s s  for which the associated subsamples 1 ,s  3s  and 2s   have the required sizes 1 ,n  3n  and 2 ,n   

see Goga (2003) and Qualité and Tillé (2008). The SI2 design has the attractive property that the marginal 

samples 1 ,s  3s  and 2s   are SI samples from the population .U  Similarly, 1s  is a SI sample of size 

1 1 3= ,n n n   and 2s  is a SI sample of size 2 2 3= .n n n   For the SI2 sampling design, the composite 

estimator in (3.3) yields  

                                              2 3 1 3 3 3

co

2, 2, 1, 1, 2, 1,, = ,s s s s s st a b Nb y y Na y y N y y        (3.5) 

and the variance of the composite estimator is  

                                          1 21 2

co
2 22

1 12 , 2, ,, = 2 , ,y y Uy U y UV t a b N c a S c a b S c b S    (3.6) 

with  

                                       

 
 

 
 

 
   

2 2

1
3 1 3

2 2

2
3 2 3

12
3

1 1
= ,

1 1
= ,

1 1 1
, = ,

a a
c a

n n n N

b b
c b

n n n N

a b
c a b

n N


 




 



 


  

see Appendix for a proof.  
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We consider two examples. The choice = = 0a b  leads to the intersection estimator  

      
3

int co

2 1
3

= 0, 0 = ,k k
k s

N
t t y y

n 
    (3.7) 

and the variance simplifies as  

   2 1

int
22

,
3

1 1
= .y y UV t N S

n N 
  

 
 (3.8) 

The choice 1
11=a n n
  and 1

22=b n n
  leads to the union estimator  

    
2 1

uni co
1 1

1 2 2 11 2
2 1

= , = k k
k s k s

N N
t t n n n n y y

n n
 

 
 

     (3.9) 

where the complete samples are used, and the variance may be written as  

   1 21 2

uni 3
2 22

,, ,
1 1 2 2

1 1 1 1 1
= 2 .

 
y y Uy U y U

n
V t N S S S

n N n n N n N
                

     
 (3.10) 

The variances of the union estimator and of the intersection estimator were derived by Qualité and Tillé 

(2008), see also Tam (1984).  

The choice of a  and b  is of practical importance to obtain an efficient composite estimator. After some 

algebra, the vector  opt opt,a b   which minimizes the variance of   
co

,t a b  is given by  

   1
opt opt, =a b A X  (3.11) 

with  

 

1 2

1 1 2 1 2

1 2 1 2

2

1 ,

2
1 3 , , ,

2 2
, 2 , ,

2
2 3,

= and = 1 ,1 .

y y U

y U y y U y y U

y y U y U y U

y U

n S

n n S S S
A X

S SS n

S n n

       
   



 (3.12) 

For two variables 1  and 2  related to a same characteristic collected at two different times, 1 2,y y US  is 

expected to be close to 
1

2
,y US  and 

2

2
, .y US  The vector X  in (3.12) is in turn close to the null vector, and if the 

size of the overlapping sample 3s  is comparable to that of 1s   and 2s   we obtain opt 0a   and opt 0.b   

Therefore, using the intersection estimator where = = 0a b  seems reasonable in practice. On the contrary, 

the union estimator can be very inefficient; see Section 4.2 for an illustration. These conclusions are 

consistent with that of Qualité and Tillé (2008), Section 2.2.2.  

Several variance estimators may be used for the composite estimator. Estimating the dispersions on the 

overlapping sample only yields the unbiased variance estimator  

           1 2 31 3 2 3

co
HT 2 22

1 12 , 2int , ,, = 2 , ,y y sy s y sv t a b N c a S c a b S c b S    (3.13) 
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while an estimation on the whole samples yields  

           1 2 31 1 2 2

co
HT 2 22

1 12 , 2uni , ,, = 2 , .y y sy s y sv t a b N c a S c a b S c b S    (3.14) 

Berger (2004) considered variance estimation for the union estimator under a maximum entropy rotating 

sampling scheme, by estimating separately the three components in (3.6). 

 
3.1.2  Two-dimensional multistage design 
 

We now consider a two-dimensional two-stage sampling design (MULT2). We assume that a with-

replacement first-stage sample Is  of size m  is first selected among the PSUs 1, , .INU U  Inside each PSU 

,Ii s  a SI2 sample of size  1 3 2, ,i i in n n   is then selected. This type of sampling design emerges in particular 

in case of a self-weighted two-stage design in two waves, with a partial replacement at the second wave of 

the SSUs selected at the first wave. The composite estimator in (3.3) yields  

                                             
co , co

1, = ,
I

i

Ii
i s

t a b t a b 


   (3.15) 

where  

                                               
2 3 1 3 3 3

, co

2, 2, 1, 1, 2, 1,, = ,i i i i i i

i

i i is s s s s st a b N b y y N a y y N y y
 

       (3.16) 

where   1
, = ,i

i
i

kd s k s
y n y





   where = ,i

is s U   and where iN  denotes the number of SSUs inside 

the PSU .iu  

For example, using the overlapping samples only inside the PSUs yields the intersection estimator  

                                          
3 3

int , int , int
1

2, 1,= with = .i i

I

i i

i s sIi
i s

t t t N y y 


     (3.17) 

Using the complete samples inside the PSUs yields the union estimator  

                                         
2 1

uni , uni , uni
1

2, 1,= with = .i i

I

i i

i s sIi
i s

t t t N y y 


     (3.18) 

We note that for any vector of values  , ,a b   the variance due to the first-stage of sampling for   
co

,t a b  

is the same. The possible composite estimators thus differ with respect to the second-stage variance only. 

In view of the discussion in Section 3.1.1, we therefore expect the intersection estimator to be close to the 

optimal composite estimator; see Section 4.2 for an illustration. An unbiased variance estimator for 
  

co
,t a b  is given by  

    
     

2, co co
co

HH
, ,

, = .
1 I

i

i s Ii

m t a b t a b
v t a b

m m

    
   

  (3.19) 

 
3.2  Estimation of the change between Gini indexes 
 

The change between Gini indexes 2 1=G G G   may be written as  
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    

 

    

 

2 2 1 1

2 1

2 1 2 1
=

N NF y ydM y F y ydM y
G

ydM y ydM y

 
  

 
 (3.20) 

where    1= 1 , = 1, 2.dkdN y yk U
F y N d

  Using composite estimation leads to  

                             
    

 

    

 

co co co co
co 2 2 1 1

co co
2 1

ˆ ˆ ˆ ˆ2 1 2 1
, =

ˆ ˆ

N NF y ydM y F y ydM y
G a b

ydM y ydM y

 
  

 
 (3.21) 

where         
1

co co coˆ ˆ ˆ= 1 .ydN d dF y dM y dM 


   

Usually, in a temporal sampling framework, the samples 1s  and 2s  are not independent. Consequently, 

our set-up differs from the usual estimation of functionals depending on distribution functions estimated 

with independent samples; see for example Pires and Branco (2002) and Reid (1981), who give the first-

order expansion of a two-sample functional using the partial influence functions. Davison and Hinkley 

(1997, page 71) give bootstrap methods under a similar framework. Using a general two-dimensional 

sampling design  , ,p    Goga, Deville and Ruiz-Gazen (2009) give a two-sample linearization technique 

of bivariate functionals that will be used in what follows. 

 
3.3  Linearization variance estimation 
 

To obtain the asymptotic variance of   
co

, ,a b  we adopt the asymptotic framework introduced by 

Goga, Deville and Ruiz-Gazen (2009), which is an extension to the two-sample case of the asymptotic 

framework of Isaki and Fuller (1982). Define, when they exist, the partial influence functions of a functional 

 1 2,T M M  at point y  as  

 

 
   

 
   

1 2 1 2
1 1 2

0

1 2 1 2
2 1 2

0

, ,
, ; = ,lim

, ,
, ; = .lim

y

h

y

h

T M h M T M M
I T M M y

h

T M M h T M M
I T M M y

h









 

 
  

We define the linearized variables  1 2= , ;dk d dku I T M M y  for = 1, 2d  as the partial influence functions 

of T  at  1 2,M M  and = .dky y  For the change between Gini indexes ,G  the linearized variables dku  

may be computed using (2.10), namely  

   , < 1 1
= 2 ,

d d

dk dk U d d
dk dN dk dk

y y

y y G G
u F y y

t t N

  
   (3.22) 

where     
1

, < < <= 1 1 .dl dk dj dkdk U djy y y yl U j U
y y



    The estimated linearized variable is  

  
co co co

, <co
co co
1 1

ˆ ˆ1 1ˆˆ = 2 .
ˆˆ ˆ

dk dk s d d
dk dk dkdN

y y

y y G G
u F y y

t t N

  
   (3.23) 
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3.3.1  Two-dimensional SI design 
 

In case of the SI2 design presented in Section 3.1.1, plugging the variables dku  derived in (3.22) into the 

variance formula in (3.6) yields the variance approximation  

           1 21 2

co
2 22

1 12 , 2, ,, 2 , ,u u Uu U u UV G a b N c a S c a b S c b S     

see Theorem 1 in Goga, Deville and Ruiz-Gazen (2009). To obtain a variance estimator, the linearized 

variables may be estimated in several ways. If the overlapping sample 3s  only is used, the estimated 

linearized variables ˆ du  are obtained from (3.23) by taking co
1, 31

ˆ ˆ=M M  and co
2, 32

ˆ ˆ= .M M  A variance 

estimator is then obtained by plugging these linearized variables into (3.13). This leads to  

           1 2 31 3 2 3

co
HT 2 22

ˆ ˆ1 12 , 2int ˆ ˆ, ,, = 2 , .u u su s u sv G a b N c a S c a b S c b S    (3.24) 

If the whole samples 1s  and 2s  are used, the estimated linearized variable ˆ du  are obtained from (3.23) by 

taking co
1,11

ˆ ˆ=M M  and co
2,22

ˆ ˆ= .M M  A variance estimator is then obtained by plugging these linearized 

variables into (3.14). This leads to  

           1 2 31 1 2 2

co
HT 2 22

ˆ ˆ1 12 , 2uni ˆ ˆ, ,, = 2 , .u u su s u sv G a b N c a S c a b S c b S    (3.25) 

 
3.3.2  Two-dimensional multistage design 
 

In case of the MULT2 design presented in Section 3.1.2, the linearized variables may also be estimated 

in several ways. For the sake of simplicity, we consider using the overlapping sample 3s  only so that the 

estimated linearized variables ˆ du  are obtained from (3.23) by taking co
1,31

ˆ ˆ=M M  and co
2,32

ˆ ˆ= .M M  A 

variance estimator is then obtained by plugging these linearized variables into (3.19). This leads to  

    
     

2, co co
co

HH
, ,

, = ,
1 I

i

i s Ii

m u a b u a b
v G a b

m m

    
   

  (3.26) 

where   
co

,u a b  and   
, co

,
i

u a b  are obtained from (3.15) and (3.16), respectively, by replacing dky  

with ˆ .dku  

 
3.4  Bootstrap variance estimation 
 

Bootstrap methods have not yet been studied for the change between Gini indexes. The principles of the 

weighted bootstrap technique can be extended to the two-sample context, i.e. each measure ,
ˆ

dM   with 

= 1, 2d  and  1 , 3, 2     is estimated, conditionally on the samples originally selected, by some 

weighted bootstrap measure *
,

ˆ
dM   which enables to match, at least approximately, the two first moments of 

an unbiased estimator in the linear case. In Section 3.4.1, we consider a generalization of the BWO to the 

SI2 design. In Section 3.4.2, we propose a generalisation of the BWR to the MULT2 design. 
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3.4.1  A generalization of the BWO to the SI2 design 
 

We first consider the SI2 design. Building a pseudo-population *U  is more intricate in the two-sample 

case, since the variables of interest measured at waves 1  and 2  need to be available for each unit in *.U  

We therefore describe a bootstrap algorithm where the overlapping sample 3s  only is used to build the 

pseudo-population *,U  in the spirit of the intersection variance estimator in (3.24).  

Suppose that 3N n  is an integer. The vectors D  are obtained by, first creating a pseudo-population 
*U  of size N  by duplicating 3N n  times each unit k  in the original sample 3 .s  A SI2 resample 

 * * * *
1 3 2= , ,s s s s   of size  1 3 2, ,n n n   is then selected in *.U  The bootstrap measures are then  

 
3

*
, , ,

ˆ = ,d k k ydk
k s

M w D   

  (3.27) 

with , kD  the number of times that unit k  is selected in the resample *.s  In the linear case, the bootstrap 

estimator of the parameter t  is then  

         * * * * * *2 2 1 1 2 12 3 1 3 3 3

co*

, , , , , ,ˆ ˆ ˆ ˆ ˆ ˆ, = ,y s y s y s y s y s y st a b b t t a t t t t
 

       (3.28) 

where *
3

, ,,ˆ = .d k k dky s k s
t w D y

    After some algebra, we obtain  

             1co* int co* co3 HT
* * int

1

1
, = and , = , ,

1

n
E t a b t V t a b v t a b

N






   


 (3.29) 

where 
int

t  is given in (3.7), and  HT HT
1int

ˆ
yv t  is given in (3.13). The proposed generalization of the BWO 

therefore enables to exactly match the intersection estimator of the first moment, and to approximately 

match the intersection estimator of the second moment for a large 3 .n  

The building of *U  may be avoided by noting that under the BWO procedure, each vector D  follows 

a multivariate hypergeometric distribution. Therefore, the resampling weights may be directly generated. 

The algorithm may be adapted to the general case when 3N n  is not an integer by means of any of the 

techniques mentioned in Section 2.4. 

 
3.4.2  A generalization of the BWR for the two-dimensional multistage design 
 

We now consider the two-dimensional two-stage sampling design with a common first-stage sample Is  

presented in Section 3.1.2. The proposed bootstrap procedure is similar to that described in Rao and Wu 

(1988). A with-replacement resample *
Is  of size 1m   is selected by means of simple random sampling 

with replacement (SIR) in the original first-stage sample .Is  The bootstrap measures are then  

                                                     
*

1 1*
,

ˆ = where = .
1 i

I

i

d y k iIi k i dk
ii s k s

m n
M

m N
   



 
 

    (3.30) 

It may be rewritten as  

                                                     *
, , ,

ˆ = ,d k k ydk
k s

M w D 


  

  (3.31) 
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with s  the union of the samples is  for ,Ii s  and where the resampling weight , kD  equals   11m m   

multiplied by the number of times the PSU containing k  is selected in *.Is  

In the linear case, the bootstrap estimator of the parameter t  is then  

                                                 
*

co* , co
1, = ,

1
I

i

Ii
i s

m
t a b t a b

m
 



 
   (3.32) 

where   
, co

,
i

t a b  is defined in (3.16). After some algebra, we obtain  

                                                   co* co co* co
HH

* *, = , and , = , ,E t a b t a b V t a b v t a b     (3.33) 

where   
co

,t a b  is given in (3.15), and    co
HH ,v t a b  is given in (3.19). The proposed generalization of 

the BWR therefore enables to exactly match the composite estimator of the first moment, and the associated 

estimator of the second moment.  

 
4  Simulation study 
 

In this section, five artificial populations are first generated as described in Section 4.1. In Section 4.2, 

the union estimator is compared with the intersection estimator in terms of asymptotic variance. A Monte 

Carlo experiment is then presented in Section 4.3, and the performances of the linearization and the 

bootstrap are compared in case of a SI2 sampling design. A similar comparison is made in Section 4.4, in 

case of the bi-dimensional two-stage sampling design. 

 
4.1  Simulation set-up 
 

We generated 5 finite populations of size =N  40,000, each containing two study variables 1y  and 2 .y  

The 1ky  values and the 2ky  values were generated according to the lognormal model  

  = exp  .dk d ky    (4.1) 

The ’sk  were generated according to a standard normal distribution. The values of the Gini coefficients 

for the five populations are presented in Table 4.1. 

 
Table 4.1 
Gini coefficients for 5 populations  
 

Population  Pop. 1  Pop. 2  Pop. 3  Pop. 4  Pop. 5  

1G   0.249 0.298  0.348 0.397 0.447 

2G   0.259 0.318  0.378 0.437 0.496 

G   0.010 0.020  0.030 0.040 0.049 
 



32 Chauvet and Goga: Linearization versus bootstrap for variance estimation of the change between Gini indexes 
 

 
Statistics Canada, Catalogue No. 12-001-X 

In each of the 5 populations, the units were grouped into =M  500 clusters of equal size 0 =N  80. The 

clusters were built so that the intra-cluster correlation coefficient with respect to the variable 1y  was 

approximately equal to 0.20 in each population. 
 

4.2  Comparison of the union estimator and of the intersection estimator 
 

In this section, we compare the union estimator with the intersection estimator for the change between 

Gini indexes in terms of asymptotic variance. We consider two sampling designs: the SI2 design presented 

in Section 3.1.1 with 1 3 2( , , ) =n n n   (1,000; 1,000; 1,000), (1,000; 2,000; 1,000) or (1,000; 4,000; 1,000); 

the MULT2 design presented in Section 3.1.2 with =m  300 and 1 3 2( , , ) =i i in n n   (10; 10; 10), (10; 20; 10) 

or (10; 40; 10). 

For each population, we compute the asymptotic variance  uni

lin ( )V G  of the union estimator, and the 

asymptotic variance  int

lin ( )V G  of the intersection estimator. So as to compare them, we compute the 

relative efficiency defined as  

  
   
 

lin

opt

lin

RE = ,
V G

G
V G



 



 (4.2) 

with 
opt

G  the optimal estimator.  

The results are presented in Table 4.2. The union estimator is highly inefficient. Its asymptotic variance 

is 15 to 244 times higher than that of the intersection estimator for SI2, and 2 to 44 times higher than that 

of the intersection estimator for MULT2. The difference between both estimators tends to decrease when 

the sample size of the common sample increases and/or when G  increases. On the other hand, the 

intersection estimator is slightly less efficient than the optimal estimator for SI2, with RE ranging from 1.33 

to 2.46, and approximately as efficient as the optimal estimator for MULT2, with RE ranging from 1.02 to 

1.12. This supports the heuristic reasoning in Section 3.1.1. In view of the poor performance of the union 

estimator, and of the good performance of the intersection estimator, we confine our attention to the latter 

in the remainder of the simulation study. 

 
Table 4.2 
Relative efficiency of the union estimator and of the intersection variance estimator for 5 populations  
 
Design   Sample size Pop. 1 Pop. 2 Pop. 3 Pop. 4 Pop. 5 

 
uni

G  
int

G  
uni

G  
int

G  
uni

G  
int

G  
uni

G  
int

G  
uni

G  
int

G

SI2   3 =n 1,000   600.22 2.46  200.23  2.27  96.72  2.10  58.73  1.96   39.35  1.85 

  3 =n 2,000   410.23 1.84  141.71  1.76  70.71  1.68  44.18  1.61   30.33  1.54 

  3 =n 4,000   250.02 1.47  88.40  1.43  45.17  1.40  28.86  1.36   20.23  1.33 

MULT2   3 =in 10   49.10 1.12  19.89  1.13  11.83  1.14  8.84  1.15   7.28  1.16 

  3 =in 20   23.08 1.05  9.75  1.05  6.08  1.05  4.73  1.06   4.04  1.07 

  3 =in 40   9.15 1.02  4.25  1.02  2.90  1.02  2.41  1.02   2.16  1.02 
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4.3  Comparison of linearization and bootstrap for the SI2 design 
 

In this section, we compare the linearization and bootstrap for variance estimation and for producing 

confidence intervals, in case of the intersection estimator for the change between Gini indexes under the SI2 

sampling design. From each population, we selected =B  10,000 two-dimensional samples by means of the 

SI2 design indexed by 1 3 2( , , ) =n n n   (1,000; 1,000; 1,000), 1 3 2( , , ) =n n n   (1,000; 2,000; 1,000) or 

1 3 2( , , ) =n n n   (1,000; 4,000; 1,000). In each sample, we computed the intersection estimator 
int

G  of the 

change between Gini indexes. For this estimator, we computed (i) the linearization variance estimator 
 int

int ( )v G  given in (3.24), and (ii) the Bootstrap variance estimator 
BWO ( ),v G  following the Bootstrap 

procedure described in Section 3.4.1.  

To measure the bias of a variance estimator ( ),v G  we used the Monte Carlo Percent Relative Bias  

   
   

 
1

=1
MSE

RB = 100 ,
MSE

B
b

b
B v G G

v G
G

   
 




 (4.3) 

where ( )bv G  denotes the estimator ( )v G  in the thb  sample, and MSE( )G  is a simulation-based 

approximation of the true mean square error of  ,G  obtained from an independent run of 100,000 

simulations. As a measure of stability of ( ),v G  we used the Relative Stability  

   
    

 

1 22
1

=1
MSE

RS = .
MSE

B

b
B v G G

v G
G

     



 (4.4) 

Finally, we compared the coverage rates of (i) the normality-based confidence interval with use of the 

linearization variance estimator and (ii) the confidence interval associated to the percentile Bootstrap. The 

bootstrap variance estimators and the bootstrap confidence intervals are based on =C  1,000 bootstrap 

replications. Error rates of the confidence intervals (with nominal one-tailed error rate of 2.5% in each tail) 

are compared. The comparison with nominal error rate of 5% gave no qualitative difference and is thus 

omitted.  

The results are presented in Table 4.3. Both variance estimators are negatively biased. This bias is 

moderate (less than 5% ) in most cases, except for the smaller sample size =n  1,000, and for the population 

5U  with the highest value of .G  The bootstrap variance estimator is systematically slightly more biased 

than the linearization variance estimator, but the difference decreases as the sample size increases. For both 

variance estimators, the instability increases with .G  The Bootstrap variance estimator is slightly more 

stable for the smaller sample size =n  1,000, but the situation is reversed when the sample size increases. 

Turning to the coverage of the confidence intervals, both methods lead to under-coverage which is consistent 

with the negative bias of both variance estimators. The normality-based confidence intervals show a slightly 

better coverage than the bootstrap percentile confidence intervals. For both confidence intervals, the under-

coverage is more acute when G  increases, and reduces when the sample size increases. 
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Table 4.3 
Relative Bias, Relative Stability and Nominal One-Tailed Error Rates for linearization and Bootstrap variance 
estimation of the intersection estimator of the change between Gini indexes for 5 populations and with the SI2 
sampling design  
 

Pop.  Linearization   Bootstrap 
RB RS L U L+U   RB RS L U L+U 

 Sample size  1 3 2, , =n n n   (1,000; 1,000; 1,000) 

Pop. 1  -1.41 24.6 1.8 4.5 6.3  -1.83 24.6 1.8 4.9 6.7 
Pop. 2  -1.98 32.4 1.6 5.2 6.8  -2.64 32.1 1.7 5.9 7.6 
Pop. 3  -2.80 41.9 1.3 6.3 7.7  -3.83 40.9 1.3 7.0 8.3 
Pop. 4  -4.00 52.5 1.0 7.7 8.7  -5.57 50.6 1.1 8.2 9.3 
Pop. 5  -5.80 64.0 1.0 9.2 10.1  -8.11 60.6 0.8 9.9 10.7 
 Sample size  1 3 2, , =n n n   (1,000; 2,000; 1,000) 

Pop. 1  -1.38 17.3 1.6 3.7 5.3  -1.67 17.8 1.8 4.1 5.9 
Pop. 2  -1.64 23.0 1.4 4.3 5.8  -2.05 23.2 1.4 4.7 6.1 
Pop. 3  -1.99 30.1 1.2 5.0 6.2  -2.58 30.0 1.1 5.3 6.4 
Pop. 4  -2.50 38.4 1.0 6.0 6.9  -3.38 37.9 1.0 6.3 7.3 
Pop. 5  -3.30 47.9 0.7 7.2 7.9  -4.62 46.7 0.7 7.5 8.2 
 Sample size  1 3 2, , =n n n   (1,000; 4,000; 1,000) 

Pop. 1  -0.60 11.9 2.0 3.4 5.3  -0.68 12.8 2.1 3.4 5.5 
Pop. 2  -0.67 15.9 1.8 3.7 5.6  -0.80 16.5 2.0 3.9 5.9 
Pop. 3  -0.83 20.8 1.8 4.4 6.2  -1.03 21.3 1.9 4.4 6.3 
Pop. 4  -1.13 26.7 1.5 5.0 6.6  -1.46 26.9 1.6 5.0 6.6 
Pop. 5  -1.64 33.4 1.4 5.8 7.1  -2.18 33.5 1.4 5.8 7.1 

 
4.4  Comparison of linearization and bootstrap for the MULT2 design 
 

In this section, we compare the linearization and bootstrap for variance estimation and for producing 

confidence intervals, in case of the intersection estimator for the change between Gini indexes under the 

MULT2 sampling design presented in Section 3.1.2. From each population, we selected =B  10,000 two-

dimensional two-stage samples by means of the MULT2 design indexed by =m  300 and 

1 3 2( , , ) =i i in n n   (10; 10; 10), (10; 20; 10) or (10; 40; 10). In each sample, we computed the intersection 

estimator 
int

G  of the change between Gini indexes. For this estimator, we computed (i) the linearization 

variance estimator  co
HH { ( , )}v G a b  given in (3.26), and (ii) the Bootstrap variance estimator  int

BWR ( ),v G  

following the Bootstrap procedure described in Section 3.4.2.  

To measure the bias of a variance estimator ( ),v G  we used the Monte Carlo Percent Relative Bias 

defined in equation (4.3), and the Relative Stability defined in equation (4.4). The true mean square error of 
G  was obtained from an independent run of 100,000 simulations. Also, we compared the coverage rates 

of (i) the normality-based confidence interval with use of the linearization variance estimator and (ii) the 

confidence interval associated to the percentile Bootstrap. The bootstrap variance estimators and the 

bootstrap confidence intervals are based on =C  1,000 bootstrap replications. Error rates of the confidence 

intervals (with nominal one-tailed error rate of 2.5% in each tail) are compared. The comparison with 

nominal error rate of 5% gave no qualitative difference and is thus omitted.  

The results are presented in Table 4.4. Both variance estimators are approximately unbiased for small 

values of ,G  but show a moderate negative bias which increases with .G  The bootstrap variance 

estimator is more biased than the linearization variance estimator. For both variance estimators, the 
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instability increases with .G  The Bootstrap variance estimator is slightly more stable than the linearization 

variance estimator. Both methods lead to an under-coverage which is consistent with the negative bias of 

both variance estimators. The normality-based confidence intervals perform slightly better. For both 

confidence intervals, the under-coverage is more acute when G  increases, and reduces when the sample 

size increases. 

 
Table 4.4 
Relative Bias, Relative Stability and Nominal One-Tailed Error Rates for linearization and Bootstrap variance 
estimation of the intersection estimator of the Gini Coefficient Change for 5 populations and with the MULT2 
sampling design  
 

Pop. Linearization  Bootstrap 
RB RS L U L+U  RB RS L U L+U 

 Sample sizes =m  300 and  1 3 2, , =i i in n n   (10; 10; 10) 

Pop. 1  1.23 33.8 0.6 4.9 5.5  1.09 33.2 0.6 6.0 6.6 
Pop. 2  0.64 41.1 0.8 5.5 6.3  -0.20 39.7 0.6 6.5 7.1 
Pop. 3  -0.42 48.7 0.7 7.1 7.8  -2.05 46.6 0.7 8.4 9.1 
Pop. 4  -2.07 56.4 0.8 8.4 9.2  -4.47 53.3 0.6 9.6 10.2 
Pop. 5  -4.44 63.7 0.9 9.2 10.1  -7.56 59.5 0.4 10.3 10.7 
 Sample sizes =m  300 and  1 3 2, , =i i in n n   (10; 20; 10) 

Pop. 1  1.70 32.6 1.5 4.9 6.4  -1.70 32.3 1.5 6.0 7.5 
Pop. 2  1.10 39.0 1.4 5.4 6.8  -1.91 38.3 1.5 6.9 8.4 
Pop. 3  0.17 45.6 1.2 7.4 8.6  -2.49 44.4 1.1 7.7 8.8 
Pop. 4  -1.17 52.0 1.0 9.0 10.0  -3.58 50.3 0.8 9.7 10.5 
Pop. 5  -3.03 57.9 0.9 10.4 11.3  -5.35 55.4 0.7 11.0 11.7 
 Sample sizes =m  300 and  1 3 2, , =i i in n n   (10; 40; 10) 

Pop. 1  -0.99 32.1 1.2 6.1 7.3  -3.21 32.2 1.7 6.7 8.4 
Pop. 2  -1.68 38.3 1.4 6.7 8.1  -3.70 38.3 1.4 7.6 9.0 
Pop. 3  -2.58 44.6 1.3 7.5 8.8  -4.40 44.5 1.2 8.9 10.1 
Pop. 4  -3.78 50.6 1.1 8.9 10.0  -5.50 50.1 0.9 10.6 11.5 
Pop. 5  -5.39 55.9 0.8 10.9 11.7  -7.16 54.8 0.6 12.8 13.4 

 
5  Conclusion 
 

In this paper, we considered the estimation of the change between Gini indexes. We presented the class 

of composite estimators introduced by Goga, Deville and Ruiz-Gazen (2009), and studied more particularly 

the intersection estimator which makes use of the common sample only, and the union estimator which 

makes use of the whole available samples. We justified both heuristically and through the simulation study 

in Section 4.2 that the intersection estimator can be close to the optimal estimator, while the union estimator 

exhibits poor performances in all the scenarios considered. The intersection estimator is also easy to 

compute, while the optimal estimator involves unknown quantities which need to be estimated in practice. 

We therefore advocate for the use of the intersection estimator for estimating the change between Gini 

indexes.  

We also compared linearization and bootstrap for variance estimation and for producing confidence 

intervals. In the scenarios that we considered in the simulation study, the linearization performed better with 

usually smaller relative biases for the variance estimator, and better coverage rates with normality-based 
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confidence intervals than with percentile confidence intervals. Bootstrap t  confidence intervals (not 

considered in the simulation study) would be a competitor of interest, but due to the intensive computational 

work involved, they are less attractive for a data user. Linearization has also the advantage to offer a unified 

approach suitable for any sampling design, while a specific sampling design usually requires a specific 

bootstrap procedure, as illustrated with the BWO for SI sampling and the BWR for multistage sampling.  

From the simulation study, we note that the coverage rates may not be well respected neither with 

linearization nor bootstrap, particularly in the multistage context and even with large sample sizes. There is 

a need for confidence intervals with better coverage rates under a reasonable computational burden. This is 

a matter for further research. 
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Appendix  
 

Proof of equation (3.6)  
 

From (3.3), we have   
co

= ,t N A X   where  2 3 1 3 3 32, 2, 1, 1, 2, 1,= , ,s s s s s sX y y y y y y      and 

 = , , 1 .A b a   This leads to  

                                                                 
co

2= .V t N A V X A   (A.1) 

We compute the elements in  V X  separately. We have  
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and 
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Similar arguments lead to 
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Finally, we consider  2 3 1 32, 2, 1, 1,Cov , .s s s sy y y y    We first compute  2 12, 1,Cov , ,s sy y   which may 

be written as 
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Similar arguments lead to  
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We obtain  
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In summary, we obtain  
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which, along with (A.1), leads to (3.6). 
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Growth Rates Preservation (GRP) temporal benchmarking: 
Drawbacks and alternative solutions 

Jacco Daalmans, Tommaso Di Fonzo, Nino Mushkudiani and Reinier Bikker1 

Abstract 

Benchmarking monthly or quarterly series to annual data is a common practice in many National Statistical 
Institutes. The benchmarking problem arises when time series data for the same target variable are measured at 
different frequencies and there is a need to remove discrepancies between the sums of the sub-annual values and 
their annual benchmarks. Several benchmarking methods are available in the literature. The Growth Rates 
Preservation (GRP) benchmarking procedure is often considered the best method. It is often claimed that this 
procedure is grounded on an ideal movement preservation principle. However, we show that there are important 
drawbacks to GRP, relevant for practical applications, that are unknown in the literature. Alternative 
benchmarking models will be considered that do not suffer from some of GRP’s side effects. 

 
Key Words: Benchmarking; Growth rate preservation; Data reconciliation; Macro integration. 

 
 

1  Introduction 
 

Benchmarking monthly and quarterly series to annual data is a common practice in many National 

Statistical Institutes. For example, each year Statistics Netherlands aligns 12 quarterly Supply and Use 

Tables with the three most recent annual accounts (Eurostat, 2013, Annex 8C). 

The benchmarking problem arises when time series data for the same target variable are measured at 

different frequencies with different levels of accuracy. One might expect that a temporal aggregation 

relationship between these time series is fulfilled, e.g., that four quarterly values add up to one annual value, 

but because of differences in data sources and processing methods, this is often not the case. Benchmarking 

is the process to remove such discrepancies. In this process the preliminary values are adjusted to achieve 

mathematical consistency between low-frequency (e.g., annual) and high-frequency (e.g., quarterly or 

monthly) time series. 

There are two main principles of benchmarking. Firstly, low-frequency benchmarks are fixed, because 

these data sources describe levels and long-term trends better than high-frequency sources. Secondly, short-

term movements of high-frequency time series are preserved as much as possible, as these data sources 

provide the only information on short-term movements. 

Several benchmarking methods are available in the literature. These methods differ in the way short-

term movements of high-frequency series are defined. A distinction can be made between multiplicative 

and additive methods. Multiplicative methods try to preserve relative changes of preliminary high-frequency 

time series, while additive methods aim to preserve changes in absolute terms. In this paper the focus will 

be solely on multiplicative variants.  
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Two well-known multiplicative methods are Denton Proportionate First Differences (PFD), by Denton 

(1971), and Growth Rates Preservation (GRP) by Causey and Trager (1981; see also Trager, 1982 and Bozik 

and Otto, 1988). 

In the literature it is generally agreed that GRP is grounded on the strongest theoretical foundation 

(Bloem, Dippelsman and Maehle, 2001, page 100). It explicitly preserves the period-to-period rates of 

change of the preliminary series. However, Denton PFD is more popularly used, because it is technically 

easier to apply. Mathematically, the Denton method deals with a standard linearly constrained quadratic 

optimization problem, while GRP solves a more difficult linearly constrained nonlinear problem that can be 

efficiently solved by an interior-point-algorithm (Di Fonzo and Marini, 2015). 

From a number of simulation studies it is known that Denton PFD and GRP lead to similar or close to 

similar results for the large majority of cases (Harvill Hood, 2005; Titova, Findley and Monsell, 2010; 

Di Fonzo and Marini, 2012 and Daalmans and Di Fonzo, 2014). Therefore Denton PFD can be used as an 

approximation of GRP. 

The aim of this paper is to demonstrate that GRP suffers from drawbacks that are, to the best of our 

knowledge, not described in the literature. A first drawback is that it matters whether benchmarking is 

applied “forward” or “backward” in time. In this context, we will present a link with the time reversibility 

property from index number theory. A second drawback is that undesirable results may be obtained due to 

singularities in the GRP objective function. 

A second aim of this paper is to present alternative benchmarking methods that do satisfy time 

reversibility. This paper may be valuable for practitioners who apply or consider to apply benchmarking 

techniques. 

First, in Section 2, we will give a formal description of the Denton PFD and GRP benchmarking 

methods. Section 3 describes the drawbacks of the GRP method. In Section 4 two new benchmarking 

methods are proposed that can be used as an alternative for GRP. Results of an illustrative application to 

real-life data are given in Section 5. Finally, Section 6 concludes this paper. 

 
2  Temporal benchmarking methods 
 

This section explains the Denton PFD and GRP benchmarking procedures. Because temporal 

aggregation constraints are the same for Denton PFD and GRP, these are described first. Thereafter, the 

Denton PFD and GRP benchmarking procedures are explained. 

We focus on univariate variants of these methods, in which temporal consistency is the main constraint 

of interest. The observations that are presented in the remainder of this paper are however also valid for the 

multivariate case, in which multiple time-series are reconciled simultaneously and additional constraints 

between time-series apply (see Di Fonzo and Marini, 2011 and Bikker, Daalmans and Mushkudiani, 2013). 
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2.1  General notation and temporal constraints 
 

In general, temporal aggregation constraints can be expressed as a linear system of equalities ,Ax b  

where x  is the target vector of high-frequency values, b  is a vector of low-frequency values, and A  is a 

temporal aggregation matrix converting high- into low-frequency values. 

The specific form of these constraints depends on the nature of the variables involved. For flow variables, 

a sum of subannual values, e.g., four quarterly values, usually needs to be the same as one annual value. For 

stock variables, one of the subannual values, usually the first or the last, needs to be the same as the relevant 

annual value. For example, for quarterly/annual flow variables, assuming for the sake of simplicity that the 

available time span begins on the first quarter of the first year and ends on the fourth quarter of the last 

observed year, it is 

 

1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0
.

0 0 0 0 0 0 0 0 1 1 1 1

 
 
   
 
  





            



A   

Denoting by p  a vector of preliminary values, in general it is ,Ap b  otherwise no adjustment would 

be needed. We look for a vector of benchmarked estimates * ,x  a particular outcome for ,x  which should 

be “as close as possible” to the preliminary values and that satisfies * .Ax b  

Not all sub annual periods need to be covered by a benchmark. Thus, the number of rows in A  may be 

smaller than the total number of annual periods, see e.g., Dagum and Cholette (2006) for more details. 

In a benchmarking operation, characteristics of the original series p  should be considered. For example, 

in an economic time series framework, the preservation of the temporal dynamics (however defined) of the 

preliminary series is often a major interest of the practitioner. 

 
2.2  Growth Rates Preservation (GRP) and Denton PFD 
 

This section gives a formal description of GRP and Denton PFD.  

Causey and Trager (1981; see also Monsour and Trager, 1979 and Trager, 1982) obtain the benchmarked 

values *, 1, ,t tx n   as a solution to the following optimization problem: 

    
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GRP GRP
F F

2 1 1

min subject to , where .x Ax b x
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t t

x
t t t

x p
f f

x p  


   

 
  (2.1) 

The GRP criterion to be minimized,  GRP
F , f x  explicitly relates to growth rates: it minimizes the sum 

of squared differences between growth rates of preliminary and benchmarked values. The subscript “F” in 

the minimization function stands for “Forward”, later in this paper a “Backward” minimization function 

will be defined. 
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Denton (1971) proposed a benchmarking procedure grounded on the Proportionate First Differences 

(PFD) between target and original series. Cholette (1984) slightly modified the result of Denton, in order to 

correctly deal with the starting conditions of the problem. The PFD benchmarked estimates are thus obtained 

as the solution to the constrained quadratic minimization problem 

    
2

1PFD PFD
F F

2 1

min  subject to , where .x Ax b x
t

n
t t

x
t t t

x x
f f

p p

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
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 
  (2.2) 

The Denton PFD criterion to be minimized,  PFD
F ,f x  is a sum of squared linear terms, which is easier to 

deal with than the nonlinear GRP objective function. 

 
3  Two problems with GRP benchmarking 
 
3.1  Time reversibility 
 

Time reversibility means that it does not matter whether a method is applied forward or backward in 

time. This property can be of interest in many application areas. 

In physics, it means that if time would run backwards, all motions are reversed. In index number theory, 

time reversibility was introduced in a classical work of Fisher (1922, page 64). It is stated that “if taking 

1913 as a base and going forward to 1918, we find that, on the average, prices have doubled, then, by 

proceeding in the reverse direction, we ought to find the 1913 price level to be half that of 1918”. The 

motivation of this principle is that the direction of time can be considered arbitrary; it does not have any 

naturally preferred direction. 

Time reversibility can also be applied in the context of benchmarking. It means that if we would reverse 

a time series, apply benchmarking, and reverse the benchmarked series back again, we get exactly the same 

results as for benchmarking the original series. In other words: from the benchmarked results it cannot be 

seen whether benchmarking has been applied forward or backward in time. 

Benchmarking a reversed time series, according to GRP and Denton PFD, respectively, is equivalent to 

minimizing the following objective functions 
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and 
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where subscript “B” stands for backwards. These objective functions are obtained from the forward 

objective functions by interchanging t and t   1. From now on, the minimization of (3.1) or (3.2) will be 

called “backward benchmarking”, as opposed to standard, forward benchmarking. 

As mentioned above, a benchmarking method satisfies the time reversibility property if forward and 

backward benchmarking lead to the same results. It can be easily seen that    GRP GRP
F B ,f fx x  while 

   PFD PFD
F B .f fx x  From this it follows that Denton PFD satisfies the time reversibility property, but GRP 

does not. 

More practically, in many production processes “forward” benchmarking is applied, for example for the 

reconciliation of the Dutch Supply and Use tables (Bikker et al., 2013). However, after a revision, revised 

time series may be constructed “back in time”, by using backward objective functions. It is highly 

undesirable that there are any differences in outcomes that can be purely attributed to a difference in “time 

direction”. Practitioners who are unaware of the time reversibility property, may apply forward and 

backward benchmarking and mistakenly assume that both methods lead to the same results. 

Although it is true that any benchmarking application can be restricted to preserving forward growth 

rates, it is undesirable that results are affected by the irrelevant property of time direction. Therefore, any 

benchmarking method should preferably satisfy time reversibility. Moreover, Subsection 3.3 illustrates that 

a benchmarking method that is not symmetric in time may change the timing of the most important economic 

events, e.g., the peaks and troughs that demark the start and end of a crisis. 

 
3.2  Singularity  
 

A second problem of GRP is the singularity of its objective function. If 1tx   approaches to zero in case 

of forward benchmarking (or tx  for backward benchmarking) the objective function value tends to infinity. 

This causes several problems. 

One complication is that the optimization problem becomes unstable, a small change in preliminary 

values can lead to a large shift in benchmarked values. Consequently, undesirably large revisions can be 

obtained when benchmarking updated data.  

Another complication is that, since a correction of near zero values can be heavily penalised, growth 

rates of such values are strongly preserved. This may however come at the expense of relatively large 

corrections of other growth rates. On the other hand, one may argue that growth rates do not contain much 

information for extremely small (close-to-zero) values. Hence, growth rate preservation can be deemed 

inappropriate in this case. Subsection 5.3 shows a real-life example of this problem.  

A third complication is that, as close-to-zero benchmarked values may cause a large objective function 

value, GRP methods tend to avoid such values. Consequently, irregular correction patterns can be obtained. 

In particular, negative benchmarked values may be obtained for a problem in which all preliminary values 

are positive. Consider an example in which two consecutive values are 100. Then, an adjustment of the first 
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value from 100 to -100 is less costly in terms of GRP’s objective function value than a correction from 100 

to 30. The corresponding objective function values are      2100 100 100 100 4    and   100 30   

  2100 100 5.44.  A value that goes from a large positive to a large negative will however usually not be 

considered good movement preservation. Therefore, the example also demonstrates the questionability of 

the use of growth rates when positive and negative values occur. 

For this reason, it can be advisable to avoid negative outcomes by inclusion of non-negativity constraints, 

see Subsection 4.1 for more details. For Denton PFD negative values are less likely obtained. In the previous 

example, an adjustment from 100 to 30 is preferred to an adjustment from 100 to -100. A real-life example 

of this problem is shown in Subsection 5.3. 

Although singularity of GRP’s objective function may trigger negative benchmarked values, it is not the 

only cause. Denton PFD may also yield negative values. In general, there is a risk of negative benchmarked 

values, when the (relative) change from one benchmark to another significantly differs from the (relative) 

change from the underlying annualised preliminary values.  

A fourth complication of GRP’s singular objective function is that irregular peaks and throughs may 

occur in a benchmarked time series. The explanation is that in standard GRP a correction of large positive 

value to a close-to-zero value is less costly in terms of the objective function value than an opposite 

correction from close-to-zero to a large positive. That is, a correction of a growth rate g  with a factor ,c  

where 1,c   corresponds to a larger objective function value than a correction with 1 ,c  especially if c  is 

large. The objective function values are    21c g  and    21c
c g  respectively. Since large upward 

corrections from a close-to-zero value are relatively costly, these are avoided as much as possible. Thus, the 

GRP’s benchmarked values move more gradually from a close-to-zero value than Denton’s results do. To 

compensate for this, larger peaks may be necessary for the following time-periods to fulfill the temporal 

aggregation constraint. As benchmarking usually aims at as smooth as possible corrections over time, 

irregular peaks can be considered undesirable. Related to the relatively slow growth from a close to zero 

value is that the peaks tend to turn up later in time than for a time-symmetric method like Denton PFD. For 

the backward variant of GRP the opposite occurs, benchmarked time series move relatively quickly from a 

close to zero value, which gives rise to relatively early peaks. The example in Subsection 3.3 illustrates this 

problem. 

 
3.3  Example 
 

Below we present an example that illustrates the problems of GRP methods. In this example, a time 

series consisting of 15 months is reconciled with five quarterly values. The monthly series is constant: each 

monthly value is 10. The quarterly values are: 80, 250, 80, 400 and 100, respectively. Figure 3.1 compares 

the results of Denton PFD, GRPF and GRPB. 
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Figure 3.1 Example: Results of three benchmarking methods. “Avg. benchmark” stands for the average level 
of the monthly values that complies with the quarterly benchmarks and that is computed as one-
third of its quarterly counterpart. 

 

As the largest differences occur between both GRP methods, time reversibility is obviously not satisfied. 

The highest and lowest points appear at different months. The example clearly shows that the use of a 

different benchmarking method may lead to substantially different conclusions.  

In accordance with Subsection 3.2, GRPF leads to relatively late peaks, i.e., at the last month of each 

quarter, while GRPB results in early peaks, i.e., at the first month of each quarter. Denton PFD’s results are 

in between, peaks and troughs occur at the middle month of each quarter. 

It needs however to be noted that the example cannot be considered representative for real life 

applications. In general, benchmarking methods are not meant to be used for reconciling large differences 

and for constant sub annual series. To explain the latter, a main assumption of Denton PFD is that the sub 

annual series provides information about short-term change. Constant series however cannot be considered 

very informative. Nevertheless, the problem of reconciling constant term series does occur in problems that 

are closely related to benchmarking, like interpolation and calenderization (see e.g., Dagum and Cholette, 

2006 and Boot, Feibes and Lisman, 1967). The reason for choosing this example is purely educational. It 

provides good insight into properties of the different types of objective functions. The reader is referred to 

Subsection 5.3 for more realistic examples.  

 
4  Alternative benchmarking techniques 
 

In Section 3 we identified two problems with GRP methods. In this section we consider two alternative 

benchmarking techniques that solve the time irreversibility property. 

 

Source                                    Denton                                   GRPF 
 

GRPB                                       Avg. benchmark 
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4.1  Simultaneous growth rate preservation 
 

Here, we propose two alternative objective functions for GRP. The first is a “time symmetric” variant of 

GRP, defined by  

  
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where subscript “S” stands for “simultaneous”. The method will be called GRPS in the remainder of this 

paper. The GRPS objective function both preserves forward and backward growth rates. As far as the 

authors know this method has not been mentioned elsewhere in the literature. It can be easily seen that 

GRPS satisfies time reversibility: interchanging t and t   1 does not alter the objective function.  

However, the second problem in Section 3 (singularity of objective function) is not considered. One of 

the consequences, negative benchmarked values, can be avoided by imposing lower bounds of zero on the 

benchmarked values. This can be done by including inequality constraints to an optimization problem, 

which is a well-established technique (e.g., Nocedal and Wright, 2006). The other problems related with 

singularity can however still occur. 
 

4.2  Logarithmic growth rate preservation 
 

Another “time symmetric” variant of GRP is given by the logarithmic form: 
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This function was firstly considered by Helfand, Monsour and Trager (1977). It is immediately verified that 

function (4.2) satisfies the time reversal property as well. The objective function can be considered the 

logarithmic version of GRP and equally well as the logarithmic version of Denton PFD. It will be denoted 

GRPL in the remainder of this paper, where “L” stands for “logarithmic”. 

Note that (4.2) can be used for strictly positive preliminary values only, and that it produces benchmarked 

values that are larger than zero as well. This does not seem an important limitation, as Section 3 already 

mentioned that growth rate preservation can be considered inappropriate for problems with positive and 

negative values. Nevertheless, a potential solution for time series with negative values is to add a sufficiently 

large constant to the series prior to benchmarking and subtract that constant from the benchmarked series. 

A potential drawback of this solution is that adding a constant distorts initial growth-rates. Thus, it is unclear 

whether preliminary growth rates are actually preserved. Further research is necessary to better understand 

the implications of this solution. 

Although GRPL necessarily produces positive values, other problems in Section 3.2, related to a singular 

objective function can still occur.  
 

4.3  Comparison  
 

When comparing GRPS and GRPL, it can be expected that GRPL behaves more like Denton PFD. Below 

we will give two reasons for this. 
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Firstly, because of the asymptotic properties of the log function, the problem that close-to-zero values 

are avoided is less severe for GRPL than for GRPS. Close-to-zero values are associated with large 

adjustments of growth rates. Very large adjustments of growth rates are penalised less in GRPL than in 

GRPS, since GRPS’s objective function grows faster when corrections are large. 

Secondly, the first-order Taylor linearization of GRPL’s objective function corresponds to Denton 

PFD’s function, whereas the approximation of GRPS leads to a different result. The linearization of the 

squared terms of the objective function in the preliminary values are given by    1

1 
t t

t t

x x
p p




  and 

      1 1

1 1  t t t t

t t t t

p p x x
P p p p

 

 
   for GRPL and GRPS respectively. 

 

4.4  Example 
 

In order to explore the properties of GRPL and GRPS, we will consider the example of Subsection 3.3 

again. Figure 4.1 compares results of the symmetric GRP
S ,f GRP

L f  and  PFDf x  methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Example: results of three symmetric benchmarking methods. “Avg. Benchmark” stands for 
the average level of the monthly values that complies with the quarterly benchmarks and that is 
computed as one-third of its quarterly counterpart. 

 

Firstly, it can be seen that the peaks and troughs occur at the same periods for all time symmetric 

methods.  

Secondly, some of the drawbacks related to the singularity of the objective function still occur. When 

compared to Denton PFD, GRP methods tend to avoid close-to zero values, move away relatively slowly 

from low values (in both directions) and lead to irregular large peaks. 

Thirdly, in accordance to Subsection 3.3, GRPL resembles Denton PFD more than GRPS, which follows 

from the slightly lower peaks of GRPL. 

 

Source                  Denton                 GRPL                 GRPS                   Avg. Benchmark 
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5  Empirical test 
 

In this section an illustration exercise is conducted on real-life data, in order to find out whether or not 

the problems mentioned in Section 3 do occur in a realistic, practical application. 

 
5.1  Data sets 
 

The data set used for the illustration is obtained from quarterly and annual trade as published on the 

website of United Nations (UN).  

The United Nations Commodity Trade Statistics Database (UN Comtrade) contains data from statistical 

authorities of reporting countries, or are received via partner organizations like the Organisation for 

Economic Co-operation and Development (OECD). The United Nations Totaltrade (UN Tottrade) data are 

mostly taken from the International Financial Statistics (IFS), published monthly by the International 

Monetary Fund (IMF). Differences between both sources emerge because of differences in data collection 

methods and purposes (United Nations, 2017). All data are publicly available at http://comtrade.un.org/. 

We use UN Tottrade as data source for quarterly data and both UN Tottrade and UN Comtrade as sources 

for annual data. Both data sources include imports and exports for approximately 200 UN member states. 

For our application all series were selected that include three annual totals and twelve quarterly values 

for 2002-2004. The variables of interest are total imports and exports. Series with quarterly or annual values 

smaller than 0.1 million dollars were deleted, as multiplicative benchmarking methods cannot be considered 

appropriate for zero or near zero values (see Subsection 3.2). Since the series are in million dollars, the 

cutoff value only excludes “extreme” cases and still leaves some real-life cases of singularity issues. 

We end up with 238 time series for Comtrade and 253 series for Tottrade. The average year to year 

growth rates discrepancy between the annualized quarterly series and their benchmarks are 5.9%-point and 

2.7%-point for Comtrade and Tottrade benchmarks, respectively. For the majority of series the discrepancy 

can be considered small. The percentage of series with a maximum discrepancy below 5%-point are 79% 

and 87%, respectively. 

 
5.2  Results 
 

Our first aim is to assess overall performance. We will compare the degree of preservation of the 

preliminary values and their growth rates for the various methods that are discussed in this paper. 

Table 5.1 shows for the five methods the median values over all series, for the functions GRP
F ,f GRP

B ,f
GRP

Sf  for forward, backward and simultaneous movement preservation and Level
  f  for preliminary value 

preservation. The latter function measures total squared relative adjustment, defined by 
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Table 5.1 
Median values of criteria in (2.1), (3.1), (4.1) and (5.1) 
 

 COM data set  TOT data set 

 GRP
Ff  GRP

Bf  GRP
Sf  Level

  f   GRP
Ff  GRP

Bf  GRP
Sf  Level

  f  

Denton PFD 0.87 0.88 0.88 26.42  0.33 0.41 0.37 2.07 
GRPF 0.84 0.98 0.93 26.43  0.27 0.48 0.45 2.06 
GRPB 1.00 0.82 0.91 26.47  0.48 0.28 0.45 2.07 
GRPS 0.87 0.89 0.88 26.41  0.34 0.38 0.36 2.07 
GRPL 0.87 0.88 0.88 26.42  0.33 0.41 0.37 2.07 

The values for the COM and TOT data sets are *10-2 and *10-5, respectively.  
 

It can be seen from Table 5.1 that the GRPF method, that is designed to preserve forward growth rates, 

results in relatively poor backward movement preservation. The opposite is also true: GRPB does not 

preserve forward movements very well. From these results, we can conclude that time reversibility actually 

matters. Table 5.1 also demonstrates that the time symmetric methods, Denton PFD, GRPS and GRPL, 

perform well on all measures and that difference between those methods are only marginal.  

To assess forward, backward and simultaneous growth rate preservation, a relative criterion is used that 

compares the values of the objective functions  GRP
F ,f x  GRP

Bf x  and  GRP
Sf x  with their optimum values, 

which are obtained from GRPF, GRPB and GRPS, respectively. Analogous to the standards in Di Fonzo 

and Marini (2012), movement preservation is consided acceptable if it lies within 10% of the optimum 

value. That is, if    method optimum 1.1,f f x x  where f  is one of the previously mentioned objective 

functions.  

For the five methods considered, Table 5.2 shows the percentage of time series with acceptable forward, 

backward and simultaneous movement preservation. 

 

Table 5.2 
Percentage of time series with acceptable movement preservation 
 

 COM data set  TOT data set 

 Forward Backward Simult. Forward Backward Simult.

Denton PFD 79.4 78.6 95.8  79.4 79.4 96.0 
GRPF 100.0 48.7 81.5  100.0 47.8 82.6 
GRPB 47.1 100.0 76.9  44.3 100.0 75.1 
GRPS 82.4 77.3 100.0  80.6 79.4 100.0 
GRPL 79.8 79.0 96.6  79.4 79.4 96.0 

 

For Denton PFD an acceptable degree of simultaneous movement preservation is found for more than 

95% of all cases. Thus, one can conclude that Denton PFD can be considered as a very good approximation 

for the optimal GRPS method; the approximation is even better than the GRPF and GRPB methods, for 

which acceptable performance is found for around 80% of all cases. 

So far, we focused on performance for entire time series. Below we will consider the occurrence of large 

and extreme reconciliation adjustments made to single values and growth rates.  

To measure the adjustments made to growth rates, the absolute difference     * 100%it itg gx p  is 

used, where itg  is a growth rate for series i  and period t. Tables 5.3 and 5.4 compare the occurrence of 

large and extremely large adjustments to forward, backward and simultaneous growth rates. 
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Table 5.3 
Percentage of large growth rate adjustments (> 10%-point difference) 
 

 COM data set TOT data set 
 Forward Backward Simult. Forward Backward Simult.
Denton PFD 2.0 2.1 1.9 0.8 0.6 0.6
GRPF 1.9 2.4 2.3 0.6 0.9 0.7
GRPB 2.3 1.5 2.0 1.1 0.3 0.8
GRPS 1.9 1.9 1.8 0.8 0.6 0.6
GRPL 2.0 1.9 1.9 0.8 0.6 0.5

 
Table 5.4 
Percentage of extreme growth rate adjustments (> 50%-point difference) 
 

 COM data set TOT data set 
 Forward Backward Simult. Forward Backward Simult.
Denton PFD 0.3 0.2 0.4 0.1 0.1 0.1
GRPF 0.2 0.2 0.2 0.0 0.1 0.1
GRPB 0.3 0.0 0.2 0.2 0.0 0.1
GRPS 0.2 0.1 0.2 0.1 0.0 0.1
GRPL 0.2 0.1 0.2 0.1 0.0 0.1

 

These tables show minor differences between methods. 

Small differences between methods are also in observed in Table 5.5, which shows large and extreme 

corrections to preliminary values, as measured by the relative criterion  it * 100%.itx p  

Hence, one can conclude that the problems caused by singularity do not translate into more often 

occurring large corrections. 

 

Table 5.5 
Percentage of large adjustments to preliminary values  
 

  COM data set TOT data set 

 
Large 

(>10%) 
Extreme
(>100%) 

Negative 
(<0%) 

Large 
(>10%) 

Extreme 
(>100%) 

Negative 
(<0%) 

Denton PFD 13.2 1.0 0.0 5.8 0.4 0.0
GRPF 13.0 1.0 0.0 5.8 0.3 0.1
GRPB 13.1 0.9 0.0 5.6 0.3 0.0
GRPS 13.1 0.9 0.0 5.8 0.4 0.0
GRPL 13.0 0.9 0.0 5.8 0.4 0.0

 

Most remarkable in Table 5.5 are the negative benchmarked values obtained for GRPF in the TOT data. 

An example of this is illustrated in Figure 5.3. 

Despite the similar results of the five benchmarking methods in Tables 5.3-5.5, there are clear differences 

in smoothness of reconciliation adjustments. To demonstrate this, we will use the smoothness indicator 

(Temurshoev, 2012). 

 
2 2

2

Smoothness BI BI ,
n

t t
t





     (5.2) 

where BI t  is the so-called benchmark-to-indicator ratio, i.e., t tx p  and BI t is the 5-terms moving average 
21

5 2
BI .

k t

kk t

 

   

According to this indicator, we find in Table 5.6 that the smoothest results are obtained for Denton PFD 

and GRPL. Conversely, the asymmetric GRPF and GRPB methods yield the most irregular adjustments. It 
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follows that the time-symmetric method GRPS, but most so GRPL, suffers less from singularity than the 

asymmetric methods GRPF and GRPB do. These results most clearly illustrate the problems with the 

singularity of GRP’s objective function that were described in Subsection 3.2. 

 

Table 5.6 
Smoothness indicator values (5.2), summed over all series 
 

 COM data set TOT data set 
Denton PFD 3.4 0.3 
GRPF 9.8 39.0 
GRPB 8.2 2.9 
GRPS 4.3 1.1 
GRPL 3.3 0.5 

 
5.3  Examples 
 

Below we show two examples to demonstrate that the problems in Section 3 do occur in a real-life 

application. 

The first example, in Figures 5.1 and 5.2, illustrates that non-symmetric GRP methods may change the 

timing of the most important economic events. When considering the first nine quarters, the two highest 

values occur at different time periods. GRPF’s peak periods are at quarters 6 and 7 and those of GRPB are 

at quarters 5 and 6. Closely related to this, is that GRPF moves away relatively slowly from the close-to-

zero values at quarters 1-4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Exports Burundi, Comdata, 2002-2004, millions of US dollar. “Avg. Benchmark” stands for the 
average level of the quarterly data that complies with the annual benchmarks and that is computed 
as one-fourth of its annual counterpart. 

 

 

Source                    GRPF                   GRPB                  GRPL                    Avg. Benchmark 
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Figure 5.2 Benchmark to Indicator ratios, Exports Burundi, 2002-2004. “Avg. Discrepancy” stands for the 

annual BI-ratio, i.e., the ratio of an annual benchmark and the sum of the underlying quarterly 
indicators. 

 

The second example illustrates the complications of a singular objective function. As shown in 

Figure 5.4, GRPF closely preserves growth rates of the quarters 6-10. This comes however at the expense 

of an irregular peak in quarter 5 and negative benchmarked values in the quarters 11 and 12. 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.3 Exports Gambia, Totdata, 2002-2004, millions of US dollar. “Avg. Benchmark” stands for the 
average level of the quarterly data that complies with the annual benchmarks and that is computed 
as one-fourth of its annual counterpart. 

 

 

GRPF                       GRPB                     GRPL                       Avg. Discrepancy 

2.5 
 
 

2 
 
 

1.5 
 
 

1 
 
 

0.5 
 
 

0 

 

Source                                          Denton                                           GRPF 
 

GRPL                                             Avg. Benchmark                           GRPB 

6.5 
 

5.5 
 

4.5 
 

3.5 
 

2.5 
 

1.5 
 

0.5 
 

‐0.5 
 

‐1.5 

M
ill
io
n
 d
o
lla
rs
 



Survey Methodology, June 2018 57 
 

 
Statistics Canada, Catalogue No. 12-001-X 

 
 

 

 

 

 

 

 

 

 

 

 
Figure 5.4 Exports Gambia, Totdata, 2002-2004, benchmark to indicator ratio. “Avg. Discrepancy” stands for 

the annual BI-ratio, i.e., the ratio of an annual benchmark and the sum of the underlying quarterly 
indicators. 

 
 

6  Conclusions 
 

Two well-known multiplicative benchmarking methods are Denton Proportionate First Differences 

(PFD) and Growth Rates Preservation (GRP). It is generally agreed that GRP has the strongest theoretical 

foundation. It better preserves initial growth rates than Denton PFD. However, from a technical point of 

view, Denton is the easiest method to apply. Because of this, and because Denton PFD is often a good 

approximation of GRP, Denton PFD is more popularly applied. 

In this paper two drawbacks of GRP are demonstrated that, to the best knowledge of the authors, have 

not been mentioned elsewhere. 

The first drawback is that GRP does not satisfy the time reversibility property. According to this property 

it should not matter for the results whether forward or backward growth rates are preserved. That is, 

benchmarking an original time series, 1, , ,t n   or a “reversed” time series, , ,1t n   should lead to 

the same benchmarked series. Since direction of time is irrelevant for any benchmarking application, any 

benchmarking method should preferably satisfy time reversibility. Moreover, a benchmarking method that 

does not satisfy time reversibility may yield entirely difficult conclusions on the timing of economic events 

depending on the chosen time direction. For these reasons forward and backward GRP methods should 

preferably be discouraged. 

In this paper two alternative GRP methods are presented that do satisfy time reversibility. The first 

alternative, a new GRPS method, preserves both forward and backward growth rates. The other alternative, 

an existing GRPL method, preserves logarithms of the forward growth rates. 

 

GRPF                                             GRPB                                            GRPL 
 

Denton                                         Avg. Discrepancy      
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A second drawback of all GRP methods in this paper are the singularities in its objective functions. 

Complications of this are: avoidance of close to zero outcomes, irregular peaks in results and unnecessary 

negative values in benchmarked results. 

These problems actually occurred in an illustrative application on real-life data. Although unnecessary 

negative values only occasionally occurred, reconciliation adjustments are much more irregular than for 

Denton PFD. Since smoothness of reconciliation adjustments (BI ratios) is often the main interest of 

benchmarking, asymmetric GRP methods can be discouraged for many applications. 

While the literature considers Denton PFD “a good approximation” of the ideal GRP method, our main 

conclusion is that Denton PFD is even more appropriate than standard GRP for many applications. Denton 

is computationally easier to apply, it does not suffer from the problems related to time irreversibility and a 

singular objective function. Furthermore, the approximation of Denton PFD’s results is even more close for 

the time-symmetric versions of GRP than for standard GRP. 

However, when growth rate preservation is the key point of interest, a time-symmetric version of GRP 

can also be a good choice, most in particular GRPL. Time symmetric methods preserve growth rates slightly 

better than Denton PFD, satisfy time reversibility and suffer less severe from the drawbacks of a singular 

objective function than standard GRP. 
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Investigating alternative estimators for the prevalence of 
serious mental illness based on a two-phase sample 
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Abstract 

A two-phase process was used by the Substance Abuse and Mental Health Services Administration to estimate 
the proportion of US adults with serious mental illness (SMI). The first phase was the annual National Survey on 
Drug Use and Health (NSDUH), while the second phase was a random subsample of adult respondents to the 
NSDUH. Respondents to the second phase of sampling were clinically evaluated for serious mental illness. A 
logistic prediction model was fit to this subsample with the SMI status (yes or no) determined by the second-
phase instrument treated as the dependent variable and related variables collected on the NSDUH from all adults 
as the model’s explanatory variables. Estimates were then computed for SMI prevalence among all adults and 
within adult subpopulations by assigning an SMI status to each NSDUH respondent based on comparing his (her) 
estimated probability of having SMI to a chosen cut point on the distribution of the predicted probabilities. We 
investigate alternatives to this standard cut point estimator such as the probability estimator. The latter assigns 
an estimated probability of having SMI to each NSDUH respondent. The estimated prevalence of SMI is the 
weighted mean of those estimated probabilities. Using data from NSDUH and its subsample, we show that, 
although the probability estimator has a smaller mean squared error when estimating SMI prevalence among all 
adults, it has a greater tendency to be biased at the subpopulation level than the standard cut point estimator. 

 
Key Words: Bias; Bias-corrected estimator; Domain; Survey-sampling theory; Asymptotic. 

 
 

1  Introduction 
 

Serious mental illness is defined as currently or in the past year having a diagnosable mental, behavioral, 

or emotional disorder (excluding developmental and substance-use disorders) of sufficient duration to meet 

diagnostic criteria specified in the Diagnostic and Statistical Manual of Mental Disorders, 4th edition 

(American Psychiatric Association, 1994). The National Survey on Drug Use and Health (NSDUH), 

sponsored by the Substance Abuse and Mental Health Services Administration (SAMHSA), provides 

national and state-level estimates on the use of tobacco products, alcohol, and illicit drugs in the civilian, 

noninstitutionalized population of the United States aged 12 years or older. The Mental Health Surveillance 

Study (MHSS) was a follow-up study to the NSDUH main interview, designed to estimate the prevalence 

of serious mental illness (SMI) among adults 18 years of age or older at the national level and within 

particular subpopulations of interest. It was not practical to administer clinical interviews to the entire 

NSDUH sample of approximately 46,000 adults per year in order to obtain estimates of SMI due to financial 

and time constraints. Thus, a second phase of sampling was employed as in the National Comorbidity 

Survey Replication (See Kessler, Chiu, Demler and Walters, 2005). From 2008 through 2012, a clinical 

interview was administered to a randomly-selected (before nonresponse) subsample of NSDUH adult 

respondents within four weeks of completing the NSDUH main interview. For more information about the 
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NSDUH and its clinical subsample, the reader is referred to Center for Behavioral Health Statistics and 

Quality (CBHSQ), 2014. 

The clinical evaluations were treated as the “gold standard”, despite the possibility of human error (this 

topic is discussed further in Section 4). A logistic prediction model was fit to the respondent subsample with 

the clinical SMI evaluations (yes or no) treated as the dependent variable and variables contained on the 

NSDUH as the model’s explanatory variables. The NSDUH variables included in the prediction model, 

obtained from all 46,000 adult respondents in the main survey, were measures of psychological distress and 

functional impairment derived from responses to NSDUH survey items, an age variable, the existence of a 

self-reported past-year major depressive episode, and the existence of past-year serious suicidal thoughts. 

The fitted prediction model was then applied to the NSDUH full sample to predict every adult respondent’s 

probability of having SMI based on their responses in the NSDUH main interview.  

An adult NSDUH respondent with an estimated probability of having SMI that was greater than or equal 

to a cut point was assigned a predicted SMI value of 1 (i.e., has SMI); otherwise, he or she was assigned a 

predicted SMI value of 0 (i.e., does not have SMI). SMI prevalence rates for all adults and within various 

subpopulations were then estimated using these predicted values. The cut point was determined so that 

within the MHSS subsample the weighted fraction of false positives (subsample respondents predicted to 

have SMI based on the model but clinically diagnosed as not having SMI) and false negatives (subsample 

respondents predicted not to have SMI but clinically diagnosed as having SMI) came as close to being equal 

as possible. Strict equality was usually impossible because predicted probabilities of having SMI only take 

on a limited number of values depending on the covariates in the model.  

The standard cut point estimator is derived from Receiver Operator Characteristics (ROC) theory. See, 

for example, Fawcett (2006). In Section 2, we use probability-sampling-based (also called “design-based”) 

survey-sampling theory to propose alternatives to this estimator. One such is the probability estimator, 

which simply assigns each NSDUH respondent his (her) estimated probability of having SMI, with no 

dichotomous designation. Also introduced are bias-corrected versions of both the standard cut point and 

probability estimators. These are similar to standard GREG estimators (see, for example, Särndal, Swensson 

and Wretman, 1989) and are nearly unbiased under survey-sampling theory whether or not the logistic 

model holds. The bias correction term in each serves as the basis of a test statistic for determining whether 

the associated model-based estimator – whether cut point or probability – is significantly biased.  

Section 3 uses NSDUH/MHSS subsample data collected between 2008 and 2012 to evaluate the 

alternative estimators using the logistic model. We show that although the probability estimator has a 

smaller mean squared error when estimating SMI prevalence among all adults, it has a greater tendency to 

be biased at the subpopulation level than the standard cut point estimator. This leads us to propose a hybrid 

cut point estimator that is (at least) more efficient than the standard cut point estimator for all adults while 

not having the tendency to be biased at the subpopulation level.  
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Section 4 provides some concluding remarks. It is important to remember that SAMHSA planned to use 

the logistic model fit in the 2008 to 2012 clinical subsamples to help compute annual estimates of adult SMI 

prevalences based on NSDUH responses beyond 2012 without any new clinical subsamples.  

 
2  Some estimators 
 

2.1  Across all adults 
 

Let S  denotes the relevant NSDUH respondent sample (adults 18 years or older) from 2008 through 

2012, and kw  the NSDUH analysis (first-phase) weight for an individual .k S  Let S   denotes the 

subsample of S  responding to a clinical evaluation of their SMI status. Let 1ky   when k  is diagnosed 

to have serious mental illness, and 0ky   when k  is diagnosed not to have serious mental illness. Let k  

be the two-phase weight for an individual k  in .S   For convenience, we set k  to 0 for individuals in S  

but not .S   

In actual practice, both sets of weights have been adjusted to account for nonresponse and undercoverage 

and to increase their efficiency, but we will ignore that fact here for simplicity. Instead, we will assume 

1 kw  is the probability of selection for a NSDUH respondent, 1 k  the probability of selection for a MHSS 

subsample respondent, and thus k kw   the conditional selection probability of a subsample respondent 

given (s)he was a NSDUH respondent. A nearly unbiased estimator for the prevalence of SMI among adults 

between 2008 and 2012 based on the two-phase sample is ,U k k k
S S

y y 
 

    “nearly” because the 

denominator may contain some sampling error.  

Suppose a k weighted logistic regression is run on the all-adult MHSS subsample respondents in S   
with ky  as the dependent variable using a reasonable vector of explanatory covariates, ,x k  available for 

every respondent in the adult NSDUH sample. Exactly how the covariates have been chosen is beyond the 

scope of this investigation (for that, the reader is directed to Center for Behavioral Health Statistics and 

Quality, 2015; Chapter 4). Let the predictor for ky  from this weighted-logistic regression be kp   
1( ) [1 exp( )] .x b x bk kp       

The use of weights in fitting the logistic-regression model protects against the possibility that the model 

residuals are correlated with the probabilities of selection. It is also consistent with how SMI prevalence 

was estimated; that estimate resulted from the weighted regression of ky  on the constant 1 and no covariates.  

Sorting the subsample by the kp  values, one can find the cut point value Cp  such that  

 

k C

k k k

k S k S
p p

y 
  



   (2.1) 

holds exactly or as nearly so as possible. That is to say, the estimated number of adults in the population 

having kp  values at or above the cut point approximately equals the estimated number of adults with 

SMI. Define an indicator random variable kc  to be 1 when k Cp p  and 0 otherwise. A cut point 

determined using equation (2.1) also comes as close as possible to equalizing the weighted false positives 

  : 1
1

k
k k

S c
y

 
  and false negatives  : 0k

k k
S c

y
   in .S   
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Two alternative estimators for SMI prevalence among adults are the model-driven cut point and 

probability estimators:  

 ,
k k

S
C

k
S

w c
y

w
 


 (2.2) 

and 

 ,
k k

S
P

k
S

w p
y

w
 


 (2.3) 

these estimators are computed using the entire NSDUH sample rather than the smaller MHSS subsample as 

is .Uy  

We assume now that one of the covariates in the logistic model is 1 or the equivalent ( 1x γk   for some 

).γ  Under this assumption, the probability estimator for SMI prevalence is exactly equal to a bias-corrected 

probability estimator given below:  

   

BC
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k k k k k k
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k k k

S S S
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  
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(2.4)

 

The equality between Py  and BCPy   results from the numerator of the bias-correction term in the second 

line of equation (2.4),   ,k k k k
S S

y p 
 

   equaling zero. Fitting a logistic regression forces 

  ,x 0k k k k
S

y p


   and we have assumed x k  contains 1 or the equivalent.  

Since the expectation of the term in parentheses in the first line of equation (2.4) is nearly zero under 

mild conditions, BC ,P Py y   like ,Uy  is nearly unbiased under survey-sampling theory. This is true 

whether or not the model used to determine the kp  is correct so long as b  in ( )x bk kp p    
1[1 exp( )]x bk

    converges to something as the MHSS subsample and NSDUH sample sizes grow 

arbitrarily large.  

The estimator BCPy   is analogous to the popular GREG estimator. It follows Lehtonen and Veijanen 

(1998), and computes the kp  with a logistic rather than the linear model of the GREG.  

A bias-corrected cut point estimator is  
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(2.5)

 

Using the same logic as above, this estimator is also nearly unbiased under mild conditions. It is close to the 

model-driven cut point estimator since the bias-correction term,   ,k k k k
S S

y c 
 

   is close to 

zero. The bias-correction term would be exactly zero if there were a cut point Cp  that satisfied equation 

(2.1) exactly.  
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2.2  Domain estimation 
 

Let us now turn our attention to a subpopulation of all adults, such as males or all adults who have 

received treatment for mental illness (or all adults who live in a particular state). We call such a 

subpopulation a “domain” of interest. To estimate SMI prevalence in a domain, we can simply insert an 

indicator for domain membership, ,kd  equaling 1 when k  is in the domain, 0 otherwise, into all our 

estimates:  

                                                       
k k k

S
U d

k k
S

y d
y

d








 


 (2.6) 
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(2.10)

 

It is here where the bias-correction terms serve an important purpose. If the logistic model, which was 

fit on the subsample of all adults, holds within the domain, then  k k k k k k
S S

d y p d 
 

   will be 

an estimate of zero, and the model-driven probability estimator,  P dy  in equation (2.7), will be nearly 

unbiased. If the model does not hold in the domain (e.g., if males are more likely to have SMI than the 

model predicts), then the model-driven probability estimator can be significantly biased.  

Adding the bias correction  k k k k k k
S S

d y p d 
 

   to  P dy  produces an estimator that is 

nearly unbiased under survey-sampling theory. When the model holds in the domain, however, applying the 

correction will almost certainly result in a decrease in accuracy. A similar argument can be made about the 

appropriateness of adding the  k k k k k k
S S

d y c d 
 

   term in equation (2.10) to the cut point 

estimator,  ,C dy  in equation (2.8).  

Equations (2.4) and (2.5) can be viewed as special cases of (2.9) and (2.10), respectively, with 1.kd   
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3  The MHSS subsample 
 

3.1  About the MHSS subsample 
 

The NSDUH is a stratified multi-stage probability survey. In 2008 through 2012, the MHSS subsample 

was drawn annually from adults responding to the corresponding NSDUH using Poisson sampling. 

Subsample selection probabilities were determined each year using an algorithm that tended to oversample 

adults with higher levels of psychological distress. The algorithm varied across the years. See Center for 

Behavioral Health Statistics and Quality (2014, Chapter 3) for more details.  

A respondent subsample size of roughly 750 was targeted for 2008 while respondent subsamples of 500 

each for the 2009 and 2010, and 1,500 each for the 2011 and 2012 were likewise targeted. A data set 

combining all the respondent from 2008 to 2012 was created for modeling SMI. Weights for modeling were 

developed assuming that the same model held across all the years. As a result, more weight was given to 

the samples from 2011 and 2012 than to earlier years (Center for Behavioral Health Statistics and Quality, 

2014; Chapter 5).  

For our purposes, we treat those subsample weights and associated NSDUH weights as given and based 

on survey-sampling theory. We also treat the strata and two variance primary sampling units (PSUs) per 

each of the 50 variance strata developed for the MHSS subsample variance estimator as if they were the 

NSDUH variance strata and variance PSUs. Finally, we treat the NSDUH PSUs as if they were selected 

with replacement.  

 

3.2  Variance estimation under survey-sampling theory 
 

Since the bias-corrected estimated domain totals in equations (2.9) and (2.10) are nearly unbiased under 

survey-sampling theory, one can use linearization to estimate their variances. In what follows, we use 

variants of the bias-corrected estimators in equation (2.9) and (2.10) to simplify the variance estimation.  

Recalling that 0k   when ,k S   a variance estimator for the sample mean  
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under a stratified, multistage sample, where    k k k k k kz p w y p    is 
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 (3.2) 

where hjS  are the respondents in the thj  variance PSU and variance stratum .h  It is also a variance estimator 

for the following asymptotically-identical variant of the bias-corrected probability estimator:  
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 (3.3) 

This is because the MHSS subsample is Poisson (and thus independent across adults as well as PSUs) and 

the first stage of the NSDUH sample is treated as if it were drawn with replacement.  
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Similarly, by redefining    ,k k k k k kz c w y c    a variance estimator for the sample mean in 

equation (3.1) is also an estimator for that variance of this variant of the bias-corrected estimator:  

  
 

BC2 .
k k k k k k k

S S
C d

k k k k
S S

w c d y c d
y

w d w d





  

 
 (3.4) 

The variance estimation approach taken above assumes that the domain respondent subsample sizes are 

such that k kp P  and k kc C  can be treated as unity, where kP  and kC  are the limits of kp  and ,kc  

respectively, as the subsample (along with the NSDUH sample and population) grows arbitrarily large. In 

fact, all these ratios are assumed to be  1 O 1 ,P n  where n  is the MHSS subsample size.  

Consider now a computed bias-correction term, say  k k k k k k
S S

y p d w d    or 

  .k k k k k kS S
y c d w d    To assess whether the term is significantly different from zero, one can 

create an asymptotic t statistic in the usual fashion, dividing the term by its standard error.  

When evaluating the estimators in Section 3.3, we will instead use the asymptotically equivalent:  

                                                    ,k k k k k kP d S S
BiasMeasure y y p d d 

 
    (3.5) 

and  

                                                   k k k k k kC d S S
BiasMeasure y y c d d 

 
    (3.6) 

to create asymptotic t statistics for evaluating domain-level biases so that the DESCRIPT procedure in 

SUDAAN (RTI International, 2012) can be employed treating the kp  and kc  as fixed (similarly, that 

variance estimator for (3.3) in equation (3.2) can be computed using DESCRIPT). Moreover, since virtually 

all the sampling error in the bias-correction terms comes from the MHSS subsampling phase (even in 2011 

and 2012, subsample was only 3% of the NSDUH adult sample), we treat the standard errors of the bias 

measures as if they were computed for a Poisson sample with ignorably small sampling fractions, which 

is equivalent to a with-replacement element sample for variance-estimation purposes. For example, for 

the variance estimator of    ,P dBiasMeasure y  we compute (using SUDAAN’s DESCRIPT): 

            22
( ) 1 ,n

P d k k k k k kP dn S S
v BiasMeasure y y p BiasMeasure y d d 

      where n  

is the sample size of .S   

 

3.3  Evaluating the estimators 
 

The model used by SAMHSA to predict SMI from adult NSDUH respondents was a logistic model with 

five variables (Center for Behavioral Health Statistics and Quality, 2014; Chapter 7). Two of the variables 

were rescaled total scores from short forms that measure psychological distress and functional impairment 

due to distress. The third was a dichotomous  0 1  variable created from the answers to a series of questions 

assessing whether the respondent had a major depressive episode in the previous year. The fourth was also 

0 1  and indicated whether the respondent seriously contemplated suicide in the past year, and the fifth was 

a linear function of age from 18 to 30 that stayed constant after 30. Details on how this model was selected 

can be found in Center for Behavioral Health Statistics and Quality (2015, Chapter 4).  

We used that model to create a set of domain-level cut point and probability estimates from the combined 

2008-2012 data sets and to evaluate their potential biases. Some of the results are displayed in Tables 3.1 
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and 3.2. These tables reviewed domain estimates based on personal characteristics rather than state of 

residence because it seemed more likely that significant biases would be found for the characteristics like 

these rather than for states. Moreover, sample sizes for characteristics tended to be larger than those for 

states.  

Table 3.1 show that using the bias-corrected probability in equation (2.9) is usually slightly more 

efficient (has a smaller standard error) than the direct estimator   .k k k k kU d S S
y d y d 

 
    The bias-

corrected cut point estimator in equation (2.10) is sometimes more efficient than the direct estimator, 

sometimes not. The standard errors in Table 3.1 are the square roots of linearization variance estimators for 

the direct estimator  U dy  above or the bias-corrected estimator in equation (3.1) with the appropriated 

defined nonrandom ,kz  each computed as a stratified with-replacement sample of primary sampling units 

and a probability subsample of individuals within each PSU; that is, with equation (3.2). For   ,U dv y

 k z dz y  is replaced by  .k U dy y  

 

Table 3.1 
Nearly unbiased estimators with their standard errors 
 

  
Direct (eq. 2.6) 

Bias-Corrected  
Cut Point (eq. 2.10) 

Bias-Corrected 
Probability (eq. 2.9) 

Estimate SE Estimate SE* Estimate SE* 
All Adults 3.93 0.29 3.96 0.26 3.91 0.23 
Male 2.96 0.34 2.91 0.39 3.01 0.31 
Female 4.84 0.46 4.93 0.39 4.74 0.36 
Age: 18-25 3.77 0.62 3.97 0.48 3.66 0.52 
Age: 26-34 4.35 0.68 4.29 0.61 4.37 0.57 
Age: 35-49 5.74 0.57 6.15 0.52 5.87 0.50 
Age: 50+ 2.74 0.40 2.47 0.47 2.60 0.36 
White, Not Hispanic  4.43 0.35 4.47 0.30 4.34 0.27 
Black, Not Hispanic  3.28 0.54 3.62 0.42 3.38 0.40 
Other, Not Hispanic  4.09 1.25 4.27 1.10 4.33 1.12 
Hispanic 2.02 0.71 1.68 0.88 2.11 0.70 
Northeast 2.80 0.51 3.59 0.49 3.25 0.47 
North Central 4.17 0.49 3.99 0.53 4.13 0.37 
South 3.74 0.49 3.93 0.51 3.65 0.45 
West 5.04 0.84 4.26 0.57 4.62 0.57 
Employed Full Time 2.36 0.29 2.36 0.28 2.32 0.25 
Employed Part time 4.34 0.71 3.82 0.55 3.91 0.46 
Unemployed 5.64 1.22 6.57 0.92 6.13 0.90 
Other Employment Status 6.21 0.66 6.22 0.64 6.15 0.55 
Less than High School 5.69 0.99 4.44 0.77 4.72 0.71 
High School Graduate 4.05 0.57 4.08 0.57 4.14 0.44 
Some College 4.14 0.57 4.31 0.44 4.18 0.40 
College Graduate 2.88 0.52 3.27 0.46 3.01 0.46 
Metro 3.78 0.45 3.96 0.39 3.74 0.37 
Small Metro 4.15 0.47 3.60 0.44 3.96 0.29 
Nonmetro 3.99 0.47 4.63 0.54 4.36 0.48 
Health Insurance: Yes 3.57 0.31 3.83 0.26 3.65 0.24 
Health Insurance: No  5.73 0.94 4.65 0.93 5.24 0.74 
< 100% of Poverty Level 9.01 1.30 9.00 1.23 8.62 1.05 
100%-199% of Poverty 5.61 0.85 4.72 0.63 4.88 0.52 
100% of Poverty 2.59 0.28 2.64 0.28 2.61 0.23 
Rec’d MH Treatment: Yes 18.84 1.57 19.69 1.29 19.00 1.32 
Rec’d MH Treatment: No  1.54 0.18 1.42 0.20 1.46 0.15 
* Standard error is the square root of variance estimate computed using equation (3.2) with appropriately defined .kz  
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The table suggests that there is little gain to be had from model correction, and leads us back to the 

model-driven probability and cut point estimators in equations (2.7) and (2.8) unless they exhibit systematic 

biases. Table 3.2 (with bias measures and their standard errors computed as described in Section 3.2) 

strongly suggests that the probability estimator, although unbiased when estimating SMI prevalence among 

all adults, can be very biased at the domain level. The cut point estimator, by contrast, is significantly biased 

at the 0.1 level in only two domains and never at the 0.05 level. Since we computed two-sided p values 

for 32 domains, finding two domains with p values below 0.1 is about what one should expect under the 

null hypothesis that the cut point estimator is not biased at the domain level.  

 
Table 3.2 
Model-driven estimates and their bias measures 
 

 Standard cut point (eq. 2.8) Probability (eq. 2.7) 

Estimate Bias 
Measure 

SE of Bias 
Measure 

Estimate Bias 
Measure 

SE of Bias 
Measure 

All Adults 3.95 -0.01 0.27 3.91 0.00 0.23 
Male 2.99 0.08 0.42 3.18 0.17 0.34 
Female 4.84 -0.10 0.34 4.58 -0.16 0.31 
Age: 18-25 3.94 -0.02 0.55 3.59 -0.07 0.49 
Age: 26-34 5.03 0.69 0.66 4.64 0.26 0.51 
Age: 35-49 5.08 -1.10* 0.57 4.77 -1.15** 0.55 
Age: 50+ 2.84 0.37 0.42 3.21 0.61* 0.32 
White, Not Hispanic  4.31 -0.17 0.33 4.18 -0.16 0.28 
Black, Not Hispanic  3.14 -0.48 0.45 3.38 0.00 0.46 
Other, Not Hispanic  3.14 -1.14 1.13 3.47 -0.86 1.08 
Hispanic 3.31 1.63* 0.85 3.28 1.17 0.65 
Northeast 3.55 -0.04 0.39 3.62 0.33 0.35 
North Central 4.16 0.16 0.60 4.02 -0.10 0.40 
South 3.80 -0.13 0.52 3.86 0.22 0.44 
West 4.28 0.02 0.56 4.10 -0.56 0.55 
Employed Full Time 2.76 0.38 0.33 3.09 0.75** 0.28 
Employed Part time 4.19 0.39 0.59 4.05 0.15 0.47 
Unemployed 6.61 0.03 0.75 5.48 -0.57 0.70 
Other Employment Status 5.33 -0.93 0.66 4.91 -1.30 0.56 
Less than High School 4.34 -0.11 0.90 4.15 -0.64 0.83 
High School Graduate 4.09 0.01 0.59 3.92 -0.22 0.46 
Some College 4.50 0.18 0.37 4.35 0.17 0.31 
College Graduate 3.09 -0.16 0.46 3.36 0.33 0.40 
Metro 3.63 -0.34 0.38 3.68 -0.06 0.35 
Small Metro 4.35 0.73 0.49 4.20 0.23 0.35 
Nonmetro 4.24 -0.38 0.59 4.09 -0.27 0.51 
Health Insurance: Yes 3.67 -0.16 0.27 3.72 0.07 0.24 
Health Insurance: No  5.39 0.72 0.86 4.89 -0.34 0.68 
< 100% of Poverty Level 7.21 -2.07 1.27 6.13 -2.88** 1.16 
100%-199% of Poverty 4.83 0.12 0.62 4.53 -0.38 0.55 
100% of Poverty 2.98 0.32 0.28 3.24 0.61*** 0.21 
Rec’d MH Treatment: Yes 18.33 -1.37 1.31 13.97 -5.07*** 1.26 
Rec’d MH Treatment: No  1.62 0.20 0.23 2.28 0.81*** 0.17 
* Bias measure is significantly different from zero at the 0.1 level. 
** Bias measure is significantly different from zero at the 0.05 level. 
*** Bias measure is significantly different from zero at the 0.01 level. 
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One curious result bears a brief mention. The cut point estimator among all adults had very little bias 

(-0.01), so its estimated root mean squared error equaled the standard error of the bias-corrected cut 

point after rounding (0.26). Oddly, this value was less than the standard error of its bias measure (0.27). 

One possible reason for the difference between the two standard errors was that we used 

 k k k k k kS S
y c d w d    as the bias-correction term and  k k k k k kS S

y c d d    as the 

bias measure within a domain; all adults being the special case where 1.kd   Our analysis (not shown) 

was that the difference in the denominators had very little impact.  

What has a greater impact was ignoring the stratification and clustering in the NSDUH sample when 

computing the standard errors of the bias measures. Unexpectedly, ignoring the clustering actually tended 

to increase standard errors. This may be because the clustering in the NSDUH has virtually no measurable 

impact on variance so that any difference between standard error estimates computed with and without 

clustering is attributable to random noise or to asymptotic biases that are not actually ignorable in finite 

estimates.  

 

3.4  A hybrid cut point  
 

Consider the following hybrid of the probability and standard cut point estimators. Suppose we sorted 

the NSDUH sample rather than just the MHSS subsample by the fitted kp  values, and established a cut 

point Hp  such that  

                                                                   

k H

k k k
k S k S

p p

w w p
 


   (3.7) 

holds as closely as possible. Setting 1kh   when k Hp p  and 0 otherwise, the hybrid cut point estimator 

for SMI prevalence in a domain is  

                                                                         .
k k kS

H d
k kS

w h d
y

w d
 


 (3.8) 

It is not hard to see that for all adults, if a Hp  could be found that satisfied equation (3.7), then the hybrid 

cut point estimator would equal the probability estimator exactly. Failing that the hybrid cut point estimator 

for all adults would have a slight bias, which could be measured, squared, and then added to the standard 

error of the probability estimator to equal its root mean squared error. In this case, the hybrid SMI prevalence 

estimate for all adults rounded to 3.89. Its root mean squared error rounded to the same value as the standard 

error of the probability estimator (0.23).  

Table 3.3 repeats much of Table 3.2 for the standard cut point but also displays analogous results for 

the hybrid 

       .k k k k k kH d S S
BiasMeasure y y h d d     (3.9) 

Its standard error is computed analogously to those of  C dy  and  .P dy  The two sets of cut point outcomes 

are similar, but the bias measure for the hybrid estimator was significantly different from zero at the 0.05 

level in two domains (both with p values of 0.043). Since there are 32 domains analyzed, this remains 

consistent with the null hypothesis of no bias at the domain level.  
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Table 3.3 
The cut point estimators and their bias measures 
 

 Standard Cut Point (eq. 2.8)  Hybrid Cut Point (eq. 3.8) 

 Estimate Bias 
Measure 

SE of Bias 
Measure 

Estimate Bias 
Measure 

SE of Bias 
Measure 

All Adults 3.95 -0.01 0.27 3.89 -0.10 0.27 
Male 2.99 0.08 0.42 2.94 0.03 0.42 
Female 4.84 -0.10 0.34 4.78 -0.21 0.33 
Age: 18-25 3.94 -0.02 0.55 3.89 -0.03 0.55 
Age: 26-34 5.03 0.69 0.66 4.97 0.68 0.66 
Age: 35-49 5.08 -1.10* 0.57 5.02 -1.16** 0.57
Age: 50 or Older 2.84 0.37 0.42 2.79 0.22 0.41 
White, Not Hispanic 4.31 -0.17 0.33 4.24 -0.22 0.33 
Black, Not Hispanic 3.14 -0.48 0.45 3.10 -0.48 0.45 
Other, Not Hispanic 3.14 -1.14 1.13 3.11 -1.14 1.13 
Hispanic 3.31 1.63* 0.85 3.25 1.30 0.79 
Northeast 3.55 -0.04 0.39 3.50 -0.05 0.39 
North Central 4.16 0.16 0.60 4.12 0.07 0.59 
South 3.80 -0.13 0.52 3.74 -0.29 0.51 
West 4.28 0.02 0.56 4.23 0.01 0.56 
Employed Full Time 2.76 0.38 0.33 2.71 0.36 0.33 
Employed Part Time 4.19 0.39 0.59 4.16 0.37 0.59 
Unemployed 6.61 0.03 0.75 6.43 -0.27 0.69 
Other Employment Status 5.33 -0.93 0.66 5.27 -1.09* 0.65
Less than High School 4.34 -0.11 0.90 4.21 -0.14 0.90 
High School Graduate 4.09 0.01 0.59 4.03 -0.26 0.56 
Some College 4.50 0.18 0.37 4.45 0.18 0.37 
College Graduate 3.09 -0.16 0.46 3.07 -0.17 0.46 
Large Metro 3.63 -0.34 0.38 3.58 -0.36 0.38 
Small Metro 4.35 0.73 0.49 4.27 0.58 0.47 
Nonmetro 4.24 -0.38 0.59 4.19 -0.53 0.58 
Health Insurance: Yes 3.67 -0.16 0.27 3.62 -0.20 0.27 
Health Insurance: No 5.39 0.72 0.86 5.31 0.44 0.82 
< 100% of Poverty Threshold 7.21 -2.07 1.27 7.12 -2.44** 1.21
100%-199% of Poverty 4.83 0.12 0.62 4.78 -0.01 0.61 
> 200% of the Poverty 2.98 0.32 0.28 2.93 0.30 0.28 
Rec’d MH Treatment: Yes  18.33 -1.37 1.31 18.19 -1.46 1.31 
Rec’d MH Treatment: No 1.62 0.20 0.23 2.28 0.81 1.17 
* Bias measure is significantly different from zero at the 0.1 level. 
** Bias measure is significantly different from zero at the 0.05 level. 

 
4  Some concluding remarks 
 

Population mental health attributes have been estimated using data from a subsample selected from a 

large general survey that are given a clinical diagnostic assessment to develop prediction models that are 

then applied to the full sample (see, for example, Kessler, Abelson, Demler, Escobar, Gibbon, Guyer, 

Howes, Jin, Vega, Walters, Wang, Zaslavsky and Zheng, 2004). This is the methodology used by SAMHSA 

with the annual NSDUH and the adult MHSS subsample from 2008 through 2012.  

We have shown with NSDUH/MHSS subsample data that when estimating the SMI prevalence for the 

full population, in this case adults, using the estimated probabilities of having SMI directly instead of the 

standard cut point methodology results in a lower standard error. Nevertheless, the so-called probability 

estimator of SMI prevalence can often be substantially biased at domain-level when the standard cut point 

is not.  
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We also investigated bias-corrected versions of the two estimators based on survey-sampling theory. 

Unfortunately, these estimators were only slightly more efficient than simply computing estimates from the 

MHSS subsample directly, especially for subpopulations.  

We evaluated a hybrid cut point estimator that was slightly more efficient than the standard cut point in 

estimating SMI prevalence among all adults. It did not exhibit the large biases at the domain level that 

plagued the probability estimator, although whether or not it was free of domain-level bias was not 

completely clear.  

In 2013, SAMHSA discontinued the collection of clinical interviews. Nevertheless, the agency continues 

to compute SMI prevalence estimates for adults based on the model and cutpoints developed using the 2008-

2012 MHSS subsample. The standard cut point estimator which demonstrated smaller domain-level biases 

in our tables also continues to be used for SMI estimation at the state level as well as for the domains 

analyzed here.  

A troubling question is how a standard cut point estimator for SMI derived from a logistic-model fit of 

MHSS subsample data can be less prone to bias than a probability estimator based on the sample model fit. 

We suspect that logistic regression does a reasonably good job at ordering the relative probabilities of adults 

having SMI but not at estimating individual probabilities, especially in the tails. Domains with unusually 

high and low prevalences, like adults receiving mental-health treatment (or not receiving treatment) were 

particularly prone to having biased probability estimates. It may be that the application of asymptotic theory 

is not appropriate in the tails.  

The interested reader would likely want to know how one can compute standard errors for the cut point 

estimators at the domain level. Because a cut point estimator is not continuous, we attempted to compute 

standard errors for it using Fay’s Balances repeated replications (BRR). Unfortunately, as explained in 

Center for Behavioral Health Statistics and Quality (2015, Chapter 2.4.2.), our variance estimators for 

domain estimates were not satisfactory in a modest simulation experiment.  

Few MHSS subsample respondents were in the tails of the distribution (and even fewer realized values 

for the probability of having SMI given the covariates of the model). This frustrated our attempts at 

improving the probability estimator (for which domain-level standard errors can be measured via 

linearization) by adjusting tail probabilities (which did not fit very well under the logistic model). We will 

not discuss these attempts further here. More research is clearly needed to develop either good standard-

error measures for standard cut point estimates or good estimates of SMI prevalence for which standard 

errors can be reasonably measured.  

A final word about the “gold standard” is warranted. For our purposes, a clinical diagnosis of an adult 

having SMI has been treated as equivalent to the person actually having diagnosable seriously mental illness. 

In fact, diagnoses are more fluid. They may vary according to the clinician or the whim of the person 

answering the clinician’s questions. CBHSQ (2014, Chapters 5 and 6) describes the effort expended on 

removing as much variation from the MHSS clinical diagnoses as possible. We assumed here that each 

clinical diagnosis was effectively unbiased, that is, the probability of a random diagnosis for an individual 

within a domain being a false positive equaled the probability of it being a false negative.  
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Strategies for subsampling nonrespondents for economic 
programs 

Katherine Jenny Thompson, Stephen Kaputa, and Laura Bechtel1 

Abstract 

The U.S. Census Bureau is investigating nonrespondent subsampling strategies for usage in the 2017 Economic 
Census. Design constraints include a mandated lower bound on the unit response rate, along with targeted 
industry-specific response rates. This paper presents research on allocation procedures for subsampling 
nonrespondents, conditional on the subsampling being systematic. We consider two approaches: (1) equal-
probability sampling and (2) optimized allocation with constraints on unit response rates and sample size with 
the objective of selecting larger samples in industries that have initially lower response rates. We present a 
simulation study that examines the relative bias and mean squared error for the proposed allocations, assessing 
each procedure’s sensitivity to the size of the subsample, the response propensities, and the estimation procedure. 

 
Key Words: Quadratic program; Unit response rate; Nonresponse adjustment; Systematic sampling; Optimal allocation; 

Two-phase sampling. 

 
 

1  Introduction 
 

Many federal programs are simultaneously experiencing declining response rates and reductions in 

funding. At the same time, these programs are required to maintain predetermined reliability levels and are 

encouraged to collect an increased number of data items and to publish more statistics. Of course, as 

nonresponse increases, the precision of the survey estimates will decrease from the original design levels 

and can be sensitive to nonresponse bias. Consequently, many federal agencies are investigating adaptive 

collection design strategies, where the term “collection design” refers to protocol(s) for collecting data.  

With business surveys, the collection design may vary by type of unit. These populations are generally 

highly skewed; the majority of a tabulated total in a given industry is often provided by a small number of 

large businesses. Because publication statistics are generally industry totals or percentage change, missing 

data from the largest cases can induce substantive nonresponse bias in the totals, whereas missing data from 

the smaller cases (even those with large sampling weights) often have little apparent effect on the tabulated 

levels (Thompson and Washington, 2013). Thus, the contact strategies are designed to ensure that the largest 

cases provide valid response data. Figure 1.1 illustrates nonresponse follow-up (NRFU) procedures that 

differ by a survey-specific unit size classification, where both collection designs have fixed calendar 

schedules and a fixed NRFU budget.  

For the large unit category, the NRFU procedures become progressively more costly (per unit) with the 

exception of the final contact attempt. In contrast, with the smaller units, the NRFU procedures do not 

include personal contact and are therefore less expensive. 

Selecting a probability subsample of nonrespondents is a strategic feature of many responsive and 

adaptive collection designs (Tourangeau, Brick, Lohr and Li, 2016). Of course, this is not a new practice 
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for surveys. Indeed, nonrespondent subsampling has been a survey practice since first discussed in Hansen 

and Hurwitz (1946). Actually, the setting of the two-phase sample approach presented in Hansen and 

Hurwitz (1946) paper is quite similar to the business survey setting discussed here: an “inexpensive” mailed 

questionnaire to all sampled units (c.f. the “21st century design” that mails a letter containing a URL, user 

name, and password), followed by “expensive” personal interviews of subsampled nonrespondents (c.f. 

personal phone calls or certified reminder letters). Their proposed optimal allocation procedures are not 

entirely dissimilar either, with the final allocations being highly dependent on whether the response rates 

for each collection mode are known or estimated using auxiliary data rather than the previously collected 

responses.  

 

 

 

 

 

 

 

 

Figure 1.1  Nonresponse follow-up procedures for differing types of business in a fictional survey. 

 
Fitting nonrespondent subsampling into a responsive or adaptive design framework is straightforward. 

As originally proposed by Groves and Herringa (2006), responsive designs require a minimum of two 

distinct phases of collection, with the second phase often being a probability subsample of nonrespondents 

that occurs at the “phase capacity” when the survey estimates are no longer changing, providing evidence 

the existing collection protocol is no longer cost-effective. Schouten, Calinescu and Luiten (2013) 

characterize responsive designs as a special case of adaptive collection designs. With an adaptive collection 

design, the data collection procedures can change (adapt) during the collection period. Paradata and sample 

data are used to determine whether to change the current procedures. The overall budget is fixed, but the 

implementation of a given strategy depends on (1) the realized sample of respondents at a point in time, (2) 

informative data obtained during data collection about the respondents and nonrespondents, and (3) 

information known in advance about the survey unit from the sampling frame. Consequently, selecting a 

probability sample of nonrespondents for NRFU – instead of attempting to contact all nonrespondents – 

falls under the adaptive design umbrella, with paradata (specifically response status) used to determine the 

sampling frame and frame data (e.g., the unit’s size and industry classification) used as the basis of the 

sample design. 

The U.S. Census Bureau is investigating nonrespondent subsampling strategies for the 2017 Economic 

Census (EC). Although a single program, the EC employs different sampling designs by sector (Probability 

proportional to size for the Construction sector, cut-off sampling for the Manufacturing and Mining sectors 

in collections prior to 2017, complete enumeration for the Wholesale Trade sector, and stratified simple 
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random sampling without replacement (SRS-WOR) in the remaining sectors). Moreover, as is typical with 

many business programs, it is a multi-purpose collection, with the general statistics items collected from all 

surveyed units in a sector: examples include – but are not limited to – receipts/shipments, annual and first 

quarter payroll, and total employment. In addition, the EC collects information on product sales, types of 

which differ by sector and often industry. Imputation procedures differ by item, as do the estimators. 

Consequently, the subsampling design must be robust to sampling and estimator to the largest extent 

possible. We consider a systematic sample of nonrespondents sorted by a measure of size, a sampling design 

known to be as efficient as stratified simple random sampling without replacement (SRS-WOR) on average 

if the list is in random order and more efficient if the list is monotonic increasing or decreasing (Zhang, 

2008; Lohr, 2010, Chapter 2, pages 50-51). 

Ideally, the nonrespondent subsampling allocation procedure should be informed by properties of the 

respondent sample during the collection period. Of course, if the program is designed to collect one or two 

key items, then the allocation procedures should (at least attempt to) directly incorporate information on the 

survey design and estimation procedure, as well as detailed cost information, as proposed in Hansen and 

Hurwitz (1946) long-ago. In this case, one should use an optimal allocation procedure that minimizes costs 

subject to (estimable) reliability constraints. See Harter, Mach, Chaplin and Wolken (2007) and Beaumont, 

Bocci and Haziza (2014) for examples.  

Such optimization is difficult to accomplish in the considered multi-purpose survey setting, especially 

when strongly correlated auxiliary variables are not available for all items. However, the OMB Statistical 

Standards for federal surveys require “survey (design) to achieve the highest practical rates of response, 

commensurate with the importance of survey uses, respondent burden, and data collection costs” and 

mandate nonresponse bias analyses for programs that fail to achieve these rates (Federal Register Notice, 

2006). For nonrespondent subsampling occurring during the data collection cycle, imposing mandated lower 

bounds on the program-level response rate and in specified domains (examples include sampling strata or 

other post-strata such as industry code or type of government) is therefore a natural constraint to include in 

the allocation procedure.  

In this paper, we explore allocation approaches that address such constraints, with an overall objective 

of selecting larger systematic subsamples in domains that have lower-than-targeted response rates. We 

introduce two optimized allocation procedures, both formulated as quadratic programs and solved with 

standard software packages: one that minimizes deviations between domain unit response rates and one that 

minimizes deviations between domain subsampling intervals. Our case study compares the statistical 

properties of subsamples obtained from each proposed allocation with three different estimators, 

considering two ratio estimators commonly used by business surveys along with the simple expansion 

(Horvitz-Thompson) estimator. The latter is not necessarily the most precise estimator when highly 

correlated auxiliary data are available, but gives an “upper bound” on the variance increase due to 

subsampling. The ratio estimators were selected to illustrate that the subsampling variance component can 

be reduced by incorporating correlated auxiliary data at the estimation stage. 

Note that the presented allocation procedure is designed specifically for business surveys and implicitly 

assumes that largest units are excluded from the subsampling. In this case, the overall cost savings may not 
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be substantial because the majority of a program’s NRFU budget will be likely allocated to obtaining 

responses from the designated larger cases. However, the estimate quality can be improved. By equalizing 

response rates in considered domains, we hope to reduce the bias of the estimates by obtaining a respondent 

set that resembles the parent sample. Moreover, equalizing the subsampling intervals should help avoid 

overly increasing the sampling variance due to the second phase of selection, an unpleasant side effect of 

the additional stage of sampling that can completely offset any bias reduction obtained via the probability 

subsample (Biemer, 2010). And, it may be possible to further reduce both nonresponse bias and subsampling 

variance via an improved ratio or regression estimation procedure, if related covariates are available.  

Section 2 provides context, briefly introduces the studied estimators, and presents our allocation 

procedures. Section 3 presents a simulation study that compares the statistical properties of the considered 

estimators for each realized allocation. We conclude in Section 4 with recommendations and suggestions 

for future research. 

 

2  Methodology 
 

2.1  Survey design and estimation 
 

The general framework for our research is the two-phase sample design shown in Figure 2.1. The first 

stage is a stratified probability sample with a total sample size of n  from a finite population (frame) of size 

,N  performed before data collection begins. The survey is conducted, and units either respond or do not. 

During the data collection, response rates are monitored in H  domains, where the domains do not 

necessarily equal the sampling strata. For example, total response rates might be monitored by three-digit 

industry classification, although these industry sampling strata are further broken down by size class. 

Furthermore, the domains could be independent of the original sampling strata e.g., race or sex categories 

(resembling post-strata). Hereafter, the term “domain” refers to the nonrespondent subsampling strata, 

indexed by  1, 2, , .h h H   

The second stage of probability sampling occurs at a predetermined point in the data collection cycle 

when we select an overall 1 in K   subsample of size 1m  from the m  nonrespondents (a two-phase 

sample); this predetermined point can be a fixed calendar date or via a responsive/adaptive design protocol. 

The value of K  is determined by the program managers, who take into account the overall budget for NRFU 

(assumed fixed), mandated performance measures (e.g., response rates, coefficient of variation 

requirements), and other operational considerations such as length of collection period and available 

resources. Our allocation procedure determines the 1 in hK   systematic subsample of size 1hm  from the 

hm  nonrespondents in each domain. Only the sampled 1hm  units receive NRFU.  

Our objective is to estimate ,Y  the population total of characteristic .y  This estimate is 1 2
ˆ ˆ ˆ

R RY Y Y   

where 1
ˆ

RY  is estimated from the 1hr  first-stage sample respondents and 2
ˆ

RY  is estimated from the 2hr  

second-stage sample respondents (see Figure 2.1). Nonresponse adjustments to the 2hr  subsampled 

(responding) units assume a missing at random response (MAR) mechanism, treated as a Bernoulli sample 

(Särndal, Swensson and Wretman, 1992, Chapter 15; Kott, 1994). We consider three different adjustment-

to-sample reweighting estimators of 2
ˆ

RY  (Kalton and Flores-Cervantes, 2003): the double reweighted 

expansion (DE) estimator (Binder, Babyak, Brodeur, Hidiroglou and Wisner, 2000; Shao and Thompson, 
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2009; Haziza, Thompson and Yung, 2010), a separate ratio (SR) estimator that adjusts for unit nonresponse 

using a covariate that is highly correlated with both response propensity and the survey characteristic of 

interest (Shao and Thompson, 2009; Haziza et al., 2010), and a combined ratio (CR) estimator (Binder et al., 

2000). Formulae are provided in the Appendix. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Nonrespondent subsample from probability sample, selected during data collection (two-phase 
sample design). Unsampled nonrespondents do not receive NRFU. 

 

These estimators require a minimum of 2 1hr   in each domain and a minimum of 2 2hr   for variance 

estimation. These minimal conditions may not hold for several reasons. During the early stages of NRFU 

collection, an insufficient number of the subsampled units might respond in a given domain. Alternatively, 

the allocation procedure could determine that no subsampling is required in one or more domains. Lastly, 

the allocation procedure could require 100-percent follow-up (all units subsampled) in selected domains; 

henceforth, we refer to 100-percent follow-up/no subsampling as “full follow-up”. In these cases, the 

estimation procedure ignores the last stage of sampling as if it did not occur and produces estimates for 

domain h  using the collapsed estimator formulae provided in the Appendix. 

 

2.2  Allocation strategies 
 

When all nonresponding cases are subjected to NRFU, respondent contact strategies focus on improving 

overall response rates. Analysts might focus primarily on obtaining responses from soft refusal cases that 

they believe have similar characteristics to previous respondents (“quick wins”), although this phenomenon 
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is more likely when the survey collection is performed in the field, as with household or agricultural surveys, 

and perhaps is less likely for internet or mail collections. With business surveys, the size of the unit is a 

factor in the NRFU procedures as discussed in Section 1. 

Our objective is to obtain a realized set of respondents that approximates a random subsample of the 

originally selected sample via a probability sample of nonrespondents. With a probability sample, the 

targeted cases represent a cross-section of the nonrespondent population. By focusing contact efforts on the 

subsample, we hope to decrease the effects of nonresponse bias on the estimated totals by obtaining data 

from all types of nonresponding units. Moreover, weighting or imputation methods may be more effective 

at reducing the nonresponse bias effects with a probability subsample of nonrespondents (Brick, 2013). 

Even though they do not receive additional NRFU, the unsampled nonrespondent cases may provide 

responses later in the collection cycle. If so, an unbiased estimation procedure would not include the 

unsampled late responses in the final estimate assuming that all subsampled units respond, as these units are 

represented by the subsampled cases. However, this procedure is extremely distasteful to many survey 

managers. Instead, we include their data in the tabulations as if they had responded before subsampling. 

This does induce bias in the estimate. In practice, we ensure that this situation occurs infrequently by 

subsampling late in the data collection cycle. 

With a business survey that keeps track of little or no demographic information, most of the information 

on the nonrespondents such as industry and unit size (e.g., total payroll, total receipts) is obtained from the 

sampling frame. Sorting the nonrespondents within prespecified domains by unit size and selecting a 

systematic sample should yield a subsample that resembles the originally designed sample in terms of unit 

size composition. This is especially important for business surveys where responses tend to be obtained 

from the larger units (Thompson and Washington, 2013). The choice of subsampling domain is determined 

by overall survey objectives such as publication levels or by the adjustment cell design (e.g., weighting cells 

or imputation classes), although computations are considerably simplified when the domain of interest is 

the original sampling strata. In the EC, the industry is the domain of interest. 

We consider two allocation approaches: (1) equal-probability sampling; and (2) optimized allocation 

with constraints on unit response rates and sample size in predetermined domains. Equal probability 

sampling is easy to implement and should have the lowest sampling variance among considered 

nonrespondent subsampling allocation strategies, since the subsampling weight adjustment will be a 

constant value in all domains. However, since the same proportion of nonrespondents is sampled in each 

domain, the subsample may not be large enough to offset nonresponse bias effects on totals in low-

responding domains. We refer to the allocations obtained by equal probability sampling as Constant ,K  

where K  refers to the overall sampling interval  1 in .K   

Our optimized allocation methods address the above concern by concentrating NRFU efforts in domains 

that have low response rates, attempting to select sufficient cases to achieve the performance benchmarks. 

This strategy may decrease the nonresponse bias in the totals if the response mechanism is MAR, conditional 

on the auxiliary variables used to define the domains; see Wagner (2012). However, it can increase the 

variance, as the subsampling intervals will differ and the weights will become more variable. To minimize 

the additional sampling variance caused by differing sampling intervals, the domain nonrespondent 
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subsampling intervals should be close to the overall nonrespondent subsampling interval. To control costs, 

the allocation should not select more units for NRFU than budgeted. Recall that the federal survey 

environment requires that target response rates be achieved or nearly achieved, which makes all domains 

“equally” important from a data collection viewpoint.  

To describe the allocation procedures, we introduce additional notation: 

 Unit response rate:  
 1 2

URR
h

h
h

h
h

r r

n





 

 Target response rate:  
 1

TURR
hh

h

h

h

h

q m Kr

n


 


 

 Target domain response rate: 
 1

TURR
h h

h

h h

h

r q m K

n


  

with 1hr  units of the hn  originally sampled units responding before subsampling, leaving hm  units available 

for subsampling in each domain. The unit response rate (URR) is the actual proportion of responding 

sampled units (Thompson and Oliver, 2012) and does not include an adjustment for subsampling. The target 

response rate  TURR  used for allocation is the expected maximum obtainable URR for a given overall 

subsampling rate ,K  with hq  representing the conditional probability of ultimately responding to the 

census/survey in domain ,h  given that the unit did not respond prior to subsampling. In the allocation 

procedure, hq  can be modeled from historical data if available or can be assumed constant for a new survey 

or for sensitivity analyses.  

We formulate optimized allocation as a quadratic program and consider two different objective 

functions. The first quadratic program minimizes the squared deviation of the target response rate in each 

domain TURR h  from the overall target unit response rate TURR ,  subject to linear constraints on the size 

of nonrespondent sample. This objective function is analogous to the numerator of the Pearson chi-square 

goodness-of-fit test.  

The second quadratic program minimizes the squared deviation in domain sampling intervals from the 

overall sampling interval  K  subject to linear constraints on the unit response rates in each domain and on 

the number of sampled nonrespondents. Thus, although the optimization procedure allows the sampling 

intervals to vary by domain, the program tries to avoid potentially large increases in variance caused by the 

deliberately introduced “disproportionate sampling fractions” referred to in Kish (1992). We refer to the 

allocations obtained from these quadratic programs as Min URR  and Min K  respectively.  

Both quadratic programs are primarily deterministic. However, recall that at the allocation stage, we 

must estimate the number of subsampled units that will eventually respond in each domain. Both quadratic 

programs use Constraints (1) through (3) in Table 2.1. Constraint (4) is included in the Min K  allocation 

to ensure that the optimization solution is not hK K  for all domain .h  There are two limiting scenarios 

(preconditions) that are addressed before the Min K  optimization. First, domains whose T T
 URR URRh   

before subsampling must be removed from the optimization problem   .hK    Second, if the estimated 

unit response rate cannot be possibly achieved in a given domain for an assumed ,hq  then all units in the 
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domain are selected for NRFU  1 .hK   The Min K  optimization is applied to the remaining domains, 

requiring that these subsampled domains have expected URRs that meet or exceed the target URRs.  

Using sample data containing respondents and nonrespondents, along with different specified values for 

,hq  we use the SAS PROC NLP (The data analysis for this paper was generated using SAS software. 

Copyright, SAS Institute Inc. SAS and all other SAS Institute Inc. product or service names are registered 

trademarks or trademarks of SAS Institute Inc., Cary, NC, USA.) to solve the quadratic programs (obtaining 

the set of ).hK  The realized allocations are not integer values, and the real valued intervals  hK  were input 

to SAS PROC SURVEYSELECT to select stratified systematic subsamples of nonrespondents. As noted 

by one reviewer, this yields a solution that is randomly rounded but constrained at the overall required 

sample size, and there may be some impact on reliability due to rounding error. Such effects were not studied 

in this paper. 

 

Table 2.1 
Optimized allocation quadratic programs 
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3  Case study 
 

This section presents the results of a simulation study that evaluates the considered allocation procedures 

on empirical sample data from the Annual Survey of Manufactures (ASM) from the 2010 and 2011 data 

collections. For more information on the ASM, see http://www.census.gov/manufacturing/asm. 

The ASM is an establishment survey designed to produce “sample estimates of statistics for all 

manufacturing establishments with one or more paid employee(s)” (http://www.census.gov/manufacturing/ 

asm/); it is a Pareto-PPS sample of approximately 50,000 establishments selected from a universe of 

328,500. Approximately 20,000 establishments are included with certainty, and the remaining 

establishments are selected with probability proportional to a composite measure of size. Selected units are 

in the sample for the four years between censuses. Sampling strata are defined by six-digit industry code 

using the North American Industry Classification System. 
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The ASM estimates totals with a difference estimator (Särndal et al., 1992). To reduce respondent 

burden, units below a certain threshold are dropped from the sampling frame entirely. Instead, their data are 

imputed using administrative data values for selected items and industry-level regression models for the 

remaining items. Similarly, the ASM imputes complete records for unit nonrespondents. See 

http://www.census.gov/manufacturing/asm/ for additional information on the ASM methodology. 

Because the items collected by the ASM questionnaire are a subset of the EC’s manufacturing sector 

items, the ASM is often used to pretest new EC processing or data collection procedures. With the ASM 

and the EC, implementing a probability subsample of nonrespondents for NRFU represents a major 

procedural change. The ASM NRFU procedures are very similar to the EC procedures. Because a given 

company can comprise several establishments, the sets of multi-unit (MU) establishments corresponding to 

the company can be designated for phone follow-up as well as other company completeness checks. In 

contrast, the NRFU procedures for the single unit (SU) establishments – establishments with one location 

and parent company – differ. The largest SU establishments are included with certainty (sampled with 

probability = 1) and may receive a personal phone call in selected domains. The sampled SU establishments 

(“SU noncertainty establishments”) receive some reminders, but are very unlikely to receive a personal 

phone call. 

Our simulation study examines one of the fourteen key ASM items and employs the double expansion 

estimate and the two ratio estimators described in the Appendix, not the difference estimator used in ASM 

production estimates. Consequently, our results should not be extrapolated to the ASM.  

 

3.1  Simulation study design 
 

Our simulation study compares the statistical properties of total shipment estimates obtained from the 

three considered nonrespondent subsampling designs over repeated samples, using three different 

estimators. Our sampling frame of nonrespondents is derived from the fully imputed 2011 ASM sample and 

is limited to the SU noncertainty establishments so that the overall ASM publication reliability requirements 

are maintained. The ratio estimators employ the sample-based values of annual payroll as an auxiliary 

variable. This variable is highly correlated with total shipments, but is subject to imputation. Note that we 

use the complete ASM sample (all MU and SU establishments) for the allocations but present the relative 

bias and MSE results for the subsampled domains (SU noncertainty establishments) only.  

For the SU noncertainty establishments, the first NRFU attempt – consisting of a reminder letter – is 

historically very effective, so nonrespondent subsample selection occurs before the second NRFU attempt. 

The second NRFU attempt is generally more expensive (historically a package re-mail, although reminder 

letters via certified mail will be used in future collections). Nonrespondent subsampling of SU noncertainty 

establishments occurs after the second contact attempt (i.e., after the first NRFU attempt).  

To perform the simulation, we removed all MU establishments and SU certainty establishments from 

the ASM sample data to create a frame, and then independently repeated the following procedure 5,000 

times for each allocation procedure:  
 

1. Using the estimated response propensities provided in Table 3.1, randomly induce nonresponse into 

the sample using a MAR response mechanism.  
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2. Sort the induced nonrespondents by sampling weight. 

3. Select a stratified systematic sample using the nonrespondent domain subsampling rates for a given 

allocation strategy. 

4. Simulate unit response for each round of NRFU. Table 3.1 provides the conditional response 

propensities used for each distinct NRFU contact phase. These statistics use paradata from the 2010 

and 2011 ASM collections (Fink and Lineback, 2013). Hereafter, we refer to these conditional 

probabilities as “nonrespondent conversion rates”. If the unit responded, the mode of response is 

randomly assigned using historical frequencies provided by subject matter experts. After assigning 

response status/response mode to each unit, compute cumulative collection cost, URR, and 

estimates. 

5. For each allocation, repeat Step 4 until either ten rounds of follow-up have been conducted or the 

total budget has been expended. If funds are exhausted within a round, then NRFU ceases. Given 

that the fixed budget assumes that 1 K  of the original set of nonrespondents will receive NRFU, 

the budget can be exhausted under full follow-up. The total budget is never expended before ten 

rounds of NRFU with nonrespondent subsampling, as the cost-per-unit of mailing a reminder letter 

is quite low. Our choice of a maximum of ten rounds of NRFU in the simulation was subjective; 

the purpose was to demonstrate that subsampling would facilitate additional contact efforts at no 

additional cost.  

 
Table 3.1 
Nonrespondent conversion rates for noncertainty single unit establishments by NRFU contact round used for 
simulation 
 

Domain 
Initial 

Response 
Probability 

Nonrespondent Conversion Rates for a given Round of Nonresponse Follow-up  

1 2 3 4 5 6 7 8 9 10 
1 0.31 0.27 0.15 0.17 0.24 0.12 0.06 0.03 0.03 0.03 0.03 
2 0.44 0.32 0.24 0.15 0.36 0.18 0.09 0.05 0.05 0.05 0.05 
3 0.39 0.28 0.24 0.18 0.11 0.06 0.03 0.02 0.02 0.02 0.02 
4 0.35 0.36 0.17 0.19 0.18 0.09 0.05 0.02 0.02 0.02 0.02 
5 0.25 0.19 0.13 0.10 0.17 0.09 0.04 0.02 0.02 0.02 0.02 
6 0.27 0.13 0.29 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 
7 0.44 0.34 0.23 0.20 0.25 0.13 0.06 0.03 0.03 0.03 0.03 
8 0.38 0.45 0.12 0.33 0.25 0.13 0.06 0.03 0.03 0.03 0.03 
9 0.39 0.30 0.23 0.13 0.25 0.13 0.06 0.03 0.03 0.03 0.03 
10 0.75 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
11 0.28 0.23 0.12 0.18 0.15 0.07 0.04 0.02 0.02 0.02 0.02 
12 0.36 0.30 0.21 0.15 0.31 0.16 0.08 0.04 0.04 0.04 0.04 
13 0.39 0.22 0.19 0.13 0.23 0.12 0.06 0.03 0.03 0.03 0.03 
14 0.37 0.36 0.16 0.06 0.45 0.22 0.11 0.06 0.06 0.06 0.06 
15 0.41 0.32 0.22 0.19 0.26 0.13 0.06 0.03 0.03 0.03 0.03 
16 0.40 0.34 0.22 0.23 0.32 0.16 0.08 0.04 0.04 0.04 0.04 
17 0.34 0.26 0.18 0.10 0.21 0.11 0.05 0.03 0.03 0.03 0.03 
18 0.40 0.31 0.18 0.10 0.18 0.09 0.04 0.02 0.02 0.02 0.02 
19 0.37 0.29 0.20 0.19 0.23 0.11 0.06 0.03 0.03 0.03 0.03 
20 0.40 0.28 0.21 0.15 0.18 0.09 0.04 0.02 0.02 0.02 0.02 
21 0.36 0.27 0.20 0.14 0.23 0.11 0.06 0.03 0.03 0.03 0.03 
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The nonrespondent conversion rates in the majority of domains follow the same pattern: a decaying 

response probability followed by a slight increase in the fourth round due to a longer collection period. 

Domain 10 does not follow this pattern; it contained only four units that all responded before subsampling 

began. After the 4th round of NRFU, the nonrespondent conversion rates are reduced by half until they 

achieve the minimum allowable value of 0.02. The pattern reflects the findings of Olson and Groves (2012) 

(Olson and Groves (2012) postulate that the response propensities change over the collection cycle, 

especially as data collection protocols are modified. With the ASM, the reminder letters become more 

stringent at each NRFU contact phase. Likewise, the authors demonstrate that response propensities decline 

over the collection phase when a stable data collection protocol is used, as reflected in nonrespondent 

conversion rates). Mail and phone response propensity estimates were provided by subject matter experts, 

as were approximate costs by mode and an overall budget figure.  

To evaluate the statistical properties of each allocation method for each estimator, we computed the 

relative bias and the mean squared error. The relative bias (RBE) for each estimate of total shipments at 

NRFU phase t  for a given sampling overall interval   ,K  allocation method a  (Constant ,K  Min ,K  

Min URR),  eventual response probability ,q  and estimator e  (DE, SR, CR) is  

    
5,000

1RBE 100 * 1
5, 0
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where ˆ  e
KaqtsY  is the estimated total and Y  is the population total shipments value.  

The mean squared error at NRFU phase t  for a given sampling interval, allocation method and estimator 

is 
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Since our simulation induces MAR response, the DE estimates should be approximately unbiased over 

repeated samples, whereas the two ratio estimates should not be. However, the DE estimates are expected 

to have large variance; using ratio estimators with a positively correlated auxiliary variable is expected to 

reduce this variance (i.e., increase the precision). Thus, examining the MSE provides insight into the bias-

variance tradeoff. 

 
3.2  Allocation 
 

The simulation study uses data from the 2011 ASM collection. Input parameters for allocation were 

estimated from 2010 ASM collection data. Recall that the target URR applies to the entire ASM program 

and is not restricted to the subsampling domains - in our case, SU noncertainty establishments. 

Consequently, the certainty SU and MU unit counts obtained from the 2010 ASM data are included in the 

allocation programs in the 1hr  as constants; the remainder of the 1hr  represents the estimated count of 

responding SU noncertainty establishments after the first round of NRFU is completed. To ensure that each 

nonrespondent sampling domain contained sufficient numbers of units to obtain a feasible solution, we used 

three-digit industry as NRFU sampling domain instead of the six-digit industry used for the ASM sample 
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design [Note: the determination subsampling domain was determined collaborative with the ASM program 

managers and methodologists].  

Both quadratic programs require an estimated probability of eventually responding to follow-up  hq  to 

compute the TURR  (overall and by domain). To assess the sensitivity of the allocation procedure, we tested 

ten different constant values  0.10, 0.20, ,1 ,hq    keeping the value constant across all domains. A 

similar approach can be taken when historic paradata are not available. In addition, we estimate the hq  

directly from the 2010 ASM data. These estimates vary by 20-percent at three-digit industry level. However, 

the median of these is nearly 50-percent. Consequently, the allocation obtained using the estimated (historic-

data) hq  values are very similar to those obtained with 0.50.q   

Approximately $21,000 was allotted for NRFU of SU noncertainty establishments after subsampling. 

With full follow-up, the expected final unit response rate was approximately 79%. Using data from the 2007 

EC, Bechtel and Thompson (2013) found that the target industry unit response rates of 70% could only be 

achieved in a 1 in 3   subsample if the average unit response rate in the majority of EC industries was 

60% or larger before follow-up begins. With the ASM, the response rate prior to subsampling was 

approximately 57%. Instead, we select an overall 1 in 2   subsample, which would save approximately 

50-percent of the allotted budget after five completed rounds of NRFU at the cost of a decrease expected 

response rate (69%). The additional five rounds of NRFU added approximately $4,000 to the total cost 

without commensurate increases in response rate (70%). A larger subsample would be preferable in terms 

of quality, but is not cost effective. 

For allocation, we obtain the TURR ,  allowing the hq  to vary by domain. The maximum URR is always 

achieved with the Min URR  quadratic program. Table 3.2 presents the target URRs and the allocation 

subsampling rates obtained from the Min URR  quadratic program. A dash (-) indicates no subsample is 

selected for NRFU (a sampling interval of ).  If 1,K   all units in the domain are selected for NRFU (full 

follow-up). A label of q   <value> indicates that the eventual probability of respondent is the same 

constant value in all domains; values estimated from historical data are labeled as hq   Est. Recall that 
TURR  includes all respondent units in the ASM sample, not just the noncertainty single units that are 

eligible for subsampling. Consequently, selected domains have achieved their target URRs before 

subsampling and are not considered as subsampling candidates in the allocation programs. 

As the probability of eventually responding increases, this allocation tends to select smaller subsamples 

in increasing numbers of domains. When the probability of an eventual response  hq  is small (20-percent 

or less), then the allocations sensibly tend towards no subsampling or full follow-up, focusing on obtaining 

sample from the few domains with the poorest response rates. As the probability of an eventual response 

increases, the amount of subsampling tends to increase as well. At 70-percent, almost half of the domains 

are allocated at least one sampled unit, thus spreading the allocated sample across several domains instead 

of concentrating in a few domains that have exceptionally poor response rates. Note that rates below 20-

percent are (hopefully) unrealistic as are rates greater than 70-percent. Domain 10 has highly variable 

sampling rates regardless; because all four units responded before subsampling, the quadratic program 

selected any sampling rate because, in effect, it always subsamples zero cases.  
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Table 3.2 
Min URR  Allocations (Sampling Intervals) (Program Level 2K  ) 

 

Min URR  

Domain q = 10 q = 20 q = 30 q = 40 q = 50 q = 60 q = 70 q = 80 q = 90 q = 100 qh = Est
1 - - - - - - - 81.63 9.23 5.40 - 
2 - - - - - - 3.88 2.26 1.71 1.44 - 
3 - - 9.32 3.40 2.58 2.19 1.98 1.86 1.77 1.71 2.12 
4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.06 1.13 1.00 
5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 - 
7 - - - - - - - 14.95 9.26 7.10 - 
8 - - - - - - - - - - - 
9 1.00 1.00 1.22 1.44 1.61 1.76 1.89 2.01 2.12 2.22 1.62 
10 1.03 30.26 30.37 30.26 30.46 29.90 30.51 29.04 1.00 10.03 10.04 
11 - - - - - - - - - - - 
12 - - - - - - - - - - - 
13 - - - - 5.00 2.94 2.29 2.01 1.88 1.78 2.91 
14 - - - - - - - - - - - 
15 7.86 4.45 3.22 2.57 2.42 2.32 2.28 2.30 2.35 2.40 2.38 
16 1.00 1.35 1.46 1.46 1.49 1.51 1.53 1.57 1.62 1.66 1.66 
17 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
18 - - - - - - - - - 37.95 - 
19 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
20 1.00 1.00 1.00 1.16 1.34 1.49 1.63 1.75 1.87 1.97 1.35 
21 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

TURR  72.5% 72.9% 73.3% 73.7% 74.1% 74.4% 74.8% 75.2% 75.6% 76.0% 74.3% 

 
 

Unlike the Min URR  quadratic program, the Min K  quadratic program did not always obtain a 

solution for a given target URR because of the domain-level constraints on the target URRs. When this 

occurred, we incrementally lowered the target response rate until a feasible solution could be obtained. 

Table 3.3 presents the target URRs and the allocations obtained from the Min K  quadratic program.  

Both the allocation methods tend to designate the same domains for either no subsampling or for full 

follow-up. However, the two methods produce very different allocations for the same hq  in the subsampled 

domains. The Min K  allocations avoid subsampling in domains that have already achieved their maximum 

estimated target URR, regardless of the probability of eventually obtaining a response, with 40- to 

50-percent of the domains not being subsampled when 0.30 0.50.hq   Otherwise, the subsampling tends 

to be split between full follow-up (all units selected) or subsampling at an approximately 1 in 2   

sampling rate. In short, the Min URR  allocations yield domain subsampling intervals that can differ 

considerably from the overall interval, as the allocation seeks to equalize the target URR in each domain. 

The resultant variability in sampling intervals can lead to large increases in sampling variance. Because the 

Min K  objective function seeks to equalize sampling intervals, the domain subsampling intervals tend to 

be less variable and are generally close to the overall sampling interval. 
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Table 3.3 
Min K  Allocations (Sampling Intervals) (Program Level 2K  ) 

 

Min K  (Target 2)K   

Domain q = 10 q = 20 q = 30 q = 40 q = 50 q = 60 q = 70 q = 80 q = 90 q = 100 q = Est 
1 - - - - - - - - - - - 
2 - - - - - - - - 2.00 2.00 - 
3 - - - - 1.99 2.00 2.00 2.00 2.00 2.01 1.99 
4 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.10 1.18 1.26 1.00 
5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
7 - - - - - - - - - 2.06 - 
8 - - - - - - - - - - - 
9 1.00 1.32 1.44 1.72 1.90 1.99 1.97 1.96 1.96 2.09 1.90 
10 - - - - - - - - - - - 
11 - - - - - - - - - - - 
12 - - - - - - - - - - - 
13 - - - - - 1.99 1.99 1.98 1.98 2.04 - 
14 - - - - - - - - - - - 
15 2.52 2.23 2.36 1.90 1.76 1.97 1.92 1.90 1.90 2.27 1.76 
16 2.17 2.08 1.71 1.83 1.90 1.97 1.97 1.96 1.96 2.09 1.90 
17 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
18 - - - - - - - - - - - 
19 - 2.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
20 1.00 1.00 1.11 1.36 1.57 1.75 1.90 1.97 1.97 2.06 1.59 
21 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

TURR  71.0% 71.4% 72.3% 72.7% 73.1% 73.4% 73.8% 74.2% 74.6% 75.0% 73.3% 

 
3.3  Results 
 

Our baseline closely mimics the NRFU procedures used in the 2012 ASM NRFU – four phases of full 

follow-up  1K    but can include an additional incomplete fifth round when the planned budget was not 

depleted to retain programming consistency. For other values of ,K  NRFU is concluded after ten rounds 

regardless of the remaining funds.  

Table 3.4 presents the relative bias of the estimates (RBE) and the mean squared error (MSE) results 

obtained with full NRFU and the Constant K  allocation for each considered estimator. In all cases, the 

unbiased double expansion (DE) estimator yields unbiased estimates, whereas the ratio estimators are 

slightly biased as expected. With subsampling, the relative bias of the ratio estimators increases, whereas 

the DE estimator remains unbiased. Regardless of estimator, the additional stage of subsampling increases 

the sampling variance and consequently the MSE; the bias tends to remain unaffected because the 

subsampled units are a representative subsample at each round of follow-up.  

With equal probability subsampling (Constant ),K  a subsample may contain a few sampled cases in 

one or more domains. Although the subsampling weighting adjustment is not variable, the nonresponse 

adjustment factors can be quite large. The optimal allocations are designed to equalize response rates across 

domains, which can lead to occasionally “oversampling” in low-responding domains. Table 3.5 presents the 

RBE and the MSE for the Min URR  optimal allocations, using three different constant values of 
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 0.30, 0.50, 0.70q q   and the domain specific rates estimated from historical data ( hq   Estimated). In 

all scenarios, the DE estimates are unbiased, the CR estimates are slightly biased, and the SR estimates are 

the most biased. This repeats the RBE pattern shown in the Constant K  allocation results. Moreover, the 

RBE estimates do not appear to be overly sensitive to values of hq  used in allocation. Again, even with the 

additional rounds of NRFU, the bias of the subsamples’ estimates is larger than that obtained with full 

follow-up of nonrespondents. In all cases, the MSE of the estimates obtained from the optimal allocations 

are smaller than those obtained with the Constant K  allocations.  

Regardless of estimator, the bias decreases when eventually probability of responding is low. This seems 

a bit counterintuitive but is in fact a direct consequence of the subsampling allocation procedure. When the 

probability of obtaining an eventual response is low, the Min URR  allocation tends to subsample all or 

no units in a domain. With full follow-up, all responding units within the same domain have the same 

nonresponse adjustment. With a subsample, only the responding subsampled units’ weights are adjusted for 

nonresponse and subsampling, in turn occasionally creating extremely variable weights within domain. As 

the probability of an eventual response increases, then the optimal allocation has sample in more domains, 

and finer adjustments are possible. With that said, the CR estimators tend to produce the lowest MSEs, 

regardless of allocation.  

 
Table 3.4 
Summary of relative bias in percent of the estimate and MSE for Constant K  allocations in x1012 

 

Constant K  Relative Bias of the Estimate 

Percent K = 1 (Full) K = 2 

Contact DE CR SR DE CR SR 
2 0.01% 0.03% 0.10% 0.00% 0.51% 1.43% 
3 0.00% 0.03% 0.08% -0.01% 0.29% 0.77% 
4 0.00% 0.01% 0.06% -0.02% 0.14% 0.40% 
5 0.01% 0.02% 0.04% -0.01% 0.12% 0.32% 
6  -0.01% 0.11% 0.29% 
7  0.00% 0.11% 0.28% 
8  0.00% 0.11% 0.27% 
9  0.00% 0.10% 0.25% 
10  0.00% 0.10% 0.25% 

Constant K  Mean Squared Error 

x10^12 K = 1 (Full) K = 2 
Contact DE CR SR DE CR SR 

2 4.96 2.60 5.56 37.53 26.34 70.49 
3 3.67 1.96 4.17 19.82 13.80 28.88 
4 2.55 1.39 3.03 11.75 8.30 14.87 
5 2.48 1.39 2.87 9.94 7.10 12.12 
6 9.36 6.75 11.16 
7 9.09 6.63 10.63 
8 8.80 6.48 10.23 
9 8.51 6.32 9.95 
10 8.27 6.19 9.74 
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Table 3.5 
Summary of relative bias of the estimate and MSE for Min URR  optimal allocations 
 

Min URR RBE  (Target 2K  ) 

Percent q = 0.30 q = 0.50 q = 0.70 q = Estimated 

Contact DE CR SR DE CR SR DE CR SR DE CR SR 
2 -0.01% 0.06% 0.20% 0.01% 0.07% 0.36% 0.01% 0.08% 0.31% -0.01% 0.08% 0.32% 
3 0.00% 0.05% 0.16% 0.01% 0.05% 0.26% 0.01% 0.07% 0.23% 0.01% 0.07% 0.23% 
4 0.00% 0.05% 0.14% 0.01% 0.05% 0.18% 0.01% 0.06% 0.19% 0.01% 0.06% 0.17% 
5 0.00% 0.05% 0.14% 0.01% 0.05% 0.18% 0.01% 0.05% 0.17% 0.00% 0.06% 0.15% 
6 0.01% 0.05% 0.13% 0.02% 0.05% 0.17% 0.01% 0.05% 0.17% 0.00% 0.06% 0.15% 
7 0.01% 0.05% 0.13% 0.01% 0.05% 0.17% 0.01% 0.05% 0.16% 0.00% 0.06% 0.15% 
8 0.01% 0.05% 0.13% 0.01% 0.05% 0.16% 0.01% 0.05% 0.16% 0.00% 0.05% 0.14% 
9 0.01% 0.05% 0.13% 0.01% 0.05% 0.16% 0.01% 0.05% 0.16% 0.00% 0.05% 0.14% 
10 0.00% 0.05% 0.13% 0.01% 0.05% 0.15% 0.01% 0.05% 0.15% 0.00% 0.05% 0.14% 

Min URR MSE  (Target 2K  ) 

x10^12 q = 0.30 q = 0.50 q = 0.70 q = Estimated 
Contact DE CR SR DE CR SR DE CR SR DE CR SR 

2 12.55 6.77 16.03 14.35 7.48 17.60 14.31 7.44 17.15 14.39 7.79 17.05 
3 8.88 5.13 10.87 9.80 5.43 11.32 9.57 5.42 11.36 9.75 5.47 10.98 
4 7.00 4.28 8.15 7.61 4.45 8.28 7.31 4.43 8.44 7.53 4.44 8.05 
5 6.61 4.07 7.41 7.02 4.17 7.44 6.80 4.13 7.60 6.94 4.14 7.42 
6 6.45 3.97 7.16 6.78 4.09 7.18 6.62 4.03 7.25 6.75 4.05 7.15 
7 6.37 3.92 7.05 6.68 4.06 7.08 6.55 3.97 7.07 6.67 4.02 7.03 
8 6.34 3.90 6.94 6.57 4.01 6.97 6.45 3.93 6.95 6.57 3.98 6.93 
9 6.28 3.87 6.86 6.50 3.98 6.89 6.39 3.90 6.86 6.47 3.94 6.84 
10 6.23 3.85 6.78 6.40 3.91 6.76 6.35 3.87 6.75 6.42 3.89 6.73 

 
The Min K  allocation procedure is designed to reduce the variability in the subsampled units’ 

adjustment weights. Table 3.6 presents the relative bias of the estimate and MSE for the Min K  optimal 

allocation method. The Min K  estimators display the same pattern as before. The DE estimates are 

unbiased, the CR estimates are nearly unbiased and the SR estimates are slightly biased.  

The MSE estimates for the Min K  method follow a similar pattern as the Min URR  method, as 

expected due to the similarities between corresponding Min URR  and Min K  allocations. These results 

appear to be relatively insensitive to assumed eventual probability of response   .q  The historical-data 

estimated conversion rates produce similar results to an assumed q   0.50. In many cases, the Min URR  

method produces the least biased estimates. However, bias is only a single component of the MSE, and the 

Min URR  allocations tend to have smaller expected number of respondents in several strata than their 

Min K  counterparts. Moreover, the Min K  allocations have smaller sampling variances by design, 

ultimately yielding estimates with lower MSEs than their Min URR  counterparts.  

Figures 3.1 and 3.2 plot the RBEs and MSEs obtained at each round of NRFU for the CR estimator (our 

“best” estimator) using the hq  obtained from historical data for each of the considered optimal allocation 

methods along with the benchmark values (labeled as “Full Follow-up”). In Figure 3.1, the benchmark 

estimates are the least biased. However, this extremely low bias is in part a consequence of our nonresponse 

model, which is uniform within domain and NRFU phase. Neither of the optimal allocation estimates 

attained the benchmark estimate levels, but they become very close after seven rounds of NRFU and the 
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RBEs of the Min URR  and Min K  CR estimates are less than one tenth of one percent (0.06% and 

0.05% respectively). In summary, subsampling with either optimal allocation strategy yielded trivial biases 

increases over full follow-up. 
 

Table 3.6 
Summary of relative bias of the estimate and MSE for Min K  optimal allocations 
 

Min RBEK  (Target 2)K   

Percent q = 0.30 q = 0.50 q = 0.70 q = Estimated 
Contact DE CR SR DE CR SR DE CR SR DE CR SR 

2 0.03% 0.08% 0.24% 0.03% 0.09% 0.31% 0.00% 0.08% 0.33% 0.01% 0.07% 0.30% 
3 0.03% 0.05% 0.20% 0.03% 0.08% 0.22% 0.00% 0.05% 0.22% 0.01% 0.06% 0.21% 
4 0.02% 0.04% 0.16% 0.03% 0.07% 0.18% 0.00% 0.05% 0.17% 0.01% 0.05% 0.17% 
5 0.02% 0.04% 0.15% 0.03% 0.06% 0.17% 0.01% 0.05% 0.16% 0.01% 0.05% 0.16% 
6 0.02% 0.05% 0.14% 0.02% 0.06% 0.16% 0.01% 0.05% 0.15% 0.00% 0.05% 0.15% 
7 0.02% 0.05% 0.14% 0.02% 0.05% 0.16% 0.01% 0.05% 0.15% 0.01% 0.05% 0.15% 
8 0.02% 0.05% 0.14% 0.02% 0.05% 0.16% 0.01% 0.05% 0.15% 0.01% 0.04% 0.14% 
9 0.02% 0.05% 0.14% 0.02% 0.05% 0.15% 0.01% 0.05% 0.14% 0.01% 0.04% 0.14% 
10 0.02% 0.05% 0.14% 0.02% 0.05% 0.16% 0.01% 0.05% 0.15% 0.01% 0.04% 0.14% 

Min MSEK  (Target 2)K   

x10^12 q = 0.30 q = 0.50 q = 0.70 q = Estimated 
Contact DE CR SR DE CR SR DE CR SR DE CR SR 

2 12.86 7.19 15.85 13.81 7.42 16.80 15.09 8.34 18.00 13.43 7.19 16.07 
3 8.74 5.04 10.26 9.32 5.38 10.82 10.45 5.89 11.38 9.25 5.30 10.69 
4 6.92 4.07 7.65 7.26 4.26 7.92 7.84 4.60 8.19 7.22 4.33 7.93 
5 6.50 3.85 7.07 6.77 4.05 7.33 7.23 4.28 7.47 6.65 4.06 7.21 
6 6.32 3.80 6.80 6.57 3.94 7.02 7.02 4.19 7.28 6.45 3.95 6.91 
7 6.23 3.76 6.69 6.49 3.88 6.91 6.90 4.15 7.16 6.31 3.91 6.78 
8 6.21 3.73 6.61 6.39 3.84 6.82 6.78 4.10 7.06 6.23 3.87 6.68 
9 6.16 3.70 6.54 6.35 3.79 6.71 6.68 4.05 6.93 6.15 3.83 6.57 
10 6.10 3.66 6.43 6.24 3.74 6.62 6.60 3.98 6.87 6.11 3.80 6.48 

 

 
 

 

 

 

 

 

 

 

 

 

 
Figure 3.1  Relative bias of the estimates (Historic )hq  for the CR estimator. 
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Figure 3.2 plots MSE values by NRFU round using the CR estimator. The targeted nonresponse 

sampling strategy used for the Min K  allocation appears to reduce the overall error. We believe that this 

is due to two factors. First, the Min K  allocation procedure samples larger proportions of nonrespondents 

in low responding areas than obtained with the Min URR  allocations. Second, the quadratic formula for 

the Min K  allocation includes a constraint on the domain response rates, lowering the overall target 

response but reducing the variability in the proportion of respondents by domain. Ultimately, this approach 

yields similar response rates across sampling domains, indicative of a representative sample (Wagner, 2012; 

Schouten, Cobben and Bethlehem, 2009). Note that the increased MSE is not trivial with nonrespondent 

subsampling, even when using an adjustment procedure that benefits from a strong covariate in the ratio 

adjustment procedure. This is an acknowledged price paid for nonrespondent subsampling (Biemer, 2010). 

However, this additional variance component is measurable. If the measured component is too large, the 

program managers can subsample less (use a larger ).K  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.2  Mean squared error (Historic )hq  for the CR estimator. 

 
3.4  Discussion 
 

Given a sophisticated allocation method, a ratio estimator employing a highly correlated auxiliary 

variable, and a fairly large subsample, this case study shows that nonrespondent subsampling does not 

overly penalize quality to save cost. The additional stage of sampling increased the MSE for the studied 

variable, but the level was reduced by the judicious choice of estimator. Of course, we consider only one 

variable in our simulation, and this variable may or may not “behave” similarly to other survey items. One 

referee suggested the usage of an R-indicator (Schouten et al., 2009) or balance indicator (Särndal and 

Lundquist, 2014) to assess the overall representativeness of the respondent sets in a field survey setting. 

This might be useful at later stages of data collection (after nonrespondent subsampling and during NRFU), 
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but would not provide any further insight into the degree of bias reduction on any collected item, as we can 

do in this simulation setting.  

Of the three considered allocation methods, the Constant K  method had the worst performance, often 

selecting a very small probability subsample when not needed and consequently increasing the sampling 

variance without reducing the bias. Of the three considered allocation methods, the Min K  allocation was 

the most effective in realizing acceptable response rates and achieving reliable estimates; the larger bias 

caused by the varying domain sampling intervals is generally offset by the reduced sampling variance. 

However, implementation of the Min K  allocation can be more challenging than the Min URR.  

For both optimal allocation procedures, we tested four different eventual probabilities of response to 

assess the sensitivity of the allocation procedures to these inputs. By comparing allocations obtained with a 

constant assumed input value to those obtained using the empirical estimates, we found that the realized 

allocations could over- or under- sample in selected domain, and the domain response rates could vary more 

than expected when the actual (survey) values are quite different from the input values. Consequently, we 

recommend using values estimated from historic paradata whenever possible.  

If reducing cost is the overall goal, then we note that additional NRFU contact attempts beyond the fifth 

contact did not improve the bias or MSE of the subsampled estimates in our case study. Of course, if the 

achieved cost reduction for a 1 in 2   subsample with up to ten NRFU contact attempts is acceptable, the 

funds allocated to these final contact attempts might be better expended earlier in the collection cycles using 

other contact strategies.  

 
4  Conclusion 
 

In general, the NRFU procedures for economic programs conducted by the U.S. Census Bureau follow 

a calendar schedule. Budget is tied to the fiscal year, and contact strategies are budgeted accordingly. Since 

economic populations are highly skewed and the statistics of interest are totals, a large fraction of the NRFU 

budget is allocated to the larger units. The smaller units are believed to be homogeneous – at least in size. 

However, it is difficult to validate that belief in the absence of collected respondent data. Given that the 

NRFU procedures rely on obtaining response data from the larger units, the response rates from smaller 

units tend to be much lower. It is quite likely that the realized respondent set is neither “balanced…which 

means (the selected sample has) the same or almost the same characteristics as the whole population” for 

selected items (Särndal, 2011) nor “representative… with respect to the sample if the response propensities 

i  are the same for all units in the population” (Schouten et al., 2009). The emphasis on obtaining responses 

from the larger units at the cost of the lower unit response in turn creates a bias in the estimates, as imputed 

or adjusted values for smaller units resemble the large unit values (Thompson and Washington, 2013).  

By limiting the target domain for nonrespondent subsampling to the smaller units, we can reduce this 

unmeasurable bias. Our allocation method increases the potential of obtaining a balanced and representative 

sample by targeting the low responding areas that usually would not receive any special treatment. It can be 

implemented at any stage of the data collection process and with any sample design, making it quite flexible 

although not necessarily optimal for specific sample designs and estimators. It is a “safe” approach for a 
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multi-purpose survey, presumably designed to obtain reliable estimates for a variety of items. Moreover, 

selecting a systematic subsample from a list sorted by a unit measure of size avoids incidence of additional 

nonresponse bias incurred by focusing NRFU efforts on high response propensity cases (Tourangeau et al., 

2016; Beaumont et al., 2014). We acknowledge that the increased variability in design weights and 

reduction in response rates are less than desirable effects caused by subsampling. However, these effects 

can be lessened via the choice of estimator, as demonstrated by our improved results with a ratio estimator. 

More sophisticated calibration estimators or other collapsed estimators could likewise be considered at the 

estimation stage.  

Without probability subsampling, the contention that the realized respondent set of small businesses 

remains a probability sample is debatable. Several discussions of the summary report of the AAPOR Task 

Force on non-probability sampling (Baker, Brick, Bates, Battaglia, Couper, Dever, Gile and Tourangeau, 

2013) specifically question whether “a probability sample with less than full coverage and high nonresponse 

should still be considered a probability sample”. That question is certainly relevant in our studied context, 

where sampled smaller units truly “opt in” to respond. Selecting a probability subsample of nonrespondents 

and instructing survey analysts to limit NRFU contact to these cases may limit this phenomenon. In addition, 

with a probability subsample, one can use accepted quality measures such as sampling error or response 

rates for evaluation. 

All of the results presented for our case study assume that the existing NRFU contact strategies are used 

with the subsampled designs. However, subsampling nonrespondents without changing the data collection 

procedure may have minimal tangible benefits besides cost reduction. The reverse is also true: for example, 

Kirgis and Lepkowski (2013) present improved response data results for targeted small domains obtained 

with probability samples and revised contact strategies.  

Tourangeau et al. (2016) note that “it is not always clear how to intervene to obtain cases, particularly 

cases with low underlying propensities, to respond”. This is especially relevant in the business survey 

context. Business surveys can draw on a wealth of cognitive research on data collection strategies for large 

companies: see Paxson, Dillman and Tarnai, 1995; Tuttle, Morrison and Willimack, 2010; Willimack and 

Nichols, 2010; Snijkers, Haraldsen, Jones and Willimack, 2013. In contrast, the smaller businesses receive 

very little personal contact (if any) and there is limited cognitive research on preferable contact strategies to 

draw upon. That said, the literature suggests that there are differences in collected data quality between large 

and small businesses: see Thompson and Washington (2013), Willimack and Nichols (2010), Bavdaž 

(2010), Torres van Grinsven, Bolko and Bavdaž (2014), and Thompson, Oliver and Beck (2015). Additional 

cognitive research for small establishments combined with field tests could yield better contact strategies. 

Subsampling nonrespondents paired with a new contact strategy for these “hard to reach” establishments 

would create a truly adaptive approach for all units, not just the larger ones. To this point, in response to 

these presented analyses, the Census Bureau conducted an embedded field experiment to test alternative 

NRFU strategies for selected small units in the 2014 ASM (Thompson and Kaputa, 2017). The outcome of 

that study was a new NRFU protocol implemented in the 2015 ASM and a second embedded field 

experiment that paired our proposed nonrespondent subsampling design with the most effective follow-up 

procedures determined from the 2014 test (Kaputa, Thompson and Beck, 2017). 
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Appendix 
 

Our objective is to estimate ,Y  population total of characteristic ,y  from the realized sample of 

respondents. Let 
 

hiS    1 if unit i  in domain h  was in original sample; 0 otherwise. 

hi    the probability of sampling unit i  in domain h  into the original sample  1 .hi hiw   

hiR    1 if unit i  in domain h  provided a response before subsampling time t  (value for );y  0 

otherwise. 

hiI    1 if unit i  in domain h  was selected for NRFU (i.e., was a subsampled nonrespondent); 0 

otherwise. 

hiJ    1 if unit i  in domain h  responds, given selected into nonrespondent subsample; 0 otherwise. 

hif    adjustment factor for nonrespondent subsampling and unit nonresponse after NRFU. 

hiy    value of characteristic y  for unit i  in domain ,h  available only for respondents. 

hix    value of characteristic x  for unit i  in domain ,h  available for all sampled units considered for 

nonrespondent subsampling (i.e., the nonrespondent subsampling frame). Then Ŷ   

  1 2 ˆ ˆ1 .hi hi hi hi hi hi hi hi hi hi hi R R
h i h i

w y S R w f y S R I J Y Y        

 

We consider three different adjustment-to-sample reweighting estimators of 2
ˆ :RY  

 

  Double Expansion (DE):   1
DE
2

2

ˆ 1
h

hi h hi hi hi hi hiR
h i h h

m
Y w K y S R I J

r

 
 

  

  Separate Ratio (SR):           1

2

SR
2

ˆ 1h

h

hi
i m

hi h hi hi hi hi hiR
h i h hi

i r

x
Y w K y S R I J

x


 


 

 
 


 

 

  Combined Ratio (CR):      1

2

1CR
2

12

2

ˆ 1 .h

h

hi h hih i m
hi h hi hi hi hi hiR

hh i h h
hi h hi

i r
h

w K xm
Y w K y S R I J

mr
w K x

r








     

  
   





 

 

Note that the DE and CR estimators are variations of the recommended reweighting procedure described 

in Brick (2013) and are discussed in Binder et al. (2000) among others. The DE estimator is the InfoS 

estimator presented in Särndal and Lundström (2005), studied in Shao and Thompson (2009), among others; 
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the SR estimator is a variation of the InfoP estimator presented in Särndal and Lundström (2005), treating 

the realized sample as the “population”. Sampling weights were not included in the SR so that the adjustment 

reduces to the DE adjustment when 1 ;hix i h    note that this unweighted response rate adjustment is 

recommended in Little and Vartivarian (2005). The CR estimator is presented in Binder et al. (2000), and 

is also studied in Shao and Thompson (2009). In our case study, a better choice might have been the quasi-

randomization estimator from Oh and Scheuren (1983), which incorporates sampling weights in the 

adjustment factor, thus reducing their variability. 

Collapsed estimators are used in three scenarios: (1) All units in the domain receive NRFU (no 

subsampling); (2) No units in the domain receive NRFU because response rate targets have been achieved 

(no subsampling); and (3) A single subsampled unit responded to NRFU (subsampling). The collapsed 

estimators analogues are given as follows: 

 

   Collapsed DE: DE,C

1 2

ˆ h
hi hi hi hih

i h h h

n
Y w y S R

r r

   
   

   Collapsed SR:   
1 2

SR ,Cˆ 1h

h h
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i n

hi hi hi hi hi hih
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i r r
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   Collapsed CR:  

1 2

CR ,C

1 2
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h h
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Robust Bayesian small area estimation 

Malay Ghosh, Jiyoun Myung and Fernando A.S. Moura1 

Abstract 

Small area models handling area level data typically assume normality of random effects. This assumption does 
not always work. The present paper introduces a new small area model with t random effects. Along with this, 
this paper also considers joint modeling of small area means and variances. The present approach is shown to 
perform better than other methods. 

 
Key Words: Random effects model; Student’s t-distribution; Non-subjective priors; MCMC; Gibbs sampling; Metropolis-

Hastings algorithm. 

 
 

1  Introduction 
 

The classic paper of Fay and Herriot (1979) has become a cornerstone of research in small area 

estimation for nearly four decades. The Fay-Herriot model is a random effects model with a normality 

assumption for both the random effects and the errors. Moreover, the error variances are assumed to be 

known. The latter is almost imperative due to an identifiability issue. With availability of only the area level 

direct small area estimates plus nonavailability of microdata, any effective modeling of the error variances 

is near impossible. 

Some valiant remedial attempts were made by W.R. Bell and his colleagues at the US Census Bureau 

(Bell and Huang, 2006; Bell, 2008) for handling some census data, but questions remain regarding the 

universal application of their approach. Additionally, nonavailability of microdata for secondary survey 

users is primarily due to confidentiality reasons, especially from the Federal Agencies. If microdata becomes 

available, unit level models are more appropriate than area level models. A classic example is the well-cited 

article of Battese, Harter and Fuller (1988). However, area level models are widely used due to their 

simplicity of implementation in a complex survey setting when compared to unit level models. 

As the field developed and more data started getting analyzed, researchers found the inappropriateness 

of the assumption of normality as well as that of known error variances. As mentioned in the previous 

paragraph, the latter is hard to rectify without any extra information. One of the first attempts in this regard 

is due to Lahiri and Rao (1995) who replaced the normality assumption of random effects by the finiteness 

of their eighth moments. Datta and Lahiri (1995) considered a general mixture of normal distributions for 

random effects that includes the t distribution. There are papers, dispensing fully with the normality, but 

maintaining linearity of the model, and using ANOVA estimators of the variances. One may refer to Butar 

and Lahiri (2002) and Jiang, Lahiri and Wan (2002) who calculated the corresponding uncertainty measures 

either via jackknife or bootstrap. Bell and Huang (2006) used t distributions for random effects or 

sampling errors to diminish the effects of outliers. 
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The objective of the present article is to address these two important issues in the context of small area 

estimation. First, we consider small area modeling of both the population means and population variances. 

This is possible due to the availability of additional data purported to estimate the error variances. Second, 

in order to induce some robustness of our procedure, we consider t priors for the random effects. 

The data set considered in this paper came from a test demographic census carried out in one municipality 

in Brazil consisting of 140 enumeration districts, hereafter referred to as small areas. The response variable 

was the average income of the heads of households for each small area, and the goal was to make predictions 

for the 140 population means of the heads of household’s income. The auxiliary variables were the 

respective small area population means of the educational attainment of the heads of households, and the 

respective population means of the number of rooms in the households for each small area. Only area level 

data was provided to us. 

We propose a full non-subjective Bayesian analysis for the general small area problem, where we model 

both the population means and variances. The initial idea was to use Jeffreys’ general rule prior, treating all 

the parameters including the degrees of freedom of the Student’s t distribution as unknown. However, the 

resultant prior yielded an improper posterior, which led to a modified Jeffreys’ prior resulting in a proper 

posterior. 

The outline of the remaining sections is as follows. Section 2 introduces the model, the Fisher 

information matrix, Jeffreys’ prior and its modification. The impropriety of the posterior under the former, 

and its propriety under the latter are also included in this section. Section 3 contains a real data analysis as 

well as a simulation study. Some final remarks are made in Section 4. 

The fact that error variances are really random has been recognized for a long time. The work of Otto 

and Bell (1995), Arora and Lahiri (1997), Wang and Fuller (2003), Rivest and Vandal (2003) and others 

have tried to account for this in different ways. Slud and Maiti (2006), Dass, Maiti, Ren and Sinha (2012) 

and Maiti, Ren and Sinha (2014) used an empirical Bayes approach towards this end by estimating the 

hyper-parameters. Full Bayesian analysis using hierarchical Bayesian methods with normality of area level 

effects has been considered in You and Chapman (2006) and Sugasawa, Tamae and Kubokawa (2017). We 

will demonstrate that t priors for random effects often perform better than the methods of the last two 

papers via data analysis and simulations. 

The use of t priors for the errors in the standard normal regression models, but not in mixed effects 

models, was proposed in Lange, Little and Taylor (1989), Fernandez and Steel (1998), Vrontos, Dellaportas 

and Politis (2000), Jacquier, Polson and Rossi (2004), and Fonseca, Ferreira and Migon (2008) primarily 

for protection against outliers. However, there are situations where normality of errors is a reasonable 

assumption, mainly because of the central limit theorem. Also, there are model diagnostic techniques to 

check this. The normality assumption of random effects, however, does not always work well. For the 

Brazilian data that we have on hand, joint modeling of both sample means and variances along with t
priors for random effects yields better performance than some of the other area level models. As suggested 

by referee, we used the data to compute the residuals fitting a regression with the true area means and 

covariates to investigate the distribution of the random effects for this application. See Section 3. 
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2  The model 
 

A typical area level model is given by  = , = 1, , ,x βT
i i iiy u e i m    where m  denotes the number 

of small areas, 1 , ,x x m  are  <p m  dimensional covariates, and  1β p   is the vector of regression 

coefficients. The random effects iu  and the sampling errors ie  are assumed to be independently distributed 

with the  iid 20,i uu N   and the  ind
0, .i ie N v  That is, the classic area level model is  

                                              
 

 

ind

ind2 2

, ,

, , , = 1, , .β x β

i i i i

T
i u ui

y N v

N i m

 

   




  

The iv  are assumed to be known in order to avoid non-identifiability. The assumption of known iv  

almost becomes mandatory for secondary users of survey data who do not have access to any micro data for 

modeling the .iv  However, in reality they are random, based on sampled data. In situations when one has 

additional data to model the ,iv  the data can be used efficiently for estimating the .iv  Moreover, in such 

situations, it is possible to have shrinkage estimators of the small area means i  as well as of the 

variances .iv  

We address small area estimation problems where we have additional data to model the .iv  Also, for 

robustification, we assume t distribution of the random effects instead of the normal distribution. We state 

our model as follows,  

                                         
 

 

ind ind2

ind.2

1 1
, , , ,

2 2

, , , , = 1, , ,β x β

i
i i i i i ii

i

T
i i

n
y v N v s v G

v

t i m 

 

   

 
 
 



 


 

(2.1)

 

where in  is the sample size in the thi  area,  ,t    denotes the Student’s t distribution with location ,  

scale   and degrees of freedom ,  and  ,G c d  denotes the gamma distribution with the kernel density 

 1expcx dx   for > 0.x  

For a full Bayesian analysis, our objective is to find the posterior distribution of  1= , , ,θ T
m   

given  1= , ,y T
my y  and  2 22

1= , , .s T
ms s  To this end, we first need to find the prior distributions 

for all the hyper-parameters,   2
1, = , , , ,β v T

mv v   and .  The usual first try is Jeffreys’ prior which is 

proportional to the positive square root of the determinant of the Fisher information matrix. The Fisher 

information matrix in our case is  

  

 
 

       

   
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m m
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   
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   
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where  1
2 2
1

1 2 2
= ( , , ) , = Diag , , ,X x x D m

m

nnT
m v v

   and  1
2 2( ) ={ ( ) ( )} 4 ( 5) 2 ( 1)( 3) ,v vg              

with      =z z z    and    =z d z dz   which are the digamma and the trigamma functions. 

Thus, Jeffreys’ prior is  

  
 

     

1
22

1 1
2 22

12 2
2 2

1 1
, , , ( ) .

3 2 3 1 3
π β v X X D

p

p
T

J

g v
 

 
  

   
 

           
 (2.2) 

However, Jeffreys’ prior leads to an improper posterior due to the factor of   2
12

p


   in (2.2). 

 

Theorem 1. Jeffreys’ prior (2.2) leads an improper posterior. 

Proof. Let  2 2, , , ,π π β v y sJ J    be the posterior density with Jeffreys’ prior (2.2). Considering the 

terms that contain 2
  in π J  and taking the transformation  = ,x βT

i i iw    i.e., = ,x βT
i ii w   we 

have 
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v v
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   
 

  

Therefore, Jeffreys’ prior leads to an improper posterior.  
 

However, once the component   2
12

p


   in (2.2) is replaced by    2

12 2exp 2
p

a      for some 

> 0,a  this modified version of Jeffreys’ prior will lead a proper posterior under the condition, 

 1min , , > .mn n p  Therefore, we suggest a modified Jeffreys’ prior for our model as follows:  
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 
     


 

(2.3)

 

By combining the likelihood of (2.1) and modified Jeffreys’ prior (2.3), the full posterior of parameters given 

the data is  
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(2.4)

 

 

Theorem 2. Under the model (2.1), the posterior  2 2
MJ , , , , ,π θ β v y sv  in (2.4) is proper, provided 

 1min , , > .mn n p  
 

Proof. See Appendix A.  
 

Theorem 2 shows that modified Jeffreys’ prior (2.3) leads to a proper posterior (2.4). The key idea is 

that we need a prior for 2
  such that     2

12 2 2

0
< .π

p

d    
     

 

Remark 1.  2
MJ , , ,π β v    can be factored into four independent priors for each parameter.  
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Here  IG ,c d  denotes the inverse gamma distribution with the kernel density  1expcx d x    for > 0.x  

The full conditional distributions to implement the Markov chain Monte Carlo (MCMC) are given in 

details in Appendix B. To generate samples, we use Gibbs sampling with Metropolis-Hastings algorithm 

where the conditional distribution of a parameter is known only up to a multiplicative constant. We provide 

details on how to apply a result of Chib and Greenberg (1995) for the Metropolis-Hastings algorithm to 

generate samples. 
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3  Application 
 

3.1  Real data analysis 
 

The data set is selected by a 10% random sampling of households in each area from a test demographic 

census completed in one municipality in Brazil. The municipality consists of 38,740 households in 140 

small areas in total, and the number of households per area in the population ranges from 57 to 588. Thus 

the area sample sizes in the data set range from 6 to 59. We are interested in estimating the 140 population 

means of the head of household’s income. The response variable iy  denotes the average income of the 

heads of households in thi  area. 

This data set includes two centered auxiliary covariates which are the respective small area population 

means of the educational attainment of the head of households (ordinal scale of 0 5)  and the average 

number of rooms in households (1 11 )  . Lastly, the data set contains the respective sampling variances 

which are calculated in the usual way. Since only area level data were provided to us and the true area means 

are known, we can compare the 140 small area predictions with the true area means respectively. The 

analysis suggests that our model performs better than other models where random effects are based on the 

normal distribution. For comparison, we use three other models. 

The first one is the Fay-Herriot model, referred to as FH, with known sampling variances. 
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 


  

where 0a  and 0b  are chosen to be 0.0001 (a small constant) to reflect the vague knowledge of 2 .  

The second model suggested by You and Chapman (2006), referred to as YC, is a hierarchical Bayesian 

model given by  

 

   

         

ind. ind.2 2

ind2

2
0 0

, , , , ,

1 1
,

2 2

IG , , 1, IG , ,

β x β

β

T
i i i i i i i

i
ii

i

i i i

y v N v N

n
s v G

v

v a b a b

 



    

   

 
 
 



 



 

  

where 0, ,i ia b a  and 0b  are also chosen to be 0.0001. 

The third model is a Bayesian multi-stage small area model proposed by Sugasawa et al. (2017), referred 

to as STK. The STK model produces shrinkage estimation of both means and variances.  
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where = 2ia  and = 1i ib n  as suggested by authors for a reasonable choice.  
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We compare the small area means predicted by FH, YC, STK, and our model, hereafter referred to as 

RTS model. For the MCMC implementation, we generate a chain with a burn-in length of 50,000 and the 

sampling size of =G  50,000. The estimates of the i  are given by  

        
=1

1ˆ = 1 x β
G

g g T g
i ii i i

g

y
G

      

where 

  
 

     
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1 2
= .

g
ig

i g g g
i i

v

v 


 



 
  

The comparison criteria are the average squared deviation (ASD), average absolute bias (AAB), average 

squared relative bias (ASRB), and average relative bias (ARB). They are defined as follows;  

  
2

2

=1 =1 =1

ˆ1 1 1ˆ ˆASD = , AAB = , ASRB = ,
m m m

i i
i i i i

i i i im m m

 
   


 

   
 

     

and 

 
=1

ˆ1
ARB = ,

m
i i

i im

 



  

where î  and i  are the estimated and true values respectively in the thi  area. Table 3.1 compares the four 

models. Recall the prior distribution of 2 ,  which is    2
2 2IG , .π p a

   With the shape parameter, 2 = 1,p  

we consider several values of .a  If we choose a  to be close to ,p  RTS model fits better than the rest under all 

four criteria. When we choose = 1,a  RTS model performs best. YC model performs worse than the other three 

models. If we choose very small ,a  such as 0.01 or 0.001, then RTS model performs the worst. 

 
Table 3.1 
Comparison between RTS model, FH model, YC model, and STK model  
 

Model ASD AAB ASRB ARB 
RTS model ( a  = 0.0001) 57.297 6.152 0.395 0.589 

RTS model ( a  = 0.01) 16.546 2.741 0.090 0.244 

RTS model ( a  = 0.5) 3.244 1.249 0.020 0.118 

RTS model ( a  = 0.2) 4.185 1.439 0.025 0.133 

RTS model ( a  = 1) 2.745 1.164 0.019 0.113 

RTS model ( a  = 2) 3.080 1.231 0.020 0.117 

RTS model ( a  = 3) 3.079 1.229 0.020 0.117 

RTS model ( a  = 5) 2.994 1.213 0.019 0.116 

RTS model ( a  = 10) 3.377 1.278 0.020 0.119 

RTS model ( a  = 50) 2.905 1.180 0.018 0.112 

RTS model ( a  = 100) 2.799 1.154 0.018 0.109 
FH model 4.484 1.448 0.026 0.133 
YC model 4.983 1.543 0.029 0.141 
STK model 3.199 1.257 0.021 0.121 
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Additionally, as suggested by a referee, we compute the residuals fitting a regression with the true area 

means and covariates to see the distribution of the random effects for this real data. Figure 3.1 shows that 

the distribution departs from the normal distribution. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 3.1 Residuals fitting a regression with the true mean and covariates. 

 
3.2  Simulation study 
 

In this section, we set up a simulation close to Maiti et al. (2014) (or Sugasawa et al. (2017)) to compare 

the accuracy of our estimators to other estimators, specifically those from You and Chapman (2006) and 

Sugasawa et al. (2017). We generate observations for each small area from the model  

 0 1= , = 1, , , = 1, , ,ij i i ij iy x u e j n i m        

where  0,iu t   and  0, .ij i ie N n v  Then the random effects model for the small area mean is  

 0 1= , = 1, , ,i i i iy x u e i m       

where 1
=1

= =
in

i i iji j
y y n y   and 1

=1
= .

in
i iji j

e n e   Hence,  ,i i i iy N v   where 0 1= ;i i ix u     

 0 1 , ,i it x      and  0, .i ie N v  The interest parameter is the mean ,i  for the thi  small area. 

Also, the direct estimator of iv  is  
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 

  2

=1

1
.

1

in

ij i
i i j

y y
n n


    

We set = 30m  and = 7in  for all areas, and generate covariates ix  from the uniform distribution on 

(2, 8). The true parameter values are set as 0 =  0.5, 1 =  0.8, =1,  = 3  and IG(10, 5exp(0.3 )).i iv x  

Also, we chose = 3a  for all simulations. 

For the MCMC implementation, we generated 5,000 posterior samples after discarding the first 1,000 

for =R  2,000 simulation runs. Table 3.2 provides comparison among the four models. The comparison 

criteria are ASD, AAB, and BIAS, the latter being defined as  

     
=1 =1

1 ˆBIAS = .
m R

r r
i i

i rmR
     

 

Table 3.2 
Simulation result for t  random effects with = 3  
 
Model Mean Variance 
 ASD AAB BIAS ASD AAB BIAS 
RTS  1.393 0.895 0.021 5.048 1.608 1.324 
STK  1.821 0.933 0.025 5.042 1.514 1.367 
FH  1.540 0.942 0.022    
YC  2.165 0.974 0.030 5.970 1.803 1.689 
 

RTS model performs better than others under ASD, AAB, and BIAS criteria for the mean. While RTS 

shows small improvements over other models for AAB and BIAS criteria, it shows approximate 23.5%, 

10%, and 35.7% improvements over STK, FH and YC models respectively for ASD criteria. For the 

variance, RTS and STK models perform better than YC model. 

The following two tables provide the simulation results when one sets the degrees of freedom as = 2  

and = 4.  
 

Table 3.3 
Simulation result for t  random effects with = 2  
 

Model Mean Variance 
 ASD AAB BIAS ASD AAB BIAS 
RTS  1.617 0.949 0.020 6.569 1.610 1.070 
STK  7.566 1.107 0.038 11.144 1.441 0.996 
FH  1.921 1.035 0.022    
YC  9.063 1.187 0.038 7.072 1.685 1.340 
 

Table 3.4 
Simulation result for t  random effects with = 4  
 

Model Mean Variance 
 ASD AAB BIAS ASD AAB BIAS 
RTS  1.265 0.862 0.019 4.876 1.619 1.428 
STK  1.322 0.874 0.019 5.077 1.577 1.489 
FH  1.350 0.894 0.020    
YC  1.509 0.905 0.022 6.201 1.869 1.802 
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With = 2,  RTS model performs better than others under ASD, AAB, and BIAS criteria for the mean. 

In this simulation, the ASD values for STK and YC models are very large compared with RTS and FH 

models. RTS model shows improvements of about 78.6% over STK model, 82.2% over YC model, and 

15.8% over FH model. For AAB and BIAS, the values of RTS model are smaller than those of other models. 

When considering the variance, ASD for RTS model gives smallest value. 

With = 4,  RTS model also shows better performance over others. Especially, ASD and BIAS values 

indicate that RTS model improves results when compared with STK and YC model. 

The next two tables consider the situation where one assumes normality of the random effects. Here RTS 

model performs slightly worse than the other models. 
 

Table 3.5 
Simulation result for normal random effects with  20, 5N  
 

Model Mean Variance 
 ASD AAB BIAS ASD AAB BIAS 
RTS  2.896 1.305 0.038 6.036 1.512 0.514 
STK  2.560 1.229 0.051 1.851 0.961 0.114 
FH  2.597 1.240 0.036    
YC  2.735 1.259 0.048 3.674 1.305 0.463 
 

Table 3.6 
Simulation result for normal random effects with  20,10N  
 

Model Mean Variance 
 ASD AAB BIAS ASD AAB BIAS 
RTS  3.007 1.316 0.032 10.117 1.895 1.202 
STK  2.784 1.272 0.031 2.221 1.038 0.155 
FH  2.765 1.272 0.048    
YC  2.873 1.285 0.033 9.166 1.798 1.129 

 
4  Final remarks 
 

The paper considers small area models for handling area level data. The new feature of this article is 

modeling both small area means and variances along with the use of t distribution of random effects. It is 

shown via both data analysis and simulation that the proposed method performs mostly better than the 

models of You and Chapman (2006) and Sugasawa et al. (2017) in most situations.  
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Appendix A 
 

Proof 
 

Theorem 2. Under the model (2.1) with modified Jeffreys’ prior (2.3), the posterior distribution (2.4) is proper, 

provided  1min , , > .mn n p   
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Proof. Recall the posterior distribution (2.4),  
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approximation, we have  
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Hence this approximation simplifies the last term in (2.4). The corresponding posterior is 
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(A.1)

 

First, integrating out with respect to .β  By letting  = ,x βT
i i iw    i.e., = ,x βT

i ii w   we have 
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After integrating out with respect to ,  we have  

                               
1

2 2

2
12 1

MJ
=1 =1

1
, exp .

2
π v y s X V X

nim m
i T

i
i i i

s
K v

v
         

    

Finally, since 
1 1
2 221

max( ) ,X V X X X
p

T Tv    where max 1= max ( , , ),mv v v  if  1min , , > ,mn n p  

modified Jeffrey’s prior leads to a proper posterior.  

 
Appendix B 
 
Full conditional distributions  
 

The full posterior of the parameters given the data is specified in (A.1). For the MCMC implementation, 

it is convenient to use the latent parameters  = 1, ,i i m   such that 
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All but (VI) requires the generation of samples from standard distributions. While we use the Gibbs 

sampling method for (I)-(V), we use the Metropolis-Hastings algorithm for generating samples from (VI) 

as given in Chib and Greenberg (1995). 

How to apply the result of Chib and Greenberg (1995) to (IV) in (B.1). 

If the target density  t  can be written as      ,t t h t   where  h t  is a density that can be sampled 

and  t  is uniformly bounded, then one can set  h t  as a candidate density to draw samples and use  t  

in       , = min ,1x y y x    which is the probability of move. 

Recall that the full conditional distribution of   is  
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Here  h v  is a candidate-generating density, and  v  is uniformly bounded. 
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Model-assisted calibration of non-probability sample survey 
data using adaptive LASSO 

Jack Kuang Tsung Chen, Richard L. Valliant and Michael R. Elliott1 

Abstract 

The probability-sampling-based framework has dominated survey research because it provides precise 
mathematical tools to assess sampling variability. However increasing costs and declining response rates are 
expanding the use of non-probability samples, particularly in general population settings, where samples of 
individuals pulled from web surveys are becoming increasingly cheap and easy to access. But non-probability 
samples are at risk for selection bias due to differential access, degrees of interest, and other factors. Calibration 
to known statistical totals in the population provide a means of potentially diminishing the effect of selection bias 
in non-probability samples. Here we show that model calibration using adaptive LASSO can yield a consistent 
estimator of a population total as long as a subset of the true predictors is included in the prediction model, thus 
allowing large numbers of possible covariates to be included without risk of overfitting. We show that the model 
calibration using adaptive LASSO provides improved estimation with respect to mean square error relative to 
standard competitors such as generalized regression (GREG) estimators when a large number of covariates are 
required to determine the true model, with effectively no loss in efficiency over GREG when smaller models will 
suffice. We also derive closed form variance estimators of population totals, and compare their behavior with 
bootstrap estimators. We conclude with a real world example using data from the National Health Interview 
Survey. 

 
Key Words: Adaptive LASSO estimators; Generalized regression estimator; Non-representative sample; Over-fitting; 

Variable selection; Oracle property. 

 
 

1  Introduction 
 

Probability-based sampling has dominated survey research for the greater part of the past century 

(Stephan, 1948; Frankel and Frankel, 1987). Given complete measures on sampled units with known 

selection probabilities, randomization theory removes selection bias by generating representative samples 

of the target population. On the other hand, non-probability samples generated without known selection 

probabilities are automatically at risk for selection bias, as samples can differ from the target population on 

key statistics (Groves, 2006). Well-documented failures in 1936 and 1948 presidential election polls 

highlight the potential downfalls in making population inference from non-probability samples (Mosteller, 

1949). 

Although the probability-sampling-based framework provides survey practitioners precise mathematical 

tools to assess and correct sampling errors, declining response rates among traditional data collection 

methods raise concerns over the potentially high nonresponse bias of probability samples. Pew Research 

reported that their response rates (RRs) in typical telephone surveys dropped from 36% in 1997 to 9% in 

2012 (Kohut, Keeter, Doherty, Dimock and Christian, 2012), suggesting that telephone-based probability 

sampling may no longer be a viable methodology for general population surveys. In addition, obtaining data 

without exercising much control over the set of units for which it is collected is often cheaper and quicker 

than probability sampling. For these reasons non-probability sampling is currently staging a kind of 
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renascence (Baker, Brick, Bates, Battaglia, Couper, Dever, Gile and Tourangeau, 2013; Elliott and Valliant, 

2017). Online data collection, a platform without a universal sampling frame to conduct probability-based 

sampling, was estimated to comprise nearly half of all U.S. survey research spending in 2012 (Terhanian 

and Bremer, 2012), and has almost certainly grown since then. 

For many survey agencies, adjusting survey weights to known auxiliary information is the final and most 

crucial step in the weight construction process. Standard approaches include poststratification, in which 

weights are adjusted so that the weighted sample distribution of categorical auxiliary variables matches that 

of the population, and its extention to generalized regression estimation (GREG), which ensures that the 

weighted sum of each auxiliary variable (continuous or categorical) equals to its corresponding total in the 

population (Deville and Särndal, 1992). Calibration plays an important role in official statistics because it 

can generate weights such that the weighted demographic estimates across different surveys are consistent. 

In probability samples, when design weights are equal to the inverse of selection probabilities, weighted 

estimates of sample totals are design-unbiased for the population total. Calibration adjusts design weights 

by a minimal degree so that the weighted sample totals for auxiliary variables match their known population 

totals (Särndal, Swensson and Wretman, 1992). In the probability sampling setting, calibration is introduced 

to reduce variance and/or correct for bias by adjusting for undercoverage or overcoverage of sub-groups of 

the sample. For large samples, the final calibrated weights can be applied to all variables in the survey, 

because they approximately maintain the unbiased property of original design weights. In non-probability 

samples, however, there are no selection probabilities to construct initial design weights that can produce 

unbiased estimates. Thus, there is no guarantee that the traditional calibrated weights can work for all 

variables in the non-probability sample. To make inference from non-probability samples, one practical 

approach is to construct a set of weights that can lower the root-mean-square error (RMSE) of weighted 

estimates with respect to a specific outcome of interest. Model-assisted calibration provides the framework 

to construct calibrated weights targeting an outcome variable, given a model that can approximate the 

expected values of the outcome (Wu and Sitter, 2001). The key to successful model-assisted calibration is 

a model with strong predictive properties: model parameters estimated from one sample can be used to 

reliably predict values in a different sample of the same population. Of course, such predictors are not always 

available; Tourangeau, Conrad and Couper (2013) provide an example where the lack of predictive 

covariates prevent weighting adjustments from performing well. However, Tourangeau, et al. (2013) had in 

mind household surveys. Predictors can be more powerful in establishment or institutional surveys or in 

some specialized surveys like election polls. For example, Wang, Rothschild, Goel and Gelman (2015) use 

party affiliation and candidate voted in the previous election to make accurate predictions of the outcome 

of the 2012 US presidential election based on a non-probability sample that was distributed much different 

from that of all voters. 

Clearly, then, model-assisted calibration might be expected to be most effective when there is a relatively 

rich set of auxiliary population covariates and consequently an extremely large set of models to be 

considered. In these settings, obtaining balance between structure – to minimize model misspecification and 

thus bias – and parsimony – to stabilize estimates and thus minimize variance – can be challenging. The 
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Least Angle Shrinkage and Selection Operator, LASSO, is a regularized regression that can perform both 

variable selection and parameter estimation (Tibshirani, 1996). A wide range of applications have 

demonstrated that LASSO is effective in preventing model over-fitting by automatically selecting more 

accurate and parsimonious models. Kamarianakis, Shen and Wynter (2012) found success with LASSO in 

predicting average traffic speed in the presence of severe multi-collinearity due to aggregated area-level 

regressors. Kohannim, Hibar, Stein, Jahanshad, Hua, Rajagopalan, Toga, Jack Jr, Weiner, de Zubicaray and 

McMahon (2012) applied LASSO regression to identify subsets of high-dimensional and correlated single 

nucleotide polymorphisms (SNPs) that are related to brain structure measures. In a review of challenges in 

ecological analysis with collinear covariates, Dormann, Elith, Bacher, Buchmann, Carl, Carre, Marquez, 

Gruber, Lafourcade, Leitao and Mnkemller (2013) found that LASSO is one of the methods to consistently 

produce low root-mean-square-errors. In the fields of genetics and finance, LASSO has been used 

effectively in prediction modeling with hundreds or thousands of predictors (Wu, Chen, Hastie, Sobel and 

Lange, 2009). 

There is a literature that considers stabilizing forms of traditional calibration. Park and Yang (2008) 

considered a ridge regression form of a generalized regression estimator that used a penalty term to stabilize 

the calibration estimators, proving design consistency and showing reduction in variance in simulation 

studies. Goga, Muhammad-Shehzad and Vanheuverzwyn (2011) and Cardot, Goga and Shehzad (2017) 

considered calibration to principle components of population totals rather than the population totals 

themselves, allowing large numbers of auxiliary variables to be collapsed into a manageable subset. Perhaps 

most relevant to this work, McConville (2011) and McConville, Breidt, Lee and Moisen (2017) developed, 

again under traditional calibration, the theoretical framework to show approximate design unbiasedness and 

consistency of LASSO calibration estimator of a total, given LASSO regression parameter estimates. 

Although model-assisted calibration with LASSO holds great promise in constructing a set of weights that 

can result in small RMSE of weighted estimates for an outcome variable in a non-probability sample, there 

is no theoretical framework established for the bias and consistency properties of model-assisted LASSO 

calibration estimators for non-probability sample. 

Thus the main objectives of this article are: 

(1) Develop the theoretical framework for model-assisted calibration with LASSO for both 

continuous and binary outcome variables: derive the point estimate of the total, its asymptotic 

expectation, and asymptotic theoretical variance estimate. 

(2) Investigate relative performances, in terms of root-mean-square-error, of LASSO calibration to 

traditional calibration under different outcome types, sampling schemes, sample sizes, and 

calibration variable covariance structures. 
 

While our development of the asymptotic theory assumes known design weights, a key finding is that 

LASSO calibration yields consistent estimators of a population total regardless of whether the design 

weights are correctly specified as long as the regression model includes all superpopulation parameters as a 

subset of the parameters in the model. Hence, we focus estimation in the simulation studies in the 

non-probability-based setting, where initial design weights taken to be the same as those for 
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simple-random-sampling (SRS), =id N n  for population and sample sizes N  and ,n  regardless of how 

the samples are formed (which in practice would be unknown). We also apply LASSO calibration to 

estimation of the total number of adults diagnosed with cancer in the US population, using data on cancer 

incidence from the 2013 National Health Interview Survey (NHIS) and auxiliary population data from the 

US Census American Communities Survey, ignoring sample design weight to approximate a non-

probability sample and comparing results to the fully-weighted (representative) estimates. 

The organization of this article is as follows. Section 2 provides the definition and notations for 

calibration and LASSO regression. Section 3 develops the LASSO calibration estimator of population total, 

its model expectation, and asymptotic variances. Section 4 describes the simulation and results for 

evaluating the root-mean-square-error and variance estimates of the LASSO-calibrated estimator. Section 5 

considers the NHIS example. We conclude with Section 6 summarizing the findings. 

 
2  Calibration 
 

2.1  Traditional calibration 
 

For an analytical sample As  (the sample which requires weight calibration) of size n  drawn from sample 

design   with design weights 
1
,d

n
 and the diagonal matrix of design weights ,D  calibrated weights 

1
w
n

 

minimize a distance measure  

 ( , )
A

i i i
i s

E g w d q


 
  
  (2.1) 

under the constraint:  

 = Xx T
A

T
i i

i s

w

  (2.2) 

where E  is expectation with respect to the analytic (probability) design,  ,i ig w d  is a differentiable 

function with respect to ,iw  strictly convex on an interval containing ,id  and  , = 0,i ig d d  and where 

T X  is a row vector of known population totals of sample calibration variables X  (Deville and Särndal, 

1992). The constant iq  is independent of design weight .id  The commonly used generalized regression 

(GREG) estimator uses the chi-square distance:     2, =i i i i ig w d w d d  with = 1.iq  Under this 

distance measure:  

                                                    1GREG = .Xw d DX X DX T d X TT T   (2.3) 

The estimate of population total of outcome y  is based on calibrated weights:  
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(2.4)

 

where HTˆ =
A

y i i
i s

T d y
  is the standard (weighted) design-based estimator,   1ˆ =β X DX X DyT T  is the 

weighted least squares estimate of the linear regression  , = ,x β x βT
i i iE y  given weights .D  (This 

corresponds to the poststratified estimator when X  consists entirely of cell totals for categorical variables.) 
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The calibrated weights defined in equation (2.3) do not rely on any outcome variable. Thus the same set of 

weights can be applied to all variables in the survey. Note that GREG assumes a working model that is 

linear. Although GREGˆ
yT  is asymptotically design-unbiased for ,yT  when the relationship between y  and 

X  is non-linear, such as in the case when y  is binary, the design variance of GREGˆ
yT  can be larger than the 

design variance HTˆ .yT  
 

2.2  Model-assisted calibration 
 

Model-assisted calibration estimators can have significant advantage over GREGˆ
yT  because model-

assisted calibration allows for non-linear models to assist in the construction of calibrated weights.  In 

model-assisted calibration, we assume a relationship between an outcome y  and X  through first two 

moments (Wu and Sitter, 2001):  

       2 2= , , =x x β xi i i i i iE y V y     (2.5) 

where  1= , ,β T
p   and   are unknown superpopulation parameters,  , βix  is a known function 

of x i  and ,β  and i  is a known function of x i  or  , .x βi  E  and V  are expectation and variance with 

respect to the model .  Let B  be the finite population (or census) estimate of β  (i.e., the quasilikelihood 

estimator of β  based on the entire finite population), and  ˆˆ = , ,x Bi i   where B̂  is the sample estimate 

of .B  The model-assisted calibrated weights w  then minimize a distance measure 
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i s
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i
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w N
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i i i

i s i
w  

   The main 

conceptual difference between traditional calibration and model-assisted calibration is that in model-assisted 

calibration, the constraints are based on two quantities: (1) population size, and (2) population total of 

predicted values ˆ .i  In traditional calibration, the constraint is a vector of population totals of X  (see 

equation (2.2)). Under chi-square distance measure with = 1,iq  the model-assisted calibrated weights are:  

                                                   1MC =w d DM M DM T d M TT M T   (2.6) 

where ˆ= ,T
N

M
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i
N  
   and   ˆ= , .M d

A
i i s   (In the non-probability setting the vector of design 

weights d  can be replaced with ( ) .)1N n  The estimate for the population total based on model-assisted 

calibrated weights is then:  
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where MCB̂  is the calibration slope to satisfy the calibration constraints (different from the model parameter 

estimates ˆ ) :B  

 
   

 
MC

2

ˆˆ
ˆ ˆ ˆ= , = , = .

ˆˆ
A

A A A A
A

i i i
i s

i i i i i i
i s i s i s i si i

i s

d y y
B d d y d y d

d

 
 

 


   


 



    


  

Unbiasedness and small variances of MCˆ
yT  both rely on how well the ˆ

i  approximates the true expected 

value of .iy  
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3  Model selection and robust calibration using adaptive LASSO 
 
3.1  Adaptive LASSO background 
 
3.1.1  Definition and parameters 
 

The adaptive LASSO regression coefficients are obtained by solving a penalized regression equation. 

For linear adaptive LASSO regression (Zou, 2006):  

                                         2

=1

ˆ = argmin
β

β x β
A

p
T

i n ji j
i s j

y   


   
 
   (3.1) 

where j
  is an adjustable weight and n  is a penalty used to optimize a model fit measure. Similarly for 

logistic adaptive LASSO:  

                                            
=1

ˆ = argmin log 1 exp .
β

β x x β
A

p
T T

i n ji i j
i s j

y    


     
 
   (3.2) 

Given n  and ,  we can calculate β̂  through iterative procedures. The R package glmnet  will compute 

both the linear and logistic adaptive LASSO (Friedman, Hastie and Tibshirani, 2010). 

The role of the weight parameter, ,j  is to prevent LASSO from selecting covariates with large effect 

sizes in favor of lowering prediction error when the sample size is small. Thus the weights are inversely 

proportional to effect sizes of regression parameters: 1 / | |.j j   A common choice of j  is MLEˆ1 / | |,j  

where MLEˆ
j  is the maximum likelihood estimate of .j  The power of the weight parameter, ,  is a 

constant greater than 0 that interacts with j  to control LASSO from selecting or excluding parameters. 

For example, if we still want LASSO to favor large effect covariates when the sample size is small, we 

should set   small. If we want to de-emphasize effect sizes further, we should set   large. 

 
3.1.2  Oracle property 
 

An important concept in measuring the performance of a model selection and estimation method is called 

the “oracle property”. The optimal method selects the correct variables and provides unbiased estimates of 

selected parameters. Suppose the parameters in a full regression model have both zero and non-zero 

components. Without loss of generality, let the first p  be non-zero and the last q  zero:  

 
 
 

 
 

1
1

2
1

= .
=

β
β

β 0

p
F

q






 

 
  

A regression model has the oracle property if it satisfies the following conditions (Fan and Li, 2001): 

• The probability of estimating 0 for zero-valued parameters tends to one:   2ˆPr = 1β 0   as 

.n    
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• The estimates of non-zero parameters are as good as if the true sub-model is known: 
      1 1ˆ ,β β 0 Cn N   where   1=C β  is the covariance matrix of  1β  under linear 

model, and   11=C βI   is the inverse of the Fisher information matrix of  1β  under the 

generalized linear model.  
 

For finite-population inference, suppose   indexes a population with size ,N  let B  be the 

quasilikelihood estimates of β  in population ,  and B̂  is the estimate of B  based on a sample with size 

.n N   We assume that ,N   ,n    and 0n N    as .    The finite-population 

equivalent of the oracle property is then:  

 

  
      

2

1 1

ˆPr = 1

ˆ ,

as

B 0

B B 0 C

B β

n N



    







 



 

  

where   1=C B   is the covariance matrix of  1B  if the model is linear, and   11=C BI   is the 

inverse of Fisher information matrix of  1B  under the generalized linear model. 

Zou (2006) has shown that if   n n n


    and 0,n n   then the adaptive LASSO 

satisfies the oracle property. The conditions require that n  grow at least at the rate of   ,n n


 but not 

faster than .n  The choice of n  and ,  and R code for implementing it, are discussed in the Appendix. 
 

3.2  LASSO calibration 
 

This section derives the analytical formula for a LASSO estimator of total, its model expectation, and 

estimators of the asymptotic design variance. We make the following assumptions: 
 

1. The samples are drawn from a single-stage sample design ,  allowing for unequal probabilities 

of selection. The selection probability for unit i  is denoted by ,A
i  and the joint selection 

probability of units i  and j  is denoted by .A
ij  We denote the design weight for unit i  by 

= 1 ,A A
i id   the vector of design weights by ,d A  and the diagonal matrix of design weights 

by .D A  

2. Population-level auxiliary data are known, denoted by  = , = 1, , .X xT
i i N  

3. A superpopulation model is assumed, as is described in Section 2.2: 

                                                                       
   

  2 2

= ,

= .

x x β

x

i i i

i i i

E y

V y







 
  

4. The true superpopulation parameters are a subset of the full regression model for LASSO:  

                                                                              
 

 
 
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β
β

p
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 
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5. The full-range of X  in the population has non-zero probability of being observed in the analytical 

sample.  
 

3.2.1  Point estimate: LASSOˆ
yT  

 

The LASSO calibration estimate of total can be obtained following the steps:   

1. Obtain LASSO regression coefficients B̂  as described in the Appendix.  

2. Use B̂  to calculate  ˆˆ = ,x Bi i   in the population.  

3. Define  ˆ= ,T
N

M
i

i
N   and ˆ= , ,M d

A

A
i

i s



    under chi-square distance measure with 

= 1 :iq  

                                                 1LASSO = .w d D M M D M T d M
TTA A T A M A   (3.3) 

4. Determine the LASSO calibration estimator of total:  

                                            

 

      

 
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



 

  
 
 

 

(3.4)

 

where MCB̂  is the calibration slope to satisfy the calibration constraints:  

       
   

 
MC

2

ˆˆ
ˆ ˆ ˆ= , = , = .

ˆˆ
A

A A A A
A
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A i s i s i s i siii s

d y y
B d d y d y d
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 
 

 


   


 



    


  

 

3.2.2  Asymptotic behavior of LASSOˆ
yT  

 

Wu and Sitter (2001) established the conditions to derive an asymptotic model-assisted calibration 

estimator. We state the conditions here with slight modification in notations to be consistent with the current 

research. Let β  be the true superpopulation parameter for the model defined in equation (2.5), and B  be 

the finite-population quasilikelihood estimator of .β  The following conditions are used for deriving LASSO 

calibration asymptotic estimator of total: 

1.  ˆ = 1 ,B B pO n B  is the finite-population regression slope of ,β .B β  

2. For each ,x i  ,x t ti   is continuous in ,t  and    max , ,x t t x βi i ih    for t  in a 

neighborhood of ,β  and    1 , = 1 .x βi
i U

N h O
  

3. For each ,x i  2 ,x t t tT
i    is continuous in ,t  and    2

,max , ,x t x βj k i j k it t k     

for t  in a neighborhood of ,β  and    1 , = 1 .x βi
i U

N k O
  

4. The Horvitz-Thompson (HT) estimators of certain population means are asymptotically normally 

distributed (Fuller, 2009; pages 47-57).  

5.    and 0.n nn n n


     
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Lemma 1: Assume that superpopulation model (2.5) holds. Let B  be the finite-population quasilikelihood 

estimate of ,β .B β  Under conditions (1)-(5), the model-assisted asymptotic estimator of population 

total is:  

                                         MC MC MC

=1

ˆ =
A

N
A

y i i i pi
i s i

N
T d y B B o

n
 



    
 

   (3.5) 

where  
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Proof. See Appendix. 
 

Given Lemma 1, we derive LASSOˆ
yT  the asymptotic LASSO estimator of total in Theorem 1. We show 

LASSOˆ
yT  is model unbiased for the population total in Theorem 2. Finally, Theorem 3 determines variance 

estimates for the LASSO calibration estimator of a total. 
 

Theorem 1: Suppose the parameters in a full regression model have both zero and non-zero components. 

Without loss of generality, let the first p  be non-zero and the last q  be zero:  
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under conditions (1)-(5), the asymptotic LASSO calibration estimator of total is:  

                                     LASSO MC MC
=1

ˆ = .
A

N
A

y i i i pii s i

N
T d y B B o

n
 



    
 

    

 

Proof. See Appendix. 
 

Theorem 2: LASSOˆ
yT  is model-unbiased, that is  LASSOˆ = .yE T T  

 

Proof. See Appendix. 
 

Thus, as long as LASSO regression parameters include the superpopulation parameters, LASSOˆ
yT  is 

model-unbiased regardless of design weights. (Note that this is a quality that GREGˆ
yT  shares with LASSOˆ .yT  

However, LASSOˆ
yT  can assume models with much larger numbers of covariates than GREGˆ .)yT  This property 

is essential in non-probability samples, where there are no initial design weights to guarantee unbiasedness. 
 

Theorem 3: The estimator of the asymptotic variance of LASSOˆ
yT  is given by  
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(3.6)
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Proof. The theoretical design variance of the LASSO estimator is  
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(3.7)

 

which follows from equation (3.30) derived for the variance of traditional LASSO calibration estimator of 

total in McConville (2011). Equation (3.6) then follows from replacing estimates for population quantities. 

An alternative variance estimate, suggested by Särndal, Swensson and Wretman (1989), multiplies 

 MCˆˆi iy B  by g  weights, which are the ratios of calibrated weights to the original design weights:  

                                                  1
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(3.8)

 

To simplify notations, we refer to  LASSOˆ
yv T  as LASSOv  and  LASSOˆ. yv g T  as LASSO .gv  

 
4  Simulation study 
 

We design a simulation to evaluate the finite sample properties of LASSOˆ
yT  and the asymptotic variance 

estimates of LASSOˆ ,yT LASSOv  and LASSO.gv  We also consider a naive bootstrap estimator LASSO
boot ,v  obtained by 

drawing 500 samples with replacement from each simulation sample, as an alternative variance estimator 

of LASSOˆ .yT  

To simulate non-probability samples, we generate samples with unequal selection probabilities, but set 

design weights to = .d A N n  We also consider GREGˆ
yT  (traditional calibration estimator) and HTˆ

yT  (pure 

design-based Horvitz-Thompson estimator). Because LASSOˆ
yT  performs both variable selection and 

estimation, we implement a backward stepwise selection to select the working model for GREG. Although 

there is no theoretical justification for using stepwise variable selection, Skinner and Silva (1997) have 

shown that given two auxiliary variables, a stepwise procedure can result in improved efficiency of GREG 

estimator. We are interested in knowing the performance of each estimator under (1) populations with 

different signal-to-noise-ratios (SNR), (2) independent, informative, and biased sampling schemes, and (3) 

small and large sample sizes. The signal-to-noise ratio is calculated according to definitions in Czanner, 
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Sarma, Eden and Brown (2008). We set two levels of correlations (low/high) between covariates, crossed 

with two levels of effect sizes (low/high) of the covariates. We set the low/high and high/low populations 

to have the same SNR in order to understand the influence of correlation and effect size on estimator’s 

performance given the same SNR. Three sampling schemes are used to draw samples: simple-random-

sampling without replacement, SRS, Poisson sampling with selection probabilities proportional to 

covariates,  POI X ,  and Poisson sampling with selection probabilities proportional to covariates and the 

outcome,  POI X+Y .   POI X+Y  sampling simulates self-selection bias of non-probability samples, 

where the propensity of a respondent to participate in a study relates to the analysis variable. We consider 

two sample sizes: 250 and 1,000. Thus we have a total of 2 2 3 2 = 24    experimental groups. 

 
4.1  Population 
 

To create collinearity among covariates, we follow an auto-decay correlation structure commonly used 

in LASSO-related simulations (Tibshirani, 1996):   | |cor , = , = 1, , .i j
i jX X i p    We generate a 

population of size =N  100,000 from a multivariate normal distribution with mean  10 p  and covariance 

,  =p  40. The continuous outcome variable is generated by the regression model:  

  0 1 1 2 2 40 40= 0, 3 .i i i iy x x x N          

The binary outcome variable is generated by the logistic regression model:  

 
      

 

1
0 1 1 2 2 40 40= expit , expit = 1 exp

= bernoulli .

i i i i

i i

x x x u u

y

    



    
  

We set =  0.15 for low correlation population, and =  0.73 for high correlation population. For both 

continuous and binary outcome variables:  

 
 

 

1
12 19 32 39

1
12 19 32 39

Low effect-size := , = 0.45

High effect-size := , = 0.74.

β

β

   

   

 

 
  

For continuous :y 0 = 1,  for binary :y 0 = 0.4.  The rest of = 0.i  Out of 41 regression parameters, 

16 are non-zero and 25 are zero. 

 
4.2  Sampling schemes 
 

Three sampling schemes are used to generate the sample: 

1. Simple-Random-Sampling (SRS): selection probabilities .n N  

2. Poisson sampling with probabilities proportional to ,X  POI X  
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3. Poisson sampling with probabilities proportional to X  and ,y   POI X+Y  

 
 

5 15 25 35

5 15 25 35

continuous : 0.4 0.4 0.4 0.4 0.4 0.5

binary : logit 0.4 0.4 0.4 0.4 0.4 .

y

y

i i i i i i

i i i i i i

x x x x y
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



     

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4.3  Evaluation metrics 
 

We evaluate empirical bias, variance, and RMSE for each estimator of total. We evaluate the asymptotic 

variance estimates and bootstrap variance estimates by their 95% nominal coverage and %bias relative to 

empirical variance. We use the normal approximation to generate confidence intervals. We calculate %bias 

as LASSO LASSOˆ ˆ%bias = 100[ var ( )] var ( ) ,y yv T T  where LASSOˆvar ( )yT  is the empirical variance obtained 

from the simulation samples. 

 
4.4  Simulation results 
 

The simulation results are based on =S  1,000 simulated samples per each experimental group. 

Table 4.1 lists the numerical results of bias, variance, and root-mean-square-error of each estimator under 

different experimental designs for estimating the total of a continuous outcome variable. Table 4.2 lists the 

numerical results for estimating the total of a binary outcome variable. 

 
4.4.1  Root mean square error 
 

Under SRS, all estimators are unbiased, and LASSO and GREG perform approximately equally well 

relative to HT.  POI X  and  POI X+Y  induce biased samples by selecting cases with larger covariate 

values with higher probabilities. Under  POI X+Y ,  the selection also favors cases with larger outcome 

values. The absolute bias of LASSO decreases relative to GREG as SNR increases. This improvement is 

more dramatic in the binary case than the continuous case, especially for  POI X+Y .  In terms of RMSE, 

LASSO has marginal improvement over GREG for estimating totals of continuous outcome variables. The 

improvement is slightly noticeable, about 3%, when there are highly correlated predictors in the model. For 

the binary setting, there is substantial improvement in MSE for LASSO over GREG as SNR increases, with 

reductions of 20% for the  POI X  and nearly 50% for the  POI X+Y  setting when SNR is large. In 

particular, under Low/High and High/Low population types, the SNR is the same, thus the difference in 

performance between LASSO and GREG is attributed to correlation or effect size. LASSO performs better 

in both bias and RMSE in High/Low population type, suggesting that LASSO has stronger advantage over 

GREG when there are highly correlated predictors in the model. This suggests that LASSO has a better 

variable selection capability in the presence of multicollinearity relative to stepwise variable selection 

procedure used in GREG. 
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Table 4.1 
Simulation summary for continuous outcome: total, bias, and RMSE 310 ;  variance 610  
 

Population n Sampling 
scheme 

HT GREG LASSO 
bias var rmse bias var rmse bias var rmse

low/low 
T = 100.8 
SNR = 0.47  

250 
SRS 0.5 546 23.3 0.9 425 20.6 0.9 428 20.7
POI(X) 12.4 525 26.0 -0.6 446 21.1 -0.4 441 21.0
POI(X+Y) 19.4 519 29.9 4.6 443 21.5 4.7 431 21.3

1,000 
SRS 0.2 129 11.4 0.3 94 9.6 0.3 94 9.7
POI(X) 12.6 129 17.0 -0.1 91 9.5 -0.2 92 9.6
POI(X+Y) 19.7 128 22.7 4.9 91 10.7 5.0 91 10.7

low/high 
T = 101.4 
SNR = 1.26  

250 
SRS 0.4 849 29.1 0.9 415 20.4 1.0 417 20.4
POI(X) 21.1 818 35.6 -1.3 434 20.9 -1.0 432 20.8
POI(X+Y) 31.7 817 42.7 3.7 427 21.0 4.0 427 21.1

1,000 
SRS 0.0 200 14.1 0.3 94 10.0 0.3 93 9.7
POI(X) 21.1 199 25.4 -0.1 91 9.6 -0.2 90 9.6
POI(X+Y) 31.7 196 34.6 4.9 91 10.7 4.8 89 10.6

high/low 
T = 101.8 
SNR = 1.26  

250 
SRS 0.1 941 30.7 1.0 421 20.6 1.0 399 20.0
POI(X) 50.2 895 58.5 -0.7 434 20.8 -1.6 402 20.1
POI(X+Y) 57.8 872 64.9 4.0 435 21.2 3.0 399 20.2

1,000 
SRS 0.0 218 14.8 0.3 94 9.7 0.3 93 9.6
POI(X) 50.6 210 53.0 -0.1 93 9.7 -0.5 91 9.6
POI(X+Y) 58.2 209 59.9 4.7 95 10.8 4.2 92 10.5

high/high 
T = 103.1 
SNR = 3.41  

250 
SRS -0.4 1,897 43.6 0.8 436 20.9 1.0 407 20.2
POI(X) 83.3 1,826 93.7 -0.8 435 20.9 -1.5 406 20.2
POI(X+Y) 96.4 1,779 105.3 3.7 428 21.0 3.0 404 20.3

1,000 
SRS -0.2 444 21.0 0.3 93 9.7 0.3 93 9.7
POI(X) 83.6 424 86.1 -0.2 93 9.7 -0.5 91 9.6
POI(X+Y) 96.9 423 99.0 4.4 94 10.6 4.1 92 10.4

 
Table 4.2 
Simulation summary for binary outcome: total, bias, and RMSE 310 ;  variance 610  
 

Population n Sampling 
scheme 

HT GREG LASSO 
bias var rmse bias var rmse bias var rmse

low/low 
T = 56.2 
SNR = 0.51  

250 
SRS 0.0 10.2 3.2 0.0 7.2 2.7 0.0 7.0 2.7
POI(X) 2.6 10.0 4.1 0.2 8.0 2.8 0.1 7.8 2.8
POI(X+Y) 4.9 9.8 5.8 2.0 8.1 3.5 1.8 7.8 3.3

1,000 
SRS -0.0 2.7 1.6 0.0 1.7 1.3 0.0 1.6 1.3
POI(X) 2.5 2.4 2.9 0.0 1.8 1.3 -0.0 1.7 1.3
POI(X+Y) 4.7 2.3 5.0 1.8 1.8 2.2 1.6 1.7 2.1

low/high 
T = 54.4 
SNR = 1.10  

250 
SRS -0.0 10.8 3.3 0.0 6.1 2.5 0.1 5.4 2.3
POI(X) 3.0 10.2 4.4 0.1 6.1 2.5 0.1 5.8 2.4
POI(X+Y) 5.3 9.8 6.2 1.6 6.2 2.9 1.3 5.8 2.8

1,000 
SRS -0.0 2.7 1.6 0.0 1.3 1.1 0.0 1.1 1.0
POI(X) 2.9 2.4 3.3 0.0 1.4 1.2 -0.1 1.2 1.1
POI(X+Y) 5.2 2.2 5.4 1.4 1.4 1.8 1.1 1.2 1.6

high/low 
T = 54.2 
SNR = 1.10  

250 
SRS -0.0 10.3 3.2 0.0 5.8 2.4 0.1 4.9 2.2
POI(X) 6.6 9.6 7.3 0.3 6.2 2.5 -0.2 4.8 2.2
POI(X+Y) 8.6 9.3 9.1 1.8 6.3 3.1 0.9 4.9 2.4

1,000 
SRS -0.0 2.5 1.6 0.0 1.2 1.1 0.0 1.0 1.0
POI(X) 6.6 2.2 6.7 0.2 1.4 1.2 -0.2 1.1 1.1
POI(X+Y) 8.5 2.1 8.7 1.6 1.4 2.0 1.0 1.0 1.4

high/high 
T = 52.8 
SNR = 2.75 

250 
SRS -0.1 10.2 3.1 -0.0 5.2 2.3 0.1 3.8 1.9
POI(X) 7.1 9.8 7.8 0.3 5.7 2.4 -0.2 3.6 1.9
POI(X+Y) 9.1 9.4 9.6 1.5 5.7 2.8 0.5 3.7 2.0

1,000 
SRS -0.1 2.5 1.6 -0.0 1.1 1.0 0.0 0.6 0.8
POI(X) 7.1 2.2 7.2 0.2 1.3 1.1 -0.2 0.7 0.9
POI(X+Y) 9.1 2.2 9.2 1.4 1.2 1.8 0.5 0.7 1.0
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4.4.2  LASSO variance estimates 
 

Tables 4.3 and 4.4 list the 95% nominal coverage and percent-bias for each of the two asymptotic closed-

form variance estimators developed in this research, as well as the naive bootstrap variance estimate of the 

LASSO calibration estimator. 

For continuous outcomes, bootstrap variances have coverages that are consistently close to 95% under 

SRS and  POI X  sampling schemes for both sample sizes. Under  POI X+Y  sampling scheme, there is 

very modest undercoverage in Table 4.3. The closed-form variances have coverages that are sensitive to 

both sample size and sampling scheme, with smaller samples tending to undercover, particularly for the 

 POI X+Y  sampling scheme. The difference in coverage of variance estimates between small and large 

sample sizes is expected, since the variance estimates are asymptotic and improve over larger samples. In 

terms of bias of variance estimators, there is evidence that bias reduces as SNR increases. With the same 

SNR, both asymptotic closed-form and bootstrap variances have smaller bias given predictors with high 

correlations relative to predictors with high effect sizes. Closed-form variances tend to underestimate the 

empirical variance, especially when the sample size is small. Overall, there is very little difference between 

the two closed-form variance estimates. Bootstrap variance tends to overestimate the empirical variance, 

but the absolute bias is generally smaller than those of the closed-form variance estimates. 

For binary outcomes, both asymptotic closed-form and bootstrap variance estimates are sensitive to 

sample size, sampling scheme, and SNR. Bootstrap variance coverages are consistently close to 95% under 

SRS and  POI X  for both sample sizes and all population types, but coverages range from 75% to 94% 

under  POI X+Y .  Under  POI X+Y ,  the bootstrap variance coverages are better with sample size 250 

than with sample size 1,000 when the bias becomes a larger part of the RMSE, and better with high-

correlation populations than with low-correlation populations. In terms of coverage, closed-form variances 

show a similar trend under  POI X+Y  as bootstrap: better coverage with smaller samples than bigger 

samples, and better coverage with high-correlation populations than with low-correlation populations. 

Under SRS and  POI X ,  closed-form variance coverage improves as sample size increases. In terms of 

bias, both bootstrap and closed-form variances have smaller bias with larger sample sizes. Holding sample 

size fixed, closed-form variance estimates have larger bias as SNR increases. The same trend is not observed 

in bootstrap variance estimates. Similar to continuous outcome results, closed-form variance tends to 

underestimate the empirical variance, especially when the sample size is small. Unlike continuous outcome 

results, there is evidence that the g  weighted closed-form variance estimates have better bias-properties 

than unweighted closed-form variance estimates. The bootstrap variance tends to overestimate the empirical 

variance. However, the biases are much smaller than for the closed-form variance estimates. 
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Table 4.3 
95% nominal coverage and %bias of variance estimates for LASSO 
 

Continuous outcome coverage %bias 
Population n scheme LASSOv LASSO

gv LASSO
bootv LASSOv  LASSO

gv LASSO
bootv

low/low 

250 
SRS 91.7% 91.8% 95.4% -22.6% -22.3% 2.9%
POI(X) 91.2% 91.2% 96.1% -25.1% -24.5% 5.7%
POI(X+Y) 89.6% 89.9% 95.4% -23.5% -22.8% 7.9%

1,000 
SRS 93.2% 93.2% 93.8% -7.3% -7.2% -0.3%
POI(X) 94.0% 93.9% 95.5% -5.7% -5.3% 6.6%
POI(X+Y) 90.0% 90.1% 92.1% -4.9% -4.4% 7.9%

low/high 

250 
SRS 91.5% 91.5% 95.7% -22.6% -22.3% 6.2%
POI(X) 90.9% 91.2% 96.4% -25.4% -24.9% 8.8%
POI(X+Y) 90.0% 90.2% 95.1% -24.5% -23.7% 9.9%

1,000 
SRS 93.4% 93.5% 94.3% -6.6% -6.5% -0.1%
POI(X) 94.1% 94.2% 95.9% -4.0% -3.5% 7.6%
POI(X+Y) 90.7% 90.7% 92.7% -2.9% -2.3% 9.6%

high/low 

250 
SRS 92.3% 92.2% 95.4% -17.4% -17.1% 2.0%
POI(X) 92.5% 92.6% 95.8% -17.9% -16.1% 6.4%
POI(X+Y) 91.2% 91.8% 96.5% -17.4% -15.4% 7.1%

1,000 
SRS 93.5% 93.5% 94.4% -6.5% -6.4% -0.9%
POI(X) 94.1% 94.0% 95.4% -5.0% -3.1% 5.7%
POI(X+Y) 91.9% 92.3% 93.4% -6.0% -3.9% 5.0%

high/high 

250 
SRS 92.3% 92.3% 95.2% -19.6% -19.3% 2.2%
POI(X) 92.0% 92.3% 96.1% -19.6% -17.8% 7.4%
POI(X+Y) 91.2% 91.8% 95.6% -19.1% -16.9% 8.3%

1,000 
SRS 93.4% 93.4% 94.5% -6.5% -6.4% -0.7%
POI(X) 94.0% 94.5% 95.6% -4.7% -2.8% 6.7%
POI(X+Y) 92.2% 92.4% 93.4% -5.6% -3.3% 6.1%

 

Table 4.4 
95% nominal coverage and %bias of variance estimates for LASSO 
 

Binary outcome coverage %bias 
Population n scheme LASSOv LASSO

gv LASSO
bootv LASSOv  LASSO

gv LASSO
bootv

low/low 

250 
SRS 89.8% 90.0% 95.9% -28.1% -27.8% 9.2%
POI(X) 88.1% 88.6% 96.7% -37.3% -35.3% 9.2%
POI(X+Y) 79.0% 79.9% 91.2% -38.7% -35.9% 8.0%

1,000 
SRS 92.8% 92.8% 93.5% -11.9% -11.8% -3.5%
POI(X) 92.0% 92.8% 95.7% -17.9% -15.5% 1.0%
POI(X+Y) 68.6% 69.6% 74.6% -18.5% -14.9% 0.5%

low/high 

250 
SRS 86.8% 87.0% 94.9% -37.7% -37.3% 11.3%
POI(X) 85.4% 86.1% 95.5% -42.9% -41.2% 14.4%
POI(X+Y) 78.7% 80.1% 92.6% -44.0% -41.3% 14.4%

1,000 
SRS 94.4% 94.3% 95.2% -5.5% -5.4% 5.8%
POI(X) 91.8% 92.1% 94.9% -20.5% -18.6% -1.8%
POI(X+Y) 76.8% 77.8% 82.9% -20.4% -16.9% -1.3%

high/low 

250 
SRS 89.2% 89.1% 94.4% -28.5% -28.1% 0.4%
POI(X) 89.0% 90.1% 95.5% -31.9% -25.3% 12.7%
POI(X+Y) 85.7% 88.4% 93.8% -33.9% -25.4% 10.9%

1,000 
SRS 93.9% 93.9% 95.6% -6.3% -6.2% 3.5%
POI(X) 92.6% 93.4% 94.8% -16.5% -9.2% 1.9%
POI(X+Y) 83.3% 85.4% 88.1% -15.0% -5.0% 5.2%

high/high 

250 
SRS 82.8% 82.8% 93.8% -44.6% -44.3% -6.4%
POI(X) 83.6% 85.5% 95.1% -44.3% -39.4% 3.8%
POI(X+Y) 82.9% 85.1% 93.8% -45.1% -38.4% 4.6%

1,000 
SRS 94.3% 94.4% 96.1% -7.8% -7.6% 6.3%
POI(X) 91.3% 92.2% 94.0% -20.0% -13.8% 0.2%
POI(X+Y) 86.3% 88.6% 91.5% -18.1% -9.2% 2.8%
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5  Application to National Health Interview Survey (NHIS) 
 
5.1  NHIS and ACS data 
 

We next apply LASSO calibration to National Health Interview Survey (NHIS) 2013 to estimate the 

total number of adults (age 18 or older) diagnosed with cancer in the population. The National Health 

Interview Survey is a nationally representative sample of non-institutionalized civilian households collected 

by a multi-stage area-probability sampling (Centers for Disease Control and Prevention, 2005). Each month, 

health-related data on a cross-sectional sample of people in selected households are obtained by face-to-

face interviews. The data provides pseudo-primary-sampling-unit (PSU), pseudo-strata, and sampling 

weights to allow for weighted estimates with complex survey design. In addition to health-related measures, 

NHIS also collects demographic data. Our goal is to assess our LASSO estimator by treating the unweighted 

NHIS sample as reflective of a non-probability sample, and explore how GREG and LASSO calibration 

compare with the design-weighted estimator. 

To calibrate NHIS on a set of demographic and income-related variables, we use the American 

Community Survey (ACS) 2013 micro-data as the benchmark data. ACS samples are households selected 

through multi-stage area-probability sampling from 3,143 counties of the U.S. The design of ACS is to 

improve estimates of small areas between the decennial census long-form samples. Around three million 

households are selected each year, with measures collected on household types and individual demographics 

within the households. ACS also collects data from group-quarters, which are excluded from this analysis. 

For ACS 2013, the sample size for adults is 2,317,301. The NHIS 2013 sample size is 34,201 after removing 

242 cases with missing values on demographic variables. For the purposes of this analysis, we treat the 

weighted estimates from the ACS as known population totals, a reasonable assumption given the differences 

in sample size. 

 
5.2  Estimators 
 

The outcome variable of interest is whether a person has been diagnosed with cancer. Define the binary 

indicator for the outcome variable:  

 
1: if person has been diagnosed with cancer

=
0: otherwise.

i

i
y





  

We first use the NHIS 2013 sampling weights, NHIS ,w  and design variables to obtain an unbiased estimate 

of the population total, 
=1

= .
N

y i
i

T y  Then we assume that the NHIS 2013 sample is collected from a 

simple-random-sampling, with initial design weights = ,d A N n  where N  is the population total obtained 

from ACS, and n  is the sample size of NHIS. We calibrate d A  by a set of demographic and income variables 

with traditional GREG calibration and LASSO calibration. Finally, as a compromise between GREG and 

LASSO, we consider model-assisted calibration to a linear model for iy  instead of the LASSO using (2.7); 
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note that, when ˆ i  is computed using the same linear model as in GREG, the point estimates of the total 

will correspond, even though the calibration weights will differ. Thus, we generate seven estimates: 

 

1. NHIS NHISˆ = :
A

y iii s
T w y

  Estimate obtained with NHIS weights.  

2.  HTSRSˆ = :
A

y i
i s

T N n y
  Estimate obtained with weights = .d A N n  

3. GREG1 GREG1ˆ = :
A

y iii s
T w y

  Estimate obtained by calibrating d A  with GREG using all calibration 

variables.  

4. GREG1MC GREG1MCˆ = :
A

y iii s
t w y

  Estimate obtained by model-assisted calibration to linear model 

using predictors in GREG1.  

5. GREG2 GREG2ˆ = :
A

y iii s
T w y

  Estimate obtained by calibrating d A  with GREG using only 

calibration variables chosen using backward stepwise variable selection.  

6. GREG2MC GREG2MCˆ = :
A

y iii s
t w y

  Estimate obtained by model-assisted calibration to linear model 

using predictors in GREG2.  

7. LASSO LASSOˆ = :
A

y iii s
T w y

  Estimate obtained by model-assisted calibration with LASSO.  

 
The variance of NHISˆ

yT  is the linearization variance estimate of total, accounting for sampling-stratum, 

primary-sampling-units, and survey weights in the NHIS 2013 sample. Variances of HTSRS, GREG1, and 

GREG2 are linearization variance estimates with weights ,d A GREG1,w  and GREG2w  respectively. We obtain 

the variance of LASSO estimator through naive bootstrap. 

 
5.3  Working models 
 

Table 5.1 lists calibration variable names, labels, values, and distributions in this analysis. The first 

column is the unweighted distribution of variables in the NHIS sample. The second column contains variable 

distributions in the NHIS sample, weighted by NHISw  person-level weights. The third column is the 

distribution of variables in the population obtained from the ACS benchmark data. Missing income category 

is included as a separate category to capture the difference in missing patterns between NHIS and ACS. 

Including a missing category also allows us to maintain the analytic sample size. Relative to ACS, the 

unweighted NHIS sample has higher proportions of females, widowed/divorced/separated, and fewer 

proportion of non-Hispanic whites. After weighting, the NHIS distributions of gender and race are close to 

the benchmark’s, and only marital status categories show some differences. 

We use an unweighted linear model with backward-stepwise variable selection to determine the working 

model for GREG2. The final variables included in the model for GREG2 are age, education, race, 

employment status (yes/no), and family income. For standard GREG and LASSO calibration, we use all 

available variables. 
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Table 5.1 
Calibration variables 
 

   NHIS ACS 

No weights Person-level weights Person-level weights 

Region Northeast 16% 18% 18% 

Midwest 20% 23% 21% 

South 37% 37% 37% 

West 26% 23% 23% 

Age 18-29 19% 21% 21% 

30-39 17% 17% 17% 

40-49 16% 18% 18% 

50-59 17% 18% 18% 

60-69 15% 14% 14% 

70-79 9% 8% 8% 

80+ 6% 4% 5% 

Gender Male 45% 48% 48% 

Female 55% 52% 52% 

Education Less than high school 16% 14% 13% 

High school or less  26% 26% 28% 

Some college 20% 20% 23% 

College graduate 29% 30% 25% 

Post-graduate 10% 10% 10% 

Race/Ethnicity Non-Hispanic white 60% 66% 66% 

Non-Hispanic black 15% 12% 12% 

Hispanic 17% 15% 15% 

Other 8% 7% 7% 

Marital Status Married/partnered 49% 60% 52% 

Widowed/divorced/separated 27% 18% 20% 

Never married 24% 22% 28% 

Employed Yes 35% 33% 39% 

No 65% 67% 61% 

Income 1st quartile 22% 15% 19% 

2nd quartile 20% 17% 20% 

3rd quartile 21% 22% 20% 

4th quartile 21% 28% 19% 

missing 17% 19% 22% 

 
5.4  Results 
 

Table 5.2 lists the estimates, standard errors (SE), root mean square error treating the correctly 

weighted NHIS as the true value (RMSE), percent-deviate from the NHIS estimate: %deviate =  

 NHIS NHISˆ ˆ ˆ100 ,y yT T T  and the standard deviation and minimum and maximum of the weights associated 

with a given estimator. We treat NHIS estimate as the unbiased estimate because it is calculated with 

probability-based sampling weights provided by NHIS. Without any weighting adjustment, HTSRS shows 

a positive bias of 5.9%. The GREG2 estimator reduces this bias from 5.9% to 2.0%, the GREG1 estimator 

reduces bias to 1.8%, while LASSO estimator reduces the bias to 0.9%. By definition, use of the model-
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assisted estimator using linear predictors will yield the same estimator as the GREG model; however the 

variability is substantially reduced. In this analysis, if NHIS were a non-probability sample, without 

weighting adjustment, we would have over-counted the number of adults with cancer by 1.18 million. With 

traditional calibration, the error is reduced to an over-count of 365 thousand (without variable selection) or 

392 thousand (with variable selection). LASSO calibration further reduces the over-count to 175 thousand. 

 
Table 5.2 
Results for estimating total number of individuals with cancer. % deviate is the difference to NHIS estimate 
divided by the NHIS estimate 
 

Estimator T̂  SE RMSE % deviate from NHIS SD (min, max) of weights
NHIS 19,889,327 492,263 492,263 0.00% 5,913 (168; 93,244)
HTSRS 21,070,498 362,883 1,235,657 5.94% 0 (6,866; 6,866)
GREG1 20,254,449 375,064 523,438 1.84% 2,474 (-2,409; 16,679)
GREG1 MC 20,254,449 349,100 505,158 1.84% 269 (6,181; 7,326)
GREG2 20,281,603 367,900 537,802 1.97% 2,039 (-626; 13,947)
GREG2 MC 20,281,603 349,552 525,421 1.97% 260 (6,215; 7,291)
LASSO 20,064,671 347,586 389,309 0.88% 323 (5,786; 7,168)

 
As expected, the standard error of the NHIS estimate is the largest, as it properly incorporates complex 

survey design. If the calibration working model correctly captures the relationship between the outcome 

variable and the calibration variables, we anticipate that the calibration estimator standard errors to be 

smaller than HTSRS estimator’s. This is not the case for either of the GREG estimator, where the standard 

error is larger than HTSRS’s, although the RMSE is smaller due to the reduction in bias. In addition, the 

standard GREG estimator has a standard error about 2.0% greater than the backward selection GREG 

estimator, a feature offset by its estimated 6.6% reduction in bias (although this is insufficient to reduce 

RMSE); use of the model-assisted GREG estimator does reduce the standard error, and the root mean square 

error, by 5-7% and 2-3% respectively, over the standard GREG estimates. For LASSO calibration, we do 

observe a smaller standard error than HTSRS’s, even with the bootstrap variance estimate that tends to 

overestimate. Without using the correct design weights, LASSO calibration produced the most accurate 

estimate of a population total while providing the smallest standard error among the estimators in this 

application. This is in spite of the fact that the standard deviation of the LASSO calibration weights were 

only about one-seventh as variable as the GREG weights, reflected in the smaller standard error of the 

estimator itself and greatly reduced RMSE. 

 
6  Conclusion 
 

In this manuscript, we developed the LASSO calibration estimator of population totals, LASSOˆ ,yT  given 

population auxiliary data. We also derived closed-form variance estimates for LASSOˆ .yT  Simulation results 

show that the point estimates are approximately unbiased under simple-random sampling and informative 
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sampling. For sample selections that are related to analysis variables, LASSO was able to significantly 

reduce sample bias even without the correct design weights. LASSO tends to outperform stepwise-selected 

working models when covariates are highly collinear. For analysis with many categorical variables, where 

there are natural correlations between the categories, LASSO calibration estimator can perform better than 

traditional calibration estimators, even if the effect sizes are small. The improvement is modest in the 

continuous variable setting, but substantial when the outcome of interest is binary, as shown in simulations 

and in the NHIS data example. We have demonstrated theoretically and through simulations that LASSO 

calibration holds great promise in making unbiased inference of population totals from non-probability 

samples. Although asymptotic closed-form variance estimates did not produce very accurate nominal 

coverage, the naive bootstrap is a viable alternative approach. In an application to estimate population total 

of individuals diagnosed with cancer, without correct design weights, the LASSO calibration estimator was 

able to produce an estimate that is the closest to the estimate based on correct survey weights. LASSO 

calibration estimator also has the smallest standard error of all the estimators considered, although the 

bootstrap variance estimate that was used did not fully account for the clustering in the NHIS, which 

generally increases standard errors. The application shows that LASSO calibration can generate inference 

to the population for a specific outcome variable, and the inference is both more accurate and precise than 

traditional calibration estimators. 

The question arises when use of LASSO model-assisted calibration should be used instead of traditional 

calibration methods such as GREG. Both theoretical and empirical results in this paper suggest that there is 

little to be lost in terms of statistical efficiency to use LASSO model-assisted calibration, it does require 

additional effort on the part of the analyst to implement. While we cannot give specific cutoffs, our analysis 

suggests that this effort will be worthwhile when a) there are large numbers of potential calibration variables, 

b) many of these calibration variables are likely to be highly correlated, and c) the outcome is binary rather 

than continuous. We believe that conditions a) and b), at least, are increasing likely to be encountered in 

non-probability settings, where administrative datasets might provide these types of calibration variables 

and subsets of data obtained through various means will contain the core variable of interest. 

While LASSO provides particularly convenient and rapid implementation, there are, of course, other 

modern regression methods that could be considered in addition to LASSO to develop penalized regression 

models for high-dimensional model-assisted regression, including approaches such as ridge regression, 

principle components, or Bayesian additive regression trees (Chipman, George and McCulloch, 2010). 

These approaches provide opportunity for further research in this area. 

Finally, we note that this work is only a part of a larger and rapidly expanding literature on inference 

from non-probability surveys. In addition to the work of McConville et al. (2017), the “Mr. P” (multi-level 

regression and poststratification or MRP) approach of Wang et al. (2015) also uses high dimensional 

covariates to adjust non-probabilities samples, by use of a hierarchical model rather than penalized 

regression. Quasi-randomization (Elliott, 2009; Elliott, Resler, Flannagan and Rupp, 2010; Elliott and 

Valliant, 2017) and sample matching (Rivers, 2007; Vavreck and Rivers, 2008) also provide alternatives 
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that use data from either known population quantities or probability sampling estimates to deal with 

selection bias issues in non-probability samples. Each have their strengths and weaknesses relative to each 

other and to model-assisted LASSO. The MRP approach makes distributional assumptions that might 

improve efficiency, but might reduce robustness, and is non-trivial to implement in its fully Bayesian form. 

Quasi-randomization forfeits the link to a particular outcome variable, making the weights it develops 

general purpose but likely less effective, while sample matching requires intervention at the design stage to 

sample elements from the non-probability frame that match elements from the population, ala quota 

sampling. The decision to use model-assisted LASSO calibration should be made in the context of these 

tradeoffs. 
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Appendix 
 

Determining estimates for adaptive LASSO 
 

In practice, we do not observe the theoretical rate of growth of ,n  which optimize model fit measures 

such as AIC or BIC, unless we have obtained many samples of the same population with various sample 

sizes. Given a sample, the choices of n  and   depend on the modeler. In R glmnet  implementation 

(Friedman et al., 2010), a range of n  is determined by the following scheme:   

1. Set = 0.  

2. Determine max
n  by finding the smallest n  that sets all coefficients to 0.  

3. If sample size n  is larger than the number of parameters in the regression model, set 
maxmin = 0.0001 .n n   If sample size n  is smaller than the number of parameters, set 

maxmin = 0.01n n   (to set parameters to 0 sooner).  

4. Generate a grid of ,n  typically 100 equally spaced points between min
n  and max.n  

 

The initial range of values of n  is determined independently of .  Choices of   are less data-driven. 

Some modelers choose one of = 0.1, 0.5, 1, 2.  Here we determine  ,n   through cross-validation as 

follows:   

1. Obtain MLEˆ1 / | | .j j   

2. Determine 100 equally spaced values of n  based on R glmnet ’s implementation.  

3. For each pair  , ,n  n  from Step 2, and = 0.1, 0.5, 1, 2,  split data into 5 folds. Use 4 

folds to obtain ˆ.β  



138 Chen, Valliant and Elliott: Model-assisted calibration of non-probability sample survey data using adaptive LASSO 
 

 
Statistics Canada, Catalogue No. 12-001-X 

4. Apply β̂  to the last fold not used to estimate β̂  and calculate a metric. For continuous ,y  we 

calculate the mean-absolute-error (MAE), 
 

ˆ .
A k

i i
i s

y


  For binary ,y  we calculate the area 

under curve (AUC) (calculated through R ::glmnet auc  function).  

5. Average the 5 metrics for each pair of  , ,n   and choose the pair with the best average metric: 

minimum MAE for continuous ,y  maximum AUC for binary .y  
 

The adaptive LASSO coefficient estimates are then obtained by solving equations (3.1) or (3.2) in 

Section 3.1 given the selected  , .n   The R code used to perform cross-validation is provided in the on-

line supplemental material. 

 
Asymptotic unbiasedness and variance of model-assisted LASSO calibration 
estimator of a population total 
 

Lemma 1: Assume the superpopulation model:  

                                               2 2= , , = .x x β xk k k k k kE y V y      

Let B  be the finite-population quasilikelihood estimate of ,β .B β  Under conditions (1)-(5) in 

Section 3.2, the model-assisted asymptotic estimator of population total is:  

                                                       
=1

ˆ =
A

N
MC A MC MC

y i i i pi
i s i

N
T d y B B o

n
 



    
 

   (A.1) 

where  

                                                    

 

   

 
=1

2

=1

= ,

= .

x Bi i

N
i i

iMC
N

i
i

y y
B

 

 

 

 






  

 

Proof. The proof is adapted and expanded from the proof of Theorem 1 in Wu and Sitter (2001), with slight 

modifications in notations to be consistent with this paper. We begin by deriving the asymptotic model-

assisted estimator for a population mean, MCMC 1 ˆˆ = yy N T  (see equation (2.7)). By conditions (2) and (3), 

the second order Taylor series expansion of  ˆ,x Bi  around B  is:  

    
         *

2

=

=

, ,ˆ ˆ ˆ ˆ, = , |t B

t B

x t x t
x B x B B B B B B B

t t t

T
Ti i

i i
T

 
 

           
    

 (A.2) 

for  * ˆ ,B B B  or  ˆ, .B B  Let  

 

 
 

 
 

*

=

2
*

=

,
, = |

,
, =

t B

t B

x t
h x B

t

x t
k x Β

t t

i
i

i
i

T









 
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Note that h  is a vector of length m  and k  is a matrix of size ,m m  where m  is the number of parameters 

in .β  By conditions (2) and (3),  

     max , ,h x B x Bi i ih  (A.3) 

  * *
,max ( , ) , .k x B x Bk j i ik  (A.4) 

Conditions (1) and (3) imply that  

                                                               ˆ, = , 1x B x Bi i pO n    (A.5) 

                                                                           1 .i pO n   (A.6) 

 

By equation (2.2) in Section 2.1 and the boundedness conditions of (2) and (3) in Section 3.2.2 imply  

                 

       

     
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1 1 1
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1ˆ= , , .

x B x B h x B B B

B B k x B B B

x B h x B B B
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        

  
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(A.7)

 

By conditions (1), (4), and equation (A.7):  
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1 1
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(A.8)

 

Using conditions (1) and (3),  
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 1pO n 

 

(A.9)

 

for = .
A A

A A
ii ii s i s

d d 
    
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Then from (A.2) and (A.9) and using conditions (1)-(3), we have  

              
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Similarly,  

      2 21 1ˆ ˆ = 1 .
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From (A.10) and (A.11) we have:  
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Thus  ˆ = 1 ,MC MC
pB B o  and we have:  
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Since  = ,pN O N  we have        1 1 = .P p p pN o n O N o n o N n   Thus,  
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Theorem 2: Suppose the parameters in a full regression model have both zero and non-zero components, 

without loss of generality, let the first p  be non-zero and the last q  be zero:  
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Under conditions (1)-(5), the asymptotic LASSO calibration estimator of total is:  
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Proof. Under condition (5), the adaptive LASSO regression satisfies the oracle property through 

Theorems 1 and 4 in Zou (2006):  
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where  =C B  is the covariance matrix of  1B  under the linear model, and  1=C BI   is the inverse 

of Fisher information matrix of  1B  under generalized linear model. By Slutsky’s theorem, the oracle 

property implies    1ˆ = 1 .B B pO n  By condition (1) and Lemma 1: 
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Theorem 3: ˆ LASSO
yT  is model-unbiased.    

 

Proof. Under the assumption of our theoretical framework, the superpopulation parameters are a subset of 

the full LASSO regression parameters, we can prove the model-unbiasedness of ˆ LASSO
yT  by taking 

expectations with respect to model .  First note that:  
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Thus, as long as LASSO regression parameters include the superpopulation parameters, LASSOˆ
yT  is 

model-unbiased regardless of design weights. This property is essential in non-probability samples, where 

there are no initial design weights to guarantee unbiasedness. 
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