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In this issue 

 
Dear readers, 
 

We are pleased to be the co-editors of this special issue of Survey Methodology. It contains 10 articles 

selected from all the presentations given at the 9th Colloque francophone sur les sondages, held in Gatineau 

from October 11 to 14, 2016. 

The first three articles of this issue discuss various aspects of small area estimation. The article by Rao, 

Rubin-Bleuer and Estevao proposes an estimator of the design mean square error and studies its properties. 

In their article, Bertarelli, Ranalli, Bartolucci, D’Alo and Solari consider a latent Markov model to estimate 

the number of employed and unemployed people for various small areas and apply their model to data from 

the Italian Labour Force Survey. Finally, the article by De Moliner and Goga compares four methods for 

estimating mean electricity consumption curves for small areas. 

The next three articles deal with sampling problems. The article by Grafström and Matei introduces 

sample coordination procedures for spatially balanced sampling designs. The article by Ida, Rivest and 

Daigle reviews two balanced sampling methods and compares them by means of a simulation study. Rebecq 

and Merly-Alpa study the problem of sample allocation for stratified sampling designs with simple random 

sampling in each stratum. The authors propose a compromise between optimal allocation and proportional 

allocation that leads to weakly dispersed weights. 

The last four articles in this issue examine different aspects of survey sampling methods. The article by 

Juillard and Chauvet studies the problem of point and variance estimation in the presence of unit non-

response in panel surveys. In their article, Bosa, Godbout, Mills and Picard propose a decomposition of the 

variance in the presence of imputation, which is used to quantify the effect of converting a non-respondent 

to a respondent. They also evaluate their method through a simulation. Deroyon and Favre-Martinoz extend 

two methods for determining the winsorization threshold to the case of Poisson sampling designs and 

compares them empirically. Finally, the article by Tirari and Hdioud proposes a weighting effect to quantify 

the impact of calibration on accuracy using an approach based on the design and the model. 
 

We hope you enjoy this issue! 
 

Jean-Francois Beaumont and David Haziza1. 

Guest co-editors of this special issue 
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Measuring uncertainty associated with model-based small 
area estimators 

J.N.K. Rao, Susana Rubin-Bleuer and Victor M. Estevao1 

Abstract 

Domains (or subpopulations) with small sample sizes are called small areas. Traditional direct estimators for 
small areas do not provide adequate precision because the area-specific sample sizes are small. On the other hand, 
demand for reliable small area statistics has greatly increased. Model-based indirect estimators of small area 
means or totals are currently used to address difficulties with direct estimation. These estimators are based on 
linking models that borrow information across areas to increase the efficiency. In particular, empirical best (EB) 
estimators under area level and unit level linear regression models with random small area effects have received 
a lot of attention in the literature. Model mean squared error (MSE) of EB estimators is often used to measure 
the variability of the estimators. Linearization-based estimators of model MSE as well as jackknife and bootstrap 
estimators are widely used. On the other hand, National Statistical Agencies are often interested in estimating the 
design MSE of EB estimators in line with traditional design MSE estimators associated with direct estimators for 
large areas with adequate sample sizes. Estimators of design MSE of EB estimators can be obtained for area level 
models but they tend to be unstable when the area sample size is small. Composite MSE estimators are proposed 
in this paper and they are obtained by taking a weighted sum of the design MSE estimator and the model MSE 
estimator. Properties of the MSE estimators under the area level model are studied in terms of design bias, relative 
root mean squared error and coverage rate of confidence intervals. The case of a unit level model is also examined 
under simple random sampling within each area. Results of a simulation study show that the proposed composite 
MSE estimators provide a good compromise in estimating the design MSE. 

 
Key Words: Area and unit level models; Composite estimators of design mean squared error; Empirical best linear 

unbiased predictor; Estimating design mean squared error. 

 
 

1  Introduction 
 

Sample survey data are often used to produce estimates of domain (subpopulation) totals or means. 

Traditional direct estimators for domains, including calibration estimators that use known population totals 

of auxiliary variables, are designed to provide reliable estimators for domains with large domain-specific 

sample sizes. However, direct estimators do not provide adequate precision for domains with small sample 

sizes (called small areas). Yet the demand for reliable small area statistics has greatly increased in recent 

years. It is therefore necessary to resort to indirect estimators that borrow information from related areas 

through known auxiliary information such as censuses and administrative records, to increase the efficiency. 

Indirect estimators based on explicit linking models are widely used; in particular, empirical best (EB) 

estimators based on area level or unit level linear regression models with random area effects. A detailed 

account of EB estimation under those models is given by Rao and Molina (2015), Chapters 6 and 7. 

Section 2 presents EB estimators of small area means under basic area level and unit level models. 

EB-type model based estimators are often deemed suitable by National Statistical Agencies to produce 

official statistics, after careful external evaluations. For example, Beaumont and Bocci (2016) compared EB 

and direct estimates of unemployment rate for small areas obtained from the Canadian Labour Force Survey 
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(LFS) to “gold standard” estimates obtained from the much larger National Household Survey (comparable 

to long form census) and found that the relative error of EB estimates is much smaller than the corresponding 

direct estimates. The authors used a basic area level linear regression model with random area effects to 

produce EB estimates. External evaluations were first used in the pioneering paper by Fay and Herriot 

(1979) under a basic area level model to produce estimates of mean income for small places in the United 

States. 

Model mean squared error (MSE) of the EB estimators is often used to measure the variability of the 

estimators. In particular, linearization-based estimators of model MSE as well as jackknife and bootstrap 

estimators are widely used. Section 3 gives a brief account of model-based MSE estimation, including 

estimators based on unconditional and conditional frameworks. 

The literature on estimating model MSE is very impressive, but National Statistical agencies are often 

interested in estimating the design MSE of EB estimators in line with the traditional design MSE estimators 

of direct estimators for large areas with adequate sample sizes (Pfeffermann and Gilboa, 2017). Estimators 

of design MSE of EB estimators for the basic area level model can be obtained but they tend to be unstable 

when the area sample size is small. To address this problem, Section 4 proposes composite MSE estimators 

obtained by taking a weighted sum of the design MSE estimator and the model MSE estimator. The case of 

unit level models is also studied under simple random sampling within areas. Section 5 reports the results 

of simulation studies on the performance of the proposed composite MSE estimators in terms of design 

absolute relative bias (ARB), relative root mean squared error (RRMSE) and coverage of confidence 

intervals. Both area level and unit level models are considered in the simulation study. Finally, some 

conclusions are given in Section 6. 

 
2  EB estimators 
 

In this section, we present EB estimators of small area means or totals, denoted by ,i  for m  areas with 

small sample sizes. For area level models we assume that direct estimators î  and associated area level 

covariates iz  are available for the m  areas, where iz  is a 1p   vector. In the case of unit level models, 

we assume that unit level data   , , 1, , ; 1, ,ij ij iy j n i m x    are available for the sampled areas, 

where in  is the sample size in area i  and ijx  is a 1p   vector of covariates that can include area level 

covariates. We assume that the area population means iX  are known. 

 

2.1  Basic area level model 
 

We assume that the direct estimator î  is design unbiased (either exactly or approximately for large 

overall sample size ).n  For example, estimators calibrated to known overall means of auxiliary variables 

are approximately unbiased. We can express this assumption as a sampling model ˆ ,i i ie    where the 

sampling error ie  has zero mean and variance .i  We further assume that the sampling variance i  is 

known and not random. In practice, the estimators of the sampling variances are smoothed and the resulting 

smoothed estimator is taken as a proxy for .i  Beaumont and Bocci (2016) propose a method of smoothing 
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the sampling variances in the context of Canadian LFS. The model linking the areas assumes that the i  are 

random, obeying the “matching” linking model ,i i iv   z β  where the random area effect iv  has zero 

mean and variance 2
v  and is independent of the sampling error .ie  We further assume normality of iv  

and .ie  

Combining the sampling model with the linking model leads to the basic area level model 

    iid id
2ˆ , 0, , 0, , 1, , .i i i i i v i iv e v N e N i m      z β    (2.1) 

Main advantages of model (2.1) are that it takes account of the sampling design through the sampling 

model on the direct estimators and that it requires only area level covariates, which are more readily 

available than unit level covariates. 

For known model parameters  2, ,vβ  the “best” estimator of i  is given by 

    2ˆ ˆ, , 1 ,B
i i i v i i i iE          β z β   (2.2) 

where  2 2 .i v v i      The best estimator (2.2) is unbiased for i  in the sense that   0,B
i iE     

where the expectation is with respect to the assumed model (2.1), that is, design-model expectation (Rubin-

Bleuer and Schiopu-Kratina, 2005). It follows from (2.2) that more weight is given to the direct estimator 

î  if the model variance 2
v  is large relative to the sampling variance ,i  and more weight given to the 

synthetic estimator 
iz β  if the sampling variance is large. 

The mean squared error (MSE) of the best estimator under the model (2.1) is given by 

     2
MSE ,B B

i i i i iE         (2.3) 

where the term i i   is often denoted by  2
1 .i vg   It follows from (2.3) that the optimal estimator leads 

to significant reduction in MSE over the direct estimator if i  is small or the model variance is relatively 

small compared to the total variance 2 .v i   This result provides a convincing justification for using the 

model-based approach to produce small area estimates. 

In practice, the model parameters are not known and we replace the parameters in (2.2) by restricted 

maximum likelihood (REML) estimators  2ˆ ˆ, vβ  to get the empirical best (EB) estimator: 

  EBˆ ˆ ˆˆ ˆ1 .i i i i i      z β  (2.4) 

Rao and Molina (2015), Chapter 6, give details of REML estimation of the model parameters. 

 
2.2  Basic unit level model 
 

We now turn to a basic unit level model which uses unit level sample data {( , ), 1, , ;ij ij iy j nx   

1, , },i m   where in  is the sample size in area .i  We assume that the area population means iX  are 

known. We further assume a basic unit level nested error linear regression model for the population and the 

same model holds for the sample (Battese, Harter and Fuller, 1988). The sample model is given by 

 , 1, , ; 1, , ,ij ij i ij iy v e j n i m     x β    (2.5) 
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where the area random effects  iid
20,i vv N   are assumed to be independent of the unit errors 

 iid
20, .ij ee N   Unit level models can lead to significant gains in efficiency over area level models 

because the model parameters can be estimated more accurately using all the observations in the overall 

sample, unlike area level models. 

For known parameters  2 2, , ,v e β  the “best” estimator of the area mean iY  is given by 

    2 2ˆ , 1, , ; , 1, , , , , ,B
i i ij i ij i v e i i i iY E Y y j n j N a y          x β X β x β   (2.6) 

where iy  and ix  are the sample means,  1i i i ia f f    with sampling fraction i i if n N  and 

 2 2 2 ,i v v e in      and iN  is the number of population units in area i  (Rao and Molina, 2015, 

Chapter 7). If the area population size iN  is large and 0,if   then (2.6) reduces to a weighted combination 

of the “sample regression” estimator  i i iy  X x β  and the regression synthetic estimator iX β  with 

weights i  and 1 i  respectively. We denote this approximation to ˆ B
iY  by ˆ .B

i  As the area sample size 

in  increases, the optimal estimator gives more weight to the sample regression estimator. In practice, we 

replace the model parameters by REML estimators  2 2ˆ ˆ ˆ, ,v e β  to get the EB estimator EBˆ
iY  or EBˆ .i  

The EB estimator under the unit level model (2.5) does not account for the survey weights ,ijw  unlike 

the area level model. As a result, the EB estimator is not design consistent as the area sample size increases, 

unless the weights are all equal within the area. 

The MSE of ˆ B
i  is equal to    2 2 2

1 ,i v e i e ig n     while the MSE of the sample regression 

estimator is equal to 2 .e in  It now follows that the optimal estimator leads to significant reduction in MSE 

over the sample regression estimator if i  is small or the model variance 2
v  is small relative to the total 

variance 2 2 .v e in   

 
3  Model-based MSE estimators 
 

In this section, we focus on the model-based MSE of EB estimators under the basic area level and unit 

level models. No closed form expressions for MSE exist, except for a few special cases. This problem has 

attracted much attention in the SAE literature, leading to second-order approximations to MSE which in 

turn are used to obtain second-order unbiased estimators of MSE under the assumed models. 

 
3.1  Basic area-level model 
 

We focus on REML estimators of model parameters, denoted β̂  and 2ˆ .v  A second-order unbiased 

estimator of unconditional model MSE of the EB estimator is given by 

        EB 2 2 2
1 2 3

ˆ ˆ ˆ ˆmse 2 .i i v i v i vg g g       (3.1) 

Here the leading term in (3.1) is given by (2.3) with 2
v  replaced by 2ˆ v  and the remaining two terms in 

(3.1) are of lower order and account for the estimation of β  and 2 ,v  respectively (see Rao and Molina, 
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2015, Chapter 6 for details). The MSE estimator (3.1) is positive and second-order unbiased in the sense 

that its bias is of lower order than 1 m  for large .m  Parametric bootstrap methods have also been used to 

obtain a MSE estimator. However, the resulting MSE estimator is not second-order unbiased and an 

additional bias adjustment is made to ensure second-order unbiasedness. Those adjustments typically 

require double bootstrap methods and some of the adjusted bootstrap MSE estimators may take negative 

values; see Rao and Molina (2015), Chapter 6. 

 
3.2  Basic unit-level model 
 

We again focus on REML estimation of model parameters in the unit level model (2.5). A positive 

second-order unbiased estimator of the unconditional MSE of the EB estimator EBˆ i  is given by 

        EB 2 2 2 2 2 2
1 2 3ˆ ˆ ˆ ˆ ˆ ˆ ˆmse , , 2 , ,i i v e i v e i v eg g g          (3.2) 

where the first term is the leading term given in Section 2.2, the second term is due to estimating β  and the 

last term is due to estimating 2
v  and 2 .e  The EB estimator EBˆ i  and the associated unconditional MSE 

estimator (3.2) are valid when the sampling fraction if  is negligible. We refer the reader to (Rao and Molina, 

2015, Section 7.2.3) for MSE estimation in the case of non-negligible sampling fractions. 

 
4  Design MSE estimation 
 

In this section we first study design MSE estimation and then propose composite MSE estimation that 

provides a balance between the design bias and the coefficient of variation. 

 

4.1  Area-level model 
 

We now turn to estimating the design MSE of the EB estimator by treating the small area parameters i  

as fixed unknown parameters. As noted in the introduction, survey statisticians are often interested in 

estimating the design MSE of EB estimators in line with the traditional design MSE estimators of direct 

estimators for large areas with adequate sample sizes. The design MSE is given by  EBˆMSE d i   

  2
EBˆ ,i iE    θ  where  1 , , m  θ   is the vector of area means. 

Expressing EB
î  as  ˆ ˆ

i ih  θ  with      ˆˆ ˆˆ1 ,i i i ih      θ z β  an exactly unbiased estimator of the 

design MSE is given by 

      EB 2ˆ ˆˆ ˆmse 2 .d i i i i i ih h         θ θ  (4.1) 

Datta, Kubokawa, Molina and Rao (2011) give an explicit expression for the derivative in the second term 

of (4.1) in the case of REML estimators of model parameters. The estimator (4.1) can take negative values 

and can be very unstable in terms of relative root mean squared error (RRMSE) as shown by Datta et al. 

(2011). It follows that (4.1) is not a reliable estimator of the design MSE, although it is design unbiased. 
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Our simulation results in Section 5 study the conditional properties of the MSE estimators (3.1) and (4.1) in 

the design-based framework. 

Some theoretical insights can be obtained by focusing on the case of known model parameters and 

considering the best estimator (2.2) of the area mean .i  In this case, Rivest and Belmonte (2000) obtained 

a design-unbiased estimator given by 

        
22 2ˆmse 1 .B

d i i i i i i i v              z β  (4.2) 

Note that for a large sampling variance i  we have 0i   and (4.2) reduces to 

     2ˆmse .B
d i i i i     z β  (4.3) 

It follows from (4.3) that the MSE estimator can take negative values and, in fact, the probability of getting 

a negative value is close to 0.5 when i  is close to zero or sampling variance i  is large. In this special 

case of known model parameters, we can study the design bias of the model MSE estimator of (2.2), given 

by  mse ,B
i i i    when averaged over the areas. It can be shown that the average design bias converges 

in model probability to zero as m    (Rao and Molina, 2015, page 287). This result suggests that the 

model MSE estimator should perform well in terms of average design bias, provided the assumed model is 

valid. 

The design-unbiased estimator (4.1) is not usable in practice when it takes a negative value for the sample 

at hand. Therefore, we propose a modification of (4.1) that leads to a positive MSE estimator. We denote 

the modified MSE estimator by  EBˆmod-mse .d i  It uses (4.1) when it takes a positive value for the sample 

at hand and replaces (4.1) by the model MSE estimate (3.1) when (4.1) takes a negative value. It is possible 

to use some other positive MSE estimate, for example a naïve positive design-based MSE estimator 

proposed by Pfeffermann and Gilboa (2017). We have not studied this modification in our simulation study. 

We now propose composite estimators of the design MSE that attempt to provide a balance between 

design bias and RRMSE. One composite estimator is obtained by taking a weighted average of the design 

MSE estimator (4.1) and the unconditional model MSE estimator (3.1) with weights ˆi  and  ˆ1 i  

respectively. This composite MSE estimator may be written as 

        EB EB EB
1

ˆ ˆ ˆˆ ˆmse mse 1 mse .c i i d i i i        (4.4) 

It follows from (4.4) that less weight is given to the design MSE estimator when the sampling variance 

is large and this controls the RRMSE of the composite MSE estimator. Also, the composite MSE estimator 

has always a smaller design bias than the model MSE estimator. When ˆi  (or the area sample size) is very 

small, another choice of the compositing weights is to replace ˆi  by ˆi  and ˆ1 i  by ˆ1 i  in (4.4). 

The resulting composite MSE estimator 

        EB EB EB
2

ˆ ˆ ˆˆ ˆmse mse 1 msec i i d i i i        (4.5) 
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gives more weight to  EBˆmse d i  than (4.4) and thus performs better in terms of design bias at the expense 

of increased MSE. Similar to (4.4), the alternative composite MSE estimator (4.5) has always a smaller 

design bias than the model MSE estimator. Both (4.4) and (4.5) can also take on negative values but likely 

not as often due to their construction. To ensure positive composite MSE estimators, we make a modification 

similar to  EBˆmod-mse d i  and replace (4.4) and (4.5) by the model MSE estimate (3.1) when they take 

negative values for the sample at hand. We denote the modified estimators by  EB
1

ˆmod-mse c i  and 

 EB
2

ˆmod-mse c i  respectively. In Section 5, we look at the performance of the two modified composite 

MSE estimators relative to the model MSE estimator (3.1) and the modified design MSE estimator in terms 

of ARB, RRMSE and coverage rate of confidence intervals. 

 
4.2  Unit-level model 
 

We focus on simple random sampling (SRS) without replacement in each area. Even for this special 

design, no closed form expressions for the design MSE of the EB estimator EBˆ
iY  and its estimator are 

available in the literature, unlike in the case of the area-level model. Therefore, we propose a heuristic 

method by evaluating the design MSE of the best estimator ˆ B
iY  given by (2.6), under SRS assuming all the 

model parameters are known and then estimating the design MSE. The resulting design-unbiased MSE 

estimator of the best estimator depends on the model parameters and we replace the model parameters by 

their REML estimators. The resulting MSE estimator is not design-unbiased for the design MSE of the EB 

estimator and it is likely to underestimate the true design MSE because the variability associated with the 

estimated model parameters is not taken into account. We study its design performance in a simulation 

study. 

Under SRS without replacement within area ,i  we have 

    ˆ 1 ,B
i i i i i i iY Y a u U a U      (4.6) 

where iu  is the area sample mean and iU  is the area population mean of the values .ij ij iju y  x β  It 

follows from (4.6) that the design MSE of the best estimator is given by 

        
2 22 2ˆ ˆMSE 1 ,B B

d i d i i i d i i iY E Y Y a V u a U      (4.7) 

where 

    1 2 2 1 2

1

1 , and ( 1) ( ) ,
iN

d i i i ui ui i ij i
j

V u n f S S N u U 


      (4.8) 

noting that the cross-product term is zero under SRS. 

It now follows from (4.7) and (4.8) that a design unbiased MSE estimator of the best estimator is given by 

       22 1 2 2ˆ ˆmse 1 1 ,B D
d i i i i ui i iY a n f s a U     (4.9) 
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where  2 1 2 1 2
1

ˆ 1in
D

i i ij i i uij
U n u N N s 


    and    

212
1

1 .in

ui i ij ij
s n u u


    By replacing the model 

parameters in (4.9) by their REML estimators, a design-based MSE estimator of the EB estimator is 

obtained, denoted by  * EBˆmse .d iY  This MSE estimator is likely to underestimate the design MSE of the 

EB estimator because the best estimator (2.6) does not account for the variability in the estimators of model 

parameters. 

A composite MSE estimator,  * EBˆmse ,c iY  is now obtained by taking a weighted combination of 

 * EBˆmse d iY  and the model-based MSE estimator  EBˆmse iY  with weights ˆi  and ˆ1 i  respectively. It is 

given by 

        * EB * EB EBˆ ˆ ˆˆ ˆmse mse 1 mse .c i i d i i iY Y Y     (4.10) 

Molina and Kominiak (2017) proposed parametric and non-parametric bootstrap estimators of the design 

MSE of EBˆ .iY  They also obtained a composite MSE estimator, similar to (4.10), by using the non-parametric 

bootstrap (NPB) MSE estimator and the parametric bootstrap (PB) MSE estimator as the two components 

of the composite MSE estimator associated with ˆi  and  ˆ1 i  respectively. As noted by the authors, a 

drawback with this composite MSE estimator is “that it requires to run both PB and NPB procedures for 

each area, which makes it computationally slower.” Molina and Kominiak (2017) also proposed a 

parametric design bootstrap (PDB) composite MSE estimator. The PDB estimator avoids running both PB 

and NPB procedures for each area. Both bootstrap composite MSE estimators performed well in a 

design-based simulation study. 

 
5  Simulation study 
 

In this section, we report the results of limited simulation studies on the design performance of the 

proposed composite MSE estimators. Section 5.1 gives results for the area level model, and the unit level 

model results are reported in Section 5.2. 

 

5.1  Area-level model 
 

Following the simulation set up used by Datta et al. (2011), we employ model (2.1) with 30m   areas,

 11,i iz z  for 1, , ,i m   where the covariate values 1 , ,i imz z  are generated independently from 

 1, 1N   and held fixed over the simulation runs. Further,  1, 1 ,β 2 1v   and the sampling variance 

values are (2.0, 0.6, 0.5, 0.4, 0.2), with each different value of i  assigned to six consecutive areas. Noting 

that  0, 1 ,iv N  we generate  ; 1, ,i i m    from the linking model i i iv   z β  and hold them 

fixed over the simulations to reflect the design-based approach conditioning on the area means .i  Then, 

100,000R   simulated samples   ˆ : 1, , ,r
i i m   1, ,r R   are generated from the sampling model 

î i ie    with the sampling error ie  generated from  0, iN   for specified sampling variance i  

which is assumed fixed and known. We note that our simulation setup is not exactly design-based but it is 

“close enough” for the purposes of our study. 
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From the simulated data    ˆ , : 1, ,r
i i i m z   the EB estimates  EBˆ r

i  are computed and the MSE 

of EB
î  is approximated by 

    2EBEB 1

1

ˆMSE .
R

r
i i i

r

R  



   (5.1) 

The MSE estimators for each simulated sample are computed and averaged over the 100,000 simulation 

runs. We denote the means of the MSE estimators over the simulations as EBmse ,i
EBmse ,di

EBmod-mse ,di

EB
1mod-mse c i  and EB

2mod-mse ,c i  corresponding to model, design unbiased, modified design unbiased, 

modified composite 1 and modified composite 2 MSE estimators, respectively. The relative bias (RB) of 
EBmse i  is given by 

  EB EB EB EBRB mse MSE MSEi i i i   (5.2) 

where EBMSE i  is given by (5.1). The absolute relative bias (ARB) is simply defined as EB EBARB RB .i i  

The terms EBARB ,di
EB

modARB ,di
EB
1 modARBc i  and EB

2 modARBc i  are defined in a similar manner. 

We also compute the relative root mean squared error (RRMSE) of the MSE estimators over the 

simulations. We denote those values as EBRRMSE ,i
EBRRMSE ,di

EB
modRRMSE ,di

EB
1 modRRMSE c i  and 

EB
2 modRRMSE c i  for the model, design unbiased, modified design unbiased, modified composite 1 and 

modified composite 2 MSE estimators, respectively. Here RRMSE of the model MSE estimator is 

defined as 

    1 2
2EBEB 1 EB EB

1

RRMSE mse MSE MSE .
R

r
i i i i

r

R 


   (5.3) 

The RRMSE of the other MSE estimators are similarly defined. 

We first compare the average over all the areas of EBmse i  to the average over all areas of EBmse .di  We 

obtain 0.42 and 0.35 respectively, showing that the average of the model MSE estimator, 0.42, is close 

enough to the average of the design MSEs of the EB estimators, 0.35, confirming the theoretical result 

mentioned in Section 4.1. The theoretical result assumes known model parameters, while the simulation 

deals with the general case of unknown model parameters. 

We next examine the probability of getting a negative value for the three MSE estimators: design 

unbiased, composite 1 and composite 2. Figure 5.1 shows the percentage of negative values over the 

simulations for each of the thirty areas. It is clear from Figure 5.1 that the probability of getting a negative 

value for the design unbiased MSE estimator can be as large as 50% for the first six areas (group 1) with 

much larger sampling variance relative to the remaining areas (group 2). On the other hand, it is negligible 

for the areas in group 2. The average probability over areas in group 1 is 45.67% compared to 0.03% in 

group 2. The probability of getting a negative value for the composite 1 MSE estimator is zero across all 

thirty areas, while the average probability for the composite 2 MSE estimator is 9.15% over areas in group 

1 and zero over areas in group 2. The above results suggest that the composite 1 MSE estimator may not 

need modification even for areas with large sampling variances. Note that in the current simulation study 

the composite 1 and modified composite 1 MSE estimators are identical because no zero values were found 

for the composite 1 MSE estimator. 
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Figure 5.1 Plot of the percent of negative values of the MSE estimators: area level model. 

 
We now turn to the ARB of the MSE estimators. Figure 5.2 shows the ARB values across all the thirty 

areas for the MSE estimators: model, design unbiased, modified design unbiased, modified composite 1 and 

modified composite 2 MSE estimators. Table 5.1 gives the mean % design ARB values as well as the 

mean % design RRMSE over the areas in group 1 and group 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Plot of percent ARB of the MSE estimators: area level model. 
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Table 5.1 
Mean % design ARB and mean % design RRMSE of MSE estimators: area level model 
 

MSE Estimator Mean % design ARB Mean % design RRMSE
Areas 1 to 6 Areas 7 to 30 Areas 1 to 6 Areas 7 to 30

Design 0.33 0.39 246.71 33.62
Modified Design 93.49 0.38 221.86 33.58
Model 51.66 25.76 54.98 26.61
Modified Composite 1 34.08 7.60 96.98 24.70
Modified Composite 2 32.00 4.13 146.31 28.20

 

As expected, Figure 5.2 shows that the design unbiased estimator has zero ARB (except for simulation 

errors) across all areas. On the other hand, the modified design unbiased MSE estimator surprisingly exhibits 

a large ARB for the first six areas, with mean value of 93.49% but negligible for the remaining areas 

(0.38%). Model MSE estimator also exhibits large ARB for the first six areas with mean ARB of 51.66% 

that decreases to 25.76% for the remaining areas. On the other hand, the mean ARB for composite 1 MSE 

estimator is reduced to 34.08% for group 1 and small for group 2 (7.60%). The modified composite 2 MSE 

estimator that attaches more weight to the design unbiased MSE estimator reduces the mean ARB to 32.00% 

for group 1 and to 4.13% for group 2. 

Figure 5.3 gives a plot of RRMSE of the MSE estimators across all the thirty areas and Table 5.1 reports 

the mean % RRMSE values for areas in group 1 and group 2. As expected, the design unbiased MSE 

estimator exhibits very large RRMSE for group 1 with mean value of 246.71%. The modified design 

unbiased MSE estimator is equally unstable for group 1 (mean RRMSE of 221.86%) in addition to 

exhibiting large ARB. Model MSE estimator exhibits the smallest RRMSE as expected with mean value of 

54.98% for group 1 compared to 96.98% for composite 1 MSE estimator and 146.31% for modified 

composite 2 MSE estimator. On the other hand, for the areas in group 2 with smaller sampling variances, 

the mean RRMSE of the three MSE estimators is roughly the same: 24.70% for composite 1, 26.61% for 

model and 28.20% for modified composite 2 MSE estimators. The mean RRMSE for the design unbiased 

and modified design unbiased MSE estimators is only slightly larger for group 2 with values of 33.62% and 

33.58% respectively. 

Finally, we turn to confidence interval coverage rates for a nominal value of 95%. Normal theory 

coverage rates for the model MSE estimator are computed as  

            1 2 1 2EB EB EB EBEB 1

1

ˆ ˆ ˆCR mse 1.96 mse 1.96 mse
R

r r r r
i i i i i i

r

R I   



            (5.4) 

where  I   is an indicator function with value 1 if i  is in the calculated interval and 0 otherwise. Coverage 

rates for the other MSE estimators are similarly defined. Figure 5.4 is a plot of the percent coverage rates 

for the MSE estimators. The curve associated with the design-unbiased MSE estimator is not included in 

the plot because it is not possible to calculate the confidence interval coverage rate due to negative MSE 

estimates for some simulation runs. Discarding these simulation runs and calculating the intervals from the 

remaining runs can distort the coverage rate. 

The plot shows serious undercoverage for areas in group 1 with large sampling variance. In particular, 

the mean coverage rate for model, modified composite 1 and modified composite 2 are 68.53%, 78.43% 
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and 72.87% respectively, whereas the modified design MSE estimator show some improvement: 85.82%. 

On the other hand, for the areas in group 2 with smaller sampling variances, the mean coverage rate increases 

to 91.73%, 91.74%, 90.89% and 89.85% for the model, modified composite 1, modified composite 2 and 

the modified design MSE estimators, respectively. Figure 5.4 suggests that the coverage rates for the model 

and modified composite MSE estimators are comparable across all areas with the areas in group 1 exhibiting 

serious undercoverage because of small sample sizes or large sampling variances in those areas.  

 

 
 

 

 

 

 

 

 

 

 

 
 

Figure 5.3 Plot of percent RRMSE of the MSE estimators: area level model. 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 Plot of the percent coverage rates for the MSE estimators: area level model. 
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5.2  Unit-level model 
 

In this section, we report some results of a limited simulation study on the design performance of four 

MSE estimators under a simple unit-level mean model given by 

 , 1, , ; 1, ,ij i ij iy v e j N i m       (5.5) 

where the area random effects  iid
20,i vv N   are independent of the unit errors  iid

20, .ij ee N   The 

MSE estimators studied include the model MSE estimator  EBˆmse ,iY  of the EB estimator EBˆ
iY  (Rao and 

Molina, 2015, Section 7.2.3), the plug-in design-based MSE estimator  * EBˆmse d iY  obtained from (4.9) by 

replacing the model parameters , 2
v  and 2

e  by their REML estimators, the composite MSE estimator 

given by (4.10), and a “conditional” MSE estimator,  EB
CH

ˆmse ,iY  proposed by Chambers, Chandra and 

Tzavidis (2001, Section 2.2.2). 

For the design-based simulation, we use 30m   small areas and first generate the area population sizes 

,iN  from a Uniform distribution  443, 542U  and hold them fixed over simulation runs, following 

Chambers et al. (2011). We generate two fixed finite populations  , 1, , ; 1, ,ij iy j N i m    from 

the mean model (5.5) for specified mean parameter 500   and variance parameters 2 10.40,v   
2 94.09e   for the first finite population (denoted Population A) and 500,  2 40.32,v  2 94.09e   

for the second finite population (denoted Population B). Note that the variance ratio 2 2
v e    is equal 

to 0.11 for Population A and is smaller than the value 0.43 for Population B. We then draw stratified simple 

random samples  , 1, , ; 1, , 30ij iy j n i    without replacement, from each finite population, 

treating each area as a stratum, where the area sample sizes are chosen to be equal: either 5in   or 20.in   

In all, we draw 10,000S   stratified simple random samples and compute the MSE estimates from each 

sample. Independently, we also draw 30,000R   stratified random samples and compute the EB estimates 

from each sample. The MSE of the EB estimator for each area is approximated along the lines of (5.1) using 

the 30,000 simulation runs. Using a large number of simulation runs, 30,000,R   the true MSE of the EB 

estimator is accurately approximated by the empirical MSE. On the other hand, a smaller number of 

simulation runs, such as 10,000,S   is used for studying the performance of the four MSE estimators to 

reduce computations. This two-step simulation setup is often used for the unit level model (see e.g., 

González-Manteiga, Lombardia, Molina, Morales and Santamaria, 2008). Typically, calculating the MSE 

is much faster than calculating the RB and RRMSE of several MSE estimators, particularly bootstrap MSE 

estimators. 

Using the simulated MSE estimates and the simulated MSE of the EB, we compute the relative bias 

(RB), the absolute relative bias (ARB) and the relative root mean square error (RRMSE) of the MSE 

estimators along the lines of (5.2) and (5.3). In the case of Population A and area sample size 5, the plug-in 

design-based MSE estimator leads to underestimation across all areas, with RB ranging from -87.0% 

to -18.1%. This underestimation is due to ignoring the variability in the parameter estimates. On the other 

hand, the model MSE estimator generally overestimates the design MSE with RB ranging from -66.4% to 

150.1%. As a result, the composite MSE estimator reduces the underestimation caused by the plug-in 
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design-based MSE estimator: RB ranging from -55.0% to 115.4%. The conditional MSE estimator 

overestimates the design MSE consistently with RB ranging from 31.7% to 316.1%. Performance of the 

MSE estimators in terms of RB improves as the ratio   increases to 0.43 or the area sample size increases 

to 20. 

Table 5.2 reports the median and mean ARB values for the two populations and the two sample sizes. It 

shows that the composite MSE estimator performs better than the other MSE estimators for Population A 

and area sample size 5, with median and mean ARB equal to 53%. On the other hand, the conditional MSE 

estimator exhibits large median ARB equal to 208% and mean ARB equal to 191%. Median and mean ARB 

values for all the MSE estimators decrease as the ratio   increases to 0.43 or the area sample size increases 

to 20. 

 
Table 5.2 
Median and mean % design ARB of MSE estimators: unit level model 
 

MSE Estimator Population A Population B 
5in   20in  5in  20in 

Median Mean Median Mean Median Mean Median Mean

Design 60.7 54.4 11.2 11.1 8.9 8.9 1.8 2.0

Conditional 207.9 190.7 23.2 19.9 9.4 8.3 0.7 1.0

Model 77.4 81.7 44.0 38.8 29.6 28.4 6.8 8.6

Composite 52.9 53.3 13.1 14.0 7.1 8.8 1.3 1.8

 
Table 5.3 reports the median and mean % design RRMSE values for the two populations and the two 

sample sizes. It shows that the model MSE estimator and the composite MSE estimator perform better than 

the other MSE estimators, especially for Population A and area sample size 5. In the latter case, the plug-in 

design-based MSE estimator and the conditional MSE estimator exhibit large median and mean RRMSE 

values: approximately 400% versus 110% for the model MSE estimator and the composite MSE estimator. 

Performance of all the MSE estimators improves in terms of RRMSE as the ratio   increases or the area 

sample size increases. In the case of population B and area sample size 20, model MSE estimator exhibits 

the smallest median and mean RRMSE: approximately 10% versus 30% for the other MSE estimators. 

 
Table 5.3 
Median and mean % design RRMSE of MSE estimators: unit level model 
 

MSE Estimator Population A Population B 

5in   20in   5in   20in   

Median Mean Median Mean Median Mean Median Mean 

Design 414.5 382.0 62.1 60.3 57.6 57.6 29.3 29.0 

Conditional 416.5 384.5 64.1 62.2 63.9 64.3 28.4 28.1 

Model 107.8 108.5 45.4 41.6 31.6 31.7 8.9 10.8 

Composite 113.7 112.9 37.8 38.1 40.7 41.5 26.6 26.4 
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6  Conclusions 
 

In this paper we studied the properties of alternative MSE estimators in tracking the design MSE of EB 

estimators of small area means. We examined both area level and unit level models. 

In the area level model, we proposed two composite MSE estimators by taking a weighted average of a 

design unbiased MSE estimator and a model based MSE estimator. Modifications to ensure positive MSE 

estimators were also given. Performance of the alternative MSE estimators was studied through simulations 

in terms of absolute relative bias, relative root mean square error and coverage rate of confidence intervals. 

Our results for the area level model suggest that the design unbiased MSE estimator is not usable in practice 

when the area sample size is very small because of a large probability of getting a negative value. On the 

other hand, this probability for the composite 1 MSE estimator (with the same weights as the EB estimator), 

is either zero or essentially negligible. Our simulations for the area level model for areas with very small 

sample sizes suggest that the composite 1 MSE estimator leads to smaller ARB relative to the model MSE 

estimator at the expense of an increase in RRMSE. For areas with larger sample sizes, the ARB of the model 

MSE estimator persists unlike the ARB of the composite 1 MSE estimator. In terms of coverage rates, the 

model MSE estimator and the composite 1 MSE estimator are comparable across all areas, but both can lead 

to serious undercoverage for areas with very small sample sizes. Overall, the composite 1 MSE estimator 

provides a good compromise in estimating the design MSE. 

In the simulation study of the unit level model, our results suggest that the composite MSE estimator 

generally offers a good compromise between the ARB and RRMSE. However, the plug-in design MSE 

estimator used in the composite estimator needs modification to take account of the variability in the 

estimators of model parameters to avoid or reduce the underestimation of design MSE of the EB estimator. 
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Small area estimation for unemployment using latent 
Markov models 

Gaia Bertarelli, M. Giovanna Ranalli, Francesco Bartolucci,  
Michele D’Alò and Fabrizio Solari1 

Abstract 

In Italy, the Labor Force Survey (LFS) is conducted quarterly by the National Statistical Institute (ISTAT) to 
produce estimates of the labor force status of the population at different geographical levels. In particular, ISTAT 
provides LFS estimates of employed and unemployed counts for local Labor Market Areas (LMAs). LMAs are 
611 sub-regional clusters of municipalities and are unplanned domains for which direct estimates have overly 
large sampling errors. This implies the need of Small Area Estimation (SAE) methods. In this paper we develop 
a new area level SAE method that uses a Latent Markov Model (LMM) as linking model. In LMMs, the 
characteristic of interest, and its evolution in time, is represented by a latent process that follows a Markov chain, 
usually of first order. Therefore, areas are allowed to change their latent state across time. The proposed model 
is applied to quarterly data from the LFS for the period 2004 to 2014 and fitted within a hierarchical Bayesian 
framework using a data augmentation Gibbs sampler. Estimates are compared with those obtained by the classical 
Fay-Herriot model, by a time-series area level SAE model, and on the basis of data coming from the 2011 
Population Census. 

 
Key Words: Area level model; Hierarchical Bayes; Time-series data; Labor Force Survey; Augmented data. 

 
 

1  Introduction 
 

In Italy, the Labor Force Survey (LFS) is conducted quarterly by ISTAT, the National Statistical 

Institute, to produce estimates of the labor force status of the population at a national, regional (NUTS2), 

and provincial (LAU1) level, with monthly, quarterly, and yearly frequency, respectively. Since 1996, 

ISTAT also disseminates yearly LFS estimates of employed and unemployed counts for local Labor Market 

Areas (LMAs). LMAs are sub-regional geographical areas where the bulk of the labor force lives and works, 

and where establishments can find the largest amount of the labor force necessary to occupy the offered 

jobs. These are 611 distinct and functional areas defined as clusters of municipalities through an allocation 

process based on commuting patterns collected by the 2011 Population Census (Istat, 2014). Unlike NUTS2 

and LAU1 areas, LMAs are unplanned domains that cut across sampling strata and LAU1 areas. In addition, 

direct estimators have overly large sampling errors particularly for areas with small sample sizes. This 

makes it necessary to borrow strength from data on auxiliary variables from other areas through appropriate 

models, leading to indirect or model-based estimates. 

Small Area Estimation (SAE) methods are used in inference for finite populations to obtain estimates of 

parameters of interest when domain sample sizes are too small to provide adequate precision for direct 

domain estimators. Statistical models for SAE can be formulated at the individual or area (i.e., aggregate) 

levels. In this paper we focus on the latter. The Fay-Herriot model (Fay and Herriot, 1979, FH) is the basic 

area level SAE model: it uses cross-sectional information for predicting small area parameters of interest by 

combining direct estimates and population level auxiliary information with a linear mixed model. When 
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longitudinal data are also available, it is possible to borrow strength over time. Among others, Rao and Yu 

(1994) propose a model involving autocorrelated random effects and use both time-series and cross-

sectional data, while Marhuenda, Molina and Morales (2013) develop a spatio-temporal FH model using an 

autoregressive model in space together with a first-order autoregressive covariance structure in time. 

Several papers deal with SAE using time-series models and the Kalman filter after expressing them in a 

state-space form. Pfeffermann and Burck (1990) introduce state-space models to estimate the Canadian 

unemployment rates and Pfeffermann and Rubin-Bleuer (1993) use this approach to model the correlation 

between the trends of domain series in a multivariate structural time-series model. Pfeffermann and Tiller 

(2006) add monthly benchmark constraints to the time-series state-space model, while Harvey and Chung 

(2000) consider a bivariate state-space model to obtain more stable and precise estimates of change in 

unemployment. Krieg and Van der Brakel (2012) model domain series in a multivariate time-series model 

and apply the cointegration idea to construct more parsimonious common trend models. Level break 

estimation within the structural time-series framework is illustrated in Van den Brakel and Krieg (2015). 

More recently, Van der Brakel and Krieg (2016) and Boonstra and Van den Brakel (2016) apply these 

models to data from the Dutch LFS. 

Proposals for area level time-series data have also been developed following a Hierarchical Bayesian (HB) 

approach. In particular, Ghosh, Nangia and Kim (1996) apply a fully HB analysis using a time-series model 

to the estimation of median income of four-person families. Datta, Lahiri, Maiti and Lu (1999) apply this 

approach to a longer time-series from the U.S. Current Population Survey and use a random walk model for 

the area random effects. You, Rao and Gambino (2003) apply the same model to unemployment rate 

estimation for the Canadian LFS. Recently, Boonstra (2014) uses a time-series HB multilevel model to 

estimate unemployment at the municipality level using data from the Dutch LFS. In particular, estimates are 

obtained for each quarter and include random municipality effects and random municipality by quarter effects. 

In this work we develop a new area level SAE method based on Latent Markov Models (LMMs, see 

Bartolucci, Farcomeni and Pennoni, 2013, for a thorough description) to estimate unemployment incidences 

in LMAs using quarterly data from 2004 to 2014 within an HB framework. Area level SAE models consist 

of two parts, a sampling model formalizing the assumptions on direct estimators and their relationship with 

underlying area parameters, and a linking model that relates these parameters to area specific auxiliary 

information. In this work, an LMM is used as linking model and the sampling model is introduced as the 

highest level of the hierarchy. The resulting model is fitted within a Bayesian framework using a Gibbs 

sampler with augmented data (corresponding to the latent variables) that allows for a more efficient 

sampling of the model parameters (Tanner and Wong, 1987). 

LMMs, introduced by Wiggins (1973), allow for the analysis of longitudinal data when the response 

variables measure common characteristics of interest that are not directly observable. The basic LMM 

formulation is similar to that of hidden Markov models for time-series data (MacDonald and Zucchini, 

1997). In these models, the characteristics of interest and their evolution in time are represented by a latent 

process that follows a Markov chain, typically of first order, so that single areas are allowed to move 

between latent states across time. LMMs may be seen as an extension of Markov chain models to control 

for measurement errors. Moreover, LMMs can be seen as an extension of latent class models (Lazarsfeld, 
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Henry and Anderson, 1968) to longitudinal data. Latent class models have been considered in a SAE 

framework in Fabrizi, Montanari and Ranalli (2016), where a latent class unit level model for predicting 

disability small area counts from survey data is introduced for cross sectional data. 

The remainder of this paper is organized as follows. Section 2 provides a more detailed description of 

the available LFS data, while Section 3 introduces notation and reviews some relevant time-series area level 

SAE methods available in the literature. In Section 4, the model and the procedure for its estimation are 

presented in detail. Section 5 is devoted to the discussion of the results of the application to the LFS data. 

Conclusions and possible future developments are outlined in Section 6.  

 

2  Data and preliminary analysis  
 

As already mentioned, LMAs are unplanned domains for the LFS. In fact, the sampling design is as 

follows. Within a given LAU1, municipalities are classified as Self-Representing Areas (larger 

municipalities) and Non-Self-Representing Areas (smaller municipalities). In Self-Representing Areas, a 

stratified cluster sampling design is applied: each municipality is a single stratum and households are 

selected by means of systematic sampling. In Non-Self-Representing Areas, the sample is based on a 

stratified two stage sampling design: municipalities are Primary Sampling Units, while households are 

Secondary Sampling Units. Primary Sampling Units are divided into strata of the same dimension in terms 

of population size. One Primary Sampling Unit is drawn from each stratum without replacement and with 

probability proportional to the Primary Sampling Unit population size. Secondary Sampling Units are 

selected by means of systematic sampling in each Primary Sampling Unit. All members of each sample 

household, both in Self-Representing Areas and in Non-Self-Representing Areas are interviewed. In each 

quarter, about 70,000 households and 1,350 municipalities are included in the sample. Note that some LMAs 

(usually the smallest ones) have a very small sample size. Furthermore, usually about one third of the LMAs 

is not included in the sample at all (i.e., they have a zero sample size). 

The LFS follows a rotating panel sampling design, according to a 2-(2)-2 scheme: households are 

interviewed in two consecutive quarters and, after a two-quarter break, they are interviewed for two 

additional consecutive quarters. Although the LFS panel design induces correlation among quarterly 

estimates, due to partial overlap of the sample units, we do not account for it in our model specification in 

the application illustrated in Section 5. In any case, we expect that this does not affect the comparison among 

different methods. 

In this work we model quarterly unemployment incidences for 611 LMAs for the period 2004-Q1 to 

2014-Q4 (44 quarters). Figure 2.1 shows the map of direct estimates in the first and in the last time occasion 

of the observation time span. Figure 2.2, on the other hand, shows all the direct estimates for each small 

area in two NUTS2 areas: Lombardy (left panel) is a rich region in the North of Italy, while Sicily (right 

panel) is the southern Island and is much less wealthy. We observe, in general, that direct estimates are 

extremely variable and that unemployment has decreased over the first three years, and then started to 

increase considerably.  

Direct estimates in unplanned domains are characterized by a high Coefficient of Variation (CV), which is 

used as a measure of uncertainty associated with the estimates. In addition, 6,762 out of 26,884 direct estimates 
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cannot be computed because the sample dimension is zero. Usually, in Official Statistics, an estimate for a 

Labor Force parameter with a CV greater than 33.3% is considered too unreliable and is not recommended for 

release. Estimates with a CV between 16.6% and 33.3% must be released with caveats because their sampling 

variability is quite high, while estimates with a CV smaller than 16.6% are of sufficient accuracy and have no 

release restrictions; see Statistics Canada (2016, page 35). In our data, the vast majority of direct estimates has 

a very large CV and cannot be considered reliable, as it is shown in Figure 2.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.1 Direct estimates of unemployment incidences (%) for the first and the last time occasion: first 
quarter of 2004 (a) and the last quarter of 2014 (b). 

 

(a) 2004-Q1 

> 4.78 
 3.00 – 4.78 
 1.71 – 3.00 
 < 1.71 
 NA 

(b) 2014-Q4 

> 4.78 
 3.00 – 4.78 
 1.71 – 3.00 
 < 1.71 
 NA 
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Figure 2.2 Quarterly direct estimates of unemployment incidences in two NUTS2 Regions: Lombardy (a) and 
Sicily (b), from 2004-Q1 to 2014-Q4.  

 
 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 For each quarter, distribution of the sampled small areas according to classes of values of the CV 
of the direct estimates.  

 
The basic idea of SAE is to introduce a statistical model to exploit the relationship between the variable 

of interest and some covariates for which population information is available. Auxiliary variables available 

for these data are the population rates in 7 sex age  classes (15-19, 20-24, 25-29, 30-39, 40-49, 50-59, 60-

74). Since LFS estimates are not seasonally adjusted, we take seasonality into account using year and quarter 

effects through 10 and 3 dummy variables, respectively. 
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The CVs of direct estimates are estimates themselves and their precision is a function of the sample size. 

Therefore, they are subject to a relevant sampling error that can affect small area modeling in different ways 

(Rao and Yu, 1994) and smoothing estimated Mean Squared Errors (MSEs) is necessary (see Rao, 2003, 

Chapter 5). In this work, we propose to use a regression model with a logarithmic transformation of the CV 

and of the MSE (see Wolter, 2007, Chapter 7). In particular, our approach is based on two steps: the first 

step consists in modeling the CV and then computing the smoothed MSE from this model. At the second 

step, we model the MSE directly for those small areas for which we do not have a valid CV (i.e., for those 

LMAs with a zero estimate). 

Let ît  be the direct survey estimate for small area = 1, , ,i m  with = 611,m  at time = 1, , ,t T  

with = 44.T  Let CVit  denote the corresponding estimate of the CV. Note that Italy is divided into four 

geographic areas, namely broad-areas (e.g., North-West, North-East, Center, South and Islands), and that 

each LMA belongs to only one of these broad-areas. In order to smooth estimates of MSEs, we have the 

following auxiliary information:  

• itM  is the population size at time t  of the broad-area to which LMA i  belongs;  

• itN  is the population size of LMA i  at time ;t  

• itr  is a 14-dimensional column-vector that contains population rates in 7sex age  classes, for 

LMA i  at time .t  
 

At the first step of the proposed procedure, we fit the following regression model for each broad-area:  

        0 1 2 3 14 4
ˆlog CV = log log log log ,

it
it it it it

it

N

M
          

 
r β 1 r β  (2.1) 

where 141  is a 14-dimensional column vector of ones. The use of the log-transformation and the choice of 

the covariates has been assessed using standard model selection techniques, such as AIC and adjusted 2.R  

Using predictions denoted by CV it  from this model, smoothed MSEs are obtained as  

   ˆMSE = CV .it it it   

In the second step of the proposed procedure, for all ˆ = 0,it  CVs cannot be computed while MSEs are 

available since direct estimates are based on calibrated weights and MSE estimates are based on the residuals 

of a generalized regression that accounts for the auxiliary variables used in the calibration constraints. Then, 

MSEs are modeled directly and separately for each broad-area using the following model:  

      0 1 2 14 3log MSE = log log log .
it

it it it
it

N

M
       

 
r β 1 r β   

Smoothed MSEs are obtained as predictions from this model. Note that, we have resorted to this two-step 

procedure because the former model, the one for CVs, fitted better than the latter for MSEs in our 

application. Figure 2.4 reports the final output of this two-step procedure and displays the original and the 

smoothed MSEs versus unemployment incidence for all sampled areas. 
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Figure 2.4 Original (black) and smoothed (red) MSEs vs unemployment incidence for all sampled areas. 

 
3  Time series area level SAE models 
 

Rao and Yu (1994) propose an area level model involving autocorrelated random effects and sampling 

errors using both time-series and cross sectional data. It consists of a sampling model  

 ˆ = , = 1, , , = 1, , ,it it ite i m t T       

and an area-linking model  

 = , = 1, , , = 1, , ,it it i itv u i m t T   x β     

where it  is the true value corresponding to the estimate ît  for the small area mean, itx  is a p 

dimensional column vector of fixed covariates, and ite  are normal sampling errors. Given the true value 

,it  each vector  1= , ,i i iTe e e   has multivariate normal distribution with zero mean and with known 

variance-covariance matrix .iΨ  Moreover,  20,i vv N   is the area effect and , 1= ,it i t itu u     with 

< 1  and  20,it N    is the area-by-time effect. In this model, ,ie ,iv  and it  are assumed 

independent of each other. In our application iΨ  is diagonal, with elements ,it  for = 1, , .t T  

In the previous formulation, the area-linking model is basically a linear model with mixed coefficients. 

You et al. (2003, YRG) translate this model into an HB framework as follows. Let  1= , ,i i iT  θ   and 

 1
ˆ ˆˆ = , , ,i i iT  θ   then  
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 (3.1) 

where ,β 2 ,v  and 2   are mutually independent. The model is fully specified once priors are chosen for ,β
2 ,v  and 2 ,   namely as   1,f β  2

1 1IG , ,v a b   and  2
2 2IG , ,a b   where 1 ,a 2 ,a 1b  and 2b  

are known positive hyperparameters and, usually, set to be small and to reflect a vague knowledge about 
2
v  and 2 .   

Datta et al. (1999) follow this approach, but introduce a richer structure for the fixed part of the linking 

model by assuming  

 = ,it it i i itv u   x β  (3.2) 

where iv  and iβ  are area-specific intercepts and regression coefficients, respectively, and itu  is an area-

specific error term that follows the random-walk model  

  2 2
, 1 , 1, , .it i t i tu u N u      

The column vector of auxiliary variables itx  may also include dummy variables for year and/or seasonality 

adjustments. Note that area-specific regression coefficients considerably increase the estimation complexity 

and the computational burden. For this reason, the hyperparameters are assumed to be m  independent 

realizations from a common probability distribution specified by  20,i vv N   and  1, ,i N 
β β W  

which, in turn, depend on appropriate parameters. See Datta et al. (1999) for further details. 

 
4  The proposed model 
 

In this section, the proposed SAE model based on LMMs is illustrated. It can be considered as a 

compromise between the YRG model based on (3.1), which leads to possible oversmoothing, and the 

computationally demanding alternative proposed in Datta et al. (1999), based on (3.2). We first outline a 

general description on LMMs and then move to the specification of the area level model and to its 

estimation. 
 

4.1  Preliminaries 
 

In LMMs, the existence of two types of process is assumed: an unobservable finite-state first-order 

Markov chain itU  with state space  1, , k  and an observed process, which in our case corresponds to 

,it  with = 1, ,i m  and = 1, , .t T  It is assumed that the distribution of it  depends only on ;itU  

specifically, the it  are conditionally independent given the .itU  In addition, the latent state to which a 

small area belongs at a certain time point only depends on the latent state at the previous occasion. 

The state-dependent distribution, namely the distribution of it  given ,itU  can be a continuous or 

discrete. Such a distribution is typically taken from the exponential family. Thus, the overall vector of 

parameters of LMM, denoted by ,  includes parameters of the Markov chain, denoted by lat,  and the 
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vector of parameters obs  of the state-dependent distribution. In fact, the model consists of two components, 

the measurement model and the latent model, which concern the conditional distribution of the response 

variables given the latent variables and the distribution of the latent variables, respectively. By jointly 

considering these components, the so-called manifest distribution is obtained: it is the marginal distribution 

of the response variables, once the latent variables have been integrated out. 

The measurement model, based on parameters obs,  can be written as  

  obs= , .it it itU u p u     

Moreover, the parameters lat  of the Markov chain are:  

• the vector of initial probabilities  1= , , k  π   where  

  1= = , = 1, , ;u iP U u u k    

• the transition probability matrix  

 

1 1 1

1

= ,

k

k k k

 

 






 

Π



  



  

where  

  , 1= = = , , = 1, , ,u u it i tP U u U u u u k     

is the probability that area i  visits state u  at time t  given that at time 1t   it was in state .u  
 

In this work we consider homogeneous LMMs, namely LMMs where, in agreement with the previous 

definition, the transition probability matrix is constant in time. Generalizations to non-homogeneous hidden 

Markov chains and time-varying transition probabilities could also be considered (Bartolucci and 

Farcomeni, 2009). Individual covariates could be included in the measurement or in the latent model. When 

the covariates are included in the measurement model (Bartolucci and Farcomeni, 2009), they affect the 

response variables directly and the latent process is conceived as a way to account for the unobserved 

heterogeneity between areas. Differently, when the covariates are in the latent model (Vermunt and 

Magidson, 2002; Bartolucci, Pennoni and Francis, 2007) they influence initial and transition probabilities 

of the latent process. In a SAE context, we will consider the former approach, so that auxiliary information 

can be used to improve predictions. Bayesian inference approaches to LMMs are already available in the 

literature (e.g., in Marin, Mengersen and Robert, 2005; Spezia, 2010). In the following section we illustrate 

how to incorporate an LMM into an area level SAE model.  

 

4.2  Proposed approach to area level SAE 
 

The proposed model is based on two levels in an HB framework: at the first level, a sampling error model 

is assumed, then an LMM is used as linking model. The latter is based on two equations, corresponding to 

the measurement model and to the latent component. In particular, we adopt the following structure:  
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• Sampling Model:  

  ˆ , , = 1, , ;i i T i iN i mθ θ θ Ψ    

• Linking Model:  

- Measurement Model:  

  2= , , = 1, , ; = 1, , ;it it it it u uU u N i m t T x x β     

- Latent Model, based on the initial probabilities ,u = 1, , ,u k  and on the transition 

probabilities ,u u = 2, , , , = 1, , ,t T u u k   already defined.  

 

Here uβ  is the 1p   vector of the regression coefficients for the latent state to which area i  at time t  

belongs, 2
u  is the corresponding error variance, and iΨ  is the matrix of sampling variances, which is 

assumed to be known. 

It must be noticed that, while in the classical area level SAE models heterogeneity is modeled using 

continuous (usually Normally distributed) random variables, here it is modeled with a discrete dynamic 

variable. As we can deduce from Figure 4.1, our data have a skewed distribution. However, the empirical 

distribution is not far from a Normal distribution. D’Alò, Di Consiglio, Falorsi, Ranalli and Solari (2012) 

show that the differences in estimates between adopting a Normal or a Binomial model are not as relevant 

as expected and Normal models are often used for estimation of unemployment rates (You et al., 2003; 

Boonstra, 2014). Finally adopting the Normal distribution has computational advantages which are clarified 

later in this section.  
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Density kernel plot of the direct estimates of unemployment incidences. 
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The model parameters of interest can be divided into three groups:  

• the matrix of small area parameters:  

 

11 1

1

= ;

T

m mT

 

 






 

Θ



  



 (4.1) 

• the vector of the measurement parameters:  

  2 2
obs 1 1= , , , , , ;k k   β β    

• the set of latent parameters:  

  lat = , .π Π   
 

To complete the Bayesian formulation of the proposed model, it is necessary to choose priors for the 

model parameters. Small area parameters do not need a specific prior because direct estimates based on 

observed data are available; therefore, a set of priors is chosen for the measurement and the latent 

parameters. Regarding obs ,  diffuse normal priors are assumed for the regression coefficients. These priors 

are conjugate and computationally more convenient than the usually flat priors over the real line (see Rao, 

2003, Chapter 10). In particular, we assume  

  0 0, , = 1, , ,u pN u kβ η Σ    

with 2 1
0 0= u Σ Λ  and 0Λ  is a known diagonal matrix. 

Variances 2 ,u = 1, , ,u k  are unknown and, therefore, it is necessary to set a prior also on these 

parameters. The choice of the prior distribution for the variance components is critical as in Bayesian mixed 

models the posterior distributions of these parameters are known to be sensitive to this specification. The 

inverse Gamma distribution is a popular choice, see e.g., You et al. (2003) and Datta, Lahiri, Maiti and Lu 

(1999) among others. Gelman (2006), Gelman, Jakulin, Pittau and Su (2008), and Polson and Scott (2012) 

propose to assume a half-Cauchy distribution for the variance of the random effect. Alternatively, a Uniform 

distribution can also be considered. Fabrizi et al. (2016) conduct an exhaustive sensitivity analysis when 

using a latent class model in a multivariate setting and find no significant difference among these different 

alternatives. For this reason, we choose the same prior distribution considered in You et al. (2003) and use 

an inverse Gamma distribution with shape parameter 0a  and scale parameter 0 ;b  then  2
0 0IG , ,u a b 

= 1, , ,u k  where 0 0, > 0a b  are set to very small values. This choice makes it also easier to derive the 

full conditional distributions for the Gibbs sampler. 

For lat,  a system of Dirichlet priors is set on the initial probabilities and on the transition probabilities. 

The Dirichlet distribution is a conjugate prior for the multinomial distribution. This means that if the prior 

distribution of the multinomial parameters is Dirichlet then the posterior distribution belongs to the same 

family. The benefit of this choice is that the posterior distribution is easy to compute and, in some sense, it 

is possible to quantify how much our beliefs have changed after collecting the data. Then, we assume  
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 

   1

Dirichlet ,

= , , Dirichlet , = 1, , .

k

u u k u k u k  

π 1

π 1 




  

 

4.3  Estimation and model selection 
 

In this work we make use of a data augmentation Markov Chain Monte Carlo (MCMC) method (Tanner 

and Wong, 1987; Liu, Wong and Kong, 1994; Van Dyk and Meng, 2001) based on the Gibbs sampler, in 

which the latent variables are treated as missing data (Marin et al., 2005; Germain, 2010). There are two 

main reasons for this choice. First of all, there is evidence that data augmentation has a better performance 

than other methods, as the marginal updating scheme (Boys and Henderson, 2003). Moreover, it simplifies 

the process of sampling from the posterior distribution. Details on this method and the full conditionals 

employed in the Gibbs sampler are given in Appendix A.1. 

The choice of the number of latent states is a crucial step in applications. In the framework of LMMs, 

this requires a model selection procedure. From a Bayesian perspective, a fundamental goal is the 

computation of the marginal likelihood of the data for a given model. In this paper we use a model selection 

method based on the marginal likelihood and to estimate this quantity we use the method proposed by Carlin 

and Chib (1995), applied for each available model on the basis of the output of the MCMC algorithm. 

Technical details are provided in Appendix A.2. 

A well-known problem occurring in Bayesian latent class and LMMs is the label switching. This implies 

that the component parameters are not identifiable as they are exchangeable. In a Bayesian context, if the 

prior distribution does not distinguish the component parameters between each other, then the resulting 

posterior distribution will be invariant with respect to permutations of the labels. Several solutions have 

been proposed; for a general review see Jasra, Holmes and Stephens (2005). The easiest approach is to use 

relabeling techniques retrospectively, by post-processing the MCMC output (Marin et al., 2005). However, 

in our case, we are interested in the prediction of the small area parameters, whose distribution depends on 

the number of areas in each latent state. Therefore, we do not use the post-processing approach and the 

MCMC output is permuted at every iteration according to the ordering of the mean of the response variables 

in each class.  

 
5  Results 
 

In this section we report the results of the application of the LMM area level SAE model to the LFS data 

presented in Section 2. We fit the model with = 2, , 6k   latent states. For each value of ,k  we run one 

Markov chain with 100,000 iterations and then we consider a burn-in period of 50,000 iterations. The 

posterior means are approximated by means of the retained MCMC samples. Similarly, the variance of the 

samples approximates the posterior variance of .it  We select = 4k  using the proposed model selection 

approach. In fact, using expression (A.4), we obtain the following values for the posterior density of the 

data:  ˆ = 2 = 59,152.41,p kΘ  ˆ = 3 = 64,405.11,p kΘ  ˆ = 4 = 68,816.06,p kΘ  and  ˆ = 5 =p kΘ  

68,703.75.  
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We validate our model selection procedure by comparing the final choice with that obtained using the 

Deviance Information Criterion (DIC). In particular, we focus on = 4, 5k  latent states for which the Bayes 

rule provides the largest values. The DIC confirms our results because we obtain 8,334.0 and 8,362.4 for 

= 4k  and = 5,k  respectively. 

Figure 5.1 compares the map of estimates for the first and the last quarter of the whole period. These can 

be compared with the maps of direct estimates reported in Figure 2.1. In particular, estimates on the first 

row of Figure 5.1 are obtained by the proposed LMM area level model. Those on the second row are 

obtained using a cross-sectional Fay-Herriot (FH) model computed with the R package hbsae (Boonstra, 

2012), while those on the last row are obtained using the You et al. (2003, YRG) model, for which we have 

considered three possible choices for ,  0.50, 0.75, and 1.00, as in You et al. (2003). To measure the overall 

fit of the three alternative YRG models we have compared posterior predictive p  values (Meng, 1994). In 

particular, simulated values of a suitable discrepancy measure are generated from the posterior predictive 

distribution and, then, compared to the corresponding measure for the observed data. More specifically, if 

 ˆ ,d Θ Θ  is a discrepancy measure that depends on the observed data, ˆ ,Θ  and the parameter matrix ,Θ  

then the posterior predictive p  value is defined as    *ˆ ˆ ˆ, > , ,P d d  Θ Θ Θ Θ Θ  where *Θ̂  is a sample 

from the posterior predictive distribution. If a model fits the observed data well, then the two values of the 

discrepancy measure are similar and, as a result, the value of the p  value is expected to be close to 0.5. 

On the other hand, p  values near 0 or 1 signal a model that is not well suited to the data. As in Datta et al. 

(1999) and in You et al. (2003), we use the following discrepancy measure  

      1

=1

ˆ ˆ ˆ, =
m

i i i ii
i

d  Θ Θ θ θ Ψ θ θ   

for the overall fit. The posterior predictive measure suggests that the model with = 1  provides a better fit 

to the data, in fact it takes value 0.188 for = 1.00,  0.103 for = 0.75,  and 0.032 for = 0.50.  Note 

that for our model, we obtain a p  value equal to 0.311. We have also implemented the Datta et al. (1999) 

estimation approach. However, the number of areas and the overall number of observations made the 

estimation computationally prohibitive. For this reason, it is not considered further. 

From Figure 5.1, we observe that all model-based estimates are smoother than the original direct 

estimates. Maps are color-coded according to the quartiles of the direct estimates for 2004-Q1. In general, 

estimates for 2004-Q1 show a quite distinct division between North, Center, and South of Italy, with 

relatively higher unemployment incidences in the South of the country. For 2014-Q4, unemployment 

incidences are all much higher all over the country, because of the economic crisis that hit the country in 

2008. LMM and FH show similar patterns, and are in line with those of the direct estimator. YRG, on the 

other hand, provides more shrunk estimates and this is particularly evident for 2014-Q4 where a general and 

distinct underestimation is provided. This behavior is displayed for all time points. In fact, Figure 5.2 shows 

the absolute difference between the direct estimates and model-based estimates. Areas are ordered according 

to estimated variance of the direct estimates. All model-based estimators show a common general behavior: 

smaller differences for more precise estimates and increasingly larger differences for more variable direct 
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estimates. However, we can note that YRG provides systematically larger positive differences, by this 

casting some concerns on bias. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Unemployment incidences (%) estimated using LMM, FH and YRG for 2004-Q1 and 2014-Q4. 
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Figure 5.2 Difference between DIR and model-based small area estimates; LMM, FH, YRG, from left to right. 

Areas are arranged according to increasing estimated variance of the direct estimator.  

 
As mentioned earlier, LMM uses a discrete random variable to model unobserved heterogeneity rather 

than the more common continuous (usually Gaussian) assumption. As a consequence, small areas can be 

clustered according to the latent state to which they belong at each time point. In this application, latent 

states are ordered and can be associated to the level of unemployment, conditionally on the covariates. 

Figure 5.3 shows the evolution of the latent states clustering for the small areas over the 44 time points. The 

fourth cluster is very small and comprises areas with a very high unemployment incidence. In addition, the 

pattern seems to be very stable over time, as the probability of changing latent state is very low. Note that, 

although there is a noticeable temporal trend in the data, this is captured by the dummy variables inserted 

to account for trend and seasonality. These finding are supported by the estimated initial and transition 

probabilities:  
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Figure 5.3 Latent states distribution from 2004-Q1 to 2014-Q4. 

 
 

Figure 5.4 shows the time series of direct estimates and the corresponding model-based estimates for a 

selection of small areas. Aosta – panel (a) – is a small LMA in the very North of the country, with a small 

level of unemployment. LMM smooths the direct estimates more than the other methods, while YRG tracks 

the path of the direct estimates, but provides a noticeable negative bias. Milan – panel (b) – is a large city 

in the North of the country and the corresponding LMA has usually a very large sample size. As expected, 

FH and LMM track the values of DIR, while YRG exhibits a clear tendency to underestimation. Perugia 

and Brindisi are two mid-size towns in the Centre and in the South of Italy, respectively. The pattern of the 

model-based estimators is very clear: LMM provides a very good smoothing of the quite erratic trend of the 

direct estimates, better than FH, while YRG again displays a tendency to negative bias, particularly after 

the first few quarters. 

It is expected that model-based estimates, besides providing estimates for the out-of-sample areas, 

provide gains in efficiency over direct estimates. In Figure 5.5 we report the distribution of the CV for 

comparing model-based small areas estimates for each time point, classified as in Figure 2.3 according to 

different relevant values of CV. FH provides estimates for out of sample areas, but it does not seem to 

provide a useful estimation option for these data since only few estimates have CV smaller than 16%. On 

the other hand, YRG provides a very good improvement in terms of estimated efficiency, with almost all 

estimates with a CV smaller than 33.3%. LMM provides a good improvement over FH with only 

approximately 15% of the small area estimates with a CV larger than 33.3%. 
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Figure 5.4 Time series of direct and model-based estimates for a selection of four small areas. 
 

In addition, small area estimates should be close to population level quantities, when available. Here, we 

use data from the 2011 Italian Population Census and consider unemployment incidence for LMAs from 

the Census as a gold standard. In particular, we evaluate the distance between small area estimates for the 

closest time point, namely 2011-Q4, and the Census value, Cens ,i  and compute the Absolute Relative Error 

for each area  ARE i  as  

 
ˆ Cens

ARE =
Cens

i i

i
i

 
 (5.1) 

for each area .i  The ARE i  also provides a sort of measure of relative bias and is important to evaluate and 

compare the performance in terms of overall error of the estimates. Note that the small area parameter of 

interest and the Census quantity do not have exactly the same definition. In fact, the LFS is a continuous 

survey and the corresponding unemployment incidence refers to a quarter, while that from the Census refers 

to a specific calendar day. In addition, order and wording of items in the two questionnaires used to evaluate 
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the unemployment status differ slightly. We compare the distribution of ARE i  for LMM and YRG in 

Figure 5.6. From the empirical distribution of ARE ,i  we observe that LMM systematically provides 

smaller values than YRG. When looking at the subgroup of in-sample areas, we can compare this 

distribution with that of the direct estimator, and we conclude that LMM is in line with DIR for almost one 

half of the small areas, and then LMM provides estimates with a relatively smaller value of ARE .i  In 

conclusion, YRG estimates have a lower estimated variance, but exhibit higher estimated bias, in terms of 

the comparison with the Census and the direct estimates. This puts concern on coverage. On the other hand, 

LMM estimates are not as good as YRG estimates in terms of CV, but when looking at the bias, the overall 

behavior seems to be much more reliable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5  Distribution of the coefficients of variation for DIR, LMM, FH and YRG estimates for each quarter.  
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Figure 5.6 Empirical distribution of ARE ,i  equation (5.1), for in-sample areas (left panel) and for all areas 
(right panel).  

 
 
6  Final remarks 
 

In this paper we develop a new area level SAE method that uses a Latent Markov Model (LMM) as the 

linking model. In LMMs (Bartolucci et al., 2013), the characteristic of interest, and its evolution in time, is 

represented by a latent process that follows a Markov chain, usually of first order. Under the assumption of 

normality for the conditional distribution of the response variables given the latent variables, the model is 

estimated using an augmented data Gibbs sampler. The proposed model has been applied to quarterly data 

from the Italian LFS from 2004 to 2014. The model-based method has been found to be effective for 

developing LMAs level estimates of unemployment incidence and the reduction in the coefficient of 

variation compared to the direct estimator is quite evident. The proposed approach is also more accurate 

than the direct and the time-series model-based estimator proposed by You et al. (2003) in reproducing 

census data. An advantage of this methodology is that it also provides a clustering of the small areas in 

homogeneous groups. 

LMMs can be seen as an extension of latent class models to longitudinal data. In this regard, our approach 

represents an extension of the latent class SAE model proposed by Fabrizi et al. (2016). Moreover, LMMs 

may be seen as an extension of Markov chain models to control for measurement errors and can easily 

handle multivariate data, providing a very flexible modeling framework. The approach could be extended 

using spatial correlation information, and it could consider different distributions for the manifest variables, 

such as Poisson, Binomial, and Multinomial responses. In this scenario, we could fit unmatched sampling 

and linking models and handle departures from the normality assumption, but a Gibbs sampler cannot be 

used any longer, and Metropolis-Hastings sampling is an option. The proposed univariate model can account 

for measurement errors, but the extension to multivariate framework could be also possible, taking into 

account the conditional independence assumption. 
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In this application we have not accounted explicitly for the serial correlation induced by the rotating 

panel design. A natural way to take the different features of this design into account, such as the rotating 

group bias and the autocorrelation of the survey errors, is to use state space-model specifications, as in 

Pfeffermann (1991), Pfeffermann and Rubin-Bleuer (1993) and, more recently, Van den Brakel and Krieg 

(2015) and Boonstra and Van den Brakel (2016). In this context, it would also be interesting to extend to 

SAE the LMM with serial correlation in the measurement model proposed by Bartolucci and Farcomeni 

(2009). State space-model specifications can also be a useful tool to capture and model the strong trend and 

seasonality of this type of data. 
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Appendix A 
  

Model estimation 
 

In the following we first illustrate Bayesian estimation and model selection based on a MCMC algorithm 

which is implemented in a data augmentation framework (Tanner and Wong, 1987). 

 
A.1  Data augmentation method 
 

In order to estimate the small area parameters ,Θ  the measurement parameters obs,  and the latent 

parameters lat,  we follow a data augmentation approach. We recall that the observed data consist of the 

direct estimates ˆ ,it  the corresponding smoothed MSE ,it  and the covariate vectors ,itx  with = 1, ,i m  

and = 1, , .t T  Moreover, the data augmentation approach explicitly introduces the latent variables itU  

treated as missing data, the values of which are updated during the MCMC algorithm that is, therefore, 

based on a complete data likelihood. In this context, the use of conjugate priors to the complete data 

likelihood allows us to sample from the conditional posterior of the latent states in a straightforward way. 

Since the state space is finite, sampling the latent states conditionally given the model parameters is also 

simple. 

To generate samples from the joint posterior distribution of the model parameters and latent states, the 

proposed MCMC algorithm proceeds as follows. Let Θ̂  be the matrix of realizations of the available direct 

estimates that is defined as in (4.1), with each it  replaced by ˆ ,it  and let U  be the matrix of the latent 

variable ,itU  with elements organized as in ˆ .Θ  Then the posterior distribution of all model parameters and 

latent variables, given the observed data, has the following expression:  
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            lat obs lat lat obs obs
ˆ ˆ, , , | , .p p p p U Θ Θ U Θ U Θ Θ        

The MCMC algorithm alternates between sampling the latent variables and the parameters from the 

corresponding full conditional distribution. This scheme is repeated for R  iterations. At the end of each 

iteration ,r = 1, , ,r R  the sampled model parameters and latent variables are obtained and are denoted 

by  ,rU  
lat ,
r  

obs,
r  and  .rΘ  More precisely, each iteration consists in:  

1. drawing  rU  from       1 1 1
lat obs, , ;r r rp   U Θ   

2. drawing  
lat
r  from   lat ;rp U  

3. drawing  
obs
r  from     1

obs , ;r rp U Θ  

4. drawing  rΘ  from     obs
ˆ, , .rrp Θ U Θ  

 

In the following we illustrate in details each of the above steps. In this regard, note that our illustration 

is referred to the case where all elements of Θ̂  are available. However, in our application, some elements 

of this matrix are missing. This requires minor adjustments to the MCMC algorithm, consisting in imputing 

the missing values by a Gibbs sampler and sampling directly from its full conditional distribution. 

 
A.1.1  Simulation of  U r  
 

Each latent variable itU  is drawn separately from the corresponding full conditional distribution, which 

is of multinomial type with specific parameters. In particular, we have that  

            1 1 1 1
, 1 , 1 lat obs, , , , Multi , = 1, , , = 1, , ,r r r r r

it k iti t i tU U U t T i m   
  Θ q     (A.1) 

where  
, 1
r

i tU   disappears for = 1t  and  
, 1
r

i tU   disappears for = .t T  Moreover, the probability vector itq  is 

defined as follows: 

• for = 1,t itq  has elements proportional to  

  
 

 
1

2

1 1 , = 1, , ;r
i

r r
u u U

u k  
     

• for = 2, , 1,t T  itq  has elements proportional to  

  
 

 
 

1
, 1 , 1

1 1 , = 1, , ;r r
i t i t

r r

u U U u
u k  

 

     

• for = ,t T itq  has elements proportional to  

  
 

, 1

1 , = 1, , .r
i T

r

u U
u k



    

 
A.1.2  Simulation of  

lat
r  

 

Recalling that  lat = , ,π Π  we first draw  rπ  from the full conditional distribution:  
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    1Dirichlet ,r
k π U 1 n   

where  1 11 1= , , kn n n   and 1un  is the number of areas in state u  at time 1, with = 1, , .u k  Moreover, 

we draw each row of matrix Π  from the distribution  

    ,Dirichlet , = 2, , ,r
u k u t t Tπ U 1 n    

where  1, , ,= , , ku t u t u tn n n   and , uu tn  is the number of areas moving from state u  to state u  at time ,t  

with = 2, ,t T  and , = 1, , .u u k  

 
A.1.3  Simulation of  

obs
r  

 

Considering that  2 2
obs 1 1= , , , , ,k k β β  , we first draw each ,uβ = 1, , ,u k  from the full 

conditional distribution:  

      1, 1,, , ,r r
u p u uNβ U Θ η Σ   

where  

 

 

 

1
1, 1,

=1 =1

2 1
1, 1,

1, 0
=1 =1

= = ,

= ,

= = ,

m T

u it it itu
i t

u u u

m T

u it it it
i t

I U u

I U u









 





η Λ x

Σ Λ

Λ x x Λ

  

with  I   denoting the indicator function equal to 1 if its argument is true and to 0 otherwise. Then, we 

draw each 2
u  from  

      2
1, 1,, IG , ,r r

u u ua b U Θ    

with  

 

 

.
1, 0

2
1, 0 0 0 0 1, 1, 1,

=1 =1

= ,
2

1
= = ,

2

u
u

m T

u it u u uit
i t

n
a a

b b I U u



     
 
 η Λ η η Λ η

  

where .
=1

=
T

u tu
t

n n  is the number of areas in state u  regardless of the specific time occasion.  

 
A.1.4  Simulation of  Θ r  
 

The goal of SAE is to predict each ,it = 1, , ,i m = 1, , ,t T  based on the model and the observed 

data. This amounts to draw these elements from  

        
obs

ˆ ˆ, , ( , ),r r rr
it it itit itN    U    

where  
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         ˆ ˆ= 1 ,r r r r
it it uit it it     x β  (A.2) 

with       2 2= .r r r
u u itit     

 
A.2  Model selection: The Chib estimator 
 

The method proposed in Chib (1995) can be applied to perform model selection starting from the Gibbs 

sampler output. It is known that the posterior density can be written as the ratio of the product of the 

likelihood function and the priors divided by the marginal likelihood:  

            
 

lat lat obs obs

lat obs

ˆ,
ˆ, , , = .

ˆ

p p p
p

p

 U Θ U Θ Θ
U Θ Θ

Θ

   
   (A.3) 

Therefore, it is possible to write the marginal likelihood of the data Θ̂  as 

            

 
lat lat obs obs

lat obs

ˆ ,
ˆ = ,

ˆ, , ,

p p p
p

p

 Θ Θ U Θ U
Θ

U Θ Θ

   

 
 (A.4) 

for any ,U lat, obs, Θ  and ˆ .Θ  We drop the dependence on k  for ease of notation. This is the model 

selection criterion used in Section 5. Then, choosing specific values of the latent variables and model 

parameters, denoted by ,U lat, obs,  and ,Θ  we can estimate  ˆlog p Θ  through the following 

decomposition:  

 
         

   
lat lat obs

obs lat obs

ˆ ˆlog = log log log log

ˆlog , log , , , .

p p p

p p

   

 

Θ Θ Θ U

Θ U U Θ Θ

  

  
 

(A.5)
 

The use of the log transformation is motivated by numerical stability (Chib, 1995). 

The first five terms at the right hand side of (A.5) can be computed directly from the assumed 

distributions of the parameters and the data. On the other hand obtaining the last component is more 

challanging. By the law of total probability,  lat obs
ˆ, , ,p U Θ Θ   may be decomposed as  

          lat obs lat obs lat obs obs
ˆ ˆ ˆ ˆ ˆ, , , = , , , , , , .p p p p pU Θ Θ U Θ Θ Θ Θ Θ Θ Θ Θ        (A.6) 

Following Chib (1995), we compute the first term of (A.6) following the Gibbs scheme outlined in 

Section A.1, whereas, the other three terms are estimated from the Gibbs output. In particular, we estimate  

      lat obs lat obs obs
ˆ ˆ ˆ, , = , , , , ,p p p dΘ Θ U Θ Θ U Θ Θ U       

as   1
lat obs

=1
, , ,

R
r

r
R p  U Θ   based on R  draws from a reduced Gibbs sampling where U  is not 

updated. In order to estimate  

      obs obs lat lat lat
ˆ ˆ ˆ, = , , , , , ,p p p d dΘ Θ U Θ Θ U Θ Θ U       
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we use     ,1,11
obs lat=1

, , .
R rr
r

R p  U Θ   Finally, to estimate  

      lat obs lat obs lat obs
ˆ ˆ ˆ= , , , , , ,p p p d d dΘ Θ Θ U Θ U Θ U        

we use       , 2 , 2, 21
lat obs=1

, , ,
R r rr
r

R p  Θ U    with R  draws from a third reduced Gibbs sampling. 
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Sample-based estimation of mean electricity consumption 
curves for small domains 

Anne De Moliner and Camelia Goga1 

Abstract 

Many studies conducted by various electric utilities around the world are based on the analysis of mean electricity 
consumption curves for various subpopulations, particularly geographic in nature. Those mean curves are 
estimated from samples of thousands of curves measured at very short intervals over long periods. Estimation 
for small subpopulations, also called small domains, is a very timely topic in sampling theory. 

 

In this article, we will examine this problem based on functional data and we will try to estimate the mean curves 
for small domains. For this, we propose four methods: functional linear regression; modelling the scores of a 
principal component analysis by unit-level linear mixed models; and two non-parametric estimators, with one 
based on regression trees and the other on random forests, adapted to the curves. All these methods have been 
tested and compared using real electricity consumption data for households in France. 

 
Key Words: Regression trees; functional data; random forests; linear mixed models; robustness. 

 
 

1  Introduction and context 
 

Many studies conducted by the French electric company EDF are based on the analysis of the mean 

curves of electricity consumption by groups of customers who share common characteristics (e.g., similar 

electrical equipment or a common rate). In this text, these groups will be called domains. These mean 

consumption curves, also called demand curves, are estimated using a sample of several thousand curves 

measured at half-hourly intervals over long periods (often years). 

In the literature, estimation of a total or mean demand curve for various sampling plans and the 

construction of confidence intervals has been examined in the recent work of Cardot, Dessertaine, Goga, 

Josserand and Lardin (2013), Cardot, Degras and Josserand (2013), and Cardot, Goga and Lardin (2013). 

The estimation of totals or means for functional data raises specific problems regarding the sample estimate 

of the finite population, as the strong time dependencies of the data must be exploited and preserved. 

Here, we will focus on the problem of estimating mean curves for small domains, i.e., cases where we 

look simultaneously at several subpopulations, which may be small in size. With the advent of smart meters, 

it will become increasingly easy and less and less costly to create and maintain large samples of demand 

curves. It will therefore be possible to produce estimates of mean curves not only throughout France, but 

also for small geographic areas such as regions, departments and even cities. For example, these estimates 

could be used to propose services based on an analysis of consumption curves in territorial communities or 

for publication as part of an open data process. 

This issue of small domains is frequently addressed in sampling theory outside the framework of 

functional data. The recent book by Rao and Molina (2015) proposes a state-of-the-art report on existing 
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methods. When the domain is small, direct estimators (i.e., constructed solely from individuals in the sample 

within the domain) are not very effective. To improve the quality of estimates, auxiliary information is used 

and estimators are constructed based on implicit or explicit modelling of the link between quantity of interest 

and auxiliary information, common to all domains. In the context of EDF, this auxiliary information can, 

for example, be from known billing data (rate, contract power, total consumption in the previous year in 

particular) for each individual in the population, but also from open data proposed by the INSEE for small 

geographic aggregates (IRIS). 

In the literature, there are estimation methods for small domains specific to temporal series. For example, 

Pfefferman and Burck (1990) and Rao and Yu (1994) superimpose temporal series models on series of 

variables and/or coefficients of the various instants to take into consideration temporal dependencies. 

However, those space-state-type models were developed for relatively short temporal series (a few dozen 

points). They are estimated using Kalman filters, which require a lot of calculation time, which would 

present a problem in our context, in which the number of domains studied can vary widely. 

To our knowledge, the estimation of small domains in surveys for functional data has not yet been 

examined in the literature. To address this problem, we propose two types of methods. First, we apply 

parametric methods such as linear mixed models and functional linear regressions to the coordinates of the 

projected curves in a finite base, e.g., the base of principal components of a principal components analysis. 

We also propose two non-parametric methods based on regression trees and random forests adapted to the 

curves, respectively. All these methods are part of the model-based survey approach. 

In Section 2, we formalize the problem and introduce a few notations. In Section 3, we present two direct 

estimators (the Horvitz-Thompson estimator and the calibration estimator for functional data) that will be 

the references to which we will compare ourselves to evaluate the performance of our methods. In Section 4, 

we propose two parametric methods based on unit-level linear functional and mixed models, adapted to the 

context of the functional data, and two non-parametric methods based on regression trees and random 

forests. For each method, we also propose a procedure for approximating the bootstrap variance. Finally, in 

Section 5, all estimation methods proposed in this article are tested and compared to a data set from actual 

electricity consumption curves for households in France. The conclusions and perspectives are presented in 

Section 6. In particular, the respective benefits and drawbacks of the various methods are compared in 

Subsection 5.4. 

 
2  Notations and framework 
 

Let a population of interest U  of size .N  A (demand) curve  iY t  measured for each instant t  belonging 

to an interval of time  0, T  is associated with each unit i  of the population. The population U  can be 

decomposed in D  disjoint domains dU  of known sizes , = 1, , .dN d D  Our goal is to estimate the mean 

curve of Y  in each domain: 

      
1

= , 0, , = 1, , .
d

d i
d i U

t Y t t T d D
N




   (2.1) 
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In the population ,U  we select a sample s  of size ,n  based on a random sampling design   .p   Let 

 = Pri i s   the probability of inclusion of unit i  in sample s  and assumed to be positive for all units 

.i U  Let =d ds s U  the portion of s  belonging to domain dU  of random size ,dn  which can be equal 

to 0 for one or more domains. 

We assume that we also have a dimensional vector p of auxiliary variables (non-dependent on time) iX  

that will be assumed to be known for each individual i  in the population and with a known average 

=
d

d i d
i U

N
X X  on the domain = 1, , .d D  

In practice, the curves are not observed continuously, but only for a series of measurement instants 

1 20 = < < < =Lt t t T  that are also assumed to be equidistant and identical for all individuals. It is also 

assumed that there are no missing values. 

 
3  Direct estimation methods in the design-based approach 
 

In this section, we adopt the sampling design approach. This means that the variable interest values iY  

for each population unit are considered to be deterministic and the only variable present is that of the 

construction of the sample. The statistical inference then only describes the randomness created by the 

sampling design. 

We will present two classic estimators, the Horvitz-Thompson estimator and the calibration estimator, 

which will be the references to which we will compare our methods to evaluate performances. These are 

direct estimators, i.e., estimators constructed by using, for the estimation of the mean for each domain, only 

units and auxiliary information related to the domain in question. 

The functional Horvitz-Thompson estimator (Horvitz and Thompson, 1952; Cardo, Chaouch, Goga and 

Labruère, 2010) of d  is given by: 

      HT
1

ˆ = , = 1, , , 0, ,
d

i id
d i s

t d Y t d D t T
N




   (3.1) 

with = 1i id   the sampling weight of unit ,i  also called the Horvitz-Thompson weight. It obviously 

cannot be calculated for the unsampled domains (i.e., domains d  such that ds  is empty) and it is extremely 

unstable for small domains. Moreover, it in no way uses the predictor variables available to us. 

To take advantage of the auxiliary information, again in a sampling design approach, we can use the 

calibration estimator proposed by Deville and Särndal (1992). 

The calibration estimator for the mean d  is given by: 

      cal cal
1

ˆ = = 1, , , 0, ,
d

id id
d i s

t w Y t d D t T
N




   (3.2) 

where the calibration weights cal, didw i s  are as close as possible to the sampling weights id  units of ds  

within the meaning of a certain distance or pseudo-distance  ,G w d  defined by the statistician: 



196 De Moliner and Goga: Sample-based estimation of mean electricity consumption curves for small domains 
 

 
Statistics Canada, Catalogue No. 12-001-X 

  , subject to = .min
id

d d d

i id i id i i
w i s i s i U

d G w d w
  
  X X  (3.3) 

For the distance of chi-square     2, = ,
d

id i id i i
i s

G w d w d d


  the weights are given by 

      
1

cal = ,
d d d

i i i i i i i i i did
i U i s i s

w d d d d i s


  

        
  
  X X X X X   

and the estimator becomes 

                                 cal
1 1 ˆˆ = ,

d d d

i i i i i dd
d i s d i s i U

t d y d t
N N


  

  
 

  X X β   

where      
1ˆ = .

d d
d i i i i i i

i s i s
t d d Y t



 
 β X X X  The calibration weights are not dependent on time ,t  

but they are dependent in this case on the domain ,d  therefore, the estimator  calˆ d t  does not satisfy the 

additivity property, i.e.,    cal cal
=1

ˆ ˆ=
D

dd
t t   where  calˆ t  is the calibration estimator of 

= .ii U
Y N

  Where the vector  = 1, 1, , 1 1   is in the model, thus, 

                                     cal
1 ˆ ˆˆ = = , 0, .

d

di d dd
d i U

t t t t T
N




  X β X β   

If size dn  is large, this estimator is approximately bias-free regarding the sampling plan. We can consider 

the modified estimator: 

               mod
1 1 ˆˆ = , 0, ,

d d d

i i i i id
d i s d i s i U

t d Y t d t t T
N N


  

   
 

  X X β  (3.4) 

where 

                                        
1

ˆ = , 0, ,i i i i i i
i s i s

t d d Y t t T


 

   
  β X X X  (3.5) 

does not depend on domain d  and, therefore, the estimator modˆ d  satisfies the additivity property, i.e., 

   mod cal
=1

ˆ ˆ=
D

dd
t t   where  calˆ t  is the calibration estimator of = .ii U

Y N
  As well, if n  is 

large, it has no asymptotic bias even if size dn  is not large. The asymptotic variance functions of  calˆ d t  

and  modˆ d t  are equal to the Horvitz-Thompson variances of residuals    ˆ
i i dY t t X β  and 

   ˆ
i iY t t X β  (see Rao and Molina, 2015). 

Nonetheless, for each domain, these estimates are based only on data from the domain in question (curves 

and explanatory variables) without considering the rest of the sample. Like the Horvitz-Thompson 

estimator, they are therefore inaccurate for small domains and cannot be calculated for unsampled domains. 

The methods that we present in the following section will allow us, by presenting a model common to 

all units of the population that describes the link between variables of interest and auxiliary information, to 

jointly use all data from the sample to perform the estimate for each domain, and thus increase the accuracy 

for each one. It will also make it possible to even provide estimates for unsampled domains. 
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4  Model-based estimation methods 
 

In this section, we use the model from Valliant, Dorfman and Royall (2000), in which curves iY  are 

considered to be random and we propose four innovative approaches for responding to our problem 

estimating curves with a mean demand for small domains. Assuming that  iY t  and the auxiliary 

information vector iX  are available for each individual i  in the domain d  and that the mean =dX  

d
i d

i U
N

 X  is also known. 

We assume that the auxiliary variables are related to the demand curves according to a functional model 

of superpopulation on all of the population that is generally expressed as: 

        : = , , , 0, ,i d i i dY t f t t i U t T   X   (4.1) 

with ,df  an unknown regression function to be estimated, which can vary from one domain to another, and 

i  a process of zero expectation noise, zero covariance for different individuals and non-null regarding time. 

If the size of domain dN  is large, then the mean d  will be estimated by 

      
1 ˆˆ = , 0, ,

d

d i
d i U

t Y t t T
N




   

where    ˆˆ = ,i d iY t f tX  is the prediction of   .iY t  Otherwise, the mean d  is estimated by (see Valliant 

et al., 2000): 

                                                              
1 ˆˆ = , 0, .

d d d

d i i
d i s i U s

t Y t Y t t T
N


  

  
 
   (4.2) 

The quality of our estimates thus depends on the quality of our model: if the model is false, that may 

lead to biases in the estimates. 

 

4.1  Functional linear model 
 

The simplest model of form (4.1) is the functional linear regression model from Faraway (1997): 

        = , 0, , .i i i dY t t t t T i U   X β  (4.3) 

where the residuals  i t  are independent for ,i j  distributed based on a law of means of 0 and of 

variance of  2 .i t  If the size of domain dN  is large, then the mean of Y  in domain d  is estimated by 

      blu
BLU

ˆˆ = , 0, ,dd t t t T  X β   

where         
1

2 2
BLU

ˆ = i i i ii ii s i s
t t Y t t 



 
 β X X X  is the best linear unbiased (BLU) estimator 

of β  that does not depend on domain .d  Estimator  bluˆ d t  can be expressed as a weighted sum of   :iY t  

        blu blu
1

ˆ = , 0, ,id id
d i s

t w t Y t t T
N




   

where the weight         
1

blu 2 2=
d

j j j ij iid j U j s
w t t t 



 
  X X X X  now dependant on time .t  If 

d dn N  is not insignificant, then the mean d  is estimated using (4.2) by: 
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           blu
BLU BLU

1 ˆ ˆˆ = , 0, .
d

T
di id

d i s

t Y t t t t T
N




   X β X β   

This estimator can again be expressed as a weighted sum of  iY t  with weights that will still depend on 

time .t  The variance function (based on the model) of  bluˆ d t  can be derived using Rao and Molina (2015), 

Chapter 7. The variance function  2
i t  is unknown and can be estimated by following Rao and Molina 

(2015). By replacing  2
i t  with  2ˆ ,i t  we will obtain the empirical best linear unbiased predictor 

(EBLUP) of d  and its variance can be obtained using the method set out by Rao and Molina (2015). This 

EBLUP estimator does not use the sample weight id  and therefore is not consistent in terms of the sampling 

plan (unless the sample weights are constant for units in the same domain ).d  A modified estimator, also 

referred to as a pseudo-EBLUP, can be constructed using the new approach described by Rao and Molina 

(2015, Chapter 7), equal in this case to the estimator set out in (3.4). 

If  iY t  is unknown for the units in domain ,d  the following indirect estimator can be used: 

        ind ind
1ˆˆ = = , 0, ,d id id

d i s

t t w Y t t T
N




X β   (4.4) 

with  ˆ tβ  given in (3.5) and the weights     1
ind =

d
j i i i i iid j U i s i s

w d d


  
   X X X X  are not dependant 

on time ,t  unlike blu.idw  Thus, the estimators proposed in this section have the benefit of being able to be 

used for unsampled domains. 

 

4.2  Unit-level linear mixed models for functional data 
 

The unit-level linear mixed models proposed by Battese, Harter and Fuller (1988) are very useful in 

estimating total actual variables for domains. As we will see later in more detail, they can translate both the 

effect of auxiliary information on the interest variable (by fixed effects), and the specifics of the domains 

(by random effects). 

In this section, we thus attempt to adapt those models to the context of functional data. To that end, we 

will project curves in a space of defined dimensions and in that way, transform our functional problem into 

several problems in estimating total or mean real uncorrelated variables for small domains, which we will 

then resolve using the usual methods. The use of projection bases thus makes it possible to preserve the 

temporal correlation structure of our data while arriving at several unrelated subproblems in estimating real 

variables, which we treat independently using the usual methods. 

 

4.2.1  Estimation of curves using unit-level linear mixed models applied to PCA 
scores 

 

Like PCA in finite dimensions, functional PCA is a dimension-reduction method that makes it possible 

to summarize information contained in a data set. It was proposed by Deville (1974), its theoretical 

properties were studied in Dauxois, Pousse and Romain (1982) or Hall, Mülller and Wang (2006) and, 

finally, it was adapted to surveys by Cardot et al. (2010). 
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More formally, the curves     0,=i i t TY Y t   are functions of time t  and we assume that they belong to 

 2 0, ,L T  the space of square-integrable functions in the interval  0, .T  That space is equipped with the usual 

scalar product    
0

< , >=
T

f g f t g t dt  and the standard  1 2
2

0
= ( ) .

T
f f t dt  The variance covariance 

function  ,v s t  defined by: 

              
=1

1
, = , , 0, ,

N

i i
i

v s t Y s s Y t t s t T
N

     (4.5) 

with 
=1

=
N

i
i

Y N   the mean curve of Y  on the population .U  

Let   =1

N
k k  the eigen values of v  with 1 2 0N      and   =1

N
k k  the related orthonormal eigen 

vectors,      
=1

, = .
N

k k k
k

v s t s t    

The best approximation of Y  in a dimensional space K  smaller than N  is given by the projection of 

Y  in the space created by the first eigen vectors , = 1, ,k k q   (Ramsay and Silverman, 2005): 

          
=1

= , , 0, ,
K

i ik k i
k

Y t t f t R t i U t T      (4.6) 

where ikf  is the projection (or score) of iY  on the component k  and   ,iR t  the rest representing the 

difference between curve i  and its projection. The score ikf  is independent of the domain and can be 

calculated as the scalar product between k  and ,iY       
0

=< , >= .
T

ik i k i kf Y Y t t dt      

The decomposition given in (4.6) is also known as Karhunen-Loève. 

Using (4.6), the mean d  on the domain d  can be approximated by 

        
=1

1
, = 1, , , 0, .

d

K

d ik k
k d i U

t t f t d D t T
N

  


  
 

    (4.7) 

The unknown mean   is estimated using the Horvitz-Thompson estimator 

      
1

ˆ = , 0,i i
i s

t d Y t t T
N




  (4.8) 

and the , = 1, ,k k K   are estimated by ˆ ,k  the eigen vectors in the estimated variance-covariance 

function            ˆ ˆˆ , = i i i
i s

v s t d Y s s Y t t N 


   (Cardot et al., 2010). 

Thus, to estimate ,d  we must estimate the mean scores on the principal components for the domain ,d  

i.e., = .
d

ik ddk i U
f f N

  To that end, for each component ,ikf = 1, , ,k K  we consider a unit-level 

linear mixed model, also known as a nested error regression model (Battese et al., 1988): 

 = , , = 1, , ,ik k i dk ik df i U k K   β X   (4.9) 

with k iβ X  the fixed effect of auxiliary information, dk  the random effect of the domain d  and ik  the 

residual of unit .i  We assume that the random effects of the domains are independent and follow a common 

law of means of 0 and of variance of 2 .k  The residuals are also independent, distributed based on a law of 

means of 0 and of variance of 2 .k   In addition, the random effects and residuals are also assumed to be 

independent. The parameter β  in the model can be estimated by ,kβ  the best linear unbiased estimator 
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(BLUP) (Rao and Molina, 2015, Chapter 4.7) and the BLUP estimator dkf  is thus expressed as a composite 

estimator (see Rao and Molina, 2015): 

     ,,= 1 , = 1, ,d s d dk k k kdk dk sf f k K       
 

X X β X β    (4.10) 

with  2 2 2=k dk k k n       and , = ,
d

d s i d
i s

n
X X , =

d
ik ddk s i s

f f n
  the respective means of 

the vectors iX  and the scores ˆ
ikf  on .ds  Finally, the mean d  is estimated by 

         BHF

=1

ˆˆ ˆ= , 0, ,
K

kd dk
k

t t f t t T     (4.11) 

with ̂  and ˆ
k  the estimates of   and thk  principal component k  given previously. 

The variances 2
k  and 2

k   for = 1, ,k K  are unknown and are estimated by 2ˆ k  and 2ˆ k   obtained, 

for example, by restricted maximum likelihood (Rao and Molina, 2015). The estimator for dkf  is obtained 

by replacing k  in (4.10) with  2 2 2ˆ ˆ ˆ ˆ=k dk k k n       and is known as empirical best linear unbiased 

prediction (EBLUP). Nonetheless, the calculation of the variance function (based on the model) of  BHFˆ d t  

is more complicated in this case because of the estimators ˆ
k  of the principal components k  and will be 

examined elsewhere. 

We note that a simpler model, without the random effects, could have been considered for the 

scores :ikf  

 = , , = 1, , ,ik k i ikf i U k K  β X   (4.12) 

with ik  a null mean residual 2 .k  In this case, the parameter kβ  is estimated by ˆ ,kβ  the BLUP estimator 

and the mean score on the domain d  by  ˆ= , = 1, , .dkdkf k Kβ X   

If the rate of d dn N  is not insignificant, then ˆ d  is obtained using the procedure described in 

Section 4.1. 
 

Note 1: Here, the PCA is not used as a dimension-reduction method, but to decompose our problem into 

several unrelated subproblems in the estimation of total real variables, which we know how to resolve. We 

thus keep a number K  of principle components as high as possible, i.e., equal to the minimum number of 

instants of discretization and the number of individuals in the sample. 
 

Note 2: When certain explanatory variables in vector iX  are categorical, our method, defined in the case 

of real variables, must be adapted: to that end, we propose transforming each categorical variable into a 

series of one hot encoding indicators 0 1.  As well, when the number of explanatory variables p  is large, 

it may also be relevant to introduce penalties, RIDGE-style for example, in the regression problem. 
 

Note 3: Other projection bases can be considered, such as wavelets (see Mallat, 1999), as they are 

particularly suited to irregular curves. Finally, another solution would be to apply the functional linear mixed 

models for curve values to the instants of discretization; however, that method would not allow for 

consideration of temporal correlations in the problem, unlike the previous ones. 
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4.2.2  Estimating variance by parametric bootstrap 
 

To estimate the accuracy (variance based on the model) of mean curve estimators, we propose declining 

the parametric bootstrap method proposed by González-Manteiga, Lombarda, Molina, Morales and 

Santamara (2008) and then reiterated by Molina and Rao (2010). This is a replicate method that consists of 

generating a large number B  of replicates  * , = 1, ,bs b B  of size n  by simple random sampling with 

replacement in s  and randomly generating the random and fixed effects in the estimated superpopulation 

model. Note        ,
=1

ˆˆ ˆ=
K

i i k i k
k

R t Y t t f t     the estimated projection residual for the unit i s  

(see also the formula in (4.6)). For = 1, , ,b B  we proceed as follows for each  0, :t T  

1. Generate the random bootstrap effects of each domain, for each principal component: 

             * 2
, ,ˆ0, , = 1, , , = 1, ,b

k d k d D k K      

and, independent of those random effects, generate the individual bootstrap errors for each unit 

= 1, ,i n  and for each principal component: 

             * 2
, ,ˆ0, , = 1, , , = 1, , .b

k i k i n k K      

2. Calculate the n  bootstrap replicates of the projection residuals    *ˆ ,b
iR t  for  * bi s  (this means 

selection with replacement of n  projection residuals among the n  residuals ˆ ( )).iR t  

3. Calculate the bootstrap replicates    * b
iY t  conditional to the explanatory variables iX  using the 

estimated model: 

                    
 

         * * * * * *
, ,

=1
*
,

ˆ ˆ ˆˆ= , = .
K

b b b b b b
i k k di ik d k i d

k
b

fk i

Y t t t R t i s s s           X


  

We see that  *
, ,b

k if  the simulated score for the unit ,i  is obtained using the same approach as in 

González-Manteiga et al. (2008). 

4. For each domain ,d  calculate the bootstrap replicate  *ˆ b
d  on the replicate  * bs  by declining the 

entire process: PCA and estimation of linear mixed models on principal components by means of 

EBLUP. 

5. Estimate the estimator’s variance  ˆ d t  by the empirical variance of the B  replicates  *ˆ :b
d  

                    
2

* *

=1 =1

1 1ˆ ˆ ˆ ˆ= .
1

B B
b b

d d d
b b

V t t t
B B

       
   

 

This approach will also be the one used to approximate the variance of the functional linear regression 

(omitting step 1 of generating random effects *
, ).k d  

 

4.3  Non-parametric estimation using regression trees and random forests for 
small curve domains 

 

In this section, to obtain individual predictions  ˆ ,iY t  we use non-parametric models, regression trees 

adapted to functional data, and random forests, which no longer require a linear form in the relation between 
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auxiliary information and interest variable and allow more flexibility in modelling. In fact, regression trees 

for functional data are frequently used at EDF and are known to give satisfactory results on electricity 

consumption curves. As well, in literature, regression trees have been adapted to surveys by Toth and Eltinge 

(2011), but not for estimating totals in small domains. 

In this section and the next section, we are therefore seeking to estimate a specific case of the general 

model (4.1) in which the function f  does not depend on the domain of the unit ,i  

        = , , 0, .i i iY t f X t t i U t T     (4.13) 

 

4.3.1  Regression trees for functional data 
 

The classification and regression tree (CART) proposed by Breiman, Friedman, Stone and Olshen (1984) 

is a very popular non-parametric statistical technique. Its goal is to predict the value of a real or categorical 

target variable Y  based on a vector of real or categorical explanatory variables 1= ( , ,XX   

, , ).j pX X  To that end, we determine a partitioning of the space of X  by repeatedly splitting the data 

set in two, using the decision rule (split criteria) involving a single explanatory variable. Thus, our sample 

s  is the first node   in a tree (its “root”) that we seek to subdivide into two separate nodes l  and r  such 

that the values of the real target variable iY  are as homogenous as possible in each node. The inertia criterion 

    used to quantify the homogeneity of a node is frequently the sum of the squares of residuals between 

the values of iY  for units i  in node   and the mean of those values in the node:     2
= i

i
Y Y 


 


  

where Y   is the mean of iY  in node .  

For the variables jX  which are quantitative, the decision rules are expressed as 

 
if <

otherwise,

l ji

r

i X c

i









 (4.14) 

with c  a cut-off point to be optimized among all possible values of .jX  For qualitative variables, they 

consist of dividing into two separate subsets of modalities. The search for the optimal split criterion is a 

matter of resolving the optimization problem 

       
,

arg max .
l r

l r
 

        (4.15) 

Each of these nodes will then be subdivided in turn into two child nodes and the partitioning process 

continues until a minimal node size is obtained, until the value of the target variable is the same for all units 

of the node, or until a given maximum depth is attained. The final partition of the space is then made up of 

the final nodes in the tree, also called leaves. A summary of each of those leaves (often the mean for a 

quantitative target variable) then becomes the predicted variable for all units assigned to the leaf. The various 

parameters (minimum node size and depth) can be selected by cross-validation. 

When the variable Y  to be predicted is not a real variable, but a dimension vector > 1,m  the regression 

tree principle extends very naturally: the tree construction algorithm and the choice of cross-validation 

parameters remain unchanged, but the inertia criterion is modified. Thus, the minimization problem is still 
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in the form of (4.15), but this time the criterion is in the form of  
2

= i
i

Y Y 


 


  where   is, 

for example, the Euclidean norm or the Mahalanobis distance norm. Multivariate regression trees were used, 

for example, by De’Ath (2002) in an ecological application. 

Finally, when the variable to be predicted Y  is a curve, the algorithm for construction of the tree and for 

choosing the parameters is the same, but this time a functional inertia criterion   must be used. There are 

many possible choices. We chose to follow the “Courbotree” approach described in Stéphan and Cogordan 

(2009) and frequently used at EDF for building segmentations of data sets of electricity consumption curves 

based on explanatory variables. In that approach, we apply the method presented in the previous paragraph 

for multivariate Y  on vectors     1= , ,i i i LY t Y tY   of curve values at the instants of discretization, 

with the Euclidian distance. The Euclidian distance on instants of discretization can thus be seen as an 

approximation of the norm  2 0, .L T  More formally, the functional criterion is thus expressed as 

        2

=1

= ,
L

i l l
i l

Y t Y t


 


  (4.16) 

with    =l i l
i

Y t Y t n   where n  is the number of units in the sample that belong to the node .  

In practice, when working on electricity consumption data, the curves considered are at extremely similar 

levels, and the Courbotree algorithm based on the Euclidian distance may not work well when applied to 

raw data. Often, the Courbotree algorithm is therefore only used on the curve forms, i.e., the normalized 

curves    = ii iY t Y t Y  where  
=1

=
L

i iY Y t L 
 is the mean of  iY t  (or the level) on all 

measurement instants 1 , , Lt t  (method also known as normalized Courbotree). We then calculate the 

prediction iY  using a linear regression and finally obtain the prediction of  iY t  by obtaining the product 

between the prediction of  iY t  and that of .iY  

 

4.3.2  Variance estimation 
 

To estimate the variance under the model of our estimators for mean curves by domain, we will follow 

a bootstrap approach very similar to the one proposed for parametric models. Here, our superpopulation 

model is expressed as 

      = , , .i i iY t f t t i U  X   (4.17) 

Let  ˆ , ,if tX  for all i s  the predicted value for the unit i  by regression tree, and    =î it Y t   

 ˆ , ,if tX  for all i s  the estimated residual for that unit. The idea of our accuracy approximation method 

is, as with linear mixed models, to generate a large number B  of replicates  * , = 1, ,bs b B  of size n  by 

simple random sampling with replacement in ,s  and calculate the estimator of the mean curve by domain 

on each replicate and, finally, deduct the variance from the estimator by the variability between replicates. 

The bootstrap method used here is also known as residual bootstrap in linear model cases. 

More specifically, for = 1, , ,b B  we proceed as follows for each  0, :t T  
 

1. Calculate the bootstrap replications of the estimated residuals    *ˆ b
i t  for  * .bi s  

2. Calculate the bootstrap replications for   :iY t  
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           * * *ˆ= , ,ˆb b b
ii iY t f t t i s  X   

and recalculate, for each domain ,d  the mean estimator    *ˆ b
d t  on this replicate. 

3. Estimate the variance by the empirical variance of the B  bootstrap replicates    *ˆ ,b
d t  

            2
* *1 1

1 =1 =1
ˆ ˆ ˆ ˆ= .

B Bb b
d d dB Bb b

V t t t      
 

The process is identical if we estimate the function f  by random forests rather than regression trees. 

 
4.4  Aggregation of predictions by random forests for curves 
 

The literature often highlights the mediocre predictive performances of regression trees compared to 

other techniques such as SVMs (see, for example, Cristianini and Shawe-Taylor, 2000). Regression trees 

can be unstable and highly dependant on the sample on which they were built. To resolve that default, 

Breiman (2001) proposed the random forest algorithm. This is a set technique that, as its name suggests, 

consists of aggregating predictions resulting from different regression trees. The fact that the aggregation of 

unstable predictors leads to a reduction in variance was particularly shown by Breiman (1998). For a 

quantitative target variable, the aggregation of predictions is performed by taking the mean predictions for 

each of the trees. 

To reduce the variance of the aggregate prediction, the objective is to build trees that are very different 

from each other. The Breiman algorithm introduces variability in the construction of the trees on the one 

hand by means of replication (simple random sampling with replacement) of units and, on the other hand, 

by means of random selection, for each “split” in the tree, of a subset of candidate explanatory variables. 

For a regression tree, there are therefore two additional parameters to be adjusted for a random forest: the 

number of trees and the number of candidate explanatory variables in each split. 

When the interest variable is multivariate (or functional), the algorithm proposed by Breiman adapts 

easily, by aggregating the multivariate (or functional) regression trees presented in the previous paragraph. 

Multivariate random forests have, for example, been studied by Segal and Xiao (2011). 

The algorithm that we are proposing here, called “Courboforest,” simply consists of aggregating the 

functional regression trees constructed using the “Courbotree” approach, i.e., the multivariate regression 

trees applied to the vectors     1= , ,i i i LY Y t Y t  of the values of the curves at the instants of 

discretization, with the split criterion being the inertia based on the Euclidean distance defined by 

equation (4.16). 

 
5  Application to electricity consumption curves 
 

We will now test the methods that we have just presented to compare their performance on electricity 

consumption data for French residential clients. 
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5.1  Presentation of the data set 
 

We worked with a data set belonging to EDF that contains electricity consumption curves for = 1,905N  

French residential clients by daily interval from October 2011 to March 2012, without any missing values 

( = 177L  points). This population is subdivided into = 8D  domains corresponding to geographic areas 

with respective sizes of 573, 195, 304, 121, 228, 219, 45 and 220. For confidentiality purposes, we cannot 

describe the data set in great detail, or show the mean curves by domain. 

By way of illustration, Figure 5.1 shows the appearance of the standardized curves (i.e., each curve is 

divided by its mean calculated over the period of time studied) for five random individuals, and Figure 5.2 

shows the appearance of the first five principal components of the functional PCA created for this data set. 

We see that the first component, the overall appearance of which is similar to that of the mean curve, is 

a “level” effect. Components two and three, which present peaks during the coldest period in February, 

describe the sensitivity of consumption to outside temperatures. The fourth compares “mid-season” 

consumption to “wintertime” consumption and, finally, the fifth shows a low at about Christmas (and about 

February 14). 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Standardized electricity consumption curves (i.e., divided by their mean over the study period) by 
daily interval for residential clients, winter, 2011/2012. 
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Figure 5.2  First five components of the principal component analysis. 

 
For each individual in our population of study, we have four auxiliary variables at the individual level: 

contract power (in three classes), rate option (base or off-peak periods) (in the base option, the price per 

kWh remains constant, while the rate for off-peak periods is reduced for eight hours [referred to as off-

peak]. The largest consumers tend to prefer that rate. Off-peak periods can vary from one client to another, 

but this factor has no impact here, as we are working on a daily interval), the previous year’s annual 

consumption, and the type of dwelling (apartment or single home). These auxiliary variables remain the 

same for all methods used in order to compare identical auxiliary information. All tests were implemented 

in R. 

 
5.2  Test protocol 
 

We compare various estimators obtained using the methods set out in this chapter, for various types of 

modelling (unit-level linear mixed models, linear functional regressions, regression trees, random forests). 

We test two versions of the unit-level linear mixed model, one by placing linear mixed models on the PCA 

scores, as suggested in Section 4.2, and the other by applying them directly to the values of the curves of 

instants of discretization. 
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For non-parametric methods, the forests and trees have a depth (number of levels) of 5 and a minimum 

size of 5 leaves. There are 40 trees in the forests. The algorithms can be applied by separating the estimation 

of the level of the curve and its form (standardization = “yes”) or not separating (standardization = “no”). 

To not multiply the possible combinations, we finally focused on the estimators listed in Table 5.1. The 

parameters of the regression tree and random forest models are set out in Table 5.2. 

 
Table 5.1 
Various estimation method tests 
 

Title Reference  Projection  
Horvitz-Thompson Equation (3.1) None 
Calibration Equation (3.2) None 
Linear mixed model Section (4.2) None 
Linear mixed model on PCA Equation (4.11) PCA 
Linear regression Equation (4.4) None 
Courbotree Section (4.3) None 
Standardized Courbotree Section (4.3) None 
Courboforest Section (4.4) None 

 
Table 5.2 
Parameters for trees and random forests 
 

Title Depth (number of levels) Number of trees Standardization 
Courbotree 5 1 No 
Standardized Courbotree 5 1 Yes 
Courboforest 5 40 No 

 
To evaluate the quality of our estimation methods, our test protocol consists of conducting a large 

number E  of sampling simulations from our original population and then estimating the mean curve for 

each = 8D  domain based on each sample gathered by the various proposed methods. In our simulations, 

the eighth domain  = = 8d D  will always be unsampled in order to measure the performance of our 

various estimators in this scenario. For each simulation, we select = 200n  individuals by simple random 

sampling from among those in the seven sampled domains  = 1, , 7 .d   

Let  d lt  the mean curve for the domain d  at the instant lt  and  ˆ d lt  its estimator by a given 

method. We calculate the relative bias of  ˆ :d lt  

   
    
 

MC ˆ
ˆRB = 100 , = 1, , , = 1, , ,

d l d l
d l

d l

E t t
t d D l L

t

 





   (5.1) 

where       MC
=1

ˆ ˆ=
E e

d l lde
E t t E   is the Monte Carlo expectation of the estimator  ˆ d lt  with 

   ˆ e
ld t  the estimator of the mean curve obtained for the the  simulation, for = 1, , .e E  A second 

indicator, known as relative efficiency (RE), is calculated as follows: 

    
   
   

MC

HT
MC

ˆMSE
ˆRE = 100 , = 1, , 1, = 1, , .

ˆMSE

d l
d l

ld

t
t d D l L

t





   (5.2) 
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where           2
MC

=1
ˆ ˆMSE =

E e
d l l d lde

t t t E    is the Monte Carlo mean square error, 

= 1, , , = 1, , .d D l L   The lower the RE indicator, the more the estimator will be considered effective. 

An RE of 100 corresponds to an indicator as effective as the reference estimator. 

Here, the reference estimator HTˆ d  is the Horvitz-Thompson estimator (which, for our simple random 

sampling plan, is the simple mean of the curves in the domain considered); it corresponds to the model 

described by equation (3.1). This estimator cannot be calculated for the unsampled domain. The RE 

estimator is then obtained by dividing the MSE of the various estimators by the mean MSE of the 

Horvitz-Thompson estimator over the seven sampled domains, i.e. 

    
   

 
MC

HT
MC

ˆMSE
ˆRE = 100 , = 1, , ,

MSE

D l
D l

l

t
t l L

t


   (5.3) 

with      
HT 1

HT
MC MC

=1
ˆMSE = MSE , = 1, , .

D
l ldd

t t l L   

For each indicator and each instant ,lt  the results obtained for the various sampled domains are 

then aggregated for all domains,        11
ech 1 =1

ˆ ˆRB = RB
D

l d lD d
t t 

   and    ech ˆRE =lt  

   11
1 =1

ˆRE
D

d lD d
t

   for = 1, , ,l L  while the indicators obtained for the unsampled domain are used 

as-is. 

Finally, to evaluate overall performance, we consider the mean of those indicators for all instants in the 

test period, while still separating the sampled domains from the unsampled domain. We also look at the 

calculation times of the various estimators. 

 
5.3  Results and test conclusions 
 

The test results of the methods are presented in Table 5.3 and illustrated in Figures 5.3 to 5.5. 

 
Table 5.3 
Mean method performance indicators (RB, RE) for all instants of discretization and domains, separating the 
unsampled domain from the others 
 

Domain type Method RE (%) RB (%)
Sampled Horvitz-Thompson 100,00 0,25 
Sampled Calibration 37,13 -0,47
Sampled Linear mixed model 14,69 0,60 
Sampled Linear mixed model PCA 15,40 0,67 
Sampled Linear regression 24,87 1,20 
Sampled Courbotree 20,54 0,80 
Sampled Standardized Courbotree 22,35 1,45 
Sampled Courboforest 24,66 0,62 
Unsampled Horvitz-Thompson  
Unsampled Calibration  
Unsampled Linear mixed model 13,43 4,66 
Unsampled Linear mixed model PCA 13,49 4,77 
Unsampled Linear regression 14,38 5,09 
Unsampled Courbotree 14,29 3,48 
Unsampled Standardized Courbotree 16,63 5,88 
Unsampled Courboforest 15,97 0,37 
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Figure 5.3 Mean relative biases as % (formula (5.1)) of estimation methods, for all instants in the domains, 
separating unsampled and sampled domains. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.4 Mean relative efficiency (RE) (formula (5.2)) of the estimation methods for all instants and domains, 

separating unsampled and sampled domains. 
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Figure 5.5 Evolution of the mean MSEs for domains over time, for the various estimation methods. 
 

For sampled domains, we see that the integration of explanatory variables in the estimate, regardless of 

the method used, leads to a net gain in performance: thus, for the least effective method (the estimator by 

calibration), the error is divided by three when explanatory variables are used. 

As well, the use of our various estimators based on superpopulation models leads to an additional gain 

in accuracy: the RE for our various methods thus range from 15% for linear mixed models to 25% for 

random forests. 

The linear mixed models are the most effective method, so we can assume that there are characteristics 

of the domains that are unexplainable using only the auxiliary variables that this type of model is able to 

capture. We therefore go from an RE of 25% for the linear functional regression to an RE of approximately 

15% by including these random effects. 

The tree and random forest methods capture non-linearities in the relationship between explanatory 

variables and the interest variable, which explains why these methods give better results than linear 

functional regressions: the RE of the various non-parametric methods are between 20% and 25%, compared 

to 25% for linear functional regressions. Very surprisingly, the regression tree gives better results than the 

random forest. We can put forth the theory that this is because our objective is to best estimate the mean 

curve of a series of units, not each curve individually. It is therefore possible that the tree is not as good for 

predicting each curve, but better at the aggregate level. As well, on this particular data set, the method gives 

the best results when working on raw curves, not when distinguishing between the estimation of form and 

level. 
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Projecting curves based on the PCA does not seem to lead to any significant gains in accuracy here. 

The Horvitz-Thompson estimator cannot be produced on unsampled domains. The differences between 

the other methods are much more restricted than on the sampled domains: the random effects cannot be 

estimated for unsampled domains. 

Finally, in Figure 5.5, we trace the mean square error of our estimators for the sampled and unsampled 

domains. We note that this square error is higher in the winter (January and February). This high variability 

could be due to a sharp drop in outside temperatures during those months, which increases the variability of 

heating consumption (difference in behaviour and electrical heating equipment depending on clients). The 

naive and calibration estimators adapt least well to this situation. 

 
5.4  Comparison of methods and selection criteria 
 

Each model-based method has benefits and drawbacks. Unit-level linear mixed models are the only ones 

that, due to random effects, make it possible for the modelling to include domain characteristics not reflected 

in auxiliary information. It thus seems relevant to use them when assuming that the explanatory variables 

do not make it possible to explain all differences between domains. 

The linear functional regression ignores the random effect of the domains, so we expect it to be less 

effective than linear mixed models due to its construction. Finally, the two non-parametric methods allow 

for better modelling of the non-linear relationships between the explanatory variables and the interest 

variable, but on the other hand, does not make it possible to capture the differences between domains that 

are not reflected in the auxiliary information. They also require the availability of auxiliary information iX  

for each individual in the population when, in the past, we only needed mean values dX  for each domain 

in the population and iX  for the sample. The choice between a parametric and non-parametric approach 

will therefore depend on the nature of the problem, the diversity of domains and the explanatory variables 

available. Be believe that neither of the two approaches is systematically preferable over the other. 

A process for choosing between the two approaches could be to estimate the respective variances in the 

random effects and the residuals in the linear mixed models and, depending on the relative scope of those 

effects, moving more toward one or the other type of model. Conversely, cross-validation can be used to 

quantify the respective performance of the linear mixed models and the non-parametric models for 

predicting the aggregates of individual curves in order to direct our choice. 

Among the non-parametric methods, the choice between regression trees and random forests will depend 

on the predictive performance of those methods on data, for the mean curves of domains. Generally, we can 

assume that random forests will give better results than regression trees for individual data (see Breiman 

et al., 1984); however, it is entirely possible that the best of the two methods for predicting each curve may 

not be the one that gives the best results to all domains or, at the very least, that the two methods are reduced 

when we consider the prediction of mean curves of individual aggregates. As well, due to their construction, 
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random forests require a lot more calculation time than regression trees and that aspect cannot be ignored 

when the data sets being processed are large in size. 

 
6  Conclusions and outlooks 
 

In this article, we proposed four approaches for estimating mean curves by sampling for small domains. 

The first two consist of projecting curves in a finite space and using the usual methods for estimating total 

real variables for each base vector in the projection space. In this case, we use either unit-level linear mixed 

models or linear regression. The last two approaches consist of predicting each curve of the unsampled units 

using a non-parametric model and aggregating those predictions to determine the estimated mean curves for 

each domain. The models used to build the predictions are regression trees adapted to functional data build 

using the Courbotree approach of Stéphan and Cogordan (2009) or random forests adapted to functional 

data built by aggregating random Courbotree trees. For each approach, we also proposed a process for 

approximating the variance of mean curve estimators based on a bootstrap. 

Our tests showed that the linear mixed models gave the best results and, for this particular data set, made 

it possible to divide the error committed by approximately seven in relation to the Horvitz-Thompson 

estimators. The regression trees come next, followed by the linear functional regressions. 

This work can be extended in various ways. In particular, we feel that the approach based on the 

aggregation of non-parametric estimates of curves using regression trees or random forests is promising. An 

interesting possibility for improvement could be the use of more relevant distances than the Euclidean 

distance in the split criteria that builds our regression trees. We could thus use the Mahalanobis distance, 

the Manhattan distance, or a “dynamic time warping” distance. 

Another possibility could be to build this split criterion by applying the Euclidian distance not on the 

discretized curves, but on a transformation of those curves, by projection in a wavelet base, or on non-linear 

summaries, such as variational autoencoders from deep learning models (see, for example, LeCun, Bengio 

and Hinton, 2015). 

We can also question the choice of depth of the regression tree, the minimum size of the leaves and the 

number of trees in the forest. The criteria usually used in non-parametric statistics to answer this question 

are usually based on the principle of cross-validation. However, our objective here is not to determine the 

best possible prediction for each population unit, but a prediction that gives the best estimate of the mean 

curve by domain, which is not necessarily the same thing. It would therefore be best to adapt the cross-

validation criteria to reflect our objective. 

Finally, we note that the introduction of random effects in the linear models results in improved 

prediction, which leads us to think that there are characteristics in the domains that are not explained solely 
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by the auxiliary information. It could therefore be relevant to adapt the functional regression trees to include 

the random effects. One solution, for example, would be to extend the algorithm from Hajjem, Bellavance 

and Larocque (2014), based on an EM algorithm as part of the functional data. 
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Coordination of spatially balanced samples 

Anton Grafström and Alina Matei1 

Abstract 

Sample coordination seeks to create a probabilistic dependence between the selection of two or more samples 
drawn from the same population or from overlapping populations. Positive coordination increases the expected 
sample overlap, while negative coordination decreases it. There are numerous applications for sample 
coordination with varying objectives. A spatially balanced sample is a sample that is well-spread in some space. 
Forcing a spread within the selected samples is a general and very efficient variance reduction technique for the 
Horvitz-Thompson estimator. The local pivotal method and the spatially correlated Poisson sampling are two 
general schemes for achieving well-spread samples. We aim to introduce coordination for these sampling 
methods based on the concept of permanent random numbers. The goal is to coordinate such samples while 
preserving spatial balance. The proposed methods are motivated by examples from forestry, environmental 
studies, and official statistics. 

 
Key Words: Coordination; Local pivotal method; Spatially correlated Poisson sampling; Permanent random numbers; 

Unequal probability sampling designs; Transformed spatially correlated Poisson sampling. 

 
 

1  Introduction 
 

In the classical survey sampling framework, a random sample is selected from a finite population with a 

probability provided by the sampling design. The sampling design can be extended to the case of several 

samples, defining a joint probability to select them. On the other hand, two or more samples can be drawn 

from the same population or from overlapping populations, independently or not. Sample coordination 

applies to the latter case and seeks to create a probabilistic dependence between samples’ selections based 

on a joint sampling design. It is used in the case of repeated surveys or of several surveys. Two types of 

coordination are defined in the literature: positive and negative. In the former case, the goal is to maximize 

the overlap between different samples. In the latter, one wants to minimize it. Positive coordination can be 

used to reduce the survey costs or to induce a positive covariance between successive estimators of state in 

repeated surveys, and thus reduce the variance of an estimator of change. Negative coordination may be 

applied to reduce the response burden of units that have a risk of being selected for several surveys. 

When updating a sample in repeated surveys over time (a panel), deaths, births or merge of the units can 

appear in the population. Thus, the population changes over time and the same sample can not be used at 

each time occasion. New samples are drawn at different time occasions, but a certain degree of overlap 

between samples can be required. This can be achieved using positive coordination. On the other hand, 

negative coordination is usually used to draw samples in several surveys, involving thus different but 

overlapping populations. Due to births, deaths, changes in activity or size, splits, mergers, etc. of units in 

the same population or due to the use of different overlapping populations, an important problem in sample 

coordination is the difficulty to manage the population changes over time or different overlapping 

populations. Usually, to overcome this problem, an overall population is constructed as a union of all units 

that ever existed, or as a union of different overlapping populations. 
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Various methods to provide sample coordination have been introduced in the literature. A summary of 

such methods is given for instance in Grafström and Matei (2015). An easy method to provide sample 

coordination is based on the use of so-called permanent random numbers introduced by Brewer, Early and 

Joyce (1972) for Poisson samples: one associates to each unit in the overall population an  0,1U  random 

number. Such a number is called a permanent random number (PRN); these numbers are independent and 

are used in all sample selections. The probabilistic dependence of the samples’ selection is thus created 

based on the use of permanent random numbers. Versions of the PRN method of Brewer et al. (1972) have 

been introduced in the literature (see Kröger, Särndal and Teikari, 1999; Kröger, Särndal and Teikari, 2003, 

for instance) and are widely used in different contexts. A recent example of a PRN method is the new system 

to coordinate business surveys by Statistics Canada. A two-phase stratified sampling design is used. The 

first-phase is a stratified sampling by Geography   Industry type   Business size and a Bernoulli sample 

is selected in each stratum by the use of PRNs. The main goal of the first-phase is to select a large sample 

covering all industries. For two consecutive first-phase waves a positive coordination is employed. In the 

second-phase, a sample is selected from the first-phase sample. For two consecutive second-phase waves, a 

negative coordination is applied to control the response burden of the business units (Haziza, 2013). 

Our interest is to provide solutions to coordinate spatially balanced samples (for an overview on spatially 

balanced samples see Benedetti, Piersimoni and Postiglione, 2017). Usually, spatial sampling uses a space 

discretization, leading to the use of the classical sampling definition for finite populations. Thus, a 

population is defined as a finite set of units or locations having associated geographical coordinates. In most 

of the cases data are spatially autocorrelated and nearby locations tend to provide similar information. 

Consequently, it is desirable to sample units spread across the whole area of interest and to obtain a spatially 

balanced sample. The intuitive idea behind this is to cover through sampling the entire area of interest in 

order to obtain some representativeness. The selected sample should thus provide a full spatial coverage. 

Spatially balanced samples are efficient if a spatial trend is present in the variable of interest, denoted by 

.y  Benedetti et al. (2017, page 447) note that “The motivation for the choice of selecting spatial well-spread 

samples is surely realistic if it is considered to be acceptable that increasing the distance between two units 

k  and   increases the difference, observed at units k  and ,  namely, .ky y   In this situation, it is 

evident that the variance of the Horvitz-Thompson estimator will necessarily decrease if we set high joint 

inclusion probabilities to pairs that have very different y  values.” Two spatial schemes useful for these 

goals are the local pivotal method (Grafström, Lundström and Schelin, 2012) and the spatially correlated 

Poisson sampling (Grafström, 2012). It was empirically found that both sampling schemes provide a good 

degree of spatial spreading, measured using Voronoi polytopes (see for instance Grafström et al., 2012, for 

some results). 

We focus on coordination of spatially balanced samples using PRN methods, where sample selection is 

ensured using the local pivotal method (LPM) and the spatially correlated Poisson sampling (SCPS). Spatial 

sampling is used in many applications in environmental studies, forestry, agricultural surveys, but also in 

official statistics. We motivate the introduction of the coordinated spatially balanced samples by giving the 

following examples:   

 In ecological monitoring, it is important to preserve over time the same sampled spatial locations 

in order to measure the changes in species abundance. However, over time, these locations may 
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disappear. Positive coordination can be applied in this case to ensure a significant overlap of the 

selected locations.  

 In national forest inventories, both current state and change of several parameters, such as 

growing stock volume for different tree species, are of interest. The methodology we present can 

be used to make sure the sample is continuously updated, e.g., yearly, to be well-spread 

geographically or in auxiliary variables available from remote sensing (to improve estimates of 

current state); a high positive coordination would guarantee good estimates of change as well.  

 Different official national business registers contain spatial coordinates of business units (e.g., 

US Census Bureau’s Longitudinal Business Database, the Swiss GeoStat, the Italian Statistical 

Archive of Active Enterprisers). The business units can be selected based on their geographical 

coordinates (Dickson, Benedetti, Giuliani and Espa, 2014). A negative coordination would be 

useful in this case to control the response burden of the units sampled by different surveys.  

 

Note that methods to coordinate spatial samples have not yet been introduced in the literature. The 

novelty of the paper consists in introducing methods to coordinate spatially balanced samples. All the 

benefits of the sample coordination described above are provided for spatially balanced samples. In both 

types of coordination, the proposed methods preserve the spatial balancing property of the selected samples. 

Note that our goal is to control the overlap size between balanced samples, and not to improve sample 

coordination in general. 

The paper is organized as follows. Section 2 introduces the notation. Sections 3.1 and 3.2 remind the 

local pivotal (LP) method and spatially correlated Poisson (SCP) sampling, respectively, while Section 3.3 

a measure of spatial balance based on the Voronoi polytopes. We introduce methods to coordinate LP 

samples and SCP samples in Section 4. The same section introduces a new family of balanced sampling 

designs derived from SCP sampling, that provides good results for sample coordination. The coordination 

performances of the methods are presented in Section 5.1. Section 5.2 compares the new family of balanced 

sampling designs with Poisson sampling, while Section 5.3 provides simulation results for two typical 

estimators in repeated surveys. Section 6 shows an application of the proposed methods on real data. 

Discussion of the proposed methods and conclusions are provided in Section 7. 

 
2  Notation 
 

Let 1U  and 2U  be a population (subject to change over time) at time 1 and time 2, respectively, or 

consider that 1U  and 2U  are two overlapping populations. Consider samples 1s  and 2s  drawn from 1U  

and 2 ,U  using the sampling designs 1p  and 2 ,p  respectively. No restriction about the sampling designs 

1p  and 2p  is necessary to introduce the definitions in this section: they can be fixed or random size 

sampling designs, with or without replacement. 

Let 1 2= .U U U  We call U  the “overall population”. The set of labels of the units in U  is 

 1, 2, , , , .i N   We define on U  the joint sampling design p  used to select a couple  1 2, .s s  The 

samples 1s  and 2s  are coordinated if      1 2 1 1 2 2, ,p s s p s p s  that is the samples are not drawn 

independently (see Cotton and Hesse, 1992; Mach, Reiss and Şchiopu-Kratina, 2006). Let  1 1=i P i s  



218 Grafström and Matei: Coordination of spatially balanced samples 
 

 
Statistics Canada, Catalogue No. 12-001-X 

and  2 2=i P i s  be the first-order inclusion probabilities of unit i U  in the first and second sample, 

respectively. It follows that 1 = 0i  if 1i U  and 2 = 0i  if 2 .i U  Thus, it is not necessary to identify 

explicitly the subpopulation memberships. 

Let  , 12 1 2= ,i P i s i s   be the joint inclusion probability of unit i U  in both samples 1s  and 2 .s  

If the samples 1s  and 2s  are selected independently, , 12 1 2= ,i i i    for all .i U  

Let c  be the overlap between 1s  and 2,s  which represents the number of common units of the two 

samples; it is in most of the cases a random variable. The coordination degree of 1s  and 2s  is measured by 

the expected overlap  

   , 12= ,i
i U

E c 

   

where  , 12 1 2= , .i P i s i s   By using the Fréchet bounds of the joint probability , 12i  it follows that  

      1 2 , 12 1 2max 0, 1 = min , .i i i i i
i U i U i U

E c    
  

       (2.1) 

In negative coordination one wants to achieve the left bound in expression (2.1), that is 

   1 2max 0, 1 = ,i ii U
E c


     while in positive coordination the right bound, that is   =E c  

 1 2min , .i ii U
 

  Thus, to optimize the sample coordination process, the goal is to achieve these bounds, 

prior to coordination type, positive or negative. Using the terminology of Matei and Tillé (2005) the left 

side-part in (2.1) is called the Absolute Lower Bound (ALB) and the right side-part in (2.1) the Absolute 

Upper Bound (AUB). 

The focus here is on sample coordination using PRNs. The PRN method was originally introduced by 

Brewer et al. (1972) to coordinate Poisson samples. Poisson sampling with PRNs reaches the Fréchet 

bounds given in equation (2.1). Yet, it results in a random sample size and does not provide spatially 

balanced samples. In order to achieve spatial balance, the local pivotal method (Grafström et al., 2012) and 

the spatially correlated Poisson sampling (Grafström, 2012) are used. Both sampling designs provide a good 

degree of spatial balance (see Grafström et al., 2012, for some empirical results). Moreover, since both are 

fixed size ps  sampling designs (probability proportional to size sampling, see Särndal, Swensson and 

Wretman, 1992, page 90), the precision of the estimators is in general improved compared to Poisson 

sampling. 

In what follows, we consider the sampling designs 1p  and 2p  to be without replacement, and the 

expected sample sizes of 1s  and 2s  are denoted by 1n  and 2,n  respectively. 

 
3  Spatial balanced sampling 
 

The two spatial sampling designs we intend to introduce coordination for are briefly recalled below for 

a generic sample s  of fixed size .n  

 

3.1  Local pivotal method 
 

The local pivotal method (Grafström et al., 2012) is a spatial application of the pivotal method (Deville 

and Tillé, 1998). Let  1 2= , , ..., Nπ     be a given vector of inclusion probabilities, with sum ,n  
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 = , .i P i s i U   The vector π  is successively updated to become a vector with N n  zeros and n  

ones, where the ones indicate the selected units. A unit that still has a (possibly updated) probability strictly 

between 0 and 1 is called undecided. In one step of the LPM, a pair of units ,i j U  is chosen to compete. 

More precisely, we choose unit i  randomly among the undecided units, and unit ’si  competitor j  is the 

nearest neighbor of i  among the undecided units. Thus we apply the pivotal method locally in space. The 

winner receives as much probability mass as possible from the loser, so the winner ends up with 

 = min 1,w i j    and the loser keeps what is possibly remaining = .i j w      The rules of the 

competition are  

  
     

     

, with probability
, := .

, with probability

w w j w

i j

w w i w

     
 

     

 


 

 

 

 (3.1) 

The final outcome is decided for at least one unit each update, so the procedure has at most N  steps. 

Because neighboring units compete against each other for inclusion, they are unlikely to be simultaneously 

included in a sample. 

 

3.2  Spatially correlated Poisson sampling 
 

The spatially correlated Poisson sampling method (Grafström, 2012) is a spatial application of the 

correlated Poisson sampling method (Bondesson and Thorburn, 2008). Let  1 2= , , , Nπ     be a given 

vector of inclusion probabilities, with sum ,n   = , .i P i s i U   The vector π  is sequentially updated 

to become a vector with N n  zeros and n  ones, where the ones indicate the selected units. First unit 1 is 

included with probability  0
1 1= .   If unit 1 was included, we set 1 = 1I  and otherwise 1 = 0.I  Generally 

at step ,j  when the values for 1 1, , jI I   have been recorded, unit j  is included with probability  1 .j
j
  

Then the inclusion probabilities are updated for the units = 1, , ,i j N   according to  

         1 1= ,j j j i
i i j j jI w      (3.2) 

where  i
jw  are weights given by unit j  to the units = 1, 2, ,i j j N    and  0 = .i i   The weight  ,i

jw  

< ,j i  determine how the inclusion probability for unit i  should be affected by the sampling outcome of 

unit .j  More precisely, the weight  ,i
jw  < ,j i  may depend on the previous sampling outcome 

1 2 1, , , jI I I   but not on the future outcomes 1, , , .j j NI I I   The weights should also satisfy the following 

restrictions  

 
 

 

 

 
 

 

 

 

 

1 1 1 1

1 1 1 1

1 1
min , min ,

1 1

j j j j
i i i ii

jj j j j
j j j j

w
   

   

   
    

   

   
   

  

in order for  10 1,j
i
   = , 1, , ,i j j N   to hold. The unconditional inclusion probabilities are not 

affected by the weights since the updating rule (3.2) gives  

            1 1 2 2= = = = .i i i i
i i i i iE E E E           

Thus the method always gives the prescribed inclusion probabilities , = 1, 2, , .i i N  

Bondesson and Thorburn (2008) showed that a fixed size sampling is obtained only if 
=1

=
N

ii
n   and 

the weights are chosen such that  
= 1

= 1, .
N i

ji j
w j U


  



220 Grafström and Matei: Coordination of spatially balanced samples 
 

 
Statistics Canada, Catalogue No. 12-001-X 

To achieve spatial balance, the weights should be decided on the basis of the distance between units. The 

most common approach to choose weights in SCPS is that unit j  first gives as much weight as possible to 

the closest unit (in distance) among the units = 1, 2, , ,i j j N    then as much weight as possible to the 

second closest unit etc. with the restriction that the weights are non-negative and sum up to 1. This strategy 

is called the maximal weight strategy. If distances are equal, then the weight is distributed equally on those 

units that have equal distance if possible. The first priority is that weight is not put on a unit if it is possible 

to put the weight on a closer unit. The maximal weight strategy always produces samples of fixed size if the 

inclusion probabilities sum up to an integer. In what follows, when we refer to SCPS, the “maximal weight 

strategy” is used. 

 

3.3  Voronoi polytopes 
 

Voronoi polytopes are used to measure the level of spatial balance (or spread) with respect to the 

inclusion probabilities (Stevens and Olsen, 2004). A polytope iP  is constructed for each unit ,i s  and iP  

includes all population units closer to unit i  than to any other sample unit , .j s j i   Optimally, each 

polytope should have a probability mass that is equal to 1. A measure of spatial balance of a realised sample 

s  is (see Stevens and Olsen, 2004) 

   21
= 1 ,i

i s

B v
n 

  (3.3) 

where iv  is the sum of the inclusion probabilities of the units in .iP  The expected value of B  under repeated 

sampling is a measure of how well a design succeeds in selecting spatially balanced samples. The smaller 

the value the better the spread of the selected samples. 

 
4  Coordination methods 
 

We present below PRN methods based on the local pivotal (LP) method and the spatially correlated 

Poisson (SCP) sampling.  

 
4.1  Coordination of LP samples 
 

The positive coordination of LP samples with PRNs is implemented as follows:   

1. independent permanent random numbers  0,1ijv U  are associated to each pair  , ;i j U U    

2. 1s  is drawn using LPM as follows: if a pair of units  ,i j  is chosen to compete, the number ijv  

is used in the corresponding competition rule (3.1) and the pair  ,i j  is saved into a list of pairs;  

3. 2s  is drawn using LPM as follows: the pairs  ,i j  are considered sequentially from the list of 

pairs constructed above for 1 ,s  and the same numbers ijv  are used in the corresponding 

competition rule (3.1). If the sample size 2n  is achieved using pairs from this list, the algorithm 

stops; if not, the selection process continues with new pairs  ,i j  (not included in this list) and 

selected as described in Section 3.1.  
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For negative coordination, the first two steps are the same, but the last step becomes:   

3’. 2s  is drawn using LPM as follows: the pairs  ,i j  are considered sequentially from the list of 

pairs constructed above for 1 ,s  and the numbers 1 ijv  are used in the corresponding competition 

rule (3.1). If the sample size 2n  is achieved using pairs from this list, the algorithm stops; if not, 

the selection process continues with new pairs  ,i j  (not included in this list) and selected as 

described in Section 3.1. 
 

4.2  Coordination of SCP samples 
 

The coordination of SCP samples with PRNs is implemented as follows. Let iu  be the PRN associated 

to unit ,i U  with 1 2, , , Nu u u  iid  0, 1 .U  Let  1i
it
  be the (updated) selection probability for unit i  in 

the selection of sample , = 1, 2.ts t  For positive coordination, the PRNs are introduced in the selection step 

similarly to Poisson sampling with PRNs: if  1< ,i
i itu   unit i  is selected in the sample , = 1, 2.ts t  For 

negative coordination, if  1
1< ,i

i iu   unit i  is selected in 1 ;s  if  1
21 < ,i

i iu    unit i  is selected in 2.s  This 

coordination method is general for spatially correlated Poisson sampling and can be used no matter what 

weights are applied within the method. 

We utilize the maximal weight strategy advocated in Section 3.2 as the main alternative, but we also 

introduce two new alternative strategies to compute the weights  .i
jw  The new strategies are intended to 

provide a good compromise between the degrees of spatial balance and coordination. By reducing the 

amount of spatial correlation in SCPS we can achieve any level of mixing between SCPS and Poisson 

sampling. Both of the new strategies are similar to the SCPS with maximal weights, but the weights  i
jw  

given by the unit j  to units = 1, ,i j N   do not sum up to 1 any more. Consequently, the result of 

Bondesson and Thorburn (2008) advocated in Section 3.2 does not apply and the new sampling designs do 

not any more provide fixed sample sizes. We denote the resulting  family of designs Transformed Spatially 

Correlated Poisson Sampling (TSCPS). 

The first mixing strategy is to modify SCPS by multiplying the maximal weight by a given scalar ,  

0 1.   Thus we no longer use maximal weight, but the proportion   of the maximal weight is the 

limit for the applied weight. This method is denoted TSCPS 1. With this method the positive weights will 

reach longer (more neighbors) than in SCPS. Each unit would distribute a total weight of maximum 1, 

starting with the nearest unit and then the second nearest etc. Say the maximal weights for the three nearest 

neighbors of a unit are 0.7, 0.5, 0.2. Then, in standard SCPS (with maximal weights) the unit would 

distribute the weights 0.7, 0.3, 0, and the new modified version would, with =  0.5, distribute the weights 

0.35, 0.25, 0.1. The reach is longer but it is not guaranteed we can use all .  As a result, the total weight is 

not necessary 1, and the sample size becomes random. 

The second mixing strategy is achieved by limiting the weights that a unit distributes to sum to a fixed 

scalar ,  0 1.   This method is denoted TSCPS 2. In SCPS with maximal weight strategy, each unit 

is given a total weight 1 (the sum of the weights) to distribute on remaining units in the list. Instead, each 

unit is given a total weight   to distribute. Otherwise, this works as the maximal weight strategy, so that 

unit i  first gives as much weight as possible to the nearest, then the second nearest etc. With this strategy 

the weights will reach a shorter distance (fewer neighbors). Say the maximal weights for the three nearest 
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neighbors of a unit are 0.7, 0.5, 0.2. Then standard SCPS (with maximal weights) would distribute the 

weights 0.7, 0.3, 0, and the new modified version would, with =  0.5, distribute 0.5, 0, 0. The reach is 

shorter and it is guaranteed we can use all .  However, if the total weight   is less than 1, there will be a 

random sample size. 

Note that for both TSCPS 1 and 2 we have the following result. With = 0,  we get Poisson sampling 

and with = 1  we get SCPS with maximal weights. We can scale with   between 0 and 1 to mix the two 

to any degree. Maximum coordination, worst spatial balance and highest variance of sample size for = 0,  

and best spatial balance and guaranteed fixed sample size for = 1  while level of coordination will be to 

some extent worse. Both TSCPS 1 and 2 offer the possibility to make a trade-off between the Poisson and 

SCPS designs. Degree of spatial balance and coordination, as well as variance of achieved sample size 

depend on the parameter .  Sample size is likely to be more stable (given the same )  for TSCPS 1 than 

for TSCPS 2, as more weight is likely to be distributed with TSCPS 1. Since both TSCPS 1 and 2 use a 

given scalar ,  0 1,   they provide a family of sampling designs. Each element in this family 

corresponds to a given .  Contrary to SCPS, for any value of < 1  both TSCPS 1 and 2 involve random 

sample sizes. The consequences of having random sample sizes on coordination is empirically studied in 

Section 5.1, on spatial balance degree in Section 5.2 and on variance estimation in Section 5.3. 

 
5  Empirical results 
  
5.1  Overlap performance 
 

Monte Carlo simulation was used to study the overlap performance of the proposed methods. A number 

of 4= 10m  runs were considered for each of the four settings described below. In each run, samples were 

drawn using the proposed methods. The same permanent random numbers were employed for all methods. 

The Euclidean distance between units was used for all spatial sampling designs. In each run, for LPM with 

PRNs, a matrix of dimension N N  of PRNs was randomly generated; the diagonal elements of this matrix 

were used as PRNs for Poisson, SCPS and the transformed SCPS with PRNs. All sampling schemes were 

applied for positive and negative coordination, respectively, using in each run the same PRNs and the same 

matrix of distances. Samples 1s  and 2s  of following types were drawn in each run:   

• two Poisson samples selected respectively independently, positively coordinated with PRNs, and 

negatively coordinated with PRNs;  

• two LP samples selected respectively independently, positively coordinated with PRNs, and 

negatively coordinated with PRNs;  

• two SCP samples selected respectively independently, positively coordinated with PRNs, and 

negatively coordinated with PRNs;  

• two transformed SCP samples selected respectively independently, positively coordinated with 

PRNs, and negatively coordinated with PRNs; the two strategies shown in Section 4.2 were 

employed using respectively =  0.25, 0.50 and 0.75.  
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Three measures were used to quantify the performance of the proposed methods, for positive and 

negative coordination, respectively:   

• the Monte Carlo expected overlap  

   1, 2
sim

=1

1
= ,

m

E c c
m
 


  

1, 2
1 2= ,c s s    and 1 ,s  2 ,s   are the samples drawn in the th  run, where 1 2s s   

represents the number of common units of 1s   and 2 ;s   

• the Monte Carlo variance of the overlap  

                                  21, 2
sim sim

=1

1
= ;

1

m

V c c E c
m


  


  

• the Monte Carlo coefficient of variation of the overlap  

                      
 
 

sim
sim

sim

CV = .
V c

c
E c

  

 

The correlation between  1 1 =1, ,= i i Nπ   and  2 2 =1, ,= i i Nπ   is an important factor of the sample 

coordination degree. This correlation varies and takes extreme values in the following four settings used to 

study the performance of the proposed methods:   

• the static MU284 population: from the MU284 data set (see Appendix B in Särndal et al., 1992), 

the region 2 was selected. The population size is = 48,N  and the expected sample sizes are 

1 2= 10, = 6,n n  respectively. The first-order inclusion probabilities 1i  are computed using the 

variable P75 (population in 1975 in thousands), and 2i  using the variable P85 (population in 

1985 in thousands). The elements of the distance matrix were artificially generated using 

independent draws from the  0,1N  distribution and taking their absolute values. The correlation 

coefficient between 1π  and 2π  is 0.99.  

• the Baltimore data set is about house sales prices and hedonics (see Dubin, 1992). The data set is 

available on-line at the GeoDa Center for Geospatial Analysis and Computation (2017). 

Information on = 211N  houses are provided by 17 variables. The geographical coordinates of 

the houses are available. We use 1 2= = 25.n n  The first-order inclusion probabilities 1i  are 

computed using the variable AGE (the house age) and 2i  using AGE+5. The elements of the 

distance matrix are the Euclidean distances between the geographical coordinates on the 

Maryland grid of the houses included in this data set. The correlation coefficient between 1π  and 

2π  is 1.  

• the MU284 dynamic population: from the MU284 data set, the regions 2 and 3 were used. A 

dynamic population was created using on the first occasion 50% of the units randomly selected 

from the region 2 using simple random sampling without replacement (these units are the 

“persistents” and the rest of the 50% of the units are “deaths”), and on the second occasion 50% 

of the units randomly selected from the region 3 using simple random sampling without 

replacement (these units are the “births”). The elements of the distance matrix were artificially 
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generated using independent draws from the  0,1N  distribution and taking their absolute values. 

For a run, the correlation coefficient between 1π  and 2π  was 0.08.  

• one artificial data set, with 1 2= 100, = 10, = 25,N n n  1π  and 2π  uncorrelated and randomly 

generated using independent draws from the  0,1U  distribution and scaled to obtain the sum 10 

and 25, respectively. The elements of the distance matrix were artificially generated using 

independent draws from the  0,1N  distribution and taking their absolute values.  
 

A number of 410  simulation runs was used to compute the Monte Carlo overlap measures using the nine 

methods in each setting. Tables 5.1, 5.2, 5.3, and 5.4 provide the results of the Monte Carlo studies based 

on the previous four settings. For TSCPS 1 and 2, the value of   is also specified in these tables. 

 
Table 5.1 
The static MU284 population, = 48,N  expected sample sizes 1 2= 10, = 6,n n 1i  are computed using the 
variable P75 (population in 1975 in thousands), and 2i  using the variable P85 (population in 1985 in 
thousands). The distance matrix was artificially generated. The values of AUB and ALB are 6 and 1.96, 
respectively 
 

Method  independent positive negative 

 simE c   simV c   simCV c  simE c  simV c   simCV c  simE c   simV c   simCV c

Poisson  3.04 1.89 0.45 6.03 4.06 0.33 1.96 1.13 0.54 
LPM  3.03 1.22 0.36 5.10 0.71 0.17 2.64 1.20 0.41 
SCPS  3.06 1.21 0.36 4.91 0.85 0.19 2.33 1.06 0.44 
TSCPS 1 =  0.25  3.06 1.28 0.37 5.84 0.93 0.17 2.09 1.13 0.51 

=  0.50  3.04 1.27 0.37 5.54 0.79 0.16 2.21 1.10 0.47 
=  0.75 3.06 1.25 0.37 5.20 0.80 0.17 2.27 1.06 0.45 

TSCPS 2 =  0.25  3.07 1.67 0.42 5.75 2.40 0.27 1.97 1.13 0.54 
=  0.50  3.06 1.45 0.39 5.40 1.57 0.23 2.05 1.10 0.51 
=  0.75  3.04 1.27 0.37 5.13 1.10 0.20 2.18 1.04 0.47 

 
 
Table 5.2 
Baltimore data, = 211,N  expected sample sizes 1 2= 25, = 25,n n 1i  are computed using the variable AGE 
and 2i  using AGE+5. The distance matrix uses real data. The values of AUB and ALB are 24.20 and 0.10, 
respectively 
 

Method  independent positive negative 

 simE c   simV c   simCV c  simE c  simV c   simCV c  simE c   simV c   simCV c

Poisson  4.08 3.93 0.49 24.20 20.63 0.19 0.10 0.09 3.00 
LPM  4.09 3.15 0.43 21.50 2.86 0.08 1.76 1.51 0.70 
SCPS  4.01 3.22 0.45 22.20 3.14 0.08 0.76 0.70 1.10 
TSCPS 1  =  0.25  4.05 3.02 0.43 23.10 2.60 0.07 0.26 0.26 1.96 

=  0.50  4.06 3.06 0.43 22.50 2.93 0.08 0.45 0.43 1.46 
=  0.75 4.05 3.22 0.44 22.30 3.10 0.08 0.57 0.55 1.30 

TSCPS 2 =  0.25  4.07 3.56 0.46 23.70 11.75 0.14 0.10 0.09 3.00 
=  0.50  4.07 3.37 0.45 23.20 6.35 0.11 0.29 0.27 1.79 
=  0.75  4.04 3.31 0.45 22.70 3.84 0.09 0.58 0.52 1.24 
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Table 5.3 
The dynamic MU284 population – region 2 from the MU284 population, where 50% of the units are new in the 
second occasion (“births”), and 50% of the units change the stratum (“deaths”), = 72,N  expected sample sizes 

1 2= 10, = 6.n n  The distance matrix was artificially generated. The values of AUB and ALB are 3.56 and 1.33, 
respectively 
 

Method  independent positive negative 

 simE c   simV c   simCV c  simE c  simV c   simCV c  simE c   simV c   simCV c

Poisson  2.02 1.20 0.54 3.56 2.35 0.43 1.32 0.71 0.64 
LPM  2.03 0.95 0.48 2.37 1.00 0.42 1.87 0.89 0.50 
SCPS  2.02 1.02 0.50 3.01 1.19 0.36 1.54 0.79 0.58 
TSCPS 1  =  0.25  2.02 0.94 0.48 3.42 1.31 0.33 1.39 0.70 0.60 

=  0.50  2.03 1.02 0.50 3.27 1.33 0.35 1.42 0.79 0.63 
=  0.75 2.02 1.02 0.50 3.16 1.26 0.36 1.47 0.80 0.61 

TSCPS 2 =  0.25  2.02 1.04 0.50 3.36 1.67 0.38 1.33 0.64 0.60 
=  0.50  2.02 0.96 0.49 3.20 1.37 0.37 1.41 0.66 0.58 
=  0.75  2.02 0.94 0.48 3.10 1.24 0.36 1.50 0.71 0.56 

 
 
Table 5.4 
Artificial data, = 100,N  expected sample sizes 1 2= 10, = 25,n n 1i  and 2i  randomly generated, 
uncorrelated. The distance matrix was artificially generated. The values of AUB and ALB are 9.11 and 0, 
respectively 
 

Method  independent positive negative 

 simE c   simV c   simCV c  simE c  simV c   simCV c  simE c   simV c   simCV c

Poisson  2.44 2.34 0.63 9.11 8.08 0.31 0  0   
LPM  2.45 1.82 0.55 5.42 2.35 0.28 1.03 0.91 0.93 
SCPS  2.42 1.82 0.56 6.94 2.07 0.21 0.45 0.42 1.44 
TSCPS 1 =  0.25  2.44 1.76 0.54 8.53 2.05 0.17 0.06 0.07 4.41 

=  0.50  2.46 1.79 0.54 7.95 1.90 0.17 0.21 0.22 2.23 
=  0.75 2.43 1.80 0.55 7.40 1.97 0.19 0.31 0.31 1.80 

TSCPS 2 =  0.25  2.43 2.09 0.59 8.53 4.86 0.26 0  0   
=  0.50  2.45 1.91 0.56 7.90 3.32 0.23 0.11 0.10 2.87 
=  0.75  2.44 1.83 0.55 7.34 2.51 0.22 0.28 0.26 1.82 

 
 

Following the results given in Tables 5.1, 5.2, 5.3, and 5.4, SCPS shows in general better performance 

than LPM in terms of  sim ,E c  simV c  and  simCV c  for both types of coordination; an exception is the 

case of the static MU284 population and positive coordination. In this setting, the pairs used for the selection 

of 1s  are also used for the selection of 2 ,s  since deaths or births are not assumed. Without such changes in 

population, LPM may perform better than SCPS in terms of  sim ,E c  but also in terms of  simV c  and 

 simCV .c  

As expected, Poisson sampling achieves the AUB and ALB (minor differences are due to the sampling 

error) in all settings, but the overlap variance is very high in positive coordination. This is mainly due to the 

random sizes of 1s  and 2 .s  The large values of  simV c  impact the values of  simCV .c  In all the examples 

shown, the latter is in general larger than the values of  simCV c  provided by the other sampling schemes. 
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Results in Tables 5.1, 5.2, 5.3, and 5.4 confirm that the value of   in the transformed SCPS determines 

the coordination degree; a smaller value of   provides a better coordination degree, since one gets closer 

to Poisson sampling (we remind that = 0  in the TSCPS designs leads to Poisson sampling). 

For a given ,  the new strategies presented in Section 4.2 yield similar values of  simE c  in positive 

coordination, but TSCPS 2 gives larger values of  simV c  and  simCV .c  For all   used, both TSCPS 1 

and TSCPS 2 provides similar values of  simCV c  in positive and negative coordination in our examples, 

excepting TSCPS 2 with =  0.25. The latter performs very close to Poisson sampling in negative 

coordination as the results in Tables 5.1, 5.2, 5.3, and 5.4 show.  

An interesting result for Poisson sampling arises from Tables 5.1, 5.2, 5.3, and 5.4 in terms of  simCV .c  

While the values of  simV c  are large for positive coordination compared to LPM and SCPS, it is not the 

case for negative coordination. However, in the latter case, if    sim simE c V c  and both are small as in 

Table 5.2, the corresponding value of  simCV c  becomes very large. As we mentioned, that can also be the 

case for the TSCPS designs with small values of .  The improvement of introducing this new family of 

designs compared to Poisson sampling is measured for these situations in terms of spatial balance degree as 

shown in the next section.  

 
5.2  Spatial balance and variance of sample size 
 

The transformed SCPS is compared to the other sampling designs in terms of degree of spatial balance 

using Monte-Carlo simulation. The degree of spatial balance is measured using the B  measure shown in 

expression (3.3). For the transformed SCPS the two strategies presented in Section 4.2 are used, and the 

four previous settings are employed. The B  measure was computed on the same samples 1s  used to obtain 

the outcomes given in Tables 5.1, 5.2, 5.3, and 5.4, respectively. The following overall measure was used 

for each type of sample  

  sim
=1

1
= ,

m

E B B
m
 


  

where B   represents the B  measure computed on a realised sample in the th  run. For comparison, the 

average of the B  measures computed over the Monte-Carlo runs for Poisson sampling and LPM were also 

reported. 

TSCPS is also compared with Poisson sampling in terms of variance of sample size computed over the 

Monte-Carlo runs using:  

     2
sim

=1

1
size = ,

1

m

V s s
m


  


  

where s   represents the sample size of a realised sample s  in the th  run and 1
=1

= .
m

ms s 
 

Tables 5.5, 5.6, 5.7 and 5.8 provide the results. Following these results, we note that the choice of   

determines the performance of the transformed SCPS in terms of averaged B  measure: a larger value of   

results in a better spatial balance degree. However, in all settings, the resulting spatial balance degree is 
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worse than for LPM and SCPS, but better than for Poisson sampling as expected, since the latter is not a 

spatial balanced sampling. 

For all four settings, the variance of sample size is much higher for Poisson sampling than for TSCPS 1 

and TSCPS 2, for all values of .  While TSCPS 2 with =  0.25 performs very close to Poisson sampling 

in the examples shown in Section 5.1 for negative coordination, we note however that the corresponding 

values of  sim sizeV  for the former method are much smaller than those provided by Poisson sampling. 

As underlined in Section 4.2, TSCPS 1 shows smaller sample size variance than TSCPS 2 for the same 

.  The results in our settings confirm for both TSCPS 1 and TSCPS 2 that the variance of sample size 

decreases when   increases. 

 
 
Table 5.5 
The static MU284 population, = 48,N  expected sample size 10, the inclusion prob. are computed using the 
variable P75 (population in 1975 in thousands). The distance matrix was artificially generated 
 

Design  simE B   sim sizeV  

Poisson 0.301 4.806 
LPM 0.124 0 
SCPS 0.131 0 
TSCPS 1 =  0.25 0.209 0.727 

=  0.50 0.177 0.405 
=  0.75 0.146 0.187 

TSCPS 2 =  0.25 0.215 2.692 
=  0.50 0.159 1.211 
=  0.75 0.134  0.399 

 
 
 
Table 5.6 
Baltimore data, = 211,N  expected sample size 25, the inclusion prob. are computed using the variable AGE. 
The distance matrix uses real data 
 

Design  simE B   sim sizeV  

Poisson 0.416 21.107 
LPM 0.137 0 
SCPS 0.137 0 
TSCPS 1 =  0.25 0.256 0.909 

=  0.50 0.198 0.449 
=  0.75 0.162 0.222 

TSCPS 2 =  0.25 0.282 11.382 
=  0.50 0.195 4.811 
=  0.75 0.148 1.227 
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Table 5.7 
The dynamic MU284 population, = 48,N  expected sample size 10, the inclusion prob. are computed using the 
variable P75 (population in 1975 in thousands). The distance matrix was artificially generated 
 

Design  simE B   sim sizeV  

Poisson 0.422 5.683 
LPM 0.202 0 
SCPS 0.210 0 
TSCPS 1 =  0.25 0.306 0.798 

=  0.50 0.255 0.427 
=  0.75 0.224 0.231 

TSCPS 2 =  0.25 0.315 3.128 
=  0.50 0.252 1.370 
=  0.75 0.213 0.446 

 
 
Table 5.8 
Artificial data, = 100,N  expected sample size 10, the inclusion prob. are randomly generated. The distance 
matrix was artificially generated 
 

Design  simE B   sim sizeV  

Poisson 0.485 8.892 
LPM 0.134 0 
SCPS 0.133 0 
TSCPS 1 =  0.25 0.286 0.938 

=  0.50 0.213 0.446 
=  0.75 0.167 0.230 

TSCPS 2 =  0.25 0.313 4.854 
=  0.50 0.204 2.121 
=  0.75 0.149 0.632 

 
5.3  Variance estimation 
 

In repeated surveys, estimates of net variation, period averages and gross change are of interest. Our 

proposed methods are suitable to estimate such parameters. Their variance estimation is, however, 

intractable for our methods and is not addressed here. We study only empirically the impact that each 

coordinated spatial balancing method has on the quality of the estimates of two of the above parameters. 

Note that there exist approximative variance estimators for state that can be used for LPM and SCPS 

(Grafström and Schelin, 2014), but further research is needed to derive an approximative estimator for the 

covariance between successive state estimators under coordination. 

Consider a repeated survey over two time occasions. Let y  be the variable of interest, measured in the 

first and second time occasion, respectively. We denote by ity  the value of this variable taken by the unit 

i U  on the time occasion ,t  with  1, 2 .t   Let itx  be the value of an auxiliary variable taken by the unit 

i U  at occasion ;t  the variable x  is well correlated with ,y  and available for all units i U  in both time 

occasions. It is assumed that itx  is known for all i U  from a previous census or that a two-phase sampling 

is used: in the first phase the value of itx  is obtained, while the coordination process is addressed in the 



Survey Methodology, December 2018 229 
 

 
Statistics Canada, Catalogue No. 12-001-X 

second phase of the sampling. The notation  .ME  and  var .M  indicate the expectation and variance under 

a model. We borrow from Grafström and Tillé (2013) the following cross-sectional superpopulation model 

with spatial correlation  

 , 1 0 , 1 1 , 1= ,i t i t i ty x       (5.1) 

where 0  and 1  are parameters, where , 1i t  are random variables, with  , 1 = 0,M i tE    

  2
, 1var = ,M i t i     ,cov , = ,d i j

M i j i j      where  ,d i j  represents the distance between the units i  

and ,j  for , .i j U  The particular form of  cov ,M i j   in model (5.1) underlines a decreasing function 

of the distance between i  and ,j  reflecting that the proximity of units implies a larger spatial correlation. 

The following autoregressive model is considered  

                                                                0 1 , 1= ,it i t ity y     (5.2) 

with 0  and 1  being parameters, and with it  being independent random variables, with   =M itE   

  20, var = .M it u  The following model is also assumed  

                                                                0 1 , 1= ,it i t itx x      (5.3) 

where 0  and 1  are parameters, where it
  are independent random variables, with   = 0,M itE   

  2var = .M it u   We obtain thus a spatial-temporal dependence of the data through models (5.1), (5.2) 

and (5.3). 

We consider that it  are constructed using the expression  

      = , 1, 2 ,t it
it

jtj U

n x
t

x







  

that leads to a correlation between 1tπ  and tπ  due to model (5.3). 

The following parameters of interest are considered: the one period change 
11 2

2= i ii U i U
D y y

 
   

and the average over two periods  11 2

1
22= .i ii U i U

A y y
 

   The two parameters are estimated by  
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i s i si i
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 
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1 2
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1ˆ = ,
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 

 
    

respectively. We have  

   1 1

1 2 1 2

2 2

1 2 1 2

ˆvar = var var 2cov , ,i ii i

i s i s i s i si i i i

y yy y
D

      

  
   

   
     (5.4) 

         1 1

1 2 1 2

2 2

1 2 1 2

1 1 1ˆvar = var var cov , ,
4 4 2

i ii i

i s i s i s i si i i i

y yy y
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      

  
   

   
     (5.5) 
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where  var .  and  cov .,.  represent the variance and the covariance operators, respectively. 

Following expression (5.4), if 1s  and 2s  are positively coordinated, the variance of D̂  is reduced in 

general through sample overlap, since a positive covariance between 
11

1i ii s
y

   and 
2

2 2i ii s
y

   is 

achieved compared to independent samples’ selection. Similarly, from expression (5.5), independent 

samples’ selection reduces the variance of Â  compared to positively coordinated samples because this 

covariance is zero. Negative coordination of samples can lead to a negative covariance between 

11
1i ii s

y
   and 

22
2 ,i ii s

y
   and the variance of Â  can diminish compared to independent samples’ 

selection. 

A population of size = 100N  was created using models (5.1), (5.2), and (5.3). No births or deaths were 

considered in the population. The distance matrix was artificially generated using absolute values of 

independent runs from the  0,1N  distribution. We set 0 = 4, 1 = 2, = 0.9, 0 = 0, 1 = 1, 0 = 0,

1 = 1,  0,1 , = 1, , ,i N i N   iid and 1= , = 1, , .i i i N     We also generated artificially 1ix  as 

independent random draws from the  4,1N  distribution. The correlation between 1y  and 2y  was 

approximately 0.72, while between ty  and , = 1, 2tx t  was approximately 0.9. Based on this population, 

two different settings were created, by varying 1n  and 2 :n  in the first setting 1 2= 10, = 25,n n  while in the 

second one 1 2= = 50.n n  The correlation between 1π  and 2π  was approximately 0.7 in both settings. 

Monte Carlo simulation was used to study empirically the impact that each proposed method has on 

 ˆvar D  and  ˆvar .A  For each setting, 4= 10m  samples were drawn as described in the beginning of 

Section 5.1. Figures 5.1 and 5.2 show boxplots corresponding to the D̂  values obtained through Monte 

Carlo simulation, for both settings. The white boxplots correspond to the D̂  values obtained from 

independent samples 1s  and 2 ,s  while the grey ones to positively coordinated samples 1s  and 2 .s  The 

sampling design is specified below each boxplot (for example, TSCPS1_indep_0.25 indicates TSCPS 1 

with independent samples’ selection and =  0.25 for both selections, while TSCPS1_pos_0.25 indicates 

TSCPS 1 with positively coordinated samples and =  0.25 for both selections). 

Similarly, Figures 5.3 and 5.4 show boxplots corresponding to the Â  values obtained through Monte 

Carlo simulation, for both settings, respectively. The white boxplots correspond to the Â  values obtained 

from independent samples 1s  and 2 ,s  while the grey ones to negatively coordinated samples 1s  and 2 .s  In 

all figures, LPM with PRNs as well SCPS with PRNs show smaller spread of the D̂  values and Â  values 

compared to Poisson sampling designs since both provide fixed sample sizes and are able to manage the 

spatial correlation of the data. 

Figures 5.1 and 5.2 show a similar pattern of the boxplots: a larger overlap between 1s  and 2s  leads to 

a smaller spread of the D̂  values. As expected, the spread of the D̂  values is reduced for each type of 

positively coordinated samples compared to independent samples’ selection. For LPM and SCPS designs 

this reduction is, however, less important. This fact can be explained by the smaller overlap between 

positively coordinated samples in LPM and SCPS designs compared to the other ones, as the examples in 

Section 5.1 show it. The larger sample sizes in the second setting reduce the spread of the D̂  values in the 

case of positively coordinated samples (grey boxplots) compared to the independent sample selection (white 

boxplots). In Figures 5.3 and 5.4, negative coordination reduces in general the spread of the Â  values 
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compared to independent sample selection. As in Figures 5.1 and 5.2, this reduction is less important for 

LPM and SCPS compared for example to Poisson sampling and TSCPS 2. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.1 First setting: 1 2= 100, = 10, = 25,N n n  boxplots of the D̂  values obtained through Monte Carlo 
simulation, the sampling design is specified below each boxplot. The white boxplots correspond to 
independent samples’ selection, while the grey ones to positively coordinated samples. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.2 Second setting: 1 2= 100, = 50, = 50,N n n  boxplots of the D̂  values obtained through Monte 
Carlo simulation, the sampling design is specified below each boxplot. The white boxplots 
correspond to independent samples’ selection, while the grey ones to positively coordinated samples.  
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Figure 5.3 First setting: 1 2= 100, = 10, = 25,N n n  boxplots of the Â  values obtained through Monte Carlo 
simulation, the sampling design is specified below each boxplot. The white boxplots correspond to 
independent samples’ selection, while the grey ones to negatively coordinated samples.  

 
 
 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.4 Second setting: 1 2= 100, = 50, = 50,N n n  boxplots of the Â  values obtained through Monte Carlo 
simulation, the sampling design is specified below each boxplot. The white boxplots correspond to 
independent samples’ selection, while the grey ones to negatively coordinated samples. 
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To quantify the performance of the proposed methods, for positive and negative coordination, 

respectively, the Monte Carlo variance was used  

      2
MC sim

=1

1
Var = ,

1

m

E
m


  


     

where   is the value of D̂  or Â  obtained in the th  run and   1
sim =1

= .
m

jm j
E    The reduction in 

variance estimation through overlapped samples of D̂  is summarized in Table 5.9. The table shows the 

values of the ratio between  MC
ˆvar D  obtained using positively coordinated samples and  MC

ˆvar D  using 

independent samples for both settings. We note that for all sampling designs this ratio is less than 1, 

indicating a variance reduction through sample overlap. Table 5.10 shows the values of the ratio between 

 MC
ˆvar A  obtained using negatively coordinated samples and  MC

ˆvar A  using independent samples for 

both settings. For the first setting, except for Poisson sampling, the ratio is close to 1, showing negligible 

improvement of the negatively coordinated samples compared to independent selections. Using larger 

sample sizes, the second setting shows an important improvement for TSCPS 2, but not for LPM and SCPS. 

 

 

Table 5.9 
Ratio between  MC

ˆvar D  obtained using positively coordinate samples and  MC
ˆvar D  using independent 

samples 
 

Design 1 2= 10, = 25n n  

Ratio 

1 2= 50, = 50n n  

Ratio 

Poisson 0.481 0.178 
LPM 0.759 0.679 
SCPS 0.760 0.778 
TSCPS 1 =  0.25 0.695 0.545 

=  0.50 0.739 0.700 
=  0.75 0.806 0.752 

TSCPS 2 =  0.25 0.513 0.217 
=  0.50 0.571 0.319 
=  0.75 0.634 0.491 

 

 

 

 

Table 5.10 
Ratio between  MC

ˆvar A  obtained using negatively coordinate samples and  MC
ˆvar A  using independent 

samples 
 

Design 1 2= 10, = 25n n  

Ratio 

1 2= 50, = 50n n  

Ratio 

Poisson 0.792 0.324 
LPM 0.941 0.949 
SCPS 0.921 0.901 
TSCPS 1 =  0.25 0.932 0.679 

=  0.50 0.950 0.840 
=  0.75 0.953 0.876 

TSCPS 2 =  0.25 0.828 0.387 
=  0.50 0.834 0.463 
=  0.75 0.919 0.597 
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In summary, LPM with PRNs, SCPS with PRNs and the TSCPS family reduce the Monte-Carlo variance 

of the differences through sample overlap compared to independent samples’ selection in both settings. For 

the independent samples’ selection, these methods are more precise than Poisson sampling because they are 

able to manage the spatial trend present in the variable of interest, and the sample sizes are fixed (for LPM 

and SCPS using the “maximal weight strategy”) or less variable than for Poisson sampling. The Monte-

Carlo variance of the averages is negligibly reduced by LPM and SCPS using negatively coordinated 

samples compared to independent samples in both settings. The transformed SCPS family shows a real 

improvement in the second setting, when 1n  and 2n  are relatively large, for all .  

 
6  Application to Swiss establishments 
 

We illustrate the application of the proposed methods on real data. The data that we used was collected 

by the Swiss Federal Statistical Office and can be downloaded for free (https://www.bfs.admin.ch/ 

bfs/fr/home/services/geostat/geodonnees-statistique-federale/etablissements-emplois/statistique-structurel-

entreprises-statent-depuis-2011.assetdetail.3303058.html). It contains census data from 2013 and 2015 on 

Swiss establishments. Data for all establishments are aggregated at the hectare level. The geographical 

coordinates are proper to each hectare, and not to establishments. Each hectare can contain several 

establishments. The statistical unit was in this application an hectare, and not an establishment. We 

considered only hectares containing establishments from the economic activity 1 (agriculture, hunting, 

forestry, fisheries and aquaculture), and having in total at least 3 full-time equivalent employees. The years 

2013 and 2015 were considered the two time occasions. In 2013, a number of 7,057 units were available, 

while in 2015 this number was 7,104. The overall population was of size =N  9,478. The difference in the 

sizes between the two time occasions was due to the 2,374 deaths and 2,421 births in 2015 compared to 

2013. Figure 6.1 shows the geographical location of the units from the overall population. The parts inside 

of the figure with less locations correspond in majority to the Swiss Alps. 

The data can be used with two main purposes:   

• The location of each establishment in Switzerland has been geocoded since 1995. The register of 

establishments contains their geographical coordinates. Surveys are made to complete some 

missing information in this register. To achieve this, the Swiss Federal Statistical Office 

conducted such a survey in 2014. A positive coordination can be applied for example to check 

the quality of the the completed information from a time occasion to another one.  

• Negative coordination can be applied to reduce the response burden of the establishments selected 

in several surveys. If the aggregated data are used, the hectares can be seen as primary selected 

units, while the establishments inside them as secondary units.  

 

We used the values of the expected sample sizes 1 =n  1,000 and 2 =n  800, while , 1i  and , 2i  were 

computed proportional to the same variable measured in 2013 and 2015, respectively. This variables was 

the total number of full-time equivalent employees of all establishments inside of a hectar. A matrix of size 

N N  of PRNs was generated for the LPM. For the other methods, the vector of PRNs was taken to be the 
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main diagonal of this matrix. In both time occasions respectively, we selected samples 1s  and 2s  using 

Poisson sampling with PRNs, LPM with PRNs, SCPS with PRNs, TSCPS 1 with PRNs ( =  0.25, 

0.50, 0.75), and TSCPS2 with PRNs ( =  0.25, 0.50, 0.75). The Euclidean distance between locations was 

used in all methods, excepting Poisson sampling. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 Swiss establishments aggregated data. Spatial distribution of the units in the overall population 
based on the census in 2013 and 2015. 

 
 

We analyzed the selected samples in terms of realised overlap and B  measure. To achieve this, positive 

and negative coordinations with PRNs were respectively applied. Table 6.1 shows the realised sample sizes 

as well as the overlap between different samples in both types of coordination. For the samples drawn in the 

first time occasion, the B  measure given in expression (3.3) is also indicated. Poisson sampling presents 

the highest overlap in positive coordination (560, when AUB = 538.022), while LPM the smallest one. Due 

to the important changes in the population from 2013 to 2015, SCPS performs better than LPM, with an 

overlap of 329, but worse than Poisson sampling. All the members of the TSCPS family perform 

intermediately between Poisson sampling and SCPS, in function of the value of .  Negative coordination 

shows the same superiority of Poisson sampling, while the other designs exhibit smaller values of the 

realised overlap, with SCPS performing again better than LPM. Moving now to the spatial balancing feature, 

Poisson sampling yields the largest realised B  measure, while LPM and SCPS as expected indicate the 

smallest ones. As in the results shown in Section 5.2, the members of the TSCPS family exhibit smaller 

realised B  measure than Poisson sampling, but larger than SCPS. The application of the proposed methods 

on these real data indicates similar behavior of them with the simulation results shown in Sections 5.1 

and 5.2. 
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Table 6.1 
Swiss establishments aggregated data. 1 2= 9,478, = 1,000, = 800, AUB = 538.022, ALB = 45.908.N n n  
Realised sample sizes, overlap between 1s  and 2s  in both types of coordination, and the B  measure for 1s  
 

Design size of 1s  Positive coord. Negative coord. 
1sB  

size of 2s  overlap size of 2s  overlap  

Poisson 1,010 840 560 779 46 0.387 
LPM 1,000 800 270 800 93 0.161 
SCPS 1,000 800 329 800 70 0.151 
TSCPS 1 =  0.25 999 799 459 800 64 0.178 

=  0.50 1,000 799 420 800 66 0.217 
=  0.75 1,000 800 366 800 67 0.178 

TSCPS 2 =  0.25 1,012 830 469 808 49 0.275 
=  0.50 1,020 828 409 799 58 0.194 
=  0.75 1,010 816 377 797 66 0.153 

 
7  Conclusions 
 

New methods are proposed to coordinate spatially balanced samples based on PRNs. The objective is 

two-fold: first, to achieve a good coordination degree between samples, and second to preserve a good 

spatial balance degree. With the coordination of LPM and SCPS a good degree of spatial balance is ensured. 

SCPS with PRNs is less memory consuming since only a PRN vector of size N  is used, while for LPM one 

uses a matrix of dimension .N N  Our examples concern moderate size populations, and a large N  

quickly introduces limits in the calculations. In practice, a large N  leads to an oversized matrix to be 

employed in the coordination of LPM samples. In these cases, the method can be implemented using 

dynamic allocation of the computer memory. Despite this solution, limits of the proposed method are 

possible in practice. 

In our simulations, SCPS tends to perform better than LPM in terms of overlap expectation and variance, 

for both positive and negative coordination. A good coordination of LPM samples is more difficult to 

achieve than of SCPS samples, because the same pairs of units should be considered in the sample selection 

process, instead of single units. If births or deaths appear in the population, the pairs used for the selection 

of 1s  may not be available any more for the selection of 2 .s  Thus, the sample coordination becomes poor. 

SCPS does not have this weakness, but instead the coordination level may drop as well if the weights are 

distributed very differently the second time compared to the first time. This is the reason why SCPS with 

PRNs performs worse than Poisson sampling with PRNs. LPM with PRNs may have better behavior in 

terms of overlap than SCPS with PRNs if changes in the population are not detected. This situation is 

exemplified in Table 5.1 when the static MU284 population is used. 

As shown in our examples in Section 5.1 both methods show a weaker performance in terms of expected 

overlap than Poisson sampling. This is a normal feature of these methods since one imposes the fixed sample 

size constraint for LPM and SCPS. In order to overcome this weakness, we introduced a new family of 

designs, based on a transformation of SCPS and a choice of scalar , 0 1.   Each value of   leads 

to a member of this family. For = 1  one obtains SCPS, while for = 0  Poisson sampling. This family 
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of designs reminds us another family depending upon a scalar, the Pomix design (Kröger et al., 1999). The 

Pomix design is a mixture between Bernoulli and Poisson sampling, also used for coordination with PRNs. 

For the transformed version of SCPS, the degree of coordination and spatial balance depend on the 

choice of .  Being a mixture of Poisson sampling and SCPS, it achieves a better coordination degree than 

SCPS. However, the improved degree of coordination comes at the cost of increased variance of sample 

size and reduced spatial balance as our examples in Section 5.1 and Section 4 showed. Based on our results, 

for the transformed SCPS, our recommendation is to use =  0.5 that represents a compromise between a 

good spatial balance degree and a good coordination degree. On the other hand, =  0.5 seems a good all-

purpose suggestion since the results for variance estimation of differences and averages shown in 

Section 5.3 also indicate this value as a reasonable choice. 

In our results shown in Section 5.3 LPM with PRNs, SCPS with PRNs and the TSCPS family reduce the 

Monte-Carlo variance of the differences when positively coordinated samples are used compared to 

independent samples’ selection. In both used settings, it seems, however, that in the case of LPM with PRNs 

and SCPS with PRNs, variance reduction comes mainly from the combined effect of spatial balance and 

fixed sample size rather than from the effect of positive coordination. The Monte-Carlo variance of the 

averages is not always reduced in our examples when negatively coordinated samples are selected compared 

to independent samples; LPM with PRNs and SCPS with PRNs show in this case negligible improvement 

when negative coordination is used. 

All the proposed methods can also be applied in the case where the spatial distance is replaced by a 

distance between auxiliary variables like the Mahalanobis distance. Thus, the sample coordination can be 

performed in the space spanned by these variables. The proposed methods allow thus not only a spatial 

sample coordination, but also the coordination of representative samples, in the terminology used by 

Grafström and Schelin (2014). 
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Using balanced sampling in creel surveys 
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Abstract 

These last years, balanced sampling techniques have experienced a recrudescence of interest. They constrain the 
Horvitz Thompson estimators of the totals of auxiliary variables to be equal, at least approximately, to the 
corresponding true totals, to avoid the occurrence of bad samples. Several procedures are available to carry out 
balanced sampling; there is the cube method, see Deville and Tillé (2004), and an alternative, the rejective 
algorithm introduced by Hájek (1964). After a brief review of these sampling methods, motivated by the planning 
of an angler survey, we investigate using Monte Carlo simulations, the survey designs produced by these two 
sampling algorithms. 

 
Key Words: Balanced sampling; Creel surveys; Cube method; Multistage sampling; Rejective algorithm; Monte Carlo 

simulation. 

 
 

1  Introduction 
 

Creel surveys provide the foundation for estimating the impact of recreational fishing (Pollock, Jones 

and Brown, 1994). They are conducted to estimate total catch, fishing effort, and catch rate for various 

species at several locations (Hoenig, Jones, Pollock, Robson and Wade, 1997). As they focus on fish of 

interest to recreational anglers, they provide useful information for the management and economic 

contribution of sport fisheries (Minnesota Department of Natural Resources, 2011). 

Two methods are used to contact anglers in creel surveys, either the site access or the roving method. In 

site access, an agent waits at a location that the anglers must go through when they leave the site and 

interviews them when they depart (Robson and Jones, 1989). With the roving method the agent moves 

through the survey area and contacts anglers while they are fishing (United States Environmental Protection 

Agency, 1998). As the agent cannot be on location for the whole survey, survey sampling is used to select 

the periods when he will be on site, interviewing fishermen. 

In practice creel surveys can face several operational constraints especially when they involve many sites 

as an agent can only be at one site at a given time. Accommodating all these constraints can be a real 

challenge when planning a survey. This paper discusses balanced sampling in this context. By framing some 

operational constraints as balancing equations in a multi-stage sampling design, one should be able to ensure 

that the sample selected meets the necessary requirements.  

Balanced sampling is reviewed in Tillé (2011). A popular method to select a balanced sample is the cube 

method of Deville and Tillé (2004). An alternative is to select repeatedly several unbalanced samples until, 

by chance, a sample that approximately meets the balancing equations is drawn. This is the rejective method 

introduced by Hájek (1964), see also Fuller (2009) and Legg and Yu (2010). In a creel survey, the number 

of balancing equations is typically large. The implementation of the cube method in this context is discussed 
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in Chauvet (2009) and Hasler and Tillé (2014). See Vallée, Ferland-Raymond, Rivest and Tillé (2015) for 

a recent application of these methods in the context of a forest inventory. A recent paper in this area by 

Chauvet, Haziza and Lesage (2015) investigates the properties of the balanced samples obtained using a 

rejective method. 

The objectives of this paper are twofold. First, the operational constraints for a creel survey of striped 

bass (Morone saxatilis) carried out in the Gaspé Peninsula are presented. Then we will show how balanced 

sampling, implemented using the cube method, can be used to plan a survey fulfilling most of the 

constraints. The last section of the paper compares the rejective method to the cube method in the context 

of creel surveys. 

In Section 2, balanced sampling is presented using either the cube method or rejective sampling. 

Section 3 introduces operational constraints for a creel survey and shows how they can be met using 

balanced sampling with the cube method. In Section 4, the cube method is compared with the rejective 

algorithm in the context of a resource inventory where the balancing equations only involve indicator 

variables. Discussions of the results are presented in the Section 5. 

 
2  Balanced sampling 
 

Suppose that U  is a finite population of size N  that is sampled with a design having selection 

probabilities given by  : = 1, , .i i N   If x  is an auxiliary variable known for all population units, then 

the sample is balanced on x  if the Horvitz-Thompson estimator for the total of x  is equal to the known 

total of .x  In other words, for any balanced sample ,s  the following equation has to be satisfied,  

 
=1

= .
N

i
i

i s ii

x
x


   (2.1) 

For the surveys considered here, we balance on indicator variables  iI   equal to 1 if unit i  is of type 

  and 0 otherwise. If all the units i  for which  iI   is equal to 1 have the same selection probability 

,  then equation (2.1) reduces to    
=1

= .
N

i ii s i
I I  

   In this context the balancing equation 

simply requests that the number of sampled units of type ,  = ,ii s
n I 

  is equal to its expectation,  

  
=1

= .
N

i
i

n I    (2.2) 

To implement balanced sampling we use the cube method of Deville and Tillé (2004), and the extension 

of Hasler and Tillé (2014) to cope with highly stratified populations. In Section 4 this method is compared 

with the implementation of the rejection method proposed by Fuller (2009). In the context of this study, we 

are balancing on T  types of units; we want the sampled numbers of units for the T  types, =n  

 1 , , ,Tn n ㄒ  to be equal to their expectations,   ,E n  under the sampling design. Under rejective 

sampling, the sample is said to be balanced if  

         1 2
, = Var <T nQ n E n n n E n      ㄒ  (2.3) 
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where  Var n  represents the design based covariance matrix of n  and 2  is a tolerance value that 

determines the balancing condition. Samples that do not meet the balancing equation 2
, <T nQ   are simply 

rejected. 

 
3  A creel survey for striped bass in the Gaspé Peninsula 
 

The Gaspé Peninsula is on the Canadian East Coast in the Province of Québec. In 2015 a creel survey 

for striped bass was conducted in this peninsula as recreational striped bass fishing had just been 

reintroduced after a long moratorium.  

The study area, presented in Figure 3.1, is scattered over more than 250 kms, on the Gaspé Peninsula 

coast. The survey is carried out by a single wildlife agent; it is not possible for him to visit two distant sites 

on the same day. For that reason, neighboring sites are grouped into three sectors as shown in Figure 3.1. 

We consider the survey for the 33 holidays. The survey variable is the fishing effort, in number of hours of 

fishing. As some sites attract more fishermen than others, the number of visits to site l  of sector i  has to 

be proportional to its importance ilx  as given in Table 3.1. In addition, for the purpose of the survey, a day 

is divided into three periods (AM, PM, EV), where EV stands for evening, and six subperiods (AM1, AM2, 

PM1, PM2, and EV1, EV2). For instance AM1 goes from 8:00 to 10:00 while AM2 is from 10:00 to 12:00. 

A working day contains two periods and four subperiods. For instance if the agent works AM and PM, then 

he has a free evening. Thus during a working day he is able to visit four sites, two per working period.  

The survey population on a day consists of 54 quadruplets,  sector × period × subperiod × site ,  4 

of which are sampled. To denote population units the following indices are useful: 

i) = 1, , = 33h H  represents the days;  

ii) = 1, 2, 3i  stands for the sectors in Figure 3.1;  

iii) = 1, 2, 3j  denotes a period within a day;  

iv) = 1, 2k  represents the subperiods within a period;  

v) = 1, 2, 3l  represents the sites, see Figure 3.1, within a sector. 
 

The goal is to estimate the fishing effort for combination of subperiod (6 levels) and site (9 levels). We 

want to plan a survey with a predetermined sample size for the 54 cells of the cross-classified table. The 

basic selection probabilities are  

 
2

= ,
3

il
hijkl

x

x




 (3.1) 

where replacing i  or l  by   means that a summation is taken on the corresponding index. Observe that 

the sum of hijkl  over the indices ( , , , )i j k l  is equal to 4, the number of units visited by the wildlife 

technician on a single day. 

At a first glance, the sample could possibly be drawn in a single stage using selection probabilities (3.1) 

by balancing on the 54 site by subperiod indicator variables. This is not feasible because of operational 
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constraints. The first one is that on a single day the technician visits sites from the same sector to limit the 

traveling between sites. The second constraint is that on a working day the technician is off duty for the two 

subperiods of the same period. In order to meet these operational constraints we propose, in the next section, 

a design having three levels of sampling where sectors are selected at level 1, periods are selected at level 2 

and sites are selected at level 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 The 9 sites to be surveyed for striped bass. 

 
 
 
 

Table 3.1 
Average and expected number of visits to each site 
 

Sector Site  ilx   ilE n  iln  Sd
iln  

East  = 1i   Boom Défense  1l  2 20.308 20.286 0.850
E. St-Jean  2l  1 10.154 10.153 0.621
Barachois  3l  2 20.308 20.296 0.881

Centre  = 2i  Ste-T. de Gaspé  4l  1 10.154 10.176 0.865
Malbaie  5l  1 10.154 10.155 0.880
Chandler  6l  1 10.154 10.162 0.881

West  = 3i  Bonaventure  7l  2 20.308 20.311 1.004
P. Henderson  8l  1 10.154 10.153 0.681
C. Carleton  9l  2 20.308 20.309 1.016
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3.1  A balanced multi-stage design for creel survey 
 

This section describes the three stages of the survey that ensures that the operational constraints 

presented in the previous section are met. It also gives, for each stage, the balancing variables. 

The first stage is stratified by day; for each day a single sector is drawn with selection probabilities 

.ix x   At level two, for each sector selected at level 1, two periods are selected out of 3 using simple 

random sampling (i.e., with selection probabilities 2/3). At level three, a sector*period is stratified by 

subperiod and one site is selected for each subperiod, the selection probabilities are .il ix x   In summary 

the selection probabilities at the three levels are  

      1 2 32
= , = , = .

3
i il

hi j i l ijk
i

x x

x x
  

 

  

As expected the product      1 2 3
hi j i l ijk     is equal to (3.1), the target selection probability. 

The goal is still to get a sample with predetermined sample sizes for the 54 site by subperiod 

combinations. Thus balanced sampling needs to be implemented at each stage. At level 1 we need to balance 

on the indicator variables for the three sectors while at level 2 balancing on the 9 indicator variables for the 

sector by period combinations is needed. Balancing at level 3 is slightly more complicated as it involves 

several strata. 

At level 2, 33 2 = 66  sector*periods have been selected. Each one is stratified by subperiod so we are 

facing 132 strata at level 3 and one site is selected from each one. Balancing is needed with respect to the 

54 site by subperiod indicator functions. This is a complex problem and the balancing constraints (2.3) 

involve the inverse of a large variance covariance matrix. Thus to implement a rejective algorithm in this 

context one would need an alternative to criterion (2.3) for accepting a sample. For now we discuss the 

implementation of balanced sampling for this design with the cube method. Comparisons between the cube 

method and rejective sampling in the context of a simplified creel survey are presented in Section 4. 

Among the 132 third stage strata, the number of strata for one subperiod, say AM2, in sector i  is an 

integer close to 22 ix x   that depends on the stage 2 sample. This integer plays the role of  
=1

N

ii
I   

in equation (2.2) for balancing the sites of sector i  at stage 3 while, for the thl  site, the probability in (2.2) 

is = .il ix x   The stage 3 calibration equations for the 54 site by subperiod indicator functions can be 

described in a similar way. Clearly, it is not possible to meet exactly the 54 balancing equations and the 

cube method will give a sample that is approximately balanced. 

The approximation occurs at the landing phase of the algorithm where balancing constraints are dropped 

in order to complete the selection of the sample, as introduced in Deville and Tillé (2004). As the stage 3 

sample is highly stratified, we use the implementation of the landing phase in the function 

balancedstratification2 developed in Hasler and Tillé (2014), with a small correction that 

prevents it from stopping when the sample is already balanced at the start of the landing phase. In the matrix 

of balancing constraints, the site constraints were given more importance than those which make visits to 
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each site equally distributed among subperiods at level 3. They were the last ones to be dropped at the 

landing phase of the cube method.  

To investigate how a failure to meet all balancing equations impacted the sample design, we generated 

= 10,000B  random replications of the balanced sample. The number of visits iln  to site  ,i l  was noted. 

Table 3.1 compares the average iln  of iln  over the Monte Carlo replications,  

  

=1

1
= ,

B
r

il il
b

n n
B
   

to its expectation,   .ilE n  For all practical purposes, the two are equal and a failure to meet some balancing 

equations has no impact on the site selection probabilities. Table 3.1 also reports the standard deviations  

   
1 2

2

=1

1
Sd = .

1il

B
b

n il il
b

n n
B

  
 
  (3.2) 

Most of the standard deviations are less than 1 in Table 3.1. Thus the absolute differences between target 

and realized sample sizes are less than or equal to 2 for most Monte Carlo samples.  

Table 3.2 gives the expected number of visits in the 6 subperiods; they are all equal to 22, up to two 

decimal points, with standard deviations less than 0.2. Thus the period and subperiod constraints are met. 

Table 3.3 gives a realized sample for the first five days of the creel survey. It shows a harmonious 

permutation of sectors at level 1, periods at level 2, and sites at level 3 through the days because of the way 

in which the sample design was constructed. Given a balanced sample produced by the cube algorithm, an 

arbitrary permutation of the days gives an alternative balanced sample. Indeed the sampling design is 

invariant to a relabeling of the days. For instance, with the sample of Table 3.3 the technician has to travel 

from the western to the eastern sector between days 4 and 5. To avoid this long trip one could interchange 

days 1 and 5: the first two days would then be spent in the eastern sector and between days 4 and 5 the 

technician would travel from the western to the central sector. The alternative and the original samples have 

the same estimated totals for the calibration variables.  

 
Table 3.2 
Average and expected number of visits at each subperiod 
 

Period Subperiod  jkE n  jkn  Sd
jkn  

Morning  = 1j  8h00-10h00  = 1k  22 22.000 0.000 

10h00-12h00  = 2k  22 22.000 0.000 

Afternoon  = 2j  12h00-15h00  = 3k  22 21.999 0.184 

15h00-18h00  = 4k  22 21.999 0.184 

Evening  = 3j  18h00-20h30  = 5k  22 22.001 0.184 

20h30-23h00  = 6k  22 22.001 0.184 
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Table 3.3 
Units selected in a balanced sample for the first five days 
 

H Sector Period Subperiod Site 

1 Centre  = 2i  Afternoon  = 2j  12h00-15h00  = 3k  Chandler  = 6l  

15h00-18h00  = 4k  Malbaie  = 5l  

Evening  = 3j  18h00-20h30  = 5k  Chandler  = 6l  

20h30-23h00  = 6k  Ste-T. de Gaspé  = 4l  

2 East  = 1i  Morning  = 1j  8h00-10h00  = 1k  E. St-Jean  = 2l  

10h00-12h00  = 2k  Boom Défense  = 1l  

Evening  = 3j  18h00-20h30  = 5k  Barachois  = 3l  

20h30-23h00  = 6k  E. St-Jean  = 2l  

3 Centre  = 2i  Morning  = 1j  8h00-10h00  = 1k  Malbaie  = 5l  

10h00-12h00  = 2k  Ste-T. de Gaspé  = 4l  

Afternoon  = 2j  12h00-15h00  = 3k  Malbaie  = 5l  

15h00-18h00  = 4k  Chandler  = 6l  

4 West  = 3i  Morning  = 1j  8h00-10h00  = 1k  P. Henderson  = 8l  

10h00-12h00  = 2k  Bonaventure  = 7l  

Afternoon  = 2j  12h00-15h00  = 3k  C. Carleton  = 9l  

15h00-18h00  = 4k  C. Carleton  = 9l  

5 East  = 1i  Afternoon  = 2j  12h00-15h00  = 3k  Boom Défense  = 1l  

15h00-18h00  = 4k  Barachois  = 3l  

Evening  = 3j  18h00-20h30  = 5k  Boom Défense  = 1l  

20h30-23h00  = 6k  Barachois  = 3l  

 
3.2  Estimation of the fishing effort and of its variance 
 

Once the survey is completed, the sample is a set of site subperiod   , , , ,h i j k l  with sampling 

weights equal to the inverse of the selection probabilities given in (3.1). As the balancing equations for the 

54 cells of the site by subperiod cross-classified table are not met exactly, we propose, following Deville 

and Tillé (2004), calibrating the survey weights on the total, ,H  of the indicator variables for these 54 cells. 

All the sampled units in cell  , , ,i j k l  have the same weight, namely 1 ijkl  where = ,ijkl hijkl   defined 

in (3.1), does not depend on .h  The calibrated weight for a sampled unit in cell  , , ,i j k l  is  

   1
= = ,c

ijkl
ijkl ijkl ijkl ijkl

H H
w

n n 
   

where ijkln  is the sample size for cell  , , , ;i j k l  it is the number of days for which site l  of sector i  has 

been visited during subperiod k  of period .j  In general ijkln  is a random variable. When the samples are 

perfectly balanced, (2.2) implies that = ;ijkl ijkln H  the calibrated and basic weights are then equal. Now if 

hijkly  represents the fishing effort for population unit  , , , , ,h i j k l  the fishing effort in cell  , , ,i j k l  is 

= .Uijkl hijklh
Y y  Its calibrated estimator is ˆ =ijkl sijklY H y  where sijkly  is the average fishing effort for the 
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ijkln  units sampled for that cell of the cross classified table. An estimator for the total fishing effort is 

obtained by summing the cells’ estimated totals. 

The evaluation of a design based variance estimator for the calibrated estimator of the total fishing effort 

is complex. A simple variance estimator for the estimated total for a single cell of the cross-classified table 

is available. The sample of days selected for cell  , , ,i j k l  is a Bernoulli sample with selection 

probabilities ,ijkl  neglecting the balancing constraints. Thus by conditioning on the sample size, ,ijkln ˆ
ijklY  

is H  times the sample mean of a simple random sample. It is a design-unbiased estimator whose variance 

can be estimated using the formula for the variance of an estimated total in a simple random sampling 

design. We claim that these results are still valid when the balancing constraints are taken into account since 

the balanced sample design is invariant to a relabelling of the days. The estimated fishing efforts for the 54 

cells of the cross-classified table are however dependent and it seems difficult to come up with a 

conditionally unbiased design based variance estimator for their total. A model based estimator seems to be 

only approach available for this total.  

For the survey actually conducted in 2015, the methods used to estimate fishing effort and total catch 

are among those proposed in Pollock et al. (1994). It was a roving survey and the fishing effort at a sampled 

site was calculated as the average number of anglers on the site during the subperiod times the length, in 

hours, of the subperiod. Fishing efforts were estimated using calibrated weights; additional results are 

available in (Daigle, Crépeau, Bujold and Legault, 2015). 

 
4  Comparison of the cube method and the rejective algorithm 
 

Chauvet et al. (2015) have studied the cube method and the rejective algorithm by examining different 

aspects of these balancing techniques. They balanced on continuous auxiliary variables and they 

documented how the balancing algorithm impacted the selection probabilities and the sampling properties 

of estimators of population totals. The goal of this section is to compare the two sampling algorithms in a 

resource inventory where the balancing equations only involve indicator variables. This comparison is 

carried out in the context of a simplified creel survey with a stratified two stage design. The days represent 

strata = 1, , ,h H  the sectors are defined as primary units = 1, 2, 3i  and sites, indexed by ,j  are the 

secondary units. This sampling plan is similar to the design exposed in Section 3.1 except that periods and 

subperiods do not enter in the sampling design.  

On each day two out of 3 sectors are selected and within each one 2 sites are sampled; thus 4 units are 

selected each day. The site importance variable ijx  determines the inclusion probabilities =hij  

   2 2 =i ij i hi hj ix x x x       for the two stages. As two out of three units are selected at each level, 

the joint selection probabilities are completely determined by   , : , = 1, 2, 3hi hj i i j   for the two stages; 

see the Appendix. If hijZ  stands for the indicator variables taking the value 1 if site  ,i j  is sampled on 

day h  and 0 otherwise then the entries of 9 9  variance covariance matrix for  : , = 1, 2, 3hijZ i j  are 

given by  



Survey Methodology, December 2018 247 
 

 
Statistics Canada, Catalogue No. 12-001-X 

  

2

|

| |

if = and =

Cov , = if = and

if

hij hij

hij hi hijhi j hjj i hij

hj i hijhii hj i hi j

i i j j

Z Z i i j j

i i

 

   

    
 

   

  

  

   


  

 (4.1) 

where 
hii



 represents the joint selection probability of sectors i  and i   on a single day, hj i  is the 

probability for selecting site ,j  in sector ,i  at stage 2 and 
|hjj i

   is the joint selection probability of sites j  

and j   in sector .i  All these probabilities are evaluated using the size measure .x  Details are available in 

the appendix, see also Ousmane Ida (2016). The corresponding matrix  Var n  in (2.3) is singular as one 

of the 9 constraints is redundant; thus in (2.3) a generalized inverse of the covariance matrix was used and 
2,  in (2.3), was set equal to 2.73 and 7.34, the th5  and the th50  percentiles of the 2

8  distribution.  

 
4.1  Simulations on the comparison of the cube method and of the rejective 

algorithm 
 

To investigate the impact of the algorithm on the sampling properties of survey estimators we simulated, 

for each unit, a fishing effort for site  ,i j  on day ,h ,hijy  using independent Poisson random variables 

with mean 15 .ijx  The total fishing effort for site  ,i j  is then  

 
=1

= .
H

Uij hij
h

Y y   

A calibrated estimator, as defined in Section 3.2, for the fishing effort in site  ,i j  is ˆ = ,ij sijY H y  the 

average fishing effort for the ijn  units sampled at site  ,i j  times .H  

To compare the balancing algorithms, we used designs with = 12H  strata and two importance variables 

,x  one with a small variation between site and one with a medium variation. Under each scenario we 

generated = 100,000B  random replications of a balanced sample by using the cube methods on one hand, 

and two rejective algorithms on the other. The inclusion probabilities for site  ,i j  was estimated by  

  

=1

1
ˆ = .

B
b

ij ij
b

n
B H


    

This estimator assumes that the inclusion probabilities hij  are constant in .h  This holds true because 

the sample design is invariant to a relabelling of the days, see Section 3.1. 

As argued in Section 3.2, the calibrated estimator ˆ
ijY  is design unbiased under the two selection 

algorithms. We compare their standard deviations,  

   
1 22

ˆ
=1

1 ˆ ˆSd = ,
1ij

B
b

ij ijY
b

Y Y
B

  
 
   

where ˆ
ijY  is the average of the B  simulated values. The sample size standard deviations were also calculated 

using (3.2). Observe that ˆ = .ij ijn H  The simulation results are presented in Tables 4.1, 4.2 and 4.3.  
 



248 Ousmane Ida, Rivest and Daigle: Using balanced sampling in creel surveys 
 

 
Statistics Canada, Catalogue No. 12-001-X 

Table 4.1 
Comparison of the cube method (CM) and of two rejective algorithms (R 5% and R 50%) when x has a low 
variation 
 

 CM 5%R  50%R  

Sector Site ijx  ij  ˆ ij  ˆSd
ijY

 ˆ ij  ˆSd
ijY

 ˆ ij  ˆSd
ijY

 

= 1i  = 1j  3 0.500 0.500 16.56 0.503 16.86 0.505 17.40
= 2j  2 0.333 0.333 22.20 0.329 23.35 0.328 25.07
= 3j  3 0.500 0.500 23.99 0.503 24.47 0.505 25.15

= 2i  = 4j  2 0.333 0.333 25.80 0.329 26.93 0.326 29.11
= 5j  2 0.333 0.333 33.97 0.329 35.54 0.326 38.28
= 6j  2 0.333 0.333 27.65 0.329 28.87 0.326 31.10

= 3i  = 7j  3 0.500 0.500 22.50 0.502 22.88 0.502 23.66
= 8j  3 0.500 0.500 20.02 0.502 20.20 0.502 20.94
= 9j  4 0.667 0.667 22.01 0.674 21.98 0.679 22.25

 
Table 4.2 
Comparison of the cube method (CM) and of two rejective algorithms (R 5% and R 50%) when x has a medium 
variation 
 

 CM 5%R  50%R  

Sector Site ijx  ij  ˆ ij  ˆSd
ijY

 ˆ ij  ˆSd
ijY

 ˆ ij  ˆSd
ijY

 

= 1i  = 1j  3 0.500 0.500 25.52 0.505 25.78 0.507 26.60
= 2j  2 0.333 0.333 25.25 0.330 26.26 0.329 28.16
= 3j  3 0.500 0.500 21.12 0.505 21.36 0.507 22.03

= 2i  = 4j  1 0.167 0.167 29.17 0.158 32.45 0.149 31.19
= 5j  2 0.333 0.333 13.73 0.329 14.38 0.326 15.49
= 6j  2 0.333 0.333 32.82 0.329 34.22 0.326 36.91

= 3i  = 7j  2 0.333 0.333 16.84 0.329 17.52 0.325 18.85
= 8j  4 0.667 0.667 18.68 0.672 18.70 0.678 18.89
= 9j  5 0.833 0.833 8.06 0.844 7.81 0.854 7.67

 
Table 4.3 
Standard deviations of the sample sizes obtained with the cube method (CM) and with two rejective algorithms 
(R 5%, R 50%) 
 

 x  has a low variation x  has a medium variation 

Sector Site x  CM 5%R  50%R  x  CM 5%R  50%R  

= 1i  = 1j  3 0.000 0.894 1.371 3 0.000 0.891 1.371
= 2j  2 0.000 0.854 1.295 2 0.000 0.831 1.294
= 3j  3 0.000 0.896 1.377 3 0.000 0.891 1.374

= 2i  = 4j  2 0.130 0.828 1.293 1 0.144 0.654 1.013
= 5j  2 0.195 0.832 1.298 2 0.170 0.831 1.290
= 6j  2 0.179 0.826 1.296 2 0.141 0.830 1.297

= 3i  = 7j  3 0.339 0.859 1.366 2 0.342 0.835 1.294
= 8j  3 0.381 0.859 1.367 4 0.350 0.807 1.294
= 9j  4 0.319 0.822 1.288 5 0.248 0.655 1.010
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In Tables 4.1 and 4.2, the cube method maintains the selection probabilities and yields a total estimator 

with the smallest standard deviations. Taking 2  equal to the th50  percentile of the 2
8  distribution for the 

rejective algorithm yields the poorer results, both in terms of selection probabilities and of the standard 

deviations of .sijy  The largest biases for the selection probabilities occur at the extreme x  values in 

Table 4.2. The selection probability for site = 4j  is underestimated by 11% with the rejective method 

based on the th50  percentile and by 5% with the th5  percentile. The probability is over estimated in the sites 

with the large values for .x  

In Tables 4.1 and 4.2, the standard deviation for ˆ
ijY  is, in most cases, smallest for the cube method and 

largest for the rejection algorithm based on the th50  percentile. The standard deviations for the rejective 

algorithm are up to 10% larger than the ones for the cube method. In Table 4.2, the largest gain in efficiency 

of the cube method with respect to the 5%R  rejective algorithm (equal to the ratio of standard deviations 

squared) is 23%; it occurs when = 4j  and = 1.x  These standard deviations are driven by the variability 

in sample sizes .ijn  Table 4.3 gives the sample sizes’ standard deviations. Since the expected number of 

visits to sector 1 and to sites 1, 2, and 3 are integers, the cube method is able to get sample sizes equal to 

their expectations for this sector and the sample sizes standard deviations are 0. This is not possible in 

sectors 2 and 3 as the expected sample sizes for these sectors are not integer valued. In general, the rejective 

algorithms give sample sizes whose standard deviations are much more variable than those for the cube 

method. This makes the rejective algorithm total estimators more variable than those obtained with the cube 

method.  

The conditional variance estimator for fishing effort ˆ
ijY  in site  ,i j  proposed in Section 3.2 is  

       22 1ˆ = .
1

ij

ij hij sij
ij

h sij ij

H n H y y
v Y

n n

 

   

The conditional sampling properties, given ,ijn  of this variance estimator were investigated in the Monte 

Carlo study with = 10,000B  balanced samples for the three sample designs. For each site and for each 

sample size ijn  the conditional variance  ˆVar ij ijY n  and the conditional expectation of the variance 

estimator   ˆE ijv Y  were evaluated using the Monte Carlo samples for which the sample size for site 

 ,i j  was .ijn  The conditional relative bias of the variance estimator,     ˆ ˆE Var 1 ,ij ij ijv Y Y n   was 

then calculated. The conditional relative biases were then aggregated by weighting each sample size ijn  

using its frequency in the 10,000 Monte Carlo samples; the results are in Table 5.1. 

In Table 5.1, the aggregated relative biases are less than 3% in absolute value for the three selection 

algorithms. This validates the conditional variance estimator proposed in Section 3.2 for a single cell of the 

cross-classified table. The conditional variances of sums such as ˆ ˆ
ij ij

Y Y


  is more complicated as it involves 

joint selection probabilities; the estimation of these variances is not considered here. See Breidt and Chauvet 

(2011) for a discussion of variance estimation with the cube method.  
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Table 5.1 
Aggregated conditional bias, in percentage, of the conditional variance estimator  ˆ

ijv Y  obtained with the cube 
method and two rejective algorithms (R 5%, R 50%) 
 

 x  has a low variation x  has a medium variation 

Sector Site x  CM 5%R  50%R  x  CM 5%R  50%R  

= 1i  = 1j  3 1 -3 3 3 -1 1 1
= 2j  2 2 -1 -2 2 3 1 -2
= 3j  3 -1 0 1 3 0 -1 0

= 2i  = 4j  2 -2 2 0 1 1 -1 -2
= 5j  2 1 -1 -1 2 2 2 3
= 6j  2 0 3 -2 2 0 0 -3

= 3i  = 7j  3 1 -3 2 2 0 -3 -1
= 8j  3 2 1 1 4 0 0 0
= 9j  4 -1 1 -2 5 -2 -1 1

 
The conclusion of this Monte Carlo investigation is that the rejective algorithm changes the selection 

probabilities: sites with small importance are under represented in the rejective samples while the cube 

method is very good at preserving the selection probabilities. Under both algorithms the calibrated estimator 

for the total of y  in a domain is unbiased. Smaller variances are however obtained with the cube algorithm 

as it gives domain sample sizes that are less variable than the rejective algorithm. 

 
5  Discussion 
 

In the context of creel surveys, balanced sampling techniques such as the cube method or the rejective 

algorithm are used to ensure a predetermined sample size in small domains of the survey population. The 

cube method is very effective at doing so especially in complex survey designs with several stages of 

sampling. It does not change the selection probabilities and it yields domain sample sizes that are very close 

their target values. The rejective method, on the other hand, changes the selection probabilities slightly and 

produce domain sample sizes that are more variable. With a large number of constraints, Fuller’s rejective 

sampling scheme is not really applicable as it requires the evaluation and the inversion of a large covariance 

matrix in (2.3); alternative acceptation criteria for a sample need to be investigated. 
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Appendix 
 

Calculation of the joint selection probabilities when = 3N  
 

Consider a population of size 3 and let 1 , 2 ,  and 3  be the marginal selection probabilities when 

drawing a sample of size = 2.n  The joint selection probabilities ,ij = 1, 2, 3i j  satisfy  

 

12 1

13 2

23 3

1 1 0

1 0 1 = .

0 1 1

 

 

 

    
    
    
    

    

  

Thus  

 

1
12 1 1

13 2 2

23 3 3

1 1 0 1 1 1
1

= 1 0 1 = 1 1 1 .
2

0 1 1 1 1 1

  

  

  

         
        

        
                

  

Using these equations, the entries of the covariance matrix (4.1) can be evaluated using the stage 1 and 

the stage 2 selection probabilities. 
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Optimizing a mixed allocation 

Antoine Rebecq and Thomas Merly-Alpa1 

Abstract 

This article proposes a criterion for calculating the trade-off in so-called “mixed” allocations, which combine 
two classic allocations in sampling theory. In INSEE (National Institute of Statistics and Economic Studies) 
business surveys, it is common to use the arithmetic mean of a proportional allocation and a Neyman allocation 
(corresponding to a trade-off of 0.5). It is possible to obtain a trade-off value resulting in better properties for the 
estimators. This value belongs to a region that is obtained by solving an optimization program. Different methods 
for calculating the trade-off will be presented. An application for business surveys is presented, as well as a 
comparison with other usual trade-off allocations. 

 
Key Words: Sampling; calculation of allocation; optimization; dispersion of weights; Neyman allocation. 

 
 

1  Introduction 
 

In this article, we present a framework that replicates part of the surveys carried out in official statistics, 

specifically business surveys, for which the sampling design is most often a one-stage stratified simple 

random sampling. A design is created to estimate the total  T y  or the mean Y  of a continuous key variable 

of interest ,y  where ky  designates the value of y  for individual thk  in the population. Survey data are 

also used to estimate a collection of other variables, which are sometimes decorrelated or anti-correlated 

with .y  

When a stratified design is used, the choice of an allocation generally serves a specific purpose, based 

on the classic “one objective, one sample” rule. In order to estimate the total  T y  of the variable of interest 

with maximum precision, the Neyman allocation (1934) can be used. The specific allocations meet a precise 

need relative to .y  Where survey data are used to estimate quantities from other variables, it is desirable 

that the design used not deteriorate the quality of the estimators. For example, Cochran (1963) and 

Chatterjee (1967) propose a specific allocation for a collection of variables of interest. However, this does 

not solve the case of variables that cannot be included in the creation of the sampling design. 

If a variable is decorrelated or anti-correlated to the variables used to calculate a specific allocation, it is 

known that the variance of the estimate of its total can be very strong (for example, see Ardilly, 2006). 

Therefore, using a proportional allocation, even when auxiliary information is available, can be 

advantageous. It enables us to be “agnostic” and to avoid constructing a design that will be harmful to 

estimate certain variables or certain parameters other than totals or means, or to estimate specific domains. 

We can also refer to Chiodini, Martelli, Manzi and Verrecchia (2010a, 2010b) for a more extensive 

discussion on the interest of proportional allocation in the trade-off. 

We are interested in a certain type of allocation for stratified samplings with H  strata (of respective 

sizes ,hN  for which the sum is equal to the size of the population )N  of fixed size .n  The choice of an 
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allocation consists in determining a vector  1 , , Hn nn   verifying constraint 
1

.
H

hh
n n


  We are 

specifically studying a “mixed” allocation, which consists of a trade-off between the proportional allocation 

and another specific allocation, responding to a specific need on one or more variables of interest in a survey: 

  prop specific1 n    n n  (1.1) 

where prop,n n  and specificn  are vectors of size H  and  0, 1 .   This trade-off allocation corresponds to 

the ROAUST method (Chiodini, Manzi, Martelli and Verrecchia, 2017) when the specific allocation chosen 

is the Neyman allocation (1934). Proportional allocation is defined by: 

 , 1, , .h
h

N
n n h H

N
     

The purpose of this article is to propose a method for determining .  As a result, we would like to 

calculate a parameter that satisfies a certain optimality criterion that we will detail in Section 2.1. In this 

article, we will not discuss the composition of the strata, a subject that has been widely explored in the 

literature, such as in Baillargeon, Rivest and Ferland (2007) and Dalenius and Hodges Jr. (1959). Moreover, 

we are not trying to account for the phenomena of non-response here. 

Note that proportional allocation is one that minimizes the dispersion of weights. Choosing a 

proportional allocation therefore comes down to the more general logic of choosing a design that minimizes 

the dispersion of design weights. The design of the INSEE master sample was designed with this objective 

in mind (Christine and Faivre, 2009), in a design-based logic. In a model-based logic, if we seek to estimate 

parameters (coefficients of the regression line) and the sampling design is non-informative, then constant 

design weights minimize variance of the estimate (see Davezies and D’Haultfoeuille, 2009 and Solon, 

Haider and Wooldridge, 2015). 

The trade-off allocation involves reconciling two opposite objectives: creating an effective sampling 

design for a variable of interest, while keeping the weights as close as possible so as not to deteriorate 

estimation on very diverse variables. In the following, we will formalize the optimization program 

corresponding to these constraints. We will present a theorem that will define the criterion of optimality that 

we seek to resolve. Finally, we will analyze the performances of the allocation determination method that 

we are proposing and compare them with some other existing methods in the literature on a practical case, 

particularly a survey of businesses conducted by INSEE (French National Institute of Statistics and 

Economic Studies). 

Several known allocations are already used to perform trade-offs between several objectives. An 

allocation frequently used at INSEE is a Neyman allocation under local precision constraints, presented in 

Koubi and Mathern (2009). A better-known allocation in the literature is the Bankier power allocation 

(1988), which makes a trade-off between the Neyman allocation and an allocation that produces a consistent 
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coefficient of variation of the estimate of the total of a variable of interest on each stratum. This allocation 

is written as follows: 

 
  
  

, 1, ,
q

h h h
h q

h h hh

S T x Y
n n h H

S T x Y
 


   

where q  is a parameter in    0; 1 , hT x  is a measure of the size or importance of stratum h  (for example, 

the size of the stratum or its economic importance), 2
hS  is the empirical variance of y  in stratum h  and hY  

its mean. 

In the expression of the Bankier allocation, q  is a parameter that, like parameter   of the allocation we 

are proposing, arbitrates between the two contrary objectives of the allocation: when q  is close to 1, the 

allocation is very close to a Neyman allocation, but when q  tends toward 0, the allocation approaches an 

allocation guaranteeing equal coefficients of variation in all strata. However, the article by Bankier (1988) 

does not propose a method for choosing this parameter; we will present such a method in this article for our 

family of mixed allocations. 

In this article, we propose to accomplish this trade-off by solving the following program: 

 
   1,

2

specific
1

min
h h H

H
h

h pn
h h

N N
n

n n






  

 
n

n n  (1.2) 

with  0, , 1p     and p  denoting the standard p  of a vector of size H  (in this equation, the 

term on the right represents a distance between the trade-off allocation and the specific allocation chosen 

for the survey). We also observe that N n  is the average weight for the sampled units. As in a stratified 

design, the sampling weight for a unit in stratum h  is ;h hN n  the first term of the optimization program 

therefore corresponds to the mean square deviation of the weight vector, or the weight dispersion. This 

program therefore corresponds to a trade-off between the two desired objectives. In part 3, we will see that 

the interest of the method consists of the choice of an adapted value ;  this choice is decisive for finding 

the most appropriate balance between the two contrary objectives we are targeting with the allocation, i.e., 

optimality for certain variables brought by the specific allocation and by equal weighting. 

The optimization program used for this paper is inspired by the program used in the CURIOS algorithm 

(Curios Uses Representativity Indicators to Optimize Samples, Merly-Alpa and Rebecq, 2015), which 

performs an arbitration to establish a prioritization operation for the collection of face-to-face surveys by 

determining a second-wave allocation. In this paper, we will consider only the problem of determining ex 

ante allocations, and therefore we will not use the algorithm in the context of its introduction. 

In Section 2, we present the optimization program that solves the satisfaction of these constraints. In 

Section 3, we explain how the crucial   parameter should be chosen. In Section 4, we present a practical 

application of the mixed allocation on data from French businesses. We conclude in Section 5 by discussing 

how we could extend the mixed allocation to other designs than the Neyman allocation. 
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2  Optimization program 
 

The program (1.2) is difficult to resolve and analyze, which is why we will simply look for a solution on 

a segment between the proportional allocation and a given specific allocation, the Neyman allocation, the 

one most frequently used. Often, the choice of an 1 2   is a good trade-off. For example, this is proposed 

in Chiodini et al. (2010a), or in some INSEE business survey designs. 

This method combines the benefits of both methods at a low cost. However, we can question the arbitrary 

choice of the factor 1 2 .  In this paragraph, we will present a method based on a minimization program 

involving the dispersion of weights as well as the distance to the Neyman allocation to choose a parameter 

  such as the “optimal” mixed allocation between proportional allocation and the Neyman allocation: 

  opt
prop Neyman1 .    n n n  (2.1) 

We situate ourselves here in the context of stratified sampling with H  strata, ignoring the influence of 

non-response. This could be integrated by considering anticipated response rates or a second Poisson phase, 

but this unnecessarily complicates the form of the results. We will focus here on a set of allocations  n  

that go through a segment between the proportional allocation  propn  and the Neyman allocation  Neyman ,n  

as indicated in equation (2.1). We therefore limit ourselves to achieving the following minimization 

program, a simplified form of that in equation (1.2): 

 
 

2

,0, 1
1 ,

min .
H

h
h

h h

N N
n

n n








 

 
  (2.2) 

The term on the right corresponds to the distance between the desired allocation and the Neyman 

allocation, up to a constant, integrated in :  this result is shown in Appendix A. 

This minimization program depends on the chosen constant 0.   It is clear that when   is large 

enough, the term of distance becomes preponderant and we obtain 0   and therefore Neyman . n n  

Similarly, when   tends toward 0, the factor representing the dispersion of weights becomes preponderant 

and the allocation tends toward the proportional allocation. 

 
3  Choosing   
 

As mentioned in part 1, we must choose an adapted value for ,  which represents the importance we 

want to give to each term of the trade-off. We will see in this part that the choice of this value is crucial for 

obtaining a good trade-off parameter. For this, we will focus on the variance of the Horvitz-Thompson 

estimator of the total of a survey variable of interest obtained with a given allocation when the sampling 

design applied in each stratum is a simple random sampling. 

The idea is to use a key property of the Neyman allocation, which is its flatness (for example, see Ardilly, 

2006). This means that in the vicinity of the allocation, the variance of the estimator of the total for the 
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survey variable of interest is close to its minimum value, which is satisfactory from both a theoretical and 

an empirical standpoint. The issue is properly defining this vicinity: if we succeed in choosing a value   

with which we can produce an allocation sufficiently close to the proportional allocation while belonging 

to the flat area around the Neyman allocation, we will have succeeded in obtaining weights guaranteeing an 

estimate with near-optimal precision for the survey’s key variable of interest with minimal weight 

dispersion. 

Actually, the choice of   and the choice of   are interchangeable. For a fixed value of ,  we can solve 

the optimization program of equation (2.2) and obtain a value   ,   and therefore an allocation   . n  

Conversely, directly choosing a value of   favours one of the two aspects of the optimization program 

(distance to the Neyman allocation or equal weighting), similar to the choice of .  Choosing to conserve 

parameter   maintains a broader application framework. 

We will focus on the variance of the estimator obtained when   varies. From the allocation   , n  it is 

possible to study the variance of the Horvitz-Thompson estimator of the total of a variable of interest 

 HT
ˆ ,i

i

y

i s
T y 

   with i  the probability of inclusion in the sample of unit i  (i.e., equal to h hn N  if h  

is the stratum that contains ).i  We then show that there is a “flat” region in the vicinity of the precision 

optimum (that is, the Neyman allocation, obtained when ).    Therefore, choosing a   on this flat 

region ensures that the precision is only slightly deteriorated from the optimum, while significantly reducing 

the variance of the survey weights. Mathematically, it is a matter of choosing as   the torsion point of the 

curve, whose existence is ensured by the following theorem: 

Theorem 1. Let  V   be the variance function of  HTT̂ y  for the allocation obtained for the   solution 

of the minimization program of equation (2.2) for such a .  Therefore, there exists a segment  0,S     

such that: 
 

-    0, 1 ,S   where     associates with   the solution of program 2.2. 

-  V   is decreasing over .S  

- Its second derivative admits a maximum in ,S  which we call the torsion point. 
 

This theorem is illustrated in Appendix B. 

We therefore want to take   at the torsion point of the curve, which is also a point of inflection of its 

derivative; this amounts to situating the “elbow” of the curve, that is, being right at the limit of the variance 

plateau due to the proximity of the Neyman allocation, linked to the flatness of the optimum. The intuition 

that justifies this choice is that, on the one hand, the variance of the estimator of the total of the key variable 

of interest used to calculate the Neyman allocation decreases when   increases, because the mixed 

allocation then approaches the Neyman allocation, and on the other hand, beyond a certain threshold, this 

variance varies little and is very close to its limit, the variance obtained with the Neyman allocation. This 

threshold corresponds intuitively to the moment when the variance ceases to decrease significantly when   

increases. This point, whose existence is proven by the theorem, is adequately identified by analyzing the 

variations of the evolutions of the variance with ,  i.e., by studying the second derivative of the variance 
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as a function of   and the point where this derivative reaches a maximum, the derivatives of the variance 

being negative. Moreover, placing ourselves at the edge of the plateau allows us to limit the maximum of 

the value of   and therefore the dispersion of weights. Figure 3.1 illustrates this choice. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Example of a torsion point of the function  V   for a sampling design explained in Merly-Alpa and 

Rebecq (2015). 

 

In the simplest cases, meaning once all the information is available, and when sampling takes place in 

one stage, without considering other parameters, the simplest solution to determine the   is to analytically 

study the curve of Figure 3.1 using the classic variance calculation formulas of  HTT̂ y  in a stratified 

sampling design. The torsion point is obtained by searching for the maximum of the second derivative of 

the curve   .V   This derivative is generally difficult to calculate analytically, but it is quite possible to find 

a numerical maximum when we have an analytical formula (or, failing that, a sufficiently smooth curve) for 

  .V   

Unfortunately, it is not always possible to analytically calculate the variance, such as when other 

constraints (combining strata, etc.) come into play, or if all the information is not available at the sampling 

stage. In this case, we replace the curve  V   with a version estimated by Monte Carlo method: 
 

1. We choose   in  0, 1 .  

2. The available data are used to simulate the variance of  HT
ˆ .T y  For this, we calculate the 

allocation resulting from equation (2.2) for   and we perform K  independent sample draws 
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based on this sampling design. For each of the 1, ,k K   draws performed, we calculate 
   HT

ˆ ,kT y  the Horvitz-Thompson estimator of  T y  obtained with the data from sample .k  Next, 

we calculate the quantity: 

          
2

MC HT HT
1 1

1 1ˆ ˆ .
1

K K
k j

k j

V T y T y
K K


 

    
    

This quantity is a Monte Carlo estimator of   .V   
 

Note that these simulations require a proxy variable of the variable of interest available for all 

population units. For business surveys, the turnover available in the tax bases can be a good 

substitute variable for the actual turnover. 

3. We restart for other values of   covering  0, 1  with a certain step .  The values of   and K  

should be chosen by considering the calculation time, which can be quite long depending on the 

original population, but also to ensure that the variance due to the simulations is not too great, 

which would invalidate the results obtained. 

4. Once these results are obtained for different values of ,  we plot the curve of  MC ,V   which 

we hope is sufficiently smooth. We can then display the curve and visually place the elbow, which 

allows us to choose the final value of MC .  Another possibility is to search for the maximum of 

the second derivative of  V MC  using an optimization algorithm sufficiently robust to noise. 

For example, the algorithm of Nelder and Mead (1965) is implemented in the vast majority of 

optimization software (e.g., in R  or in Python), and Rebecq and Merly-Alpa (2015) show that it 

gives good practical results for this type of problem. 

 

In all cases, if determining   at the elbow is difficult, a value should be chosen that ensures that we are 

to the right of the actual elbow on the curve. This conservative method ensures that we are on the flat region 

of the curve and that the precision of the estimator of the variable of interest is not impaired. 

 
4  Practical application 
 

We are interested in drawing a sample of 1,000 businesses in the industry based on different stratified 

sampling designs to learn the total turnover of the sector. The exact field is defined as follows: 
 

- Active businesses located in France. 

- Businesses with a workforce between 1 and 100. 

- Businesses whose activity sector, measured using the principal activity code, belongs to one of 

the industry divisions in the Statistical classification of economic activities in the European 

Community (NACE, whose divisions are identical to the 88 divisions of the International 

Standard Industrial Classification of All Economic Activities–called ISIC, or CITI in French), 
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i.e., in divisions 10 to 33, except 12 (Manufacture of tobacco products) and 19 (Manufacture of 

coke and refined petroleum products), which have a structure too atypical for our study. 
 

The initial population is 102,172 businesses. In general, businesses with a large workforce, i.e., more 

than 100 employees, are often surveyed exhaustively. Here, we limit ourselves to the non-exhaustive part 

of a survey. 

This population is stratified according to two criteria: 
 

1. The principal activity, at the division level (first two digits). 

2. The employee size group, as follows: 1 to 9 employees; 10 to 19 employees; 20 to 49 employees; 

50 or more employees. 
 

this constitutes 88 strata, which will be denoted as (A, B), where A is the sector of activity and B the 

workforce. 
 

We then calculate the proportional and Neyman allocations relative to the dispersion of turnover in each 

stratum, for 1,000.n   Table 4.1 summarizes the characteristics of these two allocations, as well as the 

strata where the allocation is maximal, both in division 10 (Manufacture of food products). 

 
 
Table 4.1 
Distribution of sample sizes by stratum for both allocations, and sample sizes for strata corresponding to 
maximum sample sizes 
 

Allocation Min. Median Max. Stratum Proportional 

allocation 

Neyman  

allocation 

Proportional 1 3 278 (10, 1-9) 278 80 

Neyman 1 5 162 (10, 20-49) 18 162 

 
 

We want to choose the optimal mixed allocation for the problem presented in the previous paragraph. 

For the distance function, we choose the Euclidean distance. Equation 2.2 therefore becomes: 

 
 

 
2

2

, , Neyman,0, 1
1 1,

min .
H H

h
h h h

h hh

N N
n n n

n n 





 


  

 
   (4.1) 

We then apply the following method to calculate the optimal allocation: 
 

- Calculate, for different values of ,  the value of   solution of the minimization program for 

equation (4.1). 

- For each ,  calculate the corresponding allocation. 
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- For each allocation, analytically calculate the variance of the Horvitz-Thompson estimator for 

the total turnover. This is possible because we have the turnover of the businesses in the directory 

used as the survey frame. 

 
The curve represented in Figure 4.1 is finally obtained. We note that its general shape corresponds to 

what was expected by applying Theorem 1. We visually determine the torsion point, which seems to be 

located around 71 10 .  So we place elbow
71 10 ,    which is slightly to the right of the elbow, on the flat 

part of the curve   .V   
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 4.1 Variance of the Horvitz-Thompson estimator for total turnover as part of a trade-off with the 

Neyman allocation. 

 
We can then use the value of elbow  to determine elbow ,  using the optimization program of 

equation (4.1). Here, we obtain elbow 0.644.   This value of   can be interpreted directly. It is close 

enough to 0.5, which shows that the final allocation is also close enough to what is called the classically 

mixed allocation, but it is greater than 0.5, which shows that the program optimum is significantly 

approaching the proportional allocation. The allocation obtained is described in Table 4.2 and is compared 

with the usual mixed allocation using the arithmetic mean between the two initial allocations. 
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Table 4.2 
Distribution of sample sizes by stratum for the allocation obtained, and for the two strata corresponding to the 
maximum sample sizes for the Neyman allocation and proportional allocation 
 

Allocation Min. Median Max.   Stratum (10, 1-9) Stratum (10, 20-49) 

Proportional 1 3 278  1 278 18 

Elbow 1 4 208  0.644 208 69 

Mixed 1 4 179  0.5 179 90 

Neyman 1 3 162  0 80 162 

 
In terms of sample sizes in the strata for the various allocations, we can see that a maximum is obtained 

for the same stratum as the proportional allocation (10, 1-9), but with a less extensive distribution. 

Furthermore, stratum (10, 20-49), which has the largest workforce in the Neyman allocation, actually 

increases in size relative to the proportional allocation, but still remains well below the Neyman allocation. 

We see the appearance of a trade-off between the allocations, as in the usual mixed allocation. 

However, we still have to look at the two criteria that motivate this analysis, namely the standard 

deviation of the Horvitz-Thompson estimator for the total turnover (in billions of euros), and the dispersion 

of weights and its influence on the precision of estimators related to other concepts: to evaluate it, we 

introduce a variable z  that is not correlated to turnover. Here, we choose the variable z  related to the 

geographic location of the business defined as follows: 

 
1 if the company is located in Ile-de-France

0 otherwise.
i

i
z


 


  

We will use these three criteria to compare our method with the initial allocations (proportional, 

Neyman), but also with the classic mixed allocation (with a factor of 0.5), with Bankier power allocations 

(1988) for different values of q  (where  hT   is taken as the sum of turnover in stratum )h  and with the 

Neyman allocation under the local precision constraints from Koubi and Mathern (2009). The results 

obtained are presented in Table 4.3. In this table,  HT
ˆ CAT  refers to the Horvitz-Thompson estimator of 

turnover, and  HTT̂ z  the Horvitz-Thompson estimator of the variable .z  

 

Table 4.3 
Dispersion of weights and variance of estimators of turnover and of z  for several allocations 
 

Allocation Parameter Standard deviation of  HT
ˆ CAT  Dispersion of weights Standard deviation of  HTT̂ z  

Proportional =  1 24.7 47 10.7 
Elbow 0.644 12.5 1,929 11.6 
Mixed 0.5 11.4 3,473 12.3 
Neyman 0 9.8 18,585 17.9 

Bankier = q 0.25 13.1 36,250 22.2 
0.5 11.2 25,922 19.7 

0.75 10.1 20,187 18.2 

Koubi-Mathern  12 35,680 22.7 
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We observe here that the allocation obtained using elbow  has a precision for the estimate of total turnover 

that is quite close to the Neyman allocation, while the proportional allocation leads to a much larger standard 

deviation of the Horvitz-Thompson estimator for total turnover. However, this slight loss in precision is 

largely offset by the gain in weight dispersion compared with the Neyman allocation and by a significant 

gain in terms of precision over the total of the geographic variable .z  Note that the dispersion of weights is 

not nil in the proportional allocation because of rounding. When we compare the allocation obtained with 

the “mixed” strategy using the factor 1 2 ,   we observe that the loss of a factor 1.1 in the precision of 

the total turnover is compensated by the gain of a factor 1.8 in weight dispersion and of 1.1 in the precision 

of the total number of businesses located in the Île-de-France region. The final allocation satisfies our 

constraints and meets our specification: to have good precision and low dispersion of weights. 

Comparison with the methods in the literature illustrates the contribution of the trade-off on the 

dispersion of weights. For the power allocations, we find that by choosing high values of q  corresponding 

to allocations close to the Neyman allocations, we obtain better precision for the estimate of total turnover 

than for our allocation. We note that for all the Bankier allocations and for the Neyman allocation under 

constraints, the weight dispersion is greater than for the Neyman allocation, and therefore much greater than 

for our allocation. Symmetrically, and as expected, all these allocations contribute to weaken the precision 

of the estimated total of the variable .z  

As the objective of these competing methods is to obtain better local precision, we will examine several 

subdomains of our field (statistical classification A17 of the French economy): 
 

- Domain C1: Manufacture of food products, beverages; 

- Domain C3: Manufacture of electrical, electronic and computer equipment; Manufacture of 

machines; 

- Domain C4: Manufacture of transport equipment; 

- Domain C5: Manufacture of other industrial products. 

 

We then compare the precision of the total turnover estimator for each sector. The results are compiled 

in Table 4.4. 

 

Table 4.4 
Local precisions of the total turnover estimator for several allocations 
 

Allocation Parameter C1 C3 C4 C5 

Proportional =  1 0.29 0.30 0.46 0.16 

Elbow 0.644 0.16 0.20 0.35 0.07 

Mixed 0.5 0.15 0.18 0.30 0.07 

Neyman 0 0.12 0.15 0.25 0.06 

Bankier = q 0.25 0.21 0.13 0.18 0.07 

0.5 0.17 0.13 0.19 0.06 

0.75 0.14 0.14 0.22 0.06 

Koubi-Mathern  0.11 0.11 0.11 0.09 
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We observe here that the allocation we propose gives slightly worse results than the classic mixed 

allocation on the local precision of the total turnover estimator. However, it is much better than the 

proportional allocation and, slightly less so, less effective than the Neyman allocation. Our method of 

choosing   is thus an effective trade-off for reducing the dispersion of weights without overly impacting 

the overall and local precision of the estimators. 

In contrast, and as expected, the allocations with the trade-off objective of maximizing or standardizing 

local precision are better than the proposed allocation for the majority of the sectors. Therefore, choosing 

between the trade-off we propose and the one proposed by Bankier (1988) comes down to choosing between 

better precision for variables not correlated with the variable of interest y  (via weight dispersion), like 

variable z  defined here, for our family of mixed allocations, or choosing better local precision for only this 

variable y  in the case of the power allocation. However, the advantage of our method is being able to 

propose a value of the optimal trade-off parameter   on a certain criterion, which the Bankier method does 

not do with parameter .q  

 
5  Conclusion 
 

For the stratified designs, we have studied a trade-off allocation situated on a segment between the 

proportional allocation and the Neyman allocation. A theorem guarantees the existence of a flat region in 

the vicinity of the optimum and of a particular point that gives an optimal trade-off parameter according to 

a certain criterion. As part of a survey of businesses in the industry, simulations are conducted showing how 

the calculation can be done in practice and that the usual choice of a parameter of 1 2  is not always the 

most effective. A comparison with other trade-off allocations, such as the classic Bankier allocation, shows 

that our weight dispersion goal produces more equal weighting at the expense of lower precision for the 

variable of interest on subdomains of the field. However, it illustrates the variability of the results obtained 

for the trade-off allocations according to the value of the parameter used; our method for determining 

parameter   remedies this problem often encountered in the study of these allocation families. 

It is possible to replace the Neyman allocation in the trade-off with other specific ad hoc allocations. We 

postulate that the method remains applicable to obtain the same desirable properties. Different applications 

of this work were carried out at INSEE with other specific allocations. In the case of the annual Survey on 

the cost of labour and wage structure (ECMOSS), the specific allocation used for drawing the surveyed 

businesses is part of a two-stage design where, in each establishment sampled in the first stage, a sample of 

employees is drawn. The allocation used in the first stage is then optimized to obtain the lowest estimate 

variance on the estimated total net pay on the final sample of employees, given the dispersion of wages in 

each establishment. The allocation also integrates precision constraints on certain dissemination domains. 

Curves of the desired shape are still obtained and the trade-off allocation can be implemented. 
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Appendix A 
 

Distance term in equation (2.2) 
 

The choice of distance (i.e., a value for )p  in the second term of optimization program (1.2) is not 

crucial in the proposed context, because we will be able to rewrite the second term as follows where pC  is 

a strictly positive constant dependent only on the choice of :p  

 Neyman = .pp
C n n  (A.1) 

Let us demonstrate this result. By definition (2.1), we have in each stratum :h  

  , prop, Neyman,= 1h h hn n n      

and therefore, 

  , Neyman, prop, Neyman,= .h h h hn n n n     

We therefore have for any choice of :p  

  

1

Neyman , Neyman,
=1

1

prop, Neyman,
=1

1
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=1

=

=

=

= .

H pp

h hp
h

H pp
p

h h
h

H pp

h h
h

p

n n

n n

n n

C

 







  
 

  
 

  
 







n n

  

We will then integrate ,pC  a strictly positive constant, into .  

 
Appendix B 
 

Demonstration of Theorem 1 
 

For a 0,   the minimization function of program (2.2) is written as follows: 
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We now pose for all :h H  

 Neyman ,= .h
h

h

nn

N N
    

For each stratum, the h  represent the difference between the uniform and Neyman sampling fractions. 

When 0,h   this means that the Neyman allocation is greater than the proportional allocation; the variable 

of interest is more dispersed in this stratum. Let us now derive :f  

            
 Neyman ,

2
=1

= .
h

h

H
h h

n
h

h N

N
f


 




 


  (B.1) 

We deduce from equation (B.1) that the derivative cancels out when: 

                           
 

 
Neyman ,

2
=1

= =: .
h

h

H
h h

n
h

h N

N
g


 

 
   

Now function hg  defined as follows: 

 
 Neyman ,

2
:

h

h

h h
h n

h N

N
g








  

is decreasing. So: 
 

- If h  is negative, the denominator decreases when   increases. In this case, its inverse increases 

with .  Therefore, we multiply by h  to obtain ,hg  which implies that hg  is decreasing. 

- If h  is positive, the denominator increases when   increases. By inverting and then multiplying 

by ,h  we find that hg  is decreasing. 

 

So, if     1 , 0 ,g g   we know that there is an 0  that cancels the derivative. As f   evolves 

inversely to ,g f   is increasing and therefore 0  is the minimum of f  on  0, 1 .  

Furthermore, as  0g    by definition, the decrease of g  implies that when   increases in 

    1 , 0 ,g g  then 0  decreases. We therefore use the following lemma, admitted because it is relative to 

a classic property of the Neyman allocation: 
 

Lemma 1. The function that at   associates the variance of the Horvitz-Thompson estimator of the variable 

of interest X  for the allocation , hn  is increasing. 
 

We deduce that  V   is decreasing over .S  Finally, by continuity, V   admits a maximum over .S  
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Variance estimation under monotone non-response for a 
panel survey 
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Abstract 

Panel surveys are frequently used to measure the evolution of parameters over time. Panel samples may suffer 
from different types of unit non-response, which is currently handled by estimating the response probabilites and 
by reweighting respondents. In this work, we consider estimation and variance estimation under unit non-
response for panel surveys. Extending the work by Kim and Kim (2007) for several times, we consider a 
propensity score adjusted estimator accounting for initial non-response and attrition, and propose a suitable 
variance estimator. It is then extended to cover most estimators encountered in surveys, including calibrated 
estimators, complex parameters and longitudinal estimators. The properties of the proposed variance estimator 
and of a simplified variance estimator are estimated through a simulation study. An illustration of the proposed 
methods on data from the ELFE survey is also presented. 

 
Key Words: Longitudinal estimation; Non-response model; Product sampling design; Response homogeneity groups; 

Simplified variance estimation. 

 
 

1  Introduction 
 

Surveys are not only used to produce estimators for one point in time (cross-sectional estimations), but 

also to measure the evolution of parameters (longitudinal estimations), and are thus repeated over time. In 

this paper, we are interested in estimation and variance estimation for panel surveys, in which measures are 

repeated over time for units in a same sample (Kalton, 2009). Among the panel surveys (also known as 

longitudinal surveys, see Lynn, 2009), cohort surveys are particular cases where the units in the sample are 

linked by a common original event, such as being born on the same year for children in the ELFE survey 

(Enquête longitudinale française depuis l’enfance), which is the motivating example for this work.  

ELFE is the first longitudinal study of its kind in France, tracking children from birth to adulthood (Pirus, 

Bois, Dufourg, Lanoë, Vandentorren, Leridon and the Elfe team, 2010). Covering the whole metropolitan 

France, it was launched in 2011 and consists of more than 18,000 children whose parents consented to their 

inclusion. It will examine every aspect of these children’s lives from the perspectives of health, social 

sciences and environmental health. The ELFE survey suffers from unit non-response, which needs to be 

accounted for by using available auxiliary information, so as to limit the bias of estimators. Though the 

ELFE survey will be used for illustration in this paper, non-response occurs in virtually any panel survey so 

that the proposed methods are of general interest; see for example Laurie, Smith and Scott (1999) for the 

treatment of non-response of the British Household Panel Survey, or Vandecasteele and Debels (2007) for 

the European Community Household Panel.  

Non-response is currently handled by modeling the response probabilities (Kim and Kim, 2007) and by 

reweighting respondents with the inverse of these estimated probabilities, which leads to the so-called 
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propensity score adjusted estimator. A panel sample may suffer from three types of unit non-response 

(Hawkes and Plewis, 2009): initial non-response refers to the original absence of selected units; wave non-

response occurs when some units in the panel sample temporarily do not answer at some point in time, while 

attrition occurs when some units in the panel sample permanently do not answer from some point in time. 

Wave non-response was fairly uncommon in the first waves of the ELFE survey which were at our disposal. 

We therefore simplify this set-up by assuming monotone non-response, where only initial non-response and 

attrition occur.  

There is a vast literature on the treatment of unit non-response for surveys over time, see Ekholm and 

Laaksonen (1991), Fuller, Loughin and Baker (1994), Rizzo, Kalton and Brick (1996), Clarke and Tate 

(2002), Laaksonen and Chambers (2006), Hawkes and Plewis (2009), Rendtel and Harms (2009), 

Laaksonen (2007), Slud and Bailey (2010), Zhou and Kim (2012). Variance estimation for longitudinal 

estimators is considered in Tam (1984), Laniel (1988), Nordberg (2000), Berger (2004), Skinner and Vieira 

(2005), Qualité and Tillé (2008) and Chauvet and Goga (2018), but with focus on the sampling variance 

only. Variance estimation in case of non-response weighting adjustments on cross-sectional surveys is 

considered in Kim and Kim (2007). To the best of our knowledge, and despite the interest for applications, 

variance estimation accounting for non-response for panel surveys has not been treated in the literature, with 

the exception of Zhou and Kim (2012). 

Zhou and Kim (2012) consider the estimation of a mean for a panel survey, in case of monotone non-

response. Instead of using the propensity score adjusted estimator, Zhou and Kim (2012) define an optimal 

propensity score estimator. It is obtained by noting that for any variable of interest observed before time ,t  

the estimator produced at time t  differs from the estimator obtained at the date when the variable was 

observed, which is based on a larger sample. Adjusting on these differences by means of some form of 

calibration leads to the estimator proposed by Zhou and Kim (2012). It makes full use of the information 

collected at previous times, and it is therefore expected to be more efficient than the propensity score 

adjusted estimator. However, a panel survey may include a large number of variables of interest observed 

at several times, and calibrating on a too large number of variables may lead to estimators whose 

performances are worsened (Silva and Skinner, 1997). A careful modeling exercise seems therefore 

necessary before applying the optimal estimator of Zhou and Kim (2012). In this work, we rather focus on 

the propensity score adjusted estimator, which is popular in practice.  

Zhou and Kim (2012) also consider variance estimation for their optimal estimator, under the so-called 

reverse framework of Fay (1992). By viewing the sample obtained at time t  as the result of a two-phase 

process, the first phase being associated to the original sampling design and the second phase to the 

successive non-response steps, it is assumed under the reverse framework that these two phases may be 

reversed. This requires the two-phase process to be strongly invariant as defined by Beaumont and Haziza 

(2016). In this paper, we propose a general variance estimator for the propensity score adjusted estimator, 

for which the strong invariance assumption is not needed. We also extend this variance estimator to account 

for estimation of complex parameters, possibly with calibrated weights, and to cover longitudinal estimators. 
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In each case, a simplified conservative variance estimator, which may be easier to compute for secondary 

users, is also proposed.  

The paper is organized as follows. In Section 2, we first define the notation. A parametric model is then 

postulated, leading to estimated response probabilities and to a reweighted estimator. A variance estimator 

is then derived by following the approach in Kim and Kim (2007), and a simplified version is also proposed. 

They are illustrated in the particular case of the logistic regression model. The proposed variance estimator 

is extended to cover calibrated estimators and complex parameters in Section 3. Longitudinal estimation is 

discussed in Section 4, and the proposed variance estimator is used to cover such cases. The variance 

estimators are compared in Section 5 through a simulation study, and an illustration on the ELFE data is 

proposed in Section 6. We draw some conclusions in Section 7. 

 
2  Correction of non-response and attrition 
 

2.1  Notation and main assumptions 
 

We are interested in a finite population .U  A sample 0s  is first selected according to some sampling 

design   ,p   and we assume that the first-order inclusion probabilities i  are strictly positive for any 

.i U  This first sampling phase corresponds to the original inclusion of units in the sample.  

We consider the case of a panel survey in which the sole units in the original sample 0s  are followed 

over time, without reentry or late entry units at subsequent times to represent possible newborns. We are 

therefore interested in estimating some parameter defined over the population ,U  for some study variable 

ty  taking the value ity  for the unit i  at time .t  The units in the sample 0s  are followed at subsequent times 

= 1, , ,t   and the sample is prone to unit non-response at each time. We note ir
  for the response 

indicator for unit i  at time ,  and s  for the subset of respondents at time .  

We assume monotone non-response resulting in the nested sequence 0 1 ... .ts s s    For 

= 1, , ,t   we note  1= Prip i s s
    for the response probability of some unit i  to be a 

respondent at time .  We assume that the data are missing at random, i.e. the response probability ip   at 

time   can be explained by the variables observed at times 0, , 1,   including the variables of interest, 

see for example Zhou and Kim (2012). Also, we assume that at any time   the units answer independently 

of one another, and we note =ij i jp p p    for the probability that two distinct units i  and j  answer jointly 

at time .  

 
2.2  Reweighted estimator 
 

We are interested in estimating the total   = iti U
Y t y

  at time .t  In practice, the response 

probabilities at each time are unknown and need to be estimated. We assume that at each time   the 

probability of response is parametrically modeled as  
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  = ,i ip f z     (2.1) 

for some known function  , ,f     where iz  is a vector of variables observed for all the units in 1,s   and 
  denotes some unknown parameter. Here and elsewhere, the superscript   will be used when we account 

for non-response at time ,  like for the probability ip   of unit i  to be a respondent at time .  Following 

the approach in Kim and Kim (2007), we assume that the true parameter is estimated by ˆ ,  the solution 

of the estimating equation  

       
1

ln 1 ln 1 0,i i i i i
i s

k r p r p


    

 


   

   (2.2) 

with ik   some weight of unit i  in the estimating equation. Customary choices for these weights include 

= 1ik   and 1= ,i ik     see Fuller and An (1998), Beaumont (2005) and Kim and Kim (2007). 

The estimated response probability at time   is  ˆˆ = , .i ip f z     The propensity score adjusted 

estimator at time ,t  which will be simply called the reweighted estimator in what follows, is defined as  

   1
1

=1

ˆ ˆ ˆ= with = .
ˆ

t

t
it t

t i it
i s i i

y
Y t p p

p







   (2.3) 

Here and elsewhere, the subscript t  will be used when the sample observed at time t  is used for estimation, 

like for  ˆ
tY   which makes use of the sample .ts  We simplify the notation as  ˆ ˆ

t tY t Y  when the total at 

time t  is estimated by using the sample observed at time .t  

 
2.3  Variance computation 
 

Under some regularity assumptions on the response mechanisms and some regularity conditions on the 

 , ’s,p    we obtain from Theorem 1 in Kim and Kim (2007) that we can write  

    1
lin,

ˆ ˆ= ,t t pY Y t O Nn   (2.4) 

where  

       
1

1 1 1 1
lin, 1 1

1ˆ ˆ ˆ= ,
ˆ

t

t
it t t t t t t t t t

t i i i i i it i i i i it t
i s i i i

r
Y t k p p h y k p p h

p p
   



   
 



 
  

 
  

 (2.5) 

and where for any = 1, , t   we denote by ih  the value of    = logiti ih p     evaluated at 

= ,   and  

    
1 1

1

1 1

1
= 1 .

ˆ
i it

i i i i i i
i s i s i i

p y
k p p h h h

p 


      


 



 
 

  
 
 

 (2.6) 

From (2.5), we obtain that  

     lin, 1 1
ˆ ˆ= ,t t tE Y t s Y t   (2.7) 
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with  1
ˆ
tY t  the estimator of  Y t  computed on 1.ts   Using a proof by induction, it follows from (2.4) and 

(2.7) that ˆ
tY  is approximately unbiased for   .Y t  Also, the variance of ˆ

tY  may be asymptotically 

approximated by  

         
0

app lin, 1
=1

ˆ ˆ= .
t

it
t

i s i

y
V Y V E V Y t s 

 


      
   (2.8) 

The first term in the right-hand side of (2.8) is the variance due to the sampling design, that we note as 

 ˆ .p
tV Y  The second term in the right-hand side of (2.8) is the variance due to non-response, that we note 

as  nr ˆ .tV Y  From (2.5), this asymptotic variance is given by  

                                                  nr nr

=1

ˆ ˆ= ,
t

t tV Y E V Y




 
 
  (2.9) 

where 

                          
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1 1

ˆ = 1 .
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it
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y
V Y p p k h
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 
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  

 
 

 (2.10) 

We note that for each of its component = 1, , ,t   the term  nr ˆ
tV Y  in (2.10) includes a centering 

term   ,i ik h    which is essentially a prediction of   11 1ˆ
i i i ip p y     by means of regressors .ih  This 

centering is due to the estimation of the response probabilities. Suppressing these centering terms, equations 

(2.9) and (2.10) would lead to the variance of the estimator of  Y t  we would obtain by replacing in (2.3) 

the estimated probabilities by their true values. The variance of this estimator is usually larger than that of 

the reweighted estimator in (2.3); see also Beaumont (2005), equation (5.7) and Kim and Kim (2007), 

equation (17), for the case = 1.t  

 
2.4  Variance estimation 
 

At time ,t  an approximately unbiased estimator for the variance due to the sampling design  ˆp
tV Y  is  

   1
,

1ˆ ˆ = ,
ˆ

t

ij jtitp
t t t

i j s ij ij i j

yy
V Y

p  



  (2.11) 

where 1

=1
ˆ ˆ ,

tt
ij ijp p


    and where ˆ ˆ=ij ip p   if = ,i j  and ˆ ˆ ˆ=ij i jp p p    otherwise. Following equation 

(25) in Kim and Kim (2007),  nr ˆ
tV Y  may be approximately unbiasedly estimated at time t  by  

                                                            nr nr

=1

ˆ ˆ ˆ ˆ=
t

t t t tV Y V Y


  (2.12) 

where 

                                     
2

nr
1

ˆ ˆ1 ˆˆ ˆ ˆ= ,
ˆ ˆ

t

i i it
t t i i tt

i s i i i

p p y
V Y k h

p p

 
   

  
 



 
 

 



 (2.13) 

                                                                  ˆ ˆ= , ,i ih h z   (2.14) 
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
 (2.15) 

This leads to the global variance estimator at time t   

                                                                   nrˆ ˆ ˆ ˆ ˆ ˆ= .p
t t t t t tV Y V Y V Y  (2.16) 

A simplified estimator of the variance due to non-response is obtained by ignoring the prediction terms 

 ˆ ˆ
i i tk h  


 for each of the = 1, , t   variance components. After some algebra, this leads to the 

simplified variance estimator  

                                                     
 

21
nr
, simp 21

ˆ1ˆ ˆ = .
ˆt

t
i it

t t t
i s ii

p y
V Y t

p 





 


 
  (2.17) 

The main advantage of this simplified variance estimator is that it only requires the knowledge of the 

estimated response probabilities. On the other hand, the computation of the variance estimator in (2.12) 

requires the knowledge of the response models used at all times. The simplified variance estimator is 

therefore of particular interest for secondary users of the survey data, for which the estimated response 

probabilities may be the only available information related to the response modeling. This simplified 

variance estimator will tend to overestimate the variance due to non-response of  ˆ
tY  if the prediction term 

 i ik h    partly explains   11 1ˆ .i i i itp p y     

 
2.5  Application to the logistic regression model 
 

In the particular case when a logistic regression model is used at each time ,  the model (2.1) may be 

rewritten as  

    logit = .i ip z    (2.18) 

We obtain ˆ = ,i ih z   and the estimator for the variance due to non-response is given by (2.12), with  

      
2

nr
1

ˆ ˆ1ˆ ˆ ˆ= ,
ˆ ˆ

t

i i it
t t i i tt

i s i i i

p p y
V Y k z

p p

 
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 (2.19) 
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 (2.20) 

If the reweighted estimator is computed at time = 1,t  the estimator in (2.12) for the variance due to 

non-response may be rewritten as  

                                              
1

2

1nr 1 1 1 1
1 1 11

ˆ ˆ ˆˆ= 1 .
ˆ
i

i i i
i s i i

y
V Y p k z

p





  

 
 

 (2.21) 
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If the reweighted estimator is computed at time = 2,t  the estimator in (2.12) for the variance due to 

non-response may be rewritten as  

 

     
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


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 

 


   

 









 

(2.22)

 

In practice, the model of Response Homogeneity Groups (RHG) is often assumed when correcting for 

unit non-response. Under this model, it is assumed that at each time = 1, , ,t   the sub-sample 1s   may 

be partitioned into  1C    groups  1, = 1, , 1 ,cs c C    such that the response probability ip   is 

constant inside a group. This model is a particular case of the logistic regression model in (2.18), obtained 

with  

      11
1 1= 1 , , 1 ,C

iz i s i s 
 


     

 (2.23) 

and the variance due to non-response is estimated accordingly. Explicit formulas are given in Appendix. 

 
3  Calibration and complex parameters 
 

In most surveys, a calibration step is used to obtain adjusted weights which enable to improve the 

accuracy of total estimates. Such calibrated estimators are considered in Section 3.1. Also, more complex 

parameters than totals are frequently of interest, and a linearization step can be used for variance estimation. 

This is the purpose of Section 3.2. The estimation of complex parameters with calibrated weights is treated 

in Section 3.3. In each case, explicit formulas for variance estimation and simplified variance estimation are 

derived, and the bias of the simplified variance estimator is discussed. 

 
3.1  Variance estimation for calibrated total estimators 
 

Assume that a vector ix  of auxiliary variables is available for any unit ,ti s  and that the vector of 

totals X  on the population U  is known. Then an additional calibration step (Deville and Särndal, 1992) is 

usually applied to ˆ .tY  It consists in modifying the weights   11 1ˆ= t
ti i id p    to obtain calibrated weights 

tiw  which enable to match the real total ,X  in the sense that  

 = .
t

ti i
i s

w x X

  (3.1) 

The new calibrated weights are chosen to minimize a distance function with the original weights, while 
satisfying (3.1). This leads to the calibrated estimator  

 ˆ = .
t

wt ti it
i s

Y w y

  (3.2) 

The estimated residual for the weighted regression of ity  on ix  is denoted by  
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                                                               ˆ=it it t ie y b x  (3.3) 

with 

                                                                
1

1 1
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ˆ ˆ

t t

t i i i itt t
i s i si i i i

b x x x y
p p 



 
 
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 
   (3.4) 

Replacing in (2.11) the variable ity  with ite  yields the estimator of the variance due to the sampling design  

                                                        1
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i j s ij ij i j

ee
V Y

p  



  (3.5) 

Similarly, replacing in (2.12) the variable ity  with ite  yields the estimator of the variance due to the non-

response  
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 (3.6) 
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 (3.7) 

The global variance estimator for ˆ
wtY  is  

                                                            nrˆ ˆ ˆ ˆ ˆ ˆ= .p
t wt t wt t wtV Y V Y V Y  (3.8) 

The simplified estimator of the variance due to non-response is  

                                                  
 

21
nr
, simp 21

ˆ1ˆ ˆ = .
ˆt

t
i it

t wt t
i s ii

p e
V Y

p 





 


 
  (3.9) 

Here again, this simplified variance estimator ignores the prediction terms  ˆ ˆ .i i tek h  


 If the underlying 

calibration model is appropriate, then the explanatory power of ˆ
ih  for ite  is expected to be small, as well 

as the bias of the simplified variance estimator. On the other hand, if there remains in ite  some significant 

part of ity  that may not been explained by ,ix  the bias of the simplified variance estimator may be non-

negligible. This may occur in case of domain estimation, when the calibration variables do not include any 

auxiliary information specific of the domain. 

 
3.2  Variance estimation for complex parameters 
 

We may be interested in estimating more complex parameters than totals. Suppose that the variable of 

interest ity  is q  multivariate, and that the parameter of interest is     =t f Y t  with  f   a known 

function. At time ,t  substituting ˆ
tY  into  t  yields the plug-in estimator  ˆ ˆ= .t tf Y  

The estimated linearized variable of  t  is  

   ˆ= ,it t itu f Y y


 (3.10) 
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with  ˆ
tf Y  the q  vector of first derivatives of f  at point ˆ .tY  Replacing in (2.11) the variable ity  with 

itu  yields the estimator of the variance due to the sampling design  
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  (3.11) 

Similarly, replacing in (2.12) the variable ity  with itu  yields the estimator of the variance due to the non-

response  
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 (3.12) 
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 (3.13) 

The global variance estimator for ˆ
t  is  

          nrˆ ˆ ˆˆ ˆ ˆ= .p
t t t t t tV V V    (3.14) 

The simplified estimator of the variance due to non-response is  
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The bias of this simplified variance estimator will depend on the explanatory power for ˆ
ih  on the linearized 

variable .itu  

 
3.3  Variance estimation for complex parameters under calibration 
 

The calibrated weights tiw  may be used to obtain an estimator of the parameter   .t  Substituting ˆ
wtY  

into     =t f Y t  yields the calibrated plug-in estimator  ˆ ˆ= .wt wtf Y  To obtain a variance estimator for 
ˆ ,wt  we first compute the estimated linearized variable   ˆ=it t itu f Y y


 and take  

                                                        ˆ=it it t ie u b x   (3.16) 

with 
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Replacing in (2.11) the variable ity  with ite  yields the estimator of the variance due to the sampling design  

                                                  1
,

1ˆˆ = .
ˆ

t

ij jtitp
t wt t

i j s ij ij i j

ee
V

p


  



  (3.18) 

Similarly, replacing in (2.12) the variable ity  with ite  yields the estimator of the variance due to the non-

response  
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The global variance estimator for ˆ
wt  is  

                                                                    nrˆ ˆ ˆˆ ˆ ˆ= .p
t wt t wt t wtV V V    (3.21) 

The simplified estimator of the variance due to non-response is  
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Since the variable ite  is obtained as the residual in the regression of the linearized variable itu  on the 

calibration variables ,ix  the explanatory power for ˆ
ih  on ite  is expected to be small in practice, and the 

bias of the simplified variance estimator is expected to be small as well.  

 
4  Longitudinal estimators 
 

We may be interested in a change in parameters, such as  

      = ,u t Y t Y u    (4.1) 

the difference between the totals of a variable of interest measured at two different times < .u t  Since the 

variable iuy  is measured on all sub-samples us   for = , , ,u u t   there are several possible estimators for 

  .u t   For = , , ,u u t   we denote by  

   1 1

ˆ =
ˆ ˆ

t u

it iu
u t t u

i s i si i i i

y y
u t

p p 
   

     (4.2) 

the estimator which makes use of ts  for the estimation of   ,Y t  and of us   for the estimation of   .Y u  The 

case =u u  corresponds to the estimation of  Y u  on the largest available sub-sample, .us  The case 

=u t  corresponds to the estimation of  Y u  and  Y t  on the common sub-sample .ts  

In the context of full response, several authors have recommended the estimator  ˆ
tt u t   which 

makes use of the common sample only, if the variables uiy  and tiy  are strongly positively correlated; see 

Caron and Ravalet (2000), Qualité and Tillé (2008), Goga, Deville and Ruiz-Gazen (2009), Chauvet and 

Goga (2018). In our context, this choice may be heuristically justified as follows. For < ,u t  and by 

conditioning on the sub-sample ,us   we obtain  
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In equations (4.3) and (4.4), the first term in the right-hand side is identical. Since the variables iuy  and ity  

are expected to be positively correlated, the difference it iuy y  is expected to be smaller than .ity  

Therefore, the estimator  ˆ
tt u t   based on the common sample is expected to be more efficient in terms 

of variance. The results of a small simulation study in Section 5.2 support this heuristic reasoning. 

Therefore, we focus only in this Section on the estimator  ˆ
tt u t   for the estimation of   .u t   As 

pointed out by a Referee, and following the approach in Zhou and Kim (2012), we may obtain a gain in 

efficiency by using the full information on ,us  namely by calibrating the weights   11ˆ t
i ip   on the 

estimator ˆ .uY  

Replacing in (2.11) the variable ity  with it iuy y  yields the estimator of the variance due to the 

sampling design  

       
1

,

1ˆˆ = .
ˆ

t

ij jt juit iup
t tt t

i j s ij ij i j

y yy y
V u t

p  


 
    (4.5) 

Similarly, replacing in (2.12) the variable ity  with it iuy y  yields the estimator of the variance due to the 

non-response  

       
2

nr
1

=1

ˆ ˆ1 ˆˆˆ ˆ=
ˆ ˆ

t

t
i i it iu

t tt i i tt
i s i i i

p p y y
V u t k h

p p

 
  

 



  



  
   

 



 (4.6) 

with  

 
   

1

1

ˆ ˆ ˆ1 1ˆ ˆ ˆˆ = .
ˆ ˆ

t t

i i i it iu
t i i i it t

i s i si i i

p p p y y
k h h h

p p

  
    






  
 

    
 
  
 


 (4.7) 

The global variance estimator for  ˆ
tt u t   is  

         nrˆ ˆ ˆˆ ˆ ˆ= .p
t tt t tt t ttV u t V u t V u t        (4.8) 

Variance estimation for measures of change is also considered in Berger (2004), Qualité and Tillé (2008), 

Goga et al. (2009), Chauvet and Goga (2018), among others.  

The simplified estimator of the variance due to non-response is  

   
 

21
nr
, simp 21

ˆ1ˆˆ = .
ˆt

t
i it iu

t tt t
i s ii

p y y
V u t

p 





  
  

 
  (4.9) 

If the variables ity  and iuy  are strongly positively correlated, the bias of the simplified variance estimator 

is expected to be small. 
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5  A simulation study 
 

In this section, several artificial populations are generated according to the model described in 

Section 5.1. In Section 5.2, we consider several estimators for a change between totals, which illustrates the 

heuristic reasoning in Section 4. A Monte Carlo experiment is presented in Section 5.3, and several variance 

estimators for estimating a total, a ratio or a parameter change are compared. The results from Tables 5.1 

and 5.2 are readily reproducible using the R code provided in the Supplementary Material. 

 
5.1  Simulation set-up 
 

We consider seven populations of size 10,000, each containing three variables of interest 1,iy 2iy  and 

3iy  observed at times = 1, 2t  and 3, respectively. The variables of interest are generated according to the 

superpopulation model  

 0
1 1= ,a b

i ai bi iy x x u       (5.1) 

                                                       2 1 2= ,i i iy y u   (5.2) 

                                                       3 2 3= .i i iy y u   (5.3) 

The auxiliary variables aix  and bix  are independently generated from a Gamma distribution with shape 

and scale parameters 2 and 1. Two auxiliary variables cix  and ,dix  not related to the variables of interest, 

are generated similarly. The variables 1,iu 2iu  and 3iu  are independently generated according to a standard 

normal distribution. We use 0 = 10, = = 5a b   and = 10,  which leads to a coefficient of 

determination  2R  in model (5.1) approximately equal to 0.50. The parameter   is set to 0, 0.2, 0.4, 0.6, 

0.8, 1.0 and 1.2 for populations 1 to 7, respectively.  

For each population, a simple random sample 0s  of size =n 1,000 is selected. Three non-response 

phases are then successively simulated. At each phase = 1, 2, 3,  the sub-sample of respondents s  is 

obtained by Poisson sampling with a response probability ip   for unit ,i  defined as  

   0logit = .a b
i ai bip x x        (5.4) 

We use 0 = 1   at each phase = 1, 2, 3.  For = 1,  we use 1 1= =a b  0.60, which corresponds 

to an average response rate of 0.75. For = 2, 3,  we use = =a b   0.75, which corresponds to an 

average response rate of 0.81. Inside each sub-sample ,s  the estimated response probabilities ˆ
ip   are 

obtained by means of an unweighted logistic regression. 

 
5.2  Comparison of estimators for a difference of totals 
 

In this section, we are interested in comparing the accuracy of two estimators for a difference of totals 

 u t   for = 1u  and = 2,t  for = 1u  and = 3,t  and for = 2u  and = 3.t  We consider the 

estimator  ˆ ,ut u t   which makes use of the whole appropriate sub-samples for variables iuy  and ,ity  
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and the estimator  ˆ ,tt u t   which makes use of the common sub-sample only. These two estimators 

are compared through the relative difference (RD) of their variances, which are defined as follows:  

  
     

  
ˆ ˆ

RD = 100 .
ˆ

ut tt

tt

V u t V u t
u t

V u t

    
 

 
 (5.5) 

The true variances are replaced by their Monte Carlo approximation, obtained by repeating =B 100,000 

times the sample selection and the non-response phases.  

The results are presented in Table 5.1. A positive RD indicates that the use of the common sample only 

leads to a more accurate estimator. As could be expected, the RD increases in all cases with ,  that is, when 

the correlation between ity  and iuy  increases. For = 1u  and = 2,t  and for = 2u  and = 3,t  the 

estimator  ˆ
tt u t   is more accurate for   greater than 0.6. For = 1u  and = 3,t  ˆ

tt u t   is more 

accurate for   greater than 0.8. 

 
Table 5.1 
Relative Difference (RD) between two estimators for a difference of totals 
 

   RD 1 2   RD 1 3   RD 2 3  

0.0 -12 -27 -13 
0.2 -09 -25 -11 
0.4 -04 -20 -03 
0.6 05 -09 11 
0.8 17 11 39 
1.0 30 33 83 
1.2 40 46 127 

 
5.3  Performances of the variance estimators 
 

In this section, we consider the artificial population 5  = 0.8  generated as described in Section 5.1. 

The sample selection by means of simple random sampling of size =n 1,000 and the three non-response 

phases are applied =B 5,000 times. We are interested in evaluating the variance estimators and the 

simplified variance estimators, in case of estimating a total, a ratio or a change in totals.  

As for the total   ,Y t  we consider at each time = 1, 2, 3,t  three estimators. The estimator ˆ
tY  makes 

use of the weights   11 1ˆ= .t
ti i id p    The estimator ˆ

wtY  makes use of the weights ,iw  obtained by 

calibrating the weights tid  on the population size and on the totals of the auxiliary variables aix  and .bix  

The estimator ˆ
wtY   makes use of the weights ,iw  obtained by calibrating the weights tid  on the population 

size and on the totals of the auxiliary variables cix  and .dix  The working model is therefore well-specified 

for ˆ ,wtY  but not for ˆ .wtY   The proposed variance estimator for ˆ
tY  is obtained from equation (2.16), and the 

simplified variance estimator is obtained by plugging in (2.16) the simplified variance estimator for non-

response given in (2.17). The proposed variance estimators for ˆ
wtY  and ˆ

wtY   are obtained from equation 

(3.8), and the simplified variance estimators are obtained by plugging in (3.8) the simplified variance 

estimator for non-response given in (3.9).  
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We are also interested in estimating the ratio      = 1R t Y t Y  for = 2, 3.t  At each time ,t  we 

consider three estimators. The estimator ˆ
tR  makes use of the weights .id  The proposed variance estimator 

is obtained from equation (3.14), by using the estimated linearized variable    1

1 1
ˆ ˆ= .it ti t iu Y y R y


  The 

simplified variance estimator is obtained by plugging in (3.14) the simplified variance estimator for non-

response given in (3.15). The estimators ˆ
wtR  and ˆ

wtR   make use of the calibrated weights iw  and .iw  The 

proposed variance estimators are obtained from equation (3.21). The simplified variance estimators are 

obtained by plugging in (3.21) the simplified variance estimator for non-response given in (3.22). 

Finally, we are interested in estimating the change in totals  1 t   for = 2, 3.t  At each time ,t  we 

consider three estimators. The estimator  ˆ 1tt t   makes use of the weights .id  The proposed variance 

estimator is obtained from equation (4.8), and the simplified variance estimator is obtained by plugging in 

(4.8) the simplified variance estimator for non-response given in (4.9). The estimators  ,
ˆ 1tt w t   and 

 ,
ˆ 1tt w t   make use of the calibrated weights iw  and .iw  The proposed variance estimators are 

obtained from equation (4.8), by replacing it iuy y  by the estimated residual for the weighted regression 

of it iuy y  on the calibration variables. The simplified variance estimators are obtained by plugging in 

(4.8) the simplified variance estimator for non-response given in (4.9). 

For a proposed variance estimator ˆ,V  we computed the Monte Carlo Percent Relative Bias  

   
 1

=1
mc

ˆ
ˆRB = 100

B b

b
B V V

V
V

 
 

  

where the global variance V  was approximated through an independent set of 100,000 simulations. To 

evaluate the contribution of some component ˆ
aV  into the variance estimator ˆ,V  we computed the 

contribution (in percent)  

                                             
 

 

1
=1

mc
1

=1

ˆ
ˆCONTR = 100 .

ˆ

B b
aB b

a B b
B b

V
V

V
 


  

To evaluate the simplified variance estimator for the non-response nr
simp

ˆ ,V  we computed the Monte Carlo 

Percent Relative Bias  

    
 1 nr

simpnr =1
mc simp nr

ˆ
ˆRB = 100 ,

B b

b
B V V

V
V

 
 

  

where the variance nrV  due to non-response was approximated through an independent set of 100,000 

simulations.  

The simulation results are presented in Table 5.2. The proposed variance estimator is almost unbiased in 

all cases. As could be expected, the contribution of the variance due to the sampling design decreases with 

time, as the number of respondents decreases and as the variance due to non-response becomes larger. The 

simplified variance estimator is highly biased for the variance due to non-response in case of ˆ .tY  The bias 

decreases quickly with time, but remains large at time = 3.t  The simplified variance estimator is almost 

unbiased for a calibrated estimator when the working model is adequately specified, but is severely biased 
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otherwise. This is consistent with our reasoning in Section 3.1. The simplified variance estimator is almost 

unbiased for the three estimators of the ratio, and for the calibrated estimators of the change in totals. In 

case of the non-calibrated estimator for the change in totals, the bias can be as high as 30%. 

 

Table 5.2 
Relative bias of a global variance estimator, relative contribution to the estimators of variance components and 
relative bias of a simplified variance estimator for the variance due to non-response for the estimation of a total, 
a ratio or a change in totals with three sets of weights 
 

  = 1t  = 2t  = 3t  = 1t  = 2t  = 3t  = 1t  = 2t  = 3t  

 ˆ
tY  ˆ

wtY  ˆ
wtY   

 mc
ˆRB V   0 -1 -2 -1 -1 -2 -1 -1 -3 

 mc
ˆCONTR p

tV   81 57 35 69 49 32 80 56 35 

 nr1
mc

ˆCONTR tV   19 19 13 31 22 15 20 18 13 

 nr 2
mc

ˆCONTR tV   - 25 18 - 28 19 - 25 17 

 nr3
mc

ˆCONTR tV   - - 34 - - 34 - - 34 

 nr
mc , simp

ˆRB tV   559 188 80 0 -1 -2 83 34 15 

 ˆ
tR  ˆ

wtR  ˆ
wtR   

 mc
ˆRB V   - 0 -2 - -1 -2 - -1 -2 

 mc
ˆCONTR p

tV   - 49 32 - 49 32 - 50 33 

 nr1
mc

ˆCONTR tV   - 22 15 - 22 15 - 22 15 

 nr 2
mc

ˆCONTR tV   - 28 19 - 28 19 - 28 19 

 nr3
mc

ˆCONTR tV   - - 34 - - 34 - - 34 

 nr
mc , simp

ˆRB tV   - 0 0 - -1 -2 - -1 -1 

  ˆ 1tt t    ,
ˆ 1tt w t    ,

ˆ 1tt w t   

 mc
ˆRB V   - 0 -2 - 0 -2 - -1 -3 

 mc
ˆCONTR p

tV   - 50 33 - 49 32 - 50 33 

 nr1
mc

ˆCONTR tV   - 22 14 - 22 15 - 22 14 

 nr 2
mc

ˆCONTR tV   - 28 18 - 28 19 - 28 18 

 nr3
mc

ˆCONTR tV   - - 34 - - 34 - - 34 

 nr
mc , simp

ˆRB tV   - 19 30 - -1 -2 - 3 5 

 
6  Illustration 
 

In this section, we aim at illustrating our results on a real data set from the ELFE survey. The population 

of inference consists of infants born in one of the 544 French maternity units during 2011, except very 
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premature infants. Our illustration is meant to mimic as closely as possible the methodology of the ELFE 

survey. In particular, the modeling of attrition at each time is performed with variables available at baseline 

as explanatory variables only. As pointed out by the Associate Editor, under the MAR assumption, the 

variables of interest measured at any times < t  may also have been used to model attrition between times 

1t   and .t  

An original sample 0s  of about 35,600 infants was originally selected when the babies were just a few 

days old and were still at the maternity unit. The sample was selected using a cross-classified sampling 

design (Skinner, 2015; Juillard, Chauvet and Ruiz-Gazen, 2016). A sample of days and a sample of 

maternity units were independently selected, and both sample selections may be approximated by stratified 

simple random sampling (STSI). The sample consisted in all the infants born during one of the 25 selected 

days in one of the 320 selected maternity units.  

Among the 35,600 infants originally selected, a total of 18,329 face-to-face interviews were completed 

with their families, which represents a response rate of 51%. This led to the subsample 1s  after accounting 

for non-response. The weights at time = 1t  were computed on the basis of the original sampling weights, 

adjusted in two steps. First, response probabilities were estimated by means of a model of Response 

Homogeneity Groups (RHGs), with 20 RHGs defined by using a logistic regression model with explanatory 

variables Age of the mother, Gemellary identity and Season of birth. Then, a calibration by means of the 

raking ratio method was performed on the binary variables Born within marriage, Immigrant mother and 

Gemellary identity.  

When the children reached the age of two months, the parents had the first phone interview with a 

response rate of 87%. This leads to the subsample 2 .s  The weights at time = 2t  were computed on the 

basis on the weight obtained at time = 1,t  with a two-step adjustment. First, response probabilities were 

estimated by means of 20 RHGs, defined by using a logistic regression with explanatory variables Age of 

the mother, Mother nationality and Father present at childbirth. Then, a calibration by the raking ratio 

method was performed on the same calibration variables as at time = 1.t  

When the children were one year old, the parents were contacted by phone with a response rate of 77%. 

This led to the subsample 3 .s  The weights at time = 3t  were computed on the basis on the weights 

obtained at time = 2,t  with a two-step adjustment similar to that realized at time = 2.t  

We considered three variables of interest: Breastfeeding exclusivity at the childbirth, at two month, at 

one year. For each of these variables, we computed the estimator ˆ
tR  and the calibrated estimator ˆ

wtR  for 

the percentage  R t  of breastfeeding among all the children at time ,t  and the associated variance 

estimators. We also computed the estimated coefficient of variation (in percent), defined as  

     ˆ ˆ
ˆCV = 100 .

ˆ
t t

t t

t

V Y
Y

Y
  (6.1) 

For each component ˆ
taV  in the estimated variance ˆ ,tV  we computed its contribution (in percent) defined as  
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  
ˆ ˆ

ˆCONTR = 100 .
ˆ

ta t
ta

t

V V
V

V


  (6.2) 

We also computed the simplified variance estimator for non-response nr
, simp

ˆ ,tV  and the relative difference (in 

percent) with the approximately unbiased variance estimator nrV̂  defined as  

            
nr nr
, simpnr

, simp nr

ˆ ˆ
ˆRD = 100 .

ˆ
t t

t

t

V V
V

V


  (6.3) 

The results are given in Table 6.1. As observed in the simulation study, the RD of the simplified variance 

estimator for non-response is negligible in all cases. 

 
Table 6.1 
Estimates for a ratio, variance estimates, coefficient of variation, relative contributions of variance components 
and relative difference of a simplified variance estimator for a variable in the ELFE survey 
 

Breastfeeding = 1t  = 2t  = 3t  = 1t  = 2t  = 3t  
exclusivity maternity 2 months 1 year maternity 2 months 1 year 

 without calibration with calibration 

 ˆ %tR  59.0 30.6 3.3 59.4 31.0 3.4 

 ˆ ˆ
tV R  1.34E-05 1.50E-05 2.58E-06 1.28E-05 1.48E-05 2.60E-06 

   ˆ ˆCV %tY  0.6 1.3 4.8 0.6 1.2 4.7 

 ˆCONTR p
tV  31 34 24 28 34 25 

 nr1ˆCONTR tV  69 51 42 72 51 41 

 nr 2ˆCONTR tV  - 15 13 - 15 13 

 nr 3ˆCONTR tV  - - 21 - - 21 

 nr
, simp

ˆRD tV  2 2 0 1 2 0 

 
7  Conclusion 
 

In this paper, we considered variance estimation accounting for weighting adjustments in panel surveys. 

We proposed both an approximately unbiased variance estimator and a simplified variance estimator for 

estimators of totals, complex parameters and measures of change, which covers most cases that may be 

encountered in practice. Our simulation results indicate that the proposed variance estimator performs well 

in all cases considered. The simplified variance estimator tends to overestimate the variance of the expansion 

estimator for totals, and to overestimate the variance for calibrated estimators of totals when the calibration 

variables lack of explanatory power for the variable of interest. However, the simplified variance estimator 

performs well for the estimation of ratios and change in totals with calibrated weights, even if the calibration 

model is not appropriate for the study variable.  
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The assumption of independent response behaviour is usually not tenable for multi-stage surveys, since 

units within clusters tend to be correlated with respect to the response behaviour. In this context, estimation 

of response probabilities based upon conditional logistic regression in the context of correlated responses 

has been studied by Skinner and D’Arrigo (2011), see also Kim, Kwon and Park (2016). Extending the 

present work in the context of correlated response behaviour is a challenging problem for further research. 
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Appendix 

 
Estimation of the variance due to non-response for Response Homogeneity 
Groups 
 

We consider the model of Response Homogeneity Groups introduced in Section 2.5. Recall that this 

model may be summarized as follows: at each time = 1, , ,t   the sub-sample 1s   is partitioned into 

 1C    groups  1, = 1, , 1 .cs c C    The response probabilities are assumed to be constant within 

the groups.  

This model is equivalent to the logistic regression model in (2.18), with  

     11
1 1= 1 , , 1 .C

iz i s i s 
 


     

 (A.1) 

The equation (2.2) leads to the estimated response probabilities  

     1

1

1
ˆ = for .

c
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i ii s c
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ii s
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p i s
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

 

















 (A.2) 

We first consider the case when the reweighted estimator is computed at time = 1.t  In the estimator of 

the variance due to non-response given in (2.21), the vector 1
1̂  simplifies as  

               
 

   

11
01

11 0 0

01
1 0 1 0

1
1 1 1 1 1

1 0
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ˆ ˆ
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i s si s s

i iCi s s i s s
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   


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 
 


 





 (A.3) 

After some algebra, the variance estimator in (2.21) may be rewritten as  

           
   

 

1

1 0

1 0 1 0

2
10

1nr 1
1 1 2 11

=1

ˆ1ˆ ˆ = .
ˆ

j

c
j

c c

y
C

j s sc i
i

c i s s i jj s sc

p y
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kp




 

   


 

 
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 (A.4) 
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We now consider the case when the reweighted estimator is computed at time = 2.t  We focus on the 

simpler case when the same system of RHGs is kept over time. In the estimator of the variance due to non-

response given in (2.22), the vectors 1
2̂  and 2

2̂  simplify as  

 
 

   

22
01
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After some algebra, the variance estimator in (2.22) may be rewritten as  
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(A.7)

 

If we further assume that ik   is constant over times = 1, 2,  and may thus be rewritten as ,ik  the 

expression in (A.7) simplifies as  
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with 
21 2

=1
ˆ ˆ=c cp p 


   for  = 1, , 0 .c C  This simplification of the variance estimator can be extended 

to the reweighted estimator at time .t  Assuming that the RHGs are kept over time, and that =i ik k  for 

any = 1, , ,t   the variance estimator in (2.12) may be written as  
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with 1

=1
ˆ ˆ=

tt
c cp p


   for  = 1, , 0 .c C  
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How to decompose the non-response variance: A total survey 
error approach 
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Abstract 

When a linear imputation method is used to correct non-response based on certain assumptions, total variance 
can be assigned to non-responding units. Linear imputation is not as limited as it seems, given that the most 
common methods – ratio, donor, mean and auxiliary value imputation – are all linear imputation methods. We 
will discuss the inference framework and the unit-level decomposition of variance due to non-response. 
Simulation results will also be presented. This decomposition can be used to prioritize non-response follow-up 
or manual corrections, or simply to guide data analysis. 

 
Key Words: Total variance; Adaptive design; Imputation. 

 
 

1  Introduction 
 

Total survey error is described by Biemer (2010) as the “accumulation of all errors that may arise in the 

design, collection, processing and analysis of survey data”. He classified survey error components into 

sampling error and nonsampling errors, such as, non-response, coverage, measurement and data processing 

errors. These errors may affect variance, bias, or both. The total survey error paradigm aims at maximizing 

survey quality by minimizing total survey error within prespecified resource constraints like budget, people, 

or time. 

At Statistics Canada, the Corporate Business Architecture initiated the Integrated Business Statistics 

Program (IBSP) as the standardized platform for more than 140 economic surveys with the objective of 

achieving efficiency, enhancing quality and improving responsiveness. In particular, reducing collection costs 

while managing non-response error was identified as one of the program’s pillars. Consequently, an adaptive 

design where different units may receive different treatments became a keystone for this program. For more 

details on IBSP, see Statistics Canada (2015). Groves and Heeringa (2006) showed how paradata could be 

used to increase the response rate. Schouten, Calinescu and Luiten (2013) gave a general framework for an 

adaptive design and explained how the R-indicator could be used in this context. 

A new survey process model called Rolling Estimates has been developed as an attempt to address the 

IBSP’s pillar mentioned above. The Rolling Estimates model is based on iterative processing and estimation 

cycles throughout the collection period. Basically, the idea of this model is to compute key estimates with their 

associated quality indicators at several specific times during the collection period. At the beginning, all units 

are assigned to the self-response survey treatment which means that the respondents are asked to complete the 

online questionnaire. Collection efforts like computer-assisted telephone interview non-response follow-ups 

are then performed on units contributing the most to the estimates where the quality is low based on the 

preliminary results of the Rolling Estimates. This can be viewed as an adaptive design since the treatments on 

the units depend on the quality of the estimates produced during the collection period. Most of the work 
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regarding the development of the IBSP’s adaptive design has been done since 2010. Godbout, Beaucage and 

Turmelle (2011), Turmelle, Godbout and Bosa (2012), Mills, Godbout, Bosa and Turmelle (2013) and Bosa 

and Godbout (2014) made use of this idea in the context of the IBSP adaptive design to minimize the number 

of follow-ups in order to reach a targeted quality in terms of coefficient of variation. 

This paper revisits the work done so far for IBSP and presents an approach to decompose non-response 

variance into an item-level score for a given variable of interest within a domain. This item score is basically 

an attempt to estimate the contribution to the variance borrowed by a single unit. Units with a large score will 

contribute the most to reduce the variance and the coefficient of variation which is often used as a quality 

indicator in surveys. However, there are generally many important variables and domains in a survey. The 

proposed approach first computes, for a given unit, item-level scores for important variables and domains. 

Then, item scores can be combined into a single unit-level score in order to rank units. For example, the unit 

score can be a weighted sum or the maximum of its item scores. The most attractive use of the resulting unit-

level score is to prioritize units, the ones with the highest scores, for the most expensive collection operations 

such as telephone follow-up, computer-assisted telephone interview or computer-assisted personal interview. 

This paper assumes total and partial non-response are both treated in the adaptive design, but treatments may 

be different depending on the type of non-response. For instance, telephone follow-ups could be made in the 

case of total non-response whereas questionnaires with partial non-response could be reviewed by analysts. 

This type of adaptive design generates strong interactions between collection operations, observed data and 

measured quality. Bosa and Godbout (2014) showed how this methodology was implemented in IBSP under 

the Rolling Estimates model. 

Emphasis will be placed on the derivation of the item-level score throughout this paper. Therefore, the 

special case of only one variable of interest within a domain is studied. Also, only one imputation method is 

used to impute the variable of interest in the case of non-response so as to simplify the notation and to ease 

comprehension for the reader. 

Section 2 describes the inference framework. In Section 3, the decomposition of the variance at the unit-

level is expressed. In other words, the contribution of each nonresponding unit to the variance is computed. A 

simulation study was conducted to evaluate the proposed score. It is described in Section 4. Finally, Section 5 

expresses some thoughts and conclusions.  
 

2  Inference framework 
 

Assume a sample s  of size n  is drawn from a population U  of size .N  Define the population total by 

 d k kk U
t d y


   (2.1) 

for a variable, ,y  and a domain indicator, ,kd  which takes the value 1kd   if unit k  belongs to the domain 

,d  and 0kd   otherwise. In the context of full response, dt  is estimated by 0ˆ
d k k kk s

t d w y


  where kw  

could be the sampling weight or a calibrated weight if calibration is performed. Because surveys are generally 

subject to non-response, both unit or item, a sample unit is classified into either a responding or a 

nonresponding unit with regard to the variable y  at any given point during data collection. The subset rs  

contains item-responding units whereas ms  contains item-nonresponding units. Note that rs  and ,ms  
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respectively of size rn  and ,mn  form a partition of the sample ,s  , ,s r mP s s  with r ms s s   and 

.r ms s    

The approach proposed in this paper assumes that imputation is used in case of non-response, which is the 

common approach in business surveys. Moreover, this approach can be considered for both item and unit non-

response as long as imputation is used. However, since only one variable of interest y  is considered here for 

simplicity, then no distinction is made if the y  variable is imputed because of item or unit non-response. Also, 

the set rs  and ms  are not indexed by an item number for simplicity without loss of generality. However, the 

action following the calculation of a unit score might be different depending on whether the unit is responding 

or not. 
 

2.1  Estimation under imputation 
 

The framework requires linear imputation methods. In other words, the imputed value, * ,ky  can be written 

as a linear combination of the values reported by the other units. This linear combination is given by 
*

0 .
r

k k lk ll s
y y 


    The quantities, 0k  and lk  do not depend on the values of variable of interest, ,y  

but they may depend on ,s rs  and auxiliary data from the nonrespondents available on the frame, registers or 

elsewhere. Linear imputation methods cover most methods used in practice like auxiliary value imputation 

(Beaumont, Haziza and Bocci, 2011) and linear regression imputation, as well as donor imputation, which is 

often used to impute categorical variables.   

It is common practice to use several imputation methods, referred to as composite imputation, applied 

sequentially to the same variable. More than one linear imputation method can be used to impute 

nonresponding units. Section 2 of Beaumont and Bissonnette (2011) defines composite imputation in detail. 

Briefly, suppose that the set of nonrespondents is broken down into two or more groups and that a different 

imputation method is used within each group. For example, let kx  be the complete vector of auxiliary variables 

for unit ,k  and suppose regression imputation is used to impute the variable of interest. However, if, for some 

cases, kx  were incomplete, another imputation method, based on the available subset of ,kx  would be used. 

The approach presented in our paper can be generalized to include composite imputation as long as linear 

imputation methods are used. For simplicity of notation, the case of a single linear imputation method is 

presented. 

The estimator of the domain total after imputation is given by 

 *ˆ
r m

d l l l k k kl s k s
t w d y w d y

 
    (2.2) 

where kw  is the sampling weight or a calibrated weight. The estimator presented in equation (2.2) can be 

rewritten as 

                                         

 

*

0

0

0

0

ˆ

.

r m

r m
r

r m r m

r r

r

d l l l k k kl s k s

l l l k k k lk ll s k s
l s

l l l k k k l k k lkl s k s l s k s
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 
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
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 

  

  

  

 

  

   
 
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The quantities dlW  and 0dW  denote the compensatory weights (or adjustment weights) defined as  

 
0 0 .

m

m

dl k k lk
k s

d k k k
k s

W w d

W w d















  

They represent the effect of the non-response in the domain, ,d  carried by the respondent unit, ,rl s  

with a reported value, .ly  

 

2.2  Variance estimation 
 

Consider an imputation model, ,  describing the relationship between variable y  and the vector of 

observed auxiliary variables obs .x  Let  . ,E  Var .  and  cov .  denote respectively the expectation, 

the variance, and the covariance with respect to the imputation model .  The imputation model is  

 
 
 

 

obs

2obs

obscov , 0

k k

k k

k k

E y

V y

y y
















X

X

X

  

where ,k k U   and .k k   The matrix obsX  contains all observed vectors obs.x  The quantities k  and 
2
k  can be estimated by ˆ

k  and 2ˆ
k  respectively. We assume that these estimators are unbiased with respect 

to the imputation model .  These estimators will be useful later for estimating the total variance components 

and the unit decompositions of those components. 

The total error of the estimator (2.2) can be expressed as  

    0 0ˆ ˆ ˆ ˆ ,d d d d d dt t t t t t      (2.3) 

where 0ˆ
dt  is the estimator under complete response given by (2.1). The first term on the right-hand side of 

(2.3) is usually referred to as the sampling error and the second term is called the non-response error. As 

proposed in Särndal (1992) and in Beaumont and Bissonnette (2011), the mean square error of ˆ
dt  using 

(2.3) can be decomposed in three components and is given by  

              
     

   

2 2
0

0 0

ˆ ˆ ˆ ˆ ,

ˆ ˆ ˆ2 , ,

pq d d p d pq d d r

pq d d d d r

E t t E V t E E t t s s

E E t t t t s s

  



     
    

 
(2.4)

 

under imputation model, ,  sampling design, ,p  and response mechanism, .q    2ˆ
pq d dE t t   is 

approximately equivalent to the variance  ˆ
pq d dV t t   assuming that the overall bias is negligible. Thus, 

the equation (2.4) is equivalent to          TOT SAM NR MIX
ˆ ˆ ˆ ˆ ˆ ,pq d d d d d dV t t V t V t V t V t       where: 

    SAM
ˆ ˆ
d p dV t E V t  is the sampling variance; 

     2
0

NR
ˆ ˆ ˆ ,d pq d d rV t E E t t s s

     is the non-response variance; 

      0 0
MIX

ˆ ˆ ˆ ˆ2 ,d pq d d d d rV t E E t t t t s s      is the covariance between sampling and non-

response error terms, also called the mixed variance component. 
 

Beaumont and Bissonnette (2011) proposed the following estimators for  SAM
ˆ ,dV t  NR

ˆ
dV t  

and  MIX
ˆ .dV t  
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1.      SAM ORD DIF
ˆ ˆ ˆˆ ˆ ˆ

d d dV t V t V t   where: 

o  ORD
ˆ ˆ

dV t  is the naive sampling variance estimator using the imputed values as though they 

were reported values. 

o     2 2
DIF

ˆ ˆ ˆ1
m

d k k k kk s
V t w d 


   is a correction to  ORD

ˆ ˆ
dV t  in order to reduce the bias 

of  ORD
ˆ ˆ ,dV t  as proposed by Beaumont and Bocci (2009), since the variance component 

 ORD
ˆ ˆ

dV t  relies on the use of imputed values, usually more homogeneous than the reported 

values.  

2.   2 2 2 2
NR

ˆ ˆ ˆ ˆ
r m

d dl l k k kl s k s
V t W w d 

 
    is the estimator of the non-response component of 

variance.  

3.      2 2
MIX

ˆ ˆ ˆ ˆ2 1 2 1
r m

d dl l l l k k k kl s k s
V t W w d w w d 

 
      is the estimator of the mixed 

variance component. 

 
Under complete response, ,ms    the compensation weights are 0,dlW   and the variance 

components,  DIF
ˆ ˆ ,dV t  NR

ˆ ˆ ,dV t  and  MIX
ˆ ˆ ,dV t  are also equal to 0, leaving the total variance as 

   TOT ORD
ˆ ˆˆ ˆ .d dV t V t  Under a census, ,s U  the variance components,  DIF

ˆ ˆ ,dV t  ORD
ˆ ˆ ,dV t  and 

 MIX
ˆ ˆ ,dV t  are equal to 0, leaving the total variance as    TOT NR

ˆ ˆˆ ˆ .d dV t V t  

 
2.3  Non-response bias 
 

The reduction of non-response bias is always a desirable goal. It can be achieved through an adaptive 

design and/or through an appropriate method of dealing with missing values. Our framework assumes that 

the non-response bias is removed through imputation methods that use relevant auxiliary information. In 

practice, it is likely that imputation will only reduce non-response bias, not eliminate it. We may then 

wonder whether adaptive designs could be used to reduce further the bias. In the context of non-response 

weighting, Beaumont, Bocci and Haziza (2014) argued that auxiliary information used in an adaptive design 

to reduce non-response bias can also be used in non-response weighting to reduce the same amount of bias. 

Their argument can also be made in the context of imputation. This justifies our focus on variance reduction 

rather than bias reduction. We acknowledge that some bias may remain after imputation but ignore this bias 

because it may not be possible to reduce it further through an adaptive design without the availability of 

additional auxiliary information. However, it is possible to reduce the variance through an adaptive design.   

 
3  Unit-level error decomposition of variance components 
 

This section describes the approach used to evaluate the contribution of a given nonresponding unit, 

,ms   to the estimated total variance for the estimation of a total for a given variable.  

The unit-level error decomposition, ,  of the total variance for a given unit, ,  is defined as the 

difference between the estimated total variance, and the projected total variance, i.e.,   TOT
ˆ ˆ

dV t   

     TOT TOT
ˆ ˆˆ ˆ .d dV t V t  The superscript    is used to indicate projected quantities when unit   is converted 
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to a respondent. So,   TOT
ˆ ˆ

dV t  can be seen as the expected gain, in terms of total variance, of converting 

a nonrespondent unit   to a respondent. 

In order to get   TOT
ˆ ˆ ,dV t   is moved from ms  to ,rs  generating the new partition  

sP   of the 

sample from sP  where       , ,s r mP s s      r rs s    and    \ ,m ms s   as illustrated in Figure 3.1. 

 

 

 

 

 

 

 

 
 

Figure 3.1 Sample partitions. 

 
Some assumptions are necessary to decompose the variance components. It is recognized that these 

assumptions may not perfectly hold in reality. However, they can be used to generate accurate results, as 

shown in the simulation in Section 4. The required assumptions are:  
 

1. Projected reported value: let ms   be converted to a response and let   * .y y
   

2. Projected imputation parameters: ,mk s   ˆ ˆ
k k
   and  ˆ ˆ .k k

   

3. Projected imputation relationship matrix: mk s   and ,rl s  ( ) 0lk
   if l   or if k   

or  
lk lk
   otherwise. Similarly,  

0 0k
   if k   or  

0 0k k
   otherwise. 

 
Assumption 1 implies that if a nonresponding unit, ,  would have been converted to a respondent, its 

reported value is equal to its imputed value. This is not true generally, but the imputed value is our best 

estimate. The expectation is that this imputed value is close enough to the reported value to estimate the 

error on the variance components. This assumption will have an impact when the sampling variance is 

decomposed. 

Assumption 2 states that the estimated parameters of the imputation model would remain unchanged if 

  were a respondent. In the case of a consistent imputation model parameter estimator, this assumption 

becomes more realistic when rs  is larger. 

Finally, assumption 3 means that the imputation relationship between nonrespondents and respondents 

remains unchanged, except when unit   is involved. In other words, the converted unit, ,  is no longer 

imputed from respondents, but will not be used to impute other nonresponding units. Figure 3.2 shows how 

assumption 3 is reflected in terms of the phi matrix. 



Survey Methodology, December 2018 297 
 

 
Statistics Canada, Catalogue No. 12-001-X 

 

 

 

 

 

 

 

 
 
 

              Figure 3.2   Initial and projected imputation relationship phi matrix. 

 
Therefore, the compensation weight,  ,dlW   of a responding unit, ,rl s   is projected as 

 

   

 

.

m

m

dl k k lk

k s

k k lk l
k s

dl l

W w d

w d w d

W w d



 

  

  



 









 

 



  

(3.1)

 

The marginal weight from the converted unit   is withdrawn from the original compensation 

weight, ,dlW  to obtain the new  .dlW   Note that    
  0
m

d k k kk s
W w d

 
 

   because   0k

   under 

assumption 3. As mentioned above, it means that   isn’t used to impute nonrespondents. 

In the next subsections, the unit-level error decomposition for unit   is computed for the four variance 

components, as described in Section 2.3. 

 
3.1  Unit-level error decomposition of the naive sampling variance 
 

The quantity  ORD
ˆ ˆ

dV t  depends on the y  values, the final weights and the first-order and second-order 

selection probabilities. The unit-level error decomposition of the naive sampling variance component 

 ORD
ˆ ˆ

dV t  is trivial since the assumption that unit   goes from ms  to rs  does not change weights and 

selection probabilities. Under assumption 1, the projected reported value  y 
  is set to *y  so that 

     ORD ORD
ˆ ˆˆ ˆ

d dV t V t   when   is converted to a responding unit. Consequently, the decomposition of 

 ORD
ˆ ˆ

dV t  is given by 

         ORD ORD ORD
ˆ ˆ ˆˆ ˆ ˆ 0.d d dV t V t V t

     (3.2) 

This result is consistent with the idea that the naive sampling variance point estimate will likely change, 

but it is not expected to decrease with an extra responding unit.  
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3.2  Unit-level decomposition of the correction to the sampling variance 
component 

 

The unit-level error decomposition for unit   of the correction to the sampling variance component, 

 DIF
ˆ ˆ ,dV t  is given by 

 
        

      
 

DIF DIF DIF

2
2 2 2

ˆ ˆ ˆˆ ˆ ˆ

ˆ ˆ1 1 .
m m

d d d

k k k k k k k k
k s s

V t V t V t

d w d w











   
 

 

       

Under assumption 2,  ˆ ˆ ,k k
   so that 

      2 2
DIF

ˆ ˆ ˆ1 .dV t d w         (3.3) 

The astute reader will notice that the actual sampling variance (not its estimation) should not be impacted 

by whether or not a unit is a respondent. However, we decided to include the impact of a unit on the sampling 

variance estimation in order to be coherent in the way we treat the three components  SAM
ˆ ,dV t  NR

ˆ
dV t

and  MIX
ˆ .dV t  

 
3.3  Unit-level decomposition of the non-response variance component  
 

The unit-level error decomposition for unit   of the non-response variance component  NR
ˆ ˆ

dV t  is 

given by 

                        
        

     
 

  
 

NR NR NR

2 2 2
2 2 2 2 2

ˆ ˆ ˆˆ ˆ ˆ

ˆ ˆ ˆ ˆ .
r m r m

d d d

dl l k k k dl l k k k
l s k s l s k s

V t V t V t

W w d W w d
 




  



   
   

 

         
   

  

Under assumptions 2 and 3,  ˆ ˆ
k k
   and   0.dW 

   This can be rewritten as 

                                 2
2 2 2 2 2

NR
ˆ ˆ ˆ ˆ ˆ .

r r

d dl l dl l
l s l s

V t W W w d
      

 

  
 
    

Using formula (3.1), this becomes 

          

    

 

 

22 2 2 2 2
NR

2 2 2 2 2 2 2 2

2 2 2 2 2

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ2

ˆ ˆ2 .

r r

r

r

d dl l dl l l
l s l s

dl l dl dl l l l
l s

dl l l l
l s

V t W W w d w d

W W W w d w d w d

W w d w d w d

      

        

        

    

    

   

 





   
 

    
 

  

 





 

(3.4)
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3.4  Unit-level decomposition of the mixed variance component 
 

Finally, the impact of unit   on the variance component term,  MIX
ˆ ˆ ,dV t  is given by 

 

        

   

      
 

    
 

MIX MIX MIX

2 2

2 2

ˆ ˆ ˆˆ ˆ ˆ

ˆ ˆ2 1 2 1

ˆ ˆ2 1 2 1 .

r m

r m

d d d

dl l l l k k k k
l s k s

dl l l l k k k k

l s k s

V t V t V t

W w d w w d

W w d w w d
 




  



 

 

 

 

 

    
 


     
 

 

 

  

This equation can be rewritten as follows, under assumptions 2 and 3 and equation (3.1) 

  

      

     
 

   

2 2
MIX

2 2

2 2

ˆ ˆ ˆ ˆ2 1 2 1

ˆ ˆ2 1 2 1

ˆ ˆ2 1 2 1 .

r m

r m

r

d dl l l l k k k k
l s k s

dl l l l l k k k k
l s k s

l l l l
l s

V t W w d w w d

W w d w d w w d

w d w d w w d





  

      

  

  

  

 

 



    
 


      
 

   

 

 



 

(3.5)

 

In Section 2.3, the estimation of the total variance,  TOT
ˆ ˆ ,dV t  has been defined as  TOT

ˆ ˆ
dV t   

       ORD DIF NR MIX
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ .d d d dV t V t V t V t    Similarly, the impact of unit   on  TOT

ˆ ˆ
dV t  is defined as  

               TOT ORD DIFF NR MIX
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ,d d d d dV t V t V t V t V t              

where   ORD
ˆ ˆ ,dV t   DIF

ˆ ˆ ,dV t   NR
ˆ ˆ ,dV t  and   MIX

ˆ ˆ
dV t  are respectively given by equations 

(3.2), (3.3), (3.4) and (3.5). 

It can be observed (proofs are given in the appendix) that     DIF DIF
ˆ ˆˆ ˆ

m
d k dk s

V t V t


   and 

    MIX MIX
ˆ ˆˆ ˆ .

m
d k dk s

V t V t


   However, this linear relation doesn’t hold for  NR
ˆ ˆ .dV t  This property is 

important to consider because, for  DIF
ˆ ˆ

dV t  and  MIX
ˆ ˆ ,dV t  the sum of the unit-level errors on all 

nonresponding units, ,mk s  is equal to the corresponding estimated variance component. In the case of 

non-response variance component, the sum of the errors is different than  NR
ˆ ˆ .dV t  The difference is 

given by 

     
2

2 2 2
NR NR

ˆ ˆˆ ˆ ˆ .
m r m m

k d d k k lk k k lk l
k s l s k s k s

V t V t w d w d   
   

        
     (3.6) 

This difference can be relatively small, especially in business surveys characterized with asymmetric 

data. This is the case when  max .
m m

k s k k lk k k lkk s
w d w d  

   This is in line with the results shown by 

Mills et al. (2013). 
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Overall, the total variance can be considered as approximately linear in terms of the unit-level errors, 

especially in the case of sample surveys where  ORD
ˆ ˆ ,dV t  DIF

ˆ ˆ ,dV t  and  MIX
ˆ ˆ

dV t  are significant 

contributors to the total variance. 

 
4  Simulation study 
 

The sum of the item contributions is expected to be close enough to the estimated variance due to non-

response. Simulations were conducted to assess the validity of the proposed score. The goal was then to 

evaluate if the proposed item contribution is a good approximation of the real contribution to the total 

variance of a given unit. In order to do so, the total contributions of a random subset of ms  were compared 

to the difference of the estimated variances where this subset is respectively considered as nonresponding 

units and responding units. 

The following steps explain how simulations were performed. 

1. A population was created, starting from an auxiliary variable x  generated according to a gamma 

distribution with a mean of 48 and a variance of 768. The variable of interest y  was created 

conditionally on x  from a gamma distribution with a mean of 1.5x  and a variance of 16 .x  These 

parameters are the same as the ones set by Beaumont and Bissonnette (2011). 

2. A simple random sample s  was selected from this population and an independent non-response 

subset ms  was generated using Bernoulli sampling. 

a. The nonresponding units from ms  were imputed using ratio imputation, where 

    1
*

r r
k k l ll s l s

y x y x


 
    and  

                             
  2*

2ˆ .r

r

l ll s
k k

ll s

y y
x

x
 









  

b. The population total ˆ,t  the variance components  ˆ ˆ ,V t  and the unit-level decompositions 

  ˆ ˆ
k V t   were estimated, where the subscript   represents any of the variance 

components.  

3. A subset, ,  of units, ,  from ,ms  independently selected from a Bernoulli experiment, was 

moved from ms  to rs  to simulate non-response conversion. Therefore, we have a new partition, 
 ,sP   with   \m ms s    and   .r rs s     

a. The nonresponding units k  from  
ms   were re-imputed using a ratio model which is given 

by       1
**

r r
k k l ll s l s

y x y x 



 
    and  

                             
 

 

** 2

*2
( )

ˆ .r

r

l ll s
k k

ll s

y y
x

x
















  

b. The population total,  ˆ ,t   and the variance components,   ˆ ˆ ,V t 
  were estimated.  
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4. The total of the unit-level decompositions,   ˆ ˆ ,V t
   for units   from   was compared 

to the difference in the variance component estimates,     ˆ ˆˆ ˆ .V t V t 
   The relative difference 

in the decomposition error, DRel,  was calculated as 

                              
        

 
ˆ ˆ ˆˆ ˆ ˆ

DRel .
ˆ ˆ

V t V t V t

V t




  



 



 (4.1) 

 

Steps 1 to 4 were independently repeated with different combinations of population size, sample size, 

response rate, and conversion rate as described in 4.1, 4.2 and 4.3.  

 
4.1  Simulation scenario 1: Fixed parameters 
 

In scenario 1, population size, sample size, response rate, and conversion rate were respectively set to 

400, 100, 70%, and 33.3%, with 200 independent iterations. The results are shown in Figures 4.1 and 4.2. 

Both Figures 4.1 and 4.2 show that the sum of the unit-level decomposition is a good predictor of the 

change in the non-response component estimates. The average relative difference in the variance estimates 

is low at 2.1%, but the standard error is large at 5.8%. Out of 200 relative differences, only 19 are not within 

the +/– 10% range but they are all above 10%. If a nonrespondent is converted to a respondent, we conclude 

that the non-response component of the variance will approximately be reduced by the measured 

contribution of this unit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Variance difference for the non-response components versus total unit-level decompositions with 
fixed parameters. 

 

‐200,000

0

200,000

400,000

600,000

800,000

1,000,000

0

1
0
0
,0
0
0

2
0
0
,0
0
0

3
0
0
,0
0
0

4
0
0
,0
0
0

5
0
0
,0
0
0

6
0
0
,0
0
0

7
0
0
,0
0
0

8
0
0
,0
0
0

9
0
0
,0
0
0

1
,0
0
0
,0
0
0

V
a
ri
a
n
ce
 d
if
fe
re
n
ce
 f
o
r 
th
e 
n
o
n
‐r
es
p
o
n
se
 c
o
m
p
o
n
en
ts

Total unit‐level decompositions



302 Bosa et al.: How to decompose the non-response variance: A total survey error approach 
 

 
Statistics Canada, Catalogue No. 12-001-X 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Relative difference in the variance estimates versus total unit-level decompositions with fixed 
parameters. 

 

4.2  Simulation scenario 2: Varying population and sample sizes 
 

In scenario 2, the population size ranged from 100 to 50,000, with sample rate, response rate, and 

conversion set to 20%, 70%, and 33.3% respectively. More iterations (40) were created for the smallest 

population  100 ,N   and less (10) for the largest  50,000 ,N   for operational considerations. The 

results are shown in Figures 4.3 and 4.4. 
 
 
 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 4.3 Variance difference for the non-response components versus total unit-level decompositions, 

varying population sizes. 
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Figure 4.4 Relative difference in the variance estimates versus total unit-level decompositions, varying 
population sizes. 

 
Both Figures 4.3 and 4.4 show that the relative differences in the decomposition errors are more volatile 

for smaller populations but rapidly converge close to 0 as population and sample sizes increase.  This is 

further confirmed by Table 4.1. 

 
Table 4.1 
Count, average and standard deviation of relative differences in the variance estimates by population sizes 
 

Population Size (N) 
Relative Differences in the Variance Estimates in percentage 

Count Average Standard Deviation 

100 33(*) 2.2 10.6 
250 30 1.6 11.4 
500 25 1.0 5.3 

1,000 20 2.2 4.4 
2,500 10 1.2 2.3 
5,000 10 1.2 1.4 
10,000 10 1.6 0.8 
25,000 10 0.7 0.4 
50,000 10 1.3 0.4 

Grand Total 163 1.6 7.3 

(*): Out of 40 replicates created, only 33 had converted units. 
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that under the ratio imputation model, both are constant for a given replicate, i.e.,    2 2ˆ ˆDRel DRelk   

and    DRel DRel .lk   After the deletion of 2 extreme replicates, the correlation between the relative 

difference in the variance estimates DRel  and  2ˆDRel   is 0.78 while the correlation between DRel  and 

 DRel   is 0.01. This illustrates that the instability is primarily caused by the variability of the  ˆ ˆ
l l
   

estimates. From this scenario, the conclusions are: 

 Assumption 2 becomes valid for large enough sample sizes and leads to more accurate unit-level 

decomposition for consistent imputation model variance estimators. 

 The unit-level decomposition is robust to assumption 3 validity. 

 
4.3  Simulation scenario 3: Varying conversion rates  
 

In scenario 3, the population and sample sizes were fixed to 2,500 and 500 respectively, and response 

rate is set to 50%. The conversion rates (CR) varied from 10% to 100% by increments of 10%, in order to 

generate different sizes of subset ,  with 15 iterations each. The results are shown in Figures 4.5 and 4.6. 

Both Figures 4.5 and 4.6 show that the relative difference in the decomposition errors becomes biased 

as the size of   increases, as confirmed in Table 4.2. This is primarily due to non-linearity of  NR
ˆ ˆ ,dV t  as 

demonstrated in equation (3.6). The monotone nature of the relationship in Figure 4.5 suggests that the 

ordering of the error contributors is not affected, i.e., the large estimated contributors will have larger effect 

on the variance than the ones with a small estimated contribution.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 Variance difference for the non-response components versus total unit-level decompositions, 
varying conversion rates (CR). 
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Figure 4.6 Relative difference in the variance estimates versus total unit-level decompositions, varying 
conversion rates (CR). 

 
 
Table 4.2 
Count, average, and standard deviation of relative differences in the variance estimates by conversion 
rates (CR) 
 

Conversion Rate (CR) 
Relative Differences in the Variance Estimates in percentage 

Count Average Standard Deviation 

10% 15 -3.0 2.4 
20% 15 -3.0 3.9 
30% 15 -0.5 3.0 
40% 15 2.2 3.3 
50% 15 5.7 4.3 
60% 15 11.1 2.4 
70% 15 16.0 2.4 
80% 15 21.9 2.3 
90% 15 28.9 3.5 
100% 15 36.2 1.7 

Grand Total 150 11.5 13.5 

 
Despite the fact that the relative differences in the variance estimates are not null on average, it doesn’t 

prevent the use of the proposed decomposition of errors to identify the largest sources of variance, especially 

in asymmetric populations. Mills et al. (2013) showed through a simulation how this could be successfully 

adapted into an efficient active collection strategy. 
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5  Conclusion 
 

The proposed unit-level score is a good approximation of the unit impact on the variance due to non-

response. It is applicable for different survey designs, compliant with calibration estimators for domain 

totals and works with many common imputation methods. The assumptions on which the decomposition 

relies are generally valid in common surveys using unbiased imputation methods and consistent estimators 

of imputation model parameters. The simulation results show that this approach becomes more accurate 

with larger sample sizes. The decomposition of the non-response variance is biased due to its non-linearity. 

However, the bias is smaller in asymmetric populations and when focusing on a small number of 

nonresponding units. The fact that the ordering of units using the estimated contribution to variance due to 

non-response is similar to the real order is an important aspect when the priority is to identify the largest 

contributors, not necessarily their actual contributions, to the total error. 

This paper presented the method in a univariate context but it can be easily extended to a multivariate 

framework, using a distance function to combine the item contributions into a unit contribution. The idea 

remains to focus our attention in terms of collection treatments or manual verification on cases where the 

unit scores are the highest. In this case the non-response follow-up treatment might be different for unit non-

response compared to partial non-response. For example, a telephone follow-up could be used to collect all 

the items for the total nonresponding units with the larger score; and the partial nonrespondents with a large 

score could be sent to an analyst for review, depending on the budget for follow-up. Moreover, if this score 

can be computed several times during the collection period, then non-response follow-ups will be more 

efficient because the unit score will be more accurate and the quality might become satisfactory for some 

estimates. Simulation results show that the proposed score is a good approximation to the contribution of a 

unit to the variance due to non-response. Subsequently, this score could be used to determine how many 

and which nonresponding units should be followed in order to reach a given estimated coefficient of 

variation.   

This work was initially done for non-response prioritization under the Rolling Estimate iterative adaptive 

design process for IBSP. Following the original plan, key item estimates would be computed with their 

associated quality indicators at several specific times during the collection period. After each specific time, 

the units with the largest contributions according to our method would be prioritized for follow-up. 
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Abstract 

In business surveys, it is common to collect economic variables with highly skewed distribution. In this context, 
winsorization is frequently used to address the problem of influential values. In stratified simple random 
sampling, there are two methods for selecting the thresholds involved in winsorization. This article comprises 
two parts. The first reviews the notations and the concept of a winsorization estimator. The second part details 
the two methods and extends them to the case of Poisson sampling, and then compares them on simulated data 
sets and on the labour cost and structure of earnings survey carried out by INSEE. 
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1  Introduction 
 

In survey statistics, a population unit is influential if the estimators produced on a sample drawn from 

that population change significantly depending on whether or not that unit is sampled. The concept of an 

influential unit therefore depends on several factors, which determine what Beaumont, Haziza and 

Ruiz-Gazen (2013) called a configuration: 

• a sampling design for a population; 

• one or more variables of interest and a parameter of interest on the distribution of this variable; 

• an estimator calculated on the sample for this parameter of interest. 
 

A unit may be influential in one configuration and not in another. For example, it can have a significant 

effect on the estimator of the total of a variable in a particular domain, but have only a minor influence on 

the estimator of the total of that variable in the total population. 

Chambers (1986) distinguishes two types of influential units: non-representative atypical values are units 

that have provided erroneous information or are found in these exceptional situations. The information 

collected on these units cannot be extrapolated to the rest of the population; these units are usually identified 

during collection or during control of the data collected and processed via specific procedures (for answers 

considered to be erroneous, the information collected is, for example, replaced by a missing and imputed 

value. It can also be corrected by recontacting the unit in question. For units that are in an exceptional 

situation and for which we are sure the case is unique, it is common to put their weight to 1). 

Representative influential units provided correct answers and are not a priori unique in the population. 

They are common in surveys of businesses, a population for which many variables have a very skewed 

distribution. In particular, the variables reflecting volumes or amounts (turnover, value added, payroll, 
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investment, energy consumption, research and development expenditure and anti-pollution expenditure to 

name some of the key variables of INSEE business surveys) are characterized by a high concentration of 

low values, corresponding to many small businesses, and some very high values associated with large or 

very large businesses. 

To limit the effects of this wide dispersion of the variables of interest in the population of businesses, 

the classical sampling design applied to them is a stratified design, in which size, measured in number of 

employees, is used as a stratification variable. In most cases, this makes it possible to assign businesses 

inclusion probabilities correlated with the amounts they reported in the survey. In these designs, large 

businesses are surveyed exhaustively, as are businesses that, according to the auxiliary information available 

in the sampling frames, are likely to report very large amounts in the survey, regardless of their size. 

In practice, however, it is impossible to be entirely protected against influential observations at the 

sampling design stage. Indeed, the information in the sampling frames may be affected by measurement 

errors. For example, the number of employees in the sampling frames is a variable derived from returns to 

social security organizations that requires a significant amount of controls and adjustments and takes two 

years to reach a definitive value for a given year. It is thus possible, when drawing a sample, to use the last 

known definitive value, but which relates to a business’s previous situation, or to use the nearest preliminary 

value, which will be affected by more measurement errors. In both cases, the variable used for stratification 

may not correspond to the actual situation of the business at the time of the survey, creating businesses 

sampled in the wrong stratum (called “strata jumpers”), whose sampling weight is much too high compared 

with their survey responses. 

The auxiliary variables available to define the sampling designs may also be only weakly correlated with 

the survey themes. It is therefore difficult to identify businesses that are innovative or involved in research 

and development activities based solely on their industry, size, region of establishment, duration of existence 

or legal category. The same goes for the amounts invested in sustainable development (measured in France 

by the Antipol Survey conducted by INSEE: https://www.insee.fr/fr/metadonnees/source/s1232). 

Surveys can also collect several weakly correlated variables of interest. The sampling design, which aims 

to achieve the highest possible precision for the survey’s core variables of interest, may not be appropriate 

for other, less significant variables, e.g., the portion of turnover generated by online sales. In particular, 

some businesses that report atypical values for secondary variables of interest in the survey may not have 

been identified and placed in a comprehensive stratum. 

Finally, many business surveys are conducted at regular intervals, most often every year, and aim to 

estimate both the annual levels of the main variables of interest and their evolution. To meet these two 

objectives, the sample surveyed in the non-exhaustive strata is not renewed in full each year, but a portion 

is retained. For example, the sample of business surveys on Information and Communication Technologies 

(ICT-E) is renewed by half each year; businesses sampled in a given year are surveyed two years in a row 

(see Demoly, Fizzala and Gros, 2014). In this case, the businesses retain the sampling weight with which 
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they were initially sampled, which may no longer match their characteristics at the time of the survey, 

resulting in the appearance of “stratum jumpers” and potentially influential units. 

Classical estimators in the presence of survey data (for example, the expansion estimator or the estimator 

adjusted for total non-response) have (virtually) no bias but can be very unstable in the presence of 

influential values. Robust estimation methods must then be implemented to limit their impact. The principle 

of these methods is to modify the estimation weights or the declared values by the influential units in order 

to make the estimators more stable, at the risk of biasing them. More precisely, the estimators to which these 

methods lead must have a mean square error significantly lower than that of classical expansion estimators 

in the presence of influential data, without losing too much efficiency in the absence of atypical values in 

the sample. The processing of influential values therefore lies in a compromise between bias and variance. 

The most common method in practice for dealing with the problem of influential values is winsorization, 

which applies to estimating totals of variables of interest. For a given variable of interest, this consists of 

partitioning the sample and associating each part of the sample with a threshold; for example, in the case of 

a sample selected by stratified simple random sampling, the sample is cut according to the drawing strata, 

and a different threshold is associated with each stratum. Units in the sample for which the values of the 

variable are greater than the threshold associated with their part of the sample have their response or their 

weight decreased, while the responses and weights of the other units are not modified. There are two forms 

of winsorization in the literature, which differ depending on how the variable or weight is modified when 

the variable of interest exceeds the threshold. In standard winsorization, also known as Type I winsorization, 

values that exceed the threshold are truncated at the threshold. In this article, we will use the form proposed 

by Dalén (1987) and Tambay (1988), also called Type II winsorization, because it ensures that winsorized 

weights greater than 1 are obtained. This method will be briefly reviewed in Section 2. 

In the application of winsorization, the choice of thresholds is crucial; a bad choice can lead to winsorized 

estimators with a higher mean square error than the classical estimators via the introduction of a very high 

bias that is difficult to correct later. The choice of these thresholds has been the subject of numerous studies, 

including by Kokic and Bell (1994), Rivest and Hurtubise (1995) and Favre-Martinoz, Haziza and 

Beaumont (2015). In the case of a simple random stratified design without replacement, Kokic and Bell 

(1994) determined the theoretical formulas and algorithms for calculating the thresholds that realizations in 

the winsorized estimator with the lowest mean square error possible, under the hypothesis that the 

realizations of the variable of interest are identically distributed in each stratum, the mean square error being 

calculated under the sampling design and the law of the variable of interest. In the case of repeated surveys, 

they suggest using historical data collected in previous editions of the surveys to calculate these thresholds. 

Clark (1995) generalized the results of Kokic and Bell (1994) in the case of a ratio estimator by calculating 

the mean square error with respect to the model only. 

Other methods have been proposed for identifying and processing influential units in survey statistics. 

One of these, introduced by Beaumont et al. (2013), is based on the concept of conditional bias, a measure 

of influence proposed by Moreno-Rebollo, Muñoz-Reyez and Muñoz-Pichardo (1999) and 
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Moreno-Rebollo, Muñoz-Reyez, Jimenez-Gamero and Muñoz-Pichardo (2002). Unlike the winsorization 

methods mentioned above, which are only suitable for certain sampling designs and require fairly rich 

information outside the sample, the method proposed by Beaumont et al. (2013) can be applied a priori to 

any sampling design and uses only the survey responses. However, it does not necessarily lead to the 

processed estimator of influential units with the smallest mean square error, but to the estimator on which 

the influence of the most influential unit is the lowest in absolute value. Favre-Martinoz et al. (2015) and 

Favre-Martinoz, Haziza and Beaumont (2016) proposed adaptations of the conditional bias method for 

calculating winsorization thresholds and factoring in an additional sampling phase and estimation in 

domains. 

The purpose of this paper is to compare the efficiency of the winsorization and conditional bias methods 

to treat influential values. In Section 2, we review the winsorization method and the calculation of 

winsorization thresholds proposed by Kokic and Bell in stratified simple random sampling. We also propose 

an extension of the Kokic and Bell method for a Poisson sampling design. After briefly reviewing the 

principles of robust estimation based on conditional bias in Section 3, we present in Section 4 simulations 

to compare the extension of the Kokic and Bell method with the conditional bias methods in the Poisson 

case. Finally, an example of the practical application of the Kokic and Bell method and its extension to the 

Poisson case is presented in Section 4, which compares them with a method based on conditional biases in 

the context of the labour cost and structure of earnings survey carried out by INSEE. 

 
2  The processing of influential units by winsorization following the 

approach of Kokic and Bell 
 

In this section, we present the method initially proposed by Kokic and Bell (1994), which applies to 

samples selected through stratified simple random sampling, and an extension of this method to the case of 

samples selected through Poisson sampling. 

 
2.1  Case of stratified simple random sampling 
 

Consider a finite is a population U  of size N  and a variable of interest X  observed on a sample S  of 

fixed size n  and for which we are looking to estimate the total   = ii U
T X X

  on the population. The 

approach of Kokic and Bell (1994) is based on the following hypotheses: 

• X  is a positive or nil variable; 

• S  is selected according to a stratified simple random sampling design ,P  following strata 

, = 1, , .hU h H  In each stratum of size ,hN  a sample hS  of size hn  is selected according to 

a simple random design without replacement. The expectation with respect to the sampling design 

will be denoted pE  afterwards; 

• in each stratum ,hU  the values of X  in the population are derived from random variables hiX  

that are independent and identically distributed according to a law h  (or of the same model )m  
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with expectation .h  The expectation and the variance with respect to this model will be denoted 

mE  and mV  respectively hereafter; 

• we have, for each stratum ,hU hN  realizations hiX


 of the variable X  derived from the same 

law h  but independent of the sample .hS  

 

In this context, Kokic and Bell (1994) propose applying a Type II winsorization; they associate with 

each stratum hU  a threshold hK  independent of the sample S  and define the winsorized variable ,X  for 

,i S  by: 

 

if <

=
1 if .

hi hi h

hi h h
hi h hi h

h h

X X K

X n n
X K X K

N N



 

   
  

   

The winsorized estimator of the total X  is then the expansion estimator of the total of the winsorized 

variable :X  
=1

ˆ = .h

h h

H N
hinh i S

T X X
    

The thresholds hK  are determined so as to obtain the estimator  T̂ X  with the lowest mean square error 

with respect to both the sampling design and the law of X  in each stratum, i.e., 

         
=1, ,

2
*

=1, ,
ˆArgmin .

h h Hh m PKh HK E E T X T X   
   

The optimal thresholds must therefore protect the winsorized estimator on average over all possible 

samples in the population, and on average on the law of the variable of interest, i.e., on average over all the 

possible populations considering the law of .X  

Kokic and Bell (1994) place themselves in an asymptotic framework by considering a set of populations, 

sampling designs and samples indexed by     such as: 

• , = 1, , , > 1;
vhh H n     

• , ;N n  
    

•  0, 1 2 , , = 1, , , < < 1 ;hv

hv

n

Nh H         

• the number of strata H  is fixed. 

 

They also propose denoting  =hi hi hJ X K  the winsorization indicator. To reduce the notations, 

we will omit in the rest of the article the indicator   as well as the indicator i  in the expression of the 

expectations and variances mE  and mV  of the random variables and hiX hiJ  under the law of X  in the 

stratum .h  Insofar as these variables are assumed to be independent and identically distributed in each 

stratum,  m hiE X  for example, is indeed the same, regardless of the observation considered. 

In this context, Kokic and Bell (1994) show that, at the optimum and asymptotically, all the thresholds 

are linked to one another by the relation: 

  1h
h h

h

N
K B

n


  
 

  (2.1) 
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with       
=1

= 1 h

h

H n
h h m h m h hNh

B N K E J E X J   the bias of the winsorized estimator. The notation 

  corresponds to an asymptotic equivalence when n  tends toward infinity (which is equivalent to saying 

when   tends toward infinity). 

If we denote    * = 1h

h

N
hi hi hnX X    and = ,L B  then we can notice that at the optimum given 

(2.1),  * *= =hi hi hiJ J X L  and the bias B  is the opposite of the zero-point of the function F  defined 

by: 

           * * *

=1 =1

= 1 .
H H

h m h h m h h
h h

F L L n E J n E X J    (2.2) 

Determining the zero-point of the function F  requires estimates of ,h  *
m hE J  and  * * .m h hE X J  To 

do this, Kokic and Bell (1994) rely on observations of the variable X  in each stratum. These observations 

must come from a source independent of the sample, since the demonstration of formulas (2.1) and (2.2) is 

based on the fact that the thresholds hK  are assumed to be independent of the sample .S  

If we assume that for each stratum h  we have hp  realizations hiX


 of ,X  then we can estimate F  by: 

                                             

 
 

 

*
=1

=1

* *
=1

=1

ˆ = 1
h

h

p
H

hii
h

h h

p
H

hi hii
h

h h

X L
F L L n

p

X X L
n

p

   
  










 




 

(2.3)

 

with 

       =1* = 1

hp

hjjh
hi hi

h h

XN
X X

n p

      




 
  

and estimate the optimal bias B  as the opposite of the zero-point of ˆ .F  

Now, F̂  is an increasing function and is linear by sections, which admits only one zero-point. This can 

be estimated simply by denoting  
*
iX


 the values of *

hiX


 sorted in ascending order and by calculating 

  *
1

ˆ ,F X


  *
2

ˆ ,F X


  until F̂  sign changes. 

Indeed,     
  * *
1=1* *

1 1 =1
ˆ =

ph
hii

h

X XH

ph
F X X

 
  

 is negative because  
*
1X


 is by definition lower than all the 

others *
hiX


 and because  
*
1X


 is negative, since 
*

=1 = 0.
ph

hjj

h

X

p




 However,     
* *ˆ = 0,p pF X X 
 

 for similar 

reasons by denoting 
=1

= .
H

hh
p p  

By denoting j  the indicator such as   *ˆ 0jF X 


 and   *
1

ˆ 0,jF X  


B  can be estimated by linear 

interpolation, i.e., by 

                                                              
     

* * * *
1 1

* *
1

ˆ ˆ
ˆ = .

ˆ ˆ
j j j j

j j

X F X X F X
B

F X F X
 








   
   (2.4) 
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2.2  Extension to the case of the Poisson sampling design 
 

We now place ourselves in the situation in which the sampling design P  by which S  is selected is a 

Poisson sampling design, in which each unit i  of the population can belong to the sample with a probability 

> 0.i  We are always interested in estimating the total in the population   = ii U
T X X

  of a variable 

.X  The extension of the Kokic and Bell method to this sampling design assumes: 

• that X  is a positive or nil variable; 

• that it is possible to partition the population and the sample into subpopulations hU  and hS  in 

which all the values hi hid X  are independent realizations from the same model verifying: 

 = 1, , , , = ,h hi hi h hih H i U d X       (2.5) 

with 

 
 

  2

= 0

= <

m hi

m hi h

E

V 









  

where mE  and mV  designates the expectation and variance with respect to the model (2.5). 
 

In this context, we propose, as in the original method applied to stratified simple random sampling, 

associating a threshold , = 1, ,hK h H  with each part , = 1, ,hS h H  and defining: 

• the winsorized variable X  by 

 

if

= 1
1 if > ,

hi hi hi h

hi hi h
hi hi h

hi hi hi

X d X K

X X K
d X K

d d d



   
  

  (2.6) 

where 1=
ihid   is the weight of the unit i  in part .h  

 

• the winsorized estimator of the total X  as the usual expansion estimator of the total :X  

  
=1

ˆ = .
h

H

hi hi
h i S

T X d X


   (2.7) 

 

In the article by Kokic and Bell (1994), the subpopulations with which the thresholds are associated are 

the drawing strata, which respect two properties: the draws are independent between strata, and the authors 

postulate an identical population model for all observations in the same stratum. In the case of Poisson 

sampling, the drawings are by nature independent between units. 

The strong hypothesis underlying model (2.5) is that values hiX  multiplied by weights hid  are assumed 

to have constant expectation in each stratum. This means that the inclusion probabilities within each stratum 

are defined proportionally to the variable of interest .X  In practice, these inclusion probabilities are often 
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defined proportionally to a known auxiliary variable that is strongly correlated with ,X  which makes it 

possible to be close to the hypothesis underlying model (2.5). 

Note also that model (2.5) is the one under which the Horvitz-Thompson estimator is optimal in the 

sense of minimizing the mean square error with respect to the model. 

In the following, the random variables hi hid X  being assumed to be independent and identically 

distributed within each stratum, we will denote = .hi hi hiZ d X  

We also place ourselves in the same asymptotic framework as Kokic and Bell (1994) by adapting the 

hypothesis on the inclusion probabilities: 

        2
1 2 1 2= 1, , , , 0, 1 , such that , min > and max < .h h h i h i hh H i U           (2.8) 

As in the approach presented in the previous section, the thresholds hK  are determined so as to minimize 

the mean square error of the winsorized estimator  T̂ X  with respect to both the model of the variable X  

and the sampling design ,P  i.e., on average across all possible populations, given the super-population 

model applied to X  and on average for all samples drawn from these populations, given the sampling 

design :P  

         
=1, ,

2
*

=1, ,
ˆArgmin .

h h Hh m PKh HK E E T X T X   
   

It is possible to show (see Appendix A) that at the optimum and asymptotically, denoting as previously 

 = >hi hi hJ Z K  and omitting the indicator i  in the expression of expectations and variances under 

model (2.5) of the variables hiZ  and :hiJ  

 = 1, , , h
h

h h

A
h H K B

C D
 


   (2.9) 

with 

 
2 2
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1 1
= 1

1 1
= 1

1 1
= 1

h

h

h

h
i U hi hi

h
i U hi hi

h
i U hi hi

A
d d

C
d d

D
d d







 
 

 


      
  


    







  

and 

     
=1

= .
H

h h m h m h h
h

B A K E J E J Z  (2.10) 

B  is the bias of the optimal winsorized estimator  T̂ X  at the optimum the threshold hK  is therefore equal 

to a near positive term, in contrast to the bias multiplied by the term .h

h h

A
C D  

If we denote =L B  and * = ,h h

h

C D
hi hiAX Z  then asymptotically  * *= = >hi hi hiJ J X L  using 

relation (2.9). 
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By injecting equivalence relation (2.9) into formula (2.10) defining ,B  we obtain only optimally and 

asymptotically, B  is the opposite of the zero-point of the function F  defined by: 

                              
2 2

* * *

=1 =1

= 1 .
H H

h h
m h m h h

h hh h h h

A A
F L L E J E J X

C D C D


    
   (2.11) 

As in the previous section, we assume finally that we have, for each subpopulation ,h  of hp  realizations 

hiX


 drawn from the law of X  and independent of the sample .S  With these observations, we can estimate 

F  by: 

                          
   * * *2 2

=1 =1

=1 =1

> >
ˆ = 1

h hp p
H H

hi hi hih hi i

h hh h h h h h

X L X X LA A
F L L

C D p C D p


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   

  
   

 (2.12) 

and estimate B  by the opposite of the zero-point of ˆ .F  

We will denote  
*
jX


 the values of the *

hiX


 placed in ascending order. Then, between two successive 

values  
*
jX


 and  

*
1 ,jX 


 the indicators  * > ,hiX L

  as functions of ,L  remain constant and with a positive 

slope. F̂  is therefore a linear and increasing function of .L  

In addition,  
*2

=1

=1
ˆ 0 = 0

ph
hih i

h h h

XH A

C D ph
F 

 


 and, when L  exceeds  
* ,pX


 with 
=1

= ,
H

hh
p p

 ˆ = 0.F L L   To determine the zero-point of ˆ ,F  it is necessary to operate using a method similar to that 

proposed by Kokic and Bell (1994) in the case of stratified simple random sampling: 

• calculate  ˆ 0 ,F   *
1

ˆ ,F X


     * *
2

ˆ ˆ, , ;pF X F X
 

  

• identify the value j  such as   *ˆ 0jF X 


 and   *
1

ˆ 0,jF X  


 assuming that  
*
0 = 0;X


 

• B  is then estimated by interpolation, as in the previous section: 

          
     
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X F X X F X
B

F X F X
 








   
    

 
3  Review of methods based on conditional bias 
 
3.1  Definition 
 

The conditional bias of an estimator ̂  for the parameter ,  for a unit i U  was defined in the 

framework of Sampling Theory by Moreno-Rebollo et al. (1999) as follows: 

  ˆ
1

ˆ= = 1 ,i P iB E I    (3.1) 

  ˆ
0

ˆ= = 0 .i P iB E I    (3.2) 
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The conditional bias of a sampled unit is equal to the average of the difference between ̂  and   on the 

set of samples containing that unit. Similarly, the conditional bias of an unsampled unit is equal to the 

average of the sampling error for all samples not containing that unit. 

In the case of a one-phase sampling design, the conditional bias of the Horvitz-Thompson estimator 

 ˆ = i

i

x

i S
T X   associated with a sampled unit i  is defined by 

  ˆ

1 = ij i jT X
i j

j U i j

B x
  

 

 


 
  (3.3) 

where ij  designates the joint inclusion probability of units i  and j  in the sample. Conditional bias (3.3) 

is, in general, unknown since the values of the variable of interest are only observed for the units in the 

sample. In practice, it is possible to estimate it without bias, or in a robust way, from the sample. We consider 

the conditionally unbiased estimator (see, for example, Beaumont et al., 2013): 

  ˆ

1
ˆ = .ij i jT X

i j
j S j ij

B x
  
 

 


 
  (3.4) 

This estimator is conditionally unbiased in the sense that     ˆ ˆ

1 1
ˆ = 1 =T X T X

P i i iE B I B  only if ij  are 

strictly positive. Moreover, conditional bias (3.3) and its estimator (3.4) depend on the inclusion 

probabilities i  and the joint inclusion probabilities .ij  In other words, conditional bias is a measure that 

takes the sampling design into account. 

For a Poisson design, the conditional bias of the sampled unit i  is given by 

      ˆ
= 1 = 1 .T X

i i i iB I d x  (3.5) 

Unlike the case of other sampling designs, such as simple random sampling without replacement, 

conditional bias (3.5) is known directly for all sample units and does not require estimation from the sample 

because it does not depend on any parameter of the finite population. 

Conditional bias, as demonstrated by Beaumont et al. (2013), is a direct measure of the influence of each 

unit on the estimation error, the second relation being verified for maximum entropy sampling designs: 

    ˆ

1
ˆ = T X

i i
i U

V T X B y


     (3.6) 

        ˆ ˆ

1 0
ˆ .T X T X

i i
i S i U S

T X T X B B
  

     (3.7) 

 
3.2  A robust estimator based on conditional bias 
 

As shown by formulas (3.6) and (3.7), the conditional bias (CB) measures the effect of each unit on the 

estimation error and the estimation variance. A robust estimator should be defined in such a way that 
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observations of the sample have only controlled and limited values of their conditional bias. Based on this 

idea, Beaumont et al. (2013) suggested using an estimator of the form: 

 

         

      

ˆ ˆ
CB

1 1

ˆ ˆ

1 1

ˆ ˆ ˆ ˆ=

ˆ ˆ ˆ=

T X T X
c i i

i S i S

T X T X
i c i

i S

T X c T X B B

T X B B

 



    

    

 


  

with c  the Huber function defined by 

                                                        

if

= if < <

if

c

c t c

t t c t c

c c t




 

  

  

and  ˆ

1
ˆ T X

iB  the estimator defined in (3.4). 

The Huber function is used to limit the influence of the most influential units by truncating their 

conditional bias. Parameter c  can be chosen according to various optimization criteria for the robust 

estimator. For example, c  can be chosen to obtain the estimate having, under the sample design, the smallest 

mean square error. However, it is relatively complex or sometimes impossible to obtain an analytical 

expression of c  for a given sample design. 

Beaumont et al. (2013) suggest choosing    CBˆ
*

1
ˆargmin argmax ,T X

c i ic B c  i.e., the value of the 

constant c  for which the largest absolute value of the estimated conditional bias for the sample observations 

on the robust estimator is the lowest. In this case, the robust estimator is equal to: 

        
   ˆ ˆ

1 1CB * BHR
ˆ ˆmin maxˆ ˆ ˆ= = .

2

T X T X
i i i iB B

T X c T X T X


  (3.8) 

The Beaumont, Haziza and Ruiz-Gazen estimator is thus simple to implement. Compared to the Kokic 

and Bell method, it is more general because it is valid for all sampling designs and does not require any 

information outside the sample to be determined. In addition, it does not rely on any hypotheses about the 

variable of interest. The resulting estimator is robust under the sample design, while the Kokic and Bell 

estimator considers the sampling design and the distribution of the variable of interest. However, it is not 

designed to have the smallest mean square error, but to obtain an estimator on which the influence of each 

unit is limited, by minimizing the influence of the most influential unit. 

The method has been extended to integrate more elements of the sample design and to adapt to certain 

situations. Favre-Martinoz et al. (2016) extended the method for a two-phase sampling design, which makes 

it possible to take non-response into account when it is assimilated to a second phase of Poisson drawing; 

Favre-Martinoz et al. (2015) proposed a method for ensuring the consistency of the robust estimators 

obtained when the parameters of interest are the totals of a variable in different domains included in one 

another. 
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4  Comparison of winsorization and conditional bias 
 

In the previous section, we presented two types of methods for processing influential units applied to 

survey data: 

• the Kokic and Bell winsorization, which aims to determine the winsorization thresholds that 

minimize the mean square error of the winsorized estimator under the sample design and the law 

of the variable of interest, which was initially conceived for a stratified simple random sampling 

design, but which we have extended to the case of Poisson sampling. The Kokic and Bell method, 

like its extension, is thus valid under hypotheses made about the law of the winsorized variable; 

• the conditional bias method proposed by Beaumont, Haziza and Ruiz-Gazen, which potentially 

applies to all sampling designs and does not rely on any hypothesis on the law of the variable of 

interest; it aims to obtain the estimator for which the most influential unit has the least influence 

possible. 

 

To compare the efficiency of these two methods, we performed two exercises: 

1. simulations applied to the Poisson sampling; 

2. a comparison on real data, applied to the data from the French labour cost and structure of 

earnings survey (ECMOSS). 

 
4.1  Simulations in the case of a Poisson sampling 
 

We performed a simulations study to examine the properties of the two robust estimators proposed in 

the context of a Poisson drawing. We carried out four scenarios to compare the efficiency of the two 

estimators, but also to study, in the case of the Kokic and Bell estimator, the model’s robustness to a bad 

specification, i.e., to a modification between the learning model and the model that generated the sample 

data. 

The simulation proceeds as follows: 

• We consider = 1,000L  realizations of a certain model, which makes it possible to generate our 

learning set of = 5,000N  units; 

• For each of these realizations, we calculate the optimal threshold lK  according to the method 

proposed in Section (2.2); 

• Then we create = 10,000M  test sampling frames generated according to a (different) model on 

which we select a sample of expected size = 500n  following a Poisson drawing and calculate 

the robust estimator  
ˆ

m  with the threshold lK  calculated. As a comparison, we also calculate 

the robust estimator resulting from the method based on the conditional bias. 
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The inclusion probabilities, as well as the values of the variable, X  were generated according to the 

following model: 

  og 1; 1.1 ,iU   �   

 

=1

= ,i
i N

ii

U
n

U
 


  

 = 2,000 ,i i i i i iX V       

       0; 100 , og log 500 ; 1.2 , ,i i iV       �    

where   is the Bernoulli parameter, reflecting the proportion of influential values whose values are given 

in Table 4.1. The notation og  �  denotes a log-normal distribution. 

 
Table 4.1 
Values of parameter   used to generate populations 
 

 Values of parameter   
Scenario Learning model Test model 

1 0 0 
2 0.01 0.01 
3 0.01 0.1 
4 0.1 0.01 

 
Scenario 1 corresponds to the population model for which the extension of the Kokic and Bell method 

was developed in the Poisson case with = 1,H  but in which no or very few units are influential (the value 

of the parameter   being fixed at 0). Scenario 2 corresponds to a situation in which this model applies, but 

in which a small proportion (1%) of units are influential. The model is, in scenarios 1 and 2, identical in the 

population used to calculate the threshold and the sample to which the threshold is applied. 

In scenarios 3 and 4, the basic model is the same between the learning population and the sample, but 

the number of influential units varies between the two. In scenario 3, the learning population contains 

10 times fewer influential units than the sample. Scenario 4 corresponds to the opposite scenario. 

As a measure of the bias of an estimator ̂  of a total ,T  we calculated the relative Monte Carlo bias (as 

in percentage) 

     1
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



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where  
ˆ

m  is the estimator ̂  in the sample ,m = 1, , .m M  

We also calculated the relative efficiency of the robust estimators relative (RE) to the dilation 

estimator, ˆ :t  
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Tables 4.2 and 4.3 represent the descriptive statistics associated with the = 1,000L  Monte Carlo values 

calculated according to the learning population considered. 

 
Table 4.2 
Descriptive statistics for scenarios 1 and 2 of the 1,000 simulations for = 500n  
 

Statistic Scenario 
1 2 

Description K&B BHR K&B BHR 
BR RE BR RE BR RE BR RE 

Min. -0.2 100 -0.43 100 -9.0 1 -4.3 26 

1Q  -0.1 100 -0.32 100 -2.9 35 -1.9 51 

Median 0.0 100 -0.27 100 -1.8 50 -1.5 62 

Mean 0.0 100 -0.27 100 -2.0 50 -1.6 62 

3Q  0.0 100 -0.23 100 -1.0 64 -1.3 73 

Max. 0.0 100 -0.14 100 -0.1 109 -0.6 91 

 
Scenario 1 corresponds to a situation in which no or very few influential units are present in the 

population: the performance of the robust estimators is therefore identical to that of the usual Horvitz-

Thompson estimator, with a relative bias very close to 0. Scenario 2 corresponds to the situation for which 

the extension of the Kokic and Bell method to the Poisson case was developed, with the introduction of 

influential units. The two robust estimators are more effective than the usual estimator, but the performance 

of the Kokic and Bell estimator in terms of the gain in mean square error is greater, with a median relative 

efficiency over the 1,000 simulations of 50%, compared to 62% for the conditional bias method. This result 

is expected given that the threshold of the Kokic and Bell method is explicitly determined to obtain the 

estimator with the smallest mean square error. 

 
Table 4.3 
Descriptive statistics for scenarios 3 and 4 on the 1,000 simulations for = 500n  
 

Statistic Scenario 
3 4 

Description K&B BHR K&B BHR 
BR RE BR RE BR RE BR RE 

Min. -32.2 2 -7.8 27 -4.5 1 -4.3 26 

1Q  -18.9 50 -5.1 59 -1.8 48 -1.9 51 

Median -13.9 82 -4.6 66 -1.5 70 -1.5 62 

Mean -14.2 89 -4.7 65 -1.5 68 -1.6 62 

3Q  -9.3 138 -4.2 72 -1.2 91 -1.3 73 

Max. -0.01 537 -2.7 89 -0.6 100 -0.6 91 

 
The performances of the two methods in scenario 3 are more contrasted. While over the set of 

simulations, the conditional bias method succeeds in reducing the mean square error of the estimators, with 
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a minimum mean square error gain of 27%, the Kokic and Bell method deteriorates precision in more than 

a quarter of cases. The population on which the threshold was calculated contains, in this scenario, too few 

influential units compared to the sample for the calculated threshold to be effective. 

In scenario 4, where the learning population contains more influential units than the sample, the 

performances of the two methods are of the same order of magnitude. 

Therefore, these simulations show: 

• that in the absence of influential units, the two robust estimation methods do not lead to a loss of 

estimation efficiency; 

• that when applied in its hypotheses, the Kokic and Bell method leads to more accurate estimators 

than the conditional bias method; 

• that the Kokic and Bell method is, however, sensitive to the data used to calculate thresholds; if 

these data are not generated according to the same model as the data to which the thresholds are 

applied, the method may lead to a loss of precision; 

• that the conditional bias method always allows a gain in precision on these simulations, even if 

this gain is not optimal. 

 
4.2  Application to the Survey on labour costs and wage structure 
 

4.2.1  Presentation of the survey 
 

The Survey on labour cost and structure of earnings (ECMOSS) is conducted by INSEE every year and 

harmonized at the European level. It is used to respond to European regulations on the production of 

statistics on both the cost of labour and structure of earnings which contribute to comparisons between 

European countries in terms of work time and costs. 

ECMOSS is a survey of local business units (or establishments). It covers all sectors–both market and 

non-market–with the exception of agriculture, state administrations and certain activities (extraterritorial 

activities, embassies, consulates, activities of individuals acting as employers) and businesses with 10 or 

more employees. It covers establishments located in the metropolitan territory and in the overseas 

departments. Each sampled business answers two questionnaires: In the first, it must provide a certain 

amount of aggregated information on its workforce, payroll and a breakdown into its main elements (basic 

wages, bonuses, social contributions paid by the employer and by employees, etc.) and on the number of 

work hours of its employees; in the second, it details these elements for a randomly selected sample of its 

employees. 

Given this survey method, the ECMOSS sample design has two stages: 

• First stage: A sample of approximately 17,000 establishments is selected according to a stratified 

sampling design by sector, size of business, size of the establishment and geographical location; 
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• Second stage: In each establishment, a sample of employees is selected from the lists of 

employees reported by the establishment to social security organizations. The sampling design is 

drawn independently in each establishment and stratified by social category of the employees, 

distinguishing between managers and non-managers. The number of employees surveyed in each 

establishment varies according to its size, but is limited to 24 to prevent the survey from placing 

too much burden on businesses. In the end, around 150,000 employees are surveyed each year. 
 

Each year, a certain number of establishments do not respond to the survey, and responding 

establishments do not systematically provide information for all their employees. Therefore, there is total 

non-response at each stage, which is handled by reweighting according to the homogeneous response group 

method. Next, the final sample of respondent employees, on which most operations are performed, is 

calibrated on the population of employees from the files of social security organizations. 

Last, the sample of employees is obtained through a complex sample design, comprising two drawing 

stages (establishments and employees), with two drawing phases at each stage. 

Given the very great variability of the establishments and their wage policy (both in terms of differences 

in the average levels of wages between establishments and differences in the dispersion of wages in the 

establishments), the sampling weights of the sampled employees are widely dispersed, and the accuracy of 

the estimators is sensitive to the influential values of the sample: for example, a very high level executive 

in a large business, or the athletes employed by a high-level sports club. 

 
4.2.2  Parameter of interest 
 

The main parameter of interest in the survey is the average hourly wage, calculated in different 

dissemination domains: sectors, sectors crossed with the employment size ranges of the businesses, and 

sectors crossed with the region in which the establishment is located. The estimators used later in our 

simulations are obtained by calculating the ratio of estimators by expansion of total remuneration over the 

total number of hours: 

  ˆ =
i ii S D

i ii S D

w e
R D

w h
 

 




 (4.1) 

with S  the sample of employees, D  the domain of interest, ie  the annual remuneration of the employee ,i

ih  their annual hourly work volume and iw  the employee’s estimation weight obtained by multiplying the 

selection probabilities and the response probabilities associated with each stage and phase of the sample 

design. Estimator (4.1) does not correspond to the estimator used in practice because it involves the initial 

weights corrected for non-response, while the estimator used in practice uses the calibrated weights. In the 

context of this article, the calibration phase was not taken into account, but it could have been using the 

classical residual technique and an additional degree of complexity which we deemed unnecessary to 

compare the two robust estimation methods. 
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4.2.3  How to adapt the processing methods for influential units to the ECMOSS 
sampling design 

 

Estimator (4.1) is not the expansion estimator of a total, for which the previously described methods 

were designed. The problem can, however, be adapted to the framework of these two methods. 

Indeed, an unbiased estimator of the variance of ˆ ˆ ( ) ,i ii S
w L R D


    with ˆ ˆ ( ) =iL R D    

   ˆ
i i

i ii S D

e R D h

w h
i D

 

    the estimated linearized variable of ˆ ( ),R D  is also an asymptotically unbiased estimator 

of ˆ( ( )).V R D  Thus, a robust estimator of the total of the linearized variable ˆ ˆ ( )iL R D    will also be a robust 

estimator for the influential units of ˆ ( ).R D  Each method, applied to the estimated linearized variable, 

generates a winsorized value of this variable, denoted ˆ ˆ ( ) .w
iL R D    The effects of the processing of the 

influential units are then transferred to all other variables of interest of the survey through the estimation 

weight, by calculating a winsorized estimation weight: 
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We thus test the two methods of Kokic and Bell and Beaumont, Haziza and Ruiz-Gazen to estimate the total 

of  ˆ ˆ .iL R D    However, each of the two methods requires adaptations to be applied to the sampling design 

and variables of interest of ECMOSS. 
 

4.2.4  Adaptation of winsorization according to the Kokic and Bell method and its 
extension 

 

The survey and the parameter of interest of the survey, even after linearization, do not fit with the 

framework of the Kokic and Bell method, whether it is the original method, or the extension presented 

previously. First, the ECMOSS sample is not selected using a stratified simple random survey or a Poisson 

sampling. Moreover, the variable to winsorize, the estimated linearized variable  ˆ ˆ ,iL R D    is not always 

positive. To apply the Kokic and Bell method to the ECMOSS case, we have made the following 

adaptations. 
 

1. We apply the processing of the influential units as though the employees were directly selected 

by stratified simple random sampling (Poisson sampling for the extension) in strata defined by 

the sector, the number of employees of the business and the location of the employing 

establishment, by grouping certain modalities of this last variable to avoid generating pseudo-

strata containing too few observations (we distinguish Île de France, the overseas departments 

and the rest of the country) and by the social category of the employee (distinguishing managers 

and non-managers). As the classical method acts as though the sample in each pseudo-stratum 

was selected by simple random sampling and thus all employees of the same pseudo-stratum have 

the same sampling weight, we do not consider the dispersion of the estimation weights in the 

pseudo-strata from the actual sampling design of the survey, and thus risk missing influential 
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units. In the case of the extension of the method, this dispersion of the weights is properly taken 

into account. 

2. In each of these pseudo-strata, winsorization is not applied directly to the estimated linearized 

variable, but to a translated version of it. 
 

More precisely, we define for each sampled employee: 

      ˆ ˆ ˆ ˆ ˆ ˆ= mini i j S jT R D L R D L R D             

for which we calculate winsorization thresholds in the pseudo-strata according to the method initially 

proposed by Kokic and Bell and for its extension. We then deduce two sets of estimation weights used to 

estimate the average hourly wage in each domain of interest of the form: 
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We can thus only identify and process influential units with high values of the estimated linearized 

variable, i.e., employees whose hourly wage is higher than the average hourly wage in the domain of interest 

.D  Units with low hourly wages cannot be identified by this method, but pose less problems for the accuracy 

of estimates, since the distribution of hourly wages is particularly skewed, with a very long tail on the right. 

A final adaptation is necessary to adapt the method to the case of ECMOSS. This can only be used if 

observations of the variable of interest in each pseudo-stratum are available. Previous editions of the survey 

can be used. However, the tests performed to evaluate the efficiency of the Kokic and Bell method applied 

to the Annual Sectoral Surveys (see Deroyon, 2015) have shown that the use of responses to previous 

editions of the survey to calculate winsorization thresholds does not lead to the largest gains in accuracy. 

This is because the small number of observations available per stratum to calculate these thresholds are 

determined with too little precision, so that too many units can be winsorized, or conversely, influential 

units escape winsorization. We have chosen to use the auxiliary information available in the social security 

files on total remuneration paid annually to employees and their number of hours worked. These data are 

not those measured in the survey (in particular, the wages declared in the social security files form the tax 

base on which are calculated social contributions and tax contributions on wages, and not labour income 

paid to employees), but are strongly correlated with them. 

 
4.2.5  Adaptation of Beaumont, Haziza and Ruiz-Gazen estimator 
 

Because of its generality, the conditional bias method requires fewer adaptations to be applied to the 

ECMOSS. It can thus be applied directly to the variables of interest of the survey without the need to 

mobilize external data. However, calculating conditional biases while considering the whole sampling 

design is complex; therefore, for our simulations, we chose to apply the conditional bias methods as though 
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the employees had been selected directly by a Poisson sampling, with the selection probabilities 1 ,iw  

where iw  designates the estimation weight after correction for non-response of the employee .i  The 

conditional bias used to identify influential units is therefore equal to: 

       1
ˆ ˆ ˆ ˆ= 1 .i i i iB L R D w L R D         

With formula (3.8), the Beaumont, Haziza and Ruiz-Gazen estimator processes only a limited number 

of units, i.e., the observations with the lowest and highest conditional biases, for which all corresponding 

indicators define the sets minA  and max :A  

   min 1
ˆ ˆ= argmin j S j jA B L R D      

   max 1
ˆ ˆ= argmax .j S j jA B L R D      

Thus, the processed estimation weight of the influential units is equal to: 
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where minA  and maxA  respectively designate the cardinal of minA  and max .A  

Compared to the Kokic and Bell method, the robust estimator based on conditional biases does not focus 

on influential units located in the right-hand part of the distribution of the estimated linearized variable, but 

identifies the influential units with very low and very high values for this variable. It also focuses on an 

a priori limited number of units, since only observations with the minimum and maximum conditional bias 

are modified. 

 
4.2.6  Robust estimation on several domains of interest 
 

As previously described, the domains of interest for the dissemination of the ECMOSS results are 

numerous. For the sake of simplicity of dissemination and to comply with the requirements of European 

regulations, each employee in the individual sample must have only one estimation weight, so adaptations 

are necessary: 
 

• Robust estimators for several sets of domains of interest 

European regulations require the dissemination of results in sets of domains that intersect and are 

not included in one another, such as intersections of sectors and ranges of numbers of employees 
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and crossings of sectors and regions. Sampled units may belong to more than one dissemination 

domain. 

Ideally, the processing of influential units should be done in each domain of interest separately, 

so that a single observation may be associated with a different estimation weight for each 

dissemination domain to which it belongs. However, this solution is not possible for the reasons 

mentioned above. 

Another solution is to apply both of the methods to the crossings of all the dissemination domains. 

The risk is then in applying the processes for estimators calculated on very small populations, for 

which many units are influential. Thus, for the estimation on real dissemination domains, too 

many units would be winsorized. The resulting estimators will be less precise than the robust 

estimators adapted to each domain, but potentially also less precise than the unprocessed 

estimators of the influential units because they are too biased. 
 

• Robust estimators for all modalities of a domain of interest 

For a given set of domains (e.g., industry sectors), an observation can be identified as influential 

and processed for estimation on more than one dissemination domain, and thus have more than 

one final estimate weight. This is the case if the selection of an observation belonging to a 

dissemination domain has an influence on the selection of other units belonging to other 

dissemination domains (e.g., in the case of a stratified sampling, if the dissemination domains 

intersect the drawing strata). 

This situation is impossible for the Beaumont, Haziza and Ruiz-Gazen estimator, for which we 

assume the Poisson sampling design. However, this can happen for the Kokic and Bell method 

and its extensions as we implement them, because some dissemination domains do not consist of 

groupings of the pseudo-strata that we have formed. The situation is then the same as that exposed 

in the case of several sets of dissemination domains: the only way to maintain a unique estimation 

weight for each sampled unit is to apply the methods to pseudo-dissemination domains close to 

the real dissemination domains but made up of groupings of winsorization pseudo-strata. These 

pseudo-domains are in fact formed by intersections of sectors, a range of the number of 

employees of the businesses and the geographic location of the establishments (distinguishing 

only the three modalities specified above). 

 
To evaluate the performance in terms of precision gains or losses of the methods defined above, we 

carried out a set of simulations based on the ECMOSS sampling design and data on wages and hours worked 

from the social security files, available for all employees and for which we are therefore able to compare 

the average hourly wages observed in the population with their various estimators. In these simulations, we 

compared the efficiency of the methods applied directly to each dissemination domain, which lead to the 

optimal results, and to the pseudo-dissemination domains defined above. 
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4.2.7  Simulations 
 

The simulations are conducted in the social security files, from which the sample of employees is selected 

and which are available for all French employees. They are implemented as follows: 

• the ECMOSS sampling design (including the selection of responding establishments and 

employees) is applied 5,000 times to produce 5,000 samples of employees, denoted 

, = 1, , 5,000;mS m   

• for each sample and each dissemination domain, we calculate the usual expansion estimator of 

 ˆ ;mR D  

• the Kokic and Bell winsorization and conditional bias are applied to each sample according to 

different specifications: 

- the Kokic and Bell winsorization, classical or adapted to Poisson sampling, is applied only 

as though the real dissemination domains were the pseudo-dissemination domains defined 

above. 

- The Beaumont, Haziza and Ruiz-Gazen estimator is applied in each activity sector taken 

separately on the one hand, and on the other hand as though the pseudo-dissemination 

domains defined above were the real dissemination domains. For each dissemination domain, 

we can thus compare the performances of the conditional bias estimator applied in its optimal 

specification for this domain (producing an estimator  BHR*ˆ
mR D  of the average hourly wages 

in the domain) to the conditional bias method and the Kokic and Bell method (producing 

estimators  BHRˆ ,mR D  KBˆ
mR D  and  poissKBˆ

mR D  for the extension) applied according to 

specifications that are sub-optimal for this domain but simpler to implement. 
 

For each robust estimator and each domain, we calculate the mean relative bias (RB) and the relative 

mean square error (RMSE) for all simulations by: 

 

 
   
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    

    

    

       




  

where, for example, for the classical Kokic and Bell method,  R D  designates the average hourly wage 

observed in the social security files in the domain D  and  R̂ D  designates the usual expansion estimator 

of this parameter. Relative bias compares the bias of the robust estimator to the real value of the parameter. 

The relative mean square error measures the gain or loss of precision provided by the robust estimators 

relative to the usual estimator. 
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4.2.8  Simulation results 
 

Among the different estimators tested in our simulations, the estimator obtained by applying the 

adaptation of the Kokic and Bell method to Poisson sampling is distinguished by extremely poor 

performances, summarized in Table 4.4. Application of the Kokic and Bell method extended to Poisson 

sampling for the ECMOSS results in a significant or even dramatic deterioration in the precision of the 

estimates. 

 
Table 4.4 
Statistics on the mean square error (MSE) ratio of the robust Kokic and Bell estimators applied to the Poisson 
sampling in the different domains of interest 
 

Statistic   poissKBˆRMSE mR D  

Domain 
NACE*Workforce NACE NACE*NUTS 

Min. 18 128 33 
Mean 490 1,858 324 
Max. 4,437 8,606 2,466 

 
Figures 4.1, 4.2 and 4.3 focus on presenting the results of the conditional bias and classical Kokic and 

Bell methods, applied under the hypothesis of a stratified simple random sampling. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1  Relative mean square errors for the estimators of average hourly wage by sector. 
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Figure 4.2  Distribution of relative mean square errors in each domain. 

 
 

Figure 4.1 shows the relative mean square errors of the robust average hourly wage estimators in each 

section of the Statistical classification of economic activities in the European Community (NACE, a 

grouping of business sectors into 21 categories, of which 18 are in the ECMOSS field) and Figure 4.2 shows 

the distribution of relative mean square errors in each domain (among all sections, section crossings, and 

number of business employees, or crossings of sector and location of the establishment). 

For almost all domains of interest, the robust estimators considered provide gains in precision over the 

usual expansion estimator. The domains in which the robust estimators have a higher error than the usual 

estimator are also those where the estimation variance is the lowest originally. The processes for influential 

units considered in these figures (conditional bias and classical Kokic and Bell method) are thus able to 

reduce estimation errors when necessary without causing too much loss of precision when the estimators 

are not affected by influential units. 

The biases of the average hourly wage estimators in the sectors are low (see Figure 4.3), except in some 

domains where the sample size is small (A: Agriculture, forestry and fishing; K: Financial and insurance 

activities; R: Arts, entertainment and recreation). The same results are also observed for the other domains. 
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Figure 4.3  Relative biases for estimators of average hourly wage by sector. 
 

The application of conditional bias methods adapted to each domain gives the best results for the 

estimation in the NACE sections, but not necessarily in the other dissemination domains. The NACE 

sections are much more aggregated than the pseudo-domains used for the identification of influential units, 

so the bias introduced by the processing of influential units is more significant in the cases where the 

application is made on pseudo-domains, compared to the optimal version applied directly to the NACE 

sections. In the other domains, the identification of influential units at a finer level than the real 

dissemination domain makes it possible to identify more influential units and thus substantially reduce the 

estimation variance, without introducing too much additional bias, when the domain used to identify the 

influential units and the real dissemination domains are close. Differences in how the sampling design is 

described to apply each of the two methods and the actual sampling design may explain why the use of the 

Beaumont, Haziza and Ruiz-Gazen robust estimator in each dissemination domain does not necessarily 

translate into greater precision gains. 

The differences between the results obtained with the conditional bias and Kokic and Bell methods under 

the hypothesis of the stratified simple random sampling design are, however, small. Note however that, for 

the implementation of these simulations, we use the population data as observations of the additional interest 

variables not from the sample to calculate the winsorization thresholds in the Kokic and Bell method. Since 

we also evaluate the performance of the different estimators based on these data, the Kokic and Bell method 

is favoured a priori. 

The extension of the Kokic and Bell method to Poisson sampling results in a significant deterioration in 

the precision of the estimators. 
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The discrepancies between the performances of the two implementations of the Kokic and Bell method 

are thus very high. However, these implementations are both based on two hypotheses: 

• a hypothesis on the sampling design used to select the sample; 

• a hypothesis on the distribution of the variable of interest in subpopulations .hU  

 

In both applications of the Kokic and Bell method, the first hypothesis is not respected. The violation of 

this hypothesis is, however, a priori more significant when we apply the Kokic and Bell method as though 

the sample had been selected by a stratified simple random sampling in pseudo-strata constructed ad-hoc, 

because in so doing we assume that the selection probabilities are identical in these pseudo-strata, which is 

not at all verified. The Kokic and Bell method applied as though the employees had been selected by Poisson 

sampling, for its part, considers real simple inclusion probabilities, but neglects the links between the 

indicators of belonging to the sample of different employees. 

However, the population model postulated for the Kokic and Bell method extended to the Poisson case 

is not valid, since the simple inclusion probabilities are not proportional to the variable of interest 

considered. It is more complex to assess the validity of the population model used for the classical Kokic 

and Bell method; up to a point, it is still possible to consider that the results of the variable of interest in a 

pseudo-stratum are derived from the same law whose expectation and variance can be estimated by the 

mean and the empirical variance of the results of the variable of interest in the stratum. 

Also, the performance differences of the two implementations of the Kokic and Bell method are complex 

to analyze. A first possible explanation is that the performances of the method are more sensitive to 

violations of the hypothesis on the law of the observations than to those on the form of the sampling design. 

This finding was shared by Fizzala (2017) in the case of an application of winsorization in the context of 

corporate profiling. In our ECMOSS simulations, we observe that the classical Kokic and Bell method, 

based on the hypothesis of stratified simple random samplings, gives very valid results despite the fact that 

this hypothesis is only partially respected. Future extensions of this work could consist of validating this 

explanation on the basis of simulations. Another explanation for these differences in performance may lie 

in the relationship between the two hypotheses in the case of the extension of Kokic and Bell to Poisson 

sampling. Indeed, while in the case of the classical Kokic and Bell method, the hypotheses on the sampling 

design and the law of the variable of interest in each stratum are unrelated, in the case of the Poisson 

sampling, the population model involves selection probabilities and therefore implies additional constraints 

on the sampling design. Therefore, the fact that the selection probabilities are not proportional to the variable 

of interest implies that, for the extension of the Kokic and Bell to Poisson sampling, the hypotheses on the 

sampling design and the population are simultaneously violated, which could explain this explosion of errors 

of the estimator. 

However, the conditional bias and classical Kokic and Bell methods, whatever the configuration, seem 

to be able to identify influential units for the estimation of the parameters affected, and thus guarantee 
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significant gains in precision even when they are applied in a setting that is remote from their original 

hypotheses and the actual sampling design of the survey. 

 
Appendix 
 

A Demonstrations of the formulas for the extension of the Kokic and Bell method 
in the case of a Poisson sampling 

 

A.1  Calculation of the mean square error of the winsorized estimator 
 

First, we will calculate 
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Assuming in each stratum that: 
 

•   = ;m hi hi hE d X   

•   2Var = < ;m hi hi hd X    

• and that hi hid X  are independent and of density   > 0.hg x  
 

and noting that: 
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we obtain: 
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(A.3)

 

and that: 
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(A.4)

 

In the end, taking the expectation under the model of expression (A.1) and applying simplifications 

(A.2), (A.3), (A.4), we obtain, after some additional simplifications: 
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Given that the hi hid X  are assumed to be independent and follow the same law within the strata, it is 

sufficient to consider a random variable hZ  that has the same law as one of the ,hi hid X , i.e., verifying: 

•   = ;m h hE Z   

•   2Var = < ;m h hZ    



336 Deroyon and Favre-Martinoz: Comparison of the conditional bias and Kokic and Bell methods for Poisson and stratified sampling 
 

 
Statistics Canada, Catalogue No. 12-001-X 

• and that hZ  are independent and of density   > 0.hg x  

 

Thus, we can also consider that a random variable >=
h hh Z KJ   to calculate the expectation with respect 

to the model of the winsorized indicator. The previous expression is rewritten: 
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A.2  Search for thresholds to minimize the MSE 
 

To determine the value of the thresholds hK  leading to the optimum of     2ˆ ,m PE E T X T X    we 

use the same property as Kokic and Bell in their demonstration, i.e., that: 
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By deriving relative to ,hK  and after simplification, we obtain that: 

 

      

        

      

2ˆ = 2

2 1

2 2

m P h m h
h

h h m h m h h m h

h h m h m h h h m h h

E E T X T X B A E J
K

C K E J E J Z E J

D K E J E J Z F E J Z

    

  

  

 

 

(A.5)

 

where 

•         1 1
=1

= 1 ,
hi hih

H

h m h m h hd dh i U
B K E J E J Z


    

•    1 1= 1 ,
hi hih

h d di U
A


  

•    2 2
1 1= 1 ,
hi hih

h d di U
C


  
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•    3
1 1= 1 ,
hi hih

h d di U
D


  

•     2
1 1= 1 .
hi hih

h d di U
F


  

 

Equation (A.5) is reduced to: 

 

    

     

          

2ˆ = 0

= 0.

m P
h

h m h h h h m h

h m h h m h m h h h h h m h h

E E T X T X
K

A B E J C D K E J

C E J K E J E J Z F C D E J Z

    



   

    

 

  

Finally, by noting that   = 0h h hF C D   and assuming that   > 0,m hE J  we obtain that the threshold 

hK  minimizing the MSE verifies the equation: 

        = 0h h h h h h m h m h hA B C D K C K E J E J Z       

which is reduced further to 

 
 

    = .h h h
h h m h m h h

h h

C D C
B K K E J E J Z

A A


    

It remains to be shown that     h h m h m h h

h

C K E J E J Z
A B

  tends toward zero when .n    However, 

 
       

   
=1

=h h m h m h h h h m h m h h

H
h h l l m l m l ll

C K E J E J Z C K E J E J Z

A B A A K E J E J Z

 


  

and according to hypothesis (2.8) relating to inclusion probabilities, we have that, = 1, , , hh H i U  
> 1.hid  Which implies > 0,hA  and thus: 

 

   

   
   

   

2

2 2
1 1

2
1 1

1 1

1

1

1
.

1

hi hih

hi hih

hi hih

h h m h m h h h

h h

d di U

d di U

d di U

C K E J E J Z C

A B A












  


  






  

However, it is possible to demonstrate from hypothesis (2.8) that      
1

1 1 11 = .
hi hi hh

d d Ni U
O




    

Thus:     h h m h m h h

h

C K E J E J Z
A B

  tends toward zero when .n    

hK  is thus equivalent in each stratum to   ,h

h h

A
C D B  when the size of the population and the sample tend 

toward infinity. 
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Criteria for choosing between calibration weighting and 
survey weighting 

Mohammed El Haj Tirari and Boutaina Hdioud1 

Abstract 

Based on auxiliary information, calibration is often used to improve the precision of estimates. However, 
calibration weighting may not be appropriate for all variables of interest of the survey, particularly those not 
related to the auxiliary variables used in calibration. In this paper, we propose a criterion to assess, for any 
variable of interest, the impact of calibration weighting on the precision of the estimated total. This criterion can 
be used to decide on the weights associated with each survey variable of interest and determine the variables for 
which calibration weighting is appropriate. 

 
Key Words: Estimation of a total; calibration estimator; superpopulation model; model-based approach; weighting impact. 

 
 

1  Introduction 
 

When estimating population parameters, adjustment techniques are often used to reduce variance or 

correct non-response. When there is auxiliary information, calibration is an adjustment technique often used 

in practice. The weight of the calibration estimator is used to adjust the sample so that it reflects the known 

population totals for a set of auxiliary variables (Deville and Särndal, 1992). The improved accuracy by the 

calibration estimator depends on the auxiliary variables used in calibration. The variance of the calibration 

estimator is low when the calibration variables are strongly linked to the variable of interest. 

In practice, once the calibration weights are calculated, they replace the survey weights for the 

production of parameter estimates of all survey variables of interest. However, using calibration weighting 

can lead to an increase in the mean square error (MSE) for some variables of interest, particularly those not 

linked to calibration variables. Therefore, calibration weights cannot be used systematically to estimate 

population parameters for any variable of interest, particularly in the case of multi-purpose surveys covering 

different subjects. That is why it is necessary to develop a criterion to assess the impact of calibration 

weighting on the precision of estimates for each variable of interest. 

To develop this type of criterion, we can refer to a comparison of the precision of calibration estimators 

with the Horvitz-Thompson (HT) estimator. Several inferential approaches can be used to measure the 

precision of these estimators. In this paper, we will consider a sample design- and model-based approach. 

This approach was chosen because it is the only one with which we can develop a measurement of the MSE 

of the calibration estimator in order to account for bias due to the use of calibration weights, as well as 

variance, which depends on the quality of the model. In other approaches (design-based or model-assisted), 

it is extremely difficult to calculate the MSE of the calibration estimator, and the estimates do not take into 

account the bias introduced by the use of calibration weights. 
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Using the design- and model-based approach allows us to develop a criterion with the advantage of 

approaching a situation where the loss in bias increase for the calibration estimator exceeds the gain in the 

reduction of variance obtained when there is a link between the variable of interest and the calibration 

variables. This is a case where the calibration estimator must not be used. 

In this paper, we propose a new criterion that measures the impact of using calibration weighting. The 

proposed criterion takes into account the degree of the existing link between the variable of interest and the 

calibration variables. Furthermore, it is simple to calculate for each survey variable of interest so that the 

best sets of weights to use can be identified. 

It should be noted that the impact of using calibration weights was studied previously, but only in the 

context of measuring the design effect (Deff) used to assess the relative increase or decrease in the variance 

of an estimator compared with simple random sampling. For example, in the model-assisted approach, 

Henry and Valliant (2015) proposed a Deff measurement that translated the joint impact of an unequal 

probability sample design and an adjustment of sampling weights compared with simple random sampling. 

Following the introduction, which identifies the issue examined in this paper, Section 2 presents the 

inferential approach adopted in this paper and the criterion used to measure the precision of estimators, 

while determining its expression for a calibration estimator and an HT estimator. In Section 3, we present 

the proposed new criterion for assessing the impact of using calibration weights. Section 4 evaluates the 

proposed criterion using simulations. The purpose of this evaluation is to verify that this criterion identifies 

situations where a set of calibration weights should be used. In Section 5, we conclude with a discussion of 

the advantages of the proposed criterion. 

 
2  Estimator of a variable of interest total 
 

 1, ,U N   for a population size N  from which sample s  of size n  is selected based on survey 

design   .p s S  designates a random variable such as     ,p s P S s   and k  and kl  respectively 

designate the first and second probabilities of inclusion in survey design   .p s  We are interested in a 

variable of interest  1 , , , , ,k NY y y y     with the objective of estimating its total .y k
k U

t y


   To 

do that, we consider the category of linear estimators ˆyw kS k
k S

t w y


   where kSw  are the weights that 

can depend on sample S  and the auxiliary variables available. The basic weights used are the sampling 

weights generated by 1 .k kd   They correspond to the Horvitz-Thompson estimator ˆyt   (1952). 

It is assumed that we have p  auxiliary variables 1 , , ,pX X  for which the values may be represented 

by vectors  1 , ,k k kpx x x   and for which the vector of their totals k
k U

t


 x x  is known. The 

category of calibration estimators is defined by ,ˆyC kS C k
k S

t w y


   where , ,kS Cw  referred to as calibration 

weights, verify the calibration equation given by 

 , .kS C k k
k S k U

w
 

 x x  (2.1) 
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Calibration helps to reduce the variance of a total estimator, particularly for variables of interest that are 

linked to the auxiliary variables used in calibration. However, calibration results in an estimator with a bias 

other than zero. That is why the calibration weights are determined so that they are as close as possible to 

the sampling weights in order to manage bias. 

 
2.1  Precision of a linear total estimator 
 

In order to measure the precision of a linear total estimator, we will consider the design and model-based 

approach. In addition to the design distribution, this approach consists of assuming that values 

1 , , , ,k Ny y y   for the variable of interest Y  are the product of a random vector  1 , , , ,k NY Y Y    

whose joint probability distribution is given by the Superpopulation model   defined by: 

 k k kY   x β  (2.2) 

with 

      20,    Var    and   Cov , 0k k k lkE           

where  1 , , ,p  β  2
k  k U  are unknown parameters. ,E Var  and Cov  represent 

respectively the expectation, variance and covariance for the model. Vector estimator β  for the regression 

coefficients is produced by 

   1
1 1 1 1ˆ

S S S SS S S S


     β X Π V X X Π V Y   

where SX  is the matrix of kx  values for ,k S  diagS k k S Π  and  2diag .S k k S V  Under the the 

design and model-based approach, the criterion used to measure the precision of a linear total estimator is 

     2ˆ ˆMSE p yw p yw yt E E t t    (2.3) 

which corresponds to the mean square error (MSE) for the design and model, also referred to as the 

anticipated mean square error (AMSE). This is based on the assumption that the design is not informative. 

We can then show that the AMSE for linear estimator ˆywt  is (Nedyalkova and Tillé, 2008): 

      
2

22ˆMSE var 1p yw p kS k k p kS k kSk
k s k U k U

t E w w I R 
  

              x β x β  (2.4) 

where 

 
 1kS k

kS
k

E w I
R

d


   

with 1k kd   (sampling weight) and 1kI   for k S  and 0kI   otherwise. Ratio kSR  equals 1 when 

linear estimator ˆywt  is unbiased according to the design. 
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2.2  AMSE for the calibration estimator 
 

For the calibration estimator, verifying the calibration equation renders it unbiased under the model: 

   ,ˆ 0.yC y kS C k k
k S k U

E t t w
 

      x β x β   

Consequently, the AMSE is expressed as: 

                         
     

   

22
,

22 2

ˆMSE var 1

= 1 1

p yC p kS C k kk
k U

k
k kk k

k U k

t w I R

V
R d R

d

 







    

      




 

(2.5)
 

where  ,var 1k p kS C kV w I   and  , 1 .k p kS C k kR E w I d   

Giving 

                

       

       

 

, , ,

2 2
, , ,

2

var var var

var 1 1

1 .

p kS C k p p kS C k k p p kS C k k

k p kS C k k p kS C k p kS C k

k
kk

k

w I E w I I E w I I

w I E w I E w I

V
R d

d

 

 

    

  

 

(2.6)

 

Note that the expression (2.5) of  ˆMSE p yCt  makes it possible to underscore the two criteria that 

determine the accuracy of calibration estimator ˆ .yCt  The first corresponds to Superpopulation model   

through its residual variance 2 ,k  which decreases when the variable of interest and the calibration variables 

are correlated (variance reduction ˆ ).yCt  The second criterion is represented by weight ratios ,kR  which 

become important when the calibration weights are very different from the sampling weights (bias 

increase ˆ ).yCt  

 
2.3  AMSE for the HT estimator 
 

In order to develop our criterion for choosing between calibration weighting and sample weighting, we 

need to determine the expression of the AMSE for the HT estimator. Since the latter is unbiased under the 

design  1 ,kSR   its AMSE is given by: 

                          
   

   

2

2

ˆMSE var 1

1 .

p y p k k k kk
k s k U

kl k l k k l l k kk
k U l U k U

t d d

d d d

   

    
 

  

    
 

     

 

 

x β

x β x β
 

(2.7)
 

It should be noted that the expression of the AMSE for ˆyt   depends on probabilities ,kl  which are 

generally unknown and difficult to calculate for unequal probability sampling designs. Several 

approximations for these probabilities have been proposed in literature, enabling us to obtain several 

possible estimators for the variance of the HT estimator. However, Matei and Tillé (2005) showed, through 
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a series of simulations, that these estimators are almost equivalent and allow us to effectively estimate the 

exact expression of the variance under design ˆ .yt   

An approximation of  varp k k
k s

d


 x β  can be obtained by considering the one proposed by Hájek 

(1981) for the variance of the HT estimator, produced by: 

  
2

2
Approx

1
k k k k k k

k U k U

V c d c d
h 

    
  x β x β  (2.8) 

where k
k U

h c


   and    1 1 .k k kc N N     The latter is obtained from the following 

approximation of probabilities kl  (see Deville and Tillé, 2005; Tirari, 2003): 

 

2

if

if .

k
k

kl k l

k l

c
c k l

h

c c
k l

h

  

    
 

 (2.9) 

Consequently, the AMSE for ˆyt   can be approximated by: 

     2
ApproxˆMSE 1 .p y k kk

k U

t V d   


    (2.10) 

It should be noted that for simple designs, such as Poisson design or simple stratified random design, joint 

probability can be calculated precisely without the need for an approximation. In the next section, we will 

be basing calibration and HT estimators on the AMSE to develop a new measurement of the impact of using 

calibration weights. 

 
3  Proposed criterion for measuring the impact of using calibration 

weights 
 

Calibration weights are used to improve the precision of estimates for survey parameters of interest. This 

improvement depends largely on how strongly the variable of interest is linked to the calibration variables. 

To assess the impact of using calibration weights, we can compare the AMSE for estimators ˆyCt  and ˆyt   

given respectively by (2.5) and (2.10). The impact of using calibration weights can then be measured through 

the following criterion: 

 
   

 

22 2

2
Approx

1 1
Weff

1

k

k

V
k kk kdk U

k kkk U

R d R

V d



 




     
 




 (3.1) 

where calibration weights are chosen in cases where the Weff value is less than 1. Note that the Weff 

expression (3.1) depends on the population and must be estimated. Furthermore, for any ,k U kV  

represents the variance of calibration weight , ,kS Cw  considering the s  set of samples containing unit .k  

Variance kV  is generally not zero since the ,kS Cw  weights depend on the calibration variables and the s  
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sample selected. In order to take variance kV  into account in measuring the impact of using calibration 

weights , ,kS Cw  we propose estimating the quantity 

                                                                2
k

w k
k U k

V
V

d




   (3.2) 

by 

   22
,

ˆ ˆw kS C kk
k S

V w d


   (3.3) 

where 2ˆ k  is the White estimator for 2
k  defined by  2ˆkn n p   with ˆˆ .k k kY   x β  The estimator (3.3) 

is obtained by replacing kV  by   2
, ,kS C kw d  which can be viewed as a first-order approximation of .kV  

For any unit ,k U  the use of calibration produces weight , ,kS Cw  which varies from one sample to another, 

but for which the design-based expectation can be approximated by sampling weight .kd  The simulations 

discussed in Section 4 show that ˆ
wV  is a good wV  estimator since it helps to deduct an effective estimator 

of the Weff criterion. The Weff criterion that we propose for choosing between calibration weights ,kS Cw  

and sampling weights kd  can be estimated by 

 
     

 

2
, 2

2 2

2
Approx,

ˆ ˆˆ 1 1
Weff

ˆ ˆ 1

kS C k

k

w d
k k kSk kSdk S

S

S k kkk S
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where ˆ
kS kS kR w d  and Approx,

ˆ
SV  is an estimator for  varp k k

k S
d


 x β  resulting from the approximation 

(2.8). It is produced by: 
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with    1 1k kc n n    and ˆ .kk S
h c


    The proposedWeff S  criterion has the benefit of 

considering bias due to the use of calibration weights, through ˆ ,kSR  as well as the quality of the linear 

regression model representing the link between the variable of interest and the calibration variables, through 

variance 2ˆ .k  For some survey designs, the weighting traditionally used for estimates effectively leads to an 

unbiased estimator for the design, but it is not necessarily the HT estimator. This is the case, for example, 

with a two-stage design where the second stage design depends on the sample from the first stage and the 

weighting used is the product of the sampling weights for each stage. It is important to note that the Weff S  

criterion proposed in this paper is not linked to the HT estimator, since it enables us to compare the 

calibration estimator with any other estimator using the sampling weights once it is unbiased. 

 
4  Simulation study 
 

In order to evaluate the Weff S  criterion (3.4), so that we can determine whether to use calibration 

weights or sampling weights, we conducted a series of simulations using data observed for a population of 
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5,800 cottage-industry units. We considered six calibration variables, from which several variables of 

interest iY  were generated, with consideration for linear regression models, while accounting for the 

strength of the link between the variables of interest and the calibration variables through the choice of 

residual variance in the regression models. Furthermore, to study the impact of the heteroskedasticity of the 

model residuals on the results obtained for criterion Weff ,S  we also considered the case where the variables 

of interest are generated using models with heteroskedastic residuals. 

For the purposes of these simulations, we selected 10,000 samples using a simple random sampling 

design (SRSD), with three sample sizes: 100, 200 and 400 cottage-industry units, to study the impact of the 

sample size on the results obtained. Across the 10,000 samples selected, we calculated the following 

indicators: 

 CalMSE :  the AMSE for the calibration estimator, the expression of which is given by (2.5) and 

where  , 1kS C kE w I   and kV  are determined respectively by the mean and the variance of 

weights ,kS Cw  considering all of the selected samples containing unit .k  

 
HTMSE :  approximation (2.10) of the AMSE for the HT estimator.  HTMSE  corresponds to 

HTMSE  (AMSE (2.7) for the HT estimator) that we were able to calculate in these simulations 

since the samples were selected using SRSD. 

 Weff: the theoretical value of the Weff calculated using (3.1) and defined by the ratio of CalMSE  

and  HTMSE .  

 
CalMSE :  the simulation mean for the  CalMSE  estimator of CalMSE  where 

       
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 
HTMSE :  the simulation mean for the  HTMSE  estimator of  HTMSE  where 
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 Weff:  the simulation mean for the Weff S  estimator (3.4) of Weff. 

  MSE Weff :S  the MSE of Weff S  simulations defined by 

          
10,000 2

1

1
MSE Weff Weff Weff .

10,000
S s

s
    

 
The simulation results for heteroskedastic regression models are presented in Table 4.1 below, while the 

results for homoskedastic models are given in Table A.1 in the appendix. 

 



346 Tirari and Hdioud: Criteria for choosing between calibration weighting and survey weighting 
 

 
Statistics Canada, Catalogue No. 12-001-X 

Table 4.1 
(Heteroskedastic populations): Simulation results for theWeff  criterion, by sample size and degree of the link 
between the variables of interest and the calibration variables 
 

 Variables of interest 

Y1 Y2 Y3 Y4 Y5 Y6 

(R2 = 0.01) (R2 = 0.10) (R2 = 0.20) (R2 = 0.50) (R2 = 0.75) (R2 = 0.98) 

n = 100  CalMSE  (107) 12,301.13 9,334.81 1,860.23 173.61 59.47 3.07 

HTMSE  (107) 11,285.46 8,643.37 1,841.84 323.46 212.69 160.35 


HTMSE  (107) 11,285.44 8,643.34 1,841.81 323.43 212.66 160.32 

Weff  1.09 1.08 1.01 0.54 0.28 0.02 


CalMSE  (107) 12,463.22 9,484.87 1,984.51 180.37 62.07 3.21 


HTMSE  (107) 11,856.45 9,068.99 1,929.87 330.59 215.13 160.07 

Weff  1.08 1.07 1.00 0.55 0.30 0.02 

 MSE Weff  0.030 0.034 0.030 0.02 0.008 0.00005 

n = 200  CalMSE  (107) 5,931.78 4,500.60 905.42 81.86 27.99 1.41 

HTMSE  (107) 5,543.74 4,245.87 904.76 158.89 104.48 78.77 


HTMSE  (107) 5,543.72 4,245.85 904.75 158.88 104.46 78.75 

Weff  1.07 1.06 1.00 0.52 0.27 0.02 


CalMSE  (107) 5,770.29 4,382.31 969.57 83.81 28.68 1.48 


HTMSE  (107) 5,673.08 4,341.19 924.64 160.71 105.06 78.71 

Weff  1.05 1.05 1.01 0.53 0.28 0.02 

 MSE Weff  0.008 0.008 0.007 0.006 0.002 0.00005 

n = 400  CalMSE  (107) 3,847.61 2,919.12 589.97 53.05 18.13 0.94 

HTMSE  (107) 3,629.83 2,780.03 592.40 104.04 68.41 51.57 


HTMSE  (107) 3,629.82 2,780.02 592.39 104.03 68.40 51.56 

Weff  1.06 1.05 0.99 0.51 0.27 0.02 


CalMSE  (107) 3,718.79 2,889.81 594.01 53.89 18.44 0.95 


HTMSE  (107) 3,687.44 2,821.34 602.39 104.83 68.68 51.60 

Weff  1.04 1.04 0.98 0.52 0.27 0.02 

 MSE Weff  0.004 0.005 0.004 0.003 0.001 0.00001 
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Hence, the simulation results show that the Weff criterion proposed to measure the impact of using 

calibration weights helps us to identify situations where calibration weighting should not be used, i.e., when 

the variable of interest is weakly correlated with the calibration variables  2 0.20 .R   Furthermore, the 
Weff S  estimator (3.4) proposed to estimate the Weff criterion proved to be an effective estimator, recording 

the same performances, regardless of the strength of the link between the variable of interest and the 

calibration variables. Heteroskedastic residuals for regression models, representing the link between the 

variable of interest and the calibration variables, had little impact on the performances of the Weff criterion 

and the Weff S  estimator. We also noted a lack of impact in using approximation (2.8) for the variance 

under design k kk S
d


 x β  since the impact of the deviation between the AMSE for the HT estimator 

 HTMSE  and its approximation  HTMSE  (2.10) was negligible in the results for the Weff criterion. This 

was predictable since the design being considered was a SRSD. 

 
5  Conclusion 
 

In this paper, we have proposed a new criterion for measuring the impact of using calibration weights to 

estimate the total for a variable of interest. This criterion can be calculated for each variable of interest to 

determine whether it is better to use a set of calibration weights or sampling weights to estimate the total 

for the variable. The proposed criterion has the benefit of taking into account the two main aspects that 

influence the precision of a total estimator: bias due to the use of calibration weights and the quality of the 

linear regression model that represents the link between the variable of interest and the calibration variables. 

Therefore, this criterion can be seen as a measurement of the threshold where the gain in the variance 

obtained with the calibration estimator exceeds the loss in bias due to the use of calibration weights rather 

than sampling weights. The simulations conducted to evaluate the proposed criterion showed that this 

criterion does indeed identify, for a given variable of interest, situations where it is best to use calibration 

weights, i.e., when the variable of interest is sufficiently correlated with the calibration variables. 

It is important to note that the role of this criterion is not to introduce a new weighting system to replace 

calibration weighting or sample weighting. It is used solely to identify which of the two weighting systems 

would be best to use for a given variable of interest, which is very useful for practitioners, particularly in 

the case of surveys that cover different subjects, such as omnibus surveys. However, it would be interesting 

to study the possibility of producing a unique new weighting system for all survey variables, based on this 

criterion, while taking into account the advantages of both calibration weights and sampling weights. 

Finally, it should be noted that the proposed criterion requires a linear relationship between the variables of 

interest and the calibration variables, and the robustness of the criterion is worth investigating. 
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Appendix 
 

Simulations results for homoskedastic residual models 
 

Table A.1 
(Homoskedastic populations): Simulation results for the Weff  criterion, by sample size and degree of the link 
between the variables of interest and the calibration variables 
 

  Variables of interest 

Y1 Y2 Y3 Y4 Y5 Y6 
(R2 = 0.01) (R2 = 0.10) (R2 = 0.20) (R2 = 0.50) (R2 = 0.75) (R2 = 0.98) 

n = 100  CalMSE  (107) 30,150.81 9,298.14 1,492.16 177.42 56.54 3.58 

  HTMSE  (107) 27,162.87 8,530.43 1,477.41 326.93 207.72 160.37 

  
HTMSE  (107) 27,162.82 8,530.40 1,477.39 326.90 207.69 160.34 

  Weff  1.11 1.09 1.01 0.54 0.27 0.02 

  
CalMSE  (107) 31,523.63 9,775.29 1,565.31 192.17 61.49 3.90 

  
HTMSE  (107) 29,024.17 9,128.96 1,573.25 338.45 211.87 160.75 

  Weff  1.09 1.07 1.00 0.58 0.30 0.02 

   MSE Weff  0.020 0.021 0.021 0.016 0.007 0.00008 

n = 200  CalMSE  (107) 14,277.16 4,441.79 732.99 83.44 26.59 1.68 

  HTMSE  (107) 13,343.16 4,190.39 725.75 160.60 102.04 78.78 

  
HTMSE  (107) 13,343.14 4,190.37 725.73 160.58 102.02 78.77 

  Weff  1.07 1.06 1.01 0.52 0.26 0.02 

  
CalMSE  (107) 14,195.90 4,398.60 753.49 86.72 27.69 1.75 

  
HTMSE  (107) 13,795.17 4,336.28 748.77 163.53 102.90 78.84 

  Weff  1.06 1.05 1.01 0.53 0.27 0.02 

   MSE Weff  0.003 0.003 0.004 0.005 0.002 0.00002 

n = 400  CalMSE  (107) 9,086.04 2,826.00 470.43 53.96 17.20 1.09 

  HTMSE  (107) 8,736.60 2,743.71 475.19 105.15 66.81 51.58 

  
HTMSE  (107) 8,736.58 2,743.69 475.18 105.14 66.80 51.57 

  Weff  1.04 1.03 0.99 0.51 0.26 0.02 

  
CalMSE  (107) 9,178.88 2,894.26 478.67 55.38 17.65 1.12 

  
HTMSE  (107) 8,946.42 2,833.29 485.09 106.41 67.21 51.57 

  Weff  1.03 1.02 0.98 0.52 0.27 0.02 

   MSE Weff  0.001 0.001 0.002 0.003 0.002 0.00001 
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