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10 Introduction 

The main purpose of this report is to present, explain, and show 

applications of Theil's Root Mean Square Prediction Error method. The 

method is an objective,numerical way of expressing the quality or 

"predictive performance" of an estimate of a parameter which is subject 

to later revision. Theil's method is based upon the concepts and methods 

used to describe the quality of an estimation procedure. These concepts, 

accuracy, precision, and bias, are explained below. 

2.0 Part 1: Measurement of the Quality of an Estimation Procedure 

The purpose of estimation is to assign a value to an unknown para- 

meter. Hopefully, our method of estimation is such that it consistently 

provides estimates that are close to the value of the parameter. For 

illustration, let the parameter be Net Farm Income in 1975. This unknown 

value, in 1975, was estimated to be $4,327.9 million'. Conceptually,this 

estimate of $4,327.9 million is not unique - a different random selection 

of subjects in a probability survey or different personnel in a subjective 

estimation procedure are two of many examples that lead to differing 

values of an estimate. Let us suppose that an estimation procedure can 

yield n possible values for the parameter which we will represent by the 

symbol Z. Specifically, we denote the population or universe of possible 

estimates by z 1 , z 2 , . .., z. The survey yields one of the values 

say z17 , but any of the other could conceivably occur. Objective, numerical 

measures of the quality of the z's are based on the notions of accuracy, 

bias and precision described in the next section. 

1 See reference 12. 
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2.1 Three measures of quality - Accuracy, Bias and Precision 

The concepts of accuracy, bias, and precision are often explained 

in terms of a marksman shooting at a target. In the analogy, the bull's 

eye represents the value of the parameter and the shots on the target 

represent the estimates. A perfect estimation procedure is analogous to 

the marksman hitting the bull's eye every time. This extract from 

Iurphy (1961) is one such explanation. 

"It is, in fact, interesting to compare the measurement situation 
with that of a marksman aiming at a target. We would call him a 
precise marksman if, in firing a sequence of rounds, he were able 
to place all his shots in a rather small circle on the target. 
Any other rifleman unable to group his shots in such a small circle 
would naturally be regarded as less precise. Most people would 
accept this characterization whether either rifleman hits the 
bull's eye or not. 

Surely all would agree that if our man hits or nearly hits the 
bull's eye on all occasions, he should be called an accurate 
marksman. Unahppily, he may be a very precise marksman, but if his 
rifle is out of adjustment, perhaps the small circle of shots 
is centered at a point some distance from the bull's eye. In that 
case, we might regard him as an inaccurate marksman. Perhaps we 
should say that he is a potentially accurate marksman firing with 
a faulty rifle, but speaking categorically, we should have to say 
that the results were inaccurate." 

Thus an estimation procedure that yields z.'s that are consistently 

close to each other (even if they are not close to the parameter Z) is 

deemed precise. Compare figures 2.1 a. and d. (precise) versus figures 

2.1 b. and c. (imprecise). If the procedure yield's z's that "average 

out" to at, or near, the value of Z, then the procedure is deemed to be 

of low bias (even if individually the estimates are far away from Z). 

Compare figures 2.1 c. and d. (low bias) versus figures 2.1 a. and b. 

(high bias). Finally, if the procedure is both precise and of low bias, 

it is deemed accurate. Compare figures 2.1 a., b. and c. (inaccurate) 

versus figures 2.1 d. (accurate). 
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Figure 2.1: An Illustration of bias, precision and accuracy via the target 
shooting example. 
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Let us now consider the numerical definitions of accuracy, bias, 

and precision. For illustration, let us suppose we have two competing 

estimation procedures: A, which can yield only five possible estimates, 

= 14, z = 16, z = 15, z = 17, z = 13; 

and B, which can also yield only five possible estimates, 

= 9, z 2  = 5, z 3  = 20, z = 15, z = 21. 

Let us further suppose that the value of the parameter, Z, is equal to 

$15. An estimation procedure is likely to yield many more than five 

possibilities. Differing estimates are the results of differing random 

selections of subjects, non-sampling errors, "seat of the pants' t  decisions, 

"rules of thumb", ... the list is endless. Not all the estimates are 

equally likely to be the estimate that we end up with as our representation 

of Z. If we estimate, for example, the average height of Canadians based 

on the heights of a random selection of 100 subjects, it is far more 

likely that the average height turns Out to be around five and a half 

feet than around six and a half feet, although both estimates are quite 

possible. To explain the concepts of accuracy, bias, and precision, it 

is simpler to assume that each of the estimates z 1 , z 2 , ..., Zn  has the 

same chance of occurring. This simplification has no effect on under - 

standing these concepts, but for completeness, a brief discussion of 

unequally likely z's is presented in Appendix 1. 

(i) Accuracy 

The numerical measure of accuracy is called the Mean Square Error 

(NSE). The MSE is calculated thus: for each of the n z 1 t s compute 

the quantity (z. - Z) 2 ; then find the average of these n quantities. 



Mic 

The square root of this average is called the root mean square error of z. 

In a formula, the MSE of z is: 

MSE (z) = l((z 1  - 	+ (z2 - Z) 2  + ... + (z - Z) 2) 

or using the sigma notation to denote summation, 

NSE (z) =1 E (z. - Z) 2 . 

the root mean square error of z is 

RNSE (z) = JMSE (z). 

Returning to estimation procedures A and B described above, 

MSE(z for A) = 1/5((14_15) 2  + (16_15) 2  + (15_15) 2  + (17_15)2 + (13_15)2) 

2 square dollars 

and 

HSE(z for B) = 1/5((9_15)2 + (5_15) 2  + (20_15) 2  + (15_15) 2  + (21_15) 2 ) 

= 39.4 square dollars. 

Taking square roots, 

RMSE(z for A) = 1.414 dollars; 

and 

RMSE(z for B) = 6.277 dollars. 

The dispersion of the z's around Z is smaller for method A than for method 

B. Consequently, we judge that procedure A is more accurate than procedure 

B. 

(ii) Bias 

Let us now consider the quality of the estimation procedure "on the 

average" by using a quantity denoted E(z). E(z) is defined as the 

expected value of z; the value of z that we will get "on the average" 

or "in the long run". Under the simplifying assumption of equally 

occurring z's, the expected value is a simple average of all the z's, 



E(z) = 1 (z 
1 	2 
+ z + ... + z ) 

n n 
n 

=2 Z zi. 
n 

1=1 

For procedure A, 

E(z for A) = 1/5 (14 + 16 + 15 + 17 + 13) = $15 

and for procedure B, 

E(z for B) = 1/5 (9 + 5 + 20 + 15 + 21) = $14. 

Thus, "on the average" procedure A yields $15 and procedure B yields $14. 

Note that the expected value of procedure A, $15, is equal to the value 

of Z. Procedure A is therefore called an unbiased estimation procedure. 

Bias, denoted B(z), is defined 

B(z) = E(z) - Z. 

Thus, 

B(z for A) = 15 - 15 = 0 dollars; 

and 

B(z for B) = 14 - 15 = 1 dollar. 

"On the average", procedure A is better than procedure B, if we measure 

quality by bias. 

Overwhelming Importance should not be applied to bias because 

experiments or surveys are never done "on the average". For example, 

suppose another estimation procedure yields z 1  = $1 or z 2  $29. The 

expected value is $15 = (1 + 29)/2 and so it is unbiased, but the proce-

dure never yields an estimate close to $15. 
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(iii) Precision 

Thus far, two measures of the quality of an estimation procedure 

have been discussed, bias measured by E(z) - Z and accuracy 

measured by the RMSE. Let us now consider a third quality called 

precision which is measured by a number called the variance of the 

estimation procedure. Under the simplifying convention of equally 

likely z's, the variance is equal to the average of the n quantities 

(z - E(z)) 2 . Thus, 

Var(z) = 1 n (z - E(z)) 2 

i=l 

This quantity is computationally similar to the mean square error. 

The only difference is that variance measures the dispersion about 

the expected value while the mean square error measures dispersion 

about the value of the parameter, Z. The standard error of Z is 

defined as the square root of the variance, 

SE(a) 	[Y(z). 

Noting from our discussion of bias that E(z for A) = $15 and that 

E(z for B) = $14, we find that, 

Var(z for A) = 1/5 ((14_15)2 + (16_15) 2  + (15_15)2 + (1715)2 

+ (13_15) 2 ) 

= 2 square dollars; 
and 

Var(z for B) = 1/5 ((9_14) 2  + (5_14) 2  + (20_14)2 + (15_14)2 

= 38.4 square dollars. 
	+ (2 1_14) 2 ) 

Taking square roots, 

SE(z for A) = $1.414; 

and 

SE(z for B) = $6.197. 



Since the standard error for procedure A is less than that for 

procedure B, we say that procedure A is more precise than procedure 

B. Note that this measure of quality does not involve the parameter 

Z and consequently one might think that it is a poor measure of 

quality. However, for reasons discussed in Section 2.3, it is 

perhaps the most practical measure of quality. 

2.2 The Coefficient of Variation 

The coefficient of variation of z is defined, 

C.V.(z) = 100% x SE(z)/E(z). 

The definition of the C.V. is motivated by the following anomaly. 

Suppose, for example, that feed expenses in the Prairies are estimated 

to be $250 million, that veterinary expenses are estimated to be $30 

million, and that the standard error of both these variables is $10 

million. It would thus not be surprising to find that the true value 

for veterinary expenses to be somewhere in the interval $10 million to 

$50 nhillion* - quite a variability in plausible estimates. Conversely, 

we would quite reasonably consider the estimate for feed expenses, despite 

the same standard error, to be quite stable - the true value being some-

where in the interval $230 million to $280 million* - i.e. quite invariable. 

In order to distinguish numerically between these two "equivalent" standard 

errors, we define the coefficient of variation as a measure of variability 

with respect to the mean. Thus we get C.V. = 4.0% for the feed estimate 

and C.V. = 33.0% for the veterinary expense estimate. This number quite 

effectively demonstrates that relatively or proportionately, the feed 

estimate is the better estimate, despite the "equivalent" standard errors. 

* These limits are (estimate - 2 S.E.) to (estimate + 2 S.E.) 
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The C.V. is a useful measure to compare the relative quality of 

estimates for disparate items (such as feed and veterinary expenses) whose 

totals are expected to differ widely - expense estimates for miscellaneous 

tools, fertilizer, insurance and heating fuel are several more examples. 

Also, since the C.V. is unitless, it is feasible to use it to compare the 

precision between items that have different units such as expenses, 

livestock numbers, and acreages. 

Returning to procedures A and B, 

C.V.(A) = 100 x 2/15 = 9.43% 

and 

C.V.(B) = 100 x 38.4/14 = 44.26%. 

Thus relative to their means, Procedure A is more precise than Procedure B. 

2.3 The Relationship between accuracy, bias, and precision and their estimation 

This section has discussed three basic measures of quality: 

accuracy measured by, 

MSE(z) = 1 	(z. - 

bias measured by, 

B(z) = E(z) - Z; and 

precision measured by 

Var(z) = 1 ç n ' (z. - E(z)) 2 
n. 
3.1 

Now it is known that these three measures of quality are related mathema-

tically. Specifically, 

MSE(z) = Var(z) + B(z) 2 , 

so accuracy is made up of two separate components: precision and bias. 
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Let us now ignore accuracy and concentrate on investigating precision and 

bias since accuracy can always be computed if we know the precision and 

bias. 

The calculation of bias and precision, as presented in the formulae 

above, is impossible for two reasons. First, we do not know the value of 

Z (and if we did, we would have no reason to estimate it) and second, the 

estimation procedure yields only one z, say z17 , rather than all the 

z's. Let us instead attempt to estimate Var(z) and B(z) rather than 

ccnpute them. 

First we must examine the sources of error that cause bias and 

imprecision. The sources are divided into two broad classes - non-sampling 

errors and sampling errors. 

Sampling errors exist when only a portion of the population is 

measured, rather than the complete population. Consequently the sample 

data, when it is manipulated to form the estimate, will not equal the true 

value, except by chance. The resulting error is called the sampling error. 

In probability surveys, it is possible to estimate the average 

sampling error of all the possible samples based on the actual raw data 

of the one sample we happened to get in the survey. That is, not only does 

the raw data provide the estimate z, but it also provides an estimate of 

the sampling error portion of bias and precision. The formulae to 

compute the estimate of sampling error is dependent upon the type of 

probability sampling design chosen - it may be simple random sampling, 

cluster sampling, stratified sampling or any of a number of other schemes 

(or even combinations of sampling designs). The main point about 
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probability sample surveys is that given the sampling design and given 

the subsequently obtained raw data one can calculate the estimate z and 

mathematically derive and compute good estimates of the sampling error. 

In non-probability sample surveys or subjective estimation proce-

dures, a specific probability sampling scheme is not used. From the 

point of view of delving into the procedure to find out the quality of 

the estimates it produced, non-probability surveys are extremely complex. 

Basically we are left with only z and no way of measuring the sampling 

error. 

As its name suggests, non-sampling errors are all errors that are 

not due to a sample (rather than complete) portion being taken of the popu-

lation. Several of an endless list of non-sampling errors are: 

calculation errors, non-response, mis-response, data capture errors, 

and so on. The detection and measurement of this type of error is very 

difficult. The best solution is to avoid the problem as much as possible. 

Consequently resources are spent detecting, minimizing and controlling 

these errors. Effective questionnaire design, training of enumerators, 

computer edit and imputation packages, post-survey quality checks and data 

capture verification are several examples of methods to control non-

sampling errors. The undetected and uncontrolled errors, however, are 

most likely to be urimeasurable. 

Under the worst of conditions - a non-probability survey and 

undetected and uncontrolled non-sampling error - data quality measurement 

is wholly unsatisfactory. Under the best of conditions - a probability 

survey and minimal non-sampling error - data quality is effectively but 

not perfectly measurable. 
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Suppose, however, that estimates are periodically revised. Theil 

(1954, 1963), has developed a method of estimating the quality of an 

estimate that has not yet been revised, relative to a later revision, 

based on original and revised estimates from previous years. Thus, 

contrary to the situations described in the foregoing, we will actually 

know the true value at a later time. The following sections deal with 

his method. 
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Part II. Theil's Root Mean Square Prediction Error Method 

3.1 The calculation of the RMSPE 

Table 3.1 shows estimates of Farm Realized Net Income for the years 

1971 to 1978. The first column represents the original estimates or 

"predictions" and the second column represents the revised estimates. 

The quality or ttprediction  performance" of the original estimates for 

the years 1971 to 1977 is quite clear. For example, in 1971, the 

original estimate was off by $1,167.4 - $1,359.6 = - $192.2 million or 

- 14.1%. For the year 1978, however, we cannot compute this. Perhaps 

the typical accuracy, as measured over the years 1971 to 1977, can be 

used to infer the accuracy of the estimate for year 1978. Theil's pro- 

cedure is to calculate the average accuracy of the estimate over the 

years 1971 to 1977, and use it to infer the accuracy of the year 1978. 

Recalling from section 2.1 that the measure of accuracy is the mean 

square error 

MSE -- 

we find that, 

MSE(1971) = 4(1,167.4 - 1 , 359 . 6) 2  = - 192.22 = $36,940.8 

MSE(1972) = - 141.32 = 19,965.7 

NSE(1973) = 	261.92 = 68,599.5 

MSE(1974) = - 372.12 =138,437.6 

MSE(1975) = - 217.22 = 47,179.7 

MSE(1976) = - 378.02 =142, 874.9 

NSE(1977) = _263.92 = 69,663.2. 

The average MSE over these years is $273.52 = $74,808.8. 
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Table 3.1.1: Realized Farm Net Income Estimates, Canada, 1971-1978 

Original estimate 	Revised estimate 
(in November of year) 	(in June of next year) 

1971 	1,167,392 
	

1,359,579 

1972 	1,988,604 
	

2,129,944 

1973 2,968,266 2,706,351 

1974 3,471,401 3,843,473 

1975 3,959,277 4,176,486 

1976 3,362,839 3,740,827 

1977 3,264,703 3,528,641 

1978 4,421,374 * 

* Revised estimate expected in June 1979. 
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This number is called the Mean Square Prediction Error (MSPE). 

Its square root, $273.5 million, is the Root Mean Square Prediction Error 

(RMSPE). Note that by its definition, Theil's procedure provides an 

estimate of accuracy, or equivalently, an estimate of precision plus bias 

squared. More formally, we define 

MSPE = J((P1 - A1 ) 2  + (P 2  - A2 ) 2  + ... + (P - A )2) 
U 	U 

=1 	
(P.—A.)2, 

where P is a prediction, A. is the revised estimate, n is the number of 

years; and 

RMSPE = JiPE 

The calculated RNSPE for realized net income is therefore, 

RMSPE =/-- ((1,167.4 - 1,359.6)2 + (1,988.6 - 2 , 129 . 9) 2  + 

+ (3,264.7 - 3 , 528 . 6) 2 ) 

= $273.5 million. 

From this, we infer that the prediction performance or quality of the 

1978 estimate is $273.5 million. 

The measurement of quality was performed above on the raw errors. 

A different approach to defining the error is to compute the percent error 

using the revised estimate as a base. This is 100% times (P - A.)/A. 

and leads to a different RNSPE formula that computes the average percent 

error, 

 fn 
RNSPE (on percents) 	100% 

 

The effect of this approach is to make the raw error independent of the 

size of the revised estimate. For example, a one million dollar raw error 
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on an item of size $10 million (10% error) has the same percentage error 

as a much larger raw error of $10 million on an item of size $100 million 

(same 10% error). This characteristic of percent errors often makes good 

intuitive sense, and consequently percent errors are often used rather 

than raw errors. 

Using percent errors, the RNSPE for original estimates of realized 

net income is 

RNSPE (on percents) =/ 
  

i (( - 14.14) + ( - 6 . 64) 2  + ... + ( - 7 . 48) 2) 

= 9.38% 

and consequently we infer the predictive performance of the 1978 estimate 

to be 9.38%. 

This section has concentrated on the mechanics of calculating the 

RNSPE. The next sections deal with the applications of the RMSPE, the 

assumptions necessary to compute the RNSPE, and several miscellaneous 

points. 

3.2 Valid Estimation of the RMSPE 

Theil's method requires a stringent assumption. We must assume 

that the true RNSPE for each of the years is the same. If this is true, 

we can pool the information from all years to estimate the common true 

RNSPE and use it to infer the RNSPE for 1978 - further assuming that the 

true RNSPE for 1978 is equal to the common true RMSPE of the previous 

years. 

Basically, the above paragraph is stating that for valid estimation 

everything must be truly representative of everything. 



- 17 - 

Since methods, personnel and the structure of data change, sometimes 

quite frequently, it may be difficult to find representative years to 

estimate the RMSPE. There seems no way out of this dilemna and consequently, 

valid estimation of the RMSPE will sometimes be impossible. The best 

approach seems to be to compute the RMSPE and examine the elements of it 

for at least some consistency from year to year. StOutliert  years - either 

far too good or far too bad in relation to the others - should probably 

be deleted and the R}ISPE recomputed. In the next section, an example of 

this problem is demonstrated. 

3.3 Applications of the RIISPE 

There are two basic uses of the RMSPE: comparing predictive per-

formances and computing confidence intervals. 

(a) Comparing predictive performances 

The RNSPE is a useful measure to compare the predictive performances 

of estimates between items (for example, cash receipts, total expenses 

and realized net farm income), between provinces and between types of 

estimates (for example, the forecast estimate, the projection estimate 

and the first published estimate). 

Table 3.3.1 shows, for cash receipts, total expenses and realized 

income, RNSPE's for the forecast versus the first published estimate and 

the projection versus the first published estimate for each province and 

Canada, based on data for the year 1971 to 1977. Table 3.3.2 shows the 

raw data used to compute the total expense RMSPE's for P.E.I. and the 

subsequent calculations that lead to the R1SPE's for P.E.I. shown in 

Table 3.3.1. 
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Table 3.3.1: Root Mean Square Prediction Errors for the Forecast and the 
Projection versus the First Published Estimate on Total 
Expenses, Cash Receipts, and Realized Farm Net Incotne for 
Canada and Provinces (computed on percent errors and based 
on the years 1971-1977) 

Province 	Total Expenses 	Cash Receipts 	Realized Farm Net Income 

I vs III 	II vs III 	I vs III II vs III 	I vs III 	II vs III 
Z 

Prince Edward 
Island 9.4 1.7 20.2 6.0 56.9 20.3 

Nova Scotia 13.0 5.5 12.4 2.6 30.6 17.2 

New Brunswick 11.8 4.5 16.7 4.8 46.6 17.9 

Quebec 9.1 1.6 10.0 3.4 25.0 11.9 

Ontario 8.6 2.4 10.7 3.6 26.0 14.5 

Manitoba 13.0 3.1 16.6 4.5 35.7 13.3 

Saskatchewan 10.3 3.3 18.7 3.9 38.2 11.3 

Alberta 10.7 3.0 14.9 3.2 28.4 8.7 

British 
Columbia 14.3 5.7 12.9 4.6 21.5 14.1 

Canada 9.6 2.3 12.8 2.7 28.5 9.4 

Source of raw data: Canadian Agricultural Outlook Conferences, 1971-1977. 

I vs III - forecast versus first published estimate. 
II vs III - projection versus first published estimate. 
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Table 3.3.2 Total Expenses for Prince Edward Island and the Calculations 
Leading to the RMSPE'S Shown in Table 3.3.1 

Year Forecast Projection First published estimate 

1971 39,000 37,005 37,517 

1972 37,500 37,878 38,308 

1973 37,963 44,341 45,819 

1974 49,016 58,003 58,703 

1975 65,339 66,929 65,592 

1976 73,568 70,062 69,968 

1977 73,915 72,565 71,816 

Source: Canadian Agricultural Outlook Conferences, 1971-1977. 

RNSPE for forecast versus first published estimate 

RNSPE 
,/l ((39000 - 375l7)2 + (37 P 500 - 38P308)2 + 	+ (739l5 - 71,816 2 )  

	

37,517 	38,308 	71,816 

- 9.4% 

RNSPE for projection versus first published estimate 

RNSPE =1 1 37005 37517) 2 + ( 37500 - 38,308 2 	_____ 72 ) 565 __________ 

	

517 	38,308 	
+ 	+ ( 	- 71,816 2)  

71,816 

- 1.7% 
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The most immediate observation from Table 3.3.1 is that the projection 

is a much better predictor of the first published estimate than the forecast. 

There seems to be no vast differences between the provinces - although 

there is some suggestion that the estimates in the Maritimes are weakest. 

Finally, total expenses and cash receipts are measured with about equal 

quality - but with far more strength than the estimates for realized net 

income. 

In Table 3.3.3, the second illustration, fifteen years of data were 

used to compute the RNSPE for hog production figures. But here, if we 

examine the trend of the percent errors over the past fifteen years, the 

necessary assumption that each year be representative of all the others 

seems to be broken. The last five years, 1972-1976, seem to form a 

definite group and it would seem that the RMSPE based on this group would 

provide a more realistic estimate of the current true RNSPE for hog 

production figures. 

For this reason, the RHSPE was recalculated using the last five 

years. The RNSPE has changed from 14.5% to 1.9%, as shown in Table 3.3.4. 

This illustration shows the usefulness of examining the trend of 

percent errors - first to pick Out the correct years to estimate the 

RMSPE and second to provide a historical series of percent error which may 

prove to be of interest In its own right. 

(b) Confidence intervals 

A confidence interval is a lower limit and an upper limit created so 

that with a certain known probability (say 95%), the lower and upper 

limits will straddle the subsequently obtained revised estimate. If 

it is assumed that the predicted and revised estimates are both normally 

distributed, then 95% limits are 
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Table 3.3.3: An R}ISPE for Hog Production Figures (,000's) 

B.C. HOES 

YEAR PREDICTION REVISES. ERROR PERCENT 

(1) ESTIMATE (2) ERROR 

1961 47.0 41.6 5.4 12.981 

1962 42.0 42.0 010 0.000 

1963 37.0 38.0 -1.0 -2.632 

1964 39.0 41.0 -2.0 -4.878 

1965 36.0 39.0 -3.0 -7.692 

1966 38.0 37.4 0.6 1.604 

1967 44.0 50.0 -6.0 -12.000 

1968 41.0 53.0 -12.0 -22.642 

1969 38.0 51.0 -13.0 -25.490 

1970 49.0 63.0 -14.0 -22.222 

1971 47.0 73.5 -26.5 -36.054 

1972 58.0 57.6 0.4 0.694 

1973 52.0 51.2 0.8 1.563 

1974 56.0 54.7 1.3 2.377 

1975 56.0 54.3 1.7 3.131 

1976 58.0 57.6 0.4 0.694 

THEIL'S ROOT MEAN SQUARE PREDICTION ERROR 

ON ERRORS 	 9.001 

ON PERCENT ERRORS : 	14.534 
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Table 3.3.4: An RMSPE for Hog Production Figures (,000's) 

- 	B.C. HOGS 

YEAR PREDICTION REVISED ERROR PERCENT 

(1) ESTIMATE (2) ERROR 

1972 58.0 57.6 0.4 0.694 

1973 52.0 51.2 0.8 1.563 

1974 56.0 54.7 1.3 2.377 

1975 56.0 54.3 1.7 3.131 

1976 58.0 57.6 0.4 0.694 

THEILS ROOT MEAN SQUARE PREDICTION ERROR 

ON ERRORS 	1.053 

ON PERCENT ERRORS : 	1.942 
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(predicted - 2.00 times RNSPE) to (predicted + 2.00 times RNSPE). 

The number 2.00 is specifically associated with a normal distribution 

so if the distribution is not normal, then the use of 2.00 is not 

correct. 

Each time confidence intervals are made, one should satisfy oneself 

that the distribution is normal or can reasonably be assumed to be 

normal. In probability suvveys, it is usually valid to assume a 

normal distribution (via the Central Limit Theorem of Statistics) but 

when estimates are subjectively obtained or obtained through non-

probability surveys, the validity of such an assumption is open to 

much questioning. Consequently, for any specific set of data, the 

analyst must be prepared to think about this problem. In cases of 

doubt, it would be interesting to construct confidences and then see 

if the intervals cover the later-obtained revised estimates. If it 

is found, through experience, that this is the case (95% of the 

time), the analyst will have more confidence in making the intervals. 

The major application and value, of the RNSPE, I feel, is its 

ability to objectively compare and evaluate the strengths and weakness of 

estimates between items, provinces and types of predictions. 

3.4 Prediction of Changes Rather than Levels 

Often percentage or level changes with respect to previous years 

are predicted rather than levels. That is, we may predict cash receipts 

to go up by (say) 11% or up by (say) $13 million rather than predicting 

theabsolute level of cash receipts. The computation of ENSPE's based on 

changes is computationally identical to that for absolute levels - we 

simply replace the predicted level by the predicted change and the 
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revised level estimate by the revised change estimate and then carry on 

computationally as before.* 

Conceptually, it is possible to compute both an RMSPE based on 

changes and an RMSPE based on levels for each item. Consequently, the 

question may arise as to which type of RNSPE should be calculated. It 

seems reasonable to calculate the RMSPE based on changes when change 

estimates are published and to calculate the RNSPE based on levels when 

levels are published. 

3.5 Other Methods of estimating prediction performance 

The most interesting extension to Theil's method involves decomposing 

the RMSPE into a bias proportion, a variance proportion and a covariance 

proportion. Another method, not directly related to the RMSPE, is 

graphical in nature, and involves plotting the predictions versus the 

revised estimates. 

These methods are discussed in Thell (1966) - an excellent source 

of information about forecasting accuracy. 

3.6 Conclusion 

Although the RNSPE method has limitations that the user must be 

continually aware of (a stringent assumption, a precise interpretation 

and applicability limited to estimates that are revised), the method does 

allow us to numerically express, relative to a later revision, the quality 

of a subjective estimation procedure in an objective manner. This, I feel, 

is most important because subjective statements of quality are nebulous 

and difficult to define and interpret consistently. 

* Depending on the conceptual definition of a predicted change and a 
realized change, the RNSPE (on levels) can equal the RHSPE (on changes). 
No more about this will be said here, but see Tukey ( 1976 ) for his 
discussion on reasonable definitions of a realized change. 



- 25 - 

APPENDIX 1 

Expected Values and Variances for Unequally Likely z r 's 

In Section 2.1, it was assumed that each of the possible estimates, 

21 	14, z2 	16, 23  = 15, 2 4 	17, z5  W  13, 

was equally likely to occur. Suppose, however, that 22  occurs 96% of the time 

and the others occur 1% of the time each. It no longer appears that "In the 

long run" or "on the average" we will get $15. Thus the expected value is 

properly defined for procedure A as, 

E(z) 	(.01 x 14) + (.96 x 16) + (.01 x 15) + ( .01 x 17 ) + (.01 x 13) 

$15.95. 

The expected value is actually a veihted average of the z's where the weights 

are the probabilities of occurance. Thus, p1 = .1, p2 	.96,  p3 	.1,  p4 - .1, 

and p 	.1 are the probability weights for procedure A. More formally, the 

expected value is defined 

E(z) 	p1 z I + p 2  22 + ... + p11  z 

i14 
pi  21. 

Using the same reasoning, wedefine the variance of procedure A to be 

Var(z) = p 1 (z1  - E(z)) 2  + p 2 (z 2  - E(z)) 2  + ... + p 5 (z 5  - E(z)) 2  

.01(14 - 15.95)2 + .96(16 - 15 . 95) 2  + ... + .01(13 - 15 . 95) 2  

- 0.148 square dollars. 

Similarly, 

MSE(z) 	p1(z1 - 15)2 + 	- 15) 2  + ... + p5(z5 - 15) 2  

.01(14 - 15)2 + .96(16 - 15) 2  + ... + .01(13 - 15) 2  

- 1.050 square dollars. 

/2 
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From this we see that whatever we are measuring, whether squared deviations 

from the population mean or squared deviations from the value of the 

parameter, is a weighted average, where the weights are the probabilities 

of the z's. Thus, formal definitions of the variance and mean square error 

are, 
n 	2 

Var(z) =:. p 4 (z 4  - E(z)) 

and 
n 

NSE(z) 	2. pj(zi - 
i-i 

respectively. Note that for equally likely z's, p 1  - for all 1. 

It might be further inferred that estimates of these quantities 

through random samples also require a weighted average. However, this is 

not required because nature does the probability weighting for us. Just as a 

double six in dice throwing is rare to turn up, so also unlikely z'a turn up 

rarely in random sampling. Consequently, the usual unweighted estimates of 

precision and the population mean, the sample variance and the sample mean 

respectively, provide correctly weighted estimates of these population 

parameters. 
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