$26-215$

Published by Authority of the HON．R．B．HANSON，K．C．，M．P．

 Minister of Trade and Commerce．DEPARTIGENT OF TRADE AND COMRERCE DOMINION BUREAU OF STATISTICS
MINING，METALLURGICAL AND CHEMCAL BRANCH
OTTANA－CANADA
Dominion Statistician：R．H．Coats，LL．D．，F．R．S．C．，F．S．S．（Hon．） Chief－Mining，Metallurgical and Chemical Branch：W．H．Losee，B，Sc．

SAND AND GRAVEL，1933．

Sand and gravel production in Canada during 1933 amounted to $11,738,823$ tons valued at $\$ 4,464,285$ as compared with $14,469,942$ tons at $\$ 4,480,536$ in 1932，according to finally revised statistics just issued by the Mining，Metallurgical and Chemical Branch of the Dominion Bureau of Statistics at Ottawa．

Imports of sand and gravel into Canada in 1933 totalled 89,017 tons valued at $\$ 72,480$ compared with 36,387 tons worth $\$ 43,677$ in 1932．Silica sand for glass and carborundum manufacture and for use in steel foundries，filtration plants and sand blasting was imported to the value of $\$ 160,131$ and totalled in quantity 64,114 tons compared with $\$ 162,869$ and 59,176 tons in the preceding year．

During 1933 the sand and gravel industry in Canada furnished employment to 2，726 persons whose earnings totalled $\$ 1,169,079$ ．Excluding statistics regarding the sand and gravel operations of railway companies，the fixed and current assets of the operators in this industry amounted to $\$ 6,203,113$ ．Fuel and electricity used in 1933 cost $\$ 129,41$ ）．

The sand blast now touches almost every phase of metal finishing．It enters into the production of bath tubs，beer barrels，crank shafts，small tools，and hundreds of other products．Telephones，the minute drills used by dentists，automobiles and railroad cars，all may find applications of the sand blast in some process of their manufacture．The type of finish desired governs the selection of abrasives to some extent．Ordinary bank or building sands are of little value．Ocean sands are much used，but carefully selected and prepared white silica sand has greater resistance to disintegration，creates less dust，and enables faster cleaning．Most sands used for sand blasting weigh approximately 97 pounds per cubic foot．（i）

Moulding aand may be separated into two general classes，with and without natural bond．Sand of the first class，when removed from the pit contains sufficient clay，loam，or other forefgn material to bond it when tamped into place around the pattern．Sand of the second class does not contain sufficient natural bonding material and some such substance as refractory clay or organic binder must be mixed with it． Sand with little or no natural bond is often termed＂silica sand＂or steel moulding sand；for steel moulding the material should contain more than 96 per cont of silica before the addition of artificial bond．Naturally－bonded sand is sometimes called ＂foundry sand＂，＂iron－moulding sand＂or simnly＂moulding sand＂to distinçuish it from ＂silica sand．＂The general properties／栬童直rmine the value of a sand for foundry purposes are：（1）bond or cohesiveness；（2）permeability；（3）grain size；（4）re－ fractoriness；and（5）durability．Sand is also used to line furnace bottoms and walls， especially in furnaces for making acid open－hearth steel；it is also largely used in forming the bottoms of copper refining furnaces and reverberatory copper smelting furnaces；at the more importan：producing centres soft sandstone of high silica cojtent is used，as in the crusher form it contains enough bonding material to meet the
specifications of the steel industry. Good filter sand must be fairly iniform and fall within limiting sizes. It must, moreover, be free from clay and organic matter and of bigh chemical purity, specifications generally stating that not mone than 2 per cent shall be soluble in hot hydrochloric acid. Other specifications require that the combined lime and magnesia, calculated as carbonates, shall not exceed 2 per cent. With regard to grain size, specifications aually state that no grains shall be larger than a certain mesh and limit the percentage that will pass a 100 mesh sieve. Sand in sand-lime brick has a two-fold function. Most of it acts nereiy as an aggregate making up the body of the brick, which is bound together by a cementing material, the remainder supplies silica for the formation of the mono-calcium silicaterbond. Extreme chemical purity is not essential, but the sand should be reasonably clean and free from organic substances. Most of the sand used for glass making contains more than 99 per cent silica; quality depends largely on the kind and quality of glass being made. (2)

Silica sand is generaliy prepared from a friable sandstone: in Nanitoba a high grade natural silica sand is produced from loosely consolidated deposits on Black Island, file it is reported that near Bruno de Guiges in Quebec, a large deposit of free running, high grade silica sand is under development; this property is equipped with a one hundred ton mill. Various grades of the high quality silica sands are also being produced in Canadian mills from quartz or other silica rock; silex is the washed sand or pure quartz crushed or ground in some form of ball mill, then either air or water-floated to recover the fine flour. The ceramic industry requires 150 mesh or finer while the paint trade required air-floated material of 250 mesh or finer. (3)
(1) "Iron Age" - (8) "The Chemical Age" - (3) Department of Mines, Ottawa.

PRODUCTION IN CANADA, IMPORTS AND EXPORTS OF SAND AND GRAVEL, 1933.

| PRODUCTION IN CANADA, IMPORTS AND EXPORTS OF |
| :--- | :--- | :--- | :--- |

(x) Does not include production of natural silica sand or of silica sand manufactured from quartz or silica rock; production of these are recorded under quartz.

PRINCIPAL STATISTICS OF THE SAND AND GRAVEL INDUSTRY IN CANADA, 1932-1933.

$$
1932 \quad 1933
$$

Number of firms	686	696
Capital employed...............................	9,542,446	6,203,113
Number of employees - On salary	92	61
On wages	1,651	2,665
Total	1.743	2,926
Salaries and wages - Salaries ${ }_{\text {W }}$	165,218	106,761
Wages	1,156,983	1,062,318
Total	1,322,201	1,169,079
Cost of fuel and electricity	190,477	129,410
Selling value of sand and gravel produced by railway companies	348,957	122,620
Selling value of sand and gravel produced by other operators	4,136,639	4,341,665
Total selling value of sand and gravel produced	4,480,596	4,464,285

AVERAGE NUMBER OF WAGE-EARNERS, BY MONTHS, 1932 and 1933.
Month
1932
1938

January	310	112
February	306	108
March	301	131
April	771	402
May	3,150	5,646
June	3,713	6,172
July	3,737	6,275
August	3,816	6,381
September	3,388	3,087
October	715	762
November	500	586
December	329	363

FUEL AND ELECTRICITY USED, 1932 and 1933.

Unit of	19	$3 \quad 2$	1. 9	3 3
measure	Quantity	Value	Quantity	Value
		\$		
Anthracite coal short ton			2	35
Bituminous coal - Canadian .. short ton	8,689	50,319	10,454	51,484
Foreign ... short ton	7,484	45,102	694	4,508
Lignite coal - Canadian .. short ton	134	540		
Coke short ton	29	166	9	88
```Gasoline (exclusive of motor vehicles) ................... Imp. gal.```	63,309	12,709	81,157	17,923
Kerosene . .................... Imp. gal.	570	98	151	28
Fruel oil ..................... Imp. gal.	357,306	13,267	265,770	10,024
Wood ........................ cord	25	111	....	...
Natural gas ................. M cu.ft.	3	12	98	39
Other fuel ................... $x$ xxx	...	...	...	907
Electricity purchased ....... K.W.H.	3,579,086	68,153	1,990,397	44,374
TOTAL ............... ${ }_{\text {xXX }}$		190,477		129,410
Electricity generated for omm use $\qquad$ K.W.H.	$\ldots$		150,000	

POWFR EQUIPMENT INSTALLED, 1933.
Number of units
Horse power

Steam engines and steam turbines	14	574
Diesel engines	...	
Gasoline, gas and oil engines (other)	51	1,894
Hydraulic turbines or weter wheels	8	260
Electric motors operated by purchased power	201	6,960
Electric motors operated by establishments' power	2	45
Boilers	7	55

SILICA AND SAMD CONSUMED IN SPECIFIED CANADIAN INDUSTRIES, 1932 and 1933.

Industry . Item	$1 \quad 9 \quad 3 \quad 2$		1.9	3
	Tons	$\$$	Tons	$\$$
Glass Industry .............. Silica sand	59,143	290,854	52,585	272,689
Acids, Alkalies and Salts .... Sillca	6,342	20,921	5,800	21,714
Artificial Abrasives ......... Silica sand	5,207	27,588	13,574	68,186
Products from Imported Clay .. Flint	1,136	18,277	752	10,457
Castings and Forgings ........ Moulding sand	31,162	157,995	22,920	93,975
Primery Iron and Steel ....... Mioulding sand	6,372	41,045	8,960	56,607
Other iron and steel industries ........................... Moulding sand	11,411	46,426	12,973	40,932
Brass and Copper Industry .... Moulding sand	2,183	12,149	1,788	10,307

