Historical File Copy

Minister of Trade and Commerce DHWINIUS RURIStC -
DEPARTMENT OF TRADE AND COMmERCE
DOMIHON BUREAU OF STATISTICS
MINING, METALLURGICAL AND CHEMICAL BRANCH

Dominion Statistician:
S. A. Cudmore, M.A. (oxon.), Fig.Sriy..R.S. Chief - Mining, Metallurgical and Chemical Branch: Mining Statistician:
R. J. McDowol 1, B. Sc,

THE TALC AND SO AP STONE INDUSTRY, 1943

The value of crude and refined talc and soapstone sold by Canadian producers of these minerals totalled $\$ 266,635$ in 1943 compared wi th a corresponding value of $\$ 310,824$ in 1942. Mine shipments of soapstone and talc reported in 1943 by operators in the province of Quebec amounted to 14,204 tons worth $\$ 135,469$. Producdion of the higher grades of talc in Canada is confined chiemy to the province of Ontario, and tire 1943 shipments totalling 11,953 tons valued at $\$ 131,216$ were made almost entirely from a deposit, located near Madoc, Hastings county. Included in the Ontario output was a relatively small tonnage of talc obtained from a property situated near Ompah in Frontenac county. In British Columiria, crude talc imported From the United States was treated in a Vancouver mill. From October to December development work was carried on at a talc deposit located at Red Mountain in the Kootenay National Park of British Columbia; this operation is known as the Lava Talc Project and was conducted by the Wartime Metal 3 Corp.; a trial shipment was made to the Uni ted States Economic Administration.

Imports of talc or soapstone into Canada in 1943 totalled 12,899,800 puns valued at $\$ 130,813$; exports of talc in the same year amounted to $22,729,200$ pounds worth $\$ 140,516$.

During 1943 there were 3 firms reported as active in the industry, 5 in the province of Quebec, 2 in Ontario and I in British Columbia; of these, 6 made commercial shipments. Capital employed by the industry to tailed $\$ 576,691$; employes numbered 90 , and $\$ 101,719$ were distributed as salaries and wages. Fuel and purchased electricity consumed were appraised at $\$ 24,104$ and the cost of explosives and other process supplies used was reported at 35,927 . The net value of sales in 1943 was estimated at $\$ 208,654$ compared with $\$ 251,711$ in 1942.

The following information is from a report "Talc and Soapstone in 1943" as prepared by tie Bureau of Mines, Ottawa:
"Annual production of ground talc in Canada in the five-year period 19391943, inclusive, ranged from 16,000 to 32,000 tons, these figures including also material classed in statistical records as soapstone, part of which was ground in mills other than those of primary producers. All of the output cane from ontario and Quebec.
"Most of the material from Ontario consists of white, foliated talc, Which occurs as veins in crystalline dolomitic limestone of the Madoc area, Hastings county, where an established talc industry has oxisted for the past forty years. Total output from the Madoc area to the end of 1943 is about 400,000 tons. Since 1937, Candia Talc Limited, operating the Conley and Henderson mines, has been the only important producer. W. C. Spry and Company in recent years has been milling a small tonnage of finely schistose, cream-coloured talc in the plant of canada Slate

Products, about a mile north of Madoc. The ci"ada no di is brwathat in from a dupostt. near Ompain, in Frontenac county, 65 miles distunt.
"In Quebec, the talc produced is also of loliated type, but it occurs in bands in highly-metamorphosed basic rocks, mainly serpentine and pyroxenite, and is often associated with bodes of soapstone, an impure talcose rock. It contains much iron, present mainly in chlorite, and varies rather widely in carbonate content. It yields a slightly off-colour, grey powder, and is used chiefly in tiae rubber, paper, and roofing trades. The entire production is obtained from the Eastern Tomships, mainly from the Thetford Mines area, and there are also a mine and mill at Highwater close to the Vermont boundary. All of Canada's output of sam soupstone blocks, sold chiefly for use in the alkali recovery furnaces of domestic kraft aills, and also of talc crayons, comes from the Thetford Mines area. Some of the sawing dust from these operations is sold to domestic roofing firms, and a large tonnage of quarry and sawing waste is shipped to the grinding plant of Puiverized Products, Limited, 4820 Fourth Avenue, Rosemout, Montreal.
"Prior to the war, the world production of talc, including ground material, cut soapstone, steatite, and pyrophyllite (a minoral closely resenbling talc and used for many similar industrial purposes) amounted to about half a million tons a year, more than half of rihich was produced in the United States. Manchuria, wi th an output of about 100,000 tons, was the second largest producer, folloved by France and Itely? each wi th about 50,000 tons, Norway, Pritish India, Canada and Germany (including Austria).

MMany grades of ground tale are mariceted, and the price zange 19 vide. Value is dependent upon plat by fieteminded by ireeún iron iline and eritty or iroubearing substances, slip, and colour), particle shape, and finonesis of grinding, the specificationsfor which vary in the different consuring industries. Roofing and foundry talcs are the cheapest grades, the trades in these being satisfied witi coarser, grey or off-colour material, often soapstone powder or sawing dust, which sells at about $\$ 5$ to $\$ 7$ a ton f .0 .b. rail. Domestic grey talc, suitable for rubber and paper use, sold in 1943 for an average of $\$ 7.50$ to $\$ 9$ per ton. White talc from the Madoc area was quoted at $\$ 3$ to $\$ 10$ for the coarser grades, $\$ 12$ to $\$ 18$ for finer mesh sizes, and $\$ 44$ for minus 400 mesh material.
"Anerican tiles include high-grade, white Californian material, which sold for $\$ 17.50$ to $\$ 43$ a ton; fibrous New York "Asbestine", "Tremoline", and "Loomite" grades, which were quoted at 1.3 to $\$ 21$; and the lower-grade, grey Georgia and Vermont products, which sold for $\$ 8$ to $\$ 14 ;$ all prices $f .0 . b$. mines. Lava steatite and crayon talc sold for $\$ 100$ to $\$ 152$ a ton.
"Myophyllite (hydrous silicate of almina) closely reseables talc in appexrance and physical characteristics. It is difficult to distinguish from talc even by microscopic means and often requires chemical analysis for its identification. In tire ground state it can be employed for many of the industrial uses of taic. Comercial deposits are relatively scarce. Most of the recorded world production comes from North Caroline, where the industry has expanded rapidly in recent years. A large part of the American output goes to the ceramic trade, the remainder being sola for fillers in various products. When fired, pyrophyllite does not $M u x$, as does talc, and it is of value in a wide range of high-grade ceranic products, including refractories.
"Important deposits are known in Newfoundland, and are at present owned and operated by Industrial Minerals Company of Newfomdiand, limited. Box 435, 54. Johris.

In 1943, pyrophyllite was quoted at $\$ 10$ to $\$ 13$ a ton, f.o.b. North Carolina mills, for 200 -mesh and 325 -mesh material, respectively. The material was in easy supply and was placed throughout the year in Group III of the list of materials issued by the Conservation Division of tio United States War Production Board.
"Steatite, is the mineralogical name given to compact, massive talc having no visiblegrain, that can be sam, turned, drilled, and otherwise machined into any desired form. Such material has been widely used for the production of fired shapes, used mainly as electrical insulators. There is now a large demand for steatite for use as grid spacers in high-frequency ship and tank radio truns$m i t t e r s$, and for the cores, bushings, resistors, etc., in radio, radar, and other electronic equipment. It is used to an important extent also for carbon black and other gas burner tips. An al ternative trade name for steatite is "lava tal c". Because of the small amount of natural steatite-available, its high cost, and excessive machining and firing losses, the aforementioned articles are now made largely by die-pressing powdered talc. Suitable talc for the purpose is required to be high-grade material, low in lime and iron, and such talc is now comonly termed steatite, or steatitic talc, irrespective of its texture. There is stjll a limited demand, however, for sawn steatite shapes, and suitable crude is in short supply. The chi of sources of supply at present are British India, Sardinia, Maryland, Montana, and California. Specifications call for compact texture, good structural strength, freedom from hair-cracks and parting lines and from gritty impurities, and a lov content of lime and iron. In general, grade and suitability are determined by machinability and firing behaviour, followed by tests for electronic performance. Chenical analysis is of secondary importance."

Table 1 - PRINCIPAL STACISTICS OF THE TALC AND SOAPSTONE INDUSTRY IN CANADA,

(a) 7 flms in Quebec and 3 in Ontario; data for 1 firm in Quebec, other than sales not available.
(b) 5 firms in Quebec, 2 in Ontario and 1 in British Columbia.
(c) 5 firms in Quebec and 3 in Ontario.

Table 2 CHITA, MPLOYEO BY CLASSES (x), $194-1943$

(x) By active firms.

Table 3 - WAGE EARNERS (x), BY MONTHS, 1942 and 1943

(x) All male.

Table 4 - WAGE-EARNERS WORKING NUMBER OF HOURS SPECIFIED DURING ONE WEEK IN MONTH OF HIGHEST EMPLOYMENT, 1943

Table 5 - FUEL AND ELECTRICITY USED, 1942 and 1943

(x) In addtion, $156,250 \mathrm{~K} . \mathrm{W} . \mathrm{H}$. Eenerated for own use in 1943.

Table 6 - POWFR EGIIMENT INSTALLATION 1993
Nuber liorse pover-Manu-

Di esel engines .	4	345
0 ther gas engines	10	230
Electric motors operated by purchased power	42	1,005
Electric motors operated by own power	13	132

Table 7 - PRODUCTIOA OF TALC AND SOAFSTONE IN CANADA, 1930-1943

Year	Volue	Year	Value
	\$		\$
1930	186,216	1937	163,814
1931	157,083	1938	144,848
1932	159,038	1939	170,066
1933	190,836	1940	229,639
1934	180,777	1941	360,809
1935	171,532	1942.	310,824
1936	177,270	1943	266,685

Production of talc and soapstone in Canada from 1886 to the end of 1943 totalled 577,832 short tons valued at $\$ 5,394,790$. The largest annual tonnage produced during these years was 34,632 in 1941 , 2150 , the greatest onnual value was $\$ 360,809$ in 1941.

Table 8 - PRODUCIION (SALES) IN CANADA OF TALC AND SOAP STONE (t), 1941-1943

(x) Shipments by some fims usually include a considerable quantity of material classified as talc.
(f) Includes both crude and milled grades.

Table 9 - CONSIMPTION OF TALC IN CANADA, BY INDUSTRIES, AS REPORTED IN THE ANNUAL CENSUS OF MANUFACTURSS, 1942

Industry	Short tons	Cost at works
		\$
Rubber industry	1,409	27,459
Electrical apparatus	354	9,776
Paints	5,4:28	154,814
Soaps and cleansing	602	13,640
Toilet preparations	513	22,015
Polishes	18	397
Products from import	565	7,774
Prepared roofing.	4,166	47,928
Pulp and paper	1,812	31,: 278

Table 10 - IMPORTS AMD FYPORTS OF TALC, 1942 and 1943

DIRECIORY

FIFMS IN THE TALC AND SOAPSTONE INDUSTRY, 1943

Name of Firm	Head Office Address	Location of Plant or Mine
Quebec -		
Baker Mining \& Milling Co. Ltd.	4010 St. Catherine St. W., Montreal	Highwater
Broughton Soapstone \& Querry Co. Ltd.	Broughton Station	Broughton Station
Fortin, Charles	Robertsonville	Thetford Tp.
Pharo, L. C.	187 St. Maurice St., Thetford Mines	Leeds Tp.
Maple Leaf Soapstone (x)	West Eroughton	W. Broughton
Ontario -		
Canada Talc Limited	Madoc	Huntingdon Tp .
Spry, W. C.	Madoc	Ompah
Eritish Columbia -		
Wartime Metals Corp. (x)	637 Craie St. W., Montreal, Que.	Kootenay National Park

(x) Active but not producing.

