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Abstract 

Modeling and estimating persistent discrete data can be challenging. In this paper, we use 
an autoregressive panel probit model where the autocorrelation in the discrete variable is 
driven by the autocorrelation in the latent variable. In such a non-linear model, the 
autocorrelation in an unobserved variable results in an intractable likelihood containing 
high-dimensional integrals. To tackle this problem, we use composite likelihoods that 
involve much lower order of integration. However, parameter identification becomes 
problematic since the information employed in lower dimensional distributions may not be 
rich enough for identification. Therefore, we characterize types of composite likelihoods 
that are valid for this model and study conditions under which the parameters can be 
identified. Moreover, we provide consistency and asymptotic normality results of the 
pairwise composite likelihood estimator and conduct Monte Carlo simulations to assess its 
finite-sample performances. Finally, we apply our method to analyze credit ratings. The 
results indicate a significant improvement in the estimated transition probabilities between 
rating classes compared with static models. 
 
Bank topics: Econometric and statistical methods; Economic models; Credit risk 
management 
JEL codes: C23, C25, C58, G24 

Résumé 

La modélisation et l’estimation de données discrètes persistantes peuvent s’avérer 
difficiles. Dans cette étude, nous utilisons un modèle probit autorégressif avec données de 
panel où l’autocorrélation de la variable discrète dépend de l’autocorrélation de la variable 
latente. Dans ce type de modèle non linéaire, l’autocorrélation d’une variable non observée 
entraîne une vraisemblance incalculable contenant des intégrales de haute dimension. Pour 
résoudre ce problème, nous utilisons des vraisemblances composites où l’ordre 
d’intégration est nettement inférieur. Cependant, l’identification des paramètres devient 
problématique, car l’information employée dans les distributions de dimension plus faible 
peut ne pas être suffisante. Nous caractérisons donc les types de vraisemblances composites 
valides pour ce modèle et étudions les conditions dans lesquelles les paramètres peuvent 
être identifiés. De plus, nous démontrons la convergence et la normalité asymptotique de 
l’estimateur de la vraisemblance composite par paire, et effectuons des simulations de 
Monte-Carlo pour évaluer les résultats obtenus avec des échantillons finis. Enfin, nous 
appliquons notre méthode à l’analyse de notes de crédit. Les résultats indiquent une nette 
amélioration de l’exactitude des probabilités de transition estimées entre les catégories de 
notes, par rapport aux modèles statiques. 
 
Sujets : Méthodes économétriques et statistiques; Modèles économiques; Gestion du 
risque de crédit 
Codes JEL : C23, C25, C58, G24 



Non-technical Summary

We frequently encounter discrete variables both in our daily lives and in the economy. For

instance, the choices we make in supermarkets, our school grades, our marital status, as

well as some economic and financial variables such as our employment status, the state

of the economy (recession or expansion), credit ratings, investment decisions, and changes

in the target interest rate are all in discrete terms. Some of these discrete variables are

very repetitive and do not change frequently. We tend to buy the same brand of milk, our

marital or employment status changes rarely, a good (bad) student consistently gets high

(low) grades. Similarly, if an economy starts expanding then it keeps expanding for some

years, and if an economy enters into a recession then it tends to stay in the recession for

some time, and credit ratings of firms and countries do not change frequently, etc.

Probit models are commonly used in the literature to model and predict discrete variables.

These models estimate the probability of a discrete variable being in a specific category (as

well as the transition probabilities to other categories). However, most of these models in the

literature ignore the persistence in the discrete variable and treat the observations in each

time period as if they were independent from each other.

In this paper, we focus on a particular type of probit model that takes into account the

persistence of the discrete variable. We call this model autoregressive probit model, where

the autoregressive part refers to the time dependence. However, the non-linear nature of

discrete variables as well as their dependence over time render the estimation of this model

extremely complex. For this reason, we borrow composite likelihood estimation methods

from the statistics literature to facilitate the complex estimation. Then, we provide theoreti-

cal sufficient conditions for when the composite likelihood estimation method can be used for

this model. Moreover, we prove certain theoretical properties of the estimator and assess its

performances via Monte Carlo simulations. The simulation results show that the proposed

estimator is not only extremely fast but also accurate and robust. Finally, we apply our

methodology to analyze corporate bond ratings and empirically show that taking the persis-

tence into account yields significant improvements in the estimated transition probabilities

between rating classes.



1 Introduction

Persistent discrete variables are extensively used in both the economics and finance literature.

Credit ratings, changes in the federal funds target rate, binary indicators representing reces-

sionary periods, unemployment status, and school grades are just a few important examples.

These variables have a fair amount of persistence in them: credit ratings of companies or

countries change slowly (Altman and Kao (1992) and Nickell et al. (2000)); the policy rate

is usually adjusted gradually by central banks, which is known as monetary policy inertia

(Woodford (1999)); an economy in a recession (expansion) tends to stay in the same state

(Bernanke et al. (1999) and Kiyotaki and Moore (1997)); unemployment status changes in-

frequently (Blanchard and Summers (1986)); a good (bad) student consistently gets high

(low) grades. To understand the dynamic nature of these binary or categorical variables, one

needs to take both persistence and discreteness into consideration.

Modeling and estimating persistent discrete data can be challenging. Incorporating time

series concepts – to capture the persistence – into the non-linear nature of discrete data

might need complex models that are hard to estimate. An interesting model that embodies

both the discreteness and persistence is an autoregressive (AR) panel probit model.1 This

model is introduced by Heckman (1981) as a special case of a general discrete choice model

that contains a variety of other probit models.2 Mathematically, we present the main model

of this paper in the following way. For i = 1, . . . , N and t = 1, . . . , T , we have

yit = s if τs−1 ≤ y∗it < τs, (1)

y∗it = ρy∗i,t−1 + β′xit + αi + εit, (2)

where yit is the observed discrete variable taking values from the set {1, . . . , S}, y∗it is the

autoregressive latent variable that governs the underlying continuous process which depends

on observable covariates xit, unobservable individual-specific effects αi as well as idiosyncratic

1In fact, the main model of the paper is ordered probit. But to keep the name of the model simple, we
omit the word ordered.

2The general framework introduced by Heckman (1981) is as follows: yit = 1(y∗it > 0) where y∗it =
β′xit +

∑∞
l=1 γlyi,t−l + λ

∑∞
s=l

∑s
l=1 yi,t−l +

∑∞
l=1 δly

∗
i,t−l + vit. The first term captures the effect of the

covariates xit; the second and third terms capture the effect of the history of the discrete outcomes; the
fourth term represents the effect of the history of the underlying latent process.
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errors εit, and unknown parameters {ρ, β, τ0, . . . , τS}. The autocorrelation of the latent

variable drives non-linearly that of the discrete variable. Note that in this model, lagged

latent variable y∗i,t−1 generates the persistence as opposed to the lagged observed variable

yi,t−1. The former is an autoregressive process that is more akin to typical time series models

whereas the latter generates discrete jumps in the underlying process. The former model is

named as habit persistence and the latter as state dependence by Heckman (1981).

One caveat of the AR panel probit model is that it has a complex likelihood function.

The model generates non-Markovian discrete outcome yit even though the underlying la-

tent variable y∗it is Markovian. Hence, the likelihood is intractable due to T -dimensional

integrals, which arise from integrating the autocorrelated latent variable out. To deal with

such a challenging likelihood, we borrow composite likelihood (CL) estimation methods from

statistics literature (proposed by Lindsay (1988)). CL methods have been widely used in the

statistics field and have started to gain substantial attention in economics.3 CL estimation is

a likelihood-based method that uses partial specifications of full likelihood (see Varin et al.

(2011) and Cox and Reid (2004) for a review).

The most common CL functions are the marginal composite likelihood LMCL(yi|xi, αi; θ) =∏T
t=1 l(yit|xi, αi; θ) that contains a single integral, and the pairwise composite likelihood of

adjacent observations LPCL(yi|xi, αi; θ) =
∏T−J

t=1

∏J
j=1 l(yit, yi,t+j|xi, αi; θ) that contains two-

dimensional integrals, where yi = (yi1, . . . , yiT )′ and xi = (x′i1, . . . , x
′
iT )′. Hence, composite

likelihood reduces the complexity of the full likelihood by focusing on sub-likelihoods. In

this sense, CL is similar to pseudo likelihoods, quasi likelihoods, or partial likelihoods pro-

posed by several authors, such as Besag (1974), Cox (1975), and Gouriéroux et al. (1984).

CL becomes very useful especially in cases where writing or computing the full likelihood is

infeasible, yet marginal or conditional likelihoods are easier to formulate. Compared with

the traditional maximum likelihood estimator, the CL method is statistically less efficient.

However, consistency, asymptotic normality, and significantly faster computation are among

3Some examples among a few in the economics literature that use CL estimation are Pakel, Shephard,
and Sheppard (2011) and Pakel, Shephard, Sheppard, and Engle (2017) for multivariate GARCH models;
Qu (2018) and Canova and Matthes (2016) for DSGE models; Varin and Vidoni (2008) for general state
space models; Oh and Patton (2016) for high-dimensional copulas; Chu (2017) for panel error-correction
models with spatial dependence; Bel et al. (2018) for a multivariate logit model; Chan et al. (2018) for large
dimensional VAR models; and Gouriéroux and Monfort (2018) for composite indirect inference methods.
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the appealing properties of the CL estimator. Moreover, it can be more robust to model

misspecification compared with ML estimation or simulation methods, since one needs only

correctly specified sub-models in CL approach whereas MLE requires a fully correct model

(Varin and Vidoni (2008)).

Even though a CL is not the correct likelihood, it can still provide consistent estimation

since each sub-likelihood used to form the CL is correctly specified. The intuition is similar

to the consistency of the method of moments estimation. Similar to the fact that correctly

specified moments can yield consistent method of moments estimation, correctly specified

sub-likelihoods can yield consistent composite likelihood estimation. But what is not imme-

diately clear is which types of composite likelihoods provide sufficient information for the

identification of parameters.

A simple example can show the importance of the choice of composite likelihoods for

parameter identification. Consider a linear AR(1) model zt = δzt−1 +σet for an observed con-

tinuous variable zt and an unobserved error et ∼ N (0, 1). If we build a composite likelihood

based on marginal distributions f(zt|θ) = N (0, σ2/(1 − δ2)), then we cannot identify (δ, σ)

separately. However, using conditional distributions f(zt|zt−1; θ) = N (δzt−1, σ
2) enables us

to identify the parameters. Even in such a simple example, the choice of the composite

likelihood matters dramatically in terms of identification. In more complex models, it is not

clear, in general, which sub-likelihoods should be included in the CL so that one can identify

all of the parameters.

A contribution of this paper is to show that there exist such composite likelihood func-

tions, involving very low order of integration, in which one can identify all parameters of

the AR panel probit with correlated random effects model given in (1) and (2). To identify

the parameters, we borrow ideas from the average derivative literature instead of showing

the negative definiteness of the Hessian matrix because this is an intricate task in dynamic

non-linear models (Honoré and Tamer (2006)). Due to the complexity of these models, the

identification is implicitly assumed in many non-linear panel data models both in the eco-

nomics and composite likelihood literature. In this paper, we provide sufficient conditions

for parameter identification and characterize composite likelihoods that can consistently es-

timate the parameters. Subsequently, we prove the consistency and asymptotic normality
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for the (pairwise) composite likelihood estimator in this specific model.

For the asymptotic results, we do not need stronger moment conditions than required in

a static panel probit model. The only stronger condition required in the AR panel probit

compared with the static model is the strict exogeneity of the covariates – which is a typical

assumption in non-linear dynamic latent models (see Section 2 for details). After the asymp-

totic results, we conduct several Monte Carlo simulations to assess the performance of the

composite likelihood estimator. We show that the CL estimator has satisfactory finite-sample

properties. Moreover, even though an increase in T could be bad news for simulation-based

estimators of the full likelihood – due to the increase in the dimension of integrals – the per-

formance of CLE improves as T increases. The increased time-dimension does not increase

the complexity of the composite likelihoods while it increases the data points (and pairs) to

infer from.

This paper also contributes to the finance literature. One branch of this literature analyzes

corporate bond ratings based on firm characteristics by using static panel (probit/logit)

models (see, for instance, Altman (1968), Blume et al. (1998), Amato and Furfine (2004),

and Alp (2013)). Another branch uses dynamic and more sophisticated models (such as

panel probit models with latent dynamic factors) at the expense of not using firm-level data,

i.e. not controlling for heterogeneity in firms. In these models, all the firms are treated as

identical as long as they belong to the same rating class. Therefore, they are called portfolio

models where the dynamics of the rating cohorts are modeled. The contribution of this paper

to the finance literature is to offer an easy-to-estimate dynamic model while controlling for

firm-level observed and unobserved heterogeneity.

In the empirical part, the credit ratings of individual firms are explained by their balance

sheet ratios as well as unobserved firm characteristics and macroeconomic business cycle

conditions. The results indicate that the AR panel probit model yields a better fit to the

data compared with static probit models, which are the common choice of the literature.

More importantly, controlling for the autocorrelation, the AR panel probit model provides

significantly improved rating transition dynamics than its static counterpart.

CL estimation is not the only estimation method that can be used for the AR panel probit

model with random effects. The method of moments, simulation, and Bayesian techniques
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have also been used for this model (see Grether and Maddala (1982), Lechner (1993), Lee

(1997), Pudney (2008), and Stegmueller (2013)). The first two papers, Grether and Maddala

(1982) and Lechner (1993), attempt to estimate the model by treating the panel data model

as if it was T−many separate cross-sectional probit specifications, where each model, for a

given t = 1, . . . , T , includes all the lags of xit that are considered as different covariates. This

results in (K + 1)T (T + 1)/2 estimated reduced-form parameters to recover the underlying

K+ 2 parameters, where K is the number of covariates. Finally, the estimation is conducted

via minimum distance estimator – a procedure proposed by Chamberlain (1982) and Cham-

berlain (1984) for panel data models. In terms of simulation-based techniques, Lee (1997)

and Pudney (2008) utilize Simulated Maximum Likelihood (SML) and Stegmueller (2013)

uses Monte Carlo Markov Chain (MCMC) methods to estimate the model. However, CL

methods have speed and robustness advantages over these estimation techniques (see Varin

and Vidoni (2006), Bhat et al. (2010), and Patil et al. (2017)).

The estimation procedure of Grether and Maddala (1982) and Lechner (1993) can be fit

under a generalized method of moments (GMM) framework (Hansen (1982)) where one can

indeed estimate the panel data model as a whole instead of relying on T−many separate

estimations. However, as in many dynamic panel data settings, the moment conditions can

be of order T 2 (see, for instance, Arellano and Bond (1991), Blundell and Bond (1998),

Bertschek and Lechner (1998), Alvarez and Arellano (2003), Greene (2004b), and Semykina

and Wooldridge (2013)).4 Even for moderate levels of T , one needs to invert at least a few

hundred dimensional matrices to obtain the GMM estimates (e.g. for T = 10 and K = 5,

the number of moments in the AR panel probit model is around 300). This makes the GMM

estimation unstable and even renders it impractical in many cases (see Roodman (2009) for

further discussion).

Even though choosing orthogonality conditions for GMM is intuitively similar to choosing

sub-likelihoods for CLE, their performances in the AR panel probit model differ significantly.

To the best of our knowledge, this is the first paper that shows how GMM estimation can

be used to estimate the AR panel probit model and compares its performance to the CLE.

4One can reduce the number of moment conditions to the order of T by including only contemporaneous
orthogonality conditions. However, selecting the most informative moments, in general, is not an easy task
(see Andrews (1999) and Arellano (2016) for some optimality conditions).
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Based on the simulation results, we find that GMM and CLE yield comparable finite sample

performance for very short panels (e.g. when T ≤ 5). However, for larger T , composite

likelihood methods clearly outperform GMM.5

There are also simulation-based methods that can be used to estimate models with com-

plex likelihood functions containing integrals.6 One of the most frequently used simulators

in Limited Dependent Variable (LDV) models is the GHK algorithm – an importance sam-

pling method for evaluating multivariate normal probabilities – based on the work of Geweke

(1989, 1991), Hajivassiliou (1990), Hajivassiliou and McFadden (1998), and Keane (1994).7

Lee (1997, 1999) employs SML estimation via GHK simulator for various discrete dynamic

panel models introduced by Heckman (1981), including the habit persistence model.

To tackle multidimensional integral problems in LDV models, simulation methods have

been intensively used in empirical work in both economics and finance (see Hyslop (1999),

Gerfin and Lechner (2002), Koopman et al. (2012), Gagliardini and Gouriéroux (2005), Feng

et al. (2008), and Koopman et al. (2009)). However, the computational difficulty of the

simulation approach has been emphasized by many papers such as Hajivassiliou et al. (1996),

McFadden and Ruud (1994), and Feng et al. (2008).8 In comparison to other estimation

methods, several studies (Geweke et al. (1994), Geweke et al. (1997), and Patil et al. (2017))

demonstrate via Monte Carlo simulations that the SML (with the GHK simulator) in a

multinomial probit model is outperformed by Gibbs sampling and CLE. Moreover, in a panel

ordered probit with autocorrelated error terms, where the likelihood contains 6 dimensional

integrals, Bhat et al. (2010) find that the CLE approach is 40 times faster than SML and

performs similarly to SML in terms of efficiency and recovering the true parameters.9

5See Bertschek and Lechner (1998) for various GMM-based estimators in panel probit models with un-
known error structure. But, the problem of large number of moment conditions as T increases is still present.

6Simulation methods have been proposed by Lerman and Manski (1993), McFadden (1989), and Pakes
and Pollard (1989), among others. Simulations have been proven to be useful in limited dependent vari-
able models to approximate their complex likelihoods (Börsch-Supan and Hajivassiliou (1993), Lee (1997),
Laroque and Salanié (1993), Fermanian and Salanié (2004), and Kristensen and Shin (2012)), moment con-
ditions (McFadden (1989), Duffie and Singleton (1993), and Creel and Kristensen (2012)), or score functions
(Hajivassiliou and Ruud (1994), and Hajivassiliou and McFadden (1998)).

7See Train (2009) for details, and Börsch-Supan and Hajivassiliou (1993) for its performance.
8Hajivassiliou et al. (1996) states that “The problem is computationally difficult except in very special

cases.” Similarly, Feng et al. (2008) says “Although the SML estimators are consistent and efficient for a
large number of simulations, practitioners may find the procedure quite difficult and time-consuming.”

9Bhat et al. (2010)’s result is interesting since CL is supposed to be less efficient than the full likelihood
approach. However, SML is efficient when the number of draws tends to infinity; otherwise, the simulation
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In the Bayesian literature, MCMC methods are commonly used to deal with the in-

tractable likelihoods of LDV models (see Albert and Chib (1993), Koop and Poirier (1993),

McCulloch and Rossi (1994), and Wei (1999)). In particular, Chauvet and Potter (2005),

Dueker (2005), and Stegmueller (2013) utilize Gibbs sampling for the AR probit model.

However, Müller and Czado (2005) show that the Gibbs sampler exhibits bad convergence

properties in this model. Nevertheless, as a solution, they suggest a more sophisticated

grouped move multi-grid Monte Carlo Gibbs sampler. Yet, this proposed technique was crit-

icized by Varin and Vidoni (2006) and Bhat et al. (2010) for increasing the computational

complexity by adding to the already cumbersome nature of the simulation approach. Fi-

nally, Monte Carlo simulations of Varin and Vidoni (2006) and Patil et al. (2017) show that

CLE yields a comparable performance to MCMC techniques in a time-series AR probit and

multinomial panel probit models, respectively.

Autoregressive panel probit model has been underutilized in the literature since its esti-

mation is not as easy as other dynamic models, such as dynamic probit model where state

dependence is modeled by letting yi,t−1 driving the dynamics instead of y∗i,t−1. However, with

the lagged latent variable, AR probit is more akin to standard time series models. While

state dependence is an important feature of certain types of discrete data, there are cases

where habit persistence can be a better representation of the true data-generating process.

For instance, an economy in a recession today is more likely to be in a recession tomorrow not

because it is in a recession today but because the underlying bad economic conditions will

persist tomorrow and keep the economy in the state of recession. Another example could be

unemployment dynamics: there is still an ongoing debate to explain why some people stay in

unemployment longer than others (see Arulampalam et al. (2000) and Heckman and Borjas

(1980) for examples). Is this a causal effect of being unemployed or is this due to individual

traits such as being lazy or underqualified so that these individuals cannot find jobs? Even

though this paper does not take any side in the habit persistence versus state dependence

debate, it gives a chance for complex habit persistence models to be more frequently used in

error becomes non-negligible. Hence, if one cannot simulate a large number of times – due to computational
restrictions – SML also ends up being inefficient. Therefore, CL and SML provide comparable estimation
results in terms of root mean square errors, but in terms of computation times, CL has an unquestionable
advantage.
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the literature by providing an easy, fast, and robust estimation technique with asymptotically

normal estimates.

The plan of the rest of the paper is as follows. In Section 2, we formally introduce the

model and its marginal and pairwise composite likelihoods. In Section 3, we focus on the

identification of the parameters. The asymptotic results are given in Section 4. In Section

5, we report Monte Carlo simulations to study the finite-sample behavior of the composite

likelihood estimator and compare it to MLE and GMM. Section 6 contains the empirical

results on credit ratings. Finally, Section 7 concludes. The proofs of the results from Section

4 and some mathematical derivations are left to Appendix A – B. Remaining proofs, extra

mathematical details and Monte Carlo simulations are in the supplementary material.

A final note on the notation used throughout this paper. For any scalar, vector, or matrix

v, the Euclidean norm is denoted by |v| =
√

tr(vv′). For p > 0, the Lp-norm of v is denoted

by ‖v‖p = (E|v|p)1/p for a random variable v (scalar, vector, or matrix).

2 AR Panel Probit Model with Random Effects

In this section, we introduce the autoregressive (AR) panel probit model with time-invariant

individual random effects and construct its marginal and pairwise composite likelihoods.

Moreover, distributional and exogeneity assumptions are stated.

We consider the following AR panel probit model for the observable discrete outcome

variable yit that can take values in the ordered category set {1, . . . , S}. For i = 1, . . . , N ,

t = 1, . . . , T , and T ≥ 3, we have

yit = s if τs−1 ≤ y∗it < τs, (3)

y∗it = ρy∗i,t−1 + β′xit + αi + εit, (4)

where y∗it is the autoregressive latent variable that governs the underlying continuous process,

xit is a K−dimensional vector of observable covariates, αi is individual-specific unobservable

effects, εit is unobservable error term, ρ is the autocorrelation coefficient of the latent process,

β is a K−dimensional coefficient vector, and {τ0, . . . , τS} are the threshold coefficients such

11



that τ0 = −∞ < τ1 = 0 < τ2 < · · · < τS−1 < τS =∞.

Since y∗i,t−1 is not observed, we use backward-substitution on the latent process. That is,

the current latent variable becomes a weighted sum of the past observations and innovations,

where the weights are decreasing at an exponential rate.

y∗it = ρy∗i,t−1 + β′xit + αi + εit

= ρty∗i0 +
t∑

k=1

ρt−kβ′xik +
1− ρt

1− ρ
αi +

t∑
k=1

ρt−kεik.

Then, an initial value problem arises since y∗i0 is now present in the equation. There are

several solutions proposed for this matter (see Wooldridge (2005)), including assuming a

nonrandom y∗i0, or drawing it from a stationary distribution, or conditioning on the initial

value. A nonrandom initial value in the presense of random effects is not desirable since

it would mean that y∗i0 is not affected by the individual heterogeneity αi. Conditioning on

the initial value is also not possible here since y∗i0 is not observed. Hence, we assume that

y∗i0 = αi/(1− ρ) + εi0/
√

1− ρ2, where the initial value is modeled in a stationary way such

that the distribution of y∗it conditional on the covariates is the same for every t (beyond the

dependence of the covariates on t). This assumption yields

y∗it =
t∑

k=1

ρt−kβ′xik +
αi

1− ρ
+

ρt√
1− ρ2

εi0 +
t∑

k=1

ρt−kεik. (5)

Under some distributional and independence assumptions, which will be stated below, it is

easy to show that E(y∗it|xi) and Var(y∗it|xi) do not vary over time, where xi = (x′i1, . . . , x
′
iT )′.

In forming the composite likelihoods, we use the functional form (5) instead of (4) for y∗it.

s In the panel data literature, the individual effects αi is treated either as fixed or random.

In non-linear panel data models, it is not possible, in general, to “difference away” the

individual heterogeneity. Therefore, in non-linear panels with large N and fixed T , it is well

known that fixed effects estimation suffers from an incidental parameter problem (see Neyman

and Scott (1948)). In this case, the fixed effects estimator has a bias of order 1/T regardless

of how large N is.10 Note that, under large N and large T cases, the incidental parameter

10However, for the fixed effects estimation of panel probit with binary data, Greene (2004a) finds that the

12



problem can be solved in static and dynamic panel probit models (Arellano and Bonhomme

(2009), Hahn and Kuersteiner (2011), and Dhaene and Jochmans (2015)). However, none of

the existing methods for bias correction (or bias reduction) allows for lagged latent variable on

the right-hand side. Moreover, the proposed techniques assume that the maximum likelihood

estimator is feasible, which is challenging in the case of AR panel probit due to a large

number of integrals. For all these reasons, we will assume that the individual heterogeneity

is a random variable instead of a fixed parameter.

In the random effects literature, it is a common practice to use the correlated random

effects approach à la Mundlak (1978) and Chamberlain (1984) where the individual random

effects conditional on the covariates are assumed to belong to a specific distribution with

finite number of parameters. In this paper, we also take this approach and assume that αi

conditional on xi is normally distributed. Specific assumptions regarding the distributions

of the unobserved variables of the model are discussed in the following assumption.

Assumption 1. (Normality) Assume that (i) εit is independent and identically distributed

over i = 1, . . . , N and t = 1, . . . , T with the distribution N (0, (1− ρ2)σ2
ε), (ii) αi is indepen-

dent and identically distributed over i = 1, . . . , N conditional on the observed covariates such

that αi|xi
iid∼ (1 − ρ)N (µ+ γ′x̄i, σ

2
α) where x̄i = T−1

∑T
t=1 xit, and (iii) the normalization

σ2
ε + σ2

α = 1 holds.

There are two important implications of this assumption. First, the distributional as-

sumption on the composite error term αi + εit determines the distribution of the latent

variable conditional on the covariates. Second, the normalization assumption σ2
ε + σ2

α = 1

helps us identify the parameters since it is well known that in probit models the parameters

are identified up to a scale parameter where the scaling factor is the standard deviation of

the error term. That is, only β/
√
σ2
ε + σ2

α could be identified in this model. The multipli-

cation of the distributions of εit and αi|xi by
√

1− ρ2 and (1 − ρ), respectively, is just a

reparametrization of the distributions which facilitates the mathematical terms in the dis-

tribution of y∗it in (5). Even though, in this paper, we do keep the independence assumption

in the innovations, one can allow for serial correlation. For instance, one can introduce an

order of bias is actually larger than 1/T in the simulations. It is quoted that “. . . a widely accepted result
that suggests that the probit estimator is actually relatively well behaved appears to be incorrect.”
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autoregressive random time effects, εit = λt + uit with λt = δλt−1 + νt, or model εit as a

moving average εit = eit + δei,t−1 or as a stationary autoregressive process εit = δεi,t−1 + eit.

One can also allow for time-varying heteroskedasticity in εit. But, in all these extensions,

one needs to carefully model the normalization and the variance of the composite error term

αi + εit since the identification of the parameters relies on it.

With the correlated random effects assumption, we can now define the vector of parame-

ters as θ = (ρ, µ, β′, γ′, σ2
α, τ

′)′ where τ = (τ2, . . . , τS−1)′. The length of the parameter vector

is 1 + 1 + K + Kγ + 1 + (S − 2), where S is the number of distinct discrete outcomes, K

is the number of observed covariates, and Kγ is the dimension of observed variables in the

correlated random effects. Note that K and Kγ are not necessarily equal to each other;

one may include other variables (such as interaction terms of the covariates or extra control

variables) in the random effects. Hence, even though we represent the conditional mean of

the correlated random effects as µ+ γ′x̄i, one can easily generalize it to µ+ γ′zi where zi is

a (Kγ × 1) vector containing deterministic functions of the covariates xi as well as any other

time-invariant observed variables.

In parametric discrete outcome models, normal and logistic distributions are the most

common choices for the assumed distribution of the errors. However, in the autoregressive

latent variable model, the distribution of y∗it is not determined by that of the error term

only, but instead, by the distribution of the weighted summation of the error terms due to

the unobserved right-hand-side variable y∗i,t−1 (see the next subsection for details). Since

we need to rely on the distribution of the summation of the error terms, their distribution

should belong to a stable distribution family.11 In other words, the error distribution should

be closed under convolution. While a normal distribution is a stable distribution, a logistic

distribution is not (see George and Mudholkar (1983) and Ojo (2003) for a mathematical

expression of convoluted logistic distributions). Therefore, a normality assumption is needed

for a parametric AR panel probit model.

The next assumption is on the strict exogeneity of the covariates and the independence

11(Feller (1971, p. 169)) Let X,X1, X2, . . . be independent and identically distributed. The distribution is
called stable if ∀ n ∃ cn > 0 and γ ∈ R such that (X1+ · · ·+Xn) has the same distribution as cnX+γ. Stable
distributions do not have closed-form formulae densities except for the following ones: Gaussian, Cauchy,
and Lévy distributions.
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between the innovations and the random effects conditional on the covariates.

Assumption 2. (Exogeneity) Assume that the covariates are strictly exogenous in the sense

that f(εiT , . . . , εi0|xi, αi) = f(εiT , . . . , εi0).

Even though strict exogeneity is a restrictive assumption, it is common in non-linear dy-

namic panel models with observed covariates (see, for example, Honoré and Kyriazidou

(2000), Wooldridge (2005), and Semykina and Wooldridge (2013)). One way to relax this

assumption is to allow for endogeneity of the covariates by jointly modeling (y∗it, x
′
it) in a

vector autoregressive panel probit model (see Dueker (2005) for a time series version). This

is also an interesting model, but we leave it as a future work for now and retain the strict

exogeneity assumption.

2.1 Marginal and Pairwise Composite Likelihoods

In this subsection, we compute the univariate and bivariate probabilities of discrete outcomes

that form the marginal and pairwise composite likelihoods. First, we compute the conditional

distribution of the latent state variable y∗it. Using Assumption 1 and following the approach

Mundlak (1978), we can rewrite (5) as follows:

y∗it = µ+ γ′x̄i +
t∑

k=1

ρt−kβ′xik + ηi +
ρt√

1− ρ2
εi0 +

t∑
k=1

ρt−kεik,

where ηi
iid∼ N (0, σ2

α) is independent from xi and εi. Note that the conditional mean is

E(y∗it|xi) = µ+ γ′x̄i +
∑t

k=1 ρ
t−kβ′xik and the conditional variance is Var(y∗it|xi) = Var(ηi +

ρt/
√

1− ρ2εi0+
∑t

k=1 ρ
t−kεik) = σ2

α+σ2
ε = 1. Finally, the conditional correlation of the latent

variable is corr(y∗it, y
∗
i,t+j|xi) = σ2

α + ρjσ2
ε . This means that the sources of the autocorrelation

in the latent variable are the random effects and the lagged latent variable. While the

contribution of the former to the autocorrelation is constant, that of the latter is decreasing

at an exponential rate.

The conditional distribution f(y∗i |xi, θ) of y∗i = (y∗i1, . . . , y
∗
iT ) conditional on all of the

covariates xi is a T -dimensional normal distribution with a covariance matrix V in the
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following form:

V = σ2
αıı
′ + σ2

ε


1 ρ ρ2 · · · ρT−1

ρ 1 ρ · · · ρT−2

...
. . .

...

ρT−1 ρT−2 · · · 1

 ,

where ı is a T×1 vector of ones. Note that the diagonal elements of V are all equal to 1 since

σ2
α + σ2

ε = 1. However, since y∗it is not independent over time, V is a non-diagonal matrix –

this is true even when there are no random effects. Hence, the (full) likelihood function of

an individual i can be written with a T -dimensional integral as

L(yi|xi) =

∫ bi1

ai1

∫ bi2

ai2

· · ·
∫ biT

aiT

f(y∗i1, . . . , y
∗
iT |xi; θ)dy∗i1 . . . dy∗iT , (6)

where {(ait, bit)}Tt=1 are truncation points such that (ait, bit) = (τs−1, τs) whenever yit = s,

which results in ST possible integration. For moderate or large T , simulating these integrals

is computationally demanding. Composite likelihood reduces the number of integrals by

erroneously assuming independence between certain subsets of (y∗i1, . . . , y
∗
iT ). The simplest

composite likelihood arises when conditional independence of y∗it is assumed for all t. This

is called Marginal Composite Likelihood (MCL), which reduces the T -dimensional integrals

to a single-dimensional one. In contrast, a Pairwise Composite Likelihood (PCL) takes the

dependency between pairs of (y∗i1, . . . , y
∗
iT ) into account but ignores any higher dimensional

dependencies. This results in a double integral which is still easy to compute. In this paper

we focus on the bivariate distribution between y∗it and y∗i,t+j for 1 ≤ j ≤ J < T .

 y∗it

y∗i,t+j

 ∣∣∣ xi ∼ N
 mt(xi; θ)

mt+j(xi; θ)

 ,
 1 rj(θ)

rj(θ) 1

 , (7)

where mt(xi; θ) = µ+γ′x̄i+
∑t

k=1 ρ
t−kβ′xik is the conditional mean and rj(θ) = ρj(1−σ2

α)+σ2
α

is the conditional correlation. Instead of the bivariate distribution between y∗it and y∗i,t+j,

one can consider that between y∗it and y∗is for all s 6= t. This is called All-Pairs Composite

Likelihood. But in a time series setting with an autocorrelation, it is natural to focus on only
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J-period distant pairs since most of the information on correlation is contained in the recent

pairs. Moreover, far-apart observations might bring almost no information but, instead, end

up bringing more noise to the estimation (see Joe and Lee (2009) and Varin and Vidoni

(2006)). Model selection, e.g. choosing optimal J , can be done based on the composite

likelihood information criteria CLIC(θ̂) = LCLE(θ̂)− tr{I(θ̂)H(θ̂)−1} where LCLE(θ̂) is the

composite log-likelihood, I(θ̂) is the variance of the score, and H(θ̂) is the Hessian matrix all

evaluated at θ̂ (see Section 4 for more details, and also Varin and Vidoni (2005) and Lindsay

et al. (2011)). The CLIC is the counterpart, based on composite likelihood approach, of TIC

proposed by Takeuchi (1976), which is a modified version of AIC of Akaike (1973) under

misspecification.

Marginal Composite Likelihood

The probability of yit taking the value s is

P (yit = s|xi; θ) = P (τs−1 ≤ y∗it < τs|xi; θ) = Φ (τs −mt(xi; θ))−Φ (τs−1 −mt(xi; θ)) , (8)

where P denotes the probability function. An associated composite log-likelihood based on

the univariate probabilities given in (8) is

LMCL(θ|y,x) =
1

N

N∑
i=1

`i(θ|yi,xi)

=
1

NT

N∑
i=1

T∑
t=1

ln f(yit|xi; θ)

=
1

NT

N∑
i=1

T∑
t=1

S∑
s=1

1(yit = s) lnP(yit = s|xi; θ), (9)

where 1(·) denotes the indicator function, `i denotes the composite log-likelihood of an indi-

vidual i and f(yit|xi; θ) denotes the likelihood of an observation conditional on the covariates.

Even though the complete independence assumption in MCL seems like an extreme sim-

plification, the MCL estimator maximizing LMCL(θ|y,x) is still consistent as N → ∞.

Moreover, the Monte Carlo simulation results presented in Section 5 show that the MCL

estimator’s performance is comparable to PCL’s. However, one should note that not all
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parameters can be identified and estimated in the MCL. For instance, σ2
α appears only in

the correlation between y∗it and y∗i,t+j, which is ignored in the MCL (see Section 3 for more

details on identification). Thus, we define the marginal composite likelihood estimator as

θ̂MCL = arg maxθ∈Θ
/{σ2α}

LMCL(θ|y,x), where LMCL is given in (9) and Θ/{σ2
α} is the param-

eter space excluding the dimension along σ2
α, since it is not included in the MCL.

Pairwise Composite Likelihood

To facilitate the notation for the bivariate probability, let’s denote qits ≡ τs−mt(xi; θ). The

bivariate probability can be computed as follows:12

P (yit = s1, yi,t+j = s2|xi; θ) = P
(
τs1−1 ≤ y∗it < τs1 , τs2−1 ≤ y∗i,t+j < τs2 |xi; θ

)
= Φ2 (qi,t,s1 , qi,t+j,s2|rj) + Φ2 (qi,t,s1−1, qi,t+j,s2−1|rj)

−Φ2 (qi,t,s1 , qi,t+j,s2−1|rj)−Φ2 (qi,t,s1−1, qi,t+j,s2|rj) , (10)

where Φ2(·, ·|r) denotes the bivariate standard normal distribution function with the corre-

lation coefficient r. A pairwise composite log-likelihood based on the bivariate probabilities

given in (10) is

LPCL(θ|y,x) =
1

N

N∑
i=1

`i(θ|yi,xi)

=
1

NT

N∑
i=1

T∑
t=1

ln f(yit, yi,t+j|xi; θ)

=
1

NT

N∑
i=1

T−J∑
t=1

J∑
j=1

S∑
s1=1

S∑
s2=1

1(yit = s1, yi,t+j = s2) lnP(yit = s1, yi,t+j = s2|xi; θ),

(11)

where f(yit, yi,t+j|xi; θ) denotes the likelihood of a pair of observations conditional on the

covariates. Finally, we define the PCL estimator as θ̂PCL = arg maxθ∈Θ LPCL(θ|y,x). Since

the main focus of this paper is the pairwise composite likelihood estimation, we will drop the

subscript and denote the PCL as L(θ) and the associated estimator as θ̂.

12Note that for any two random variables X and Y with the bivariate cumulative distribution function G,
one can write P(x1 ≤ X ≤ x2, y1 ≤ Y ≤ y2) = G(x2, y2) +G(x1, y1)−G(x1, y2)−G(x2, y1).
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3 Identification of the Parameters

Parameter identification requires special attention in composite likelihood estimations. It

might be the case that a parameter does not appear in a chosen composite likelihood or,

even if it appears, it may not be identified under certain conditions. For instance, σ2
α is not

included in the marginal composite likelihood given in (9); hence, σ2
α cannot be estimated

in the MCL. Moreover, if all of the covariates are irrelevant, that is, if β = 0, then the

parameter ρ disappears from the marginal likelihood. Hence, ρ cannot be identified in the

MCL if β = 0. On the other hand, ρ can be identified in the pairwise composite likelihood

even if β = 0, given that there are no random effects. The reason is that ρ appears not only

in the conditional mean but also in the correlation coefficient. Hence, when there are no

random effects and β = 0, pairwise composite likelihood will include bivariate probabilities

of the form Φ2(0, 0|ρj), from which one can easily identify ρ. However, if the random effects

are present, then the bivariate probabilities become Φ2(·, ·|σ2
α + ρj(1 − σ2

α)). In this case,

ρ and σ2
α cannot be separately identified when J = 1. All these cases show how tricky the

identification of parameters in composite likelihood methods can be.

The marginal and pairwise composite likelihoods proposed in (9) and (11), respectively,

are highly non-linear in the parameters. One source of the nonlinearity is the normal cumu-

lative distribution function and the other source is the nonlinearities in mt(xi; θ) and rj(θ)

due to the autocorrelation. The former nonlinearity is also present in regular static probit

estimation whereas the latter is not. For the identification, it is possible to show negative

definiteness of the Hessian matrix H(θ∗) in a static probit model whereas it is extremely

cumbersome to follow this path in autoregressive probit model due to double nonlinearity.

For this reason, we follow a different strategy to identify the parameters.

We borrow our identification ideas from the estimation techniques of the average deriva-

tive estimation literature. In this literature, average derivatives are utilized to estimate

parameters of interest in semi-parametric models (see Stoker (1986), Powell et al. (1989),

Stoker (1991), and Newey and Stoker (1993)).13 In this paper, we use certain partial effects

13If E(y|x) = F (α+ x′β), then the average derivative of y on x, E[∂ E(y|x)/∂x], will be proportional to β.
Since our model is fully parametric, the function F , thus, the proportionality constants are known. Hence,
we can eliminate the proportionality to isolate the coefficient of interest.
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to isolate the parameters to show that, under mild assumptions, the composite likelihoods

proposed in this paper contain enough information to identify the parameters in the AR panel

probit model. We first show the identification of all the parameters except σ2
α in the MCL,

since it is easier to understand the identification strategy in an easier composite likelihood.

Then, we show the identification results in the PCL together with the identification of σ2
α.

Identification of ρ

Assume that there is at least one continuous and significant covariate in xit. Without loss

of generality, assume that it is the first covariate, denoted by x
(1)
it with β1 6= 0. Consider

P(yit = 1|xi) = P(−∞ < y∗it < 0|xi) = Φ (−mt(xi; θ)), where mt(xi; θ) = µ + γ′x̄i + β′xit +∑t−1
k=1 ρ

t−kβ′xik. We will analyze the cases when γ = 0 and γ 6= 0 separately.

For now, assume that γ = 0, i.e. we have uncorrelated random effects. Then the ratio of

the partial effects of x
(1)
i,t−1 and x

(1)
it gives

∂P(yit=1|xi)
∂x

(1)
it

= −∂mt(xi;θ)

∂x
(1)
it

φ (−mt(xi; θ)) = −β1φ (−mt(xi; θ))

∂P(yit=1|xi)
∂x

(1)
i,t−1

= −∂mt(xi;θ)

∂x
(1)
i,t−1

φ (−mt(xi; θ)) = −ρβ1φ (−mt(xi; θ))


∂P(yit = 1|xi)/∂x(1)

i,t−1

∂P(yit = 1|xi)/∂x(1)
it

= ρ.

Since E(yit|xi) =
∑S

s=1 sP(yit = s|xi) =
∑S

s=1 s[Φ(τs − mt(xi; θ)) − Φ(τs−1 − mt(xi; θ))],

the same result can also be found by [∂ E(yit|xi)/∂x(1)
i,t−1]/[∂ E(yit|xi)/∂x(1)

it ] = ρ. This result

is simple and intuitive: as k increases, the partial effect of xi,t−k on yit decreases at an

exponential rate driven by the autocorrelation coefficient ρ.

For the case when γ 6= 0, i.e. for the correlated random effects, the contribution of xit

on the probability distribution of yit is not only driven by ρ but also by γ/T (due to γ′x̄i).

In this case, to isolate ρ, we need to eliminate the contribution of the random effects. Note

that

∂P(yit = 1|xi)
∂x

(1)
i,t−1

− ∂P(yit = 1|xi)
∂x

(1)
i,t−2

= −(ρβ1 +
γ1

T
)φ (−mt(xi; θ)) + (ρ2β1 +

γ1

T
)φ (−mt(xi; θ))

= ρ(ρβ1 − β1)φ (−mt(xi; θ)) , (12)

20



which implies that

∂P(yit = 1|xi)/∂x(1)
i,t−1 − ∂P(yit = 1|xi)/∂x(1)

i,t−2

∂P(yit = 1|xi)/∂x(1)
it − ∂P(yit = 1|xi)/∂x(1)

i,t−1

= ρ. (13)

Hence, in the case of correlated random effects, the interpretation of this result is as follows:

the partial effect (net of the individual heterogeneity’s effect) of xit on yit is, on average,

decreasing at an exponential rate driven by the autocorrelation coefficient ρ.

Finally, we can focus on the identification of ρ in the PCL. We use similar ideas and make

the same assumptions regarding xit. For any given j = 1, . . . , J , consider P(yit = 1, yi,t+j =

1|xi) = P(−∞ < y∗it < 0,−∞ < y∗i,t+j < 0|xi) = Φ (−mt(xi; θ),−mt+j(xi; θ)|rj(θ)). Note

that ∂mt+q(xi; θ)/∂x
(1)
i,t+k = ρq−kβ1 +γ1/T for q = 0, . . . , J and −t+ 1 ≤ k ≤ q. Let’s assume

again, for now, that γ = 0.

∂P(yit = 1, yi,t+j = 1|xi)
∂x

(1)
it

= −∂mt(xi; θ)

∂x
(1)
it

φ (−mt(xi; θ)) Φ

(
rj(θ)mt(xi; θ)−mt+j(xi; θ)√

1− rj(θ)2

)

− ∂mt+j(xi; θ)

∂x
(1)
it

φ (−mt+j(xi; θ)) Φ

(
−mt(xi; θ) + rj(θ)mt+j(xi; θ)√

1− rj(θ)2

)
,

∂P(yit = 1, yi,t+j = 1|xi)
∂x

(1)
i,t−1

= −∂mt(xi; θ)

∂x
(1)
i,t−1

φ (−mt(xi; θ)) Φ

(
rj(θ)mt(xi; θ)−mt+j(xi; θ)√

1− rj(θ)2

)

− ∂mt+j(xi; θ)

∂x
(1)
i,t−1

φ (−mt+j(xi; θ)) Φ

(
−mt(xi; θ) + rj(θ)mt+j(xi; θ)√

1− rj(θ)2

)
.

Taking their ratio yields

∂P(yit = 1, yi,t+j = 1|xi)/∂x(1)
i,t−1

∂P(yit = 1, yi,t+j = 1|xi)/∂x(1)
it

= ρ.

For the case when γ 6= 0, we again need to subtract the contribution of the random effects

to bivariate probability distribution of (yit, yi,t+j). As in the MCL case in (13),

∂P(yit = 1, yi,t+j = 1|xi))/∂x(1)
i,t−1 − ∂P(yit = 1, yi,t+j = 1|xi))/∂x(1)

i,t−2

∂P(yit = 1, yi,t+j = 1|xi))/∂x(1)
it − ∂P(yit = 1, yi,t+j = 1|xi))/∂x(1)

i,t−1

= ρ. (14)
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Identification of σ2
α

To identify the parameter ρ, it was enough to analyze first-order partial derivatives since ρ

appears in the first moment of yit. However, the parameter σ2
α appears only in the second

moments, in particular in the correlation between y∗it and y∗i,t+j. For this reason, first-order

partial derivatives are not enough to isolate σ2
α; we need to use second-order partials. In

addition to the average derivate estimation idea, we use one of the results of Plackett (1954)

regarding the correlation coefficient and mixed partial derivatives: for a vector of random vari-

ables z = (z1, . . . , zn)′ that has a multivariate standard normal distribution with correlation

coefficients rii′ , the following partial differential equations hold ∂φ(z)/∂rii′ = ∂2φ(z)/∂zi∂zi′ ,

for i, i′ = 1, . . . , n. As in the identification of the parameter ρ, we will analyze cases with

γ = 0 and γ 6= 0 separately. Let’s assume that γ = 0. Then, the following ratio of the

differentials yields

∂P(yit = 1, yi,t+j = 1|xi)/∂x(1)
i,t+1

∂P(yi,t+j = 1|xi)/∂x(1)
i,t+1

=

−∂mt+j(xi;θ)

∂x
(1)
i,t+1

φ(mt+j(xi; θ))Φ

(
mt(xi;θ)−rj(θ)mt+j(xi;θ)√

1−rj(θ)2

)
−∂mt+j(xi;θ)

∂x
(1)
i,t+1

φ(mt+j(xi; θ))

= Φ

(
mt(xi; θ)− rj(θ)mt+j(xi; θ)√

1− rj(θ)2

)
. (15)

Next, we will differentiate the probability in (15) with respect to x
(1)
it and x

(1)
i,t+1, and then

take their ratio.

∂

∂x
(1)
it

Φ

(
mt(xi;θ)−rj(θ)mt+j(xi;θ)√

1−rj(θ)2

)
∂

∂x
(1)
i,t+1

Φ

(
mt(xi;θ)−rj(θ)mt+j(xi;θ)√

1−rj(θ)2

) =
∂mt(xi; θ)/∂x

(1)
it − rj(θ)∂mt+j(xi; θ)/∂x

(1)
it

−rj(θ)∂mt+j(xi; θ)/∂x
(1)
i,t+1

=
β1 − rj(θ)ρjβ1

−rj(θ)ρj−1β1

, (16)

where rj(θ) = σ2
α + ρj(1 − σ2

α). Hence, based on (15) and (16), the ratio of second-order

partial derivatives below yields a result that is a function of only ρ and σ2
α. Having already
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identified the parameter ρ, the ratio below can identify the parameter σ2
α.

∂

∂x
(1)
it

[
∂P(yit=1, yi,t+j=1|xi)/∂x

(1)
i,t+1

∂P(yi,t+j=1|xi)/∂x
(1)
i,t+1

]

∂

∂x
(1)
i,t+1

[
∂P(yit=1, yi,t+j=1|xi)/∂x

(1)
i,t+1

∂P(yi,t+j=1|xi)/∂x
(1)
i,t+1

] = ρ− 1

ρj−1rj(θ)
.

As in the MCL case, when γ 6= 0, we need to subtract the term γ1/T in the derivatives of

mt(xi; θ). But, to implement the subtraction, we need to assume that J ≥ 2. We skip the

mathematical derivation since it is similar to (12) derived for the MCL case.

∂

∂x
(1)
it

[
∂P(yit=1, yi,t+j=1|xi)/∂x(1)i,t+1

∂P(yi,t+j=1|xi)/∂x(1)i,t+1

]
− ∂

∂x
(1)
i,t−1

[
∂P(yit=1, yi,t+j=1|xi)/∂x(1)i,t+1

∂P(yi,t+j=1|xi)/∂x(1)i,t+1

]
∂

∂x
(1)
i,t+2

[
∂P(yit=1, yi,t+j=1|xi)/∂x(1)i,t+1

∂P(yi,t+j=1|xi)/∂x(1)i,t+1

]
− ∂

∂x
(1)
i,t+1

[
∂P(yit=1, yi,t+j=1|xi)/∂x(1)i,t+1

∂P(yi,t+j=1|xi)/∂x(1)i,t+1

] = ρ2 +
1

r1(θ)
,

where r1(θ) = ρ+ (1− ρ)σ2
α. Hence, the ratio above can single out the parameter σ2

α.

Identification of (µ, β, γ, τ)

Having identified ρ, it is easy to identify the other conditional mean parameters (µ, β, γ, τ)

by a standard identification approach. Assume that µ̃ 6= µ∗, β̃ 6= β∗, γ̃ 6= γ∗. Then, we have

µ̃+ γ̃′x̄i+
∑t

k=1 ρ
∗t−k β̃′xik 6= µ∗+γ∗′x̄i+

∑t
k=1 ρ

∗t−kβ∗′xik, with positive probability. Provided

that E[xix
′
i] is positive definite, we have (µ̃−µ∗)+(γ̃−γ∗)′x̄i+

∑t
k=1 ρ

∗t−k(β̃−β∗)′xik 6= 0, with

positive probability (note that xi is a TK×1 dimensional vector whereas x̄i is K×1). Hence,

P(yit = 1|xi; ρ∗, µ̃, β̃, γ̃) 6= P(yit = 1|xi; ρ∗, µ∗, β∗, γ∗) with positive probability. Finally, after

µ is identified, it is trivial to identify τ = (τ2, . . . , τS−1) in P(yit = s|xi), for s > 1. This

concludes the identification of parameters in the MCL estimation. The identification of

(µ, β, γ, τ) in the PCL estimator is very similar, hence we skip it here.

We show that for a pairwise composite likelihood it is sufficient to have J ≥ 2 to identify all

of the parameters, where T ≥ 3. This condition will be the basis for sufficiency in other types

of composite likelihoods. Next, consider a trivariate distribution f(yit, yi,t+j1 , yi,t+j1+j2|xi; θ)

with j1 = 1, . . . , J1, j2 = 1, . . . , J2. The covariance of this distribution will contain terms
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involving (σ2
α + ρj1σ2

ε), (σ2
α + ρj2σ2

ε), and (σ2
α + ρj1+j2σ2

ε). Note that this distribution already

contains pairwise distributions of at least two distinct pairs; thus, it satisfies the sufficient

conditions for identification. As a result, we show that a sufficient condition for parameter

identification in the AR panel probit with correlated random effects model is to include

distributions of at least two distinct pairs of observations into the composite likelihood.

4 Asymptotic Distribution of the CL Estimator

In this section, we state the asymptotic properties of the (pairwise) composite likelihood

estimator. First, we state our last two assumptions.

Assumption 3. (Moments) Assume that the following moment conditions are satisfied by

the covariates: i) E[xix
′
i] is non-singular and ii) ‖xi‖4 <∞.

Assumption 4. (Parameters) Assume that the true parameter value θ∗ belongs to a compact

set Θ. Moreover, θ∗ is an interior point of Θ, i.e. θ∗ ∈ Θ̊.

These assumptions are standard in the asymptotic theory literature (see Amemiya (1985)

and Newey and McFadden (1994)). Therefore, we do not state the assumptions needed for

the consistency and asymptotic normality separately (for instance, finite second moments

would be enough for consistency whereas finite fourth moments are needed for the asymptotic

normality). Note that the moment conditions needed for the CLE in the AR panel probit

model are not stronger than those needed for the MLE in the static probit model.

Theorem 1. Suppose that Assumptions 1 – 4 hold. Define the pairwise composite likelihood

estimator as θ̂ = arg maxθ∈Θ L(θ|y,x), where L(θ|y,x) = N−1
∑N

i=1 `i(θ|yi,xi) is given

in (11). Then, for T < ∞ and N → ∞, the pairwise composite likelihood estimator is

consistent for the true parameter θ∗ and is asymptotically normal such that
√
N(θ̂ − θ∗)→d

N (0,H(θ∗)−1I(θ∗)H(θ∗)−1) , where

H(θ) = E

[
∂2`i(θ)

∂θ∂θ′

]
and I(θ) = E

[
∂`i(θ)

∂θ

∂`i(θ)

∂θ′

]
.

Note that H(θ∗) 6= −I(θ∗) here since not all of the information is used in forming the

composite likelihood. Hence, we have a sandwich-form asymptotic variance. Even though
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the asymptotic results provided above are about the pairwise composite likelihood estimator,

similar results are valid for the marginal composite likelihood estimator θ̂MCL as well.

To prove Theorem 1, we will closely follow the results of Newey and McFadden (1994).

The asymptotic theory on the PCL estimator in the AR panel probit with random effects

model is conceptually not different than the asymptotic theory on maximum or pseudo-

likelihood estimators. However, a difficulty arises here due to the nonlinearities in the

parameters in the bivariate function Φ2(qits1(θ), qi,t+j,s2(θ)|rj(θ)). The cumulative distri-

bution function Φ2 is not the only source of the nonlinearity (as is the case in a static

probit model); the function qits(θ) is also non-linear in parameters. These ‘double’ non-

linearities result in complicated derivative functions of the pairwise composite likelihood.

Hence, identification, computing the derivatives, and finding bounds for them become non-

trivial. Despite this extra nonlinearity, the moment conditions on the process xi are not

different than those in the static model. For instance, the finiteness of supθ∈Θ|qits(θ)| =

supθ∈Θ|τs−µ− γ′x̄i−
∑t

k=1 ρ
t−kβ′xik| ≤ c(1 + |xi|) is simply implied by the finiteness of |xi|

(see the section B.2 of the Appendix for more details). Most of the complications disappear

when ρ = 0; thus, at any point in the proof, one can recover the conditions for static probit

by imposing ρ = 0.

The continuity and the measurability of the objective function are easy to prove since

bivariate Gaussian cumulative distribution function Φ2 and qits(θ) are all continuous and mea-

surable functions. Thus, ln f(yit, yi,t+j|xi; θ) is continuous in θ for given (yit, yi,t+j,xi), and is

a measurable function of (yit, yi,t+j,xi) for given θ. Moreover, ln f(yit, yi,t+j|xi; θ) is twice con-

tinuously differentiable. Since each piece of the likelihood (marginals and conditionals) satis-

fies the Kullback-Leibler inequality, so will the chosen pieces in the composite likelihood. This

property helps the estimation procedure to discriminate the true parameter value from other

possible ones. Note that E [ln f(yit, yi,t+j|xi; θ∗)] ≥ E [ln f(yit, yi,t+j|xi; θ)] for all θ ∈ Θ since

E [ln(f(yit, yi,t+j|xi; θ)/f(yit, yi,t+j)|xi; θ∗))] ≤ ln E [f(yit, yi,t+j|xi; θ)/f(yit, yi,t+j|xi; θ∗)] = 0.

The discussions in Section 3 proves the uniqueness of θ∗ a maximizer.

Finally, in order to compute the asymptotic covariance matrix, we introduce consistent
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estimators for H(θ∗) and I(θ∗):

Ĥ(θ̂) =
1

N

N∑
i=1

1

T

T−J∑
t=1

J∑
j=1

∂2 ln f(yit, yi,t+j|xi; θ̂)

∂θ∂θ′
(17)

Î(θ̂) =
1

N

N∑
i=1

(
1

T

T−J∑
t=1

J∑
j=1

∂ ln f(yit, yi,t+j|xi; θ̂)

∂θ

)(
1

T

T−J∑
t=1

J∑
j=1

∂ ln f(yit, yi,t+j|xi; θ̂)

∂θ

)′
, (18)

where the derivatives of the bivariate likelihood function are given as

∂ ln f(yit, yi,t+j|xi; θ̂N)

∂θ
=

S∑
s1=1

S∑
s2=1

1i,t,t+j,s1,s2

∂
∂θ
Pi,t,t+j,s1,s2

Pi,t,t+j,s1,s2

∂2 ln f(yit, yi,t+j|xi; θ̂N)

∂θ∂θ′
=

S∑
s1=1

S∑
s2=1

1i,t,t+j,s1,s2

[
∂2

∂θ∂θ′
Pi,t,t+j,s1,s2

Pi,t,t+j,s1,s2

−
∂
∂θ
Pi,t,t+j,s1,s2

∂
∂θ′
Pi,t,t+j,s1,s2

P
2
i,t,t+j,s1,s2

]
,

where 1i,t,t+j,s1,s2 ≡ 1(yit = s1, yi,t+j = s2) and Pi,t,t+j,s1,s2 ≡ P(yit = s1, yi,t+j = s2|xi; θ).

The mathematical details on the derivatives are given in the section B.1.

5 Monte Carlo Simulations

In this section, we present Monte Carlo simulation results to illustrate the finite sample

performance of the marginal and pairwise composite likelihood estimators. All the simulation

results rely on 1000 replications of the following model. For i = 1, . . . , N and t = 1, . . . , T ,

xit = 0.1 + 0.2xi,t−1 +
√

2eit

αi|xi
iid∼ (1− ρ)N (µ+ γ′x̄i, σ

2
α)

εit
iid∼
√

1− ρ2N (0, 1− σ2
α)

y∗i0 = αi/(1− ρ) + εi0/
√

1− ρ2

y∗it = ρy∗i,t−1 + β′xit + αi + εit

yit = s if τs−1 ≤ y∗it < τs,
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where eit
iid∼ N (0, 1). The model is simulated for T + 1000 time periods, but only the last

T periods are used for estimation. We consider different sample sizes for the cross-section

(N = 500, 1000) and for the length of the panel data (T = 5, 10, 30). Many other simulation

setups, such as DGPs with different true parameters, different values of N , or different types

of covariates (such as discrete variables), can be found in the supplementary material.

We first focus on the finite sample performances of the Marginal Composite Likelihood

(MCL) estimator and Pairwise Composite Likelihood (PCL) estimator. We consider two

different DGPs: (ρ, µ, β, τ) = (0.5, 0.5, 0.2, 1) corresponding to an autoregressive panel probit

without random effects, and (ρ, µ, β, γ, σ2
α, τ) = (0.3, 0.5, 0.2, 0.5, 0.3, 1) corresponding to an

autoregressive panel probit with random effects. Both DGPs exhibit a moderate level of

persistence with a first autocorrelation around 0.5.14 The parameters are chosen so that the

signal-to-noise ratios are close to 1 and the frequency of the discrete outcomes are even, i.e.

close to 33%, in the simulated data sets.

Table 1 presents summary statistics of the Monte Carlo simulations, in particular, the

average bias (bias), the root mean squared errors (rmse), and the average estimated standard

deviation of the estimators (std) – based on (17) and (18). To assess the finite sample

properties of the asymptotic distribution, we calculate the proportion of the replications in

which the true parameter is not contained in the 95% symmetric confidence intervals. It is

given in the variable size representing the 5% two-sided rejection probabilities at the true

values. We expect the empirical size of a test for a true hypothesis to be close to the nominal

size of 5%. For readability, all of the summary statistics in Table 1 are multiplied by 100.

In each Monte Carlo replication, the MCL estimation algorithm is started at random

initial points whereas, for the PCL, it is started in a random neighborhood of the MCL

estimates. When, in these two benchmark DGPs, the initial points for the PCL estimator

are randomly chosen, then in approximately 15% of the replications the algorithm does

not converge and the estimator ends up with a slightly larger rmse (see the supplementary

material for these simulation results).15 Even though the results are robust to the choice of

14Note that the jth autocorrelation in the latent variable y∗it is given by σ2
α + ρj(1− σ2

α).
15If an estimation algorithm results in an estimate that is outside of a 100% error band, then it is considered

as non-convergent and started at a new initial point. For instance, if the true value of a parameter is 0.5,
then any estimate that is outside of (0, 1) interval is regarded as non-converged estimate. If the true value is
0, then an estimate outside of (−1, 1) is regarded similarly. Then, we resimulate until convergence occurs.

27



the initial points, we start the estimation algorithms in each replication around the MCL

estimates to facilitate the convergence of the PCL estimator. In this case, the PCL estimator

converges in almost all simulations without any problem. Note that the composite likelihood

is not necessarily strictly concave. Therefore, we suggest utilizing MCL estimates, which are

already close to the true values, as an initial point for more stable and faster PCL estimation.

The simulation results in Table 1 suggest that both MCL and PCL estimators can uncover

the true parameters in each DGP successfully in terms of bias and rmse. Especially the

autocorrelation parameter ρ can be estimated with a small bias and with a high precision. In

theory, the PCL estimator, which is using more information than the MCL estimator, should

be more efficient. In the simulations, we can verify this for the parameter ρ, however, we see

opposite results for the other parameters. In the AR panel probit with random effects model,

this situation might be due to the estimation of an extra parameter in the PCL, namely σ2
α.

Moreover, the estimation of σ2
α is not very precise for small T since it appears only in the

correlation coefficient rj(θ) and it is hard to separate the effect of random effects from that

of ρy∗i,t−1. Hence, this might contaminate the precision of the other parameter estimates in

the random effects model. Yet, even in the AR panel probit without random effects model,

we still see equal or larger rmse for the PCL estimates of the parameters (µ, β, τ) – with a

slightly smaller bias – compared with those for the MCL estimates. Finally, regardless of

the DGP and the estimator, doubling the sample size from 500 to 1000 makes the estimates

more precise and decreases the estimated standard errors and rmse, on average, by a factor

of
√

2, as the theory suggests.

In terms of the rejection probabilities of true hypotheses, the empirical sizes for both the

MCL and PCL estimators are close to 5% in the AR Panel Probit model (both with and

without random effects). For the MCL, the average size over all estimates is 5.45% where the

maximum overrejection and the minimum underrejection occur at 7.2% and 4%, respectively.

For the PCL, these statistics are 5.28%, 6.8% and 3.9%, respectively. Hence, the asymptotic

distribution of CL estimators can be well approximated in the AR panel probit model. On

the other hand, we do not see any significant improvement in the size values as N gets

larger. Finally, although not reported here, the median estimates are very close to the mean

estimates, suggesting that there are no significant outlier effects in the simulations.
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It is known that CLE is not efficient since it does not use all the available information.

However, it is difficult to analytically compute the loss of efficiency in nonlinear complex

models. Therefore, we present some experimental comparisons via Monte Carlo simulations.

Whenever possible, we compare the finite sample performance (in terms of rmse) of the CLE

to the Maximum Likelihood Estimator (MLE). Furthermore, since choosing orthogonality

conditions is similar to choosing composite likelihoods, we include the Generalized Method

of Moments estimator in the Monte Carlo simulations for further comparison. To the best of

our knowledge, the performances of GMM and CLE have not been compared in the literature.

The abbreviation GMM represents the Generalized Method of Moments Estimator with

the identity weighting matrix whereas EGMM represents that with the efficient (optimal)

weighting matrix, which is based on the inverse of the variance of the estimated moment

conditions in GMM.

We consider four different DGPs: (ρ, µ, β, τ) = (0, 0.5, 0.5, 1) corresponding to a static

panel probit; (ρ, µ, β, γ, σ2
α, τ) = (0, 0.5, 0.5,−0.5, 0.5, 1) corresponding to a static panel pro-

bit with random effects; (ρ, µ, β, τ) = (0.5, 0.5, 0.5, 1) corresponding to an autoregressive

panel probit; and (ρ, µ, β, γ, σ2
α, τ) = (0.5, 0.5, 0.5,−0.5, 0.5, 1) corresponding to an autore-

gressive panel probit with random effects. The maximum likelihood estimation is performed

in the static panel probit models (both with and without random effects). These are the

DGPs where we can empirically measure the loss of the efficiency of the CLE. On the other

hand, GMM is used in all of the DGPs.

In the static panel probit without random effects model, we obtain the MLE by maximiz-

ing the pooled log-likelihood Lpooled(θ) = N−1
∑N

i=1

∑T
t=1

∑S
s=1 1(yit = s) lnP(yit = s|xit)

where P(yit = s|xit) = Φ(τs − µ − β′xit) − Φ(τs−1 − µ − β′xit). In the static panel pro-

bit with random effects model, we integrate out the random effects and obtain LRE(θ) =

N−1
∑N

i=1 ln
∫
f(yit|xi, αi)φ(αi)dαi where f(yit|xi, αi) =

∏T
t=1

∏S
s=1P(yit = s|xi, αi)1(yit=s),

P(yit = s|xi, αi) = Φ((τs − αi − β′xit)/σε) −Φ((τs−1 − αi − β′xit)/σε), and αi|xi ∼ N (µ +

γ′x̄i, σ
2
α) such that σ2

α + σ2
ε = 1 (see Hsiao (2014) for further details). Then, we approxi-

mate the one-dimensional integral by Gauss-Hermite quadrature as suggested by Butler and

Moffitt (1982) and Guilkey and Murphy (1993).16

16Gauss–Hermite quadrature is used for numerical integration. It approximates a specific type of integral as
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For method of moments estimations, the first and second moments of yit are computed by

M1,i,t(θ) ≡ E[yit|xi] =
∑S

s=1 sP (yit = s|xi; θ), M2,i,t(θ) ≡ E[y2
it|xi] =

∑S
s=1 s

2
P (yit = s|xi; θ),

and M3,i,t,t+j(θ) ≡ E[yityi,t+j|xi] =
∑S

s1=1

∑S
s2=1 s1s2P (yit = s1, yi,t+j = s2|xi; θ). The asso-

ciated probabilities are given in (8) and (10). Based on these three conditional moments, we

generate the following orthogonality conditions. For a function h(·) of xi,

E [{yit −M1,i,t(θ)}h(xi)] = 0

E
[
{(yit −M1,i,t(θ))

2 −M2,i,t(θ)}h(xi)
]

= 0

E [{[yit −M1,i,t(θ)][yi,t+j −M1,i,t+j(θ)]− [M3,i,t,t+j(θ)−M1,i,t(θ)M1,i,t+j(θ)]}h(xi)] = 0.

Note that these orthogonality conditions hold for each t = 1, . . . , T . Furthermore, the

last one holds also for each j = 1, . . . , J . Since xi is strictly exogenous, xik for k = 1, . . . , T

satisfies all orthogonality conditions for each t = 1, . . . , T . Hence, one can potentially use each

time dimension of the covariates as instruments for all time periods. That is, one can choose

h(xi) = (1, vec(xi)
′)′ as a (TK + 1) dimensional vector of instruments. Hence, in total there

are M = T (1+TK)+T (1+TK)+
∑J

j=1(T −j)(1+TK) = (T (J+2)−J(J+1)/2)(1+TK)

many orthogonality conditions. As a result, the number of the orthogonalities is of order

T 2KJ .

We can reduce this number to an order of TKJ by using only the contemporaneous

instruments such as h(xi) = (1, x′it)
′, whose dimension is (1 + K) × 1. The number of

moments is very important for the efficient GMM estimation since one needs to invert a

matrix with a dimension that is equal to the number of moments. For short panels with a

single covariate, such that (T, J,K) = (5, 2, 1) or (T, J,K) = (10, 4, 1), the total number of

moments is M = 32 and M = 88, respectively. If we increase the number of covariates to 5,

then the number of moments becomes M = 96 and M = 264, respectively. Taking the inverse

of a 264-dimensional matrix results in instable and imprecise estimation so that the Efficient

GMM estimator starts being less efficient than the GMM with simply the identity matrix as

its weighting matrix. Therefore, for the EGMM in the Monte Carlo simulations, whenever

follows:
∫∞
−∞ h(z) exp(−z2)dz ∼=

∑K
k=1 wkh(zk), where nodes zk are the zeros of kth order Hermite polynomial

and wk are the corresponding weights. A table for the nodes and weights can be found in Abramowitz and
Stegun (1965).

31



the number of moments exceeds 200, we take only the inverse of the diagonal elements of the

weighting matrix and ignore the off-diagonals.17

Table 2 presents the Monte Carlo simulation results for the estimators MLE, MCL, PCL,

GMM, and EGMM in static panel probit models (without and with random effects). In

addition to bias and rmse, we present the empirical relative efficiency ere and the average

estimation time per replication (CPU time). The relative efficiency of an estimator is calcu-

lated by dividing the rmse of the MLE by that of the estimator. Hence, a number smaller

than 1 shows how much efficiency will be lost for a given estimator compared with the MLE.

In the static panel probit without random effects model, the median loss of efficiency of

the MCL is negligible (0.15%) since the MCL and the MLE are basically maximizing the

same pooled log-likelihood – except that the MCL additionally estimates the autocorrelation

parameter ρ. The rmse of the PCL estimator is slightly larger than that of the MLE, resulting

in an 8.8% median loss of efficiency. On the other hand, the median loss of efficiencies of

the GMM and EGMM are around 30% and 20%, respectively. Note that, even in this simple

example, we occasionally get smaller rmse for some GMM estimates compared with EGMM

estimates, in particular when the number of moments is large. For instance, when there are

520 moments, the rmse of ρ̂ in the GMM is 2.06, whereas that in the EGMM is 2.16.

For the static panel probit with random effects model, the MCL and PCL estimators

have a median loss of efficiency of 1% and 9%, respectively (similar to without random

effects case). For the ML estimation with T = 5, 10, and 30, we use 10, 20, and 60 Hermite

points, respectively, for the Gauss-Hermite quadrature to approximate the single-dimensional

integral due to the random effects. It turns out that, for the empirical efficiency of the MLE,

it is crucial to have a large number of Hermite points as T increases (as suggested also in

Guilkey and Murphy (1993)). For instance, when T = 30, if 40 Hermite points are used

(instead of 60), then CL estimators turn out to have a smaller rmse than the MLE for a

couple of parameters, where the efficiency gain of the CL estimators becomes around 4%. If,

however, 20 Hermite points are employed, then the CL estimators can have up to 32% more

efficiency compared with the MLE (see the results in the supplementary material).

17For larger panels, the number of moments might become extremely large. For instance, in our application,
the average time dimension is equal to 48, J = 8, and K = 11. This results in 12,312 orthogonality conditions,
even by using only contemporaneous orthogonalities.
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Even a 40-point approximation for a univariate normal distribution, i.e. for a single

integral, can be inferior compared with the composite likelihood’s approximation for the

full likelihood. As a result, if integrals in a full likelihood are not well approximated, then

the efficiency loss of MLE can be substantial. This partially explains the poor performance

of Simulated Maximum Likelihood (SML) estimator in similar complex models with high-

dimensional integrals (see Geweke et al. (1994), Geweke et al. (1997), and Patil et al. (2017)

for instance).

Regarding the GMM and EGMM, the median loss of efficiency increases substantially to

73% and 47%, respectively, making them an unreliable estimator for this model. In terms of

the CPU times, the MCL estimator converges in a fraction of a second. It is even faster than

the MLE in the model with random effects. The PCL estimator is slightly slower than the

MCL one, yet it only takes a few seconds. However, method of moments estimations might

take a significant amount of time.

Finally, the results for the autoregressive panel probit (without and with random effects)

models are presented in Table 3. The CL estimators have significantly smaller bias and rmse

in most of the cases compared with the GMM and EGMM estimators. Note also that, in these

models, we cannot employ MLE anymore without relying on simulation methods, such as

SML or Bayesian techniques. The literature has already compared finite sample performances

of these estimators with CLE in models similar to AR panel probit and found that CLE has

a big computational advantage over both SML and MCMC techniques. Moreover, it even

has smaller rmse in many settings.18

Overall, the Monte Carlo simulation results in Tables 1, 2 and 3 show the MCL and PCL

estimators’ satisfactory finite sample performances as well as their computational attractive-

ness. In relatively simpler models such as static panel probit, where efficient estimators are

also available, the CL estimators’ loss of efficiency is at acceptable levels (overall, the MCL

and PCL estimators’ median loss of efficiencies are at 1% and 9%, respectively). Moreover,

if we move from a static probit to a more complex model such as the AR probit, where

18Varin and Vidoni (2006), Bhat et al. (2010), Bhat (2011), and Patil et al. (2017) compare SML and
MCMC methods with CLE in various settings such as univariate AR probit model, or a static panel probit
with autoregressive errors, or a multinomial probit with correlated random effects. All these models have
similar likelihoods to the one analyzed here in the sense that it contains high-dimensional integral.
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Table 3: Monte Carlo Simulations to compare GMM with CLE

Autoregressive Panel Probit

T J M ρ = 0.5 µ = 0.5 β = 0.5 τ = 1.0
bias rmse bias rmse bias rmse bias rmse

MCL 5 0.79 3.13 1.13 3.75 −0.14 2.15 −2.33 4.10
PCL 5 2 1.11 2.52 1.32 4.05 −0.24 2.28 −2.20 4.22

GMM 5 2 32 −2.33 6.78 −23.21 23.60 1.11 3.15 −4.35 6.19
EGMM 5 2 32 0.54 4.20 −24.47 24.70 0.09 2.21 −1.98 4.29

MCL 10 0.21 1.94 0.42 2.93 0.02 1.52 −1.42 2.80
PCL 10 4 0.35 1.77 0.52 3.25 −0.03 1.64 −1.24 2.95

GMM 10 4 88 −2.59 5.63 −23.56 23.78 0.96 2.53 −3.34 4.84
EGMM 10 4 88 −0.77 3.24 −24.04 24.18 0.39 1.63 −0.68 2.96

MCL 30 0.01 1.04 0.18 1.73 0.02 0.83 −0.45 1.46
PCL 30 10 0.01 1.06 0.15 1.87 0.05 0.91 −0.35 1.59

GMM 30 10 520 −0.32 2.09 −24.90 24.94 0.02 1.24 −1.07 2.53
EGMM 30 10 520 −0.45 1.87 −24.45 24.50 0.31 1.06 0.46 1.97

Autoregressive Panel Probit with Random Effects

T J M ρ = 0.5 µ = 0.5 β = 0.5 γ = −0.5 σ2
α = 0.5 τ = 1.0

bias rmse bias rmse bias rmse bias rmse bias rmse bias rmse
MCL 5 −0.05 3.16 1.02 4.59 −0.25 2.08 1.66 6.91 — — −2.40 4.42
PCL 5 2 0.24 3.07 1.14 4.76 −0.43 2.23 1.78 6.88 −0.44 5.57 −2.25 4.54

GMM 5 2 32 −7.38 13.04 −21.93 24.46 0.07 7.62 7.89 27.75 −0.26 15.98 −7.75 10.70
EGMM 5 2 32 −6.44 9.84 −21.42 22.38 −4.89 7.31 20.48 27.88 −3.29 11.76 −1.98 5.15

MCL 10 −0.02 1.92 0.58 4.05 0.03 1.59 0.85 7.51 — — −1.11 3.19
PCL 10 4 0.10 2.04 0.72 4.28 0.01 1.71 0.82 7.81 −0.26 6.36 −0.95 3.41

GMM 10 4 88 −2.49 6.77 −24.25 24.93 1.79 4.82 −3.75 22.10 −1.45 15.52 −5.99 9.21
EGMM 10 4 88 −2.58 4.68 −23.42 23.64 −0.93 2.91 10.04 20.09 −3.23 9.42 −0.49 3.97

MCL 30 0.04 0.89 0.09 3.69 0.10 1.12 0.34 10.58 — — −0.30 2.19
PCL 30 10 0.11 2.47 0.08 4.44 0.20 2.17 0.37 11.23 −0.40 3.56 0.24 6.29

GMM 30 10 520 −0.09 5.28 −25.13 29.82 0.02 8.33 −5.33 34.58 −0.75 10.99 −4.08 8.85
EGMM 30 10 520 −0.44 2.59 −24.56 24.73 0.18 2.66 1.92 22.13 −2.27 6.12 −0.20 4.22

Notes: Each DGP is simulated 1000 times and the estimations are based on N = 500. The bias and
rmse are multiplied by 100. The number M represents the number of moments employed in the GMM
and EGMM estimators.

efficient estimators are not feasible, there is no significant performance deterioration in the

CL estimators, whereas we see considerable decline in that of the GMM.
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6 A Large N Moderate T Application: Credit Ratings

In this section, we present an empirical illustration of the attractiveness of both the CL

estimation technique and the AR panel probit model. We analyze credit ratings (long-term

corporate bond ratings, specifically) controlling for firm-specific balance sheet ratios and

business cycle variables in a large N and moderate T panel. The “moderate T” aspect of

the panel is important since there are, on average, 48 time periods in our unbalanced panel

data (time series dimension of the firms ranges from 20 to 109 periods with an average of

48 periods). This means that it is impractical to estimate this model by simulation-based

methods since its full likelihood contains, on average, 48-dimensional integral.

Credit ratings reflect a borrower’s creditworthiness and ability to meet its financial obli-

gations. A branch of this literature utilizes balance sheet data, especially financial ratios, to

explain bond ratings of corporates.19 However, the static nature of these firm-level models

has shifted the interest of the literature into dynamic and more sophisticated portfolio-level

models, at a cost of not using firm-level data.20 The AR panel probit model with random

effects fits into the gap between static firm-level models and dynamic portfolio-level models.

Two important aspects of credit ratings are stability and non-Markovian behavior. Cantor

(2001), Standard and Poor’s (2002), Altman and Rijken (2006), and Cantor and Mann (2007)

explain why the stability of ratings is desired by investors and regulators, and thereby,

implemented by the credit rating agencies. The rating stability is achieved by not changing

the ratings immediately after seeing a temporary change in the financial situation of a firm;

instead, the rating agencies prefer waiting until they think that the changes in the financials

of a firm are permanent.21

The non-Markovian property of the ratings is well documented by many papers, such

19See Horrigan (1966), Altman (1968), Blume et al. (1998), Amato and Furfine (2004), Pagratis and Stringa
(2009), Alp (2013), and Baghai et al. (2014)

20The relevant literature contain the following papers and references therein: Lando and Skødeberg (2002),
Wei (2003), Koopman and Lucas (2005), McNeil and Wendin (2007), Koopman and Lucas (2008), Feng et al.
(2008), Koopman et al. (2009), Stefanescu et al. (2009), and Gagliardini and Gouriéroux (2014). See also
Alam et al. (2010) for a review of different credit risk models.

21Standard and Poor’s (2002, p. 41): The ideal is to rate through the cycle. There is no point in assigning
high ratings to a company enjoying peak prosperity if that performance level is expected to be only temporary.
Similarly, there is no need to lower ratings to reflect poor performance as long as one can reliably anticipate
that better times are just around the corner.
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as Lando and Skødeberg (2002), Christensen et al. (2004), Altman and Rijken (2006), and

Frydman and Schuermann (2008). The credit rating agencies claim that firms within the

same rating class are homogeneous in the sense that they have the same rating transition

probabilities with respect to future rating movements. However, the aforementioned papers

show that two firms with identical current credit ratings can have substantially different

transition probabilities. This means that future rating transitions do not depend only on the

current ratings but also on the whole rating history, which results in a non-Markovian process.

Moreover, there is an empirical phenomenon called rating momentum which contributes to

the non-Markovian behavior of the ratings.22

Based on the stability and non-Markovian characteristics of the credit ratings, the AR

panel probit model will be a good candidate to model them since it allows for persistence and

non-Markovian behavior in the ratings. In this model, the latent autoregressive variable y∗it

will represent the credit rating agency’s view on the creditworthiness of a firm that depend

on the entire history of the financial situation of a firm with an exponentially decreasing

importance of the past.

Note that the rating agencies first assign a continuous internal rating to each firm, then

put them into discrete rating brackets (see Van Gestel et al. (2007) and Standard and Poor’s

(2018) for more details on the rating process). In calculating a continuous rating, the rating

agencies take their past views as well as the current financial situation of the firm and the

economy into account. In the model, these are captured by the lagged latent variable ρy∗i,t−1

and β′xit, respectively. Here, ρ represents the persistence or ‘the weight’ of the past and β

is the weight of the current variables. The higher the stability or persistence of the ratings

the higher will be the coefficient ρ. The autoregressive property provides both the stability

and non-Markovian behavior of credit ratings. Moreover, unobserved firm heterogeneities

and idiosyncratic innovations are also taken into account by the model.

22Rating momentum represents the empirical finding that a downgrade is more likely to be followed by
another downgrade, and an upgrade is more likely to be followed by another upgrade. Altman and Rijken
(2006) explains this fact as partial adjustment of the ratings instead of immediately jumping to a rating that
represents the actual credit quality of a firm.
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6.1 Data

We use the Wharton Research Data Services and the Compustat database to obtain cor-

porate balance sheet data and the S&P Long-Term Issuer Level ratings.23 The corporate

bond ratings are available at the monthly frequency, but we transform them into quarterly

frequency by taking the last rating within each quarter to match the frequency of the ac-

counting data. Moreover, we convert the letter ratings {CCC, B, BB, BBB, A, AA, AAA}

into ordinal numbers {1,. . . ,7} where CCC=1, B=2, BB=3 and so on.24

Based on the literature and Key Financial Ratios published by the credit rating agencies

(see Standard and Poor’s (2013)), we use the following firm-level financial variables with their

abbreviations given in parentheses: net income/total assets (roa), retained earnings/total

assets (reta), relative market value (size), binary variable for paying dividends (dividend),

market-to-book ratio (m/b), cash flow/total assets (cash), capital expenditures/total assets

(capex ), total debt/total assets (debt). These ratios capture, in general, the profitability,

leverage, financial soundness, liquidity, market power, and valuation of a firm.25

We use an unbalanced panel data set for the period 1989Q4–2016Q4. A firm is allowed to

enter the data set after the initial date 1989Q4 or leave it before 2016Q4. But note that the

parameter estimation in an autoregressive model relies heavily on the dependency between

time periods and information accumulation over time. Therefore, we only include firms that

do not have any missing data once they entered the data set until they leave. Since the firms

with a short span of data are not representative and exhibit large variations, we exclude firms

that have less than 5 years of quarterly data at least.26 Eventually, the data set comprises

88,232 observations containing 1852 firms with an average of 48 quarters. Table 4 shows the

total number of observations of each rating class and their associated frequencies in the data

23Throughout the paper, the term “credit rating of a firm” is frequently used; nevertheless, the corporate
bond that is issued by the obligor receives a rating, rather than the obligor itself. An obligor can issue several
bonds, but each issue might have a different rating. However, senior unsecured long-term bond ratings, which
are considered in this paper, are close to the issuer rating since the debt defaults only when the issuer defaults.
Therefore, Long-Term Issuer Level ratings reflect de facto the creditworthiness of the obligor.

24Note that we group the ratings without considering the notches +/−. For instance, {AA−, AA, AA+}
all belong to a single category denoted by AA. Observations with D (Default), SD (Suspended), or NM (Not
meaningful) ratings are excluded.

25For more details on the financial ratios, please see the data appendix in the supplementary material.
26The results are robust to the choice of minimum number of uninterrupted observations. For example,

requiring a minimum of 1 year of observations yields similar results.
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set. While around one-third of the ratings are BBB, firms with AAA or CCC constitute only

around 1% of the entire data set.

Table 4: The Distribution of the Ratings

Ratings # of Obs. Percentage

CCC 1258 1.43%
B 14,223 16.12%

BB 21,735 24.63%
BBB 27,916 31.64%

A 18,244 20.68%
AA 4059 4.60%

AAA 797 0.90%

Notes: This table reports the distribution of ratings in the unbalanced panel data set. The data contain
1852 firms with at least 20 continuous quarters of observations between 1989Q4–2016Q4. Hence, the
time dimension of a firm is minimum 20 quarters and maximum 109 quarters, with an average of 48
quarters. In total, there are 88,232 firm-quarter observations.

During the rating assignment process, credit rating agencies take also the current macro-

financial conditions of the economy into account (Standard and Poor’s (2002)). The literature

uses various choices of business cycle variables to control for the state of the economy. The

NBER recession indicator (denoted by recession) seems to be the most common choice;

however, the choice of other aggregate macroeconomic variables differs from paper to paper.

While some papers use GDP growth rate (Feng et al. (2008), Koopman et al. (2009), and

Alp (2013)), others create their own business cycle indicator (Amato and Furfine (2004) and

Freitag (2015)). Hence, it is not certain which business cycle variable should be included

in the analysis. For this reason, we prefer extracting principal components from a large

macro-financial data set and use them as the business cycle variables.

The first two principal components (denoted by f1t and f2t) of the quarterly data set of

McCracken and Ng (2016) explain more than 20% of the total variation in 218 business cycle

variables over the period 1971Q2–2016Q4. They are especially related to the real economy

sector. For instance, they explain around 70% of the variation in real variables such as

output, exports, imports, personal income, private investment, and housing starts. After

estimating the business cycle factors, we took their corresponding dates that match with

the data range of the credit ratings, i.e. 1989Q4–2016Q4. Note that, due to the generated
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regressor problem, using estimated variables might result in larger standard errors or even

inconsistent estimates in non-linear models. However, satisfying the conditions in Bai and

Ng (2008), the estimated factors in our case do not create any problem since they can be

treated as if they are the true factors.27

6.2 Estimation Results

In this subsection, we present the MCL and PCL estimation results of the AR panel probit

model. Just to show potential gains in moving from a static probit model to an autoregressive

one, we also present the maximum likelihood estimation results of a static panel probit model,

which is the working-horse model in the credit rating literature (for instance, see Blume et al.

(1998), Amato and Furfine (2004), Alp (2013), Baghai et al. (2014), and Dimitrov et al.

(2015)).28

Table 6 presents the ML, MCL, and PCL(4) estimates and some associated summary

statistics. PCL(4) stands for the PCL estimation with J = 4. The estimation results are

robust to the choice of J .29 The underscored numbers denote the insignificant estimates

at the 5% significance level (the estimated standard errors are left to the supplemantary

material). In the models with random effects, the results for the correlated random effects’

conditional mean parameter γ are not presented. Note that to deal with local maxima

problems, we start estimation algorithms at several different initial points. Finally, due to

computational time constraints, we end up using 41 Hermite points for the ML estimation

in the static model with random effects.30

27Bai and Ng (2008) state that an estimated factor f̂t can be treated as the true factor ft such that

T̃−1
∑T̃
t=1‖f̂t − ft‖

2
= Op(1/min[Ñ , T̃ ]) provided that f̂t is extracted from a large panel satisfying Ñ →∞,

T̃ →∞, and T̃ 5/8/Ñ → 0. In our case, the principal components are extracted from a panel with Ñ = 218

and T̃ = 183, which satisfy the sufficient conditions.
28Note that, in this literature, static panel probit without random effects is the most common model since

the random effects model is computationally challenging given the large and extremely unbalanced nature of
the data sets in this literature. Moreover, some of these aforementioned papers employ a static panel probit
with fixed effects model, whose estimates are in fact inconsistent for fixed T .

29The estimations with J ∈ {1, 2, 4, 6, 8} yield very similar estimates and they are provided in the supple-
mentary material.

30For such a large panel data, fitting a static probit with random effects model is extremely time-consuming.
We encountered several problems in estimating the random effects model in the software STATA. But we
were able to estimate it in MATLAB. Yet, we could not use a large number of Hermite points; otherwise
the estimation would take tens of hours. Based on the Monte Carlo simulation results presented in Table
2, we know that using 41 Hermite points is unlikely to deliver an efficient ML estimation in a model with
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The most important difference between the static and autoregressive models is the signifi-

cant and economically large persistence parameter ρ̂. It indicates that there is, in fact, a need

for a time series component in analyzing credit ratings. In the autoregressive model without

random effects, the estimated autocorrelation coefficient ρ̂ is 0.592 and 0.967 in the MCL

and PCL estimations, respectively. After controlling for the random effects, the estimates

become 0.681 and 0.718, respectively.

Given that both MCL and PCL estimators are consistent, why do we obtain such a dif-

ferent estimate like 0.967 versus the estimates around 0.70? The estimate 0.967 is not an

error, but instead, it shows how utilizing lower dimensional distributions provides robustness

under misspecification. In the model without random effects, ρ is the only source of the auto-

correlation, and the PCL estimation indicates that ratings have extremely high persistence.

However, in the model with the random effects, there are two sources for the autocorrelation:

ρ and σ2
α. Hence, after controlling for the random effects, the estimated ρ returns to 0.718.

Note that the implied first autocorrelation coefficient in the random effects model is

σ2
α + ρ(1 − σ2

α) = 0.905 + 0.718(1 − 0.905) = 0.973, which is not far from the estimated

autocorrelation coefficient 0.967 in the model without random effects. Hence, in this model,

we can see the composition of the autocorrelation present in the latent process y∗it. The

random effects αi, whose conditional variance is estimated to be (1−ρ̂)2σ̂2
α = 0.072, constitute

a large portion of the autocorrelation, while ρ̂ also significantly contributes to the persistence.

A significant and economically large ρ shows that the credit rating agency’s view on the

creditworthiness of a company exhibits significant persistence. Any shock to the creditworthi-

ness of a firm is estimated to have a half-life around 2 quarters. Even after a year, ρ̂4 ≈ 25%

of a shock is affecting the underlying financial soundness of a firm. In the static model, on

the contrary, there is no difference between short-term and long-term effects. The effects

of any shock disappear within one time period. This is why the estimates of the financial

ratios in the static model are larger than those in the corresponding autoregressive model.

For instance, the β coefficients of the financial ratios in the MLE without random effects are

T = 48 on average. Thus, the CL estimation is possibly more efficient than the MLE in this case. This
computational difficulty can explain partly why the credit ratings literature prefers the static model without
random effects.
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Table 5: Estimation Results

Static Probit Autoregressive Probit

No RE With RE No RE With RE

MLE MLE MCL PCL(4) MCL PCL(4)

ρ — — 0.592 0.967 0.681 0.718
roa 0.063 0.025 0.101 0.062 0.068 0.031
reta 0.254 0.229 0.106 0.002 0.065 0.036
size 0.615 0.370 0.253 0.022 0.100 0.072

dividend 1.160 0.528 0.508 0.045 0.145 0.149
m/b 0.162 0.082 0.066 0.001 0.031 0.071
cash −0.115 −0.116 −0.050 −0.005 −0.032 −0.045
capex −0.072 0.068 −0.041 −0.007 0.059 0.045
debt −0.416 −0.241 −0.177 −0.026 −0.085 −0.083

recession −0.073 0.000 −0.168 −0.170 −0.157 −0.030

f̂1 −0.057 −0.018 −0.080 −0.052 −0.060 −0.013

f̂2 –0.012 −0.037 –0.007 0.003 –0.009 0.013
σ2
α — 0.673 — — 0.905

constant 2.773 2.796 2.854 3.047 2.926 2.463
τ2 1.935 1.750 1.986 1.826 2.080 1.613
τ3 3.144 3.205 3.225 3.005 3.397 2.973
τ4 4.431 4.892 4.536 4.305 4.779 4.410
τ5 5.929 6.670 6.049 5.783 6.349 5.903
τ6 7.593 8.427 7.703 7.179 8.084 7.452

Correct Predictions

Total 0.224 0.231 0.229 0.211 0.236 0.230

CCC 0.102 0.199 0.112 0.078 0.123 0.149
B 0.378 0.395 0.405 0.227 0.456 0.370

BB 0.560 0.581 0.568 0.549 0.567 0.581
BBB 0.732 0.793 0.731 0.755 0.727 0.763

A 0.334 0.267 0.356 0.308 0.393 0.326
AA 0.175 0.155 0.178 0.100 0.194 0.176

AAA 0.442 0.508 0.458 0.336 0.483 0.450
Transition Probabilities

|Mdata − M̂| 0.419 0.173 0.214 0.087 0.106 0.072

Notes: This table presents the estimation results from an unbalanced panel with N = 1852 and average
T = 48. The total number of observations is 88,232. In the models with random effects, the estimates
for the correlated random effects’ conditional mean parameter γ are not presented. The estimates that
are insignificant at the 5% level are underscored, where the estimated standard errors are given in
the supplementary material. The matrix M denotes the rating transition probability matrix (Mdata is

the observed transition probability matrix, whereas M̂ is the estimated counterpart by the associated
estimator).
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around 2.3 times larger than the corresponding MCL estimates. Note that this magnitude

is similar to the 6-quarter cumulative effect implied by the MCL estimates calculated by

(1 + 0.592 + · · · + 0.5925) = 2.34. In other words, we can conjecture that the coefficients in

the static model capture medium-term effects.

In terms of in-sample prediction accuracy, the static and autoregressive models have

comparable performances. Around 23% of the credit ratings are correctly predicted in each

model. While there are some differences, the correct prediction within each rating class does

not, overall, differ significantly between the static and autoregressive model. Hence, taking

the autocorrelation into account does not increase the predictive power of the model.

However, it remarkably improves the accuracy of the implied rating transition probabili-

ties. Note that the thresholds are the cut-off points that determine the switch between rating

classes. But the estimated thresholds (and the constant term) are of similar magnitudes in

static and autoregressive models. Therefore, a rating transition after a given shock is deter-

mined by only contemporaneous effects in the static model but by cumulative effects in the

autoregressive one. The latter model, which allows for sluggish rating migration, provides

superior rating transition estimates compared with the static models since it captures slow

and partial rating adjustments that are observed in the data (Altman and Rijken (2006)).

Transition probabilities can be represented in rating transition matrices, which are useful

in credit risk models to measure future credit loss (Nickell et al. (2000) and Bangia et al.

(2002)). The summary of a performance comparison in terms of producing a rating transition

matrix that is closer to the observed one is presented in the last line of Table 6. The matrix

Mdata is the observed transition probability matrix throughout the entire data set, whereas

the matrix M̂ is the estimated counterpart by the associated estimator in a given model. In

computing M̂, we utilize the implied transition probabilities computed from the estimates

of each estimator in a given model. Based on the Euclidean normed distances |Mdata − M̂|,

we see that the autoregressive models predict rating migrations significantly better than the

static ones.31

In Table 7, we present more details on the estimated transition probability matrices. In

31The Euclidean norm is used also in Bangia et al. (2002) for rating transition matrix comparison. However,
since matrix norms are equivalent, the ordering of the normed differences is robust to the choice of norms.
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Table 6: Rating Transition Probabilities

CCC B BB BBB A AA AAA
CCC 92.6% 7.3% 0.1% 0 0 0 0

B 1.6% 96.1% 2.4% 0 0 0 0
Observed Data BB 0 2.0% 96.8% 1.1% 0 0 0

Mdata BBB 0 0.1% 1.1% 98.2% 0.6% 0 0
A 0 0 0.1% 1.7% 98.1% 0.2% 0

AA 0 0 0 0.1% 2.5% 97.4% 0
AAA 0 0 0 0 0.1% 2.1% 97.8%

CCC B BB BBB A AA AAA
CCC 87.3% 12.7% 0 0 0 0 0

B 1.0% 90.9% 8.1% 0 0 0 0
Static Probit BB 0 3.9% 90.5% 5.7% 0 0 0

without Random Effects BBB 0 0 2.9% 94.0% 3.1% 0 0

|Mdata − M̂MLE | = 0.419 A 0 0 0 8.7% 90.1% 1.2% 0
AA 0 0 0 0 7.1% 89.6% 3.3%

AAA 0 0 0 0 0 6.7% 93.3%

CCC B BB BBB A AA AAA
CCC 91.4% 8.6% 0 0 0 0 0

B 1.4% 92.3% 6.2% 0 0 0 0
Static Probit BB 0 2.3% 93.4% 4.4% 0 0 0

with Random Effects BBB 0 0 2.6% 96.0% 1.5% 0 0

|Mdata − M̂MLE−RE | = 0.173 A 0 0 0 7.9% 90.9% 1.2% 0
AA 0 0 0 0 7.1% 88.8% 4.1%

AAA 0 0 0 0 0 6.4% 93.6%

CCC B BB BBB A AA AAA
CCC 95.7% 4.3% 0 0 0 0 0

B 0.8% 95.6% 3.6% 0 0 0 0
Autoregressive Probit BB 0 1.8% 96.2% 2.0% 0 0 0
with Random Effects BBB 0 0 1.1% 97.6% 1.3% 0 0

|Mdata − M̂PCL(4)| = 0.072 A 0 0 0 3.8% 95.5% 0.7% 0
AA 0 0 0 0 3.4% 94.8% 1.9%

AAA 0 0 0 0 0 3.8% 96.2%

Notes: The matrix Mdata is the observed transition probability matrix throughout the entire data set,

whereas the matrix M̂ is the estimated counterpart by the associated estimator in a given model. The
matrices present rating migrations from the ratings listed in the rows towards those in the columns. For
instance, in 1.6% of the cases in the observed data, a B-rated bond in a given quarter has become a
CCC-rated bond in the following quarter.

particular, we present the data transition matrix Mdata, the results from the static probit

model without random effects (M̂MLE) and with random effects (M̂MLE−RE) and the PCL(4)

estimation results in the autoregressive model with random effects (M̂PCL(4)). The rating

transition is presented from the ratings in the rows towards those in the columns.

We see that, at the quarterly frequency, the ratings are highly sticky. For instance, in the
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entire data set, a CCC rating in a given quarter stays in the same rating class in the following

quarter in 92.6% of the times, migrates to the rating class B in 7.3% of the times, and to

BB in only 0.1% of the times. The results in Table 7 indicate that the static probit without

random effects model has a very poor prediction accuracy in terms of rating transitions.

Even though controlling for random effects results in twice as good predictions (see the third

transition matrix), it still cannot predict the persistence in the ratings successfully. Almost

all of the diagonal estimates, which represents the probability of staying within the same

rating class, are underestimated by the static model. On the other hand, the autoregressive

model, which takes the rating persistence into account, produces substantially more accurate

rating migration probabilities (more than twice as close to the observed rating migrations as

those produced by static models).

Overall, the autoregressive probit model successfully captures the time series properties of

the data, in particular the rating persistence and rating transitions. Even though the largest

portion of the rating persistence arises from the random effects, taking the autocorrelation

coefficient into account improves significantly the rating migration process.

7 Conclusion

In this paper, we are interested in modeling and estimating persistent discrete data. We

focus on the autoregressive (AR) panel probit model with correlated random effects, where

the discrete outcome variable is a non-linear function of an autocorrelated latent process.

In this model, the persistence of the outcome is driven by the persistence of the underlying

latent variable. The likelihood function of this model contains T -dimensional integrals, where

T is the length of the panel data set.

The maximum likelihood estimation (MLE) of this intractable likelihood would be chal-

lenging or even infeasible. Hence, to solve this complex problem, we employ composite

likelihood (CL) techniques borrowed from the statistics literature. In forming a composite

likelihood, one utilizes lower dimensional distributions of the data, such as that of (yit, yi,t+j)

for j = 1, . . . , J rather than that of (yi1, . . . , yiT ). Hence, the CL estimation loses some statis-

tical efficiency but gains significant computational speed (even when the maximum likelihood
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estimation is not feasible) and more robustness to misspecification.

Most common composite likelihoods are the Marginal Composite Likelihood (MCL), where

univariate distributions of the data are modeled, and the Pairwise Composite Likelihood

(PCL), where bivariate distributions are modeled. Utilizing only such sub-likelihoods and

not using all the available information might, however, result in identification problems.

Therefore, we especially focus on the identification issue of the CL estimators in the AR

panel probit model and provide conditions under which the identification of the parameters

can be achieved in this model. Our approach for identification is borrowed from the average

derivative estimation literature. In particular, we show that certain derivatives of the associ-

ated sub-likelihoods can isolate parameters separately so that one can say that the composite

likelihood contains enough information to identify the parameters. Moreover, we prove the

consistency and asymptotic normality of the PCL estimator in a large N and fixed T setting.

To see the finite sample performance of the CL estimators, we conduct Monte Carlo sim-

ulations. Moreover, whenever possible, we compare the CLE with the MLE and the method

of moments estimator (GMM). The simulations indicate that the composite likelihood es-

timation offers a fast, reliable, and accurate estimation with a small loss of efficiency. The

GMM estimation suffers from the large number of moment conditions as T increases, and

becomes significantly inferior compared with the CLE.

In the empirical part, we apply the AR probit model and the CL estimation techniques to

analyze the corporate bond ratings. We use firm balance sheet data as well as some business

cycle variables to explain the corporate bond ratings in a quarterly unbalanced panel data

between 1989Q4–2016Q4 for 1852 firms. First we estimate a static panel probit (with and

without random effects) by the MLE, which is the working-horse model of the firm-level

credit ratings literature. Then we use the autoregressive panel probit (with and without

random effects) estimated by the CLE to fit the data.

The estimated parameters show that there is significant persistence in the ratings that

is captured both by random effects and autocorrelation property of the underlying process.

Specifically, an autocorrelation parameter is estimated to be around 0.70 after controlling for

random effects indicating a high degree of persistence overall in the discrete ratings. The AR

probit model which takes the autocorrelation into account yields slightly better fitted values
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but provides significantly better transition probabilities compared with static models.
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Honoré, B. E. and E. Tamer (2006). Bounds on parameters in panel dynamic discrete choice
models. Econometrica 74 (3), 611–629.

Horrigan, J. O. (1966). The determination of long-term credit standing with financial ratios.
Journal of Accounting Research, 44–62.

Hsiao, C. (2014). Analysis of Panel Data. Econometric Society Monographs, no. 54. Cam-
bridge University Press.

Hyslop, D. R. (1999). State dependence, serial correlation and heterogeneity in intertemporal
labor force participation of married women. Econometrica 67 (6), 1255–1294.

Joe, H. and Y. Lee (2009). On weighting of bivariate margins in pairwise likelihood. Journal
of Multivariate Analysis 100 (4), 670–685.

Keane, M. P. (1994). A computationally practical simulation estimator for panel data.
Econometrica 62 (1), 95–116.

Kiyotaki, N. and J. Moore (1997). Credit cycles. Journal of Political Economy 105 (2),

50



211–248.
Koop, G. and D. J. Poirier (1993). Bayesian analysis of logit models using natural conjugate

priors. Journal of Econometrics 56 (3), 323–340.
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A Technical Appendix

First, let’s introduce some notation to facilitate the readibility. We denote the conditional

mean of the latent process y∗it as mit ≡ mit(θ) = mt(xi; θ) = µ + γ′x̄i +
∑t

k=1 ρ
t−kβ′xik

such that y∗it|xi ∼ N (mit, 1). Let qits ≡ τs − mit denote the threshold net of the condi-

tional mean. The first and second subscripts of bivariate functions will be associated with

time periods t and t + j, respectively. Moreover, for simplicity, we will abuse the notation

and suppress the subscripts i, t, and t + j whenever it does not create ambiguity: Ps1s2 ≡

P (yit = s1, yi,t+j = s2|xi; θ) and Φs1s2 ≡ Φ2 (qts1 , qt+j,s2|rj) ≡ Φ2 (τs1 −mit, τs2 −mi,t+j|rj).

Next, let’s rewrite the pairwise composite log-likelihood and the associated probabilities

with the recently introduced notation.

LPCL(θ|y,x) =
1

N

N∑
i=1

`i(θ),

`i(θ) ≡ `(θ|yi,xi) =
1

T

T−J∑
t=1

J∑
j=1

ln f(yit, yi,t+j|xi; θ),

ln f(yit, yi,t+j|xi; θ) =
S∑

s1=1

S∑
s2=1

1s1s2 lnPs1s2(θ),

Ps1s2(θ) = Φ2 (qts1 , qt+j,s2|rj)−Φ2 (qt,s1−1, qt+j,s2|rj)

−Φ2 (qts1 , qt+j,s2−1|rj) + Φ2 (qt+j,s2−1, qt+j,s2−1|rj) ,

= Φs1,s2 −Φs1−1,s2 −Φs1,s2−1 + Φs1−1,s2−1.

A.1 The Proof of Theorem 1

We first prove the consistency and then the asymptotic normality of the PCL estimator.

For consistency, we prove the uniform boundedness of the composite likelihood by finding

the bounds of bivariate probabilities. For the asymptotic normality, we compute the score,

its asymptotic distribution, the Hessian and its uniform bounds. The flow of the proof is

standard in the sense that it is similar to the asymptotic results for quasi- or pseudo-maximum

likelihood estimators. Hence, we leave many details to the supplementary material and show

here the most important points and differences compared with static probit models.
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A.1.1 The Consistency of the PCLE

The lemma below proves the uniform boundedness of the composite likelihood.

Lemma 1. Under the assumptions of Theorem 1, the logarithm of the bivariate distribution

function is uniformly bounded. That is, E [supθ∈Θ|ln f(yit, yi,t+j|xi; θ)|] <∞.

Proof of Lemma 1. Let’s analyze the bivariate probability P11(θ) = Φ2(qt1, qt+j,1|rj) and

use the mean value expansion, where qt1 = −(µ+ γ′x̄i +
∑t

k=1 ρ
t−kβ′xik) since τ1 = 0. For a

θ̄ between θ and 0, we can write

∣∣lnP11(θ)
∣∣ =

∣∣∣lnP11(0) + θ′
∂ lnP11(θ̄)

∂θ

∣∣∣ =

∣∣∣∣∣ln Φ2(0, 0|0) + θ′
∂P11(θ̄)
∂θ

P11(θ̄)

∣∣∣∣∣ ≤ ln(1/4) + |θ|

∣∣∣∣∣ ∂P11(θ̄)
∂θ

P11(θ̄)

∣∣∣∣∣
Let’s focus on the last norm. Using the equation (24) in the section B, which provides the

first derivative of P11, yields∣∣∣∣∣ ∂∂θP11

P11

∣∣∣∣∣ =

∣∣∣∣∣ ∂∂θΦ (qt1, qt+j,1|rj)
Φ (qt1, qt+j,1|rj)

∣∣∣∣∣
≤ |q′t1|

∣∣∣∣∣
φ(qt1)Φ

(
−rjqt1+qt+j,1√

1−r2j

)
Φ (qt1, qt+j,1|rj)

∣∣∣∣∣+ |q′t+j,1|

∣∣∣∣∣
φ(qt+j,1)Φ

(
qt1−rjqt+j,1√

1−r2j

)
Φ (qt1, qt+j,1|rj)

∣∣∣∣∣+ |r′j|

∣∣∣∣∣φ2(qt1, qt+j,1|rj)
Φ (qt1, qt+j,1|rj)

∣∣∣∣∣,
(19)

where q′ denotes the derivative with respect to θ, i.e. q′t1 = ∂qt1(θ)/∂θ and φ2(·, ·|rj) de-

notes the bivariate standard normal density with the correlation coefficient rj. We need to

find upperbounds for each term in (19). The idea of these upperbounds can be understood

when one considers the special case of no autocorrelation. If rj = 0, then bounds for the

ratios in (19) become (φ(qt1)/Φ(qt1)) ≤ c(1 + |qt1|), (φ(qt+j,1)/Φ(qt+j,1)) ≤ c(1 + |qt+j,1|),

and (φ(qt1)φ(qt+j,1)/Φ(qt1)Φ(qt+j,1)) ≤ c(1+max{q2
t1, q

2
t+j,1}), respectively, for some positive

constant c. These are the inverse Mills ratios that appear in a static probit model. A non-zero

rj does not change the limiting behavior of these ratios, but it makes the proof more complex.

The details for the case when rj 6= 0 are given in the supplementary material.

The same upperbounds are found for the generic term involving Ps1s2 (see the supplemen-

tary material for details). Without loss of generality, let’s assume that |qt+j,s2| ≤ |qt,s1| and
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|q′t+j,s2| ≤ |q
′
t,s1
|, for all s1 and s2. Then, |P′s1s2/Ps1s2 | ≤ Cs1,s2(|q′t,s1|(1+|qt,s1|)+|r′j|(1+q2

t,s1
)),

for some constant Cs1,s2 > 0. Thus, the limiting behavior of the ratios involving normal pdf

and cdf is common for each probability.

To find an upperbound for E [supθ∈Θ|ln f(yit, yi,t+j|xi; θ)|], we use the upperbounds of func-

tions of qits(θ) derived in B.2, and utilize Minkowski’s inequality, Hölder inequality, and

Loève’s cr-Inequality.32 We obtain

E

[
sup
θ∈Θ

∣∣ln f(yit, yi,t+j|xi; θ)
∣∣] =

∥∥∥sup
θ∈Θ

∣∣∣ S∑
s1=1

S∑
s2=1

1s1s2 lnPs1s2(θ)
∣∣∣∥∥∥

1
≤

S∑
s1=1

S∑
s2=1

∥∥∥sup
θ∈Θ

∣∣lnPs1s2(θ)
∣∣∥∥∥

1

≤ c+
S∑

s1=1

S∑
s2=1

Cs1,s2

∥∥∥sup
θ∈Θ
|q′ts1(θ)|(1 + |qts1(θ)|) + |r′j(θ)|(1 + q2

ts1
(θ))

∥∥∥
1

≤ c+ C
S∑

s1=1

S∑
s2=1

∥∥∥sup
θ∈Θ
|q′ts1(θ)|(1 + |qts1(θ)|)

∥∥∥
1

+
∥∥∥sup
θ∈Θ
|r′j(θ)|(1 + q2

ts1
(θ))

∥∥∥
1

≤ c+ C
S∑

s1=1

S∑
s2=1

∆2,2

∥∥∥sup
θ∈Θ
|q′t,s1(θ)|

∥∥∥
2

∥∥∥sup
θ∈Θ
|qt,s1(θ)|+ 1

∥∥∥
2

+
∥∥∥J sup

θ∈Θ
(1 + q2

t,s1
(θ))

∥∥∥
1

≤ c+ C
S∑

s1=1

S∑
s2=1

∆2,2

∥∥∥c′(1 + |xi|)
∥∥∥

2

∥∥∥c′(1 + |xi|)
∥∥∥

2
+
∥∥∥c′(1 + |xi|)2

∥∥∥
1

≤ C ′
(
1 + ‖xi‖2

2 + ‖|xi|2‖1

)
,

where ∆2,2 > 0 is the constant term given in Loève’s cr-Inequality and c, c′, C, C ′ are some

positive constants. Hence, E
[
supθ∈Θ

∣∣ln f(yit, yi,t+j|xi; θ)
∣∣] <∞ as long as E|xi|2 <∞. This

condition is satisfied by Assumption 3, i.e. by E[xix
′
i] <∞.

As a result, Lemma 1 and the analysis in the identification section 3, which proves

the uniqueness of the true parameter as the maximizer, i.e. E [ln f(yit, yi,t+j|xi; θ∗)] >

E [ln f(yit, yi,t+j|xi; θ)] for all θ ∈ Θ with θ 6= θ∗, constitute the consistency proof for θ̂.

A.1.2 The Asymptotic Normality of the PCLE

In this section, we analyze the asymptotic distribution of θ̂. Let si(θ) ≡ ∂`i(θ)/∂θ, hi(θ) ≡

∂2`i(θ)/∂θ∂θ
′, and the true value be θ∗. Then,

√
N(θ̂−θ∗) −→d N (0,H(θ∗)−1I(θ∗)H(θ∗)−1)

32Loève’s cr-Inequality: for any r > 0, we have ‖
∑t
k=1 vk‖r ≤ ∆r,k

∑t
k=1‖vk‖r, where ∆r,t =

max
{

1, t(1−r)/r
}

. See Davidson (1994, p. 139–140) for more details on the mentioned inequalities.
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where H(θ) denotes the Hessian matrix E(hi(θ)|xi) and I(θ) denotes the information matrix

E(si(θ)si(θ)
′|xi). Particularly, we have

H(θ) = E

[
1

T

T−J∑
t=1

J∑
j=1

∂2 ln f(yit, yi,t+j|xi; θ)
∂θ∂θ′

]

I(θ) = E

[(
1

T

T−J∑
t=1

J∑
j=1

∂ ln f(yit, yi,t+j|xi; θ)
∂θ

)(
1

T

T−J∑
t=1

J∑
j=1

∂ ln f(yit, yi,t+j|xi; θ)
∂θ

)′]
.

Note that since composite likelihood does not use the full information as the full likeli-

hood does, we have I(θ∗) 6= H(θ∗) in this case. Further details are given in the following

subsections. As it is typical in asymptotic normality proofs, we utilize the mean value ex-

pansion of the composite likelihood evaluated at the CLE around the true parameter. That

is, for a mean value θ̃ that lies between θ̂ and θ∗, we have

0 =
∂L(θ̂)

∂θ
=
∂L(θ∗)

∂θ
+
∂2L(θ̃)

∂θ∂θ′
(θ̂ − θ∗) =

1

N

N∑
i=1

s(θ∗|yi,xi) +

[
1

N

N∑
i=1

h(θ̃|yi,xi)

]
(θ̂ − θ∗),

where s(·) and h(·) denote the score and Hessian functions. Arranging the terms in the

above equation, using the uniform convergence property of the Hessian and the asymptotic

normality of the score function, we obtain the desired asymptotic normality result. Further

details are provided in the following subsections.

√
N(θ̂−θ∗)=

[
1

N

N∑
i=1

hi(θ̃)

]−1

1√
N

N∑
i=1

si(θ
∗) −→d N

(
0,E[hi(θ

∗)]−1 E[si(θ
∗)si(θ

∗)′] E[hi(θ
∗)]−1

)
The Score

The score of an individual composite likelihood is si(θ) = s(θ|yi,xi) = ∂`i(θ)/∂θ, where

s(θ|yi,xi) =
1

T

T−J∑
t=1

J∑
j=1

∂ ln f(yit, yi,t+j|xi; θ)
∂θ

=
1

T

T−J∑
t=1

J∑
j=1

S∑
s1=1

S∑
s2=1

1i,t,t+j,s1,s2

Pi,t,t+j,s1,s2

∂Pi,t,t+j,s1,s2

∂θ
.
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Next, we compute the first derivative of the bivariate probabilities. Note thatPi,t,t+j,s1,s2(θ) =

Φs1,s2 −Φs1−1,s2 −Φs1,s2−1 + Φs1−1,s2−1.

∂Pi,t,t+j,s1,s2

∂θ
=
∂rj
∂θ

[φs1,s2 − φs1−1,s2 − φs1,s2−1 + φs1−1,s2−1]

+
∂qt,s1
∂θ

φ(qt,s1)

Φ

−rjqt,s1 + qt+j,s2√
1− r2

j

−Φ

−rjqt,s1 + qt+j,s2−1√
1− r2

j


+
∂qt+j,s2
∂θ

φ(qt+j,s2)

Φ

qt,s1 − rjqt+j,s2√
1− r2

j

−Φ

qt,s1−1 − rjqt+j,s2√
1− r2

j


− ∂qt,s1−1

∂θ
φ(qt,s1−1)

Φ

−rjqt,s1−1 + qt+j,s2√
1− r2

j

−Φ

−rjqt,s1−1 + qt+j,s2−1√
1− r2

j


− ∂qt+j,s2−1

∂θ
φ(qt+j,s2−1)

Φ

qt,s1 − rjqt+j,s2−1√
1− r2

j

−Φ

qt,s1−1 − rjqt+j,s2−1√
1− r2

j


Note that, depending on the values s1 and s2 take, some of the terms in the above derivative

might drop. For instance, qt,s1−1 = −∞ for s1 = 1 or qt,s1 =∞ for s1 = S. These associated

terms will drop from the equation; but, to keep the notation simple, we keep the general

formula.

Even though the pairwise composite likelihood is a misspecified likelihood as a whole, each

piece of it actually belongs to the correctly specified likelihood. Therefore, the score of the

composite likelihood is unbiased. In other words, the derivative of the log-pairwise likelihoods

at the true value is zero: E[∂ ln f(yit, yi,t+j|xi; θ∗)/∂θ] = 0. Hence, we have E[si(θ
∗)|xi] = 0,

which implies E[si(θ
∗)] = 0. Moreover, conditional on xi, si(θ) is independent from si′(θ) for

any i′ 6= i. The reason is the independence of (εi, αi) from (εi′ , αi′), conditional on xi, and

that si(θ) is a measurable function of (εi, αi). Hence, since si is independent and identically

distributed with mean 0 and variance I(θ∗), we can use Lindeberg-Lévy central limit theorem

to obtain N−1/2
∑N

i=1 si(θ
∗) −→d N (0,I(θ∗)), where I(θ∗) = E[si(θ

∗)si(θ
∗)′] and

E[si(θ
∗)si(θ

∗)′] = E

[(
1

T

T−J∑
t=1

J∑
j=1

∂ ln f(yit, yi,t+j|xi; θ)
∂θ

)(
1

T

T−J∑
t=1

J∑
j=1

∂ ln f(yit, yi,t+j|xi; θ)
∂θ

)′]
.
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The variance I(θ∗) is finite if T−1
∑T−J

t=1

∑J
j=1 E

[
∂ ln f(yit,yi,t+j |xi;θ)

∂θ

∂ ln f(yit,yi,t+j |xi;θ)
∂θ′

]
is finite –

due to Cauchy-Schwarz inequality. The finiteness of the expected cross-product is shown in

the next subsection where the Hessian is analyzed.

The Hessian

In this subsection, we compute the Hessian of the composite likelihood function and show

that it is uniformly bounded. The Hessian h(θ|yi,xi) = ∂2`i(θ|yi,xi)/∂θ∂θ′ is found to be

h(θ|yi,xi) =

1

T

T−J∑
t=1

J∑
j=1

∂2 ln f(yit, yi,t+j|xi; θ)
∂θ∂θ′

=

1

T

T−J∑
t=1

J∑
j=1

S∑
s1=1

S∑
s2=1

1i,t,t+j,s1,s2

[
P
−1
i,t,t+j,s1,s2

∂2Pi,t,t+j,s1,s2
∂θ∂θ′

−P−2
i,t,t+j,s1,s2

∂Pi,t,t+j,s1,s2
∂θ

∂Pi,t,t+j,s1,s2
∂θ′

]
.

The following lemma shows the finiteness of the Hessian.

Lemma 2. The Hessian is uniformly bounded, i.e. E[supθ∈Θ

∣∣ ∂2

∂θ∂θ′
ln f(yit, yi,t+j|xi; θ)

∣∣] <∞.

Proof of Lemma 2. Let’s find a uniform upperbound for the generic term of the Hessian.

Suppressing the subscripts for i and t, and for a positive constant c, we have

sup
θ∈Θ

∣∣∣∣ 1

Ps1s2

∂2
Ps1s2

∂θ∂θ′
− 1

P2
s1s2

∂Ps1s2

∂θ

∂Ps1s2

∂θ′

∣∣∣∣
≤ c(1 + |xi|)

[
sup
θ∈Θ

∣∣∣∣ ∂2qs1
∂θ∂θ′

∣∣∣∣+ sup
θ∈Θ

∣∣∣∣ ∂2qs2
∂θ∂θ′

∣∣∣∣+ sup
θ∈Θ

∣∣∣∣∂2qs1−1

∂θ∂θ′

∣∣∣∣+ sup
θ∈Θ

∣∣∣∣∂2qs2−1

∂θ∂θ′

∣∣∣∣] (20)

+ c(1 + |xi|2)

[
sup
θ∈Θ

∣∣∣∣ ∂2rj
∂θ∂θ′

∣∣∣∣]+ c(1 + |xi|4)

[
sup
θ∈Θ

∣∣∣∣∂rj∂θ ∂rj∂θ′

∣∣∣∣] (21)

+ c(1 + |xi|2)

[
sup
θ∈Θ

∣∣∣∣∂qs1∂θ

∂qs1
∂θ′

∣∣∣∣+ · · ·+ sup
θ∈Θ

∣∣∣∣∂qs2−1

∂θ

∂qs2−1

∂θ′

∣∣∣∣] (22)

+ c(1 + |xi|3)

[
sup
θ∈Θ

∣∣∣∣∂qs1∂θ

∂rj
∂θ′

∣∣∣∣+ sup
θ∈Θ

∣∣∣∣∂qs2∂θ

∂rj
∂θ′

∣∣∣∣+ sup
θ∈Θ

∣∣∣∣∂qs1−1

∂θ

∂rj
∂θ′

∣∣∣∣+ sup
θ∈Θ

∣∣∣∣∂qs2−1

∂θ

∂rj
∂θ′

∣∣∣∣] (23)

The second order derivative terms in (20) are bounded by a linear function of |xi|; thus, (20)

is bounded by c1(1+ |xi|)2, for some constant c1 > 0. The derivatives of rj are bounded; thus,

(21) is bounded by c2(1 + |xi|4), for some constant c2 > 0. The cross derivative terms in (22)
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are bounded by a quadratic function of |xi|; thus, (22) is bounded by c3(1 + |xi|)4, for some

constant c3 > 0. Finally, the cross derivative terms with rj in (23) are bounded linearly by

|xi|; thus, (23) is bounded by c4(1 + |xi|)4, for some constant c4 > 0. The details of these

derivations can be found in sections B.1 and B.2, and in the supplementary material. As a

result, the Hessian term is uniformly bounded by the fourth moment of xi. For some C > 0,

E

[
sup
θ∈Θ

∣∣∣ ∂2

∂θ∂θ′
ln f(yit, yi,t+j|xi; θ)

∣∣∣]≤ S∑
s1

S∑
s2

∥∥∥∥∥sup
θ∈Θ

∣∣∣∣∣
∂2Ps1s2
∂θ∂θ′

Ps1s2

−
∂Ps1s2
∂θ

∂Ps1s2
∂θ′

P2
s1s2

∣∣∣∣∣
∥∥∥∥∥

1

≤ C
∥∥(1 + |xi|)4

∥∥
1
.

Hence, the Hessian is uniformly bounded by Assumption 3, i.e. ‖xi‖4 <∞.

Lemma 2 yields the uniform convergence of N−1
∑N

i=1 h(θ̃|yi,xi) for any consistent esti-

mator θ̃ such that 1/N
∑N

i=1 h(θ̃|yi,xi) −→p H(θ∗), where the Hessian matrix is H(θ∗) =

E[hi(θ
∗)|xi] = 1/T

∑T−J
t=1

∑J
j=1 E

[
∂2 ln f(yit,yi,t+j |xi;θ∗)

∂θ∂θ′

]
. We need H(θ∗) to be nonsingular. It

is usually hard to prove negative definiteness of the Hessian matrix in non-linear models.

However, with composite likelihood we can utilize its nice features that it borrows from

the full likelihood. Particularly, the Bartlett equality holds for each piece of the compos-

ite likelihood even though it does not hold, in general, for the composite likelihood itself.

Mathematically, E[∂`i(θ
∗)

∂θ
∂`i(θ

∗)
∂θ′

] 6= −E[∂
2`i(θ

∗)
∂θ∂θ′

], yet,

E

[
∂ ln f(yit, yi,t+j|xi; θ∗)

∂θ

∂ ln f(yit, yi,t+j|xi; θ∗)
∂θ′

]
= −E

[
∂2 ln f(yit, yi,t+j|xi; θ∗)

∂θ∂θ′

]
< 0.

Hence, H(θ∗) is invertible. Therefore, we can conclude that [1/N
∑N

i=1 h(θ̃|yi,xi)]−1 −→p

H(θ∗)−1, for any consistent estimator θ̃.

Consequently, by Slutsky’s Theorem, we conclude that

√
N(θ̂ − θ∗)=

[
1

N

N∑
i=1

hi(θ̃)

]−1

1√
N

N∑
i=1

si(θ
∗) −→d N

(
0,H(θ∗)−1I(θ∗)H(θ∗)−1

)
.
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B Mathematical Details

This section analyzes mathematical properties of functions of normal density and normal

cumulative distribution, especially the ones that are needed throughout the analysis in this

paper. First, the derivative of the bivariate standard normal distribution is

∂Φ2 (mt(θ),mt+j(θ) | r(θ))
∂θ

= m′t(θ)φ(mt(θ))Φ

(
−r(θ)mt(θ) +mt+j(θ)√

1− r(θ)2

)

+m′t+j(θ)φ(mt+j(θ))Φ

(
mt(θ)− r(θ)mt+j(θ)√

1− r(θ)2

)
+ r′(θ)φ2 (mt(θ),mt+j(θ)|r) . (24)

Further details of this derivation are given in the supplementary material.

B.1 Derivatives of Bivariate Probabilities

The subscripts (s1, s1−1) and (s2, s2−1) are always associated with t and t+j, respectively.

Hence, whenever it is clear, we drop the time subscripts t and t + j. First, let φs1,s2 ≡

φ2(qt,s1 , qt+j,s2|rj). Next, let ξ(r)s1,s2 ≡ (1 − r2
j )
−1/2(−rjqt,s1 + qt+j,s2), and ξs1,(r)s2 ≡ (1 −

r2
j )
−1/2(qt,s1 − rjqt+j,s2). The subscripts (r)s1 and (r)s2 indicate whether the term with t or

t + j is multiplied by −rj. The ξ(r)s1,s2 variable appears if the derivatives of the bivariate

probabilities are taken with respect to qs1 . Similarly, ξs1,(r)s2 variable appears if the derivatives

are taken with respect to qs2 . The first derivative of the bivariate probability with the newly

introduced notation is as follows.

∂Ps1s2

∂θ
=

∂qs1
∂θ
φs1

[
Φ(ζ(r)s1,s2)−Φ(ζ(r)s1,s2−1)

]
− ∂qs1−1

∂θ
φs1−1

[
Φ(ζ(r)s1−1,s2)−Φ(ζ(r)s1−1,s2−1)

]
+

∂qs2
∂θ
φs2

[
Φ(ζs1,(r)s2)−Φ(ζs1−1,(r)s2)

]
− ∂qs2−1

∂θ
φs2−1

[
Φ(ζs1,(r)s2−1)−Φ(ζs1−1,(r)s2−1)

]
+

∂rj
∂θ

[φs1,s2 + φs1−1,s2−1 − φs1−1,s2 − φs1,s2−1]
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The cross-product of the first derivative is as follows.

∂Ps1s2
∂θ

∂Ps1s2
∂θ′

=
∂rj
∂θ

∂rj
∂θ′

[φs1,s2 + φs1−1,s2−1 − φs1−1,s2 − φs1,s2−1]2 +

∂qs1
∂θ

∂qs1
∂θ′

φ2
s1

[
Φ(ζ(r)s1,s2)−Φ(ζ(r)s1,s2−1)

]2
+

∂qs1−1

∂θ

∂qs1−1

∂θ′
φ2
s1−1

[
Φ(ζ(r)s1−1,s2)−Φ(ζ(r)s1−1,s2−1)

]2
+

∂qs2
∂θ

∂qs2
∂θ′

φ2
s2

[
Φ(ζs1,(r)s2)−Φ(ζs1−1,(r)s2)

]2
+

∂qs2−1

∂θ

∂qs2−1

∂θ′
φ2
s2−1

[
Φ(ζs1,(r)s2−1)−Φ(ζs1−1,(r)s2−1)

]2
+[

∂qs1
∂θ

∂qs2
∂θ′

+
∂qs2
∂θ

∂qs1
∂θ′

]
φs1φs2

[
Φ(ζ(r)s1,s2)−Φ(ζ(r)s1,s2−1)

] [
Φ(ζs1,(r)s2)−Φ(ζs1−1,(r)s2)

]
+[

∂qs1−1

∂θ

∂qs2−1

∂θ′
+
∂qs2−1

∂θ

∂qs1−1

∂θ′

]
× φs1−1φs2−1

[
Φ(ζ(r)s1−1,s2)−Φ(ζ(r)s1−1,s2−1)

] [
Φ(ζs1,(r)s2−1)−Φ(ζs1−1,(r)s2−1)

]
−[

∂qs1−1

∂θ

∂qs2
∂θ′

+
∂qs2
∂θ

∂qs1−1

∂θ′

]
× φs1−1φs2

[
Φ(ζ(r)s1−1,s2)−Φ(ζ(r)s1−1,s2−1)

] [
Φ(ζs1,(r)s2)−Φ(ζs1−1,(r)s2)

]
−[

∂qs1
∂θ

∂qs2−1

∂θ′
+
∂qs2−1

∂θ

∂qs1
∂θ′

]
× φs1φs2−1

[
Φ(ζ(r)s1,s2)−Φ(ζ(r)s1,s2−1)

] [
Φ(ζs1,(r)s2−1)−Φ(ζs1−1,(r)s2−1)

]
+[

∂qs1
∂θ

∂rj
∂θ′

+
∂rj
∂θ

∂qs1
∂θ′

]
× φs1

[
Φ(ζ(r)s1,s2)−Φ(ζ(r)s1,s2−1)

]
[φs1,s2 + φs1−1,s2−1 − φs1−1,s2 − φs1,s2−1]−[

∂qs1−1

∂θ

∂rj
∂θ′

+
∂rj
∂θ

∂qs1−1

∂θ′

]
× φs1−1

[
Φ(ζ(r)s1−1,s2)−Φ(ζ(r)s1−1,s2−1)

]
[φs1,s2 + φs1−1,s2−1 − φs1−1,s2 − φs1,s2−1] +[

∂qs2
∂θ

∂rj
∂θ′

+
∂rj
∂θ

∂qs2
∂θ′

]
× φs2

[
Φ(ζs1,(r)s2)−Φ(ζs1−1,(r)s2)

]
[φs1,s2 + φs1−1,s2−1 − φs1−1,s2 − φs1,s2−1]−[

∂qs2−1

∂θ

∂rj
∂θ′

+
∂rj
∂θ

∂qs2−1

∂θ′

]
× φs2−1

[
Φ(ζs1,(r)s2−1)−Φ(ζs1−1,(r)s2−1)

]
[φs1,s2 + φs1−1,s2−1 − φs1−1,s2 − φs1,s2−1]
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The second derivative of the bivariate probability is as follows.

∂2
Ps1s2

∂θ∂θ′

=
∂2qs1
∂θ∂θ′

φs1
[
Φ
(
ζ(r)s1,s2

)
−Φ

(
ζ(r)s1,s2−1

)]
− ∂2qs1−1

∂θ∂θ′
φs1−1

[
Φ
(
ζ(r)s1−1,s2

)
−Φ

(
ζ(r)s1−1,s2−1

)]
− ∂2qs2−1

∂θ∂θ′
φs2−1

[
Φ
(
ζs1,(r)s2−1

)
−Φ

(
ζs1−1,(r)s2−1

)]
+
∂2qs2
∂θ∂θ′

φs2
[
Φ
(
ζs1,(r)s2

)
−Φ

(
ζs1−1,(r)s2

)]
+

∂2rj
∂θ∂θ′

[φs1,s2 − φs1−1,s2 − φs1,s2−1 + φs1−1,s2−1]

− ∂qs1
∂θ

∂qs1
∂θ′

{
qs1φs1

[
Φ
(
ζ(r)s1,s2

)
−Φ

(
ζ(r)s1,s2−1

)]
+ rj [φs1,s2 − φs1,s2−1]

}
+
∂qs1−1

∂θ

∂qs1−1

∂θ′
{
qs1−1φs1−1

[
Φ
(
ζ(r)s1−1,s2

)
−Φ

(
ζ(r)s1−1,s2−1

)]
+ rj [φs1−1,s2 − φs1−1,s2−1]

}
+
∂qs2−1

∂θ

∂qs2−1

∂θ′
{
qs2−1φs2−1

[
Φ
(
ζs1,(r)s2−1

)
−Φ

(
ζs1−1,(r)s2−1

)]
+ rj [φs1,s2−1 − φs1−1,s2−1]

}
− ∂qs2

∂θ

∂qs2
∂θ′

{
qs2φs2

[
Φ
(
ζs1,(r)s2

)
−Φ

(
ζs1−1,(r)s2

)]
+ rj [φs1,s2 − φs1−1,s2 ]

}
+
∂rj
∂θ

∂rj
∂θ′

{
φs1,s2

[
rj

1− r2
j

+ ζ(r)s1,s2ζs1,(r)s2

]
+ φs1−1,s2−1

[
rj

1− r2
j

+ ζ(r)s1−1,s2−1ζs1−1,(r)s2−1

]
− φs1,s2−1

[
rj

1− r2
j

+ ζ(r)s1,s2−1ζs1,(r)s2−1

]
− φs1−1,s2

[
rj

1− r2
j

+ ζ(r)s1−1,s2ζs1−1,(r)s2

]}
+

(
∂qs1
∂θ

∂qs2
∂θ′

+
∂qs2
∂θ

∂qs1
∂θ′

)
φs1,s2 +

(
∂qs1−1

∂θ

∂qs2−1

∂θ′
+
∂qs2−1

∂θ

∂qs1−1

∂θ′

)
φs1−1,s2−1

−
(
∂qs1
∂θ

∂qs2−1

∂θ′
+
∂qs2−1

∂θ

∂qs1
∂θ′

)
φs1,s2−1 −

(
∂qs1−1

∂θ

∂qs2
∂θ′

+
∂qs2
∂θ

∂qs1−1

∂θ′

)
φs1−1,s2

−
(
∂qs1
∂θ

∂rj
∂θ′

+
∂rj
∂θ

∂qs1
∂θ′

)
1√

1− r2
j

[
ζs1,(r)s2φs1,s2 − ζs1,(r)s2−1φs1,s2−1

]
+

(
∂qs1−1

∂θ

∂rj
∂θ′

+
∂rj
∂θ

∂qs1−1

∂θ′

)
1√

1− r2
j

[
ζs1−1,(r)s2φs1−1,s2 − ζs1−1,(r)s2−1φs1−1,s2−1

]
+

(
∂qt,s2−1

∂θ

∂rj
∂θ′

+
∂rj
∂θ

∂qt,s2−1

∂θ′

)
1√

1− r2
j

[
ζ(r)s1,s2−1φs1,s2−1 − ζ(r)s1−1,s2−1φs1−1,s2−1

]
−
(
∂qt,s2
∂θ

∂rj
∂θ′

+
∂rj
∂θ

∂qt,s2
∂θ′

)
1√

1− r2
j

[
ζ(r)s1,s2φs1,s2 − ζ(r)s1−1,s2φs1−1,s2

]
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The Hessian term of the pairwise composite likelihood is as follows.

1

Ps1s2

∂2Ps1s2
∂θ∂θ′

− 1

P2
s1s2

∂Ps1s2
∂θ

∂Ps1s2
∂θ′

=
∂2rj
∂θ∂θ′

[φs1,s2 − φs1−1,s2 − φs1,s2−1 + φs1−1,s2−1]P−1s1s2+

∂2qs1
∂θ∂θ′

φs1
[
Φ
(
ζ(r)s1,s2

)
−Φ

(
ζ(r)s1,s2−1

)]
P
−1
s1s2 −

∂2qs1−1
∂θ∂θ′

φs1−1
[
Φ
(
ζ(r)s1−1,s2

)
−Φ

(
ζ(r)s1−1,s2−1

)]
P
−1
s1s2+

∂2qs2
∂θ∂θ′

φs2
[
Φ
(
ζs1,(r)s2

)
−Φ

(
ζs1−1,(r)s2

)]
P
−1
s1s2 −

∂2qs2−1
∂θ∂θ′

φs2−1
[
Φ
(
ζs1,(r)s2−1

)
−Φ

(
ζs1−1,(r)s2−1

)]
P
−1
s1s2−

∂qs1
∂θ

∂qs1
∂θ′

{
qs1φs1 [Φ(ζ(r)s1,s2)−Φ(ζ(r)s1,s2−1)]

Ps1s2
+

rj[φs1,s2−φs1,s2−1]
Ps1s2

+
φ2

s1
[Φ(ζ(r)s1,s2)−Φ(ζ(r)s1,s2−1)]

2

P2
s1s2

}
−

∂qs2
∂θ

∂qs2
∂θ′

{
qs2φs2 [Φ(ζs1,(r)s2)−Φ(ζs1−1,(r)s2)]

Ps1s2
+

rj[φs1,s2−φs1−1,s2 ]
Ps1s2

+
φ2

s2
[Φ(ζs1,(r)s2)−Φ(ζs1−1,(r)s2)]

2

P2
s1s2

}
+

∂qs1−1
∂θ

∂qs1−1
∂θ′

{
qs1−1φs1−1

[
Φ
(
ζ(r)s1−1,s2

)
−Φ

(
ζ(r)s1−1,s2−1

)]
P
−1
s1s2 + rj [φs1−1,s2 − φs1−1,s2−1]P−1s1s2

− φ2
s1−1

[
Φ
(
ζ(r)s1−1,s2

)
−Φ

(
ζ(r)s1−1,s2−1

)]2
P
−2
s1s2

}
+
∂qs2−1
∂θ

∂qs2−1
∂θ′

{
qs2−1φs2−1

[
Φ
(
ζs1,(r)s2−1

)
−Φ

(
ζs1−1,(r)s2−1

)]
P
−1
s1s2 + rj [φs1,s2−1 − φs1−1,s2−1]P−1s1s2 − φ

2
s2−1

[
Φ
(
ζs1,(r)s2−1

)
−Φ

(
ζs1−1,(r)s2−1

)]2
P
−2
s1s2

}
+

∂rj
∂θ

∂rj
∂θ′

P
−1
s1s2

{
− [φs1,s2 − φs1−1,s2 − φs1,s2−1 + φs1−1,s2−1]

2
P
−1
s1s2 + φs1−1,s2−1

[
rj

1−r2j
+ ζ(r)s1−1,s2−1ζs1−1,(r)s2−1

]
+φs1,s2

[
rj

1−r2j
+ ζ(r)s1,s2ζs1,(r)s2

]
− φs1,s2−1

[
rj

1−r2j
+ ζ(r)s1,s2−1ζs1,(r)s2−1

]
− φs1−1,s2

[
rj

1−r2j
+ ζ(r)s1−1,s2ζs1−1,(r)s2

]}
+[

∂qs1
∂θ

∂qs2
∂θ′

+
∂qs2
∂θ

∂qs1
∂θ′

]{φs1,s2
Ps1s2

−
φs1φs2

[
Φ
(
ζ(r)s1,s2

)
−Φ

(
ζ(r)s1,s2−1

)] [
Φ
(
ζs1,(r)s2

)
−Φ

(
ζs1−1,(r)s2

)]
P2
s1s2

}
+[

∂qs1−1
∂θ

∂qs2−1
∂θ′

+
∂qs2−1
∂θ

∂qs1−1
∂θ′

]{
φs1−1,s2−1P

−1
s1s2 − φs1−1φs2−1

[
Φ
(
ζ(r)s1−1,s2

)
−Φ

(
ζ(r)s1−1,s2−1

)]
×
[
Φ
(
ζs1,(r)s2−1

)
−Φ

(
ζs1−1,(r)s2−1

)]
P
−2
s1s2

}
−
[
∂qs1
∂θ

∂qs2−1
∂θ′

+
∂qs2−1
∂θ

∂qs1
∂θ′

]{
φs1,s2−1P

−1
s1s2 − φs1φs2−1

×
[
Φ
(
ζ(r)s1,s2

)
−Φ

(
ζ(r)s1,s2−1

)] [
Φ
(
ζs1,(r)s2−1

)
−Φ

(
ζs1−1,(r)s2−1

)]
P
−2
s1s2

}
−
[
∂qs1−1
∂θ

∂qs2
∂θ′

+
∂qs2
∂θ

∂qs1−1
∂θ′

]
{
φs1−1,s2P

−1
s1s2 − φs1−1φs2

[
Φ
(
ζ(r)s1−1,s2

)
−Φ

(
ζ(r)s1−1,s2−1

)] [
Φ
(
ζs1,(r)s2

)
−Φ

(
ζs1−1,(r)s2

)]
P
−2
s1s2

}
−[

∂qs1
∂θ

∂rj
∂θ′

+
∂rj
∂θ

∂qs1
∂θ′

]{ [
ζs1,(r)s2φs1,s2 − ζs1,(r)s2−1φs1,s2−1

]
(1− r2j )−1/2P−1s1s2

+ φs1
[
Φ
(
ζ(r)s1,s2

)
−Φ

(
ζ(r)s1,s2−1

)]
[φs1,s2 − φs1−1,s2 − φs1,s2−1 + φs1−1,s2−1]P−2s1s2

}
−[

∂qs2
∂θ

∂rj
∂θ′

+
∂rj
∂θ

∂qs2
∂θ′

]{ [
ζ(r)s1,s2φs1,s2 − ζ(r)s1−1,s2φs1−1,s2

]
(1− r2j )−1/2P−1s1s2

+ φs2
[
Φ
(
ζs1,(r)s2

)
−Φ

(
ζs1−1,(r)s2

)]
[φs1,s2 − φs1−1,s2 − φs1,s2−1 + φs1−1,s2−1]P−2s1s2

}
+[

∂qs1−1
∂θ

∂rj
∂θ′

+
∂rj
∂θ

∂qs1−1
∂θ′

]{ [
ζs1−1,(r)s2φs1−1,s2 − ζs1−1,(r)s2−1φs1−1,s2−1

]
(1− r2j )−1/2P−1s1s2

+ φs1−1
[
Φ
(
ζ(r)s1−1,s2

)
−Φ

(
ζ(r)s1−1,s2−1

)]
[φs1,s2 − φs1−1,s2 − φs1,s2−1 + φs1−1,s2−1]P−2s1s2

}
+[

∂qs2−1
∂θ

∂rj
∂θ′

+
∂rj
∂θ

∂qs2−1
∂θ′

]{ [
ζ(r)s1,s2−1φs1,s2−1 − ζ(r)s1−1,s2−1φs1−1,s2−1

]
(1− r2j )−1/2P−1s1s2

+ φs2−1
[
Φ
(
ζs1,(r)s2−1

)
−Φ

(
ζs1−1,(r)s2−1

)]
[φs1,s2 − φs1−1,s2 − φs1,s2−1 + φs1−1,s2−1]P−2s1s2

}
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B.2 Bounds on functions of qits(θ)

In this subsection, we analyze the upperbounds for functions of qits(θ), in particular the

bounds for qits, q
2
its, and q′its. First, remember that qits(θ) = τs− (µ+ γ′x̄i +

∑t
k=1 ρ

t−kβ′xik).

A uniform bound for qits(θ) can be calculated as

|qits(θ)|

= |τs − µ− γ′x̄i −
∑t

k=1 ρ
t−kβ′xik| ≤ τs + |µ|+ |γ||x̄i|+

∑t
k=1|ρ|

t−k|β||xik|

≤ τs + |µ|+
∑T

t=1

(
|ρ|T−t|β|+ |γ|

T

)
|xit| ≤ τs + |µ|+ max1≤t≤T |xit|

∑T
t=1

(
|ρ|T−k|β|+ |γ|

T

)
.

Hence, taking supremum over the compact parameter space Θ yields

sup
θ∈Θ
|qits(θ)| ≤ sup

θ∈Θ

{
τs + |µ|+ max

1≤t≤T
|xit|

∑T
t=1

(
|ρ|T−k|β|+ |γ|

T

)}
≤ cτ + µ̄+

(
cγ + cβ

1− ρ̄T

1− ρ̄

)
max

1≤t≤T
|xit|

≤ c (1 + |xi|) , (25)

where ρ̄, µ̄, cβ, cγ, cτ > 0 are upperbounds for their associated parameters, ρ̄ < 1, and c >

max{cτ + µ̄, cγ + cβ/(1− ρ̄)}. Let’s calculate a uniform bound for q2
its(θ).

q2
its(θ) =

(
τs − µ− γ′x̄i −

∑t
k=1 ρ

t−kβ′xik
)2 ≤

(
|τs − µ|+ |γ′x̄i −

∑t
k=1 ρ

t−kβ′xik|
)2

≤
(
|τs − µ|+ (|γ|+ |β|/(1− |ρ|)) max

1≤t≤T
|xit|

)2

This implies that supθ∈Θ q
2
its(θ) ≤ c2(1 + |xi|)2 where c is defined above. Next, let’s find the

first derivative of qits(θ) and then calculate a uniform bound for it.

∂qits(θ)

∂θ
=

(
∂qits(θ)

∂ρ
,
∂qits(θ)

∂µ
,
∂qits(θ)

∂β′
,
∂qits(θ)

∂γ′
,
∂qits(θ)

∂σ2
α

,
∂qits(θ)

∂τ ′

)′
=
(
−
∑t−1

k=1(t− k)ρt−1−kβ′xik, − 1, −
∑t

k=1 ρ
t−kx′ik, − x̄′i, 0, e′s−1

)′
,

where es = (0, . . . , 0, 1, 0, . . . , 0)′ is the basis vector where the 1 appears in the sth posi-

tion. Note that, in the derivative we have es−1 since τ = (τ2, . . . , τS−1). Based on the
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above derivations, we can conclude that supθ∈Θ|∂qits(θ)/∂θ| ≤ c1(1 + |xi|) for some con-

stant c1 > max{1, cβ/(1 − ρ̄)2, 1/(1 − ρ̄)}. The second derivative of qits(θ) contains all

zeros except for ∂2qits(θ)/∂ρ
2 = −

∑t−2
k=1(t − k)(t − k − 1)ρt−2−kβ′xik and ∂2qits(θ)/∂ρ∂β =

(∂2qits(θ)/∂β
′∂ρ)′ = −

∑t−1
k=1(t−k)ρt−1−kxik. Therefore, supθ∈Θ|∂2qits(θ)/∂θ∂θ

′| ≤ c2(1+|xi|)

for some constant c2 > max{1, 2/(1− ρ̄)3}. This is another difference between the static pro-

bit and autoregressive probit. In the former model where ρ = 0, we have ∂2qits(θ)/∂θ∂θ
′ = 0,

which facilitates the calculations tremendously and renders the full likelihood function to stay

concave.
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