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IAHAGEHEHT PERSPECTIVQ ’ 

Knowledge of water movements is a prerequisite to understanding 

water quality properties of large lakes. Aquatic biologists and 

chemist-s, ‘trained to deal with characteristic dimensions of a fish 

tank and accustomed to applying the .same methodologies to 

laboratories, ponds, small lakes and inland seas, are beginning to 

realize that a water sample at a given time and location in a large 

water basin must be compared with an earlier sample from the same 

water mass rather than the same location. State—of—the-art water 

quality models of large lakes incorporate water exchanges between 

individual compartments as a matter of course, in particular near the 

shores where wind—driven water displacements are often reminiscent of 

river flows. Increased concern with contaminant exchanges at the 

sediment-water interface has added a new dimension to the problem of 

water movements. It is- no longer sufficient to know the mass 

transport integrated over a water column but it has become necessary 

to evaluate the vertical structure of the flow and, especially, the 

current near the bottom. This problem is addressed in the present 

study. 

An earlier report by the same authors was devoted to the design 

of a hydrodynamical model suitable for modelling material transport in 

Lake St. Clair. Results of the model were compared with extensive 

current meter observations during 1985 as part of the 1985/87 

Canada—U.S. Upper Great Lakes Connecting Channel Study. The report



provides a very simple and economical procedure for computing water 

circulations in Lake St. Clair as required for many practical 

applications. However, a shortcoming of the model is its tendency to 

underestimate currents near the bottom. This property of the model is 

associated with assumptions concerning the vertical distribution of 

turbulent mixing which are mathematically convenient but physically 

unrealistic. The present report discusses two alternatives to remedy 

this problem. 

While the models described in this report are much more flexible 

and more easily adaptable to measured current profiles, these 

advantages are achieved at the expense of added computational effort. 

However, experiments with these models show that the increased effort 

is a small price to pay for the resulting benefits when dealing with 

practical situations involving the movement of water near the bottom 

of a lake. In addition, the continuing rapid development of 

electronic computers renders the question of computing time 

increasingly irrelevant.



ABSTRACT 

' Two modifications of the conventional steady—-state Ekman model 

with constant eddy viscosity and zero “bot-tom velocity are considered. 

In the first case the constant eddy viscosity is retained but the 

no-slip bottom condition is replaced by a quadratic relationship 

between bottom stress and current. In the second case the 

constant eddy viscosity is replaced by an arbitrary verticalprofile 

of eddy viscosity and high—resolution finite-difference methods are 

employed to solve the vertical Ekman problem. Both methods are 

applied to Lake St. Clair and the results are compared with current 

measurements made during 1985 and with results ‘from t-he basic model 

with constant eddy viscosity and zero bottom slip. It is shown that 

the modified models remedy the major shortcoming of the basic model 

which underestimates current speeds near the bottom.



PERSPECTIVE ADMINISTRATIVE 

I1 est essentiel de connaitre les déplacements des eaux pour 

comprendre les caractéristiques qualitatives des eaux des grands 

lacs. Les biologistes et les chimistes aquatiques,.habitués A mesurer 
leurs paramétres dans des bassins aux dimensions d'un aquarium et a 

appliquer les memes méthodes en laboratoire, dans les étangs, les 

petits lacs et les mers intérieures, commencent a se rendre compte 
qu'un échantillon d'eau préievé a un nmment donné dans un endroit 
donné dans un grand bassin hydrogrpahique doit étre comparé A un 
échantillon angérieur provenant de la meme masse d'eau p1ut6t que du 
mme endroit. Les modéles les plus récents de la qualité de l'eau des 
grands lacs tiennent compte des echanges d'eau entre les compartiments 
individuels, et notamment pres des berges ofi les déplacements d'eau 
provoqués par 1e vent ressemblent souvent A 1'écoulement en riviére. 
L'attention que 1'onporte de plus en plus aux échanges de contaminants 
a l'interface sédiments-eau a ajouté une nouvelle dimension au 
probléme du déplacement des eaux. I1 ne suffit plus aujour'hui de 

connaitre le transport de masse intégré dans une colonne d'eau; i1 est 
devenu nécessaire d'éva1uer la structure verticale de 1'écou1ement et, 

notamment, 1e courant pres du fond. C'est sur ce probleme que s'est 
penchée la présente étude. 

Un rapport antérieur des memes auteurs était consacré a la 

conception d'un modéle hydrodynamique qui convienne a la modélisation 
du transport des matériaux dans le lac Saint—C1aire. Les résultats



obtenus ont été compares aux observations exhaustives au courantometre 
effectuées en 1985 dans le cadre de 1'étude Canada—Etats—Unis sur les 

canaux reliant les Grands Lacs d'amont de 1985/1987. Le rapport donne 
-une méthode tres simple et tres économique répondant A de nombreuses 

applications pratiques pour calculer la circulation de 1'eau dans le 

lac Sainte—C1aire. Toutefois, une des lacunes du modele est de 

sourvent sous-estimer les courants pres du fond. Cette lacune découle 
des hypotheses concernant la distribution verticale’ du brassage 
turbulent, hypotheses concernant la distribution verticale du brassage 
turbulent, hypotheses qui sont commodes du point de vue mathématiques, 
mais qui ne correspondent pas A la réalité; Le présent rapport étudie 
deux options pour corriger ce probleme. 

Bien que les modeles décrits dans ce rapport soient beaucoup plus 
souples et beaucoup plus facilement adaptables A des profils de 
courants mesurés, ils exigent cependant un effort de calcul 
supplémentaire. Toutefois, les experiences effectuées montrent que 
cet effort vaut la peine compte tenu des avantages de ces modeles pour 
1'ana1yse de situations pratiques mettant en jeu des déplacementd 
d'eau pres du fond d'un lac. En outre, le développement rapide des 
ordinateurs électroniques rend 1e probleme du temps de calcul de plus 
en plus insignifiant.



RESUME 

Deux modifications do modéle classique de régime permanent 
d'Ekman avec coefficient de frottement intérieur constant et vitesse 
d'écou1ement de fond nulle sont envisagées. Dans le premier cas, 1e 

coefficient de frottement intérieur constant est retenu, mais les 

conditions de glissement de fond nul sont remplacées par un rapport 
quadratique entre la pression de fond et le courant de fond. Dans le 

second cas, le coefficient de frottement intérieur constant est 
remplacé par un profil vertical arbitraire de frottement intérieur et 
des méthodes aux différences finies A haute résolution sont utilisées 
pour résoudre le probléme vertical d'Ekman. Les deux méthodes sont 
appliquées au lac Sainte-Claire et les résultats sont comparés aux 
mesures de courant effectuées en 1985 ainsi qu'aux résultats d'un 
modéle de base avec coefficient de frottement intérieur constant et 

glissement de fond nul. I1 apparait que les modéles modifiés 
corrigent la principale lacune du modéle de base qui sous—estime les 
vitesses du courant de fond.
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The overall objective of this investigation is to model material 

transport and sediment-water exchanges in Lake St. Clair as part of 

the 1985/87 Canada-U.S Upper Great Lakes Connecting Channel Study. 

The specific objective addressed in this report is development of a 

hydrodynamic model suitable for simulating water movements in Lake 

St. Clair and verification of this model against extensive current 

meter observations carried out during 1985. In an earlier report on 

this subject (Simons and Schertzer, 1986), it was shown that the 

circulation in Lake St. Clair adjusts itself rapidly to changes in 

wind forcing and that within a few hours a quasi—steady balance is 

achieved between wind and currents. Since the time scales of 

pollutant transport problems are typically in the range of days to 

years, it was concluded that an appropriate circulation model should 

be based on the theory of three—dimensional steady—state currents 

induced by winds. The response of the lake to wind then consists of a 

gradual transition from one steady—state solution to the next; 

Conventional solutions for three-dimensional. distributions of 

steady—state currents in homogeneous water are based on Ekman theory 

with constant eddy viscosity and iero bottom velocityt This type of 

Ekman model was used in the earlier work cited above. While the model 

produced generally adequate simulations of observed currents, it was 

found that the current speeds near the bottom were severely
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underestimated. It was noted that this was to be expected from an 

Ekman model with a no-slip boundary condition at the bottom of the 

lake in conjunction with the constant eddy viscosity. The purpose of 

the present study is to remedy these shortcomings so as to obtain a 

more realistic vertical profile of the current near the bottom. The 

model results will then be compared with the available current 

vmeasurements following the same procedures used in the earlier study. 

It is known that the mathematically-simple Ekman model with 

constant eddy viscosity land zero bottom velocity is physically 

unrealistic. Near the bottom the eddy viscosity must decrease rapidly 

to a value close to zero and the Ekman layer changes into a 

logarithmic boundary layer. To deal with this problem, solutions have 

been proposed for various depth—dependent forms of the vertical eddy 

viscosity. A summary of earlier work may be found in Defant (1961) 

while some recent examples have been reported by Thomas (1975), Witten 

and Thomas (1976), Lai and Rao (1976) and Madsen (1977). An 

alternate procedure is to retain the constant eddy viscosity but 

replace the no—slip bottom condition ’by a more general statement 

relating bottom stress to_bottom velocity (Nomitsu and Takegami, 1934; 

Birchfield, 1967; Jelesnianski, 1967; Heaps, 1972). Both of these 

approaches to the Ekman problem will be considered. 

With regard to a more general bottom boundary condition, the 

simplest and most common procedure is to assume that the stress is 

parallel and linearly proportional to 'the velocity of the bottom



- 3 _ 

current. A shortcoming of this formulation is that the bottom stress 

is more_likely a quadratic function of the bottom current and, hence, 

if a linearized stress formula is used, the coefficient itself should 

vary with the bottom current. Since this current may vary over a wide 

range, one has to deal with a new model parameter which is essentially 

unknown. Thus, the Ekman solution with generalized bottom slip but 

linearized bottom, stress involves two adjustable parameters, the 

vertical eddy viscosity and the coefficient of the linearized stress 

fomulation. ' 

The physically more realistic formulation of bottom stress as a 

quadratic function of bottom current was used in the Ekman problem by 

Nomitsu and Takegami (1934). While this formulation requires some 

additional computational effort, it has the advantage that the value 

of the drag coefficient in a nonlinear stress law has been fairly well 

established. Consequently, this procedure does not introduce another 

unknown parameter into the Ekman problem and, for practical purposes, 

the only adjustable model parameter is the eddy viscosity. In view of 

this, it was decided to apply the model with nonlinear bottom stress 

to Lake St. Clair. 

with 

solutions 

vertical 

solutions 

dependent 

regard to vertical variations of eddy viscosity, most 

to be found in the literature were derived for specific 

profiles of eddy viscosity which permit analytical 

of the Ekman equations. Such solutions express the depth— 

current and the vertically-integrated-current.in terms of
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pressure gradient and surface wind. The advantage is that these 

functions, once derived, can be rapidly evaluated for given values of 

eddy viscosity and depth. The disadvantage is that the formulas are 

inflexible with regard to the vertical profile of eddy viscosity. The 

rapid developments in computer technology have greatly reduced the 

advantage of closed—form solutions. Thus, the vertical Ekman 

equations can now be solved by high-resolution finite-difference 

methods without adding greatly to the time required for solving the 

three—dimensional steady-state circulation problem. This technique 

allows for an arbitrary vertical profile of eddy viscosity and will 

also be applied to Lake St. Clair in this study. 

2. BOTTOM STRESS 

The usual procedure to solve the Ekman problem is to define the 

complex velocity 

w=u+iv (1) 

The steady-state equation of motion then becomes 

32w ._ - czw = - azw (2) 
3:2 g ' 

with
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1-0-i Zv '

> 

a 5 ______ A E ._. (3) 
_ 

A f 

where z is the vertical coordinate, v the constant kinematic eddy 

viscosity, f the Coriolis parameter, A the Ekman depth and wg the 

constant geostrophic current with components 

-1 8P 1 3P 
u = __.__ v = --- (4) 
g pf 8y g 

' 

pf 3x 

"The boundary conditions are 

3w 1 - 

v -—- = —§ at z = 0
, 

3‘ ° <5) 
w = wb at z = -h * 

where h is the depth and Ts vthe ,surface stress. In solving the 

Ekman problem, the pressure gradient (geostrophic current) and the 

surface stress are treated as known quantities. The solution is 

cO$h oz cosh qz 1 sinh q(h+z) 

cosh uh cosh qh p v q cosh qh 

where the bottom current, wb, still has to be determined. The 

solution (6) involves the same functions of the vertical coordinate as 

the conventional solution with zero bottom current. A review of these
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functions may be found in Simons (1980, p. 36). For convenience, the 

formulas have been copied in the Appendix (Eqs. (3.6)-(3.8)). 
. 

Q
. 

. The bottom stress is related to the bottom current by the 

quadratic relationship 

lg-= cD‘wb‘ wb» (7)
P 

The prQduct ¢D‘wb‘ may be identified with the slip parameter of solu- 

tions with linearized bottom stress. Vertical integration of the 

original equation (2) and substituting (7) results into

T 
cniwbiwb = — ifW + ifhwg + Bi (8) 

The vertically—integrated current, W, follows from (6) and the result 

may be substituted into (8) in order to get an equation for the bottom 

current as a function of the pressure gradient and the surface stress 

. vq sinh uh vq sinh uh 1 1 

wb[¢D§wb, + .__+_] = wg 
> 

+ S 
t 

<9) 
cosh qh cosh qh p cosh qh 

While this completes the formal solution of the Ekman problem, it 

remains to determine the pressure gradient or surface slope as a 

function of the horizontal coordinates for a basin subjected to wind 

forcing or affected by river flows. This is done by deriving the 

vorticity equation for the vertically-integrated current, W. The 

latter is found from (6) by substituting (8)
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w(1+ 6) = w [h(1+6) -_---1 - -i [1-+5 - <w> 
8 Q cosh ah fp cosh qh 

where 

vq Sinh qh 
6 5 V (11) 

For the basic solution with zero bottom current the bottom stress is 

non—zero and hence from (7) it follows that cD ‘vb 0+» such that (ll) 

gives 6+0. Thus, the solution (10) involves the same deDth—dependent 

coefficients as the basic solution. These coefficients may be found 

in Simons (1980, p. 37) and, in the same notation, (ll) 

becgmes 5=(A+iB)fh/ebuwbl. Again, the formulas have been reproduced 

in the Appendix (Eqs. (3.10)-3.l1))} 

The vorticity equation is readily obtained by solving (10) for 

the geostrophic current in terms of the vertica1ly—integrated current 

and the surface stress and cross—differentiating the two components of 

the geostrophic current (4). The result is, in form, identical to 

that for the conventional Ekman solution derived in Simons (1980, p. 

74) and copied in the Appendix (Eqs. (5.14)-(5.16)) but the 

coefficients of the equation involve the parameter (ll). (Note that 

the u-component of the current in the second of the two equations 

(5.14) in Simons (1980) has the wrong sign. This has been corrected 

in the equations 'reproduced in the Appendix.) The parameter (11) 

depends on the bottom velocity which can be found from (8) only after 

the vorticity equation has been solved for W and the geostrophic
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current has been determined from (10). Therefore, the solution must 

be obtained by iteration on the bottom current. This iteration can be 

readily combined with the iteration required for solving the vorticity 

equation on a computational grid. A simple procedure is to start by 

solving the vorticity equation for W as in the conventional case with 

zero bottom current (6=0). Then the geostrophic current follows from 

(10), the bottom current from (8) or (9) and the new value of 5 from 

(ll). The corrected vorticity equation is then solved and the whole 

process is repeated. All experiments with the model aPPlied to Lake 

St. Clair showed rapid convergence. 

As compared to the nwre common procedure of assuming that the 

stress is linearly proportional to the current at the bottom 

(Jelesnianski, 1967; Birchfield, 1967) it is seen that the only 

additional effort is to compute the bottom velocity ‘Wb‘ instead Of 

assigning an arbitrary value to the slip parameter CD,Wb‘§ This 18848 

to the iteration procedure outlined above. It is, however, important 

to realize that the iteration is required to determine the magnitude 

or speed of the bottom current rather than the current vector. The 

appropriate equation follows from (8) or (9) by multiplication by the 

complex conjugate equation, thus obtaining an equation in which |Wb‘ 

is the only unknown. Once this equation has been solved, the slip 

parameter is known and all equations are, in form, identical to those 

describing the Ekman problem with linear bottom slip.
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3. LRBIIRARY PROFILE OF EDDY VISCOSITY 

If the eddy viscosity is .a function of depth, the solution of 

equation’ (2) becomes rather complicated. For specific vertical 

variations of eddy viscosity, analytical solutions may be found in the 

literature. However, a solution which is completely flexible with 

regard ‘to the eddy viscosity profile can be obtained only by 

finite—difference methods. A suitable procedure will be presented 

here. It will be assumed that the eddy viscosity becomes small near 

the bottom such that a no-slip bottom boundary condition can be 

applied. 

Let the vertical water column of depth h be divided into N layers 

of depth Az=h/N. jLet the complex velocity defined in (1) be specified 

at the centre of each layer and the eddy viscosity, v, at the 

interfaces between the layers; Replacement of vertical derivatives by 

central differences then leads to the set of steady—state equations
x 

-v w 
_ 

+ (v_ + v + i,fAz_2) w - v w = ifAz2w' (12) n-1 n-1 n-1 n n n n+l g 

The subscripts of the eddy viscosity range from 0 at the free surface 

to N at the bottom of the water column but the general form of (12) is 

valid only for n between 2 and N—l. For n =1, application of the 

upper boundary condition replaces the first two terms of (12) by 

3W 1 
s _ _ s -Vowo "' Vow] _ “AZ (V i) “ ‘AZ 1 

32 0 p
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For n=N, the no—slip bottom boundary condition implies that 

wN+1+wN=O and hence the last term on the left of (12) is replaced 

by ’ 

""u"n+1 = "n"N (14) 

The result is a system of N equations for the layer velocities wn, 

n=l,2,...,N, which, in matrix notation, involves a tri—diagonal matrix 

of eddy viscosity values at various depths. This is a very common 

type of problem which can be solved rapidly by direct matrix 

inversion. ‘ 

Like the conventional Ekman solutions, the current will be a 

function of the pressure gradient and the surface stress. In order to 

establish these functional relationships, equations (12)-(14) must be 

solved twice, once for the gradient current and once for the wind 

drift. In each case the two components of the current and the 

vertically—integrated current are obtained and, by comparison with the 

conventional Ekman solutions (see Appendix), the coefficients involved 

are determined. 

The gradient current is computed for a unit geostrophic current 

wg#u°=l.O m/s and zero surface stress. Using the notation of the 

Appendix and defining q'=q/c, B'=3/c, this current may be written 

u v U V Y -= ‘1—o'(z) ._= B'(z) _=h (1-13) _*hA (15) U U U U o o o o
,
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and, hence, the numerical solution in this_case essentially determines 

the coefficients Q, 3, A, B. Similarly, the wind drift is computed 

for a unit wind stress 1s=1o=l.0 N/m2 and zero geostrophic current. 

With thfi nOtation of the APPéndi3 and defining y'=(y+g)6/c and 

e'=(e~y)6/c this solution may be written » 

u 'y'(z) v s'(z) u E v F-1 = = = . = . 

to hpf to hpf to pf to pf 

which determines the coefficients Y, g, E, F. Once the coefficients 

have been computed for all points of the horizontal grid, the solution 

of the vorticity equation proceeds in the same way as for the 

conventional Ekman solutions. 

4. PROPERTIES OF SOLUTIONS 

Results will be presented for the case.of constant eddy viscosity 

with nonlinear bottom stress and for the case of vertical variation of 

eddy viscosity with zero bottom slip. These results will be compared 

with those obtained for constant eddy viscosity and zero bottom 

current in the earlier study by Simons and Schertzer (1986). 

First, it is of interest to illustrate the general 

characteristics of the solutions, in particular the bottom stress and 

the current near the bottom. The water depth is assumed to be 5 m 

which is close to the average depth of Lake St. Clair. Examples will 

be presented of pressure-driven currents (such as the river-induced
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flow through Lake St. Clair) and wind—driven currents. In the latter 

case it is assumed that the wind drift is balanced by return flow such 
P.

' 

that the total transport vanishes. This is the type of circulation 

encountered in a closed channel with constant depth. For nonlinear 

bottom stress, the return flow or geostrophic current follows from 

equation (10) for W=O. Since the solution depends on the bottom 

current which, in turn, depends on the geostrophic current by equation 

(8), iteration is required. As such, the method of solution is the 

same as for the two—dimensional model of Lake St. Clair. 

In the case of constant eddy viscosity and nonlinear bottom 

stress, solutions will be compared for a drag coefficient, cD, 

ranging from 10's to 1O‘2 and for zero bottom current. The latter is 

equivalent to cD+w since the bottom stress (7) must be nonzero. In 

the case of variably eddy viscosity, numerical solutions are obtained 

by dividing the water column into 50 layers of depth 0.1 m each. The 

eddy viscosity selected for illustration has a linear profile with a 

bottom value equal to 10 percent of the surface value. The magnitude 

of the eddy viscosity in this case will be identified by the value at 

the free surface. Thus, for a given value, the vertical-mean eddy 

viscosity is about half as large as a vertically-uniform eddy 

viscosity with the same numerical value. 

Figures 1 and 2 present results for pressure-driven currents. 

Figure 1 shows the bottom stress as a function of the geostrophic 

current and the eddy viscosity. Figure 2 shows the current at 1 m 
above the bottom 'in relation to the vertical mean current. The
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current at l m above the bottom has been selected 1n view of the 

measurements at that level carried out in Lake St. Clair during 1985. 

In all illustrations, the curves labelled vb=0 rePTe$9"t the 

conventional Ekman solution with constant eddy viscosity and zero 

bottom slip. As expected, the bottom stress reaches a maximum under 

these conditions. Since the vertical-mean value of the linear eddy 

viscosity is about one half of its surface value, the bottom stress 

for that case is comparable to one half of the bottom stress for 

constant eddy viscosity and no slip. As for the current at 1 m above 

the bottom, its amplitude is at least 80% of the vertical—mean current 

as_ compared to nless than 60% for the conventional solution. The 

variation of current direction with depth is reduced considerably and 

hence the vertical profile of the current is much more uniform. 

Figures 3 and 4 present results for wind-driven currents with 

total transport equal to zero. The nonlinear bottom stress decreases 

for increasing values of the eddy viscosity in contrast to the 

conventional case where the bottom stress approaches a value equal to 

50 percent of the wind stress. Since the wind-induced water setup 

equals the net effect of surface and bottom stress, the setup is 

reduced substantially. The current at 1 m above the bottom is part of 
the return flow and therefore its speed increases by reduced bottom 

friction. . 

The properties of the solutions may be illustrated-by considering 

small values of uqzhzu = hzf/v, i.e. shallow water or large eddy vise 

cosity. Taking this limit of the general equation(10) one obtains
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fh h 1 1 V 
'5(l+i ___i) =_ [1 (._ + e) -hVp (_ + e)] e‘ E______. (17) 
-. ¢ W OV _ g 0| bi 

S 2 3 A hcDIwbi 

where Vp is the pressure gradient and 37 the vertical-mean current. 

Except for the second term on the left, this equation is the same as 

the solution for the case of no rota_tion. Since this term is 

independent of_ eddy viscosity, the present solution for large eddy 

viscosity does not become equivalent to the no=rotation solution and 

hence, in this regard, it differs from the conventional solution with 

zero slip. Similarly, equation (8) for the bottom current 

_ Is 11 

_¢D‘wb'wb + ifhw = p_ — F VP (18) 

differs from the no-»-rotation case by the second term on the left. For 

the case of no bottom slip this term, by (17), i_s proportional to 

hzf/v and hence becomes negligible for small values of this 

parameter.- Again, this is not necessarily so when bottom slip is 

included. A 

The pressure gradient is a function of the wind stress and the 

vertical-mean current which, in general, is non-zero and must be 

determined from the vorticity equation as outlined under Eq. (11). 

For a closed channel with uniform depth, however, the vertical-mean 

flow must vanish and hence the pressure gradient depends only on the 

wind stress. This dependence involves the parameter g which, by (18), 

is a function of the pressure gradient itself. For large values of 

eddy viscosity the channel solution (-\;=0) obtained from (17) is
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1+1/ze 1 h¢D|wb] _

_ hVp=1'i-_~r (l+_v)=ts(1+-i) (19) 
; . 

- 

S 1+1/3e S 6e 6v i 

When (19) is substituted into (18) the bottom current and bottom 

stress become 

hr 1 cnhz It ‘T w §—i _s.'u—_____s_i (20) b 6vp p 
_ 

36v2p2 

In contrast to the case of no bottom slip where the bottom stress 

becomes one half of the wind stress for large eddy viscosity, the 

bottom stress decreases with increasing eddy viscosity in the present 

case. It also is proportional to the drag coefficient and the square 

of the wind stress. This explains the results of Figure 3. Note that 

corresponding relationships for a linear bottom stress formulation are 

obtained by replacing cD,wb‘ by a constant slip parameter._ The equa- 

tion for the bottom current remains the same but the bottom stress 

becomes linearly dependent on wind stress and eddy viscosity. 

3. APPLICATTOK TO LAKE ST. CLAIR 

In the report by Simons and Schertzer (1986) 8 conventional Ekman 

model with constant eddy viscosity and no bottom slip was applied to 

Lake St. Clair and the results were compared with current measurements 

1 m above the bottom carried out continuously between June 5 and 

November 5, 1985. The comparison concentrated on six current meters 

placed in_a SW-NE transect of the lake (stations C1-C6 in Figure 5)
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and the wind stress and currents were decomposed into components along 

the transect toward the NE (x-axis) and normal to the transect toward 

the NW (y-axis). Daily—averaged currents and winds were used and the 

model results were compared with an empirical model fitted to the 

measurements rather than with the measurements themselves. This 

condenses the comparison between data and model results into a few 

tables or diagrams. Two different comparisons were made. The first 

was based on the total transport of water through the transect Cl-C6; 

the second dealt with currents at individual mooring stations. 

For this study the vertically—integrated current was defined as 

the current at l m above the bottom multiplied by the depth. The 

corresponding water transport through the section was obtained by 

horizontal integration of the component normal to this section. The 

difference between this result and the true transport based on 

vertical—mean currents is a measure of the current profiles. Assuming 

linear dynamics the transport may be written 

T T 
v=v°+T’;v1+?%v2 (21) 

where V0 refers to the hydraulic flow and V1 and V2 to the transports 

induced by a unit wind stress To, in x- and y— direction, 

respectively. If 15 is the magnitude of the stress and 9 its 

direction clockwise from the x—axis, then the stress components are 

rx = rs cos 6 Ty = -rs sin e (22)
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Substitution of (22) into (21) gives 

_ . T A

g v = vo + .3 A sin (e + 11> A = (vii + v22>‘” tana = -vl/v, <22) To 

Given the series of daily-mean values of measured winds and water 

transports, the hydraulic and wind-driven components of the empirical 

model were determined by a least-squares fit. This was done for 

different classes of wind- mixing as measured by the daily 

root—mean—square value of the stress. The results were compared with 

numerical model results for different values of eddy viscosity in 

order to estimate a relationship between eddy viscosity and wind 

mixing. Like the measured transport, the computed transport was based 

on the current computed at 1 m above the bottom and, hence, should not 
be identified with the true water transport through the section. 

Table l compares the results from the empirical model with 

results of the conventional Ekman model with constant eddy viscosity 
and no slip and the two models presented in this report. As discussed 

by Simons_ and Schertzer (1986) the results suggest that. the eddy 
viscosity in the conventional Ekman model should increase with wind 
mixing" in approximately linear fashion. If the constant eddy 
viscosity is replaced by a linear variation of eddy viscosity with a 

bottom value equal to 10 percent of the surface value, the results are 

nearly the same if the eddy viscosity at the surface is about three 
times as large as the constant eddy viscosity. If the no-slip 
condition is replaced by a nonlinear bottom stress formulation with
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cD=.0l, the value of the eddy viscosity must be increased again to 

offset the reduction in bottom stress (see Figs. 1 and 3). Since the
? 

latter model is nonlinear, the solution is not exactly a linear 

function of the wind stress as shown at the bottom of Table 1. 

The linear model fitted to currents at individual »mooring 

stations Cl-C6 has the form 

u uo T ul u2 
_ 

1 /To 
< V > = < V0 > + < v1,v2> < T:,T0 > <24) 

wheres the subscripts have the same meaning as in (21). In the 

empirical model, the elements of the hydraulic flow and the 

wind-response matrix were determined again by a leastvsquares fit to 

the measured currents. The numerical model results were obtained by 

forcing the model by river flows and wind stress components along 

(xx) and normal (Ty) to the transect. The empirical results were 

obtained for different classes of the daily root-mean-square value of 

the wind stress; the hydrodynamic results were obtained for different 

values of eddy viscosity. The relationship between eddy viscosity and 

wind mixing follows then by matching the speeds and directions of the 

elementary currents (uO,v°), (u1,v1), (u2,v2) as obtained from the 

empirical and the numerical model, respectively. For a graphical 

comparison of the directions the reader is referred to Simons and 

Schertaer (1986). For the two models discussed in the present report, 

the results are similar but the analysis will concentrate on .the 

current speeds which permit a more quantitative comparison.
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K 
Table 2 compares the“speeds of the elementary currents averaged 

over the six stations C1-C6 at a level of l m above the bottom. The 

subscripts have the same meaning as in (21). The last column presents 

the average value of the current speeds induced by winds along and 

normal to the transect. It is seen that the speeds of wind—driven 

currents decrease with eddy viscosity in a similar way as with wind 

mixing and, hence, it follows that the vertical eddy viscosity is 

proportional to wind mixing. This is true for the modified Ekman 

models as well as for the basic model with constant eddy viscosity and 

without bottom slip. However, the numerical values of the eddy 

viscosity in the modified Ekman models must be increased to offset the 

reduction of bottom stress (see Figs. 1 and 3). 

In the report by Simons and Schertzer (1986) it was noted that 

the main shortcoming of the Ekman model with constant eddy viscosity 

and without bottom slip was its tendency to underestimate current 

speeds near _the bottom. In particular, the hydraulic currents 

computed by the numerical model were only half as large as those 

obtained. from the empirical model, As expected, this error is 

substantially reduced in the model with linear eddy viscosity and even 
more so in the model with bottom slip. Both of these modifications 

result in lower bottom drag (see Fig. 1) and a more uniform vertical 

profile of the current (see Fig. 2).
_ 

The model with-bottom slip is not exactly linear since the bottom 

stress is given by Eq. (7). The magnitude of the nonlinear effect is 

illustrated at the bottom of Table 2. Also, the hydraulic flow is not
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complete1y' uncoupled fronn the wind—driven flow. To evaluate this 

effect, calculations were made with a model forced by rivers and winds 

simultaneously, whereupon the hydraulic flow was subtracted to arrive 

at the wind-induced portion of the flow. These results differed by 

less than 10 percent from those presented in Table 2. Aside from the 

nonlinear effects, the model with bottom slip differs from those 

without slip in that the current speeds decrease much slower with 

increasing eddy viscosity. This may be explained by Eq. (l7) which 

shows that the currents are inversely proportional to v for the case 

Qf zero slip (¢D'Wb‘+m) but become independent of v for large values 

of the parameter e. 

Another aspect of the solutions which deserves attention is the 

net effect of the bottom stress on the pressure gradient, i.e., the 

wind-induced water setup. For this purpose, model results were 

analyzed for a wind stress of 10'1 N/m2 normal to the transect C1-C6. 

Since the mean depth of this transect is only 5.2 m the approximate 
equations (17) and (18) are valid for constant eddy viscosity with or 

without bottom slip. The solution for zero bottom slip has been 

discussed by Simons (1980, p. 76). In that case the setup HVP/Ts 

normal to the transect with mean depth H is greater than unity which 

implies that the net bottom stress makes a positive contribution to 

the setup. For the present model with nonlinear bottom stress and 

cD=.0l, the setup Hvp/15 normal to the transect was found to vary 

from 1.00 for v=.00l6 m2/s to 0.93 for u=.O048 m2/s. Hence, the net 

contribution from the bottom stress to the setup is close to zero or 

negative.
A
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From the same analysis of model results with bottom slip it was 

found that for 1s=10'1 N/m2 and ¢D=.Ol the bottom velocity 

averaged over the transect varied from 4;4 to 3.6 cm/s forts varying 

from 16 to 48 X 10°“ m2/s. This variation is much less than the one 

obtained from Eq. (20) for zero vertical—mean flow which would vary 

from 5.4 to 1.8 cm/s. Thus, for increasing values of eddy viscosity 

the solution with bottom slip becomes relatively insensitive to eddy 

viscosity, as seen already in Table 2. 

As a final note it is interesting to compare the model with 

nonlinear bottom friction with a nwdel with linear bottom friction 

applied to Lake St. Clair by Ibrahim and McCorquodale (1985). These 

authors calibrated their model by fitting computed currents to 

measurements made under relatively low wind speed conditions 

(1&SQ.05 N/m2). Their estimate of eddy viscosity was 20 x 10'“ m2/5 

and the slip parameter equivalent to the product cD’wb‘ was given as 

0-3 v/H=l.2 x 10'“ m/s. The present model with cD=.01 and 1s=.05 N/m2 

gives typical bottom velocities of 2-3 cm/s for the same eddy 

viscosity which results in a slip parameter cD|wb‘ ~2.5xl0'* m/5, 

about twice as large as in the linear model. While this indicates a 

fair overall agreement between the two nmdels, it must be realized 

that the bottom velocity in the model with nonlinear stress varies 

with water depth and wind stress as seen, for example, from Eq. (20).
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Table 1 Hater transport across transect C1-C6 (Fig. 5) computed as 
IW component of current 1 m above the bottom multiplied by ‘ depth. Transport separated in hydraulic and wind‘-driven 
components as in Eq. (23) sith unit wind stress 1o=l0‘1 N/mz 
and angles clockfiise from IE.
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Thble 2 Current speeds l m above the bottom averaged over mooring 
stations-CIJCG (Fig. 5) for different values of wind mixing 
or eddy viscosity. Subscripts 0,1,2 refer to hydraulic flow ad currents indficed by wind stress along and normal to 
transect, respectively, as in Eq. (24) with ¢o€l0'l I/Q2. 
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FIGURE LEGENDS 

Figure 1 

Figure 2 

Figure 3 

Figure 4 

Figure 5 

Bottom stress in pressure—driven currents as a function of 

pressure gradient (above) and eddy viscosifY 8; the surface 

(below) for different models discussed in~the text. 

Velocity ratio (above) and difference of direction (below) 

between current 1 m above the bottom and vertica1—mean 

current as a function of eddy viscosity at the surface in 

nressure-driven flow for different models discussed in the 

text. " 

Bottom stress in wind—driven flow with zero net transport as 

a function of wind stress (above) and eddy viscosity at the 

surface (below) for different models discussed in the text. 

Velocity (above) and direction relative to wind direction 

(below) of current 1 m above the bottom as a function of 

eddy viscosity at the surface in wind-driven flow with Zero 

net transport for different models discussed in the text. 

Location of wind recorders, current meters and shore—based 

water level gauges in Lake St. Clair, June—November, 1985.
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A P PEN D I X 
Steady-State Ek-man Theory 

It will be convenient to introduce the following definitions. First, the character- 
istic depth of the problem is the "Ekrnan depth" 

AE (an 

where v is the kinematic vertical eddy viscosity. assumed to be constant. This depth 
is proportional to the "depth of frictional influence," as defined in Ekman‘s original 
studies, by a factor, -rr. The nondimensional water depth and vertical coordinate is

H 553, {E5 
This nondimensional depth is inversely proportional to ihe so-called “Ekman number," 
which is usually defined as 3'-’/H'-"and is a measure of the impo_rt,a_n,ce of the vertical 
friction term in equations of motion. Finally, the geostrophic current 

__l_ _d_ l 6p u,,- pf By. \,,-I-30-.‘ (3.3) 

which is obviously independent of depth under homogeneous. hydrostatic conditions. 
The steady-state equations of motion, under the above conditions, may be written 

- 
. . 6 . . v (%§+j\'=j\-,,, v 6711-114 = -ju,, ’ 

(3.-ll 

with boundary conditions, assuming no slip at the bottom, 

flu 1,. dr 1., u.—" =#.v.— =iat-=0 dz p dz p ‘ 

. 
. (3.5) u=r=Oat;=—H 

The solution is most readily obtained by defining the complex velocity, u + iv, and 
the result can be written 

or .6 I + "—
. ll = 

(I -:)|,l,, — I-_\',, + <'YT§7xJ + $7”) 
(3.6) 

' = -2 '- E I Y+5 'Y_C ‘ (I ‘.>\r,*(."-,*m <‘i_r,,,—fr,, 

where c is a nondirnension'al constant defined by 

115 ¢¢>§h(28) + cos(26) (37) 

and a, B, ‘y, a are nondimensional functions of the vertical coordinate given by 

viz) E ¢<>sh(5+() cos(6—() + cosh(5—() cos(5+§) 

I3.(:l E sinh(6+§) si,n(6+() + §inh(5-Q §iAn(5+;) 

(3.8) 
7(1) E 5i"h(25+{) €0§({) + sinh(§) cos(26+;) 

e(:) E ¢0§h(Z§+() sin(§l + coshtg) sin(26+;)
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t The vertically integrated transport is most easily obtained by determining first the 
\ertical derivative of the velocity at the bot'tor_n-, i.e. the bottom stress, and then using 
the vertically integrated fonns of the equations of fnotion (3.4). 

0 . 

U E Ind: = H[(l-B)u,, .- A»-,,] + plf[5,,,. + (1-F)1.,,]
H
0 

(3.10) 
V E Ivd; = u[<|-B», -+ Am] + ;:7[E¢.. —- u—F)¢._.»] 

-N
. 

where A, B, E, and F are nondinrnensional constants defined by 
sinh(26) - sin(28) _ sin_h(25_) -+ sin(‘26) A E 26v , B = 

(3.lll 
E5 2__s_inh<f_) sin(5)_ FEE 2 coshtij) §9§t§_) 

Thus, from (3.3) and (3.10)

a 5' = Pf(PV-QU) + R1,, + s1,, 
a__ (5.14) 

£ =-p/<Pu+ov> + an, - s¢,, 

where the depthydependent coefficients are defined 
i 

Q=»GiH..P=%,0eA=+(i-B)= 
_ 

($.15) R E Q5 + P(l-F). S E Q(l-F) — PE 
and where the coefficients A, B. E, and F have been defined by (3.11). Then, after 
cross-differentiation 

V~(QV‘Y) — J(P. W) = curl — div (5.16) 

The dependence of these coefficients on nondimensional depth, 8, is illustrated in 
Fig. 3.1.
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