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Knowledge of water movements is‘a prerequisite to understanding
_;ater qﬁality properties of large 1lakes. Aquatic biologists and
chemists, trained to deal with characteristic dimensions of a fish
tank and accustomed to applying the .same methodologies to
léboratories, ponds, small lakes and inland seas, are beginning to
realize that a water sample at a. given time and location in a large

' water basin must be compared with an earlier sample from the same
water mass rather than the same 1location. State-of-the-art water
quality models of large lakes incorporate water exchanges between
individual compartments as a matter of>course, in particular near the
shores where wind-driven water displaceménts are often reminiscent of
river flows. Increased concern with contaminant exchanges at the

’ sediment -water interface has added a new dimension to the problem of
water movements. It is . no longer sufficient to know tﬁe mass
transport integrated over a water columm but it has become necessary
to evaluate the vertical sfructure of the flow and, especially, the
current near the bottom. This problem is addressed in the present
study.
An earlier report by the same authors was devoted to the design
of a ﬁ&drodynamical'model suitable for modelling material transport in
Lake St. Clair. Results of the model'wefe’compared with extensive

current meter observations during 1985 as part of the 1985/87

Canada-U.S. Upper Great Lakes Connecting Channel Study. The report



provides a very simple and economical procedure for computing water
circulations in Lake St. Clair as required for many practical

applications. However, a shortcoming of the model is its tendency to

_-ﬁnderestimate currents near the bottom. This property of the model is

associated with assumptions concerning the vertical distribution of
turbulent mixing which are mathematically convenient but physically
unrealistic. The present report discusses two alternatives to remedy
this problem.

While the models described in this report are much more flexible
and more easily adaptable to measured current profiles, these
advantaées are échieved at the expense of added computational effort.
However, experiments with these models show that the increased effort
is a small price to pay for the resulting benefits when dealing with
practical situations involving the movement of water near the bottom
of a. lake. In addition,; the continuing rapid development of
electronic computers renders the question of computing time

increasingly irrelevant,



ABSTRACT

" Two modifications of the conventional steady-state Ekman model
‘with constant eddy viscoéity and zero bottom velocity are considered.
In the first case the constant eddy viscosity is retained but the
no-slip bottom condition is replaced by a quadratic relationship
between bottom stress and bottom current. In the second case the
constant eddy viscosity is replaced by an gfbitrary vertical profile
of eddy viscosity and high-resolution finite-difference methods are
employed to solve the vertical Ekman problem. Both méthods are
applied to Lake St. Clair and the results aré compared with current
measurements made during 1985 and with results from the basic model
with constant eddy viscosity and zero bottom slip. It is shown that
the modified models remedy the major shortcoming of the basic model

which underestimates current speeds near the bottom.



PERSPECTIVE ADMINISTRATIVE

I1 est essentiel de connaitre les déplacements des eaux pour
comprendre les caractéristiques qualitatives des edux des grands
lacs. Lés biclogistes et les chimistes aquatiques, habitués 3 mesurer
leurs paramétres dans des bassins aux dimensions d'un aquarium et 3
appliquer les .mémes méthodes en laboratoire, daﬁs les étangs, les
petits lacs et les mers'intérieures, commencent 3 se rendre compte
qu'un échantillon d'eau prélevé a un moment donné dans un endroit
donné dans un grand bassin hydrogrpahique doit &tre comparé a un
échantillon angérieur provenant de la méme masse d'eau plutét que du
mme endroit. Les modéles les plus récents de la qualité de l'eau des
grands lacs tiennent compte des echanges d'eau entre les compartiments
individuels, et notamment prés des berges ol les déplacements d'eau
prOVoqués par le vent ressemblent souvent & l'écoulement en riviéfe.
L'attention que l'onporte de plus en plus aux échanges de contaminants
a 1'iﬁterface sédiments-eau a ajouté une nouvelle dimension au
probléme du déplacement des eaux. I1 ne suffit plus aujour'hui de
connaitre le transport de masse intégré dans une éolonne d'eau; il est
devenu nécessaire d'évaluer la structure verticale de 1'écoulement e;,
notamment, le courant p;és du fond. C'est sur ce probléme que s'est
penchée la préseﬁte étude.

Un rapport antérieur des mémes auteurs é&tait consacré A la
conception d'un modéle hydrodynamique qui convienne 3 la modélisation

du transport des matériaux dans le lac Saint-Claire. Les résultats



obtenus ont été comparés au# observations exhaustives au courantométre
effectuées en 1985 dans le cadre de 1'étude Canada-Etats-Unis sur les
canaux reliant les Grands Lacs d'amont de 1985/1987. Le rapport donne
uné méthode trés simple et‘trés économique répondant 2 de nombreusés
-applications pratiques pour calculer la circulation de l'eau dans le
lac Sainte-Claire. Toutefois, une des lacunes du modéle est de
sourvent sous-estimer les courants prés du fond. Cette lacune découle
des hypothéses concernant ’la distribution verticale du brassage
turbulent, hypothéses concernant la distribution verticale du brassage
turbulent, hypothéses qui sont commodes du poiﬁt de vue mathématiques,
mais qui ne correspondentbpas a la ;éalité; Le présent rapport étudie
deux options pour corriger ce probléme.

Bien que les modéleé décrits dans ce rapport soient beaucoup plus
souples et beaucoup plus facilement ‘adaptables 2 des profils de
courants mesurés, ils exigent cependant un effoft de calcul
supplémentaire. Toutefois, les éxpériences effectuées montrent que
cet effort vaut la peine compte tenu des avantages de ces modéles pour
l'analyse &e situations pratiques mettant en jeu des déplacementd
d'eau prés du fond d'un lac. En outre, le développement rapide des
ordinateurs électroniques rend le probléme du temps de calcul de plus

en plus insignifiant.



RESUME

Deux modifications dP modéle classiéue de régime permanent
d'Ekman avec coefficient de frottement intérieur COhstant et vitesse
d'écoulement de fond nulle sont envisagées. Dans le premier cas, le
coefficient de frottement intérieur constant est retenu, mais les
conditions de glissement de fond nul sont remplacées par un rapport
quadratique entre 1la pression de fond et le courant de fond. Dans le
segond cas, le coefficient de frottement intérieur constant est
remplacé par un profil vertical arbitraire de frottement intérieur et
des méthodes aux différences finies a haute résolution sont utilisées
pour résoudre le probléme verticgl d'Ekman. Les deux méthodes sont
appliquées au lac Sainte-Claire et les résultats sont comparés aux
mesures de courant effectuées en 1985 ainsi qu'aux résultats d'un
modéle de base avec coefficient de frottement intérieur constant et
glissement de fond nul. I1 apparait que 1les médéles modifiés
corrigent la principale lacune du moddle de base qui sous-estime les

vitesses du courant de fond.
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1. INTRODUCTION

The overall objective of this investigation is to model material
transport and sediment-water exchanges in Lake St. Clair as part of
the 1985/87 Canada-U.S Upper Great Lakes Connecting Channel Study.

The specific objective addressed in this report is development of a

hydrodynamic model suitable for simulating water movements in Lake

St. Clair and verification of this model against extensive current
meter observations carried out during 1985. In an earlier report on
this subject (Simons and Schertzer, 1986), it was shown that the
circulation in Lake St. Clair adjusts itself rapidly to éhanges in
wind forcing and that within a few hours a quasi-steady balance is
achieved between wind and currents. Since the time scales of

pollutant transpvort problems are typically in the range of days to

years, it was concluded that an appropriate circulation model should

be based on the theory of three-dimensional steady-state ‘currents
induced by winds. The response of the lake to wind then consists of a
gradual transition from one steady-state solution to the next.
Conventional solutions for three-dimensional distributions of
steady-state currents in homogeneous water are based on Ekman theory
with constant eddy viscosity and zero bottom velocity. This type of
Ekmaﬁ model was used in the earlier work cited above. While the model

produced generally adequate simulations of observed currents, it was

found that the current speeds near the bottom were severely



-2 -

underestimated. It was noted that this was to be expected from an
Ekman model with a no-slip boundary condition at the bottom of the
lake in conjunction with the constant‘eddy viscosity. The purpose of
the present study is to remedy theSg shoftcomings ;o as to obtain a
more realistic vgrtical profile of the current near the bottom. The
model results will then be compared with the available current
measurements following the same procedures used in the earlier study.

it is kﬂown that the mathematically-simple Ekman model with
constant eddy viscosity and zero bottom velocity is physically
unrealistic. Near the bottom the eddy viscosity must decrease rapidly
to a value close to zero and the Ekman layer changes into a
'logarithmic boundary layer. To deal with this problem, solutions have
been proposed for various depth-dependent forms of the vertical eddy
viscosity. A summary of earlier work may be found in Defant (1961)
while some recent examples have been reported by Thomas (1975), Witten
and Thomas (1976), Lai and Rao (1976) and Madsen (1977). An
alternate procedure is to retain the constant eddy viscosity but
replace the no-slip bottom condition by a more ggneral st atement
relating bottom stress to bottom velocity (Nomitsu and Takegami, 1934;
Birchfield, 1967; Jelesnianski, 1967; Heéps, 1972). Both of these
approaches to the Ekman problem will be considered.

With regard to a more general bottom boundary condition, the
simplest and most common procedure is to assume that the stress is

parallel and linearly proportional to ‘the velocity of tﬁe' bottom
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current. A shortcoming of this formulation is that the bottom stress
16 more likely a quadratic function of the bottom current and{ hence,
if a linea;ized stress formula is used, the coefficient itself should
vary with the béttom current. Since this current may vary over a wide
range, one has to deal with a new model parameter which is essentially
unknown. Thus, the Ekman solution with generalized bottom slip but
linearized bottom stress invdlves two adjustable parameters, Vthe
vertical eddy viscosity and ghe coefficient of the linearized stress
formulation.

The physically more realistic formulation of bottom stress as a
quadratic function of bottom current was used in the Ekman problem by
Nomitsu and Takegami (1934). While this formulation requires some
additional computational effort, it has the advantage that the value
of the drag coefficienﬁ in a nonlinear stress law has been fairly well
established. Consequently, this procedure does not introduce another
unknowni parameter into the Ekman problem and, for practical purposes,
the only adjustable model parameter is the eddy viscosity. In view of
this, it was decided to apply the model with nonlinear bottom stregs
to Lake St. Clair.

With regard‘ to vertical variations of eddy viscosity, most
solutions to be fdund in the literature were derived for specific
vertical profiles of eddy viscosity which permit analytical
solutions of the Ekman equations. Such solutions express thé depth-

dependent current and the vertically-integrated current.in terms of
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pressure gradient and surface wind. The advantage 1is that these
functions, once derived, can be rapidly evaluatéed for given values of
;ddy viscosity and depth. The disadvantage is that the formulaslére
inflexible.with regard to the vertical profile of eddy viscosity. The
rapid developments in éomputer technology have greatly reduced the
advantage of closed-form solutions. Thus, the vertical Ekman
equations can now be solved by high-resolution finite-difference
methods without adding greatly to the time required for solving the
three~-dimensional steady-state circulation problem. This technique

allows for an arbitrary vertical profile of eddy viscosity and will

~also be applied to Lake St. Clair in this study.
2. ROKNLINEAR BOTTOM STRESS

The usual procedure to solve the Ekman problem is to define the

complex velocity
w=u +iv (1)
The steady-state equation of motion then becomes

- q%w = - 2w (2)

with



1 +13 2y C
a = A = —_ (3)
A f

where z is the vertical coordinate, v the constant kinematic eddy
viscosity, f the Coriolis parameter, A the Ekman depth and Vg the

constant geostrophic current with components

-1 3p 1 3p
u = vV o= (4)
g pf 3y g pf 3x

‘The boundary conditions are

w T
v— = 2 at z =0
9z
P (5)
w = wb at z = -h

where h is the depth and tg the surface stress. In solving the
Ekman prqblem, the pressure gradient (geostrophic current) and the

surface stress are treated as known quantities. The solution is

cosh qaz cosh az 1 sinh qg(h+z)
cosh agh g cosh gh p v a cosh gh
where the bottom current, w,, still has to be determined. The

solution (6) involves the same functions of the vertical coordinate as

the conventional solution with zero bottom current. A review of these
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functions may be found in Simons (1980, p. 36). For convenience, the
formulas have been copied in the Appendix (Eqs. (3.6)-(3.8)).
The bottom stress 1s related to the bottom current by the

quadratic relationship

Pacfulw 0

p

The product CD'wb‘ may be identified with the slip parameter of solu-
tions with linearized bottom stress. Vertical integration of the

. original equation (2) and substituting (7) results ‘into

T ..
- - 2 £ 3 s .
CD‘wb‘wb . ifw + 1fhwg + ;— (8)

The vertically-integrated current, W, follows from (6) and the result
may be substituted into (8) in order to get an equation for the bottom

currént as a function of the pressure gradient and the surface stress

: va sinh dh va sinh gh T 1
———] = + = 9
wb[cD‘wb’ + — ] Vo : _ (9)
cosh gh cosh ¢gh p cosh gh

While this completes the formal solution of the Ekman problem, it
remains to determine the pressure gradient or surface slopé as a
function of the horizontal coordinates for a basin subjected to wind
forcing or affected by river flows. This is done by deriving the
vorticity equation for the vertically-integrated current, W. The

latter is found from (6) by substituting (8)



< \sinh oh it ' 1
W(l+ §) = w [n(1+8) - ] - (14§ = —] (10)
g a cosh ah fo cosh gh

where

va sinh gh

(11)

. | J
cﬁ]vﬂ] cosh ogh

' For the basic solution with zero bottom current the bottom stress is
non-zero and ﬁence from (7) it follows that °p 'wb '+w such that (11)
gives §+0. Thus, the solution (10) involves the same denth-dependent
coefficients as the basic solution. These coefficients may be found
in Simons (1980, p. 37) and, in the same notation, (11)
Becomes 6=(A+iB)fh/cb'wb‘. Again, the formulas have been reproduced
in the Appendix (Eqs. (3.10)-3.11)).

The vorticity equation is readily obtained by solving (10) for
the geostrophic cufrent in terms of the'vqrtically—integrated current
and the surface stress and cross—d;ffereﬁtiating the two components of
‘the geostrophic current (4). The result is, in form, identical to
that for the conventional Ekman solution defived in Simons (1980, »p.
74) and copied in the Appendix (Egs. (5.14)-(5.16)) but the
coefficients of the equation involve the parameter (11). (Note that
the u-component of the current in the second of the two equations
(5.14) in Simons (1980) has the wrong sign. This has been corrected
in the equations reproduced in the Appendix.) The parameter (11)
'depends on the bottom velocity which can be found from (8) only after

~the vorticity equation has been solved for W and the geostrophic
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current has been determined from (10). Therefére, the solution must
be obtained by iteration on the bottom current. This iteration éan be
readily combined with the iteration required for solving the vorticity
equation oﬁ a comnﬁtational grid. A simple proced#re is to start by
solving'the vorticity equation for W as in the conventional case wi;h
zero bottom current (6=0). Then the géostfophic current follows from
(10), the bottom current from (8) or (9) and the new value of § from
(11). The cofrected vorticity equation is then solved and the whole
process is repeated. All experiments with the model applied to Lake
St. Clair showed rapid convergence.

As compared to the more common procedure of assuming that the
.stress is linearly proportional to the current at the bottom
(Jelesnianski, 1967; Birchfield, 1967) it is seen that the only
additional effort is to compute the bottom velocity ‘wb‘ instead of
assigning an arbitrary value to the slip parameter CD’Wb|} ?his leads
to the iteration procedure outlined above. It is, however, important
to realize that the iteration is required to determine the magnitude
or speed of the Boctom current rather than the current vector. The
appropriate equation follows from (8) or (9) by multiplication by the
complex conjugate equation, thus obtaining an equatiop in which |wb‘
is the only unknown. Once this equation has been solved, the slip

parameter 1is known and all equations are, in form, identical to those

describing the Ekman problem with linear bottom slip.
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3. ARBITRARY PROFILE OF EDDY VISCOSITY

If the eddy viscosity 1is .a function qf depth, the solution of
equation' (2) becomes rather complicated. For specific vertical
variations of eddf viscosity, analytical solitions may be found in the
literature. However, a solution which is completely flexible with
regard to the eddy viscesity profile can be obtained only by
finite-difference methods. A suitable procedure will be presentéd
here. It will be assumed that the eddy viscosity becomes small near
the bottom such that a no-slip bottom boundary condition can be
applied.

Let the vertical water column of depth h be divided into N layers
of depth Az=h/N. Let the complex velocity defined in (1) be specified
at the centre of each layerv and the eddy viscosit&, v, at the
interfaces betﬁeen the layers. Replacement of vertical derivatives by
central differences then leads to the set of steady-state equations

f

v _w (v 4y +ifar?) v -y w = ifaly (12)
n-1 n-l n=1 n n n  n+l g

The subscripts of the eddy viscosity range from O at the free surface

to N at the bottom of the water column but the general form of (12) is

valid only for n between 2 and N-1. For n =1, application of the

upper boundary condition replaces the first two terms of (12) by

ow T
—VgWg + VgWy = Az (v—) = -pz 5 (13)
9z 0 o)
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For n=N, the no-slip bottom boundary condition implies that

WN+]*WN=0 and hence the last term on the left of (12) is replaced

bv

-vaN+l = vaN o (14)

The result is a system of N equations for the layer velocities W
n=i,2,...,N, which, in matrix.notation, involves a tri-diagonal matrix
of eddy viscosity values at various depths. This is a very common
- type of problem which can be solved rapidly by direct matrix
inversion.

Like the conventional Ekman solutions, the current will be a
function of the preséure gradient and the surface stress. In order to
establish these functional relationships, equations (12)-(14) must be
solved twice, once for the gradient current and once for the wind
drift. In each case the two components of the current and the
vertically—integrated current are obtained and, by comparison with the
conventional Ekman solutions (see Appendix), the coefficients involved
are determiined.

The gradient current is computed for a unit geostrophic current
wg=uy=1.0 m/s and zero surface stress. Using the notation of the
Appendix and defining a'=a/c, B8'=g/c, this cutrent may be written

u v U v .
— = 1-q'(2) — = g'(2) — =h (1-B) — = hA (15)
ug ugy u, u,
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and, hence, the numerical solution in this case essentially deterfiines
;he‘coefficients o, B, A, B. Similarly, the wind drift is computed
" for a unit wind stress Ts=To=1'0 N/m2 and zero geostrophic current.
With the notation of the Appendix and defining vy'=(y+e)8/c and

e'=(e=y)8/c this solution may be written

u  y'(2) v e'(z) U E vV  F-l
—_ —_= —_— — T (16)
Tg hpf T, hpf 1, pf Ty of

which determines the coefficients y, e, E, F. Once the coefficients
have been computed for all points of the horizontal grid, the solution
of the wvorticity equation proceeds in the same way as for the

conventional Ekman solutions.
4, PROPERTIES OF SOLUTIONS

Results will be presented for the case of constant eddy viscosity
with nonlinear bottom stress and for the case of vertical variation of
eddy viscosity with zero bottomAslip. These results will be compared
with those obtained for constant edd§ viscosity and zero bottom
current in the earlier study by Simons and Schertzer (1986).

First, it is of interest to illustrate the general
characteristics of the solutions, in particular the bottom stress and
the current near the bottom. The water depth is assumed to be 5 m
which is close to thg average depth of Lake St. Clair. Examples will

be presented of pressure-driven currents (such as the river-induced
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flow through Lake St. Clair) and wind-driven currents. In the latter

_case it is assumed that the wind drift is balanced by return flow such

1

that fhe total transport vaﬁishes. This is the type of circulation
encountered in a closed channel with constant depth. For nonlinear
bottom stress, the return flow or geostrophic current follows from
equation (10) for W=0. Since thé solution depends on the bottom
current which, in turn, depends on the geostrophic current by equation
(8), iteration is required. As such, the method of solution is the
same as for the two-dimensional model of Lake St. Clair.

In the case of constant eddy viscosity and nonlinear bottom
stress, solutions will be compared for a drag coefficient, cps»
ranging from 103 to 102 and for zéro bottom current. The latter is
equivalent to cp+» since the bottom stress (7) must be nonzero. In
the case of variably eddy viscosity, numerical solutions are obtained
by dividing the water column into 50 layers of depth 0.1 m each. The
eddy viscosity selected for illustration has a linear profile with a
bottom value equal to 10 percent of thg surface value. The magnitude
of the eddy viscosity in this case will be identified by the value at
the free surface. Thus, for a given yalue, the vertical-mean eddy
viscosity is about half as large as a vertically-uniform eddy
viscosity with the same numerical value.

Figures 1 and 2 present results for pressure-driven currents.
Figure 1 shows the bottom stress as a function of the geostrophic
current and the eddy viscosity. Figure 2 shows the current at 1 m

above the bottom in relation to the vertical mean current, “The
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current at 1 m above the bottom has been selected in view of the
-measurements at that level carried out in Lake St. Clair during 1985.
In all illustrationé, the curves labelled w,=0 represent the
conventional Ekman solution with constant eddy viscosity and zero
bottom slip. As expected, the bottom stress reaches a maximum under
these conditions. Since the vertical-mean value of the linear eddy
viscosity is about one half of its surface value, the bottom stress
for that case is comparable to one half of the bottom stress for
constant eddy viscosity and no slip. As for the current at 1 m above
the bottom, its amplitude is at least 80% of the vertical-mean.current
as comparéd to less than 60% for the conventional solution. The
variation of current &irection with depth is reduced considerably and

hence the vertical profile of the current is much more uniform.
Figures 3 and 4 pfesent results for wind-driven cufreﬁts with
totdl transport equal to zero. The nonlinear bottom stress decreases
for. increasing values of the eddy viscosity in contrast to the
conventional case where the bottom stress approaches a value equal to
50 percent of the wind stress. Since the wind-induced water setup
equals the net effect of surface and bottom stress, the setup 1is
reduced substantially. The current at 1 m above the bottom 1s part of
the return flow and therefore its speed increases by reduced bottom

friction.

The properties of the solutions may be illustrated by considering
small values of lazhzl = h2f/y, i.e. shallow water or large eddy vis~

cosity. Taking this limit of the general equation(10) one obtains
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fh h 1 1
w(l+i ) = __ ['rs(._ +¢) hvp (L + e)] €= (17)
el v P2 3 - heplw|

where Vp is the pressure gradient and w the vertical-mean current.

Except for the second term on the left, this eéquation is the same as
the solution for i:he case of no rotation. Since this term 1is
independent of eddy viscosity, the .present solution for large eddy
viscosity does not become equivalent to the no=rotation solution and
hence, in this regard, it differs from the conventional solution with

zero slip. Similarly, equation (8) for the bottom current

- T, B
_ cD‘wb|wb + ifhw = = - 5 vp . (18)

differs from the no-rotation case by the second term on the left. For
the case of no bottom slip this term, by (17), is proportional to
h2f/v and hence becomes negligible for small values of this
parameter. Again, this is not necessarily so when bottom slip -is
included. |

The pressure gradient'is a function of the wind stress and the
vertical-mean current which, 1in general, 1is non-zero and must be
determined from the vorticity equation as outlined under Eq. (1.
For a closed channel with uﬁiform depth, however, the vertical-mean
flow must vanish and hence the pressure gradient depends only on the
wind stress. This dependence involves the parameter ¢ which, by (18),
is a function of the pressure gradient itself. For large values of

eddy viscosity the channel solution (w=0) obtained from (17) is
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1+1/2¢ 1 o’ ‘ _
th =1 — T (1 + —) = TS ( (19)
B § 141/3¢ ° 6¢ 6v

When (19) is substituted into (18) the bottom current and bottom

stress become

ht T th-2 |T 'r
Wbs—_s _s.-“______s_s (20)
6vp P 36v2p2

In contrast to the case of no bottom slip where the bottom stress
becomes one half of the wind stress for large eddy viscosipy, the
bottom stress decreases with increasing eddy viscosity in the present
case. It also is proportional to the drag coefficient and the square
of the wind stress. This explains the results of Figure 3. Note that
corresponding relationships for a linear bottom stress formulation are
obtained by replacing cD,wb‘ by a constant slip parameter.. The equa-
tion for the bottom current remains the same but the bottom stress

becomes linearly dependent on wind stress and eddy viscosity.
3. APPLICATION TO LAKE ST. CLAIR

In the report by Simons and Schertzer (1986) a conventional Ekman
model with ﬁbnstant.eddy viscosity and no bogtom'slip was applied to
Lake St. Clair and the results were compared with current measurements
1l m above the bottom carried out continuously between June 5 and

November 5, 1985. The comparison concentrated on six current meters

placed in a SW-NE transect of the lake (stations Cl1-C6 in Figure 5)
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and the wind stress and currents were decomposed into components along
;he.transect toward thé NE (x-axis) and normal to the transect toward
the NW (y-axis). Daily-averaged currents and winds WEfeIUSed and the
model results were compared with an empirical model fitted to the
: ﬁeasurements rather than with the measurements themselves. This
condenses the comparison between data and model results into a few
tables or diagrams. Two different comparisons were made. The first
was based on the total'transpbrt of water through the transect Cl1-C6;
the second dealt with currents at individual mooring stationms.

For this study the vertically-integrated current was defined as
the current at 1 m above fhe bottom multiplied by the depth. The
corresponding water transport through the section was obtained by
horizontal integration of the component normal to this section. The
difference between this result and the true transport ba#ed on

vertical-mean currents is a measure of the current profiles. Assuming

linear dynamics the transport may be written

T T
V=V, + T% v, + ?% v, (21)

where Vo refers to the hydraulic flow and V1 and V2 to the transports
induced by a wunit wind stress Tgr in x- and y- direction,
respectively. If tg 1s the magnitude of the stress and g its

direction clockwise from the x-axis, then the stress components are

T = T cos 0 Ty = -1, sin e | (22)



-17 -

Substitution of (22) into (21) gives

Vevo+SAasin (@+a) A= (v + )Y tang= v /v, (23)
To .

Given the series of daily-mean values of measured winds and water
transports, the hydraulic and wind-driven componentg of the empirical
model were determined by a least-squares fit, This was done for
different classes of wind' mixing as measured by the daily
root-mean-square value of the stress. The results were compared with
numerical model results for different values of eddy viscosity in
order to estimate a relationship between eddy viscosity and wiﬁd
mixing. Like the measured transport,_the computed transport was based
on the current computed at 1 m above the bottom and, hence, should not
be identified with the true water transport through the section.

Table 1 compares the results from the empirical model with
results of the conventional Ekman model with constant eddy viscosity
and no slip and the two models presented in this report. As .discussed
by Simons and Schertzer (1986) the results suggest that the eddy
viscosity in the conventional Ekman model should increase with wind
mixing in approximately linear fashion. If the constant eddy
~ viscosity is replééed by a linear variation of eddy viscosity with a
bottom value equal to 10 percent of the surface value, the results are
nearly the same if the eddy viscosity at the surface is about three
times as large as the constant eddy wviscosity, If the no-slip

condition is replaced by a nonlinear bottom stress formulation with
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cp=-01, the value of the eddy viscosity must be increased again to

.offset the reduction in bottom stress (see Figs. 1 and 3). Since the
i

latter model is nonlinear, rthé solution 1is not exactly a linear

function of the wind stress as shown at the bottom of Table 1.

The 1linear model fitted to currents at individual -mooring

stations Cl-C6 has the form

u u, uy u T/t
( ) = ( ) + ( ) ( ) (24)
v Vg vy vy Ty/ro
where the subscripts have the same meaning as in (21). In the

empirical model, the elements of the hydraulic flow and the
wind-response matrix were determined again by a least-squares fit to
the measured currents. The numerical model results were obtained by
forcing the model by river flows aﬁd Qind stress components along
(Tx) and normal (ty) to the transect. The empirical results were
obtained for different classes of the daily root-mean-square value of
the wind stress; the hydrodynamic results were obtained for different
values of eddy viscosity. The rélationship between eddy viscosity and
wind mixing follows then by matéhing the speeds and diréctions of the
elementary currents (ug,vg), (u;,vy), (u,,v,) as obtained from the
empirical and the numerical medel, res%ectively. For a graphical
comparison of the directions the reader is referred to Simons and
Schertzer (1986). For the two models discussed in the present report,
the results are similar but the analysis will concentrate on the

current speeds which permit a more quantitative comparison.
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ok
Table 2 compares tﬁe“5peeds of the elementary currents averaged

_over the six stations Cl-C6 at a level of 1 m above the bottom. The
subscripts_have the same meaning as in (21). The last column presents
the average wvalue of the current speeds induced by winds alohg and
normal to the transect. It is seen that the speeds of wind-driven
currents decrease with eddy viscosity in a similar way as with wind
nmixing and, hence, it follows that the vertical eddy viscosity is
proportional to wind mixing. This is true for the modified Ekman
models as well as for the basic model with constant eddy viscosity and
without bottom slip. However, the numerigal values of the eddy
viscosity in the modified Ekman models must be increased to offset the
reduction of bottom stress (see Figs. 1 and 3).

In the report by Simons and Schertzer (1986) it was noted that
thé main shortcoming of the.Ekman model with constant eddy viscosity
and without bottom slip was its tendency to underestimate current
speeds near the bottom. In' particular, the hydraulic currents
computed by the numerical model were only half as large as those
obtained from the empirical model. As expected, this error is
substantially reduced in the model with linear eddy viscosify and even
ﬁore so in the model with bottom slip. Both of these modifications
result in lower bottom drag (see Fig. 1) and a more uniform vertical
profile of the current (see Fig. 2).

The model with bottom slip is not exactly linear sincé the bottom
stress is given by Eq. (7). The magnitude of the nonlinear effeét is

illustrated at the bottom of Table 2. Also, the hydraulic flow is not
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completely uncoupled from the wind-driven flow. To evaluate this
_effect, calculations were made with a model forced by rivers and winds
simultaneously, whereupon the hydraulic fiow was subtracted to arrive
at the wind-induced portion of the flow. These results differed by
less than 10 percent from those presented in Table 2. Aside from the
nonlinear effects, the model with bottom slip differs from those
without slip in that the current speeds decrease much slower with
increasing eddy viscosity. This may be explained by Eq. (17) which
shows that the currents are inversely proportional to v for the case
of zefo slip (cplwb’+m) but become independent of y for large values
of the parameter ¢.

Another aspect of the solutions which deserves attention is the
net effect of the bottom stress on the pressure gradient, i.e., the
wind-induced water setup. For this purpose, model results were
analyzed for a wind stress of 10”1 N/m? normal to the transect C1-Cé.
Since the mean depth of this transect is only 5.2 m the approximate
equations (17) and (18) are valid for constant eddy viscosity with or
without bottom slip. The solution for zero bottom slip has been
discussed by Simons (1980, p. 76). In that case the setup HVp/7g
normal to the.transect with mean depth H is greater than unity which
implies that the net bottom stress makes a positive cohtribqtion to
the se;up. For the present model with nonlinear bottom stress and
cp=.01, the setup va/Ts normal to the transect was found to vary
from 1.00 for v=.0016 m2/s to 0.93 for v=.0048 m2/s. Hence, the nef
contribution from the bottom stress to the setup is close to zero or

negative.
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From the same analysis of model results with bottom slip it was
_50qnd that for 1-s=10'1 N/m2 and cp=.01 the bottom velocity

averaged over the transect varied from 4.4 to 3.6 cm/s fofrv varying
from 16 to 48 x io‘“ m2/s. This variation is much 1es§ than the one
obtained from Eq. (20) for zero vertical-mean flow which would vary
from 5.4 to 1.8 cm/s. Thus, for increasing values of eddy viscosity
the solution with bottom slip becomes relatively insensitive to eddy
viscosity; as seen already in Tabie 2.

As a final note it 1is interesting to coﬁpare the model with
nonlinear bottom friction with a model with linear bottom friction
applied to Lake St. Clair by Ibrahim and McCorquodale (1985)., These
authors calibrated their model by fitting computed currents to
measurements made under relatively low wind speed conditions
(15£0.05 N/m2). Their estimate of eddy viscosity‘was 20 x 107% p2/g
and the slip parameter equivalent to the product cD,wb| was giveﬁ as

0.3 v/H=1.2 x 10™" m/s. The present model with c¢_=.01 and T =. 05 N/m2

D
gives typical bottom velocities of 2-3 cm/s for the same eddy
viscosity which results in a slip parameter chwb' ©2.5%10™4 m/s,

about twice as large as in the linear model. While this indicates a
fair overall agreement between the two models, it must be realized

that the bottom velocity in the model with nonlinear stress varies

with water depth and wind stress as seen, for example, from Eq. (20).
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Table 1 Water transport across transect CI1-Cé (Fig. 5) computed as
EW component of current 1 m above the bottom multiplied by

depth. Transport separated in hydraulic and wind-driven
components as in Eq. (23) with unit wind stress o =101 N/m?2
and angles clockwise from NE.

-?“(lb427N]ﬁ2) h Transport (103 m3/s)

Empirical Model
o Class Mean V0 A o
T = daily rms of 1<4.5 2.8 -1.6 8.9 30
wind stress 4.5¢1<9.0 6.1 - .8 3.8 3
9.0<7 - 12.6 0 1.5 3

Hydrodynamic Models _y(10~% m%/s)

1. Constant v, no slip 4 - .4 11.2 26
8 - .1 6.2 13

16 .1 3.2 7

2. Linear v, v =10~ 1v , 8 - .2 15.3 31
no slip 16 .1 8.7 16

32 2 4.5 8

48 .3 3.0 5

3. Constant v, .= T, 8 0 9.7 19
slip with cp =%01 16 2 6.0 11

32 .3 3.5 6

48 .4 2.5 2

Same but T = 10/2 16 .2 6.6 12
S .




Table 2 Current speeds 1 m above the bottom averaged over mooring
stations-Cl1-C6 (Fig. 5) for different values of wind mixing
or eddy viscosity. Subscripts 0,1,2 refer to hydraulic flow
and currents indiced by wind stress along and normal to
transect, respectively, as in Eq. (24) with t0510‘l N/m2.

Empirical Model 7 (1072 N/m?) Current speed (cm/s)
Class Mean v v v va|¥]v
ol vl Vol nalsival
T = daily rms of 1<4.5 2.8 4.6 7.5 6.3 6.9
wind stress 4.5<1<9.0 - 6.1 4.8 4.9 3.6 4.2
9.0<{¢ 12.6 4.6 2.0 2.4 2.2
Hydrodynamic Models . v(10™* m?/s)
1. Constant v, no slip 4 2.6 8.9 7.4 8.1
' 8 2.4 4.8 4.0 4.4
16 2.2 2.4 2.1 2.2
2, Linear v, vb=vs/10, 8 3.7 12.9 12.2 12.5
no slip 16 3.4 7.1 6.8 6.9
32 3.2 3.7 3.5 3.6
48 3.2 2.5 2.3 2.4
3. Constant v, T =-ro 8 3.8 7.6 7.2 7.4
slip with c =201 16 4,0 5.0 5.2 5.1
32 4,1 3.4 4.1 3.7
48 4.3 2.9 3.7 3.3
Same but T, = 10/2 16 4.0 5.6 6.4 6.0




FIGURE LEGENDS

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Bottom stress i1n pressure-~driven currents as a function of
pressure gradient (above) and eddy viscosity at the surface

(below) for different models discussed in-the text.

Velocity ratio (above) and difference of direction (below)
bétween current 1 m above the bottom and vertiéal—mean
current as a function of eddy viscosity at the surface in
pressure-driven flow for different models discussed in the

text.

Bottom stress in wind—driven flow with zero net transport as

a function of wind stress (above) and eddy viscosity at the

“surface (below) for different models discussed in the text.

Velocity (above) and direction relative to wind direction
(below) of current 1 m above the bottom as a function of

eddy viscosity at the surface in wind-driven flow with zero

net transport for different models discussed in the text.

Location of wind recorders, current meters and shore-based

water level gauges in Lake St. Clair, June-November, 1985.
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APPENDIX
Steady-State Ekman Theory

It will be convenient to introduce the following definitions. First, the character-
istic depth of the probler is the “Ekivian depth™

A= /27" G.1)

where v is the kinematic vertical eddy viscosity, assumed to be constant. This depth
is proportionial to the “depth of frictional influence,” as defined in Ekman's original
studies, by a factor, 7. The nondimensional water depth and veriical coordinate is

H
&= Z' { = i 3.2
This nondimensional depth is inversely proportional to the so-called “Ekman number,”
which is usually defined as A*/H*’and is a measure of the importance of the vertical
friction term in equations of motion. Finally, the geostrophic current

1 dp . . _ 1 aép

U, = — =

of o ‘u—ﬁm (3.3)

which is obviously independent of depth under homogeneous. hydrostatic conditions.
The steady-state equations of motion, under the above conditions, may be written

v Shep=fy. v - =i, BNEXT

with boundary conditions, assuming no slip at the bottom,

dv _ 1.,
Vo= =7'atz=0

3.5

The solution is most readily obtained by defining the complex velocity, u + i, and
the result can be written

=(1-2), -8B, , 1 (v+e Y-«
(l “>u,, (""'+Apj' (T—T,,+ = Teir

(3.6
v o= (l - %) v, +‘§_u,, + KL—I <¥7,,, - %f“n,)
where ¢ i$ a nondimensional constant defined by
¢ = cosh(28) + cos(285) 3.7
and a, B, v, € are nondimensional functions of the vertical coordinate gi\ren by
a(z) = cosh(8+{) cos(5-{) + cosh(6-{) cos(5+7)
B) = sinh(8§+7) sin(8={) + sinh(8-{) sin(86+)
(3.8)

¥() = sinh(28+{) cos({) + sinh({) €os(28+ )

£() = cosh(28+) sin({) + cosh({) sin(28+)



The vertically integrated transport is most easily obtained by determining first the
vertical derivative of the velocity at the bottom, i.e. the bottom stress, and then using
the vertically integrated forms of the equations of motion (3.4).

0

U= fudz = H[(]—BM“ - Al‘,,] + PLf[ET" + (l’F)T.y] ‘
-H -
[

(3.10)
Vv = /v_dz = H[(l =By, + Au,,] + ;]7[57,., = (I—F)n;»]
~-H
where A, B, E, and F are nondimensional constants defined by

sinh(26) — sin(28) _ sinh(28) + sin(28)
A= 25 BET a5 —— ERIT
E= 2.8inh(d) sin(d) p_2 co,sh(iri) cos(8)
P

Thus, from (3.3) and (3.10)

F .
a—f: = pf/(PV-QU) + Rz,, + S7,,

a5 (5.149)
& =P/(PU+QV) + R, - §7,,
where the depth-dependent coefficients are defined
Q= »GAH;P = _!G—HB' G = A? + (1-By?
(5.15)

R=QE +P(-F), S=QI-F) - PE

and where the coefficients A, B, E, and F have been defined by (3.11). Then, after
cross-differentiation

. V) - = R_f‘ - di S_t‘ A
V«(QVY¥) - )P, ¥) = curl (‘i’f) dxv(pf) (5.16)

The dependence of these coefficients on nondimensional depth, 8, is illustrated in
" Fig. 3.1. 5
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