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L'élément d'espace, présentant généralement des aspects structurel et 
stochastique, joue un r6le important quant 5 la variabilité des mesures de 
la qualité de l'eau dans plusieurs genres d'études diverses. Il est tout 
aussi nécessaire de détecter l'hétérogénéité spatiale que d'estimer cet 
élément. Les objectifs d'une analyse de l'hétérogénéité spatiale peuvent 
se diviser en deux types généraux : l) la caractérisation de l'hétérogénéité 
soit par regroupement des zones, soit par l'expression d'une variable de la 
qualité de l'eau qui est fonction de la zone et 2) l'essai et l'estimation 
de l'hétérogénéité pour des zones bien définies. Dans le premier cas, la 
caractérisation est obtenue au moyen de méthodes graphiques et de méthodes 
de regroupement et d'analyse du comportement des surfaces, suivies d'une 
estimation 5 l'intérieur des divisions spatiales ou d'une estimation des 
fonctions. Dans le deuxiéme cas, il faut utiliser des méthodes comme 
l'analyse de la variance et des méthodes non paramétriques analogues qui 
donnent une idée de la zone. Le document traitera d'abord de la nature 
des ensembles de données et des objectifs de l'analyse, puis des méthodes 
statistiques. Il renfermera des exemples de l'analyse statistique des 
données sur la qualité de l'eau.



RESUME ADMINISTRATIF 

En analysant les données su? 1a qualité de 1'eau, on s'est penché 

davantage sur les méthodes statistiques pour déterminer les tendances 

temporelles p1ut6t que 1'hétér0généité spatiale. Cette derniére est tout 

aussi importante, méme 1orsqu'on se préoccupe surtout d'une certaine 
}

. 

tendance temporelle, car i1 ne faut pas confondre les facteqrs autres
I 

que 1e temps 5 1'effet temporel. Le présent document déeri; les méthodes 

qui conviennent pour analyser les données sur-la qualité de?1'eau, y 

compris ce11es qu'on utilise déji et ce11es qu'on aurait intérét 5 

utiliser. ’

\



EXECUTIVE SUMMARY 

In the analysis of water quality data, more attention has been 

given to statistical methods for the determination of time trends 

than for the determination of spatial heterogeneity., The latter is 

equally important, even when a time trend is of primary concern, since 

factors other than time must not be mixed up with the time effect. 

The present paper describes methods suitable for the analysis of water 

quality data, including methods already in use and methods which could 

be used to advantage.
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l. INTRODUCTION 
In water quality monitoring, it is difficult to think of a 

situation in which a decision does not have to be made about 
where to collect samples. Thus, at least potentially, all 
water quality measurements have a spatial component. In 
general, knowledge of how water quality parameters vary over 
the region of interest is necessary to the understanding of a 
system. It may be of primary interest, as, for example, in the 
study of the transport of a pollutant, or of secondary interest 
in that it may be necessary to remove the spatial component in 
order to detect changes over time. Dependent upon our state of 
knowledge, the analysis of water quality data for the spatial 
component can be placed under one of the following objectives: 
1) characterization of heterogeneity, or 2) testing for and 
estimation of a well—defined spatial component. In this paper, 
only the first objective will be considered. 

The nature of the data and the reasons for the analysis will 
determine the methods used for characterizing heterogeneity. 
Three broad classes of procedures are available: 1) grouping 
methods, 2) spatial autocorrelation methods and 3) methods 
which involve fitting a function for the relationship between a 
water quality parameter and location, with or without the 
assumption of independence. 

In the present paper, a general overview of methods suitable 
for water quality studies has been attempted. The topic is 
clearly too extensive to review here. Although the discussion 
has been limited to spatial variation, no suggestion that 
analysis for spatial and temporal variability are entirely 
separable is intended. Haugh (1984) suggests directions such



analyses might take for regularly spaced sample points based on 
extensions of the Box and Jenkins approach to time series 
analysis. 

It will be useful to consider an example in which spatial 
heterogeneity is important before discussing methodology, Such 
an example is the issue (Barica, 1982) of anoxic conditions in 

Lake Erie (for a brief review see Kwiatkowski, 1984). An 
objective of the 1978 Great Lakes Water Quality Agreement 
between Canada and the United States was the restoration of 

year round aerobic conditions in the bottom waters of the 

Central Basin of Lake Erie. The historic records of 
hypolimnetic dissolved oxygen have been examined for the 
existence of a time trend by several authors (Dobson and 
Gilbertson, 1971; Charlton, 1979; and Rosa and Burns, 1981). 
Data selection was considered essential by all three sets of 
authors (Anderson et al., 1984). Dobson and Gilbertson (1971) 
used dissolved oxygen concentrations from samples for which the 
temperature was within 3°C of the minimum. Charlton (1979) 
used only near—bottom values at stations that had a depth over 
15 m, were stratified and showed no evidence of incursion of 
Eastern Basin water. Burns and Rosa (1981) attempted to 

establish a representative, homogeneous area by calculating a 

depletion rate distribution map. Some of these criteria are 
clearly spatial considerations. Others are reasons why spatial 
variation would exist. This raises an additional point. 
Spatial heterogeneity can sometimes be associated with a 

supplementary measurement such as temperature. Inclusion of 
this additional variable in the model may make simplifying 
assumptions, such as independence of errors, tenable and permit 
the use of conventional statistical methods. a 

2. DATA SETS AND NOTATION 
Notation is given here (Table 1) for a data set collected 

over both space and time and containing a number of water 
quality parameters and descriptors of ,the location or water 
mass, which will be called supplementary observations in this 
paper. The primary use for the notation will be to show which 
dimensions of such a general data set can be or are normally 
handled by a particular method of analysis. The matrix of 
measurements on p water quality parameters at I stations at



TABLE 1 
Description of a general water quality data set. 
'—- —-A-»A—_-———r——-—-—————*»»—————— —~—-A4#———A— A77 ____A__4____i, _4 
Description Subscripts of Y Matrix Subscripts of 

of Rows X Hatrixa 
Sta— Depth Row Water Quality Parameter Supplementary 
tion Observation 

1 '2 ... p l 2 ... q 
;._._;_-44 ——#--AAA-V-'~A— -—---"A —"—-V444‘-A-~A 7» 7 7-;__eW'e_ 7-7 741 _____-_ :, 

1 l 1 1,1 1,2 ... l,p b 
2 2 2,1 2,2 ... 2,p 

H1 H1 nl 1 H1 2' loo T11 P 
2 1 n1+l n1:'1,1 1‘l1;l,2 on» 

2. Il1+2 l'l14,’2,l n1+Z,2 our H1'4'2,P 

0 0 0 I 0

- 

n2 n1+n2 nL+n2,l n1+n2,2 ... n1+n2,p 

I — +1 n-nI+1,l — n— +l,p 
M»- 

5:‘-1 :15- 

r-1»-4 + M :15 
:15- 

r-4»-I 

4- D-I U 
NI 

:-

H ~ n—nI+2,1 +2,2 ... n- +2,p5 
n-4 

n1 n n,1 n,2 n,p 

Vector notation, 
1e"8=‘-‘=11 2.1 

' Z2 Zp 3.1 5.2 5 q 
Vector notation, V 

~ = c 1°‘-'8“ I Z11 2.21 2.91 5.11.521---35 ql 
Vector natation, 
length=I 
derived variable £1 £2 . . ip 21 22 ... gq 

°Subscripts of matrix X take the same form as those of matrix Y, 

bAssumin§ the coordinates of the stations appear in columns 1 and 2 o the X matrix, the elements of a co umn denoted by 
unbroken vertical lines are equal since they correspond to the 
coordinate for the same station, 

°The second subscript indicates that_the vector includes only the elements corresponding to the first depth for each station. 

dAn example of a derived variable is some function of the values of the original variable for all depths sampled at a 
particular station.



time t is denoted by Y: e {yij}t and the matrig of q 
corresponding supplementary observations by Kt = {xgk];. 
The number of values for each parameter is n since samples are 
assumed to be collected at ni depths at the ith station and 

ll = fl. . 5 
'| 

i=1 ‘ 

The subscript t will be dropped to simplify the notation, but 
it is implicit. For ease of description, it will be assumed 
that the first two columns of X contain the coordinates of the 
station, and the third column the depth of the measurement. 

3. THE IMPORTANCE OF CHARACTERIZING SPATIAL HETEROGENEITY 
The idea, that, if sampling is being conducted over time and 

space, the variability in space should be accounted_for in the 
design of the sampling program and the analysis of the data, is 
so fundamental that it needs no elaboration. - Two of the 
objectives of statistical design and analysis which are 
achievable in environmental field studies are the increase in 
precision by removing as much as possible from the error term 
and the elimination of bias. An ignored spatial component 
could enter either as large variability or as bias. Although 
the examples given below are for other components, the comments 
are equally applicable to spatial variability. '- 

ln the first example the day to day variability was 
overlooked at the design stage. In studying spatial 
heterogeneity of phytoplankton, Platt et al. (1970) drew the 
conclusion that the between—station variance rose as sampling 
area increased to a density of ten stations per mile, then 
remained relatively constant. By identifying the points in 
their Figure 1 by date and replotting in the original variance 
units (Figure 1), one sees that estimates of between—station 
variance which were obtained on the same day are approiimately 
equal. The impression is obtained that the date of sampling is 
important in sorting out the reasons for different between- 
station variances. However, since variances based on markedly 
different distances between stations were obtained for one day 
only, the day—to*day variation in the between-station variances 
cannot be assessed. a
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Fig. 1 Plot of between-station variance and sample area as 

reported by Platt et al. (1970). flumbers give the 

day of sampling. 

An example of adjusting for a supplementary observation, by 

the inclusion of an additional term inia model of a time trend, 

is given by El—Shaaravi,(1984) in further Work related to the 

issue of Lake Erie anoxia, Water level was treated as a 

covariate in the analysis of oxygen depletion rates for the 

existence of a time trend. This provides a statistical 

solution to the problem of correcting for hypolimnion thickness 

which had been identified earlier by Charlton (1979) and Rosa 

and Burns (1981). 

h. GROUPING PROCEDURES 
In the present context, the common element to the procedures 

in this broad class is the division of a set of points in 

space, usually sampling stations, into two or more groups such 

that members in the same group are more similar to each other 

than to members in other groups with respect to one or more



water quality parameters. Included are geometrical and 
clustering methods, The geometrical methods consist of 
plotting points in low—dimensional Euclidean space so that 
points which are similar to one another occur close together. 
Clustering procedures use a mathematical criterion to partition 
the set of points into homogeneous groups. The two types of 
methods are complementary since the clustering procedures 
provide objectivity and the geometrical procedures display 
natural groupings (Gordon, 1981). To discover the structure in 
a data set, more than one procedure will often be needed. 

These procedures are widely used-in ecology and recognition 
of their importance is to be found in the book by Pielou 
(1984), which is devoted entirely to this topic," The geometric 
method, factor analysis, is most frequently used method in 
geology (Jbreskog et al., 1976). Books concerned more with the 
methods, than with applications in a particular discipline, 
include Anderberg (1973), Hartigan (1975), Gordon (1981) and 
Lebart et al. (1984). 

With a few exceptions, these procedures divide the data set 
into groups strictly on the vbasis of‘ the values of the 
parameters and no information about location is used in this 
categorization. The examination of the spatial distribution of 
the members of the groups is done after the categorization is 
complete, usually by plotting the groups on a map or other 
diagram which represents the location in space. Constrained 
clustering methods, which require members of a cluster to be 
spatially contiguous, are available for data on which a linear 
ordering has been imposed (e.g. transect or depth profile data) 
but other spatial arrangements are much more complicated. 
Constrained clustering methods have been applied to pollen 
percentages for sediment cores (Gordon, 1981). 

Grouping procedures are generally applied to the values of 
one or more water quality parameters or some combination of 
water quality parameters and supplementary observations at one 
sampling depth, or to derived values corresponding to a 
specified part of the water column. For example, the matrices 
Y = (Z11 121 ... Z91) or Z == (£1 £2 ... gp) might be used 
(Table 1). A simple example of a derived variable is the mean 
of the concentration for all depths sampled at a station.
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Clustering methods have been developed for the zonation of a 
lake into regions, homogeneous with respect to the level of one 
or more water quality parameters. A clustering method, which 
defines a homogeneous set of concentrations as one which can be 
fitted by a Poisson distribution, was applied to surface 
coliform concentrations at sampling stations on Lake Erie, 
cruise by cruise (E1-Shaarawi et al., 1981; and Esterby and 
El-Shaarawi, 1984). A spatial pattern which changed with 
season was found to be qualitatively consistent from year to 
year, whereas apparent biases from year to year made comparison 
of concentrations impossible. This is an example where a 
grouping procedure was a natural choice due to the discontinu- 
ous nature of the spatial regions of similar concentration. A 
second procedure, suitable for a larger class of water quality 
parameters, is based on a linear additive model for the station 
and cruise I components of data collected in one. year 
(El-Shaarawi and Shah, 1978). Allowance is made for non- 
orthogonality and the need to transform the data. Provided the 
station component is significantly different from zero, a 
criterion based on the change in the residual sum of squares is 
used to group stations. The procedure has been used mostly for 
a single water quality parameter (.e.g El—Shaarawi and 
Kwiatkowski, 1977) but the multivariate extension, was also 
given by El-Shaarawi and Shah. -

‘ 

Existing data on water quality parameters related to acid 
precipitation for sets of lakes in regions of Eastern Canada 
have been analyzed by grouping methods (El-Shaarawi et al., 
1985; and Haemmerli and Bobée, this volume) to determine 
subsets of similar lakes which can subsequently be used in the 
design of future data collections. El—Shaarawi et al. applied 
both a graphical method, in which the lakes were plotted on the 
first three principal components, and a k—means non—hierarchi— 
cal nearest-centroid clustering method to determine groups of 
lakes. Plots of the clusters in space, the percentage of 
variation explained by a given, number of clusters, and 
descriptions of the variables within clusters, by means of 
summary statistics, histograms and Q-Q plots, were used to 
select the number of clusters and to characterize the clusters.



Two ‘examples of the use of clustering methods which are 
considerably different from the above examples are the 
following. The first example is another analysis of dissolved 
oxygen concentrations in Lake Erie, the issue which was 
discussed in the introduction. Anderson et al. (1984) used a 
clustering method on three-dimensional spatial data, consisting 
of the temperature and the dissolved oxygen concentration of 
surface and bottom samples at each station, to divide these 
points into groups which were assumed to be either hypolimnetic 
or not hypolimnetic. El—Shaarawi et al. (1985) grouped 
stations on the Niagara River by applying a complete linkage 
clustering method to the standardized Euclidean distances 
between stations calculated separately from the ranks of 
chlorinated organic substances in water and in suspended 
sediments. Ranks were used as a means of dealing with values 
below the detection limit and, for each phase, the stations 
were ranked separately for each substance. 

5. SPATIAL AUTOCORRELATION METHODS 
If the value of a variable depends upon the values of the 

same variable at neighbouring locations, then spatial 
autocorrelation exists. The problem of determining whether 
autocorrelation exists is more difficult for spatial data than 
for a time series since dependence may extend in all directions 
for the spatial data but only into the past for the time 
series. The monograph by Cliff and 0rd (1973) provides a 
thorough treatment of the spatial autocorrelation measures 
which were introduced earlier by Moran and Geary. Although 
only examples from geography were used by Cliff and Ord, the 
methods are applicable to any fixed set of points in space. 

gLet yf = [y1, y2,...gyn] be the vector of values of a 
variable at m points in space, for example, y could be 11, X11 or £1 corresponding to the first water quality parameter of 
matrix Y (Table 1). Then the general forms of the Moran and 
Geary spatial autocorrelation coefficients are 

I = m w.. y. - 7 y. ~ Y /W y. — T 1 

.[ 
in 

< >i< 
> 

m 
< >2 <> i=1 5=1 ‘J 1 J 1 121 ‘ 

‘i¢_j 

and
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#5 

respectively, where 

Y = ( y.)/m and W é w.. . 
3' '5 '5' 

_ 
i=1 ‘ "i=1 j=l ‘J 

i¢3 

The spatial information enters only through the matrix of 
weights {wij}, The test for spatial autocorrelation is in 
the form of the test of the ”hypothesis of no spatial 
autocorrelation, that is a random distribution in space, 
against an alternative as specified by'the matrix {vii}. 

Jumars et al. (1977) first applied this method in the field 
of ecology. These authors recognized that the method uses the 
spatial information in the data, which is ignored in tests such 
as Fisher's index of dispersion, but is less restrictive than 
spectral analysis which requires intensive and regularly-spaced 
samples. The matrix {wij} requires the definition of which 
pairs are connected, in some sense, and either a measure of 
adjacency or of distance between pairs of connected localities 
(Sokal, 1979). When no a priori distance is available, a 
spatial correlogram, obtained using the unweighted autocorrela— 
tion coefficient, can be used to suggest the form. A more 
recent application and a list of other ecological applications 
are given by Mackas (1984). 

One of the applications of the above method is in the 
estimation of patch diameters. Spectral analysis has been used 
in ecology for this purpose. Two examples are Platt et al. 
(1970) and Lekan and Wilson (1978). In both cases, densely and 
regularly sampled transects with gradients of temperature and 
salinity were used and the objectives included inferences about 
patch size or length scale of phytoplankton. Platt et al. 
acknowledged that this method would underestimate patch size 
since the transect may not pass through the widest part of the 
patches. 

As far as the author can determine, the methods based on the 
Moran and Geary spatial autocorrelation coefficients have not 
been applied to water quality parameters other than chlorophyl



(Mackas, 1984), which is the same indicator of phytoplankton 
biomass used in the spectral analyses by Platt et al. (1978) 
and Lekan and Wilson (1978). The form of {wij} needs to be 
considered for each new application and for water quality 
parameters, the literature on ecological applications is more 
relevant than that on geographical applications. 

6. THE PARAMETER EXPRESSED AS A FUNCTION OF POSITION 
Methods of the previous section provide indirect inferences 

about the response surface. In this section, the methods are 
based upon an explicit relationship between a variable and its

» position. However, there is considerable overlap between the 
two sections since spatial autocorrelation is also considered 
here.

g 

As in the previous section, procedures are univariate. 
Consider again if ¥ [y1,yg,...,ym], the vector of values of a 
variable at m points in space which could be Z1, Z11 or £1 
(Table 1). lhe vector 1' gives values of either a water 
quality parameter or a variable derived from a water quality 
parameter, but the term parameter will be used only for 
parameters of a model in this section. Let £1 = (x11, 
xiz) or $1 = (xi1, xiz, xig) provide the location of 
the ith variate value in two- or three-dimensional space for i 
= 1,2,...,m. Then the value of the variable at the ith 
location, expressed as the sum of deterministic and random 
terms, is 

yi = r (5,) + u(x) (3) 

where X is a matrix of m rows given by the row vectors ii. 
If the value of the random term at location i does not depend 
upon the value at nearby locations,

_ 

yi = f(1i) + ei (4) 

where the ei's are uncorrelated. For f linear in the 
parameters, ordinary least squares can be used to fit the model 
in (4). In the more general form, (3), some assumption about 
stationarity is required. If the dispersion matrix is assumed



known, generalized least squares can be applied (Rao, 1965, 
p. 180). '

, 

Hand-drawn contour maps are often used to display spatial 
variability. To avoid the subjectivity of this procedure, 
geologists (among others) have adopted several procedures, 
based on well-known statistical methods which assume the 
variable can be expressed as a function of position, The 
procedure which consists of 1) fitting a polynomial regression 
model of the variable on the spatial coordinates, 2) using the 
regression model to estimate the mean value of the variable at 
grid points and 3) constructing contours of constant value 
using some numerical interpolation procedure is called trend 
surface analysis (Davis, 1973). A procedure, which accounts 
for spatial autocorrelation, known as kriging, was developed by 
French geomathematicians led by Matheron. A useful reference 
on this, method is the paper by Watson (1971), in which he 
relates the technique to the English language statistical 
literature and thus, in effect, defines the new terminology 
using standard statistical terms. In kriging, the observations 
are assumed correlated, and the correlation takes the form of a 
known parametric function called the variogram. Contours are 
constructed by predicting the value of the variable at 
unobserved points. Watson (1971) shows that this kriging 
estimator is the best-linear unbiased estimator (BLUE) for 
prediction of yp at an unobserved point p, and that it 
consists of the sum of the BLUE for the mean value, E(yP), at 
the unobserved point p and a term which accounts for the 
dependence on nearby values. Note that this distinction 
between estimating the mean value at an unobserved point and 
the value of an individual observation is analogous to what is 
done in regression (Draper and Smith, 1981, pp. 28-31). 
Equation (3) covers kriging under the "intrinsic hypothesis", 
i.e. stationarity of the mean, and universal kriging, i.e. the 
case with drift, (Delhomme, 1978) since f(£i) reduces to a 
constant in the first case. 

Delhomme (1978) states that an advantage to kriging is that 
it provides an estimate of precision which most techniques for 
contouring, including least squares, do not. As can be seen 
from the analogy with regression which was given above, this is 
not so. The method of ordinary least squares provides an



estimate of the precision, however, the method of trend surface 
analysis, as defined above, does not use this capability. 
El—Shaarawi and Esterby (1981) have shown how this can be done 
to construct contours of constant value, for either the mean or 
an individual observation, and to attach confidence bands to 
these contours. The method was applied to surface temperature 
data from Lake Erie, 

Whatever the assumption about the form of the autocorrela- 
tion, the difficulty is in estimation of the dispersion 
matrix. This requires estimation of the variogram in kriging 
(Delhomme, 1978) which is usually done by ad hoc procedures. 
Iterative procedures for regression with correlated errors are 
given by Cliff and Ord (1973) and Cook and Pocock (1983). 
Maximum likelihood methods of estimation are considered by Cook 
and Pocock (1983) and Mardia and Marshall (1984). 

Methods of testing for spatial autocorrelation in regression 
residuals are _given by Cliff and Ord (1973) and have been 
applied in paleoecology (Howe et al., 1984). Cliff and Ord 
(1973) stress the fact that detection of autocorrelation in the 
residuals may be due to one of the following: 1) an inadequate 
form for the relationship _between dependent and independent 
variables, such as using a linear model when curvature is 
present, 2) omission of one or more regressors and 3) the need 
for autocorrelation structure in the model. Clearly, in 1) and 
2), means of removing the autocorrelatiou from the residuals 
exist, which are simpler than the methods incorporating spatial 
autocorrelation. 

Data collected in space need not exhibit spatial autocorrel— 
ation for various reasons. It may not be detectable because 
distances between the points in space are larger than the 
distance within which dependence occurs. Cook and Pocock 
(1983) discuss aggregation to remove correlation. Analogously, 
both spacing and the use of means or medians over seasons have 
been suggested as methods of reducing serial correlation in the 
analysis of water quality data for temporal trends (van Belle 
and Hughes, 1984). The consequences of using ordinary least 
squares, when errors are correlated, are inefficient estimators 
of the regression parameters and a downwards biased estimator 
of the variance with the latter resulting in an overestimate of 
the significance of the regression (Cliff and Ord, 1973).



Methods in this section. also provide the capability of 
expressing the variabile as the sum of spatial components, 
temporal components and other explanatory variables such as 
temperature. An example of this, which encompasses many of the 
points discussed in this section, is the complicated model used 
by Eynon and Switzer (1983) 
rainfall pH. 

7. - DISCUSSION 

to construct contour maps of 

The many dimensions of water quality data sets make analysis 
difficult. Data 
to monitoring the 
necessarily too general t 

dimensions of the 
methods, which do 
to examine the structure 
complementary to the univari 
spatial location, The analyst 
methods discussed here in an 
scientific understanding of 

is often collected to meet objectives related 
change in water quality conditions which are 

0 be of h 
problem. Thus, cluster analysis and related 

elp in reducing the 

not use the spatial location but can be used 
of multivariate data, are 

ate methods which do use the 
can expect to use the classes of 
iterative fashion, coupled with 
the system, to arrive at a 

characterization of spatial structure. 
Of the methods discussed, only the grouping procedures are 

The other methods, even in the 
strictly for the purpose of discovering structure in the data. 

characterization stage, are used 
for testing hypotheses and estimation. 
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