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SOHHAIRE : On Va élaboré un modéle mathématique qui permet _de prévoir la diffusion transversale et longitudinale de polluants in»sta'b1e_s libérés dans 
des cours d'eau naturels. Dans ce document, on discute des arrangements 
numériques et de la structure du modéle et on explique les e5sa1_s auxquels on 1'a soumis.
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SHHARY: A mathematical model which predicts the transverse and longitudinal 
spreading of unsteady-state pollutants released into natural streams has been 
developed. The nmerical scheme, structure and testing of the model have been 
discussed. 

" IITRQDUCTIOI 

Eifective control of pollution in natural streams requires the ability to 
understand the mixing and transport of pollutants discharged into the stream. 
To this end, mathematical models based on the mass balance equation have been 
widely used, with the advantage that the 'variabilities in channel character- 
istics and other transport process parameters can be included. A review of the 
pertinent literature has indicated that most of the existing models [1, 2, 5, 7, 
14, 20] deal with the one-dimensional or longitudinal mixing, in which sectional 
mixing was assumed to be completed. The other models [4, 9, 13, 15, l7,_l8, 19, 
21], though tvo—dimensional in nature, have their applications limited mainly to 
the case where the pollutants are released continuously at a steady rate into 
the strea. 
In this paper, a mathematical model that describes the two-dimensional miiing 
process of a pollutant released at a unsteady rate has been developed. The 
model, HABOCOST (Mixing Analysis Based On the Concept Of Stream Tube), is based 
on the revised mass balance equation originally derived by Yotsukura and Sayre 
[22]. It is applicable for mixing in natural streams with constant flow rates, 
for which the cross—sections and the velocity profiles are non-uniform, the 
channels are sinuous, and localized sources or sinks due to chemical or 
biological reactions are present. Pollutants which undergo growth or decay can 
also be modelled within this model. 

THEORETICAL FOUNDATIONS V .. 

The analysis of to—dimensional mixing in prismatic channels can be based on the 
depth-averaged mass balance equation derived by Holley et al. [9] as 
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where x,z = longitudinal and transverse coordinates respectively, t I time, 
h I flow depth, and u,w = longitudinal and transverse depth-averaged velocities



respectively, 6- = depth-*a'veraged volumetric concentration, and E; ° transverse dispersion coefficient. 

For the case of natural streams, where the cross-sections are varying, the 
channels are sinuousw, and the velocity and depth quantities vary from point to 
point, the Cartesian system in which (l)' isexpressed makes the application of this equation an unduly inconvenient task. To circumvent this difficulty, 
Yotsukura and Sayre modified this equation according to the concept of stream 
tubes. The final form of their equation can be given as [22] 

39 + “ 3° =_a (sac) + k,c-‘>22, (2) 3t ma 3: in 3n 

where D = (hzuzlz/Q2) is the dispersion factor; x and Q are as defined in 
Pig. 1, k1 is the rate of first-order chemical reaction of pollutants, and kg is the rate of change in concentration as produced by the presence of a source or 
sink. In this equation, the independent variable, z,_ which appears in (1), has been replaced by the fraction of discharge that flows between the right bank and 
a, that is,

_ 

n I 3- I 
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Here, mx and mz are metric coefficients to account for the difference in 
lengths between the respective coordinate surfaces as indicated in Fig. 1. 

Mathematical models with different numerical algorithms have been developed for 
the solution of (2) for the case of steady-state pollutant input (i.e., 3C/3t B 
0), some examples of which are the RIVMIX [13], the _POLDER [ll], and the MIXCALBN [8] models. 

UISTBADY-STATE sou.u'rsns 

When the pollutants are released at an unsteady rate into the stre, the resulting spatial concentration distribution in the stream will change with time, and the above models are not applicable. Attempts have been made to develop a workable algorithm that represents this case adequately, an example of the more s.ignificant contribution is the model of Holly [10], which is based on a finite-difference solution of (2). lhrough the use of a half-implicit, half—explicit, second—order differencing scheme for the space derivative, I-lolly has managed to eliminate from the solution numerical instability and damping in the convective stage. However, it was observed that undesirable numerical dispersion, causing additional spreading other than that directly related to the actual physical phenomena, is present in his solution. This problem, which has created fictitious results (e.g., negative concentrations) in some instances, has been described in his paper, and can only be minimized by careful choice of time and distance steps. 

Another mixing model for the solution of unsteady pollutant input was developed by Fischer [6]. Fischer, in an attempt to reduce numerical dispersion, proposed an explicit algorithm which involves a step-by—step simulation of the mixing process in a coordinate systan moving at the mean flow velocity. Owing to the complexity in the nunerical structure, Fisher's model is applicable only to the simplest form of straight and prismatic channels. Natural channels by large do not fit into this category, and hence this limitation restricts very much the application of the model.
\



NIHERICAL DISPEBSIOI 

Although numerical dispersion can occur in both the longitudinal and lateral 
directions, it is generally believed that its magnitude in the longitudinal 
direction is much larger than that in the lateral direction. -Iherefore, more 
efforts will be geared toward the elimination of the longitudinal numerical 
dispersion in the present work, while attempts will also be made to reduce the 
amount of lateral numerical dispersion by reducing the size of An through the 
division of the stream into more tubes. 
As. described in the works of Beltaos [3], the behaviour of the nmerical 
solution in the longitudinal direction rests heavily on the paraeter L, where 
L H uAt/Ax. (R) 

when L > l, the solution is unstable and will not converge to the real 
solution,and when L < 1, continuous spreading in the longitudinal sense occurs, 
despite the fact that the nature of the governing equation is purely convective 
in this direction. In fact, only when L P l can the problem of longitudinal 
nmerical dispersion be eliminated completely. In a natural stream where the 
local velocity varies from one point to another, this condition can only be 
maintained in a space grid constructed in such a way that the length of each 
element is always the product of the local velocity and the time step, i.e., Ax = uAt. This results in a grid with variable length elements as shown in Fig. 1. 

. 
IIHERICAL SCHEME O? HABOCOST 

Based on the above discussions, the mathematical model HABOCOST has been 
developed. The model uses the time fractional step method as suggested by Verboan [21], which involves a step—by—step simulation of the actual physical 
processes, with the advantage that stability and consistency of the entire solution can be assured once the numerical scheme chosen for each individual 
step is stable and consistent. 

According to this method, after a stream is divided into strea tubes and 
subsequently variable length elements, the solution may be obtained by first solving the convective portion of the mass balance equation, 

5+1-5-0. (5) 3t m 3xx 

by approximating it with a first—order, explicit, finite difference expression. 
Representing the concentration in tube i and element j at time t by C(i,j,t), and applying the condition L i uAt/Ax = l, the resulting expression would give the concentration for the next time step as 

c(ii'Pj at*At) ' c(iaj'1|t)~ (6) 
That is to say, all the materials in a_element is advected to the next element along that stream tube with the passage of every time step. ' ' 

After this, the new advected concentrations are then dispersed laterally to each of the adjacent elements according to 
ac .2 

_

l 
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Using a simple forward difference expression to represent the left-hand sidf of (7), and three central difference expressions accurate to the order of (An)- to represent the partial derivatives on the right, one obtains



. . . . DA: 1 _ c(;,_;,;+A¢) c(1,_1,z) + .(To2(ACz+ACt) (AD,-ADt)(aCz.ACt,) , (8) 

where AC; and ADI are the concentration and dispersion factor differenceson 
the left (looking downstream) of the element concerned, and AC, 8ndVADr are 
the respective differences on the right. when an element has more than one 
adjacent ‘element on its side, the concentration and dispersion factor 
differences will be distributed to each of the adjacent elements according to- 
the proportion of their overllapping area.

, 

Finally, the concentration distribution will bie changed according to a 
first‘-order chemical reaction, 

C(.i,j,t+At) = C(i,j,t) ~ eh“, (9) 

and then according to the presence of the source—sink terms for that particular 
time step 

C(i,j,r<|-Ar) - ¢(i,j,r) 4- kgdt. (10) 

when these processes are repeated for all the time steps, the concentration 
distribution throughout the entire strean at every time step can be obtained. 
The code of MABOCOST was written with an IBM-X1‘ personal computer in I-‘ortranv. 
The data required to be input for MABOCOST includes mainly the geometry and flow characteristics of the stream, as well as the pollutant and source-sink input 
records. A complete listing of the program, along with all the subroutines, can be found in Ref. [16]. s 

MODEL ESTIIG 
The numerical scheme of HABOCOST has been tested for correctness by comparing 
the model predictions with the analytical solutions of two cases: 
l. A continuous line source stretching from n = 0 to n = 0.2, with strength C = 

5.0, is released at x = 0. The pollutant is assumed to be a decaying material (kl = -0.01/s) with a linearly varying dispersion factor, D = 0.0ln + 0.0173. 

2. An instantaneous vertical unit mass with E: = 0.016 m2/s is released at 
the centre of the upsteam boundary into a stream with a constant velocity of 
l m/s. 

The results of comparisons for the two cases are shown in Figs. 2 and 3 respectively. As can be seen from the figures, HABACOST has produced results that are in excellent agreement with the analytical solution. 
The full validity of the model as applied to natural channels still needs to be proven by comparisons with field, or laboratory generated data for the case of unsteady state pollutant input. A series of experiments, to be conducted at the Canada (‘entre for Inland Waters, Burlington," has been planned for this purpose. 

OOICLUSIOIS 
The numerical scheme of HABOCOST has proven to be correct frcm the favourable comparisons with the analytical solutions of a stesdy—state line injection and an instantaneous point injection into a prismatic, straight channel. Complete verification of the model can only be possible when field or experimental data for natural or simulated streams become available. s
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