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MANAGEMENT PERSPECTIVE 

Several indirect methods are presented for simultaneously 

estimating the component rates for production, diffusion and 

respiration from evenly spaced (hourly) measurements of dissolved 

oxygen at a single river station. The procedures allow us to evaluate 

the adequacy of dissolved oxygen models and particularly the 

photosynthesis-light relationship. Furthermore, an approach is also 

given for providing confidence intervals for the estimates of each 

component. The findings of this paper npermit comparing the 

productivity in different streams or at different stations within the 

stream, and to evaluate change over time.



PERSPECTIVE ADMINISTRATIVE 

Ce rapport présente plusieurs méthodes indirectes qui permettent 

d'estimer simultanément les vitesses de production, de diffiusion et de 

rgspiration A partir de mesures espacées (intervalles d'une heure) de 

1'oxygéne dissous A une station unique en tiviére. Ces procédures 

nous permettent d'éva1uer 1'exactitude des modéles de 1'oxygéne 

dissous et, notamment, 1e rapport ph0t0synthése+1umiére. Une méthode 

est également donnée pour déterminer des intervalles d confiance pour 

l'estimation de chaque composante. Les résultats de cette étude 

permettent de compare: la productivité daps différents cours d'eau ou 

5 différentes stations situées sur 1e méme cours d'eau et d'éva1uer 

les changements dans 1e temps.‘
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SUMMARY 

The application of nonlinear regression analysis to observed 
stream dissolved oxygen concentrations, by means of an oxygen 
mass—balance equation, provided estimates of the model parameters, 
which enabled further determination of the component processes in the 
oxygen metabolism in a segment of flowing water. The procedure was 
also used to identify photosynthesis—1ight (P—I) models for a Canadian 
.river. 

Five P-I models were examined and, although none of the models 
was accepted as strictly adequate, the study showed that the goodness 
of fit was substantially improved by using nonlinear photosaturation 
and photoinhibition models. No distinct photoinhibition was observed
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within the range of light intensity that occurred during the data 
period. Moreover, since none off the nonlinear models showed a 

significantly better fit to the data, we may conclude that any of the 
equations (4), (6) or (8) can be used for assessing the component 
rates of dissolved oxygen change.

~ 

INTRODUCTION 

Four main processes affect the concentration of dissolved oxygen 
in a natural stream. They are: photosynthetic production, diffusion, 
respiration and drainage accrual. There is a release of oxygen into 
the water as a result of photosynthetic primary production. Diffusion 
is an exchange of oxygen with the air in a direction depending on the 
saturation gradient. There is an uptake of oxygen from the water as a 
result of the respiration of benthic or planktonic organisms and 
chemical oxidation. There may also be an influx of oxygen with 
‘accrual of ground water and surface drainage. All these factors 
interact to produce the daily curve of oxygen change in a segment of 
flowing water. These processes may be quantitatively summarized as 
follows: 

q = p + d — r + a (1) 

where q, p, d, r and a are expressed in concentration units (i.e., 

g m" an enote t e rates o c an e of dissolved ox en' rimar 
"h_‘) dd h f h g yg_>,p y
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production, diffusion, respiration and drainage accrual, respectively 
(Odum, 1956). In lthe present study, accrual is assumed to be 

-,-’> 

negligible relative to the other influences. Respiration is assumed 
to be constant (Odum, 1956; Schurr and Ruchti, 1975). We wish to 

propose here simple indirect methods for determining simultaneously 
the component rates of production, diffusion and respiration from the 
analysis of the observed curve of dissolved oxygen assuming the data 
record consists of systematically one hour—spaced measurements from a 

single station. The procedure is based on regression analysis applied 
to nonlinear models which are derived from equation (1). It is 

further assumed that the stream studied is homogeneous, in the sense 
that the rates of photosynthesis, diffusion and respiration are the 
same in all sections of the river. 

A variety of methods have been used to evaluate the different 
components of equation (1). Some of these methods (e.g., the method 
pioneered by Odum, 1956) suffer from a lack of mathematical closeness 
and may therefore give very approximate results. Other procedures 
have been developed on the basis of very stringent hypotheses; for 
example, in the models developed by Schurr and Ruchti (1975), the 
authors assumed proportionality between production and light intensity 

,
. though such an assumption may be valid for low light intensities only 

(Cosby and Horberger, 1984). 

It is the specific purpose of this work to present mathematical 
expressions that incorporate the effects of light intensity and
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temperature of the water and to demonstrate their application in the 

analysis of the temporal distribution of dissolved oxygen observed in 

Canagagigue Creek (Ontario). It is well known that temperature 
influences the rates of the physical and biochemical reactions that 
affect dissolved oxygen concentration, and also the rate and the 
direction of exchange of oxygen with the air through the oxygen 
saturation concentration of the water, which is a function of 

temperature and the atmospheric pressure (Hutchinson, 1957). 

Photosynthesis in relation to light intensity is a major topic in the 

study of primary productivity of‘ water. The understanding and 
calculation of primary production is‘ assisted by mathematical 
formulations of the photosynthesis—light relationship which contain 
biologically significant parameters. The photosynthesiselight 
relationship can be generalized as follows: photosynthesis increases 
linearly with light at low light intensities, becomes approximately 
constant at higher intensities (photosaturation) and in some cases 
begins to decline at even higher intensities (photoinhibition) (Cosby 
and Hornberger, 1984). Many mathematical models for describing this 
curvilinear relationship have been reported in the literature and a 

comparison of the fit of several models with the photosynthesis-light 
curves of natural phytoplankton populations has been performed by 
Iwakuma and Yasuno (1983) and Cosby gt gl. (1984).
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THE MODELS 

The models presented in this section _differ mainly in the 

formulation of the productivity-light relation while the diffusion 
rate has always been assumed to be proportional to the difference (Ay) 
between the real dissolved oxygen concentration (y) in the water and 

its saturation value (Os) (i;e., Ay = OS — y). If we except the 
first model considered below, the equations used lead to nonlinear 
models and a method is given for assessing the parameters related to 
the various component rates, Although the algorithm used for 
estimating these parameters follows the same general scheme for all 
the models, a detailed description of the procedure will be developed 
for each case. 

The general expression for the model is 

q = f(I) + k Ay 9 r + e (2) 

where q is the n 2: 1 vector of observations (i.e., qt = yt+1-yt, 
that is the difference of two successive values of the observed 
dissolved oxygen) f is a function of the light intensity I (E m'* h") 
measured for t = 1,...,m, k is the reaeration coefficient (h") and e 

is the n x 1 vector of which the n elements are assumed to be 

independent normal variables each with zero mean and variance 0'.
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- Model 1 

If f is assumed to be a linear function of I, equation (2) 

becomes
~ 

q - aI + k Ay - r + e 
A (3) 

and the parameters G, k and r can then be estimated directly by using 
linear regression analysis.

\ 

- VM d 1 2 o e 

The second model we considered, which is a photoinhibition model, 
is obtained by replacing f(I) in equation (2) by Steele's formula 
(Steele, A1962) as an equation for describing photosynthesis-light 
curve (i,e., f(I)#Pmax (I/Is(e1_i/Is)). This equation has two 
parameters: a maximum rate of photosynthesis (pmax) and the light 
intensity (Is) at which the initial slope line reaches pmax before 
it decreases (photoinhibition effect). 

Hence, the expression of q is given as 

q = o I elqal + k Ay - r + e (4) 

where a - pmax/Is and B = 1/Is.
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Estimation of the parameters of the model 

Since the right hand side of regression equation (4) is not 
linear in all of the parameters, estimation oi a, B, k and r will 
require an iterative procedure which can be described as follows: 

(i) Using first-order Taylor series for e1'BI about an initial 
value 6,, the model can be written 

1-B01 ’ 1-B91 " 

q = u I e + 8 I‘ e + k Ay - r + e (5) 

which is linear in the unknown parameters o, 8, k and r. 

(ii) Starting with 6,, estimates of these parameters (i.e., 8,, 

£1, £1 and 2,) are obtained using Least Squares. 
(111) 5, is then replaced by s, = 5, - 3,/8,. 

(iv)‘ The aiteration (i.e., (ii) and (iii)). continues until the 
difference between ék and §k_1 is very small, i.e., gk is 
less than a prespecified small value. At this stage the values 
of Q, a, § and 2 are taken as ék, ak, hk and 2k. 

- Model 3 

Another model considered in the present work obtained by 
replacing f(I) in equation (2) by a saturation model (i.e., it does 
not take photoinhibition into account), which has been used by Smith 
(1936).
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q - a + k Ay - r + e (6) /1 + BI’ 

Estimation of the parameters of the model 

The parameters of the model, which are: a, B, k and r can be 
estimated by using the following algorithm: 

(i) Expansion of the first term in the right—hand side of equation 
(6) in a first-order Taylor series about an initial value, 6,, 
of B and substitution of the resulting approximation into (6) 
gives: 

V 1 .1= 
q=<:_ +6 +..1<Ay-r+e (7) »/1+5, 1= 2»/1+5, 1=)= 

which is linear int the unknown parameters a, 6; k and r. 

Steps (ii), (iii) and (iv) are exactly the same as used for 
model 2. 

~ Model 4 

Another photoinhibition model is obtained by replacing f(I) in 
equation (2) by Vollenweider's formula (Vollenweider, 1965). This 
gives:

L’
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I 
q - d is ‘ + k Ay - r + e (80 /1 + 51* J1 + q= 51* 

where a is a photoinhibition parameter which becomes 0 when photo- 
inhibition does not occur, 

Estimation oi the parameters of the model 

The procedure used for estimating the unknown parameters (i.e., 
a, B,-a, k and r) is quite similar to those applied in the previous 
cases, though the calculations are more tedious. Thus, 

(i) The first term in the right-hand side of equation (8) is 

expanded in a first-order Taylor series about two initial 
estimates (i.e., a,.and Bo) of a and B. Substituting the 
resulting approximation into (8) leads to: 

I I’ I’ q=a ~f“ +8 +y ~e“ii '

1 

/1+s,I= /1+a=.B.I= /1+a.I= /<1+a*.s.,1=>= /<1+s.I=>= /<1+a=.a.,I= 
+ k Ay - r + e ‘ 

' 

(9) 

which is linear in the unknown parameters o, 8, y, k and r. 

(ii) Starting with a, and 8,, estimates of the parameters (i.e., 
A A A A A a,, 8,, y,, k, and r1) are obtained using linear regression 
analysis.

V
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(iii) a, and B, are then replaced by 
A _ 2 

A 2_A
. 1:, == cl, - and B, -= B, - -X; respectively. 

Q 3080 a 

and step (ii) is repeated on the basis of the new values a, 

find 51- '
' 

(iv) The iteration stops as soon as both the differences 

Sk-£k_1 and ak-§k_1 are very small, that is when 
gzk + §=k is less than a prespecified small value. The 
values of 8, 3, 3, i and £ are then taken as Gk, fik, Qk, 

hk, and 2k, respectively. ’

' 

The dissolved oxygen concentration observed at a given time may 
be considered as an outcome of the previous recorded values for the 
light intensity '(at least over a certain period of time). An 
appropriate model for describing this situation has been developed by 
Dhrymes (1971), and it is known as a model with geometrically 
distributed lags. Thus, in equation (2) f(Ik) is replaced by 

-I-Q
i
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where It_i is the light intensity at time t—i and p is the unknown 

lag parameter of the model. When the values I_i (i=0,l,...) are 

unknown, one can eliminate them from the by introducing the BO 
>a+§' 

.$‘,_, 

. . i additional parameter w, which is given by w=u p I_i. 
' i=0

, 

Hence, model (2) can be rewritten as 
t-1 . 

qt . 
wpt + q Z 

p‘ 
It_i + R Ayt - r + e t=1,2,...,n (10) 

1=o
. 

Note that when p is known, this is a linear regression model, but 

since the lag parameter p‘is unknown in the present case, the model is 

only partially linear. The procedures developed by El—Shaarawi (1977) 

and Shah and El-Shaarawi (1980) can be used for estimating the 

parameters w, a and p and calculating their exact confidence intervals 
at a given probability level. ~ 

Estimation:o£.the parameters of the model 

To rind 6, 8 and 3, 

(i) we linearize the expression of qt by expanding pt in a 

first-order Taylor series about an initial estimate p,; this 

leads to 

t n-1 . t_1 t-1 ._
_ 

qte w po +a E pt It_i+ 8 [wtpo '+ u 2 ip: 1 
It_i]¥k Ayt-r +e i=0 ' i=0 '

Y 

where 8 = p-p, and t=1,2,...,n (11)
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' A A , 1 (ii) For a given value of p (e.g., p=0.5), estimates w, and no for 

w and a are obtained from (10) using linear regression 

analysis. 

(iii) We next consider model 

t ‘T1 1 “ 1;-,1 “ "1 
. 1»-1 q = w p, +a Z pg I ,+ 8 [wtp, + a, E 1p, I ,]+k Ay -r +e c ho t-1 i=0 t-1 t 

which is linear in w, u, 8, k and r (12) 

(iv) This gives new estimates %,, 3,, and £1 for w, a and 8, 

respectively. 

(v) In model (12) 5,, %, and do are then replaced by 8,,=§,+$,, G, 

and $1, respectively, and regression analysis is repeated. 
(vi) The procedures stops as soon as 8k=pk-pk_1 is smaller 

than a prespecified value and the estimates of w, u, p, R and 
r are then taken as wk, Gk. 3k. fik and 2k, 
respectively; '

. 

It must be emphasized that all the models are interrelated: for 
example, if a = O in model 4, we obtain model 3 and if B = 0 in model 
2 or model 3, then we reach the linear model (i.e., model 1). 

Moreover, model 1 is also a special case of model 5 since equation 
(10) simplifies to equation (3) when p is set equal to zero. Further, 
note that when I = 0 there is no production and models 1, 2, 3 and 4 

reduce to 

q - k Ay - r + e (13)
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This offers a very simple way for assessing the parameters k and 
r. Hence, from equation (2) it can be stated that the production at 

stage t is then given as pt = qt - h Lyt + 2. Thus, the type of 

the relationship between the production and the light intensity (P - I 

curve) can be evaluated graphically from the plot of pt versus It. 

¢RESULTS QED DISCUSSION 

The raw data from Canagagigue Creek for the study period are 

presented in Figure l, which shows the temporal variation of the 

oxygen concentration observed and the oxygen concentration at 

saturation, the light intensity and the temperature in parts a), b) 

and c), respectively. The saturation value of the oxygen 
concentration was calculated from the measured temperature and was 
corrected for 200 m elevation above sea level, 

The component processes in the oxygen metabolimn of a stream, 

i.e., the primary production, the oxygen exchange constant and the 
rate of respiration were determined by means of nonlinear regression 
analysis applied to a simple oxygen mass balance equation (see 
equation (1)). This approach is quite different from the 
crossecorrelation computational technique developed by Schurr and 
Ruchti (1975) or the extended Kalman filter used by Cosby g£_ 31. 
(1984) to provide estimates of the model parameters., Thus, the 

algorithms presented in the previous section for modelling the rate of 
change of dissolved oxygen led to the following regression equations, 
which were obtained by specially written programs using APL computer 
system: '
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q - 0.215 Ay - 0.510 (equation 13> 
"q - 0.20s'1 + 0.250 Ay - 0.011 (model 1) 

q = 0.240 1 01-°-1491 + 0.329 Ay - 0.070 (model 2) 

q - 0.002 I//1 + o.1001= + 0.320 Ay - 0.000 (model 3) 

q = 0.051 1//1+0.1e01=/1+0.0041= + O.331Ay+O.879 (model 4 
0 1 

q = 111.2s3x0.0o1‘+0.204 Z 0.001i1 .+0.25lAy+O.6l1 t 1:0 t-1 
t = 1,...,n (model 5) 

Figure 2 is a plot of the realized photosynthesis—light 
relationship for the first four models considered. The figure 
indicates that no distinct photoinhibition was observed within the 
range of light intensity that occurred during the data period. Models 
2, 3 and 4 were generally representative of the photosynthesis—light 
behaviour, moreover the similarity of the photosynthesis—light 
responses for those models is apparent. 

The estimates of the component parameters, the values of pmax, 
IS and the slope (E,) of the P—I curve as light intensity approaches 
zero are summarized in Table 1. The residuals, which are given in the 
last column of Table 1, permit a rough comparison of the relative 
goodness—of-fit for each model.’
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characteristics.1 

Table 1: Results of productivity analysis: parameter values and curve 

Models Eb pmax 
8m'lh—1 

Is k r 
Em'2h'1 n'* gm"h" 

residuals 

undefined 1 0.265 undefined 

2 0.669 1.654 6.717 

3 ~ 0.602 1.831 undefined 

4 0.651 1.327 5.955 

0.250 

0.329 

0.328 

0.331 

0.611 

0.870 

0.866 

0.879 

13.115 

9.560 

9.557 
' 

9 514 

5 * p=0.001 = 0.251 0.611 13.111 

* Since model 5 did not show any improvement when compared to model 1 

(which is a special case of model 5 when p=O), it was not considered 
any»further. 

». 

A more convenient way for evaluating the relative goodness-o£—fit 
is given in Figure 3, where both the observed and the predicted rates 
of changes of dissolved oxygen are plotted against time. This has 
been done for each model in Figure 3 a), b), c) and d), respectively. 
Any systematic diference between the two curves is due to the lack of 
£1: of the model. ‘ 

As can be seen in Figure 3 and from the residuals recorded in 
Table 1, model 1 (the linear model) does not fit the data very well. 
The proportion of the variance explained by this model is
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approximately 451 (R'=0.45). Further, the turning—points test 
(Kendall and Stuart, 1968) was used to test for the randomness in the 

series of residuals, in other words, the problem was to know if the 

series of residuals differs significantly from a random white noise 
sequence. The null hypothesis (i.e., randomness of the residuals) has 
been rejected at the 12 level for model 1, whereas the test was less 
signif.icant for both models 2 and 3 (P‘-=0.0475) and also model 4 

(P=0.03l4). Although none of the models can be accepted as strictly 
adequate, a substantial improvement is however obtained with models 2, 

3 and 4 (R'=O.6O for all three of them) when compared to model lb 

Thus, the goodness—of-fiit is quite parallel for those three models, 
which subsequently yielded very similar parameter values and curve 
characteristics eSPecially for models 2 and 3 (see Figure 2 and Table 
1). The close agreement between» rearation and respiration rates, 
which has been observed more particularly for models 2, 3 and 4, was 
expected since the processes of rearation and respiration“ are 
eXPlicitly independent of light or photosynthesis in the mass balance 
equation. Hence, any of the equations (4), (6) or (8) can be used for 
assessing the component rates oi dissolved oxygen, 

If the estimates of k and r calculated from equation (13) (i.e@, 
when I-0) are taken into account, the reaeration and respiration rates 
calculated from all the regression equations considered fell in the 
range 0.22-0.33 h" and 0.58-0.88 g m"h", respectively. This is in 
agreement with the values observed by Cosby gt gl. (1984) for a small 
second—order stream in Denmark and also the values reported by Schurr 
and Ruchti (1975) for several Swiss rivers.
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Further, with model parameters in hand, it becomes possible to 
distinguish and to assess separately the different components which 
interact to produce the daily curve of oxygen change. These 
components (i.e., production, diffusion and respiration) are embodied 
in the regression equation that desribes the oxygen balance. Thus, 
the component processes in the oxygen metabolism for the study period 
were calculated from the fitted regression equations and the curves 
obtained for each model are given in Figure 4 a), b), c) and d), 
respectively. The combined effect of production (p), diffusion (d) 

and respiration (r) is given in the rate of change curve (q). These 
curves, which can be considered as characteristic of a given segment 
of flowing water at least over a specific period of time, can 
undoubtedly help to understand the mechanisms and the’ relative 
importance of the component processes in the oxygen metabolism, For 
example, it is of interest to note, as it clearly appears in the 
diffusion curve, that the exchange of oxygen with the air was not well 
balanced for the section of the stream studied since invasion was more 
important then outgassing. The work reported here showed, by means of 
an example, that regression analysis applied to nonlinear models 
provides an appropriate tool for carrying out the assessment of the 
component processes in the daily dissolved oxygen metabolisna of a 
stream.

I
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Figure 2 

Figure 3 

Figure 4 

FIGURES 

Raw data from the Canagagigue Creek for the study period. 
Photosynthesis-light responses using values of the 
parameters from models 1, 2, 3 and 4. 

Plots of observed and fitted concentrations of dissolved 
oxygen against sequential order of the observations for the 
studylperiod. 

Component processes in the oxygen metabolism for the study 
period, calculated from the different models‘ regression 
equations.
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Figure 1. Raw data from the Canagagigue Creek for the study period.
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