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MANAGEMENT PERSPECTIVE

Several indirect methods are presented for simultaneously
estimating the component rateg for production, diffusion and
respiration from evenly spaced (hourly) measuréments of dissolved
oxygen at a single river station. The procedures allow us to evaluate
the adequacy of dissolved oxygen models and particularly the
photosynthesis-light relationship. Furthermore, an approach is also
given for providing confidence intervals for tﬁe estimates of each
compbnent. The findings of this paper permit comparing the
productivity in different streams or at different stations within the

stream, and to evaluate change over time.



PERSPECTIVE ADMINISTRATIVE

Ce rapport présente plusieurs méthodes indirectes qui permettent
d'estimer simultanément les vitesses de production, de diffusion et de
respiration a partir de mesures espacées (intervalles d'une heure) de
l'oxygéne dissous & une station unique en riviére. Ces procédures
nous permettent d'évaluer l'exactitudé des modéles de 1'oxygéne
dissous et, notammefit, le rapport photosynthése=lumiére. Une méthode
est également donnée pour déterminer des intervalles d confiance pour
l'estimation de chaque composante. Les résultats de cette étude
permettent de comparer la productivité dans différents cours d'eau ou
3 différentes stations situées sur le méme cours d'eau eﬁ d'évaluer

les changements dans le temps.
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SUMMARY

The application of nonlinear regrgssion analysis to observed
stream dissolved oxygén concentrations, by means of an oxygen
mass-balance equation, provided estimates of the modél parameters,
which enabled further determination of the component processes in the
oxygen metabolism in a segment of flowing wﬁter. The procedure was
also used to identify photosynthesis-light (P=I) médels for a Canadian
river,

Five P-I models were examined and, although none of the models‘
was accepted as strictly adequate, the study showed that the goodness
of fit was substantially improved by using nonlinear photosaturation

and photoinhibition models. No distinct photoinhibition was observed
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within the range of 1light intensity that occurred during the data
period. Moreover, since none of the nonlinear models showed a
significantly better f£it to the data, we may conclude that any of the
equations (4), (6) or (8) can be used for assessing the component

rates of dissolved oxygen change.
INTRODUCTION

Four main procésses affect the concentfation of dissolved oxygen
in a natural stream. They are: photosynthetic production, diffusion;
respiration and drainage accrual. There is a release of oxygen into
the water as a result of photosynthetic primary production. Diffusion
is an exchange of oxygen with the ai; in a direction depending on the
saturation gradient. There is an uptake of oxygen from the water as a
result of the respiration of benthic or planktonic. organisms and
chemical oxidation. There may also be an influx of oxygen with
accrual of ground water and surface drainage. All these factofs

interact to produce the daily curve of oxygen change in a segment of

flowing water. These processes may be quantitatively summarized as
follows:
q = p+d-r+a ' (1)

where q, p, d, r and a are expressed in concentration units (i.e.,

g m™° h™!) and denote the rates of change of dissolved oxygen, primary
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production, diffusion, respiration and drainage accrual, respectively
(Odum, 1956). In ‘the. ?resent study, accrual is assumed to be
nepligible relative to thé other influences. Respiration is assumed
to be constant (Odum, 1956; Schurr and Ruchti, 1975). Wg wish to
propose here simple indirect methods for determining simultaneously
the component rates of production, diffusion and respiration from the
an?lysis of the observed curve of dissolved oxygen assuming the data
record consists of systematically one hour-spaced measurements from a
single station. The procedure is based on regression anaiysisAapplied
to nonlinear models which are derived from equation (1l). It is
further assumed that the stream §tudied is homogeneous, in the sense
that the rates of photosynthesis; diffusion and respiration are the
same in all sections of the river.

A variety of methods have been used to evaluate the different
components of equation (l1). Some of these methods (e.g., the method
Pioneered by Odum; 1956) suffer from a lack of mathematical closeness
and may therefore give very approximate results. Other procedures
have been developed on the basis of very stringent hypotheses; for
example, in the mddels‘developed by Schurt and Ruchti (1975), the
authors assumed proportionality betwéen productioﬁ and light intensity
though such an assumption may be validrfor low light intensities only
(Cosby and Horberger, 1984).

It is the specific purpose of this work to present mathematical

expressions that incorporate the éffects of light intensity and
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temperature of the water and to demonstrate their application in the
analysis of the temporal distribution of dissoclved oxygen observed in
Canagagigue Creek (Ontario). It is well known that ;empefature
influehces the rates of the pPhysical and biochemical réactions that
affect dissolved oxygen concentrgtion, and also the rate and the
direction of exchange of oxygen with the air through the oxygen
saturation concentration of the water, which is a function of
temperature and the atmospheric pressure (Hutchinson, 1957).
Photosynthesis in relation to light intensity is a major topic in the
study of pri@éry productivity of water. The understanding and
calculation of primary production is- assisted by mathematical
‘formulations of the photosynthesis-light relationship which contain
biologically significant parameters. The photosynthesis=light
relationship can be generalized as follows: photosynthesis increases
linearly with 1light at low light intensities, becomes approximately
constant at higher intensities (photosaturation) and in some cases
begins to decline at even higher intensi;ies (photoinhibitioh) (Cosby
and Hornberger, 1984). Many mathematical models for describing this
curvilinear relationship have been reported in the literature and a
comparison of the fit of several models with the photosynthesis-light
curves of natural phytopiankton populations has been performed by

Iwakuma and Yasuno (1983) and Cosby et al. (1984),
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THE MODELS

The models presented in this section differ mainly in the
formulation of the productivity-light relation while the diffusion
rate has always been assumed to be propo}tional to the difference (Ay)
between the real dissolved oxygen concentration (y) in the water and
its saturation value (0g) (i.e., Ay = Og - y). If we except the
first model considered below, the equations used lead to nonlinear
models and a method is given for assessing the parameters related to
the various component rates. Althouéh the algorithm used for
estimating these parameters follows the same general scheme for all
the models, a detailed description pf the procedure will be developed
for each case.

The general expression for the model is
q=f(I) +kAy -r + e (2)

where q is the n x 1 vector of observations (i.e., q¢ = Yt+1-Yt»
that is the difference of two successive values of the observed
dissolved oxygen) f is a function of the light intensity I (E m~2 h™!)
measured for t = 1,...,m, k is the reaeration coefficient (h™!) and e
is the n x 1 vector of which the- n elements are assumed to be

independent normal variables each with zero mean and variance 62,
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If £ is assumed to be a linear function of I, equation (2)

becomes
q=al +k Ay - r + e ‘ - (3)

and the parameters &, k and r can then be estimated directly by using

linear regression analysis.
. Model 2

The second model'we considered, which is a photoinhibition model,
is obtained by replacing £(I) in equation (2) by Steele's formula
(Steele, 1962) as an equation for describing photosynthesis-light
curve (i.e., f(I)=Pmax (I/Is(el_i/Is)). This equation has two
parameters: a maximum rate of photosynthesis (Pmax) and the light
iptenéity (IS) at which the initial slope line reaches Pmax before
it decreases (photoinhibition effect).

Hence, the expression of q is given as

1-B1

g=ale +kAy-r+e ‘ (4)

where a = pp.y/Ig and B = 1/Ig.
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Estima;}oq of the parameters of the model

Since the right hand side of regression equation (4) is not

linear in all of the parameters, estimation of a, B8, k and r will

require an iterative procedure which can be described as follows:

(1)

(ii)

(iii)

(iv)

Using first-order Taylor series for el-Bl about an initial
value B,, the model can be written

1-8,1 - 1-B,oI .
g=ale + 5 I%2 e +kAy -r +e (5)

which is linear in the unknown parameters a, 8§, k and r.
Starting with B,, estimates of these parameters (i.e., a,,

3,, ﬁl and ;,) are obtained using Least Squares.

Bo is then replaced by 8, = g, - 31/31.

Thé iteration (i;e., (ii) and (iii)). continues until the
difference between Bk and ék—l is very small, i.e., gk is

less than a prespecified small value. At this stage the values

A

of é, B, k and r are taken as &k, ék, ﬁk and ;k.

Model 3

Another model considered in the present work is obtained by

replacing £(I) in equation (2) by a saturation model (i.e., it does

(1936).

not take photoinhibition into account), which has been used by Smith



This leads to

I

qg=a + KAy - r + e (6)

Y1 + pI?2

Estimation of the parémetergﬁof the model

The parameters of the model, which are: a, B, kK and r can be

estimated'by using the following algorithm:

(i) Expansion of the first term in the right-hand side of equation
(6) in a first-order Taylor series about an initial value, B,,
of B and substitution of the resulting approximation into (6)
gives:
I - I3

q=aqa-= + § ——
V1 + g, I2 2V1 + g, 12)3

+kdy-r +e (7)

which is linear in the unknown parameters a, §; k and r.
Steps (ii), (iii) and (iv) are exactly the same as used for

model 2.

. Model 4

Another photoinhibition model is obtained by replacing f£(I) in
equation (2) by Vollenweider's formula (Vollenweider, 1965). This

gives:



I

q = +kAy - r + e (80

a —
V1 + 12 /1 + 8® BI®

where a is a photoinhibition parametér which becomes 0 when photo-

inhibition does not occur.

Estimation of the parameters of the model

The procedure used for estimating the unknown parameters (i.e.,

a, B,-é, k and r) is quite similar to those applied‘in the previous

cases, though the calculations ar§ more tedious. Thus,

(i) The first term in the right-hand side of equation (8) is
expanded in a first-order Taylor series about two initial
estimates (i.e., a,. and B;) of a and B. Substituting the
resulting appioximation intél(B) leads to:

I I3 I3

g=a ~f“ +§ —= +y——— - -
V14BoI2 V1+a? B 12 V148,12 V(l+a?,8,12)* V(14B,12)° V/(1+a2?,8,1?

+ k Ay - r + e ' | (9)
which is linear in the unknown parameters a, 8, y, k and r.

(ii) Starting with a, and Bo, estimates of the parameters (i.e.,

A

A A A A V
a,, 8,, v1, k, and r,) are obtained using linear regression

analysis.
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(iii) a, and B, are then replaced by
A _ 2 A 'A
a, = d - $ - atoy and B, = B, - 21; respectively.

A
a agBy a

and step (ii) is repeated on the basis of the new values a,
and 8,.
(iv) The iteration stops as soon as both the differences
Sk-gkél and ék'ék—l are very small, that is when
§2k + §3k is less than a prespecified small value. The

values of a, 3, 3, k and r are then taken as &k, ék, ak,

ﬁk, and ;k’ respectively.
. Model 5

The dissolved oxygen concentration observed at a given time may
be considered as an outcome of the previous recorded values for the
light intensity (at least over a certain period of time). An
appropriate model for describing this situation has been developed by
Dhrymes (1971) and it is known as a model with> geometrically

distributed lags. Thus, in equation (2) £(Ix) is replaced by

ro .
Pp,=a} p I _,
t i=0 t-1
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where I{.j is the light intensity at time t-i and p is the unknown
lag parameter of the model. When the values I_3 (i=0,1,...) are

unknown, one can eliminate them from the moi&} by introducing the

i
additional parameter w, which is given by w=a 2 pI_..

i=0 *
Hence, model (2) can be rewritten as
t t=1
q, = wp +a 3 p I . +kAy, -r+e t=1,2,...,n (10)
t i=0 t-1i t

Note that when p is known, this is a linear regression model, but
since the lag parameter p'is unknown in the present case, the model is
only partially linear. The procedure; developed by El-Shaarawi (1977)
and Shah and El-Shaarawi (1980) can be used for estimating the
parameters w, a and p and calﬁulating their exact confidénce intervals

at a given probability level.

Estimation of the parameters of the model

To find w, a and p,

(i) we linearize the expression of q¢ by expanding pt in a
first-order Taylor series about ah initial estimate Pe; this

leads to

t t-1 i t-1 t-l 4
4= ¥ po +a Y Po It + 6 [wtpy "+ a Y ips I .]+k Ay _-r +e
i=0 -1 i=0 t-1t Tt

where § = p-p, and t=1,2,...,n » (11)
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. . [y A
(ii) For a given value of p (e.g., p=0.5), estimates w, and a, for
w And a are obtained from (10) wusing linear regression
analysis,

(iii) We next consider model

t t-1 i A e A t-1 i-1
Q=W pe +a 3 py I .+ 8 [wtpg + a, Y ipy I . ]+k Ay _-r +e
t t-i < t-i t
i=0 i=0
which is linear inw, a, §, k and r (12)
(iv) This gives new estimates @,, &,, and 31 for w, @ and §,
respectively.
(v) In model (12) Bo, Go.and &o are then replaced by 3,,=3,+6°, Ql

and 31, respectively, and regression analysis is repeated.
(vi) The procedures stops as soon as 5k=Pk'Pk-1 is sma;ler

than a prespecified value ana the estimates of w, a, p, k and

r are then taken as Qk» ak' Sk' ﬁk and ;k’ |

respectively. |

It must be emphasized that all the models are interrelated: for

example, if a = 0 in model 4, we obtain model 3 and if B = 0 in model
2 or model 3, thén we reach the linear model (i.e., model 1).
Moreover, model 1 is also a special case of model 5 since equation
(10) simplifies to equation (3) when p is set equal to zero. Further,
note that when I = 0 there is no production and models 1, 2, 3 and 4

reduce to

q=kAy - r + e (13)
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This offers a very simple way for assessing the parameters k and
r. Hence, from equation (2) it can be stated that the production at
stage t is fhen given as py = q¢ ; ﬁ Ayy + ;. Thus, the type of
the relationship bétween the production and thé light intensity (P - I

curve) can be evaluated graphically from the plot of py versus I..
.- RESULTS AND DISCUSSION

The raw data from Canagagigue Creek for the study period are
presented in Figure 1, which shows the temporal variation of the
oxygen concentration observed and the oxygen concentration at
saturation, the light intensity and the temperature in parts a), b)
and c), respectively. The saturation value of the oxygen
concentration was calculated from the measured temperature and was
corrected for 200 m elevation above sea level.

The component proces;es in the oxygen metabolism of a stream,
i.e., the primary production, the oxygen exchange constant and the
rate of respiration were determined by means of nonlinear regression
analysis applied to a simple oxygen mass balance equation (see
equation (1)). This approach is quite different from the
cross-correlation computational technique developed by Schurr and
Ruchti (1975) or the extended Kalman filter used by Cosby et al.
(1984) to provide estimates of the model parameters.. Thus, the
algorithms presented in thé previous section for modelling the rate of
change of dissolved oxygen ied to the following regression equations,
which were obtained by specially written programs using APL computer

system:
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g = 0.215 Ay - 0.578 (equation 13)
q = 0.265 I + 0.250 Ay - 0.611 (model 1)
q = 0.246 I e1-0.1491 4 0 329 Ay - 0.870 (model 2)
q = 0.602 I/V1 + 0.108I% + 0.328 Ay - 0.866 (model 3)
q = 0.651 I//1+0.18012/1+0.004I% + 0.331Ay-0.879 (model &
. t-1 : |
q, = 111.253x0.001°+0.264 § 0.001'I_ .+0.251Ay-0.611
t i=0 t-i
t=1,...,n (model 5)

Figure 2 is a plot of the realized photosynthesis-light
relationship for the first four models considered. The figure
indicates that no distinct photoinhibition was observed within the
range of light intensity that occurred during the data period. Models
2, 3 and 4 were generally representative of the photosynthesis-light
behaviour, moreover the similarity of the photosynthesis—light
responses for those models is apparent.

The estimates of the component parameters, the values of ppax,
Ig and the slope (E,) of the P-I curve as light intensity approaches
zero are summarized in Table 1. The tesiduals, which are given in the
last column of Table 1, permit a rough comparison of the relative

goodness-of-fit for each model.
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Table 1: Resuits of productivity analysis: parameter values and curve

characteristics,l

Models E, pmax I k r residuals

s
gm~*h—* Em~2h~! h-1 gm—*h-!
1 0.265 undefined undefined 0.250 0.611 13.115
2 0.669 1.654 6.717 0.329 0.870 9.560
3 . 0.602 1.831 undefined 0.328 0.866 9.557
4 0.651 1.327 5.955 0.331 0.879  9.514
5 % p=0.001 ° 0.251 0.611 13.111

* Since model 5 did not show any improvement when compared to model 1
(which is a special case of model 5 when p=0), it was not considered

any- further.

A more convenient way for evaluating the relative goodness~of-fit
is given in Figure 3, where both the observed and the predicted rates
of changes of dissolved Oxygen are plotted against time. This has
been done for each model in Figure 3 a), b), c) and d), respectively.
Any systematic diference between the t?o curves is due to the lack of
fit of the model.

As can be seen in Figure 3 and from the residuals recorded in
Tablée 1, model 1 (the linear model) does not fit the data very well.

The proportion of the variance explained by this model is
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approximately 45% (R%=0.45). Further, the turning-points test
(Kendall and Stuart, 1968) was used to test for the randomness in the
series of residuals, in other words, the problem was to know if thg
series of residuals differs-significantly from a random white noise
sequence. The null hypothesis (i.e., randomness of the residuals) has
been rejected at the 1% level for model 1, whereas the test was less
significant for both models 2 and 3 (P=0.0475) and also model 4
(P=0.0314). Although none of the models can be accepted as strictly
adequate, a substantial improvement is however obtained with models 2,
3 and 4 (R?*=0.60 for all three of them) when compared to model 1.
Thus, the goodness-of-fit is quite parallel for those three models,
which subsequently yielded very similar parameter values and curve
characteri;tics especially for models 2 and 3 (see Figure 2 and Table
1). The close agreement Between» rearétion and respiration rates,
which has been observed more particularly for models 2, 3 and 4, was
expected since the processes of rearation and respiration are
explicitly independent of light or photosynthesis in the mass balance
equation. Hence, any of ﬁheleqUations (4), (6) or (8) can be used for
assessing the component rates of dissolved oxygen.

I1f the estimates of Kk and r calculated from equation (13) (i.e.,
when I=0) are taken into account, the reaeration and respiration rates
calculated from all the regression equations considered fell in the
‘range 0.22-0.33 h™! and 0.58-0.88 g m~*h~!, respectively. This is in
agreement with the values observed by Cosby et al. (1984) for a small
second-order stream in Denmark and also the values reported ‘by Schurr

and Ruchti (1975) for several Swiss rivers.
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Further, with model parameters in hand, it becomes possible to
distinguish an@ to assess separately the different components which
interact to produce the daily curve of oxygen change. These
components (i.e., production, diffusion and respiration) are embodied
in the regression equation that desribes the oxygen balance. Thus,
the component processes in the oxygen metabolism for the study period
were calculated from the fitted regression equations and the curves
obtained for each model are given in' Figure 4 a), b), c) and d),
respectively. The combined effect of production (p), diffusion (d)
and respiration (r) is given in the rate of change curve (q). These
curves, which can be considered as characteristic of a given segment
of flowing water at least over a specific period of time, can
undoubtedly help to understand the mechanisms and the relative
importance of the component processes in the oxygen metabolism. For
example, it ig of interest to note, as it clearly appears in the
diffusion curve, that the exchange of oxygen with the air was not well
balanced for the section of the stream studied since invasion waé more
important theﬁ outgassing. The work reported here showed, by means of
an example, that regression analysis applied to nonlinear models
provides an appropriate tool for carrying out the assessment of the
component processes in the daily dissolved‘ oxygen metabolism of a

stream.
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FIGURES

Figure 1: Raw data from the Canagagigue Creek for the study period.

Figure 2: Photosynthesis—lightv responses using values of the
parameters from models 1, 2, 3 and 4.

Figure 3: Plots of observed and fitted concentrations of dissolved
oxygen against sequential order of the observations for the
study.period.

Figure 4: Component processes in the oxygen metabolism for the study
period, calculated from the different models' regression

equations.
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