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Abstract 

Multivariate analysis is being carried out on glacier-
climatological data in two stages. This paper describes the 
first stage, which is an application of principal components 
technique to the available data. The multicollinear climato­
logical variables are transformed into orthonormal principal 
components. The characteristics and the interpretation of 
these principal components are described. Data transforma­
tions and the ensuing results are explained. The transformed 
new variables, the component vectors, are interpreted in 
terms of weather types. Recommendations are given for 
the second stage of the analysis, which is an application 
of multiple regression on principal components aimed at 
the estimation of runoff. 

Resume 

L'application de l'analyse a plusieurs variables aux 
donnees de climatologie glaciaire s'effectue en deux etapes. 
Le present rapport traite de la premiere etape qui consiste 
a appliquer la technique des principales composantes aux 
donnees accessibles, et selon laquelle les variables clima-
tologiques multicollineaires sont transposees en composan­
tes principales orthonormales. Le rapport decrit les carac­
teristiques et I'interpretation des principales composantes, 
explique les transformations des donnees et des resultats 
obtenus et foumit une interpretation des nouvelles variables, 
les vecteurs composants, en fonction des types de conditions 
meteorologiques. En dernier lieu, des recommandations 
sont formulees sur la deuxieme etape de l'analyse en vue 
d'appliquer la regression multiple aux composantes prin­
cipales afin d'evaluer le taux de ruissellement. 
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Principal Components Analysis on Glacier-Climatological 
Data for Sentinel Glacier, British Columbia 

S. Fogarasi and O. Mokievsky-Zubok 

INTRODUCTION 

Glacier runoff, an important contributor to water 
balance, depends heavily on the interaction of various 
climatological variables influencing glacier melt. Linear 
regression techniques frequently used in runoff estimations 
do not usually reveal the intricate association between 
runoff and some of the weather-related variables. Regression 
techniques are unsuccessful as long as the variables are 
strongly dependent, therefore, the principal components 
technique has been applied in this study. This analysis 
essentially transforms the sets of dependent climatic 
variables into a new set of independent statistics, even 
though the original variables may be highly interrelated. 

How the new independent variables, called com­
ponents, are created out of dependent variables is sufficiently 
described by Anton (1973) and Kendall (1965) in a chapter 
on linear transformation. For readers with elementary 
statistical and linear algebraic background who are not 
completely familiar with principal-components analysis, 
the general principles of technique have been outl ined. 

By transforming a set of variates into principal 
components, the interrelationship of original variables may 
be explored more easily. The components, as independent 
variables, can then be used in a multiple regression model. 
The components are not equivalent to the original variables 
but are, to some degree, associated either with a single 
variable or with a group of variables. After the linear 
transformation, however, the total variance associated with 
the original data is preserved in the resultant independent 
new components. The principal components analysis 
assumes that all the variation in a given population is 
contained within the variables used; therefore this analysis 
is deterministic. 

LOCATION AND PHYSICAL SETTING 

The set of data used in the forthcoming analysis was 
collected on Sentinel Glacier, B.C., which has been inten­
sively studied by Inland Waters Directorate, Department of 

the Environment. Sentinel Glacier (49°54'N and 122°59'W) 
is located 70 km north of Vancouver, in the Coast Mountain 
Range and within the boundaries of Garibaldi Provincial 
Park. The glacier occupies a basin facing north descending 
and ending within two kilometres of Garibaldi Lake 
(1478 m asl). The elevation range of the glacier is from 
1550 m to 2100 m. The ice cover of the basin is about 
2 km^ but diminishing constantly. The area of the whole 
basin, which drains into the Sentinel meltwater stream, 
is 5 km^ . 

INSTRUMENTATION AND OBSERVATION 

Glaciological studies at Sentinel Glacier began in 
1966 when the glacier was included in the International 
Hydrological Decade (IHD) program (Mokievsky-Zubok, 
1973). The observation station was located 500 m in front 
of the glacier tongue at 1540 m asl. The station was equip­
ped with short-term climatological instruments: mercury 
thermometer, thermohygrograph, totalizing anemometer, 
sunshine recorder, solarimeter and rain gauge. Daily clima­
tological data used in this analysis were recorded at Sentinel 
Glacier during June, Ju ly , August and September, 1970-
1974. Days with incomplete data have been omitted from 
the analysis. A total of 547 complete daily sets of data 
were available. Each set of complete data was made up of 
twelve variables as shown in Table 1. 

Table 1. Daily Climatological Variables on Sentinel Glacier Used in 
the Analysis. 

Identification No. Variables Dimension 

1 Runoff lO^m' 
2 Precipitation mm 
3 Mean temperature C° 
4 Maximum temperature C° 
5 Minimum temperature C° 
6 Calculated mean temperature C° 
7 Melting degree day temperature C° 
8 Relative humidity % 
9 Daily total sunshine h 

10 Global radiation 10'Jm"' 
11 Mean daily cloudiness 1/10 
12 Daily total wind run km 

1 



Variables listed as numbers 4, 5, 8, 9, 10 and 12 were 
obtained from the data recorded directly by the instruments. 
Runoff, variable No. 1, was calculated from continuous 
observations of water level and the rating curve. The latter 
was based on regular discharge measurements conducted 
either by the personnel at the station or by the Water 
Survey of Canada (Station No. 08GA056). The gauging 
site is located 800 m downstream from the glacier tongue. 
Precipitation, variable No. 2, was measured with Pluvius 
or MSC (Meteorological Services of Canada) type of rain 
gauges or calculated in proportion 1/10 from snowfalls, 
which are given in millimetres of water equivalent values. 
Temperature data were obtained from four daily readings 
of a mercury thermometer at 0800, 1200, 1600 and 2000 
Pacific Standard Time (PST), and from the weekly graph of 
a Leopold-Stevenson thermohygrograph. Mean temperature, 
variable No. 3, was calculated from a graph of hourly readings 
for each day. The thermohygrograph readings were adjust­
ed to the four control readings and averaged. Calculated 
mean temperature, variable No. 6, was obtained by averaging 
the maximum and minimum daily temperatures. Melting 
degree day temperature, variable No. 7, was calculated 
by averaging the positive hourly temperatures. Cloud­
iness, variable No. 11, was estimated in tenths 4 times a 
day. The mean of the four daily observations was used in 
this analysis as a single daily value. 

PREPARATION OF DATA 

•v-c' n-1 
[DT] [D] - — ( [DT] t ] ( r " ' " [ D ] ) 

(2) 

where j = 

1_ 
nxl 

and =[1 1 1] 
1 X n 

The order-of [Ry_(.]is in fact determined by the first 
term on the right because the second term on the right 
must be of the same order as the first term. Consequently, 
the difference. 

1 
546 

[DT] [D] - - L / [ D T ] f \ / f T f D T ] \ 
547 * ' V / 

12x547 547x12 12x547 547x1 1x547 547x12 

(2a) 
results in a [R^.Q] of the order of 12 x 12. 

In this case, investigation is directed to the relation­
ship between the twelve variables. In other words, when the 
columns of the variables are examined against each other, 
an R-mode analysis is done. 

As mentioned earlier, the input data consisted of 547 
sets of observations and each set contained 12 values. 
That is, the input matrix [D] had an order of 547 x 12. 
Initially, equal weight or importance was given to each 
variable. Therefore, Z scores were formed for each entry of 
the raw data because the Z scores are nondimensional. The 
formula 

A = 
î - \ 

Sx; 

i = 1,2 n = 547 (1) 

transforms the variables to zero mean (Z^. = 0) and unit 
standard deviation (S^. = 1). Each Z score tells us how 
many standard deviations an entry is above or below the 
mean of the variable to which it belongs. 

Out of this huge standardized data matrix a square 
and symmetric array had to be obtained to make it suitable 
for the principal components program. Therefore, a variance-
covariance matrix, [Rv_c], was formed by using a numer­
ical method developed by Krumbein and Graybill (1965). 
This method is basically a matrix multiplication whereby 
the variance-covariance matrix is given as 

The present investigation is also done in R-mode. 
When the investigation is aimed at the relationship between 
the rows of the data matrix, [ D ] , a Q-mode analysis is 
performed. If our analysis were in Q-mode, the order of 
the variance-covariance matrix would have been 547 x 547, 
generated by 

[D] [DT] 

547x12 12x547 

The essential difference between the modes is in the se­
quence of multiplication with [D^] . R-mode analysis 
shows the interrelation of variables for a point within a 
time-scale and the Q-mode analysis is a useful tool to show 
these relationships in an areal setting. 

Even for an R-mode analysis the original data matrix, 
[D], of the order 547 x 12 is just too large for the analy­
sis. Under the rules of the R-mode analysis, a variance-
covariance matrix of 12 x 12 was obtained by using a CDC 
7400 high-speed computer. To reduce computer storage 
space, the calculation was performed on partial matrices 
of the order of 12 x 12. The variance-covariance matrix 
thus obtained is shown in Table 2. Each entry in this 
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Table 2. Variance-Covariance Matrix, [Ry_c], of the Twelve Variables Based on the Data Collected on Sentinel Glacier for June-September, 
1970-1974. 

Mean Max. Min. Calctd. Melting RH Sunshine Global Mean 
Variables Runoff Preciptn. temp. temp. temp. mean temp. deg. days % h radiation cloudiness Wind run 

Runoff 4088.0 
Preciptn. 124.7 67,8 
Mean temp. 103.5 - 9.1 17.3 
Max. temp. 106.5 -13.2 21.5 29.1 
Min. temp. 113.9 - 4.6 14.0 16.5 14.3 
Calctd. mean 110.1 - 8.8 17.7 22.8 15.4 19.1 

temp. 
Melting deg. 100.1 - 9.1 17.0 21.0 13.7 17,3 16,7 

days 
RH - 59.0 38.3 -41.8 -53.6 -29.8 -41.7 -41,5 276,2 
Sunshine 49.1 -15.0 12.0 16.9 6.9 11.9 12.0 -46,2 19.9 
Global radtn. 132.4 -22.6 16.2 22.4 8.7 15,6 15.9 -47.3 25.4 74,8 
Mean cloud. - 22.7 11.2 - 9.8 -13.8 - 5.9 - 9,9 - 9.8 42.1 -14.6 -16.2 14.1 
Wind run 1657.5 183.8 102.3 89.8 134.6 111,7 98,1 -42.4 -49.5 -15.1 71.3 19179,8 

symmetric matrix can be interpreted as a result of a bivar-
iate manipulation. The off-diagonal entries are the co-
variances of two respective variables. Also, each entry is 
extracted from the original 547 x 12 sample matrix and 
each entry is equivalent as if it were calculated with the 
well-known formula: 

COv(Xj, Xj) = 

n=547 ,_ 

E 
i=i 

(Xj - Xj) (Xj - Xj) 

-,j= 1,2 12. (3) 
547 - 1 

Because the magnitude of the nominator is influenced by 
the size of the sample, the covariation formula is divided 
by 546. Along the diagonal i = j, therefore, the expression 

independence of any two variates can be determined by 
the value of their covariance. When the cov(xj, Xj) = 0, 
the Xj and Xj variables are independent. Table 2 shows 
that not one pair of variables can be considered independent. 
Yeates (1974) demonstrated that with the use of a stan­
dardizing factor, 1/(5^, S^.), which is the reciprocal value 
of the product formed 'by l!he two relevant standard devia­
tions of the two variables, the variance-covariance matrix 
can be converted into a correlation coefficient matrix 

Hi = 

COV(Xj, Xj) 

^X j ^ X j 

(6) 

COV(Xj, Xj) = 

547 

Z(xik-><i)' 
k=1 

546 

becomes the variance formula 

5 4 7 

Sl ,= 

Z!<xik-xi) 
k=1 

546 

(4) 

(5) 

Thus, variances are found along the diagonal and covariances 
off the diagonal. 

The variance-covariance matrix can b3 checked 
statistically for the independence of the variables. The 

The variance-covariance matrix thus converted into 12 x 12 
correlation matrix is shown in Table 3. Shaded areas enclose 
entries with high correlations. In other words, the great 
resemblance between mean, maximum and minimum, 
calculated mean and melting degree day temperatures in 
fact indicates that we have here similar variables but with 
different names. These variables, except melting degree 
day, were therefore omitted from further consideration. 
Because only one relative humidity value was given for 
each day, it was considered unrepresentative and also 
omitted. Finally, a remnant 5 x 5 correlation matrix was 
used as an input into the principal components program. 
This final input of 5 x 5 symmetric matrix is shown in 
Table 4. Values above the lines are variances-covariances; 
below these lines are the correlation values. The assumption 
is that with the omission of the four temperature-related 
variables and the relative humidity a grouping of identical 
variables on the same components is eliminated. 
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Table 3. Correlation Matrix, [R], of the Twelve Variables Based on Data Collected on Sentinel Glacier for June-September, 1970-1974. 

Mean Max. Min. Calctd. Melting RH Sunshine Global Mean 
Variables Runoff Preciptn temp. temp. temp. mean temp. deg. days % h radiation cloudiness Wind run 

Runoff 1 
Preciptn. 0.238 1 
Mean temp. 0.386 -0.264 1 
Max. temp. 0.309 -0.298 0.948 1 
Min. temp. 0.469 -0.148 0.877 0.804 1 
Calctd. mean 0.391 -0.243 0.958 0.959 0.921 1 

temp. 
Melting deg. 0.382 -0.271 0.987 0.949 0.879 0.959 1 

days 
RH -0.056 0.281 -6.599 -0.598 -0.472 -0.571 0.610 1 
Sunshine 0.170 -0.407 0.635 0.695 0.403 0.601 0.650 --0.618 ;1" ' 
Global radtn. 0.241 -0.320 0.449 0.482 0.266 0.412 0.451 --0.331 0.656 
Mean cloud. -0.093 0.359 • -0.614 -0.673 -0.409 -0.592 -0.629 0.667 -0.853 -0.495 1 
Wind run 0.008 0.162 0.176 0.120 0.256 0.183 0.173 --0.018 -0.079 -0.013 0.135 1 

Table 4. Variance-Covariance and Correlation Matrix of the Five 
Variables Based on Data from Sentinel Glacier for June, 
July, August and September, 1970-1974. 

Melting Global 
Runoff, Precipitation, degree radiation Wind run, 
l O ' m ' mm day, C° 10'Jm"^ km 

Runoff 4088.1 
1 

Precipitation 124.7 
0.238 

61.8 
1 

Melting 100.1 -9.1 16.7 
degree day 0.382 0.264 1 

Global 132.4 -22.6 15.9 74.8 
radiation 0.241 0.3201 0.451 1 

Wind run 1657.5 183.8 98.1 -15.1 19179.8 
0.0087 0.162 0.173 0.013 1 

accepted that correlation matrix fits an R-mode analysis 
and variance-covariance matrix, a Q-mode analysis. 

For further analysis, it is mathematically convenient 
to have a standardized symmetric correlation matrix. 
Because our final 5 x 5 input matrix preserved the cha­
racteristics of the original data matrix of (547 x 5), therefore, 
all the algebraic and statistical inferences made on this 
5 x 5 matrix are also valid for the original data matrix. 

PRINCIPAL COMPONENT ANALYSIS ON THE 
CORRELATION MATRIX 

Algebraically, the 5 x 5 correlation matrix can be 
described and characterized with a single scalar value, 
called determinant, and with a fifth degree polynomial. 
The roots of this polynomial equation are called the latent 
roots, characteristic values, or eigenvalues (Xj, and in this 
case 1 < i < 5). The characteristic equation in the well-
known matrix notation 

It was expected that as the original dependent data 
matrix was converted into its own independent component 
matrix, by the principal components analysis, each column 
vector of the component matrix could be identified with 
one variable. Statistically and algebraically, this 5 x 5 
correlation matrix is equivalent to the 547 x 5 data matrix. 
This correlation matrix now appears as if it were taken 
from the same population because each variable in it has 
the same mean and the same variance as a result of stand­
ardization. 

Principal components analysis can be performed both 
on variance-covariance matrix and on correlation matrix, 
but the results would be different. It is, however, generally 

R - XI = 0 

can also be written as the characteristic equation, 

I'll ''12 ""in 

•"21 ''22 - ^ i ' ' 2 n 

= 0 

' 'n i ''n2 ' ' n n - ^ i 

and be solved for the eigenvalues. 

(7) 

(8) 
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The eigenvalues obtained from the fifth degree 
polynomial and the probability of their upper and lower 
bounds at 95% certainty are shown in Table 5. 

Table 5. Eigenvalues, Their Associated Percentages of Variation in 
the Original Raw Data and the Probability of the Upper 
and Lower Bounds at a = 0.05 Level. These Values were 
Calculated from the 5x5 Correlation Matrix, 

Order of 

% variation 
in the data 
accounted 

95% certainty that \ j 
ranges between the 

eigenvalue Eigenvalues for by \j values indicated 

1.822 36.4400 P(1.63 < \ , < 2.07) = 0.95 

1.405 28 .0995 P (1.26 < < 1.59) = 0 .95 

0 .8497 16.9933 P (0.76 < < 0.96) = 0 .95 

0 .5335 10.6693 P ( 0 . 4 8 < X „ < 0 . 6 1 ) = 0.95 

5̂ 0.3899 7 .7976 P(0.35 < X 5 < 0.44) = 0.95 

Using symmetric square matrices so that their traces, 
the sums of the diagonal values, are equal to the sums 
of the eigenvalues, is a recognized advantage. 

Trace = 
5 

E 
1=1 

5 

E 
i=i 

= 5, (9) 

where ii is along the diagonal. 

Since the total variance of the original data is retained 
throughout this algebraic manipulation, the percentage 
of variance associated with any i-th eigenvalue explains a 
certain percentage of the variation in the original data 
matrix, as 

X 100 (10) 

These percentages are listed in Table 5, where the values 
are arranged in a descending order. 

If there were two variables and hence a two-vector 
space, then the first eigenvalue could be interpreted as the 
length of the longitudinal or principal axis, and the second 
eigenvalue as the shorter secondary axis of an elongated 
ellipse that comprises the probability contours of the two 
variates. For three variables the three eigenvalues would 
indicate an ellipsoid; for five variables no geometric illus­
tration would be possible. 

By substituting the eigenvalues into characteristic 
matrix and expanding the matrix row-wise with the signed 
cofactors, the appropriate eigenvectors can be obtained. 
Only one eigenvector, (yj), is associated with each eigen­

value. These eigenvectors (Table 6) are orthogonal (Anton, 
1973); that is, they are independent from each other. 
They span the V = space and they form a basis for this 
five-dimensional space. The total variance rule is preserved 
because the deviations of the individual data vectors from 
the eigenvectors are normally distributed (King, 1969). 
The eigenvectors derived from the standardized data are 
normalized; that is, the eigenvalues are of unit length. 
Their norm is 

-> 

^ 

5 

E 
i=i 

vij = 1 (11) 

The five eigenvectors in the sequence of their significance, 
as associated with the eigenvalues, are listed in Table 6. 
Eigenvectors can also be considered the resultants of the 
standardized data vectors. 

Table 6. Eigenvalues and Their Associated Eigenvectors in an 
Increasing Order from Right to Left. 

Xs = 0 . 3 8 9 9 X„ = 0 .5335 X3 = 0 .8497 XJ = 1.4050 X, = 1.8220 

—>• 
Ys VA y3 y-i y^ 

- 0 . 5 7 0 5 0 .1946 - 0 . 4 5 3 2 - 0 . 5 0 3 2 0 .4169 

0 .5580 - 0 . 2 6 2 6 - 0 . 3 2 2 9 - 0 . 6 5 9 7 - 0 . 2 7 5 2 

0 .5812 0 .5072 0 .0827 - 0 . 0 1 4 7 0 .6308 

0 .0828 - 0 . 7 7 2 8 - 0 . 1 5 3 8 0 .2166 0 .5703 

- 0 . 1 3 5 8 - 0 . 1 9 6 7 0 .8095 - 0 . 5 1 0 1 0 .1652 

By forming the scalar product of the square root of 
each eigenvalue with its eigenvector, another orthogonal 
set of vectors called component vectors is obtained, so 
that 

->• 
= [C] (12) 

where the first eigenvector is weighted with the square root 
of the first eigenvalue, y2 vvith JXT! and so on. These 
newly formed five sets of vectors are also called component 
correlation matrix, where the first component, |X^y i , 
is the principal component followed by the second, third, 
fourth and fifth components. These component vectors 
Cj are also orthogonal and independent from each other; 
that is, the inner or dot product of any two component 
vectors results in zero: 

C j , C 

if j = i 
i and j = 1, 2, 

5 

E 
k=1 

CjkCjk = 0 (13) 
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The component correlation matrix [C] formed by the 
component vectors are also orthogonal, square and nonsin-
gular. The entries or elements of the component vectors 
are called loadings or factor loadings. Each loading indicates 
the proportion of variation in the variables associated with 
the variation in the component. Loadings should be inter­
preted as correlation coefficients, or geometrically each 
loading is regarded as the orthogonal projection of the 
variables on the normalized eigenvectors. The five com­
ponent vectors are listed in the same increasing order as the 
eigenvalues. Counting the vectors from right to left, the 
last column is the principal component and the first column 
is the fifth component (Table 7). The loadings of each 
variable are listed row-wise. 

Table 7. Compotjent Correlation Matrix of the Order of 5 x 5 
Where C , is the Principal Component Followed by the 
Second, Third, Fourth and Fifth Components. 

Components 

C J C 4 C 3 C J C , Variables 

-0.3562 0.1421 -0.4178 -0.6014 0.5627 Runoff 
0.3484 -0.1918 -0.3039 -0.7820-0.3715 Precipitation 
0.3629 0.3704 0.0763 -0.0174 0.8514 Melting degree day 
0.0517 -0.5645 -0.1418 0.2567 0.7699 Global radiation 

-0.0848 -0.1437 0.7462 -0.6046 0.2230 Wind run 

INTERPRETATION OF THE COMPONENTS LOADINGS 

The component loadings, or factor loadings, essentially 
indicate the proportion of variation in the variables that is 
associated with the variation in the component. This 
interpretation is done with respect to the loadings, the 
principle of interpretation being that variables having high 
correlations or loadings on a component will help to iden­
tify that component. The question of how many components 
should be considered is determined by the following rule 
of thumb. The components associated with the eigenvalues 
< 1, or each component that accounts for at least 5% of 
the total variance, should be considered. Loadings can be 
interpreted geometrically as well. For example, the coef­
ficient of 0.8514 in the principal component (Table 7) is 
in fact an orthogonal projection of the variable "melting 
degree day" on the normalized eigenvector yj . 

As we can see from Table 7, the principal component 
is heavily loaded on melting degree day (0.8514), global 
radiation (0.7699), and runoff (0.5627). The second 
component is identifiable with lack of precipitation 
(-0.7820), the third component with wind (0.7462), and 
so on. As all the variables used in the analysis are weather 
related, therefore, each component is associated with the 
simultaneous ensemble of variables or their components. 

Hence, each component is considered to be the intersection 
of the loadings, associated with the events. In other words, 
each component can be written in the form 

Cj = n £j (14) 
i=1 

where £j is loading. 

During the interpretation of the components, the 
following conditions (events) were associated with the 
loading^: runoff (RO), reduced runoff (RO), warm (T), 
cool (T), sunny (S), cloudy (S), windy (W), calm (W), 
precipitation (P), and finally, no precipitation or freezing 
(P). The five components verbally described are as follows: 

i) Warm, sunny day, high runoff, little breeze, and no 
precipitation, i.e. in set notation: Cj = (T, S, RO, 
W, P). 

ii) Cool, cloudy, and calm with freezing and much 
reduced runoff, i.e. C j = (T, S, W, P, RO). 

iii) Very windy, just above freezing, cloudy, increased 
evaporation and reduced runoff, i.e. C 3 = (W, T, 
S, P, RO). 

iv) Fog or cloud over the glacier, above freezing, slight 
increase in runoff, no precipitation and calm, i.e. 
C4 = (S, T, RO, P, W). 

v) Mild, calm day witjh cloud cov^r precipitation and 
reduced runoff, i.e. Cs = (T, W, S, P, RO^). 

Summarizing briefly, the principal component is the nice 
weather component; second component is the freezing 
type weather; third component is identified as windy 
weather; fourth component is foggy weather; and the fifth 
component is precipitation. 

Owing to the normalized and orthogonal eigenvec­
tors, there are two solutions for the eigenvectors and their 
respective component vectors: a positive and a negative 
one. Therefore, the sign of each component can be reversed 
and the number of weather conditions associated with 
each component can be doubled, except when one or more 
components are disregarded for reasons given later. The 
sign of each C j vector in Table 7 can be reversed and each 
loading value will still be valid. For brevity, the opposite 
interpretation of the components is omitted. 

The first couple of components accumulate certain 
variation in each variable and the degree of this variation 
is obtained by Yeates' method (Yeates, 1974). Accordingly, 
the squares of loadings are summed for each variable per 
each component and these sums are expressed as percent­
ages. This measure, called the adequacy of solution for the 
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loadings, which can be written for each variable, is: 

n 

Adequacy of solution = ^ (Cjj)̂  x 100 (15) 
i=1 

i=1,2 5 

where i indicates the variables and j the component vectors 
(Table 8). 

Table 8. Adequacy of Solution of the Loadings for Each Variable 
on Each Component. 

Efficiency of solution for the 

first first all 
3 components 4 components 5 components 

Variables % % % 

Runoff 70.878 72.897 99.999 
Precipitation 84.189 87.867 100.0 
Melting degree day 73.100 86.819 99.9&9 
Global radiation 67.874 99.740 100.0 
Wind run 97.210 99.274 99.994 

N O T E : The percentages in some cases did not add up to 100% 
because of the roundoff error by the computer. 

On the basis of eigenvalues and the associated per­
centages as shown in Table 5, the cutoff point for consider­
ing components can be either component 3 or 4. Yeates 
(1974) recommends a third possibility for locating the 
cutoff point, which is to choose the point along the curve 
of the cumulative proportion of total variation where the 
curvature changes sharply (Fig. 1). In this case, however. 

100 n 
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70-^ 

40-^ 
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O 20 H 

I 2 3 4 5 
COMPONENTS 

Figure 1. Cutoff point for components. It cannot be determined 
because there is no sharp change of curvature along the 
cumulative frequency curve. 

the cutoff point cannot be determined because of the 
uniform change of curvature along the cumulative fre­
quency curve. 

CONCLUSION 

The daily climatological observations may provide suf­
ficient support for mass budget studies, but for energy-
budget analyses these twelve variables seem to be irrelevant. 
It is believed, however, that with the exception of precipita­
tion the other three variables can explain the amount of 
snowmelt. As soon as precipitation comes into the picture, 
either in liquid or solid phase, the snowmelt rates are 
drastically changed. In this exercise only the water-equivalent 
precipitation was used and its phases were disregarded. 
High albedo conditions following snowfall can completely 
cancel the influence of high global radiation. 

Normality of the variables is not an absolute necessity 
for principal components analysis, but when inferences 
are to be made and the inferences require normally distrib­
uted variables, then this assumption cannot be relaxed. 
In multiple regression studies the least squares theory does 
not require normality. To make inferences based on the 
estimates, however, normal theory is used. 

Precipitation values subjected to chi-square test in­
dicated a distribution that is far from normal (Table 9). (In 
this chi-square analysis of precipitation, zero values were 
omitted.) In fact, precipitation did not show normal 
distribution in either liquid or solid phase. It is suggested 
that precipitation values should be divided into snow and 
rain groups, and the frequency distribution of each should 
be transformed into normal distribution by a suitable 
function (Panofsky and Brier, 1968). However, omitting 
cloudiness and sunshine duration from the analysis also 
gives non-normal, j-shaped distribution (Essenwanger, 1976; 
Fogarasi and Strome, 1976). According to the chi-square 
test, cloudiness is the second less normally distributed 
variable. Consequently, it is not surprising that the observ­
ed frequencies of sunshine duration differ significantly 
from the normally distributed frequencies. Therefore, 
cloud data can be utilized only after transformation. 
Finally, it should be stressed that runoff itself is a com­
plicated variable and is not quite normally distributed either 
(Table 9). The histogram of the runoff data shows bimodal 
distribution (Fig. 2). One mode is at 50 x lO^m^ and the 
other one at 125 x lO^m^. The two modes are frequently 
looked upon as indicators which are associated with two 
different processes: snowmelt and perhaps precipitation. 

It is generally accepted that net radiation is a signif­
icant component in snowmelt processes. Unfortunately, 
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Table 9. Chi-Square Goodness-of-Fit Test for Normality of Seven Variables. 

Tabulated at 
significance level Distribution at level 

Variables Calculated 0.1% 0.01% 0.1% 0.01% 

Runoff 17.13 15.1 20.5 Not normal Normal 
Precipitation 99.18 15.1 20.5 Not normal Not normal 
Cloudiness 99.02 15.1 20.5 Not normal Not normal 
Melting degree day 6.36 15.1 20.5 Normal Normal 
Global radiation 16.69 15.1 20.5 Not normal Normal 
Wind run 17.13 15.1 20.5 Not normal Normal 
Sunshine duration 26.58 15.1 20.5 Not normal Not normal 

NOTE: The tabulated X ' statistics are shown for a = 0.1%and 0.01% significance levels with five degrees of freedom. 
The null hypothesis (Hj, = observed frequencies are normally distributed) is rejected with a 99% confidence 
when the calculated X^ > tabulated X ' . 
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Figure 2. Frequency polygon of runoff data for Sentinel Glacier, B.C., 
June-September, 1970-1974. 

this variable was not recorded on Sentinel Glacier. Net 
radiation can, however, be approximated from local obser­
vations, neighbouring weather stations, or from satellite 
pictures. With the use of net radiation, a good prediction 
is expected from a multiple regression analysis performed 
on principal components. For this type of analysis, it is 
suggested that expensive local field observations could be 
discontinued and research workers could rely completely 
on climatological and satellite information available from 
the Atmospheric Environment Service. 

In light of the preceding discussion, to expect the use 
of these variables in a statistical model to explain the 
amount of runoff would, perhaps, be too naive. For the 
second stage of the analysis, it is therefore suggested that 
with normally distributed variables and with the omission 
of days with precipitation, the snowmelt can be estimated 
for selected days if the normalized runoff values are mul­
tiply regressed on the independent principal components 
{Massey, 1965). 
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