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Abstract 

Creep and g l i d e p r o c e s s e s in mounta in snowpacks a re d i s c u s s e d from the p o i n t o f 

v iew o f r e l e v a n t c o n s t i t u t i v e e q u a t i o n s f o r i n t e r n a l d e f o r m a t i o n (c reep) in the m a t e r i a l 

and s l i p boundary c o n d i t i o n s ( g l i d e ) at the base o f s l a b s o r the e n t i r e snowpack. The 

emphasis on the c reep e q u a t i o n s i s t o a t t a i n a f o r m u l a t i o n wh ich i s e a s i l y a p p l i c a b l e i n 

prob lems and wh ich matches the known c h a r a c t e r i s t i c s o f f i e l d da ta r a t h e r than the most 

g e n e r a l e q u a t i o n . Fo r g l i d e , c o n s t i t u t i v e e q u a t i o n s r e l a t i n g d rag shear s t r e s s , T , t o 

s l i p v e l o c i t y a re g i v e n f o r t h r e e mechanisms f o r n e u t r a l zone c o n d i t i o n s and a s tep toward 

the f o r m u l a t i o n o f a g e n e r a l t heo ry o f snow g l i d i n g i s made. N o n - n e u t r a l zone g l i d e 

boundary c o n d i t i o n s a r e a l s o i n t r o d u c e d , and t hese a r e r e l a t e d to r e l e a s e o f f u l l depth 

and wet s l a b a v a l a n c h e s and t o the prob lem o f snow p r e s s u r e on a v a l a n c h e de fence 

s t r u c t u r e s . Porous media e f f e c t s on g l i d e a r e a l s o d i s c u s s e d . 



Resume 

Le present ouvrage traite de la question du clieminement et du glissement des 

neiges, en vue de formuler des Equations constitutives pertinentes pour exprimer la 

deformation interne (cheminement) du matferiau et les conditions limites de glissement 

(planage) au pied des pans de neige ou de toute la couverture de neige. En etablissant 

les equations de cheminement pour remplacer les equations plus generales, on cherche une 

formule d'app1icat ion faciie qui va permettre de resoudre les problSmes concrets et bien 

reflfeter la realitfe observ6e sur le terrain. Pour le glissement, on presente des equations 

constitutives montrant le rapport entre le travail au cisaillement dQ au tirage, x , et la 
vitesse de glissement, pour trois mfecanismes, en zone neutre, et on ouvre la voie S la 

formulation d'une theorie generale du glissement de la neige ou planage. On y presente, 

entre autres, les conditions limites de glissement en zone non neutre et le rapport entre 

celles-ci et le d̂ clenchement des avalanches, qu'il s'agisse de toute la couverture ou de 

pans mouill6s, ou encore le problfime de la pression exerc6e par la neige sur les ouvrages 

de protection centre Ies avalanches. De plus, il y est question de 1'influence des 
materiaux poreux sur le planage. 
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CHAPTER 1 

Introduction 

Creep is defined as the slow, viscous internal deformation in snowpacics, and 

glide, as the slip of the entire snowpacic over the ground or of a snow slab over an 

internal layer within the snowpacl<. Understanding the physics of these processes is of 

the utmost importance in formulating the constitutive relations necessary to solve 

practical problems such as calculation of snow pressures on structures as well as in 

understanding the important problem of the mechanism of release of wet slab avalanches 

and full depth slab avalanches. 

In this report, approximate constitutive equations relating stresses to viscous 

strain-rates are discussed which are consistent with data taken from field experiments. 

In particular, a simple two-parameter equation is discussed which may be applicable in 

practical problems. For glide, constitutive relations are given relating shear stress 

to the glide velocity at the glide interface for three physical mechanisms of glide, and 

a general theory of gliding is outlined incorporating these three mechanisms. Following 

these treatments, two important applications are developed for the case in which there is 

a gradient in glide conditions at the interface. 
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CHAPTER 2 

Creep in Mountain Snowpacks 

The characteristics of viscous creep in the seasonal alpine snowpacl< are 

important in formulating steady glide constitutive equations and viscous constitutive 

equations to describe internal deformation in alpine snow. Undoubtedly, formulation of 

accurate non-linear viscous constitutive equations that are valid in general is a 

formidable task. In this report we only speculate on the aspects of the problem which 

are accessible from field measurements. We consider the class of viscous constitutive 

equations for which creep velocity gradients are small but in which non-linearity is 

permitted. Our goal is to explore forms of the constitutive equations useable for plane 

problems and consistent with field measurements. We seek to develop equations which are 

plausible and applicable rather than the most general equations possible. A general 

constitutive equation is likely to be very complex (Salm, 1967; 1975) and would evidently 
have very little practical use if it could be written. 

CONSTITUTIVE RELATIONS FROM NEUTRAL ZONE CREEP MEASUREMENTS 

Field data are potentially very important in formulating constitutive equations 

because they indicate conditions that are natural and difficult to reproduce in a 

laboratory experiment. Experiments that involve slow, viscous creep are of particular 

interest because they are relevant to the important problems of snow pressure and steady 

glide constitutive equations. 

The usual approach for such experiments is the classic method pioneered by 

Haefeli of taking a core out of the snowpack and back filling with a deformable material 

such as sawdust after placing height markers in the column. Using this method in the 

neutral zone, information can be obtained about both components of creep deformation, 

and the shear and vertical strain-rates can be extracted. 

Analysis of data for w e l l - s e t t l e d alpine snow on open slopes shows that the 

components of creep deformation in the neutral zone are approximately linear with depth. 

There are, however, some important considerations before these results can be interpreted 

in terms of a constitutive theory. Figure la depicts a scheme of typical neutral zone 

data. McClung (197't) gives a detailed discussion of the experiments and data. 

It is evident that creep in the seasonal alpine snowpack is never steady state. 

In steady-state creep theory if the stress, a, is constant the rate of creep deformation 
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is also constant. It is clearly evident tiiat t h \ s is not tiie case hiere. In a seasonal 

alpine snowpack tiiere is extensive bulk deformation which densifies the snow, so that the 

rate of creep deformation is a function of not only stress but also time. Snow is 

inherently unstable, as its structure and properties change on prolonged exposure to any 

temperature even without load. 

Consider the deformation profile in the neutral zone. In this case, the ratio 

of shear stress, T , to normal stress, a , is constant. On the other hand, the shear 
strain-rate, y, is approximately independent of depth at any instant of time but will 
logically decrease with time as densificat ion proceeds. In accord with these results we 

are tempted to write: 

Y = K l (1) 

at any instant in time where K = K (p,T,St) depends on density ( p ) , temperature (T), and 

snow structure (St) at any instant of time but decreases slowly with time as densificat ion 

proceeds. Thus, as time passes, y and K decrease slowly, while the ratio x/a remains 
independent of time. 

Another way to explain the neutral zone deformation profile might be via a 

linear relationship between -y and T at any instant of time with K a sensitive function of 
p , T or St. Field measurements, however, argue against this approach because the shear 

deformation profile is quite straight, whereas the density, for example, increases with 

depth but scatters considerably. The proportionality between shear strain-rate and T 
appears from field data to be a density-integrated stress-dependent effect. 

Field data also show that the vertical strain-rate, e, is approximately 

independent of depth at any instant of time. This may be expressed as: 

e = - B Y (2) 

where 6 is constant at any instant of time but should decrease with time as the snowpack 

densifies. 

With the identifications y = ( i e. . ' e. . ') ̂  , e = e,, and x = (-^ a . . ' o . . ' ) ' , 
2 

3 

can be generalized to arbitrary stress states: 

a = - y a^^ (where a prime denotes the deviatoric part of a tensor), Equations 1 and 2 
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With a.j' = a . . - ^a^^6.y these equations may be expressed as: 

This permits definition of effective moduli analogous to shear and bulk viscosity: 

y = 2K ; n = - (6) 

which are proportional to the mean stress, -a. The effective viscous analog of Poisson's 

ratio could be expressed: 

" = 2 
3 - 2 ( f ) 

3 . (^) 
(7) 

Equations 6 and 7 predict approximately linear shear and bulk viscosity with depth at any 
instant of time and viscous Poisson ratio independent of depth with all three of these 

quantities slowly increasing with time. 

Field measurements are far more numerous than laboratory measurements in 

providing verification for such a formulation. The sawdust column experiments of McClung 

(197'*) from the deep, dense maritime snow cover of the Cascade Mountains in the United States 

provided shear strain-rates which are consistently lower than the reported results in shallower 

(and presumably less dense) snow covers in Switzerland and Colorado. In addition, 

experiments by McClung (197'*) measuring the tilt of poles of various lengths on the same 

slope with a sensitive inclinometer showed that the tilt-rate of the poles was 

approximately independent of length, indicating again that the shear strain-rate is 

approximately independent of depth provided the snow is very well settled. Haefeli 

(Bader e t a l . , 1939) provided laboratory data which showed that the shear strain-rate 
is proportional to x/a for fairly dense snow, but the small number of data he gave do 

not permit any general conclusion. 



Another point is that an equation like Equation 1 has a definite frictional 
character and cannot be expected to apply for stress states like pure shear where the ratio 

x/a is undefined. This shortcoming may not, however, detract from the usefulness of such 

equations for quasi-static calculations in snowpack problems. Certainly, there is no 

generality in the argument presented here, but the argument does provide a framework for 

investigation of bulk stress effects in snow pressure problems. McClung (1976a) used 

similar equations for calculations of snow pressure for the plane strain-rate problem at 

the middle of an avalanche defence structure. The results show that bulk stress effects 

can increase snow pressures by a factor of approximately 201. 

Pressure dependence of moduli is a persistent result in stress-deformation 

measurements for granular materials. Domaschuk and Wade (1969) showed that the initial 

small deformation shear and bulk moduli are linear functions of pressure for sand. 

Wroth (1972) showed that a similar relationship applies for over-consolidated clay. Such 

a relationship is also consistent with results on dry snow. Figure 2 shows the small 
deformation shear modulus for five similar snow samples sheared at the same rate for 

different values of normal stress in simple shear from experiments by the present author. 

A relationship for which the viscosity is constant at zero pressure, as Figure 2 indicates, 
would also remove the objection to inapplicability of the formalism to pure shear stress 

states while stil l retaining approximate agreement with neutral zone results, although it 

results in a more complex formalism. 
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CHAPTER 3 

Glide in Mountain Snowpacks 

Glide is defined as the slow, steady slip of a snow slab over a wetted interface 

within the snowpack, such as an ice layer, or over the ground. Field experiments indicate 

that for glide to occur at the snow-earth interface, water must be present. Water, of 

course, serves as a lubricant to initiate and maintain glide. 

In this report snow gliding theory is discussed in terms of two conditions at 

the glide interface: (l) the snowpack conforms to the interface over which it is gliding 

(no separation) and (2) the snowpack is physically separated from the glide interface by a 

thin (but not infinitesimal1y thin) water film. This division simplifies discussion of 

the theoretical aspects of the problem; however, it should be recognized that in-realistic 

field situations such a division cannot easily be made. 

Inertial forces are negligible for the slow, steady slip described in this paper. 

When there is no separation, the resistance to motion is due to the deformation which the 

snow undergoes in conforming to the shape of the glide interface and also possibly from 

regelation whereby the snow may melt under pressure on the uphill side of asperities at 

the glide interface and refreeze on the downhill sides. Glide constitutive equations for 

these processes are given relating the average drag shear stress <T̂ >̂ at the glide 

interface to the glide velocity Ug. Although the evidence is far from conclusive, it 

seems likely that the role of regelation is very minor in most field situations; this 

point is further discussed in Chapter 3-

When the slope angle is high enough and the roughness of the glide surface is 

low enough, separation of the snowpack or snow slab from the glide interface is possible 

at local points along the surface. If this were to happen, regelation and deformation 

around asperities would not be possible. For a water film thickness which is thin 

enough, however, steady glide is still possible in which the drag is provided by the 

viscosity of the water in the fluid layer in interaction with the geometry of the 

asperities at the glide interface and the snow slab sliding over the asperities. Steady 

glide, however, is only possible when the thickness of the water layer is small. Then, 

there may be significant drag due to a large rate of strain and viscous stress. As the 

water layer becomes thicker, the drag drops rapidly to zero, resulting in instability. 

In this report, the conditions under which separation is bound to occur are 

described, and the general form of the constitutive relations relating the average drag 
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shear stress to the glide velocity is given for steady glide. This mechanism of glide 

will be termed the "lubrication sliding mechanism." 

The three glide mechanisms and their constitutive equations form the basis for 

a general theory of steady glide under conditions in which there is no gradient in large-

scale^ roughness features, water content or stress conditions along the gliding 

interface. The conditions prior to wet slab avalanche release, however, require 

a gradient in glide conditions at the interface. This may be due to the presence of 

varying amounts of water at the interface and/or variations in the interface geometry. 

These conditions may, under certain circumstances, induce a changing relationship between 

the drag <(T )> and the glide velocity at the interface analogous to plasticity 

relationships seen in yielding of geotechnical materials. It is possible under the 

appropriate conditions, for example, for the relationship between <T > and Ug to parallel 
xz 

that of strain-softening seen in the failure of geotechnical materials. Such a process 

will generate high tensile stresses in the slab, making tensile fractures possible 

depending on boundary condition at the glide interface. 

MECHANISMS OF STEADY GLIDE AND THEIR CONSTITUTIVE RELATIONS 

FOR THE CASE OF NO SEPARATION 

Glide by Creep 

When the snowpack conforms to a wetted glide interface, two possible mechanisms 

of steady glide are: (1) creep over asperities at the interface and (2) motion by 

regelation, that is, pressure melting of snow on the upstream sides and possible 

refreezing on the downstream side or some related process. In theory, these mechanisms 

may compete when the snow slab does not separate from the glide interface. 

We consider first the case of creep of a snow slab over a general boundary, 

with the interface surface represented as z = Zo(x,y) and the snow slab and interface 

inclined at an angle V to the horizontal (Fig. lb). We seek a relationship between the 

drag shear stress <T >, which shall henceforth be written as x, at the base of the 

slab and the interface glide velocity. 

To simplify the mathematics, the snow is modelled as an incompressible 

Newtonian fluid flowing at velocities slow enough so that inertial effects may be 

disregarded. The velocity field, u (x,y,z) = (ug ,vg ,w6 ), then satisfies the equation: 

Large scale here means much larger than the scale of the asperities at the glide 
i nterface. 
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yV^u - VP = 0 (8) 

where P(x,y,z) is the mean pressure and y is the viscosity of the snow. Since the flow 
is assumed to be incompressible, 

V-u = 0 (9) 

We seel< solutions to these equations consistent with the boundary conditions of 
the problem in the limit for low roughness, which are: 

( 1 ) u -> Uge far away from the boundary, 
X 

(2) u is tangential to Zo(x,y) at the interface, and 

(3) the shear stress parallel to Zo(x,y) is zero. 

When the snow conforms to the glide interface, the vertical component of the 
velocity, w, must be given by 

3Zo 
W = UQ — (10) 

Similarly, the lateral component of velocity v is given by v = 0 in the low bed roughness 
limit (Kamb, 1970), where roughness means ratfo of amplitude to wavelength. 

The condition that the shear stress vanish at the glide interface is required because 
the interface is wet and, therefore, a shear stress cannot be supported. The condition 
that the interface be free from shear stress is equivalent to the condition that u = UQ there 
(Kamb, 1970). These last conditions are true in the limit by constraining the snow to 
conform to the interface in the limit approaching a smooth interface of low roughness. 

Under the constraints stated above, the principal boundary conditions are in 
terms of u alone. In this case, the solution to the problem reduces to the solution of: 

V2(vx u) = 0 , V-u = 0 (11) 

with the pressure then calculated by Equation 8. 

The general form of the solution to these equations (Batchelor, 1967) is: 

8 



u = Uf function geometry of boundary conditions) 

P - Po = -

(12) 

function geometry of boundary conditions) 

where L is a relevant length scale for the problem and PQ is a reference pressure. 

For the present problem, since there is no boundary shear stress, the equivalent 

drag shear stress is the downslope component of the boundary normal stress, a^^(x,y,0). 

The boundary normal stress may be calculated from the assumed linear constitutive equation: 

0 . . = 2ye. . - 6 . .P 
I J I J I J 

Now on the boundary, e = is given by 
Z Z oZ 

3^ II - n (13) 

and therefore. 

a^^(x,y,0) = -P(x,y,0) 

so that P(x,y,0) represents the interface film pressure. 

Thus, we can write, in general. 

O22(x,y,0) = f u « - funct ion 
x = x,y,0 

, geometry of boundary conditions Oh) 

We seek now the relationship between the average basal shear stress and the 

glide velocity. Following Kamb (1970), the average basal shear stress is defined as the 

average of the x component of a on the surface Zo(x,y), 
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^ = < \ z > = i / ^ z z ^ ^ - y - ^ ^ ^ x • = " 1 " / " P(x,y.O)e^ • d t (15) 
Z=Zn Z=Zn 

where € i s a u n i t v e c t o r in the x d i r e c t i o n and ds i s a s u r f a c e element w i t h d i r e c t i o n x 
normal t o the s u r f a c e , S. T h i s e q u a t i o n may be r e w r i t t e n : 

T = <P(x,y,0) ~y (16) 

T h e r e f o r e , the general form o f the g l i d e c o n s t i t u t i v e e q u a t i o n i s : 

T = — j — • ( f u n c t i o n o f geometry) (17) 

For the general c a s e , t h i s e q u a t i o n may be expressed in the form: 

D (18) 

where D i s a f i e l d measurable parameter c a l l e d a s t a g n a t i o n depth which i s a f u n c t i o n o n l y 
of the geometry o f the boundary c o n d i t i o n s s u i t a b l y averaged along the g l i d e i n t e r f a c e . 
The parameter D r e p r e s e n t s the m i s s i n g l e n g t h s c a l e i n the problem whose s i m p l e geometric 
i n t e r p r e t a t i o n i s w e l l known ( F i g . l b) (Nye, 1969; McClung, 1975). Kamb (1970) gave 
c a l c u l a t i o n s from which D c o u l d be e x t r a c t e d by F o u r i e r a n a l y s i s o f the i n t e r f a c e i n terms 
of the d i s t r i b u t i o n of a roughness f u n c t i o n , r , an index o f which i s the r a t i o o f 
amplitude to wavelength f o r any F o u r i e r component. 

There are many e x i s t i n g d e t a i l e d c a l c u l a t i o n s o f D. Kamb (1970) g i v e s D, f o r 
example, f o r the f o l l o w i n g s p e c t r a l d i s t r i b u t i o n s o f r: ( l ) w h i t e roughness (|r| 
c o n s t a n t ) ; (2) t r u n c a t e d w h i t e roughness (|r| c o n s t a n t f o r a l l wavelengths below a f i x e d 
lower l i m i t ) ; ( 3 ) sing1e wave 1ength and (k) c r o s s - c o r r u g a t e d s i n u s o i d a l waves. 

F i e l d measurements o f D (McClung, 
from D = 0, f o r the case i n which t h e r e i s no 
about D = 3H where H i s the depth o f the pack 

1975; Salm, 1977) i n d i c a t e t h a t i t v a r i e s 
water present at the g l i d e i n t e r f a c e , up to 
p e r p e n d i c u l a r t o the g l i d e i n t e r f a c e . 

G l i d e by R e g e l a t i o n 

It may be p o s s i b l e f o r steady g l i d e t o occur by r e g e l a t i o n , s i n c e snow i s 
composed of a m a t r i x o f i c e g r a i n s and i c e can melt-under p r e s s u r e . The essence of the 
phenomena, as i t i s u s u a l l y d i s c u s s e d f o r the s i m i l a r problem i n g l a c i e r s l i d i n g , i s th a t 
m e l t i n g o c c u r s at the h i g h - p r e s s u r e upstream s i d e s o f a s p e r i t i e s and t h i s i s f o l l o w e d by 
r e f r e e z i n g on the downstream s i d e s . There a r e , however, some i n d i c a t i o n s t h a t r e g e l a t i o n 
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plays a minor if not negligible role in the snow gliding process. First, typical depths 

of the alpine snow cover usually mean that the pressures at the glide interface are much 

lower than those at the base of a glacier where the process is l<nown to occur. Secondly, 

there is some experimental evidence that glide does not occur on slopes such as rock faces 

where small wavelength asperities are present unless there is a good amount of water. If 

one compares the solution for glide regelation with that for creep, for the single sine 

wave case, one finds that it is not possible for glide to occur by creep over small wave­

length asperities, although glide should be easy over the small wavelength asperities if 

regelation is taking place. Glide observations on rock slopes in western Norway (McClung, 

1976b) and in Switzerland (Salm, personal communication) indicate that glide occurs only 

when a large quantity of water is present at the interface. This could be taken to mean 

that the small wavelength asperities had to be drowned before glide could occur, although 

the meagre evidence to date is far from conclusive. Since the snow at the glide 

interface is at the melting point when glide occurs, there is undoubtedly regelation in 

some form taking place as the grains move by each other and over the asperities; yet the 

role of the process in the creep mechanism or by itself as a viable glide mechanism is 

not well understood. Quantitative evaluation of the process as a glide mechanism will be 

hampered until the basic physics is understood and until careful regelation experiments 

are perforrned on snow to permit a satisfactory definition of the relationship between the 

pressure at the glide interface and the melting point temperature. 

Like the glide constitutive equation for creep over asperities, the corresponding 

relation for glide by regelation Is well known. The general form of the equation is 

(Kamb, 1970; Nye, 1969, 1970): 

T = K.G.Uo (19) 

where K depends on the physical regelation constants and constants of the snow and the 

glide interface material, and G depends on the geometry of the boundary conditions. 

Again, several calculations of the product K-G are available in the literature (Nye, 1969, 
1970; Kamb, 1970). 

Following Nye (1969), this last equation can be rewritten as: 

yU 

T = ^ (20) 
R 

where Dp̂  = y/K-G to get a form analogous to Equation 18 for the creep solution. 

To discuss creep and regelation as competing mechanisms the superposition rule 

outlined by Nye (1969) must be used. The connecting link between the creep and regelation 
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mechanisms is the pressure in the water film at the glide interface. Only in the case of 

a boundary of a single sinusoid does the pressure for the two solutions have the same 

form. Therefore Nye's superposition rule states that for a general interface, the 

interface is decomposed into harmonics, and then for each harmonic, the velocity for pure 

regelation is added to that for viscous creep. The summation for each harmonic then 

gives the total velocity produced for a given applied shear stress and the drag produced 

for a given velocity. For a single sine wave, the forms of the creep and regelation 

constitutive equations are (e.g., Nye, 1 9 6 9 ) : 

and 

^ = ( 2 ^ ) U o R (22 ) 

respectively, where r = A/A, the ratio of asperity amplitude to wavelength. 

These equations exhibit the expected relationship that for short wavelengths 

the drag is very high for the creep process, while for long wavelengths the drag is very 

high for the regelation process. As yet undetermined, C is a constant for snow from the 

Clausius-Clapeyron equation. The relevant thermal conductivity is K and the latent heat of 

fusion is L in the problem. 

For the ith harmonic, the velocity is then 

Uoi = Uoci + UoRi = + ( 23 ) 
yr? ( 2^ ) ^ LA.r.2(2Tr) 

I I I 

or (D . + D „ . \ D. 

Summing over i , with Ug = T.U. , D = ZD., gives 
i 

U o = ^ T ( 25 ) 

Now D is a measurable parameter and we note that i n oases i n which i t i s 

expected that creep and r e g e l a t i o n w i l l he competing, if D is much less than the snowpack 

depth it is expected that the glide process will be mostly by creep. For cases in which 

D is considerably greater than the snowpack depth, we anticipate that glide will be mostly 

by regelation. When D is on the order of the snowpack depth, we expect that the processes 

w i l l be competing equally. As noted, stagnation depths in the range of from near zero up 
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to 3H have apparently been measured. Nevertheless, this does not mean that regelation is 

a glide mechanism because the possibility that fast glide may be due to separation 

effects and large amounts of water is much more likely. 

SEPARATION—THE LUBRICATION SLIDING MECHANISM 

The fastest measurements of gliding are from smooth slopes covered by grass or 

smooth rock slopes when appreciable water is present at the glide interface. Measurements 

of steady glide in Switzerland indicate stagnation depths as high as three times the snow 

depth (Salm, 1977). This observation, along with the doubtful participation of regelation 

sliding to any great degree, points to another glide mechanism which may be very important. 

The mechanism is rigid body sliding of the snowpack over the ground with the snowpack 

separated from the ground by a thin water film. It cannot occur unless there is physical 

separation of the snow cover from the asperities over which it may be creeping. This 

mechanism of glide lubrication will be called sliding. The sliding resistance in this 

case is provided by viscous resistance in the thin water film. It should be emphasized 

that the water film must be very thin for this mechanism to produce steady glide because 

if the water film were thick compared with, for example, asperity amplitudes, the 

resistance to sliding would become very small and instability would result. 

Field measurements consistently indicate that the values of glide velocity show 

large fluctuations especially when rainfall or excessive melt is taking place. Since both 

the creep and regelation mechanisms predict a unique glide velocity for a given set of 

geometry and stress conditions, it seems likely that another mechanism is responsible for 

those fluctuations, and from the standpoint of the present theory, the fluctuations are 

attributable to the onset of local separation. In this sense glide would not be steady. 

However, if a constant water content at the glide interface could be maintained, steady 

glide would be possible. 

It is difficult to understand quantitatively the intermediate steps in which a 

snowpack undergoing steady creep separates at various points and then subsequently glides 

mostly by the lubrication sliding mechanism. It is possible, however, to identify the 

condition under which separation should begin to appear. To do this it should be 

remembered that the normal pressure on the glide interface can be considered to fluctuate 

about a mean value set by the overburden pressure for a snowpack where steady glide is 

mostly by the creep mechanism. 

Physically the drag due to creep occurs because the normal pressure on the upstream 

sides of asperities is greater than on the downstream sides. Since the fluctuations in normal 

pressure (pressure of the snowpack against the glide interface) can take positive 

(upstream side) and negative (downstream side) values, it is possible that the fluctua­

tions can be larger than the overburden normal stress, resulting in no pressure of the 
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snowpack against tlie glide interface upon which time separation will begin to occur. The 

fluctuations are large for very smooth glide surfaces where the ratio of amplitude to 

wavelength is small. Therefore, we expect separation to begin at the downstream sides of 

asperities on smooth glide interfaces and for cases where the snowpack is thin. Once 

separation begins it is easier for any water present to flow into the low pressure 

separation area, thereby leading to increased lubrication and a smaller area of the 

snowpack in contact with the glide interface leading to faster sliding and perhaps a 

self-perpetuation of the process. 

To investigate the condition for separation, we wish to know when the normal 

pressure fluctuations begin to approach the overburden pressure. We follow the treatment 

of Kamb (1970) in our development here. 

An index of the normal stress fluctuations is <̂P̂^̂  for the Fourier-analyzed 

interface and this is to be compared with the overburden pressure, a = pgH cos ¥. 

The equivalent bed shear stress, x, is given by 

For a sinusoidal roughness of a single wavelength, the ratio of <P̂ >̂ /x is 

given by: 

<P2>̂  < P ¥ _ 
(27) 

This may be expressed as (Kamb, 1970) 

<P2>̂  1 
Trr /2 

(28) 

A 

where r = —. This equation defines a quantity like the inverse of a coefficient of 

friction which is proportional to the roughness parameter r. 

As Kamb points out, the actual maximum value of |p| is given by <2p2>. 

In the neutral zone for steady glide, the ratio of x/a = tan Y, where f is the 

slope angle. Therefore, the separation condition is approximately: 



<I^__J_ta^ . 1 ( 2 9 ) 
a -n/l r 

Separation is expected to begin on steep slopes where the roughness parameter is 

small and also when the overburden normal stress 0 is small (thin snowpacl<s). 

Similar relationships could be formulated in the manner of that by Kamb (1970) 

for more general roughness spectra, but for the case of a linear Newtonian viscous 

rheology, the results would be little affected over a wide range of values of r (Kamb, 

1970). Thus, the general conclusion is that separation is expected on steep slopes for 

beds of low roughness and thin snowpacl<s. This result is very much in agreement with 

field measurements and observations of gliding behaviour. Glide fluctuations are 

greatest on steep slopes with smooth interfaces early in the season when the snowpack 

is thin (McClung, 197^). 

HAEFELI'S SLIDING BLOCK EXPERIMENTS 

Haefeli (Bader e t a l • , 1 9 3 9 ) performed experiments which have some relevance to 
experimental simulation of the lubrication sliding mechanism. He measured the 

sliding characteristics of snow blocks on glass plates. The experiments were conducted 

for various interface temperatures and normal stresses. Figure 3 shows an example of 
Haefeli's data for a dry glass plate, a partially wet interface (T. = 0°C) and a wet 

interface (T. > 0°C). These data show in general a linear relationship between T and UQ 
and a decrease in the ratio of T / U Q with an increasing amount of water at the interface. 

Haefeli's experiments provide partial experimental proof that the relationship 

between shear stress and glide velocity is linear for rigid body sliding of wet'snow over 

a smooth interface. For the expected field condition of a rougher interface, analysis 

shows that this constitutive equation would be linear in the general case with a 

correspondingly higher constant of proportionality. As pointed out previously (McClung, 

1975), however, if the water film thickness becomes much greater than the asperity 

wavelength or if the film thickness between the snow and the asperity becomes greater 

than a thin film, the drag, x, will tend to zero as the film thickness increases. An 

unstable condition will develop, making steady glide impossible. Haefeli's experiments, 

indeed, show extremely small drag as the meltwater film thickness increases. It is also 

possible that the linear T - U Q relationship will break down as UQ-H); this important 

aspect of the problem is disregarded in the present formulation. 
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CONSTITUTIVE RELATIONS FOR THE LUBRICATION SLIDING MECHANISM 

AND THEIR PHYSICAL BASIS 

Let us consider the general case of a snow slab sliding by rigid body motion 

over a rough interface with the slab separated from the gliding interface by a thin film. 

Figure ha depicts the situation. 

For the case of slow, steady glide the problem is to solve for the fluid 

velocity, u, and the fluctuating water pressure, P, distribution in the film. The 

relevant equations to be solved, disregarding inertial effects, are 

U V 2 u - VP = 0 
w 

V-u = 0 

(30 ) 

where y is the viscosity of water at 0°C. In this case, the boundary conditions are in 
w ->-

terms of u alone, namely u = 0 on the bed and u = UgŜ  on the gliding snow slab. The 

equations above then reduce to: 

V2 ( v xu ) = 0 , V u = 0 ( 3 1 ) 

The solution to this problem is of the form (Batchelor, 1967) 

u = Uo • function (p geometry of boundary conditions) ( 32 ) 

P - Pn = 
ŵ̂  

function (j-, geometry of boundary conditions) ( 33 ) 

The shear stress is given by: 

ŵ ydz 3xy 

The shear stress is, in general, of the form 

ŵ̂  f(geometry of boundary conditions) (3 ' t ) 
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where L is indicative of the film thiclcness. However, it retains this definition only 

when the faces separated by the fluid are smooth with parallel sides. Several specific 

solutions are available from lubrication theory, and it is instructive to lool< at these 

solutions to understand the physics of the mechanism. 

Batchelor (I967) gives the solution for the sliding blocl< tilted at a small 

angle = sliding over a smooth surface (Fig. kb). For the geometry of Figure kb, the 
T - U Q constitutive equation is: 

as. l^dTTdlj - 2 d j (35) 

The pressure is given by: 

6y. 
P - Pn = 

(di-d)(d-d2) 

d2(di+d2) 
(36) 

where a = — = r for the geometry in Figure '*b. 

The pressure is supportive only when fluid is forced from the wide to the narrow 

end of the blocl<. This case is of interest because it is the limiting case of the 

sinusoidal roughness for low roughness. We could define an equivalent coefficient of 

friction by j / a and this is proportional to r : =>:. 

Thus, for a periodic distribution of roughness, we expect a drag to be exerted 

on the gliding snowpacl< for a thin enough fluid (water) layer, and it is the geometry, 

fluid thiclcness and fluid pressure which control the sliding conditions. If the block or 

glide interface has a rougher surface, obviously the pressure distribution will be altered 

and the drag will be changed. Michel 1 (1950) discussed in detail the important case of 

sinusoidal asperities sliding over a smooth plate. The main result of this significant 

calculation is that the value of the coefficient of friction decreases as the film 

thickness approaches the height of the asperities. Greater film thicknesses would result 

in rapidly diminishing friction. 
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GENERAL THEORY FOR GLIDE 

Obviously, a general theory of snow gliding would be very difficult to formulate 

and in view of the unknowns involved it would not only be complex but impossible at this 

time. Since the creep constitutive equation of snow is most likely non-linear and 

compressible, a general treatment of the creep mechanism would clearly result in a non­

linear relationship between T and Ug, and so in general the glide constitutive equations 
would be non-linear where there were competing mechanisms. In addition, without further 

experimental evidence and theory it is impossible to evaluate the mechanism of regelation 

in spite of the suspicion that its role is negligible or at any rate small. 

To point the way toward a general theory, we bypass these shortcomings of our 

knowledge for the moment and consider a three-mechanism theory based on linear incom­

pressible Newtonian modeling of the constitutive equation describing the internal 

deformation in the snow slab. We presume that glide is possible by regelation in the 

manner described above. 

When there is no separation, the glide constitutive equation is of the form: 

^ = — = (D̂  . D̂ ) (37) 

where D is dependent on the geometry of the glide interface and the physical constants 

from the regelation physics and snow viscosity. If D is significantly less than the 

snowpack depth, glide is mostly by creep, and if D is significantly larger than the 

snowpack depth, glide is mostly by pressure melting. The D depends only on the geometry 

of the boundary .conditions, regelation physics constants, and the snow viscosity. If the 

film thickness is large enough to drown some of the smaller asperities or if some of the 

asperities are of low enough roughness, technically there will be separation, and the 

lubrication sliding mechanism will come into play at various localities, resulting in an 

increase in glide velocity and an effective increase in the stagnation depth. Gliding 

experiments in Norway (McClung, 1976b) and in Switzerland on rock slopes that are smooth 

except for small asperities give some support to this logic. These experiments show very 

little or no glide until significant amounts of water have reached the interface. This 

could be interpreted to mean that components of the roughness spectrum were present 

for small wavelengths, making the creep mechanism very slow with the regelation 

mechanism not participating. Addition of water at the interface could drown these small 

wavelength asperities, increasing glide by permitting creep over the longer wavelength 

asperities and/or local separation at the small wavelength asperities. 
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If one decomposes the bed into harmonics and mal<es use of Nye's superposition 

rule and then if one presumes that regelatioh in a snowpacic is similar to regelation for 

ice sliding problems, it is the asperity wavelength which controls the competition between 

these two mechanisms. Short wavelength asperities in this case would be suitable.for 

fast regelation because of a short heat conduction path, whereas creep would be faster 

over long wavelength asperities. When water began to appear in any quantity, the heat 

conduction path would be lengthened and regelation would be suppressed. On the other 

hand, creep might be enhanced and local separation might begin to appear at points of 

low A/A. 

Therefore, one can say that it is the wavelength which controls the participation 

of the creep and regelation mechanisms and it is the roughness parameter which determines 

whether the lubrication sliding mechanism will be competitive. The general form of the 

glide constitutive equation for the lubrication mechanism is of the form: 

y 
T = — • f(boundary conditions) Ug (38) 

where L depends only on the geometry. 

We can express this in the form of the glide constitutive equation for the other 

two mechanisms as: 

T = ^ (39) 

where D is now a complicated function of y, y^, geometry and water content. Therefore, 

the general case of any of the three mechanisms can be expressed in the form of Equation 39 
where D is a field measurable parameter. 

For the case in which separation does not occur, if D is less than the snowpack 

depth, glide is mostly by creep, and if D is greater than the snowpack depth, glide is 

mostly by regelation. When separation occurs, for small r and high slope angles, 

regelation would be suppressed (if it exists); if D is much less than the snowpack depth, 

glide is mostly by creep, and if D is greater than the snowpack depth, glide is mostly by 

1ubr i cat ion s 1 i d i ng. 

For the case of steady glide over a surface other than a rough surface, such as 

glide over ice layers within the snowpack, we expect the mechanism to be lubrication 

sliding. There are, however, no steady glide measurements for such surfaces because of 

the experimental difficulty in locating such a layer and because such situations are 
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usually expected to be present prior to release of wet slab avalanches when the glide 

is presumably not steady. This situation is discussed in subsequent sections. 

In most cases competition will be possible among these three proposed mechanisms. 

Field data show a fluctuating component superimposed on the expected behaviour for a creep 

mechanism. McClung (1975), however, provided data for a case on a timbered slope when the 

lubrication sliding mechanism was likely somewhat suppressed (Fig. 5). This experiment 
showed largely steady glide during the middle of the winter and a dependence on snow depth 

for two different seasons. 

POROUS MEDIA EFFECTS FOR STEADY GLIDE 

In the case of steady glide by the creep mechanism, it is possible that if the 

snow in the bottom layers of the snowpack is saturated with water, excess pore pressures 

may develop and affect the glide boundary conditions. On the other hand, any excess water, 

such as would exist for saturated snow at the interface, would tend to suppress regelation 

by lengthening the heat conduction path. 

As snow creeps over asperities, there will be zones of high pressure on the 

upstream sides and zones of low pressure on the downstream sides. This can cause local 

squeezing out of water on the upstream sides (consolidation) and dilation of the snow on 

the downstream sides of asperities. If glide was fast enough by the creep mechanism, 

excess pore pressures could possibly be built up by this mechanism, thereby affecting the 

glide constitutive equation by the effect of pore pressures on the normal stresses on the 

asperities. The condition would be that glide would occur faster than excess pore 

pressures could diffuse away. A simple dimensional analysis of the problem is possible 

by comparing the half-wavelength of the asperities, with the characteristic diffusion 

length of C / U Q , where c is the diffusivity. The non-dimensional quantity of relevance 
UQ A 

I S : ~ ' Y' ^^'5 quantity is on the order of or greater than 1, then the above-
mentioned porous media effect will be important in the glide problem, i.e., we require: 

U„ A 

For the glide problem, Ug is on the order of 1-10 mm/day, while A is expected 

to range from a fraction of a millimetre to on the order of 0.5 m. At present it is 
not possible to give accurate values of c. Order of magnitude estimates, however, seem 

possible based on reasonable values for other materials. For example, for clay c is on 

the order of 10"^ m̂ /s, while for porous sandstone c is on the order of 1 m̂ /s (Rice and 
Simons, 1975). For snow, which is very porous and which has a permeability of -lO'* that 
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of clay, we naturally expect values of c much higher than for clay. It is obvious from 

the expression above, that only for values of c as low as that for clay will the condition 

above be satisfied. Therefore, we conclude that it is very unlikely that porous media 

effects will influence steady glide. The basic reason is that steady glide is slow 

enough to permit dissipation of pore pressures by diffusion through the snow, which is 

very permeable. 

Porous media effects of the above-mentioned kind would not be expected to have 

any influence on the lubrication sliding mechanism because of the separation of the 

snowpack, which is necessary for the mechanism to operate. Water pressure of another 

kind, namely that of free standing water, P̂ , having access to the interface may also 

affect the gliding conditions. In that case the condition for separation may be affected. 

Following Kamb (1970), we express the water pressure as a fraction, k, of the applied 

normal stress, 0 . The separation condition then becomes for the case of a single 

wavelength: 

0 - P TT/2 (1-k) r 
w 

Experience, however, shows that free standing water to any significant depth is rare in 

the alpine snowpack because either it drains away or is coincident with avalanching, 

which is not associated with steady glide. However, since the density of alpine snow is 

usually one-third to one-half that of water, the effect may be felt for thin snowpacks. 

GLIDE CONDITIONS FOR NON-NEUTRAL ZONE CASES 

The above sections all deal with glide conditions in the neutral zone. However, 

there are many situations in which a gradient in glide conditions occurs in compressive 

and tensile zones in the snow cover. Discussion here is limited to the two-dimensional 

plane strain-rate case. 

When there are differences in roughness and water depth along a glide interface, 

the constitutive relation between shear stress, T , and glide velocity, U Q , will be a 

variable relationship rather than a constant. Figure 6 shows the relationships for three 

possible configurations. 

These relationships are analogs of constitutive relations describing plastic 

failures in thin samples of materials deformed in shear. Figures 6a and 6b depict analogs 
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of strain-softening behaviours, while 6c is the somewhat more ideal case of the analog 
of perfect plastic behaviour. 

These conditions could result from geometrical conditions at the interface in 

transition from a region of high roughness to one of low roughness; from varying water 

content at the glide interface, for example, by inhomogeneous melt or rainwater perco­

lation; or from combinations of these as well as other factors. 

For the case in which glide begins at an interface, from a no-glide condition, 

it is possible that the situation may appear as in Figure 6a. This situation might 

result if there was bonding between the snowpack and the glide interface. For example, 

it might occur when meltwater or rainwater reached an interface which was previously 

dry; melting of bonds takes place analogous to a failure of dry snow. Slow shear 

failures of dry snow samples often show stress-displacement curves like that of 

Figure 6a (McClung, 1977), i.e., strain-softening type failures. Shear experiments on 

dry snow show that strain-softening experiments are accompanied by dilation owing to 

interparticle interference and other factors. It may well be that when melt takes place 

and destroys bonds in a given region, for example, coincident with the start of sliding 

over an ice interface, there may be less interference to sliding and dilation need not 

be present. Shear stress-glide velocity distributions, as in Figures 6a and 6b, are 
viscous analogs of strain-softening curves of shear stress-displacement observed for 

failures of dry snow and other geotechnical materials. 

Non-neutral zone conditions imply size effects in the snow gliding problem. 

One unknown size is the implied distance along the glide interface in which the shear 

stress falls from its maximum to its minimum value. At present it is not possible to 

estimate those kinds of size effects because relevant experimental data relating shear 

drag to glide velocity do not exist. It seems logical, however, that a wide range 

of these size effects may exist. For example, the water content at the glide interface 

might increase for long distances downslope, which would produce a continual reduction 

in shear stress with downslope distance. Such size effects are well recognized for 

strain-softening failures in geotechnical materials, such as clays prior to the onset 

of shear band propagation (Palmer and Rice, 1973; Cleary and Rice, 197'*), as well as 

for failures in dry snow (McClung, 1979). 
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C H A P T E R 4 

Wet Slab Avalanche Release 

When the conditions at the giide interface are such that the glide velocity in­
creases in the downslope direction, the process is analogous to plastic yielding in an 
inf i n i t e l y thin zone. Probably the most important glide mechanism is lubrication-sliding 
for wet slab avalanche release because such a mechanism is concurrent with low values of 
fri c t i o n and high gliding velocities at the sliding interface. In such a case the proper 
boundary condition is a relationship between shear stress and glide velocity which must be 
provided by experimental measurements. The transition region from a region of slow glide 
to a region of fast glide i s , then, characterized by a process analogous to strain-softening, 
which is observed in shearing of many materials including dry snow. This transition region 
is called the breakdown zone. We do not, however, expect that the fracture mechanical ideas 
that were applied to the dry slab in McClung (1979) w i l l be s t r i c t l y applicable to the wet 
slab problem, the reason being that when separation occurs, a water film separates the slab 
from the substratum and a fracture mechanical s t r e s s - d i s p l a c e m e n t relationship would be 
i nappropr iate. 

We intuitively expect that the relationship between shear stress and glide 
velocity w i l l involve a drop in shear stress accompanied by a rise in glide velocity 
downslope from a region of relatively slower gliding. This process w i l l involve an 
important size effect in the breakdown zone, which is the distance along the glide sur­
face in which the shear stress drops from its peak to its lowest (residual) value. This latter 
value could be near zero in the case of unstable separation. It is clear that this size 
effect w i l l be heavily dependent on the substratum geometry and water content along the 
glide surface and that we have no known way to evaluate i t in general. We do, however, 
anticipate that the breakdown physics w i l l be an important aspect of wet slab avalanche 
release. 

Another important aspect of the problem, as we shall see, involves the rise of 
shear stress beyond the breakdown zone once a residual value is reached. This also w i l l 
involve a size effect for recovery to a neutral zone value of shear stress and glide 
velocity appropriate to the interface conditions in the recovery zone. The size effect 
w i l l also depend upon the water content and substratum geometry. This zone is called 
the recovery zone. If we assume no gradients in water content and substratum geometry 
in the recovery zone, this part of the problem is amenable to solution because relation­
ships between shear stress and glide velocity for steady glide can be used. Figure 7 
shows a possible relationship between shear stress and glide velocity downslope. 
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Our interest focuses on tlie tensile stress conditions in the body of the slab 
for typical slab parameters. Since the character of the breal<down zone is unicnown, a 
case must be developed where the breal<down zone can be compared with the slab height H 
and then we can easily analyze the case for small breakdown zones from this more general 
result. The modeling below is intended to be for f u l l depth wet avalanche release where 
there is roughness at the glide interface. Obviously, for wet slabs sliding over a 
smooth ice interface in the pack the modeling may be analogous but the f r i c t i o n drop 
might occur very rapidly so that the quasi-static approach breaks down. 

SLAB STRESS CONDITIONS FROM A ONE-DIMENSIONAL MODEL 

To study tensile stresses in the snow slab under a changing shear stress 
boundary condition, we specialize to a one-dimensional model and we assume in this 
approximation that most of the deformation is on the glide surface rather than in the 
slab. We further assume that the substratum is much harder than the slab material, as 
this is the case for most wet slab avalanches where typical substrata are ice layers or 
the ground, so that the surface is impermeable to water. In our model, we shall average 
quantities over the depth of the slab (or snowpack): 

H 

a = / a dz 
H ^ X X 

0 

To analyze the simplest case we develop the model for the situation in Figure 7. 
Since the boundary condition in the breakdown zone is unknown, we assume that the drop in 
shear stress is linear with distance in the transition from a wet interface to a much 
wetter interface. Once the interface is fu l l y wetted, we assume for simplicity constant 
water content and geometry at the interface and this, as we shall see, implies a size for 
the recovery zone. 

For the one-dimensional scheme described above, we can write the equilibrium 
condition by averaging over z dependence as: 

H ̂  = pgH sin f - T(X) = - x (x) Ctl) 

where T(X) denotes the distribution of shear stress as a function of x. 

We further assume that the slab material is linear viscous, characterized by 
a constitutive equation: 
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a = E'e - (hi) 

and where the extensional strain-rate is: 

du 
{'t3) e - dx 

For a homogeneous slab, PQ is given by: 

pg cos f H 

From Figure 7, the following boundary conditions can be written: 

T T for x = 0 and x ->-
g 

u = U o f o r x ^ "° 

e = 0 for x •+ <» 

e = eo for x = XQ 

U = U for X = XQ 

T = T for X = X g 

u = 0 for X = 0 

For the recovery zone we wish to satisfy a glide constitutive equation of the form: 

u = ku 

in accord with our treatment of snow gliding theory. 

First we consider the recovery zone: 

" > X > X Q 
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We multiply Equation 4l by e and integrate to get: 

g - C'S) 

Using Equations kk and kl in Equation hS gives the condition 

^ ^ dl - = T g U - i ku2 m 

or 

72 
e 

/du\2 /2T^U ku2\ 

This is a non-linear d i f f e r e n t i a l equation. Since u = UQ and e = 0 for 

X •> «>, we get: 

^̂ 0= (î y = (kt)^ (̂ 8) 

Substituting this into Equation k7 then yields: 

du / k /T \ 

d3r= *VHE^(^" 7 "̂̂ ^ 

If we reject the (+) solution so that the result is well behaved for large x, 

solution of Equation 49 for the boundary conditions above yields: 

(50) 

for =» > X > X g . 

26 



For the region xg > x > 0, we tal<e a linear distribution of shear stress, for 
examp1e: 

(51) 

Substituting this into Equation 41 yields: 

i(x) 

a(xo) 0̂ 

( T „ - T J dx 
XQ H ^̂ g 'R 

(52) 

Integrating gives for XQ > x > 0, 

o(x) = a(xo) + 2^ (Tg - T ^ ) - — (Xg - T^) (53) 

From Equation 50, we can calculate a(x) for > x > XQ in conjunction with Equation 42: 

a(x) = T , J5 ('-;;) exp - J - ^ (x - XQ) - Pc (54) 

For a(xo), we get from this: 

'^^^^ = ̂ g (55) 

The maximum tensile stress will be found at x = 0 as: 

where we have not yet defined X Q -

Use of Equation 53 in conjunction with the constitutive equation yields: 
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du T 

dx / E ' k H \ T / 2HE' V x o / 
(57 ) 

I n t e g r a t i n g t t i i s and u s i n g the c o n d i t i o n u = 0 when x = 0 g i v e s : 

/ F k H \ T / 2HE' \ 3xo/ 
(58 ) 

The c o n d i t i o n 0 = 0̂ , when x = g i v e s : 
K u 

V SHE' / / F k H \ T / 

(59 ) 

T h i s i s a q u a d r a t i c e q u a t i o n w i t h a p o s i t i v e roo t g i v e n by : 

to p r o v i d e an e s t i m a t e o f the breakdown zone l eng th where we have used E q u a t i o n kk and 

where E' = - p ^ in terms o f the shear v i s c o s i t y , u , and the v i s c o u s ana log o f P o i s s o n ' s 

r a t i o . 

S i m i l a r l y , we can e x p r e s s a(0) a s : 

f o r the maximum v a l u e o f t e n s i l e s t r e s s . For the case o f sma l l breakdown z o n e , X Q , t h i s 

reduces t o : 
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a - T 
max g 

(62) 

For Equations 60 and 6l our interest focuses on the conditions when the tensile 

strength of the slab material is approached in the slab by the maximum principal stress 

and when the angle between the maximum principal stess and the glide interface, y, is 

10° or less (Perla and LaChapelle, 1970). 

Accordingly, the de f i n i t i o n of y i s : 

Y = 2" tan 
\ XX zz/ 

(63) 

For the one-dimensional approximation this can be expressed roughly as (at the 

g1i de i nterface): 

1 . - 1 / 1 \ 

max 
^ =̂  2 la cot -F 

2T 2 
g 

(64) 

at x = 0. Si m i l a r l y , the maximum principal stress i s : 

a + 0 
XX zz , 

a, = 2 + 

'.a 

xz 
(65) 

which can be expressed as (at the glide interface): 

o, / a cot >F\ r/ a \ 1 (66) 

at x = 0. 
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Figure 8 depicts crj /Tg and Figure 9 gives y as functions of D/H and v for 

T / T „ = 2 and T / T ^ = 10 witin ¥ = hS° . Figure 10 gives predictions of the breal<down zone g R g r( 

length as functions of Poisson's ratio and relative stagnation depth. 

We can also estimate the recovery zone length by observing that the glide 

velocity returns to 33% of the neutral zone value in the distance 

from Equation 5 0 . For example, if v = 0 . 2 and D/H ranges from ̂  ~ ^ 3 , x' is 

approximately between 5 . 6 H and 13.7 H . The length underneath the slab under which the 

glide conditions are perturbed from their neutral zone values is approximately 

X g + x' = 6 H to 1 6 H according to the one-dimensional model presented here. 

For the model presented here, rather vigorous gliding (large D) is needed to 

bring the maximum principal stress near to 1 0 ° of the perpendicular to the glide 
interface, and low residual friction is also required. It should be remembered that the 

model is one-dimensional and assumes that most of the deformation occurs at the glide 

layer. Finite element calculations may predict quite different results when deformation 

in the slab is accounted for. 

The results presented here indicate that separation and lubrication sliding 

are the important glide considerations for wet slab avalanche release, and presumably, 

very smooth surfaces and a large quantity of water must be present over a significant 

basal region on a steep slope to precipitate release. 

The two key parameters in the present theory are the relative stagnation 

depth, D/H, and viscous analog of Poisson's ratio. Since the equations do not vary 

greatly with Poisson's ratio, it is likely that the boundary condition at the glide 

interface controls the release. 

The model chosen is, of course, very idealized, but it indicates features 

that should be present with respect to release of wet slab avalanches. The breakdown 

zone can be large with respect to slab thickness H and is analogous to a strain-
softening failure in solid materials. The recovery zone in which we have taken 

constant water content and geometry may not display these conditions, and therefore 

it could be much larger than our predictions if a gradient in water content prevented 

shear stress recovery. It would be relatively easy to generate a region in which 

boundary conditions are perturbed over 2 5 H in this way. In this sense, our model 
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stands as a prediction for minimum tensile stresses in the slab and maximum angles, 

Y -

This treatment of the wet slab avalanches has to be regarded as an approximation. 

In reality, there will be a distribution of pressure in the water film at the base of the 

slab which can make water flow perturb the boundary conditions from the simple model 

given here. 

It is remarkable, however, that the relative stagnation depth D/H = 3 necessary 
to rotate the maximum principal stress to within 15° of the glide plane is in accord 
with the fastest gliding measurements in Switzerland. For such conditions, glide crack 

formation roughly perpendicular to the slope would be imminent according to the present 

model. For D/H much less than this value slab tensile stresses presumably are not high 

enough to crack the slab. It should also be remarked that once a tensile crack begins 

to form near the glide interface, the fracture angle, Y> will decrease toward 0 ° as the 
length of the tensile crack increases. 

THE FRACTURE MECHANICAL ASPECT OF WET SLAB AVALANCHE RELEASE 

A process of the type described above might also result in a progressive type of 

failure. In other words, the breakdown zone might tend to be driven upslope by itself. 

This kind of failure has analogies to a crack-like shear fault propagation as we shall 

see below. To describe the propagation of the breakdown zone we consider first an 

energy balance approach to the problem. , Such an approach lends itself well to the case 

considered here in which the slab is considered to deform inelastically (viscously). 

Considering an uphill displacement of the breakdown zone by a distance dL, we 

specialize to the case in which the breakdown zone is small. The strain-rate and stress at 

the breakdown zone after it has been displaced by dL are e(xQ) and a'(xo). Then the 

net downslope work/unit time to displace the material outside the breakdown zone by 

dL is: 

HI(XO)5'(xo)dL 

This should balance the stress work in deforming the material in the slab plus the 

frictional dissipation on the sliding surface in the end zone. Figure 11 depicts the 
situation and the resulting equation is: 
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i(xo) U 
R 

Hl(xo)a'(xo)dL = HdL J adl + dL T(u)du 

0 0 

(68) 

Dividing tliis equation by dL and integrating by parts gives: 

a'(xo)-Po 

H y i(a)da = y T (u) du 

-Pr 0 

(69) 

If we now use the linear constitutive equation and with 

a' (xo) 
^g 

as before, we get the propagation condition: 

2E' 

2 D , 2 

F ^ H (̂ g • "^R) 
= / :(u)du (70) 

The term on the l e f t represents the driving force term and that on the right represents 

the resistance to expansion of the breakdown zone upslope. When this equation is 

s a t i s f i e d we can expect quasi-static advance of the breakdown zone upslope. If we use, 

for example, a breakdown zone stress-velocity d i s t r i b u t i o n and average i t over the 

breakdown zone. Equation 70 can be rewritten: 

27 • ^R^ = (̂ p " ^R) (71) 

This result could have been written immediately from the small-scale yielding result 

from crack mechanics in terms of a stress concentration factor for a semi-infinite crack 

within an i n f i n i t e s t r i p of height 2 H: 
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K - a' (xo) J T (72) 

The propagation condition is given by Palmer and Rice (1973) 

U 

2y 

R 

y T(u)du (73) 
0 

which is for the case in which the breakdown zone is small with respect to slab H and 

length. The slip velocity (displacement/unit time) at the end of the breakdown zone 

is represented by Û .̂ When Equation 72 is satisfied, we expect a quasi-static motion 
uphill of the breakdown zone. This will permit the failure surface to expand outwards. 

The same kind of argument could, of course, be given for the case of anti-plane shearing 

in which Equation 73 would be replaced by: 

T(u)du (74) 

if the failure surface was loaded laterally as well as upslope. Conditions 73 and 74 will 
be recognized from the work of Palmer and Rice (1973) as equivalent to the small-scale 
yielding condition of fracture mechanics. An important difference exists, however, as we 

are dealing mainly with inelastic deformation in the slab. Therefore, Equation 70 is only 
approximately valid because in its derivation the stress-work in the breakdown zone 

deformations is assumed to be fully recovered. 

Another important difference here is that the "yield stress" analog, x^, can 

be near to x̂  and it is still possible to be able to use the small breakdown zone 

approximation. This would not be possible if we dealt with a problem of yielding of a 

material. In fact, we think that in many cases for the wet slab problem x^ = x . 

Certainly, one would expect that x^ > x̂  if glide actually begins from a totally dry 

interface condition upslope. 

From these considerations it seems possible for the failure surface to expand 

progressively to undercut a slab. For the simplified case given here for constant water 

content in the recovery zone this would eventually result in a "mature" shear band analog 

in which the tensile stresses would not increase to more than 
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for the small breakdown zone. 

However, tensile stresses of this order are enough to produce a tensile crack 

in the slab which can result in avalanche release by subsequent loading of the glide 

surface. The situation could be radically different from the simple picture presented 

here for an actual field situation. If the water content increased continually 

downslope in the recovery zone, for example, much higher tensile stresses would be 

possible and, in addition, a finite-sized breakdown zone would have the same effect of 

increasing tensile stresses. Furthermore, the expansion of the failure surface would 

no longer be quasi-static. 

It should also be pointed out that once a tensile crack appears, the 

calculations above are no longer valid. 

TIMING OF WET SLAB AVALANCHE RELEASE AND POROUS MEDIA EFFECTS 

The timing aspects of wet slab avalanche release are keyed to the distribution 

of water pressure on the glide interface in the present problem. The water pressure at 

the glide interface depends on the availability of water and the basal shear stress. The 

separation process in the breakdown zone could result in a propping up (dilation) of the 

slab, which can result in suctions which can increase the effective compressive stress 

at the glide interface and, thereby, possibly stabilize breakdown zone spreading. In 

addition, however, there will be a pressure gradient along the glide interface (since 

there is a distribution of shear stress there). For a steep enough stress distribution 

in the breakdown zone, this effect will tend to force water into the breakdown zone as 

a counterbalance to the suction effect mentioned above and promote breakdown zone motion 

and expansion. The interplay between these kinds of effects is likely to be an important 

aspect of the timing problem. Quantitative evaluation of the timing problem is deferred 

to a later study. 

Of course, if the driving stress is increased over that given by the left side 

of Equation 71 by a rapid increase of lubrication in the recovery zone or by non-uniform 

water content in the recovery zone, then the "failure" surface may rapidly expand uphill 

and laterally, eventually producing tensile cracking through the body of the slab. On 

the other hand, advance of the breakdown zone may be stopped by some kinds of geometrical 

considerations, for example, in the case of full depth slabs, if a severe change in the 

roughness characteristics at the glide interface is encountered. 
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Curiously, tlie one-dimensional model is not lil<ely to exiiibit stabilizing 

porous media effects in most cases. For fast enough propagation velocities one might 

expect the wet slab material to respond in an undrained fashion without the possibility 

of fluid mass transfer and an upper limit undrained Poisson ratio of = 0.5. For slow 

propagation, the Poisson ratio of the slab material would be unaffected by pore pressures. 

The diffusion length scale in the problem is the ratio of the diffusivity to the glide 

velocity. For the formalism developed by Rice and Simons (1975), for spreading shear 
disturbances in eVastie porous media, the length scale C / U Q gives the dimension of the 
region around the tip of the spreading disturbance for which properties may be assumed to 

tal<e their drained values. As mentioned previously, we do not have good estimates of c, 

but we expect it to be much greater than the 10 ̂  m̂ /s adoptable for clays. It is 

probably safe to assume that c is at least two orders of magnitude larger for snow than 

for clay. Indeed, if we use the formalism of Rice and Cleary (1975) for the diffusivity 

for the elastio case, this seems to be correct. For saturated snow, their formalism 

yields a value of c approximately 

_ 2G(l-v) 

where K is the permeability, G is the shear modulus, and v is the drained Poisson ratio. 

From Dunne e t a l . (1976), values of permeability can be extracted. Taking the lower 

limit of these values we get K = 10"^^ p̂2_ Mellor (1964) gives -10^ N/m̂  for G. Using 

these values with v = 0.25, we get a lowev l i m i t value of c of ~10"'* m̂ /s. If we adopt 

this value, the diffusion length scale is (with Ug ~ 10 ̂  m/s) c/Ug ~ 100 m, and therefore, 
the entire slab may be viewed effectively as drained for glide speeds of -0.1 m/day according 
to the logic of Rice and Simons (1975). 

For either the low speed or high speed limit the driving stress in the 

propagation condition (73) is unaffected by porous media effects. From the work of Rice 

and Simons (1975), however, the possibility of stabilizing porous media effects at 

intermediate speeds seems possible. From their work, the region at the tip of a 

propagating shear disturbance is always to be considered drained at finite speeds. At 

slow speeds, the entire slab may be considered to have drained properties. At very high 

speeds, the region taken to have drained properties shrinks to zero. At intermediate 

speeds, it is possible for a drained region to exist at the breakdown zone tip, whereas 

the rest of the slab is to be considered undrained. In that case, K, in the propagation 

condition, may be taken to have drained properties, and the Poisson ratio in Equation 73 
may be taken as an undrained value. This will result in an increasing reduction in the 

1-̂ u 

driving stress for some range of speeds up to a maximum of , _^ . This factor is two 

thirds if = 0.5 and v = 0.25. Rice and Simons indicate that this effect will begin 
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for speeds for which L/(c/Uo) approaches 1 or greater, where L is on the order of the 

length of the recovery zone. If we take L as 10 m and c as our former estimate of 

IO"** m̂ /s, it is evident that the effect begins to assume importance for speeds greater 

than 1 m/day. However, there is considerable uncertainty about the magnitude of c. In 

addition, any saturated zone will probably be quite thin with respect to slab height, 

so that more detailed modeling is required. 

Anti-plane spreading is apparently relatively unaffected by porous media 

effects for any glide speed. Proper accounting, however, can only be done for three-

dimensional modeling. 
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C H A P T E R 5 

Interruption of Creep and Glide Processes 
behind Structures 

Design of structures to be placed on snow-covered mountain slopes often requires 

l<nowledge of the forces resulting from interruption of creep and glide processes in the 

snow cover. The most important problem in this regard is the pressure exerted at the 

centre of a structure which runs across the slope for a long enough distance so that 

edge effects can be disregarded. In two dimensions this is the classic plane strain 

problem, which can be solved only by numerical methods. 

As we shall see, the manner in which glide is interrupted in the zone of 

influence of the structure is important in determining the range of boundary conditions 

at the glide interface. 

Haefeli (Bader e t a l . , 1939, 1948) tried to formulate an essentially one-dimensional 
model for snow pressure. His formulation, while predicting reasonable values of snow 

pressure in some cases, cannot always be relied upon to give accurate results, and it cannot 

be derived from modern continuum mechanics, since many of his assumptions are in conflict 

with continuum mechanics. Nevertheless, many of his physical assumptions are reasonable. 

the one-dimensional snow pressure problem. Many of the assumptions used are equivalent 

to Haefeli's assumptions. As we shall see, such a model provides reasonable values for 

snow pressure as well as indicating a physical origin for the factors in the snow 

pressure equations, since the present model turns out to be very similar in form to 

Haefeli 's equations. We limit ourselves to linear creep and glide constitutive equations 

in this study. 

depth of the snowpack as we have done before. The snowpack is assumed stiff initially so 

that most of the deformation takes place along the glide interface. Viscous motion is 

considered in the x direction only. 

It is the intent of the model here to apply a continuum mechanical approach to 

DISTRIBUTION OF GLIDE VELOCITY BEHIND A STRUCTURE 

Let us consider the geometry of Figure 12 and average quantities through the 

As before, we define quantities 

H 

a XX 
dz 

0 
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The equation of equilibrium is: 

H ̂  = pgH sin T - T(X) = Tg " T(x) 

For this problem we use a linear viscous constitutive equation: 

We define the strains as: 

du 
dx 

and 

zpg cos ¥ dz = -p^ pg cos • ̂  

For the geometry of Figure 12, we can write some boundary cond 

u = 0 at X = 0 

e = e at X = 0 
max 

u = ^UQ for X 

e = 0 for X ^ 

where Ug is the neutral zone value of the glide velocity. 

If we multiply Equation 75 by e and integrate, we get: 

r"" - r 

J ^x=/ Tg - T ( X ) 
du\ 

; dxj dx 
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Using tlie linear constitutive law gives: 

J E'HI d i = y - - T ( U ) du (79 ) 

Now along the glide interface, we wish to satisfy a glide constitutive equation 

of the form x = ku where k = y/D arid where D is dependent only on the water content and 

interface geometry behind the structure, which is assumed constant along the interface. 

Integrating Equation 79 gives: 

HE' 
y max j 

T u - ku^ 
9 2 

(80 ) 

111 u ku2\ 

" \ HE' " W^j 

This is a non-linear differential equation. Since u = UQ and e = 0 for 
X «=, we c a n e x p r e s s e a s 

max 

\HE'y \kHE'/ 
( 8 1 ) 

Substituting this relation into Equation 80 then yields: 

( 82 ) 

We reject the (+) solution so that our solution is well behaved for large x, 

and with u = 0 at x = 0 , we get: 

( 83 ) 
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Using the constitutive equation, we can calculate the pressure on the structure 

for this simple model: 

0(0) = -E. ^ 

x=0 

where the second term represents the s t a t i c pressure and where we have taken constant 

density. This formulation w i l l underestimate the snow pressure on a structure, since no 

proper account is taken of the interruption of the creep processes in the snowpack. 

A ONE-DIMENSIONAL MODEL OF SNOW PRESSURE 

Now we wish to account for the interruption of creep processes in the snowpack 

by the structure. To do this in an approximate way in the context of our one-dimensional 

model, we wish to write a constitutive equation of the form: 

T = k'u (86) 

for the creep and glide processes. This wil l guarantee that creep v e l o c i t i e s are 

interrupted in the same manner that the glide velocity is interrupted. The constitutive 

equation appropriate for glide only i s : 

T = i u 
D g 

To include creep, we must decrease k. To do this we view the creep and the glide 

with stiffnesses coupled in series (Fig. 13), one with stiffness kj = to account 

for glide and the other with k 2 = to account for creep. We could view the problem 

u 2 

for glide only with kj = and k 2 ̂  °°. For two st i f f n e s s constants in series 

equivalent k' is given by: 

an 

k j k 2 1 1 1 

= kprTi °^ F-= k 7 + k l (87) 
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The problem then is the missing length scale D2. Geometrical considerations 

(Fig. 13) similar to those for D, however, indicate that D2 is some function of H, i.e., 
D2 = aH where 0 < a < 1 where obviously a = 0 represents the problem for k2 If we 

think of the snowpack as deforming in simple shear (Fig. 13), we can write a simple 
relationship by the definition of strain as (Fig. 13): 

where is the creep velocity at the top of the snowpack. If we assume a triangular 

velocity profile, then in terms of the average creep velocity in the layer we can write: 

Combining this in the manner described above with the glide constitutive 

equation gives: 

Now combining k2 with the glide stiffness as in Equation 87, we get: 

k' = (88) 
D + j H 

If we now repeat the derivation for Equations 83 and 85, assuming k' replaces 
k, we get: 

(89) 

and 

a(0) = - pgH sin ¥ 
- i k ' 

(90) 
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The second term represents the static pressure term, and the first term 

represents the average "dynamic" pressure. The average pressure on the structure is 

represented by a(0). 

To calculate the actual snow pressure for engineering applications, the most 

negative principal stress must be known. For the one-dimensional model, since the shear 

stress is zero at the structure, it is clear that the most negative principal stress, 

a , is given as: 

pgH sin >F (91) MR + cot y 
1-v 

which is the same as a(0). 

It is instructive to compare the model with the equations of Haefeli (1948) and 

with the results of finite element calculations. Haefeli's expression for the pressure 

can be expressed as (Salm, 1977): 

,(0) = - pHg 

2 cos2 y 
2tan B 45° cos^ ¥ + i f — 

3 \ t a n 4̂5 
sin 2¥ (92) 

By definition of the creep angle, tan 6^^^° = J (^J~j and this expression becomes: 

a,(0) = - pgH sin 
1-2v cos ¥ 

- — pg^ cos ^ (93) 

Since the expressions for the static pressure are equivalent for these models, 

we wish to compare the quantities in the brackets for Equations 90 and 93, which we shall 
denote as C. We compare the two models with finite element calculations by the method 

outlined by McClung (1976a), assuming a linear viscous creep constitutive equation 

to describe the deformation of the snowpack and a linear glide constitutive equation at 

the glide interface represented by line spring elements. Figure 14 shows the comparison 

of the models with finite element calculations for D/H = 0.2 as a function of viscous 
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Poisson's r a t i o . Figure 15 sliows tlie comparison as a function of D/H for v = 0 . 2 5 . Botli 

of these comparisons are for Y = 4 5 ° . Figure 16 shows a t y p i c a l comparison of pressure as 

a function of depth from the two-dimensional f i n i t e element c a l c u l a t i o n s and the two 

models. 

For Figures 14 to 16 i l l u s t r a t e some points worth mentioning. They show that 

the present one-dimensional model displays the correct dependence on D/H and v in the 

range of interest when compared with the numerical equations. Haefeli's equations, on 

the other hand, display quite a d i f f e r e n t dependence on these parameters. 

For Figures 14 and 1 5 , the value of C plotted for the f i n i t e element 

calc u l a t i o n s is the most negative p r i n c i p a l stress near the centre of the structure. 

For Figure 1 6 , for example, the value tal<en i s C = 1 . 72 . It is evident from 

Figures 14 to 16 that the one-dimensional model provides an average representative pressure 

on the structure. This is also the intent of Haefeli's model, as is evident from his 

d e r i v a t i o n . Haefeli's model over- or underestimates the average pressure depending on 

the value of v and D/H. 

For design purposes i t may be useful to know the maximum pressure near the 

centre of the s t r u c t u r e . Since the one-dimensional model displays the same functional 

dependence upon v and D/H as the f i n i t e element c a l c u l a t i o n s , we can adapt the model 

to c a l c u l a t i o n of the maximum pressure near the centre of the structure by noting that the 

c a l c u l a t i o n for D/H = 0 , v = 0 . 2 5 y i e l d s a value for C of 1 . 2 8 . This suggests that i f we had 

chosen a spring constant k' = ^ _̂  ^ , we would be able to match the maximum values. 

This proves to be the case, as i l l u s t r a t e d in Figures 17 and 18. Thus, we could write 

an expression for the maximum pressure near the centre of the structure as: 

pgH sin f (94 ) 

Table 1 shows calculated values for the expression in brackets in Equation 94 

with the calculated f i n i t e element values. 

This exercise leaves l i t t l e doubt of the correctness of the one-dimensional 

model in terms of dependence on D/H and v for the linear problem. Of course, the only 

accurate method to c a l c u l a t e snow pressure is by the two-dimensional numerical method. 

The advantage of such a model is the physical insight i t gives to the problem. Haefeli's 

equations cannot be derived from continuum mechanics and, furthermore, they contain a 

questionable dependence upon Poisson's r a t i o and D/H. In a d d i t i o n , Haefeli's results 
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Table 1. Comparison of Most Negative Principal Stress near Centre of Structure 
from Finite Element Calculations with the Predictions of Equation 94 
for the Dynamic Component of Pressure C, where C is the Quantity in Bracl<ets 

in Equation 94 

For Figure 17: ¥ = 4 5 ° ; ; D/H = 0 .2 

C for one-dimensional C for finite element 
model calculations 

0 1.26 1.28 
0.1 1.33 1.34 
0 .2 1.41 1.42 
0.25 1.46 1.47 
0 .3 1.51 1.53 
0 .35 1.57 1.62 
0.4 1.63 1.74 

For Figure 18: Y = 4 5 ° ; ; V = 0.25 

n / H C for one-dimens ional C for finite element 
u/ n model calculations 

0 1.26 1.27 
0 .2 1.46 1 .46 
0 .5 1.71 1.72 
1.0 2 .07 2 .08 
2 .0 2 .63 2 .66 
3 .0 3 .10 3.12 
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show an angular dependence of —'•—— for C, which neither finite element calculations 

(Langdon, 1975) nor the one-dimensional model exhibits. 

It should be emphasized that the one-dimensional model is developed for the 

linear problem. When non-linearity is assumed by making the shear and bulk viscosity 

proportional to the bulk stress, the pressures will increase over those given by the 

one-dimensional model. Neither the one-dimensional model nor Haefeli 's equations are 

derived to include such non-linearity. McClung ( I976a) showed that bulk stress effects 

increase the pressures by 20% or more for typically expected values of v and D/H, 

In regard to Haefeli's model the following comments seem in order. His model 

shows a much stronger Poisson dependence than the one-dimensional model or the finite 

element calculations and, in fact, his equations are divergent as v ̂  0 . 5 . Haefeli's 

model also shows much stronger dependence on D/H than either the one-dimensional model 

or the finite element calculations. 

Haefeli's formulation is based on the concept of a back pressure zone or zone 

of influence of the structure upslope. For the one-dimensional model with an exponential 

dependence on distance, the back pressure zone is theoretically infinite. We could, 

however, define such a quantity for our distribution by recognizing that the exponential 

distribution will return to 99^ of the neutral zone value in the distance: 

(95) 

from Equation 88. This can be rewritten as: 

For the calculations in McClung ( I976a) for D/H = 0 . 0 6 , D/H = 0 . 3 2 , H = 3-54 m, 

and V = 0 . 3 , we get respectively x' = 22 m and 27 m in agreement with the reported values 
of 21 m and 28 m. For most applications, however, it is difficult to define the back pres­

sure zone accurately in numerical schemes because larger elements are normally taken far 

away from the structure. However, the finite element results indicate that Equation 96 is 
a good estimate of the back pressure zone length even though the usefulness of this 

parameter in snow pressure work is questionable. 

Figure 19 shows a typical comparison of glide velocity in the back pressure 
zone from finite element calculations with back pressure zone velocities from the one-

dimensional model for D/H = 0 .32 and v = 0 .3 for linear constitutive equations for a 
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slope angle ^ = k5 • This figure illustrates the bacl< pressure zone problem adequately. 
X ' X ' 

Calculat ion of from Equation 96 yields = 7-7, whichis in good agreement wi th the 
finite element scheme. Haefeli's expression for the bacl< pressure zone is (Salm, 1977): 

2H 
b cos ¥ (97) 

In the present case, this equation yields: 

Haefeli's equations consistently underestimate the bacl< pressure zone estimates when 

compared with the one-dimensional model or the finite element calculations. 

COMMENTS ON SWISS GUIDELINES FOR AVALANCHE DEFENCE 

The Swiss Guidelines for avalanche defence (Avalanche Control in the Starting 

Zone, 1962) are based on Haefeli's formulation of snow pressure. In view of the 

differences between the formulation of Haefeli and the one-dimensional model, it is 

instructive to put the one-dimensional model in the same form. 

For the one-dimensional model the total force S, parallel to the slope per 

unit length, would be approximately from Equation 90: 

S = - pgĤ  sin f cos . 
1-v 2 

(98) 

The equivalent expression for Haefeli's formulation is (Salm, 1977): 

S = - pgH2 sin ̂  2 /_LiL\ l U l J D 
3 \1-2v/ cos V 

3D/H)- V pgH2 
1-v 2 cos (99) 
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Comparison of these expressions indicates that the differences l i e in the 
bracl<ets in the f i r s t terms. The Swiss guidelines separate the terms in brackets into 
creep and glide factors. However, the derivation of the one-dimensional model indicates 
that i t is physically clearer to compare the bracketed terms in these two formulations 
because any "glide factor" w i l l involve coupling of Poisson effects. Division into creep 
and glide factors can lead to false conclusions about the effect of gliding as does the 
comparison done by Langdon ( 1 9 7 5 ) as well as formulations by Roch, de Quervain and 
F i g i l i s t e r in de Quervain and F i g i l i s t e r (1953). From the standpoint of the one-
dimensional model, an expression like 

1 + 2 ^ H 

is not s t r i c t l y a "glide factor," since i t represents coupling between creep and glide in 
the problem. It should also be remarked that since the solutions of Roch and de Quervain 
are essentially reformulations of Bucher's work (Bucher, 1 9 4 8 ) , they cannot be correct 
in any case, since his work contains inconsistencies (Salm, 1 9 7 7 ) . 

BOUNDARY CONDITION EFFECTS FOR SNOW PRESSURE PROBLEMS 

When a structure is present on a slope, the snow w i l l compact against the 
structure by creep and glide and, thus, densify. Experiments providing creep 
measurements on slopes and on horizontal snow covers indicate that as alpine snow 
compacts, measured strain-rates are approximately independent of depth in the snow 
cover. One possible explanation of this is that the shear and bulk viscosity are stress 
dependent (Mellor, 1 9 6 8 ; Brown e t a l . , 1 9 7 3 ; McClung, 1 9 7 5 ) . As discussed previously, 
this could indicate that the leading terms in the constitutive law are proportional 
to the bulk stress, o^^- Now i f i t is assumed that the creep of snow compacting 
against a structure is affected in the same way, then the appropriate glide constitutive 
equation may be of the form (McClung, 1 9 7 5 ) : 

•̂ "kk 
T = IT U 

( 1 0 0 ) 

i f glide is assumed to be by creep. 

Thus, for snow pressure problems, the glide constitutive equation should be in 
general non-linear. This approach disregards the viscosity non-linearity owing to stress 
conditions over individual asperities, which may be present to a small degree. 
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When separation occurs, the boundary condition is of the form: 

T (101) 

and, therefore, in the general case, the boundary condition for snow pressure problems 

should be non-linear where creep and lubrication sliding are competitive mechanisms. 

Behind a structure there will be a distribution of shear stress and glide 

velocity at the glide interface. In addition, the normal stress can be higher in the 

back pressure zone. Therefore, the conditions in this non-neutral zone can be less 

favourable for separation. 

For the case in which the interface is of the form of a single sine wave, the 

separation condition in the neutral zone is: 

<2P^y _ /2 tan ¥ 1 

w 

For the non-neutral zone condition, a - P can be increased by the presence of a 
w 

structure as a first approximation. Finite element calculations for linear creep and 

glide constitutive equations show that initially there is an increase in a of about 
()0% immediately behind a structure if slip is permitted along the structure and that it 

decays exponentially to the neutral zone value. 

We can estimate the extra normal stress effects in the back pressure zone in 

the following manner for the one-dimensional model. If there is no slip on the structure 

the value of the normal stress, a^, will be approximately the neutral zone value. 

However, if slip is permitted along the structure there will be an added normal stress 

which can be estimated from equilibrium considerations to be approximately given by: 

^ 37 

Thus, an approximate estimate of the distribution of normal stress in the 

back pressure zone is given by: 

0^ ~ -a^ = - pgH cos ¥ for no slip on the structure 

(103) 
0 ~ -(o. + H |4) for a smooth structure 

Z N d x 
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For the one-dimensional model this last expression can be written: 

For typical parameters with f = 4 5 ° , this normal stress is on the order of 

1.6 near the structure'which is potentially important to the question of separation. 

Two-dimensional finite element calculations attest to the accuracy of this estimate. 

Langdon ( 1 9 7 5 ) estimates a = 1 .6 a,, from such calculations. For v = 0 . 3 , D/H = 0 . 3 2 , 
z (0) N 

the estimate near the structure is ' ^ ^ . ( Q ) ~ ^ ^ f ^ ' This argument should only be taicen 

as very approximate. 

Separation depends on the pressure fluctuations at the glide interface and 

these in turn are proportional to the glide velocity which increases in an exponential 

manner in the baci< pressure zone. The presence of a structure might inhibit 

separation due to compression effects. Since the glide velocity is zero at the 

structure, fast glide is not possible there. This hypothesis has a potentially important 

application in formulations of snow pressure problems. Suppression of extensive 

separation immediately in back of a structure could place an upper limit on the value 

of the stagnation depth parameter in the immediate vicinity of the structure of less 

than H, while application of open slope measurements would indicate values up to 3H. 

EXTENSION TO LOW SLOPE ANGLES--APPROXI MATE INCLUSION OF 

SETTLEMENT IN THE ONE-DIMENSIONAL MODEL 

The one-dimensional model was derived by assuming that the snowpack deforms in 

simple shear and does not include settlement effects. For slope angles less than 4 5 ° , 
there can be increased pressure over that predicted by the one-dimensional model owing 

to interruption of settlement or vertical deformation. The foregoing comparisons 

indicate that the assumption of simple shear deformation is adequate for slope angles 

close to 4 5 ° . Finite element calculations indicate that both the dynamic pressure and 

back pressure zone increase over that given by the one-dimensional model for slope 

angles less than 4 5 ° . Settlement effects for low slope angles can be accounted for 

approximately by decreasing the stiffness for creep in the model as the slope 

angle decreases from 4 5 ° . Therefore, the dynamic component of pressure might be 

approximated by: 

^ ( F ^ I for I- < 4 5 ° ( 1 0 5 ) 
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for y > 45° (106) 

For f < 45°, the back pressure zone may be approximated as: 

- 5H cot f (107) 

Finite element calculations show that these formulae are accurate in the range of 

avalanche starting zone slope angles, i.e., down to angles as low as ¥ = 30°. Figure 20 
shows a comparison for ¥ = 30°; D/H = -g-; v = 0.25; H = 5 m. Calculation of x' gives 47.8 m, 
which compares with that of approximately 46 m for the finite element calculations. 

From the preceding section we can similarly give formulae representing the 

maximum dynamic pressure for slope angles less than 45° as 

pgH sin V ( 1 0 8 ) + 0 . 6 (cot ¥) 

For the example in Figure 2 0 , this expression gives Ix = 2 . 0 3 , whereas the finite 
element calculation gives Ix^ = 1 . 9 8 for the ratio of most negative principal stress 
to T near the centre of the structure for an error of 2 . 5 ^ at t = 3 0 ° . 

9 

Caution should be used in extending the one-dimensional model to very low 

slope angles because settlement will dominate over shear deformation in such cases and 

the assumptions will deviate greatly from the original ones. In addition, not much is 

known about glide on very low slope angles. For a given ground roughness configuration, 

there may be a threshold shear stress below which glide may not normally occur. 

The foregoing argument in regard to settlement effects may be understood by 

referring to a geometrical argument similar to that introduced by Haefeli (Bader e t a l . , 
1939) provided certain restrictions are employed. 

Consider a homogeneous, isotropic snowpack deforming linearly in a neutral 

zone. The shear and vertical stress may then be expressed as: 
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\ z = Pg s i n T 2 = u — 

° z z = - Pg COS 'i' z = (2u + A) | j 

(109) 

where u and X are the shear viscosity and viscous analog of Lame's constant, respectively. 
Tal<ing the ratio of these expressions gives (for z ^ 0) : 

tan ¥ = - (110) 

Using the definition of the deformation-rate coefficient (Perla, 1972) and the 
viscous analog of Poisson's ratio, this equation may be expressed as: 

D. tan ¥ = (111) 

As long as one is far away from boundaries, i.e., the free surface at the top of the 

snowpacl< or the restraint condition at the snow-earth interface, D., for the present 

linear problem, admits a simple geometric interpretation defined by Haefeli and 

emphasized by Perla, namely D. = tan 0 where g is the creep angle defined as the ratio 
of creep velocity components, i.e., tan ^ ~ ~ ~- Substituting thjs value gives: 

tan B tan f = ̂  (112) 

This equation was introduced by Haefeli and is useful under the assumptions given above. 

It predicts that the component of shear deformation is greater than the component of 

settlement deformation for slope angles, ¥ > 26 .6 ° for Poisson ratios greater than 0. 

For slope angles of 4 5 ° , the deformation would be overwhelming in shear. For snow 

pressure problems, the foregoing finite element analysis proves that the assumption 

of simple shear deformation is an adequate representation for slope angles near 4 5 ° . 

The foregoing analysis applied to the one-dimensional model indicates that 

there will be a Poisson dependence in any real accounting of settlement effects in the 
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snow pressure problem for slopes of 3 0 ° or less. The numerical calculation given here 

for ¥ = 3 0 ° , however, shows that the formulae given above are fairly accurate down to 
¥ = 3 0 ° for V = 0 . 2 5 . For lower Poisson ratios the approximation will not be as good 

for low slope angles. However, a built-in effect supplied by nature on slopes of low angle 

is expected to help the situation. Simply, this is that densification is greater on less 

steep slopes such that higher Poisson ratios may be expected on slopes of low angle provided 

by the settlement effect itself. A more sophisticated approach to the settlement effect 

will evidently require a two-dimensional treatment. Settlement effects clearly destroy the 

one-dimensionality of the snow pressure problem. 

It should also be noted that the foregoing remarks apply equally well to the 

case frequently observed in the field in which the components of u and v are linear 

with depth provided one is far enough away from the free-surface and snow-interface 

boundar i es. 

The concept of a creep angle can be a very useful and important quantity in 

snow mechanics problems if its use is made within the context of the assumptions given 

above. The creep angle admits definition in terms of internal deformation in a snowpack 

and therefore measurements of creep angles should be only interpretable provided they 

are taken in the middle section of a snowpack and for the proper conditions. For 

example, the creep angle is undefined, in general, at the snow-earth interface. 

Similarly, field experience shows that the creep components u and v are only linear with 

depth on slopes of well-settled snow of fairly large depth. It is obvious that u and v 

could not be linear with depth through the entire snowpack because this would imply that 

snow at the free surface had sheared under no applied shear stress. Field experience 

also shows that the deformation components are only linear with depth throughout the 

midsection of a thick snowpack. As the free surface is approached there is a curving 

back of the deformation to provide the expected result that the deformation profile meets 

the free surface at 9 0 ° . Generally, at a free surface the neutral zone deformation-rate 

coefficient is either infinite or undefined and the creep angle also may lose meaning. 

Therefore, measurements of creep angles or deformation-rate coefficients near the 

surface of a snowpack may be hard to interpret. The creep angle is intended to represent 

internal deformation within the snowpack for isotropic, relatively homogeneous snow. 

Definition of creep angles or deformation-rate coefficients within thin 

snowpacks or thin snow slabs suffer from other difficulties of a rather fundamental 

nature. Thin slabs and snowpacks are often subject to strong temperature gradients and 

subject to wildly fluctuating temperature conditions. These conditions are known to 

produce anisotropy in snowpacks by recrystal1ization. From data on flat study plots it 

is known that such layers settle very slowly with respect to other layers. It is 

difficult to apply this result to slopes, but the known strength anisotropy of such 
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temperature gradient recrysta 11 ized snow (relatively weal< in siiear and strong in 
compression) coupled with this result may translate to anisotropy in creep deformation, 

which neither the creep angle nor deformation-rate coefficient is intended to model. 

It is apparent that such a kind of creep deformation anisotropy could mean that layers 

of such recrystal1ized snow would tend to deform relatively easier in shear than if 
they were isotropic homogeneous snow, so that the estimate of Equation 112 would be 
conservative. Thus, the component of shear deformation might exceed that for 

settlement deformation for slopes with angles less than 27° for v = 0 for these kinds 
of layers. 

As long as the discussion above is borne in mind, there is an obvious connection 

of the predictions of Equation 112 with dry snow slab release. Settlement is generally 

considered a stable trend in dry snow slab release problems, while shear deformation is 

thought to promote instability. The majority of slab avalanches occur on slopes greater 

than 25° and most occur near slope angles approaching 40°. For such slope angles, the 

component of shear deformation exceeds that for settlement deformation and this 

discussion may provide a partial explanation of the low number of snow slab releases 

observed on slopes of low angle. There are, however, many other factors involved. 

53 



References 

Avalanche Control in the Starting Zone. 1962. Rocl<y Mountain Forest and Range 

Experiment Station Paper No. 71, Fort C o l l i n s , CO. (Translation of Swiss 
guidelines by H. Frutiger.) 

Bader, H. von, R. Haefeli, E. Bucher, J. Neher, 0. Eckel, C. Thams and P. N i g g l i . 1939. 
Der schnee und seine metamorphose. B e i t r . Geol. Schweiz Geotech. Ser. 

Hydrologie, No. 3. (English translation: U.S. Snow, Ice and Permafrost 

Research Establishment. Translation 14, 1954.) 

Batchelor, G.K. 1967. An Introduction to Fluid Dynamics. Cambridge, England, 
Cambridge University Press. 

Brown, C.B., R.J. Evans and D. McClung. 1973. Incorporation of glide and creep 

measurements into snow slab mechanics. In Symp. bn Advances in North American 

Avalanche Technology, ed. R.I. Perla, 1972. U.S. Dept. of Agriculture Forest 

Service, General Technical Report RM-3, pp. 7-13-

Bucher, E. 1948. Beitrag zu den theoretischen grundlagen des lawinenverbaus. Beitr. 
Geol. Schweiz Geotech. Ser. Hydrologie, No. 6. 

Cleary, M.P. and J.R. Rice. 1974. Some elementary models for fluid-saturated e l a s t i c 
porous media with compressible constituents. Brown University Report 
No. MRL E-91. 

Domaschuk, L. and N.H. Wade. 1969- A study of bulk and shear moduli in sand. J, Soil 
Mech. Found. Div. ASCE, 95:561-581. 

Dunne, T. , A.G. Price and S.C. Colbeck. 1976. The generation of runoff from subarctic 

snowpacks. Water Resour. Res. 12 (4):677-685. 

Haefeli, R. 1948. Schnee, lawinen, f i r n and gletscher. Sonderabdruck aus Ingenieur-

Geologie L. Bendel. Vol. II. Springer-Ver1ag Wien. 

Kamb, B. 1970, Sliding motion of glaciers: theory and observations. Rev. Geophys. 

Space Phys. 8(4):673-728. 

Langdon, J.A. 1975. Approximate solutions for the interruption of the creep and glide 

of snow by avalanche defenses. M.S. Thesis, University of Washington. 

McClung, D.M. 1974. Avalanche defense mechanics. Ph.D. Thesis, University of 
Wash i ngton. 

McClung, D.M. 1975. Creep and the snow-earth interface condition in the seasonal 

alpine snowpack. In Snow Mechanics, Proc. of the Grindelwald Symp., 
April 1974. lAHS-AISH Publ. No. 114, pp. 235-248. 

McClung, D.M. 1976a. Snow pressure on r i g i d obstacles. J . G l a c i o l . 17(76):277-285. 

McClung, D.M. 1976b. Laws of f r i c t i o n in snow mechanics. In Fje1 Isprengningsteknikk, 
Bergmekanikk, Geoteknikk, 1975. Norsk Jord og Fjellteknisk Forbund Tilknyttet 

NIF, Tapir Press, pp. 26.1-26.6. 

54 



McClung, D.M. 1977. Direct simple sliear tests on snow and t l i e i r r e l a t i o n to slab 
avalanche formation. J . G l a c i o l . 19(81) :101 -111 . 

McClung, D.M. 1979- Shear fracture precipitated by s t r a i n softening as a mechanism of 
dry slab avalanche release. J . Geophys. Res. 84:3519-3526 

Mellor, M. 1964. Properties of snow. Cold Regions Science and Engineering Report, 
Part 3, Section A. U.S. Army Corps Eng. Cold Reg. Res. Eng. Lab., Hanover, 
New Hampshi re. 

Mellor, M. 1968. Avalanches. Cold Regions Science and Engineering Monograph, Part 111, 
Section A 3 , U.S. Army Corps Eng. Cold Reg. Res. Eng. Lab., Hanover, 
New Hampsh i re. 

Michel 1, A.G.M. 1950. Lubrication: Its Principles and Practice. London and Glasgow: 

Blackie 5 Son, Ltd. 

Nye, J.F. 1969. A c a l c u l a t i o n on the s l i d i n g of ice over a wavy surface using a 
•Newtonian viscous approximation. Proc. R. Soc. London Ser. A, Vol. 311, pp. 445 

Nye, J.F. 1970. Glacier s l i d i n g without c a v i t a t i o n in a l i n e a r viscous approximation. 
Proc. R. Soc. London Ser. A, Vol. 315, pp. 381-403. 

Palmer, A.C. and J.R. Rice. 1973- The growth of s l i p surfaces in the progressive 
f a i l u r e of over-consolidated c l a y . Proc. R. Soc. London Ser. A, V o l . 332, 
pp. 527-548. 

P e r l a , R.I. 1972. Generalization of Haefeli 's creep-angle a n a l y s i s . J . G l a c i o l . 
11(63):447-450. 

P e r l a , R.I. and E.R. LaChapelle. 1970. A theory of snow slab f a i l u r e . J . Geophys. 

Res. 75(36):76l9-7627. 

Quervain, M.R. de and R. F i g i l i s t e r . 1953. Zum schneedruckprobiem. Winterbericht des 
Eidg. In s t i t u t e s fur Schneeund Lawinenforschung, No. 16, pp. 89-98. 

Rice, J.R. and M.P. Cleary. 1975. Some basic s t r e s s - d i f f u s i o n solutions for f l u i d -
saturated e l a s t i c porous media with compressible constituents. Brown 
University Report No. NSF GA-43380/4. 

Rice, J.R. and D.A. Simons. 1975. The s t a b i l i z a t i o n of spreading shear f a u l t s by 
coupled deformation-diffusion e f f e c t s in f 1 u i d - i n f i 1 t r a t e d porous materials. 
Brown University Div. of Eng. Report No. GA-43380/5. 

Salm, B. 1967. An attempt to c l a r i f y t r i a x i a l creep mechanics of snow. In Physics of 
Snow and Ice, ed. Hirobumi Sura, Int. Conf. Low Temp. S c i . (Sapporo, Japan, 
August 1966). Proc. Inst, of Low Temp. S c i . , Hokkaido U n i v e r s i t y , V o l . I, 
Pt. 2, pp. 857-874. 

Salm, B. 1975. A c o n s t i t u t i v e equation for creeping snow. In Snow Mechanics, Proc. of 
the Grindelwald Symp., A p r i l 1974. lAHS-AISH Publ. No. 1l4, pp. 222-235-

Salm, B. 1977. Snow forces. J . G l a c i o l . 19(81):67-IOO. 

Wroth, C P . 1972. Some aspects of the e l a s t i c behaviour of overconsolidated c l a y . 
In Stress-Strain Behaviour of S o i l s , ed. R.H.G. Parry, Henley-on-Thames, 

Foul i s , pp. 347-361. 

55 



Figures 



: = Zo(x,y) 

(b) 

Figure 1 . (a) Sciiematic of typical 

neutral zone creep and 

glide data. (b) Sche-

matic of snowpacl< creep­

ing internally and gliding 

over an interface with 

stagnation depth, D, 

and snowpack depth H. 

3H 

2H 

LEAST-SQUARES FIT TO DATA 
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Figure 2. I n i t i a l tangent modulus, 

y , vs. normal stress, a , 
for five similar snow 

samples in direct simple 

shear. Average i n i t i a l 

density 260 kg/m^. 

Sheared at a rate of 

0.15 mm/min. Tempera­

ture, -7°C. 

250 

= 0.49 X 10' N/m' 

PARTLY WET 

50 100 150 

u (10' m/s) 
T DRAG PARALLEL TO THE PLATE 
a,, APPLIED NORMAL STRESS ON THE BLOCK 
u SLIP VELOCITY 

Figure 3- Results of Haefeli's 

experiments of snow 

blocks s l i d i n g over an 

i nc1i ned glass pi ate 

for various degrees of 

interface wetness. 
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Figure k. Lubrication sliding 
mechanism. (a) Slab 
gliding over thin film, 
(b) Lubrication layer 
between plane surfaces 
after Batchelor (1967). 

Figure 5. Glide data from a tim­
bered slope showing 
possible dependence on 
snow depth. The steady 
glide during mid-season 
may be due to suppres­
sion of lubrication 
sliding fluctuations by 
the trees. 

(a) (b) 

(c) 

Figure 6. Three possible relation­
ships between shear 
stress (T) and glide 
veloci ty at the glide 
interface beneath a snow 
slab where varying water 
content or friction 
conditions are present, 
(a) and (b) are analo­
gous to strain-softening 
failures in materials, 
(c) is a more idealized 
case analogous to per­
fect plastic behaviour. 
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Figure 7- Sclnematic of water content (w) , sinear 
stress (T), and glide velocity (u) 
for wet slab conditions vs. distance 
downslope (x). 
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Figure 8. 

0.3 0.4 

Maximum principal stress 
a^ vs. viscous Poisson's 
ratio and relative 
stagnation depth for the 
one-dimensional model 
on a 45° slope. 
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Figure 9. Predictions for the 
angle (y) between the 
glide interface and 
maximum principal stress 
vs. viscous Poisson's 
ratio and relative 
stagnation depth for a 
slope angle ¥ = 4 5 ° . 
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D/H = 1/2 u/n - D/H - u/rt = D/H = 3 

0.1 
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0.2 
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Figure 10. Estimates of breal<down 
zone lengtii XQ V S . v i s ­
cous Poisson's ratio 
and relative stagnation 
deptli for linear drop 
in breal<down zone shear 
stress on a slope of 
45°. 

Figure 11. The progressive nature of wet slab ava­
lanche release. The integral of the 
T-u relationship in the breakdown zone 
provides the resistance to expansion 
of the breakdown zone along the glide 
interface. This is balanced by the 
driving force term given in the text. 
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Figure 1 2 . Geometry for one-dimensional snow pres­
sure model. Creep in the snowpack and 
glide along the interface are inter­
rupted by the presence of a rigid ob­
stacle on the slope. 

2.10-, 

1.90H 

u = 0 VISCOSITY = 
/ G R A V I T Y DIRECTION 

— r 

K, = M / D (GLIDE) 

M/' /ZH (CREEP) 

(b) 

Figure 1 3 . Illustration of (a) one-dimen­
sional snow pressure model and 
(b) the mechanical spring anal­
ogy. K2-̂  for no creep inter­
ruption . 

</- = 45°; D / H = 0.2 

Figure 14. Comparison of dynamic pressure 
with viscous Poisson's ratio 
for the one-dimensional model, 
Haefeli's model, and finite 
element calculations of most 
negative principal stress 
near the structure midpoint, 
assuming linear creep and 
glide laws. Static pressure is 
disregarded. 
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4.0-1 

1.0-1 1 1 1 1 . 
0 0.2 0.5 1.0 2.0 3.0 

D / n 

V = 0.25; xl, - 45° 

Figure 15- Comparison of ratio of most negative prin­
cipal stress V T g for dynamic pressure as 
a function of D/H for the one-dimensional 
model, Haefeli's model, and finite element 
calculations of the most negative principal 
stress near the midpoint of the structure 
for linear creep and glide constitutive 
equations. Static pressure is disregarded. 
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ONE-DIMENSIONAL 

I MODEL 
HAEFELI'S 
MODEL 

Figure 16. 

1.40 1.50 1.60 1.70 1.80 

C = | c r i / r g | ; Tg = pgHsit):/'; I* = 45° 

V = 0.25; D/H = 0.5 

Typical comparison of ratio 
of dynamic component of pres­
sure to T g as a function of 
relative height on the struc­
ture. Linear creep and glide 
constitutive equations are 
assumed. Static pressure is 
disregarded. 
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2.10-1 

HAEFELI'S PREDICTION-

lA = AS"; D/H = 0.2 

Figure 17. Comparison of most negative 
principal stress near centre 
of structure for one-dimen­
sional model from Equation Sk 
and finite element calcula­
tions. Static pressure is 
disregarded. 

4.0-, 

Figure l8 . Comparison of most negative principal 
stress for the one-dimensional model 
from Equation 3k and finite element 
calculations near centre of structure 
for V = 0.25, f = 4 5 ° . Static pressure 
is disregarded. 
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X/H 

Figure 19. Comparison of glide velocity behind a 
structure from two-dimensional finite 
element calculations vs. velocity 
from the one-dimensional model. 
Linear constitutive equations. 
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ONE-DIMENSIONAL 
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SETTLEMENT 

1.10 1.20 1.40 1.60 1.80 2.00 

C = I ; r, = pgHsiniA: iA= 30° 

Figure 20. Comparison of dynamic com­
ponent of pressure for the 
one-dimensional model with 
settlement and finite ele­
ment calculations. Static 
pressure is disregarded. 
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