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ABSTRACT

A method is presented for solving problems of one dimensional

unsteady flow in arbitrary networks of open channels. The method uses

a four point implicit weighted finite difference approximation to the
shallow water, or St. Venant, equations. A stability analysis of the
finite difference scheme for the 1ineérized'equations shows that the
weighting factor is very important for stability and éonvergence. The
system has second-order accuracy and conserves mass when the proper
weighting factor is chosen. A complete description of an algorithm to
solve any set of non-linear algebraic'eqﬁations is presented which is
useful for many other problems besides this particular application.
The computer model is used to solve three different types of
problems. The computer model gives good results for unsteady and
steady state flow problems. A complete users guide and a listing of

the Fortran program is included.
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CHAPTER 1

1.0 INTRODUCTION

The prediction of stage, discharge and other flow character-
istics due to unsteady flow in open channels has been of interest to
engiﬁeers for many years. The traditional methods of flow profile
analysis and backwater calculation have been dealt with by a variety of
numerical and semi-graphical procedures [ 9, 17]. These methods are
based on rather simple, but ingenious assumptions and a variety of
empirically developed laws relating to fluid motion. These methods
have given '"reasonably" accurate answers to some of the practical
problems encountered in engineering, but their neglect of acceleration
and their general inability to deal with unsteady flow restrict these
methods rather severely. )

On the other hand, the subject of fluid mechanics has always
been more or less mathematically rigorous, but the resulting equations
of motion have not been amenable to solution in any practical manner.

. Since the 1930's, however, some of the methods of fluid mechanics have
been applied to practical problems. This successful application has
generally been at the cost of ignoring the inherent non-linearities in
fluid flow problems and by making certain assumptions which were not
always justified.

The development of the digital computer since the 1950's has
produced a revolution in open channel hydraulics. The intractability
of the equations, produced from the principles of fluid mechanics, to
analytical solution is no longer a hindrance, since the digital computer
is able to perform the numerical integration of these equations. There
is a large body of literature dealing with the use of the digital com-
puter in problems of open channel flow.

1.1 TYPES OF PROBLEMS

Problems of open channel flow may be broadly classed as one,
two or three dimensional problems, which respectively increase the
order of generality and complexity. Three dimensional considerations
are usually necessary when dealing with long wide estuaries with a
highly stratified density structure. Two dimensional considerations

[ 18] are usually only necessary in dealing with broad estuaries or




rivers, wide straits or gulfs. 1In these problems the effect of the
earth's rotation and the effect of wind stress on the circulation may
be quite important. v
Traditionally problems in open'éhannel flows have been dealt
with as one dimensional problems and it is for this class of problems
that the computer model in this report is designed. This limitation
to one dimension is not as confining as it may appear. Examples of one
dimensional open channel flow problems'which may be encountered are:
— Determination of mean velocities in an open channel
when the water levels are known.
- Effects of storm surges in river systems.
- Prediction of tidal elévations in estuaries.
- Flood routing problems.
—~ Prediction of the effects on flow characteristics
of changes in the geometry of waterways.
- Determination of the flow in various branches of
a network.
The computer model developed in this report will deal with
all of the above types of problems.
1.2 OUTLINE OF RESEARCH PROGRAM

This investigation is coﬁcerned with the one dimensional
mathematical modeling of unsteady flow in networks of canals, rivers
and estuaries. The analysis will allow the computation of water
elevation and velocity in any network of open channels to which the .
following assumptions are applicable:

1. Flow is physically possible.

- 2. Flow is entirely subcritical (i.e. The Froude
number is less than 1.0).

3. Flow is one dimensional.

4. Appropriate boundary conditions are available.

5. The section geometry of the channels is fixed

(i.e. no deposition or scouring occurs).

Flow in open channels can be described by two equations, one
expressing the conservation of mass (the continuity eQuation) and one
expressing the conservation of momentum in the 1ongitudiﬁal direction

(the momentum equation). In general terms these equations form a set



of non-linear partial differential equations of the hyperbolic type.'
Depending upon the assumptions made there are various methods which are
available for the solution of these equations. These methods may be
grouped as follows:

1.2.1. Analytical Methods |

These methods are characterized by the extremely high level
of mathematical ability required to solve extremely simplified problems
in fluid dynamics. Fluid motion is usually represented by the linear
superposition of several harmonic functions of time. Section geometry
is usually specified by a simple mathematical function such as a circle
or an ellipse and the change in section geometry in the longitudinal
direction is usually specified by an exponential function. The ultimate
practicality of this method is limited by the necessity to linearize the
equations of motion and by the necessity to simplify the section geo-
metry to a form that may be described by a simple function. Although
previous researchers have expended much time on these solﬁtions in the
past, their usefulness for practical problems is very limited.

1.2.2. Method of Characteristics

In this method, the equations of motion are combined and
solutions of the "characteristic' equation are sought by considering
the propagation of small disturbances from an initiél state. Develop-
ment in this method is largely due to Dutch engineers and mathematicians.
The method is well suited to problems in which an abrupt surface
transition or critical sections appear (such as the development of a
tidal bore). The method of solving the characteristic equations,
however, may be fairly difficult. If friction is neglected, analytical
or graphical solutions are relatively simple to obtain.

In most practical applications some form of finite-difference
method must be employed and then the disadvantage of this method lies
in the highly irregular grid formed by '"characteristics™.

The alternatives given by the irregular grid are to either
accept the grid and interpolate for the final results or to interpolate
at each node to find points from which characteristics emerge to inter-
sect at the desired location. In either case, an unwieldy interpolation
process may be avoided by using finite-difference methods directly from

the partial differential equations.
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1.2.3. Finite-Difference Methods

These methods use finite~difference approximations to the
partial derivatives appearing in the equations of motion and solve the
resulting system of algebraic equations. It is the direct finite-
difference methods that hold the most promise for the solution of
engineering problems when a digital computer may be used to solve large
systems of algebraic equations. In this case, "direct" means the con-
version of the partial differential equations to a finite-difference
formulation, without use of the characteristic equations. Two recent
reviews of the various available methods are given in [ 19, 22].

There are two finite-difference methods, and the distinction
between them lies in the method in which the finite-differences are
formulated and resulting methods for the solution of the equationms.

The implicit method requires that all of the equations be solved simul-
taneously in order to advance the solution one time sfep. The explicit
method proéeeds down the open channel solving qnly one equation at one
time. There are a large number of finite-differencing schemes available
for use with each method.

Because of the bookkeeping and equation solving requirements
of the implicit scheme, the explicit method is much simpler to use;
however, the explicit schemes are restricted in the size of the com-
putational time step required to ensure a stable computational
procedure. Numerical stability is achieved when small errors introduced
in the computation diminish rather than increase in magnitude with
succeeding computations. If too large a time step is used, the true
solution to the equations may well be completely masked by the errors.
The restriction in At is given by the well known Courant conditionm,

which is:
Ax

M TE A
where, B = width of water surface; A = cross—-sectional area; g =
acceleration due to grévity; u = velocity; and Ax = the distance interval
used. If friction is important, Garrison et al [ 16] have shown that the
maximum At may be further limited by the following stability criterion:
ae < [—ﬁ%ﬁ'] - aglslesss ]

where n is the Manning friction factor.



Examination of the stability criteria will show that, for
typical river épplications, time stepé on the prder of a few seconds
may be required. For problems in large river systems which may involve
tidal cycles or input hydrographs extending over several days, these
small time steps cause the explicit method to be very wasteful of
computer time. '

Two other disadvantages of the explicit schemes are due to the
equation solving method.' The computations start at one end of the river
system and proceed from one end to the other. Therefore, the boundary
conditions must be placed at either end of the channel in order that the
computations may start. This restriction is not necessary with the _
implicit method agd, as will be shown later, the implicit method allows
boundary conditions to be placed anywhere within the system, subject of
course to physical constraints.

The other restriction on the explicit method is the difficulty
in handling flow in networks. As the computations proceed downstream
and reach a junction, some arbitrary decision must be made about how
much of the flow enters each branch. The profiles in each branch must
then be computed separately and the results, at the end of the branches,
compared. If these results are incompatible, then the computation must
start again at the top of the branch and this procedure iterated in some
fashion until the flows match properly. 1In the implicit method, this
problem does not arise since all of the equations are solved simultan-
eously.

1.4. SCOPE OF THE REPORT

This report develops all of the theory required to construct
and use a numerical model for simulating unsteady flow conditions in
networks of open channels.

The first section, although very short, gives a formal method
for describing the flow relationships in any network and is necessary
for understanding the computer storage scheme. The implicit method is
then described and ektended from use in single channels to networks of
channels. Equations of motion are derived and finite-difference ap-
proximations are developed.

The numerical properties of the linearized finite-difference

scheme are analyzed by considering the numerical stability by means of



the Von Neuman techﬁique. An expression for the truncation error is
developed and the conditions for conservation of mass are investigated.
All of these properties are found to depend upon the weighting factor,
0, used in the finite-difference scheme. On the basis of this in-
vestigation, a value of § very close to 0.5 is to be preferred.

A little known method for the solution of systems of non-
linear equations is described. It is independent of the form of the
equations and deserves wider recognition, since it is applicable to any
system of non-linear equations, not only the equations of fluid motion.

Examples are given of the application of the computer model
developed from‘the theory presented in this report. These examples
show the versatility of the method. An appendix gives a user's guide
to the model in enough detail for anyone to use the model and to modify
the model if required for specific applications. Finally a complete

Fortran listing of the computer program is given.



CHAPTER 2

2.0 THE NETWORK AS A GRAPH

The essential features of open channel flow in a network may
be illustrated by considering a network as if it were a mathematical
entity known as a graph. A graph, in mathematical terms, may be
defined as a connected set of lines on a plane surface. The points
at which various lines meet Or cross are known as nodes and if direction
may be determined the graph is said to be directed. The relationships
in the graph are purely topological in that distance relationships are
not preserved.

The graph representation of a network of open channels
consists of a number of lines called branches representing the elemen-
tary reaches of the open channel network and a certain number of nodes,
each of which identifies the location at which two or more branches
intersect. To make the graph more general and at the same time more
applicable tb river or estuarine systems, additional nodes are allowed
on the boundaries of the graph or at arbitrafy locations on the graph.
For example, the river system shown in figure 1(a) may be schematized
into the graph shown in figure 1(b). The branches of the graph are
shown as lines and the nodes are shown as dots in the figure.

| In modeling unsteady flow situations, each branch is considered
equivalent to an elementary reach in the channel network. The nodes are
placed at locations where flow properties are required or are known. At
each node it is necessary to have the cross-sectional geometry of the
open channel and during the solution of the equations of motion of the
system it is assumed that the system parameters will vary continuously
between adjacent nodes. Therefore, in the schematization of an open
channel network it is necessafy to take into account the physical
parameters of a system and these considerations are reflected in the
additional nodes selected for inclusion on the graph.

It is possible to rearrange the graph so that each node has,
at most, three branches connected to it. If more than three branches
are connected to a particular node, as in figure 2(a), then the offending
node may be split into two, or more, nodes each of which ﬁas three

branches, as in figure 2(b). The physical distance between the new



(a) ‘ - (b)
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FIGURE 1: A RIVER NETWORK AND ITS GRAPH REPRESENTATION
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nodes will be zergi_JIhe,purpose-of’thiﬁ'ﬁzﬁéﬁggizatioﬁ is to identify

_,—~—'"—f’_liﬂfIGQJEEI;EEShShiPB and to simplify these relationships to an extent

which allows simple bookkeeping for a computer program,

(a)

(b)

"FIGURE 2., SPLITTING OF A JUNCTION NODE

This splitting of nodes allows the identification of exactly
four separate types of nodes. Each network can be schematized using
only these four types of nodes. They are:

1. A Bounding node, which is connected to only one branch.

2. An Interior node, which is connected to exactly two

branches.

3. A Convergent node, which has two branches entering and one

branch leaving.

4. A Divergent node, which has one branch entering and two

branches leaving.

Types 3 and 4 are known collectively as Junction nodes. The



only difference between them lies in the direction chosen for the graph,
and the distinction is made purely for the purpose of easing the computer
programming difficulties. In an unsteady flow problem, any given junction
node could be either type 3 or type 4 depending upon the direction of
flow. This situation is automatically resolved by the computer program
and a node is classified according to its type when all flow is in the
positive direction. Making this distinction between convergent and di-
vergent nodes eases the computer programming difficulties without making

the theoretical treatment any more difficult.
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CHAPTER 3

3.0 THE IMPLICIT METHOD

O0f the two types of finite-difference schemes available for

. the solution.of the equations of motion, the implicit scheme has been

chosen for reasons which have been discussed briefly and will become
clearer by the end of this section.
Consider a rectangular grid, not necessarily uniform, on the

x~t plane as shown in figure 3. The function value and partial derivatives

of a function, ¢, at x = X + Axi and t = tj + ﬁfgi
2 2
are given by:
j+1 j+1

4] = L‘(d’i + ¢i+1+ 97 9143)

9 _ 1[4+l 5. 341 _ 3
3t  2At, [¢i 03 9541 T %341

QL

a’
b

SN S D SRS . £ S ARG LN
2Bx [¢1+1 03 * 9341 T % |

The above are applied to a single branched river or channel

which contains only bounding nodes. At time t = tj+1’ there are two

“unknowns for each node or grid point; so that a river system containing

N reaches, corresponding to N+1 nodes, has 2(N+1) unknowns at time tj+1'
For each pair of adjacent nodes at time tj+l’ a continuity equation and
a momentum equation may be written in finite-difference form relating

the unknown values at time t,
j+1
there are two equations between each pair of adjacent nodes, there are

to the known values at time tj. Since

a total of 2N equations in 2(N+1) unknowns. The addition of any two
additional independent equations relating unknowns will produce a set of
2N+2 equations with 2N+2 unknowns which may be solved simultaneously to
produce the solutions at time tj+1'
This implicit method may easily be extended for use in a net-
work of channels by considering the interior node shown in figure 4 and

the junction node shown in figure 5(a). There are three nodes associated

11
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FIGURE 3: THE x-t SOLUTION PLANE
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with the interior nbde shown in figuré 4, two bounding nodes and the
interior node itself. The system is comprised of two branches for which
four equations may be written. The two boundary conditions supply the
other two equations necessary for the computation of the six unknown
quantities.

Consider the junction node shown in figure 5(a) and split this
junction node into three nodes as shown in figure 5(b). There are now
six nodes assoclated with the original junction node and hence twelve
unknowns. The three branches provide six equations, the three boundary
conditions provide an additional three equations giving a total of nine
‘equations for the twelve unknowns.

_ The three remaining equations necessary for a solution are
provided fairly easily. At any junction, a continuity equation will
relate the amount of water entering the junction to the amount of water
leaving the junction. This continuity equation provides one equation.
Noting that the actual distance between the junction nodes is zero will
provide two additional equations since the water level at the three
"junction nodes' must be equal. Hence, there are a total of twelve
equations in twelve unknowns and the system of equaticns is solvable.

Two advantages of the implicit method are immediately apparent
at this point. The first is that the boundary conditions do not neces-
sarily have to be specified at the bounding nodes. For the system of
equations to be solvable, it is only necessary to have the requisite
number of independent additional equations. As long as the boundary
equations cannot be derived from the rest of the equations, they are
mathematically necessary and sufficient for a solution. At any time step,
then, any of the following combinations would give sufficient boundary"

conditions for a solution in a single branched channel:

1. any two water levels, at different locations
any two velocities, at different locations

. any height and a discharge

. any height and a stage discharge curve

2

3

4. any velocity and a discharge

5

6. any velocity and a stage discharge curve
7

. any discharge and a stage discharge curve

13



FIGURE 4: AN INTERIOR NODE

(a)

- D

(b)

FIGURE 5: A JUNCTION NODE
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The following will not give sufficient boundary conditions

since the system of equations would not be independent:

1. any two discharges
2. any tﬁo stage discharge curves

It should be noted that the boundary equations must be ex-
pressed in terms of the saﬁe variables that are used for the momentum
and continuity equations. This, however, causes no difficulty whatso-
ever, since the dischérge is always an explicit function of velocity
and cross-sectional area is always a function of the water level., Using
these additional relationships, it is always possible to express the
boundary conditions in terms of the appropriate variables. '

Except for two cases, the simple algebraic requiremént for two.
additional,,indepéndeht boundary equations will also satisfy the physical
requirements for boundary conditions. The first éxceptibn is the
occurrence of a transition section in the channel. In almost all versions
of the equations of motion, this transition will appear as a discontinuity
in the water surface profile. Therefore, to handle cases such as this,
additional equations would be required to describe the transition section
itself.

The second exception is due to the physical process of measure-
ment. If, in a very long channel, the boundary conditions are specified
very close together, the inaccuracies in measurement may well be ampiified
both up and downstream. This, however, is a simple case of ill-conditioning
and so care must be taken to ensure that the specification of boundary
conditions is éccurate enough to provide meaningful answers.

The second advantage of the implicit meﬁhod is in the com-
putation of flows around islands and in pafallel channels. By solving all
of the equations simultaneously, the flow in the various channels 1is
derived automatically. The explicit method, which starts the computations
at one end of a channelland proceeds upstream, does not have this ad-
vantage. In the explicit method various complicated iteratiﬁe techniques
are required in order to balance the flow in various branches. The result
may be a savings in computation time and difficﬁlty; if a sétisfactory
method is found for the solution of large systems of simultaneous non-

linear equations.

15
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CHAPTER 4

4.0 EQUATIONS OF MOTION

The equations of motion for one dimensional flow are derived

in this section. These equations, known as the shallow water wave
equations, or the St. Venant equations, consist of continuity and
momentum equations for unsteady, non-uniform flow in non-prismatic open
channels. .

The schematization of a section of open channel is shown in *
figure 6. The x co-ordinate is measured horizontally along the longi-
tudinal axis of the channel and z is the distance from an arbitrary
horizontal datum to the water surface. The flow is assumed to be one
dimensional and hence: channel curvature and Coriolis effects are
neglected; the transverse water surface is horizontal; the density is
homogeneous; and hydrostatic pressure prevails at all points 1in the
channel.

Development of the equations of motion may proceed by a number
of methods. The conservation of mass and momentum may be formulated by

the material (Lagrangian) method.or by the control volume (Eulerian)

method. In the material method, the equations are derived by consideriﬁg
the motion of a given mass of fluid, Am, for a small increment of time,
At, in the vicinity of a fixed section. In the control volume method,
the equations are derived by considering the flux of mass and momentum
through a control volume fixed in space.

Although the control volume method provides a much more
elegant method for deriving the equations of motion, the material method
will be used here since it gives more insight into the physical processes
involved.

4.1 CONTINUITY EQUATION

The continuity equation may be derived from the law of con-
servation of mass of a fluid element, Am. Assuming that there is no
transport in the storage section of the channel and that no lateral
inflow or outflow is present the total time derivative of the mass in

the main channel is zero, that is:
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L am = (oarx) = 0

[N
rt

density of the water

€
I~
]
2]
]
©
1]

A = bh* = b(h+z)
h* = hydraulic mean depth
b = topwidth of conveyance section

Two factors contribute to a change of mass in a moving element.
These are: a change due to storage in a shallow portion of the cross-

section which is equal to

pbs — Ax

where bs = topwidth of the storage section,and a change due to a lateral
inflow or outflow caused by a small tributary or by bank infiltrationm,

which is equal to

pqAx
where q is the lateral inflow per unit of longitudinal length.

Hence, the continuity equation is

(pAAX) = pb 3z Ax + pqbx ‘ (4.1)

4
dt s ot

In terms of partial derivatives, the total derivative is:

d_ _

9 9
dt at tu ox

where u is the average velocity at a cross-section so that (4.1) may be

written as

oA dA d oz Ag = :
bk 50+ u bx o+ A (8x) + b ¢ Ax - qhx = 0 (4.2)

The term %? (Ax) may be handled as follows:

at time t, Ax = Xy = Xy

and at time t + At, AxY = (x2 + uAt + %% AxAt) - (x1 + ult)

hence: d _Ax' - Ax _ du
at, (B0 = =g = 3d%

and after dividing by Ax, equation (4.2) becomes

JA 9A du 2z _
T + u o + A . + bS Nt q=20 (4.3)
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Noting that A = bh*

onx _ 9z

ot ot

°b _
and 3 0

equation 4.3 becomes

oh* b du _
(b+bs) +ba +h*—-+bh*ax-q—0 (4.4)

4.2 MOMENTUM EQUATION

This equation is derived from Newton's Second Law, which states

that the time rate of change of momentum is equal to the sum of the
external forces acting on the moving fluid element.

Assuming again that there is no transport in the storage
section of the channel, the longitudinal momentum of a fluid element Am

is given by

(Am)u = (pAdx) 3 = pQhx
Newton's Second Law states that
& (oapx) = pix —9- ij—t (4x) = IF_  (4.5)

using the relationships already derived for

d - BPRN
TS and dt(A}.), (4.5) becomes
3Q 9Q du J—
pAx (at +u Bx) + pQ ™ Ax ZFx (4.6)

The change in momentum flux due to lateral inflow is extemsively
discussed by Dronkers {l1]. There is a change in the longitudinal momentum
flux due to flow entering or leaving the main channel from the storage
area, but the effect is dependent upon whether the water leQel is rising
or falling and hence whether the lateral inflow is entering or leaving
the storage area. It will be assumed in this discussion that lateral
flbws enter or leave the conveyance section at right angles to the longi-
tudinal momentum flux. The schematization of a channel into conveyance
and storage sections is an approximate method for accounting for non-
uniform velocity distributions and further refinements to account for

these non-uniform velocity distributions are not warranted.
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The above argument will only apply when the rate of lateral
flow is very small compared to the flow in the main channel. If this.
rate is large, then the above argument does not apply and additional
terms must be added to the momentum equation to account for the loss or
gain in momentum due to the lateral inflow or outflow.

The sum of the external forces, ZFx, consists of P, the
difference in hydrostatic pressure force on the two vertical cross-
sections; PB, the x component of the horizontal pressure due to con-
vergent boundaries of the section; and F, the friction force exerted by
the boundaries.

Hence, the three forces are:

_ P
ZFx =P - (P + e Ax)+PB F
(4.7)
P .
= - 3% Ax + PB - F
The total force due to pressure on a vertical face is
*
P = gh pg (h* - 2') b' dz'
where b' is the channel width at elevation z'.
oP dz h* b’ ‘
o - e * - z')— dz'
80 7 = PB 3 A+ pg £ (h z )ax dz (4.8)
h* ] 1
where the flow area A = £ b’ dz
The boundary pressure force is
h* b’
= * - ') — 1
PB pgé (h z') N Ax dz 4.9)

The average frictional shear stress on the boundary of the fluid

element is:
= *
Wo pg h SE
where h* is the hydraulic mean depth and SE is the slope of the energy
gradient. Hence the frictional force is:
F = Wo (PrAx) f pgASEAx
where b is the topwidth of the section.

The slope of the energy gradient may be evaluated from the Chezy
equation in which '
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SE=}_1‘LL1_L
, *

C°h
hence F = pgAAx‘%L%£ : (4.10)
substituting into equation (4.7)
IF_ = -pg %-}Z?AAX - pganx 3 ‘;* : (4.11)

noting that the integrals from (4.8) and (4.9) cancel each other.
Substituting (4.11) into equation (4.6) and dividing by the

product PAx, the momentum equation is:

3 3
%:Q+u£‘+Q-a—:+gA-g§+gA2;*=0 (4.12)

Since:

Q=Au=b h* u=>b(h + 2)u

3¢ 0
5h _

ot =0
3h*_ 3z
ot at

equation (4.12), after some algebraic manipulation and use of the chain

rule, becomes:

du , u_ o9z du . u? db .Ei Ih* 5z ulu]
™ + T* Bt + 2u = + b Ix + h* 5% + B3, + g ook 0 (4.13)

which is the final form of the momentum equation.

4.3 JUNCTION EQUATIONS

The schematization of a junction has resulted in the generalized
junction shown in figure 7. For purposes of this discussion, the junction
is considered to be convergent, but the argument could easily be applied

to a divergent junction.
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FIGURE 7: A CONVERGENT JUNCTION

~ The continuity equation is quite simple to write for a junction.
Since the nodes are very close together, the storage in the junction may

be ignored and so:
Q +0Q; = Q | (4.14)

That is, all of the water flowing into the junction must flow
out.

The conditions for a generalized momentum equation at a junction
are very much more involved. If U, Uy, Ug are the velocities at nodes
1, 2 and 3 respectively, a difference in water level may occur between
the water levels at the various nodes. Since the distances between the
nodes are very small, the terms %%, Q %& and the resistance term may be
neglected in the momentum equation. If energy losses between node 1 and
node 2 caused by non-uniformity of flow and acceleration or deceleration

are taken into account by means of the factor n, equation (4.12) becomes:
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nu %% + gA %i =0 - : ' (4.15)

Then dividing through by A and putting into finite-difference form,
(4.15) becomes '

(u? - uf) . (4.16)

and therefore, the energy heads will be equal across the junction.

Unfortunately this argument does not hold in practice. If the
velocity at node 2 is smaller than at node 1, a considerable dissipation
~ of energy may take place and n could be considerably smaller tham 1.
Alternatively, if u2> ul, the value of n may be very close to 1. Thus
over a tidal cycle, or any unsteady flow condition, the value of n may
be a time dependent function and in practice its value may be unknown and
very difficult to determine.

The result of this discussion is to indicate the problems in
the development of generalized momentum equations for all junctioms. If
the differences in velocity through a junction are small and if centri-
fugal accelerations do not play a large part in energy dissipationm, then
the two momentum equations required for the junction may be written as:

z, =12, : 4.17)

Z; = 2, (4.18)

If very accurate values for the water 1e§els and velocities in
a junction are required, both the Bernoulli forces and the centrifugal

forces must be taken into account.
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n+2

tn+1 ['Y
’ (1-9) at

GAtn

FIGURE 8: THE x-t SOLUTION PLANE SHOWING THE WEIGHTING FACTOR, ©
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CHAPTER 5

5.0 FINITE-DIFFERENCE SCHEME

Since there is no known analytic solution to the partial

differential equations of flow except for a very few specific cases, some
numerical procedure must be found. Of the various implicit finite-
difference techniques that have been used, the weighted four point scheme
appears to have a number of advantages. Some of these advantages are:
that the scheme may be used with a non-uniform distance grid; that
convergence and stability may be controlled by varying the ﬁeighting
factor as explained in chapter 6; and that the values of the unknown 2z
and u are obtained at each grid point.

If we consider a rectangular grid placed on the x-t plane,
the locations of points at which solutions of the unknowns are to be
obtained are given by the intersections of the lines making up the net.
Lines drawn ﬁarallel to the t-axis represent nodal points on an open
channel and are spaced according to the corresponding nodal spacing on
the open channel. They need not be a constant distance apart. Lines
drawn parallel to the x-axis represent time steps and need not be a
constant distance apart.

Figure 8 shows a grid drawn upon the x-t plane. The function
values and partial derivatives of the unknowns will be evaluated at the
point R, which is located at (xm + ffE, t:n + 0 Atﬁ) where O represents
a weighting factor 05051.0. The fun%tion values and the partial
derivatives of any unknown, K, may then be expressed in terms of the

values at the four grid points surrounding the point R in the following

manner.
n+l n+l ’ n n
+ K K + K
. m m+1 _ m m+1
3K 1 n+l ntl _.n n
at  2At (Km + Km+1 Km - Km+l) (5.2)
n+1 n+l n n
K - K K - K
oK mtl m _ mt+1 m ,
% 6(—-——-‘Ax ) + (1-0) (—-—-—Ax ) (5.3)
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In advancing the solution of the equétions from time step
tn to time step t+1’ all of the values of K at time tn are assumed to
be known.

If © = 1, then the backward implicit scheme used by Dronkers
[10] and by Baltzer and Lai [ 5] is obtained. If O = 0.5, then the box
scheme used by Amien [1,2], Amien and Chu [ 3], Amien and Fang [4], and
Fread [12, 13, 15] is obtained. If © = 0, then an explicit finite-
difference scheme is obtained. The scheme 1s implicit for all © > O.
The numerical properties of this scheme are discussed in detail in the
following chapter. '
5.1 THE CONTINUITY EQUATION ,

The continuity equation is given as equation (4.4); sub-
stituting (5.1), (5.2), (5.3) into this equation yields:

¥ 1 /. ntl n+l n. n
%_fb+bs)m+ (b+bs)m+;] [_ZAt (zm + okl T Zm T zm+1)-] +

[ o+l n+l n n ]
e(um + um+1)+ (1-0) u + um+1) bm + bm+1
2 2 2|

*

ntl n+l n n
h* — h* h* - h*
*I:Q( m+1 m )+ (1-6)( 1 m)

Ax Ax +

n+l

n+l n n
Un + Untl um + Ul bm+1 bm
+ |\————— (1-0) *
2 2 Ax

+1 .., .nt+l n n
{— h*"T 4 hx h*" 4 h*
m m+1) _ ( m m+1)
*Le( 5 + (1-0) — +

*n+1 *n+1 &0 x0
+(bm + bm+1)[%(h m *D m+1) +(-0) [y th mﬁl) *
7 2 2

n+l _ n+l un _un
* e(“m+1 Yn ) + (1-0) ( m+1 m)
Ax Ax

-q=0 (5.4)
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This rather unwieldy equation may be simplified by realizing
that the only unknowns are the values of z and u with time superscripts

of n + 1. Therefore, collecting terms

HT =h_ + z::l

HIS =h . +h + (1-0) (2 + z;_l)

HN =h_ . -h + (1-0) (z:H_l - z:)

VP = ulbuw, (5.5)
Z¢ = (1-8) VP

DV = (1-6) (u = u)

DZ = (1-8) (z,, - 2.)

Zp = z; + z;+1

substituting these values into (5.4) and dropping the time superscript
yvields:

L [(b+b )+ (b+b ) (z +z
S m m

4At s’ mtl - ZP) 4

wHl
+ Z%E[ 6(u +u ) +201[b +b  1[0(z, - z) +HN

+ 7’%x-[e(um+uwl) +201 (b - b 1[8(z . +z) + HIS]
+ Z%EI b +b 1[6(z +3z ) +HIS][6(u ) - u)+DV]

-q=0 (5.6)

which is the simple form of the continuity equation to be used in the

computer program,

5.2 THE MOMENTUM EQUATION

The momentum equation is given as equation (4.13). Sub-

stituting (5.1), (5.2)and (5.3) into the momentum equation yields:
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1 6n+1+un+1 LN B O
20t \'m m+1 m 1l '

-+

[B(U;"'l + :‘Ii + (1 9). (u + um+1):| [1 (n+1 n+l n
+ 2z -
[e(m“+1 + h*“”) + (1-0) (h*D + na? 1)] 20t mHl

u'm-1 + un+1 un + un un+1 - un+l u
+2 e(__m—’E"_l) + (1-6) (LZ__._“L"_]:) e(._E"_l__._) + (1-9) (__A___

Ax

2
un+1 +u n+l u + u;;- )
e(—“‘—z——) + (1-0) (5| b
+2

Cu * Prt1) bx
2
l:e(un+l n+1) + (1-9) (u + um+1):|
s 1 +1
n+ n
Ea(h* + W)+ (1-6) (e + h*mﬂ)]
n+l n+l n n
h* - h* h#* - h*
mtl m mt1 m
*10( i ) + (1-6)(———Ax—)] +
( zn+1 zn+l I
relomL Ty o gy (mL__m|
[ ntl n+l n n
u +u u + u
+g0 (“‘—7— =) + (1-0) (2 “‘*1)}
-
n+l n+1 n
* u + u + u
o (B ——T) + (1-9) (2t
h*;\l+l + h*n+l h* + h*m+1
c? i8¢ 7D + (1-6) (—2—=,
= 0 (5.7
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Making the substitutions (5.5) and dropping the time super-

scripts gives:

1 (6(u + u L ) + 20)

- VP) + 35 (e(zm ) T HS) o T Zmel ZP):} +

1
2ot O T Vma

—i; [(O(u Fu )+ ZBOG - u) + DV)] +
| b .. -b
u )+ Z¢)]2 ;n_tl___ln_ +
L [bm_l b

) 2 ]
m+l) + HTS):’

+

1
t ax [“’(“_m

+

. Lew
+ ax [(e(zm

[6(z_,, - z) +mN] +

+

+ EE fe¢z_,, - 2,) + DZ] *+

[:e(u +u )+ Z¢] loCu +u )+ 28 | (5.8)

* 2 loz_ + 2, + urs|

which is the momentum equation in finite-difference form.
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CHAPTER 6

6.0 NUMERICAL PROPERTIES OF THE FINITE-DIFFERENCE SCHEME

In chapter 4 the partial differential'equations of motion of

fluid flow in open channels were derived. 1In chapter 5 a set of finite-
difference equations were derived which approximate the partial differen-
tial equations. 1In the limit as the grid size tends to zero, these |
difference equations become the differential equations. In practice,
however, the limit is never taken and the cbmputation does not take

place with an infinite number of decimal places. This chapter examines
the stability, the computational error, and the convergence of the
finite~difference scheme.

6.1 STABILITY

A solution to the set of partial differential equations is
stable if and only if numerical errors introduced into the computation
are not amplified during the course of computation to produce an un-
bounded solution, :

One technique for investigation of stability was developed by
J. Von Neumann. This technique follows the Fourier expansion of a line.
of errors as time progresses. It is only applicable to linear systems -
and is based on the hypothesis that linear operators with variable co-
efficients are stable if and only if all of their localized operators
(i.e. where the coefficients are taken as constants), are stable.

The equations of motion of a system are linearized by neglect-
ing certain terms on the basis that their magnitude is relatively small.
Considering a broad channel with no lateral inflow, a small perturbation
in depth h above a mean depth Ho and velocity u above a mean velocity Vo
ylelds,

dh du _
at + Ho ax 0 (6.1)

Ju ah _
ot + By + ku =0 (6.2)
2
gVOn
4/3

2.2 H
o

where k =

and n = Mannings roughness coefficient.
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Substituting the weighted, four point implicit finite-
difference scheme given by equations 5.1 to 5.3, into the linearized

equations of motion yields;

n+l n+l n n ( n+l _ .l

hmv + hm+1 B hm - hm+1 + oH Um1 T Ym ) + §
2At [} Ax
(' - u)
+(1-e) i —mL__m _ - (6.3)
o Ax
n+l n+l I n n+l n+l n+l n+l
um + um+1 B um - um+1 +0 g(hm-l-l hm +k (um + um+1) +
2At Ax 2
8(h;+1 ) (u” + “2+1)
+ (1-8) = B4 g —0 5 =0 (6.4)

as the exact finite-difference scheme.

Since the finite-difference scheme represents a linear system,
only one term in the Fourier series expansion of the errors need be
considered. Therefore the errors are given by

h(x,t) = h*(x,t)el(0%*8) (6.5)

Su(x,t) = uk(x,r)el (OX+8E) (6.6)

where 6h and Su are the errors in the depth and velocity

respectively. These errors are functions of time and space: h* and u*
are the exact solutions of the difference equations; i =A/:i! the
imaginary unit; B = 2II/T, the wave frequency; o = 2II/L, the wave number;
T = the wave period and; L = the wave length.

These errors may be expressed at the discrete node points‘on
the x-t plane.

ShT = h" ei(omAx + BnAt)
m m

n u*n ei(omAx + BnAt) ‘ 6.7)
m m
o+l =‘h*: oi(o(mtl)Ax + B(n+l)at)

etc.
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The errors are assumed to be perturbations superimposed on
the exact solution of tﬁe exact finite-difference equations. Therefore
the solution provided by the system at a point (m,n) would not be
(h*) but would be

(h*) + (h*)m i(omAx + BnAt) (6.8)

To obtain an expression involving the error terms, all the
terms in the form of equation (6.8) are substituted into equations
(6.3) and (6.4) and then equations (6.3) and (6.4) are subtracted. 1In
other words, the exact finite-difference equations are subtracted from
the finite-difference equations which contéin the error. The result

after dividing by, eiomAg eiBnAt and substituting A = eiBAt is:

h*l}\(eiOAx +1) - (e198% 4 1)] + u*[Ho -ﬁ—; (262 + 2-26)(e10Ax—1)] =0
and:

h*[ A—(ze>\+2 20) (198% _ 1):|+ u* (e iodx 1) {A-1+kAt (62 + 1~ e)]

| (6.9)
Then dividing further by e10Ax + 1 and substituting
ioAx
i tan(OA )= eioAx -
e +1
results in:
(A=1)h* + [(2ex+2 2e)u—— 1 tan(géi‘—):lu* =0 (6.10)

and

l:(zex+2 ze) S i tan %\—x)]h* +l:)\-1+kAt(e>\+l—e)j|u* =0 (6.11)

Equations (6.10) and (6.11) represent two homogeneous linear
equations in h* and u%*. "
Since h* and u* are not both identically equal to zero, the

determinant of this system must vanish, hence:
(A-1) [A-1+6 (A-1)b+b] + 4[6(A-1) + ]2 a =0 (6.12)
Where:

= Aty o 2 (94X -
a = gH (Ax) tan ( 2 Jand b = kAt.
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Equation (6.12) is a quadratic in A-1 and may be solved to

y = 1 - 8abtb . . o/16aZp?

" 2(1+6b+ha0?)” 1 2(1+66+4a6%)
now if A = r+is then |A| =¥r? + s? = A*, where A* is the complex

obtain

conjugate of A, and so

Af1+(26-2)7 a + (6-1)b' |
Al '1/1 + 467 a + 6b (6.13)

For the finite-difference equations to be stable, the error
at time t + At must be smaller than the error at time t.

Now A is the growth factor for the propagation of all error
waves through time. Therefore, if the system is to be stable in the
sense that errors tend to zero monotonically then |A| < 1, independent
of either a or b. If this condition is satisfied, then the finite-
difference scheme will be stable, independent of the values of Ax and
At, since a and b are functions of Ax and At. For IAI to be étrictly
less than 1 the numerator in equation (6.13) must be less than the
denominator.

Although the numerator may or may not be smaller than the
denominator, depending upon the values of a and b, to ensure un-
conditional stability the numerator must always be smaller than the
denominator. This will be ensured if the coefficients in the numerator
are always smaller than the corresponding coefficients in the denomi-

nator. Since (6-1) < 6, then this requirement is satisfied if

(20+2) 2<402
which means that 06>%. Therefore, if 6>0.5, the linear finite-difference
equations are unconditionally stable. 1If 0<8<0.5, the linear finite-
difference equations may be conditionally'stable depending upon the
values of Ax and At.

When O=l, substitution in equation (6.13) gives

|>‘l ____4’l+a—b/2
1+a+b/2

Hence, as long as b>0, the centered finite-difference equations
are unconditionally stable. However, if b = 0, then there are no
frictional effects in the river system and the centered finite-

difference scheme becomes weakly stable.
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6.2 APPROXIMATION

The finite-difference equations are an approximation to the
exact partial differential equations. From the definition of a partial
derivative, it is eas11y seen that as the space-time grid size approaches
zero, the solution of the finite-difference equations must approach the
solution of the partial differential equations. However, in practice,
the space-time grid size used is not zero ahd hence the difference
between the exact solution and the solution of the difference equations
must be determined. This error can only be examined qualitatively by
deriving the functional form of the error.

The differential equation is computed about the centre point -

Ax T, At
of the x-t g?id, i.e. at point (xm + L tn + 2).

Fxpanding K; and K;+1 about the point (xm, t + At/2) in a

standard Taylor series gives

«® )n+1~5 nHs At (gg n+15+ At2(32 “;45__ At® D K;H’_‘_
8 ‘atZ 48 "3t¥ .

Ly | oty | At (aK“)”‘ At (32 “**5 A3, 23K N
m ‘m m 2 Bt 48 \Btam '

-

Therefore, combining these two series results in

n+1l n|nts
[Km - K (ax s L A2 k) . Ot (3% N N (6. 1)
L Ae | T\Be 24 at 3840 'thm R

and

n+l n nts :
Kt ~ Ko | (ax) w2 fa K)“*’f . e (351()“”5
At okl ot L 24 \73c l 3840 \3¢c°

+ .
mt+l

. (6.15)
Now, expanding (6.14) and (6.15) in a two-dimensional Taylor series about
the point (xm + Ax/2,.tn + At/2)

Kn+1 - k®
m m _ 8K At2 _ bx 321< 4 At? (a“x) . N
At ot 2 axat 24 \9x3t7 ot

ax2 | [ a3k At2 35k \ |
+ g [(axfa) ( svrre) BELSCECIEN U (6.16)
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n+1 n

w1~ N1 ok, L, Mx /32 L A2 vk ) N
At "3 T 24 2 axac 24 | 9xot’ s
a2 | 9% | A2 [3% \
+ 3 [axzat + 2% axzatf/ R N (6.17)
Where all of the derivatives are understood to be written around the

A At
point (x + -—}5, t + —3)

Using similar techniques, expansions may be obtained for:

Kn+l B Kn :
m+1 m _ 9K At | 3%k + Ax2  [3"Kk + +
Ax  9x "2 | atox ~ 24 atax’, ot
At? | 3% Ax? ( 35K -
+ 8 l:i)tTBx + 24 ot “ox° .. Tt (6.18)
Kn+1 _ Kn+1
mtl — m 9K . ax? (3°K) Aef 3%k ax® /3K ) +
Ax ™ 24 \3x° 2| 9tox 24 \9tax’ v
At? | 3%k, Ax? [/ 3%k |
+ 8 [31:‘8){ + 2 (atzaxs + . . . + . . . (6.19)
Again, all derivatives are understood to be evaluated at the point
Ax At
(xm + 2’ t:n + 2)

Using these series expansions, the approximation to the

derivatives of the function K may be expressed in a Taylor series. Thus:

n+l n+l n n
%:Km +Knri-1—Km-KnH-1
ot 2At

_ 9K | At? (83K Ax? | 3%k At? 3%k |
T T) aﬁ)* 8 | xac T8 (%% |t (6.20)

n+l n+l n n
oK ~ 6 [Km+l B Km :]+ (1-6) [Km+l B Km}
ox Ax Ax

_ 'a—K. At a K 331( N AXZ ( aSK
= 25+ (20-1) I:Btax tox )] 8 [{3t‘3x> T o Betaxy|
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2 f33g -
+£23-2‘-(g—x, ... (6.21)

These expressions may be substituted into the finite-
difference equations for the linearized equations of motion to give

2 3 2 3 2 5
oh + At 9°h + Ax h At 9°h

9
3t 24 dt° 8 (ax‘ac + 24 9x‘ot’ )+

du At ,93%u Ax2  3%u ., At? | 3% Ax?2 38w
+H, [EE 20D S Gt ™t 8 Gefax T2 wtad) Y
2 3 :
+% g—x‘;+...]=o (6.22)

for the continuity equation and

du , A2 3% + Ax? ( 3%u + A2 3%u
ot 24 3t? 8

ox“ot 8 BiYBt’) +

dh At ,3%h | Ax?2  3h A2 3%h |, Ax®* 3°h
* g[3x+ 20-1) 5= Geax T 26 Teax® T8 Grax Y2 et t

Ax? 3%h _
+ 32 -a?+ku+...]-o (6.23)

for the momentum equation.

The truncation errors E1 and E2 may be obtained by sub-

tracting the exact partial differential equations (6.1) and (6.2) from
(6.22) and (6.23) respectively, so that

Ax? "u

At
245 Seax?

_ At 3%u
El B (26_1)Ho 2 (atax +

Ac? | 3°n 3% Ax2 3%u
+ 73 [_’33:; tH (5% T2 et

2 3 2 aS H 3
+A"E")h+At 9 h +—°3‘;)]+... (6.24)

8 9x“9ot 24  9Ix°ot”’ 3 9x

_ At ,3%h | Ax® 3'h
E, = (20-1) &5~ G ¥ 24 deax® T
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4 A% 132 (a h o, A )
8 33t3 Btax 3 Bttax
Ax? 3%2u , At? 3% g on’ ‘
73 [kaxzac + 3 9x°9t’ + 3 5;3) T (6.25)

Clearly, both E1 and E2 approach zero as Ax and At approach
zero and so the difference scheme converges to the solution of the
partial differential equations. In addition, both (6.24) and (6.25) may
be written in the form E = (26-1) O(At) + 0(At?) + 0(Ax?) (6.26)
Therefore, the scheme has first order accuracy for linear
equations with respect to At and second order accuracy with respect to
Ax for any value of 0<6<l. When 6 = 0.5, the scheme has second order
accuracy and the farther 6 departs from this value, the larger the
truncation error becomes. Equation (26) also shows that the accuracy

of the solution is independent of the relationship between Ax and At.

6.3 CONSERVATION OF MASS

_ The total mass in a bounded system should be conserved during
numerical computation if account -is taken of the increase or decrease
of mass through the system boundaries. If mass 1s added during the
course of computation, then wave amplitudes will increase with time
and the computation will become unstable.

The continuity equation may be written in the form

%3 + %% =0 (6.27)

The finite-difference approximation to equation (6.27) is:

n+l n+l n n+l n+l
ALY AL AT Qnﬂ-l U Qm+1 Q

AL ———) + (1-8) (———) = 0 (6.28)

Adding all the terms along the x—-axis fromm = 1 to m = M, gives

m = M-1 n+l n+l M-1 n n
%’g z T Al | _
= 1 2 =1 2
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=6 (@7 - ™ + - @ - o

which may be written as

change of volume

At =8 (@

n+l n+l, n n
Mot + a-e) (@] - o)
If 6 = 0.5 this becomes

" change in volume
At

= inflow - outflow

‘Thus, for one time step, the central finite-difference scheme
conserves mass, SO lbng as the mass which enters or leaves through the
system boundaries is accounted for.

' When 0 = 1

change in volume _ Qn+1 _ Qn+1
At 1 M

and the system does not conserve mass to the same extent that it does
when 6 = 0.5, The extent to which the system conserves mass is
proportional to the extent to which 6 departs from 0.5.

6.4 NUMERICAL RESULTS

The analytical results obtained in the preceding sections
were obtained using the linearized equations of motion. The equations
derived in chapter 4 are non-linear and so the results obtained in this
chapter are not necessarily applicable. The conservation of mass
analysis used the equation of continuity derived in chapter 4 and so
the results from it are directly applicable.

The stability and convergence properties of a non-linear
system may be investigated via numerical experiments. In this way,
the effects of the non-linear terms may be calculated and some proper-
ties of the non-linear system discovered. This method has many draw-
backs with the most obvious one being that not all cases may Be
investigated. The results obtained by numerical experiment are far
from convincing.

The computer program described in this report has been run
for a large variety of test cases, and the numerical results tend to

agree closely with the results obtained from the analytic investigations.
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It should be noted that the implicit scheme did tend to exhibit bounded
oscillations with 8 = 0.5 when the wave period was quite short compared
to the time step or when the wave was very large and abrupt. These
oscillations died rapidly when 0 was increased beyond 0.5. The
numerical damping of a wave is proportional to 6. That is, as 0
becomes close to 1.0, waves are damped out quite rapidly, a result
predicted by the analysis.
In conclusion, the results of the analytic investigations‘are

borne out by numerical experiments.

. These results have also been confirmed by other investigators
(13), and from their work, for unsteady fléw situations, the "best"
value of 0 is approximately 0.55. For steady state conditions, rapid
convergence from inaccurate initial conditions may be obtained if 6 is

increased to a value approaching 1.0.
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CHAPTER 7

7.0 SOLUTION OF EQUATIONS
The major difficulty with the implicit method has always

been the simultaneous solution of a large number of equations. For
many years, this difficulty was insurmountable and very little work
~was done using the implicit method. In recent years, however, both
Freud and Amien have produced a number of papers dealing with the
implicit method. They have used the Newton iteration scheme to
solve the non-linear equations of motion in a single branched channel.
In using the Newton iteration scheme, both Freud and Amien
have made use of a particular formulation of the equations of motion
and have used the fact that the coefficient matrix of the equivalent
linear system is both banded and sparse. K.M. Brown [ 6, 7] has dev-
eloped a modified Newton-like method for solving systems of non-linear
algebraic or transcendental equations that is applicable to problems
of open channel flow. The advantage of Brown's method is that the
method makes no use of the form in which the equations are expressed.
This means that a model may be designed which is totally independent
of the particular formulation of the equations of motion to be used.
The following explanation of Brown's algorithm is taken
from his two papers. It is worth noting that although this algorithm
does not make any reference to the exact form of the equations of
motion, it could be modified to do so. In practice, the coefficients
of the equivalent 1ineér system are sparse, with a maximum of six
non-zero entries in each row. If this fact were taken advantagebof,
the operation of the algorithm could be speeded up dramatically.
7.1 NEWTON'S METHOD

Consider a system of N non-linear algebraic equations in N

unknowns described by
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f1 (x) = fl(xl, Xgs Xgs cecens xN) =10

f2 (x) = f2(x1’ xz, x3, seosey )QN) = 0
. (7.1)
fN (x) = fN(xl, Xys Xgy eevess xN) =0

Then, let ;i = (xi, x;, ceeees x;) be the ithapproximation to the
solution in a suitably recursive scheme. If the recursive scheme is

Newton's method, then the iteration scheme is given by:

]
(=]
[

A .
[\N]

B R T (7.2)
‘where j(?) is the Jacobian matrix [afilaxi] and the superscript n means
that all functions involved are to be evaluated at x = x.
For this iteration procedure, the following convergence theoreﬁ
is well-known. |
Theorem 1.
If
(1) in a closed region R whose interior contains a root X =7 of
(7.1), each fi is twice continuously differentiable for 1 = 1,
.., N.
(ii) j(f) is non-singular at ; = ;, and
(iii) ¥° is chosen in R sufficiently close to ; = ;.
Then the iteration (7.2) is convergent to ?.

7.2 BROWN'S ALGORITHM

Brown's algorithm is essentially a modified Newton's method
based on Gaussian elimination. The forward triangularization of the
full Jacobian matrix is approximated by working with one row at a time,
eliminating one variable for each row treated. If the conditions of
Theorem 1 apply, and ;n denotes the nth approximation to a root ; = ;
of equations 7.1, then the method consists of the following steps:

STEP 1 |

Expand fl(;) in a Taylor series about the point X and retain

only the first order terms to obtain the linear approximation.
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-, -n
f (;) ~ f (;n) + Bfl(x ) (x, - xn) + Bfl(x ) (x, - xn) + .
1 1 — 1 1 - 2 2
ox ox
1 2
-n
.+ afl(ﬁ ) (xN-an) (7.3)
ox
N
STEP 2
Equate the right hand side to zero andnsolve for the variable,
say Xy whose bartial derivative Bfl(x ) is largest in
absolute value. , axN
STEP 3 REINCSWAIACS
Therefore: x_= xg-Nil 1 1 (x —xn) -
N j=1 ij Xy 373
o afl(?J‘) |
- fl(x ) —a;N—— _ (7.4)

Provided that the trial solution ;n is sufficiently close to

> > >
the root r, J(f ) will be close to J(f) __ which+%s a non-
singular matrix and hence at least one of the 22%5—1 will

be different from zero.
Hence a solution such as the above (7.4) can always be

carried out.

-n n ’n
Bfl(x ) Bfl(x )// Bfl(x )

. and v 8XN , for j =1, ..., N-1 and

h | J
£ [, Y

1 1
Tax are saved for later use.

STEP 4
Rename the lzft 81denof squation (7;4) bN (xl, Xys s xN-l)
and define bN = bN(xl, Kps soses . xN_l). (7.5)
STEP 5
Define a function gy of the N-1 variables Xys weoes > Xpq by

g, (xl, Xos eees xN—l) =

= f2 (xl, Xys ey Xy gs bN (xl, Xps cees xN_l)) (7.6)
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and

n _ n _n n n
g, = f2 (xl, Xys eees Xy g0 bN). | (7.7.)

STEP 6

Expand (7.7) in a Taylor Series, this time about the point
n _n n

(xl, Xos eeees R xN-l)’ linearize and solve for the variable,

say Xy q» whose corresponding partial derivative is largest

in absolute value to obtain

-n -m
-1 ®n-1 T 921 %) oxy_, 357X
332(;“)
Oxy_1

where Bgz(;)/axj is obtained by differentiating equation

g2(§“) (7.8)

(7.6) using the chain rule to obtain

332(;) af2(§“) by
ox = 3x. +f (x ) ax . X1 n
3 X» Xps cees Xy
af2(§“) e [; 3, (x )//%f X& )]
= 9x,
3
STEP 7

Redefine the left hand side of (7.8) to be bN-l’ which is a

function of the N-2 remaining variables so that

bN-l (xl, Kys erens . xN—Z) = right hand side of (7.8) (7.9)

STEP 8

Again, save all of the ratios formed. Theorem 2 will state
that this process is well-defined in that there does exist
at least one non-zero partial derivative at each step in the

process.
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STEP 9

Define 8y = f3 (xl, Xps eevees Kyios bN—l’ bN) where
bN—l and bN are obtained by back substitution in the
linearized equations (7.5) and (7.9).

STEP 10

Repeat the process of expansion in Taylor Series,
linearization and elimination of one variable, saving
all of the ratios formed at each step. 1In this way one

variable at a time is replaced by a b, with 8y being

]
expanded about the point (xl, x2 ceeeny xN k+1)

STEP 11

At the last step in the elimination process
By = fN (xl, b2, b3, ceaney bN)

where the bj's have been obtained by back substitution
in the N-1 rowed triangularized linear system which has

been built up and now has the form:

b il 8_1v1 / Bn-itl (b -x") _[Sgn-i+l %8141
i i j=1| Ox, ox, ax, ax
' ] *3 3 17 l_ 1 3
for i = N, N= 1, vueun, 2 (7.10)
STEP 12

Expanding and solving for x. results in:

1
_ .0 | .n Sgn
*1 [EN///E;JE]

Use this value of X, as the improved approximation, x

to the first component, r

n+l

1 9
->

1’ of the root r, call it b1 and

back solve the system (10) to get improved approximations

to the other components rj. In the back-solving process,

x?+1 will equal the corresponding bj’

It should be noted that numerical examples show that this
process is NOT equivalent to Newton's Method.
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7.3 MATRIX FORMULATION
In the above description of the algorithm, the variables are

eliminated in the order xN"xN—l’ cesoey x2. This was done to facilitate
a definite identification of the particular variable being eliminated.

If the chain rule is used to expand each dérivative Bgilaxi which appears
in the algorithm, the following matrix representation of the forward

part of the method is obtained:

@ G- = D
where (ﬁ) = (hij) is given by
_of :
(hyy) = 5;1 for i=1,3=1, 2, .., N
h|
and if 1 =2, ..., N, =1, ..., N
3f ./ of . / of. / of ./
I T T IV S
(-1) .
of,/ 3f,/ of ./ of ./
2 ij 2.3xN_.i+2 . Z.BxN_l 2.3xN
of,/ of ,/ 3f, / - of,/
(h,,) = 170x, 0%y 449 ... 1oxy 17 axy
of . / - 9f./
1'%y 442 179xy
1IN e afi_l/a
Xy 142

and the argument of each fj is the progressive argument generated by
the algorithm.

By expanding the determinant in the numerator, it is easily
seen that h = 0 for j > N-i+l. Hence, the matrix (H) is transverse

ij
upper triangular. The resultant matrix hij is in exactly the same form
as the matrix which results from transverse triangularization of the

Jacobian matrix J using Gaussian Elimination with partial pivoting.
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The argument of each fij in the triangularization form of J is simply

n .
x ; however, at the root, the two arguments coincide.

For the 3 x 3 cases, the matrix has the explicit form

fia f12 £,
Rt f13] _ | f12 £13
21 f23 2y f3 0
f13 f13
H =
£ f12 f13
f21 ey fa3
fn =y f43 0 0
f12 f13
£22 fa3

and the arguments used for the function evaluations are:

x" for flj’ j=1, 2, 3
n _n n _n .
(xl, Xos b3 (xl, xz)) for f2j’ j=1, 2, 3
n n n n . -
(xy5 b, (x7)5 by (x;5 b, (x1))) for f3j, j=1,2,3

Brown [ 7] proves that under the hypothesis of Theorem 1 and

for the type of iteration described above, the following theorem is true:

Theorem 2 There exists a non-vanishing partilal derivative at

the ith step of the elimination process.

Essentially, the elimination process consists of expanding

each function in a Taylor Series about ri, linearizing, and solving for
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the variable whose corresponding partial derivative is largest in value.
Theorem 2 states that there will always be a largest paftial derivative.
At each step of the elimination, all of the values of the variables
found by the previous elimination steps are used in the appropriéte
equation. Back substitution into the system of equations results in a
solution at the first step of the iteration. The whole elimination
process is restarted to obtain the second sﬁep of tﬁe iteration.

The following local convergence theorem for iteration
functions states that the above procedure will, indeed, converge to
a solution.

Theorem 3 Let the functions Fl’ F2, .....,’FN be defined in
a region R, and let them satisfy the following conditions:

i) The first partial derivations of Fl’ cereay FN exist and

-are continuous in R.
ii) The system.
x=F ®
> >
has a solution r in the interior of R such that J(F) r=0’

the zero matrix.

Then there exists a number €>0 such that an algorithm of

the form

P px™) m, =0, 1, 2, en..

converges to T for any choice of the{starting point, ;0,
-3
which satisfies IlF - x°|l<€, where l]'|| denotes the

Euclidian norm.

It can be proven that the Jacobian matrix will equal the zero
matrix after a sufficient number of iterations. Hence, this proves that -

the algorithm will converge.
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CHAPTER 8

8.0 APPLICATIONS OF THE MODEL

A computer model, MOD*, has been written to berform all of
the bookkeeping and calculations discussed in the previous chapteré.
A user's guide to MOD* and a complete listing of the FORTRAN program
is given in the appendices. This program has been tested on a wide
variety of problems and seems to work as expected. Three of the test
cases are presented here as illustrations of what may be done with the
model. The three problems are: Stdker's famous problem of a flood
routed thfough the junction of the Ohio and Mississippi rivers; a test
case made up of a network; and the Saint Clair river system for a
variety of flow conditions. The three test cases illustrate most of
the considerations in setting up and using the numerical model.
8.1 STOKER'S PROBLEM

Stoker [ 21] used an explicit finite difference scheme to
calculate the propagation of a flood wave through the junction of the
Ohio and Mississippi rivers. His simplified model corresponded in a
very rough way to the geometry of the actual river system. Figure 9
shows a schematic plan of the junction. Upétream of the junction, both
rivers are assumed to be 1,000 feet wide, rectangular, and have a
constant bottom slope of 0.5 ft./mile. The downstream Mississippi River
has a width of 2,000 feet, is rectangular and has a constant bottom
slope of 0.49 ft./mile. This change in slope is necessary to allow a
constant initial depth of water of 20 feet for uniform flow. A constant
friction factor of 0.03 for Manning's n is used throughout the river.

The initial conditions used are that the water depth is 20
feet throughout the river and the initial velocity is 3.49 feet/second.
At the top of the Mississippi River, 50 miles from the junction, the
depth of water is kept at a constant 20 feet. At the top of the Ohio
River, the boundary condition (Figure 10) is given as a 20 foot in-
crease in depth ( from an initial 20 foot depth to a final 40 foot
depth) over a four hour period. This rate of rise, 5 feet per hour, is
an extreme case since one of the biggest floods ever recorded in the

Ohio River, which was in 1947, had a maximum rate of rise of only 0.7
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FIGURE 9: SCHEMATIC PLAN OF THE OHIO-MISSISSIPPI RIVER JUNCTION FOR
STOKER'S PROBLEM
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WATER DEPTH (FT)

feet/hour. The downstream boundary condition, 75 mileé downstream from
the junction,_is given by a stage-discharge curve developed from

Manning's formula.

- 50

30 40

20

T g T ™ T

1 2 3 4 5 6 71 8. 9 10
TIME (HRS) 

FIGURE 10: BOUNDARY CONDITIONS FOR STOKER'S PROBLEM

Stoker's solution to the problem used a variablé reach length
and a variable time step. The reach length was usually taken to be one
mile. The time step was calculated, using the reach length and the
expected speed of time of the disturbance, using ﬁhe Courant stability
criterion. This resulted in a time step between 0.024 hours and 0.17
hours. For the implicit model, the reach length used was 12.5 miles
upstream of the junction énd 25 miles downstream of the junction. The
time step used throughout was one hour.

The results of the computer run are shown in Figure 11.
Although Stoker does not publish numerical results but only publishes
graphs [ 21], a comparison of the results shows excellent qualitative
agreement. The steepening of the wave front as it moves through the
system is more pronounced with the implicitjmodel than it is from
Stoker's results. This would be expected, since this model takes into

account non-linear effects and Stoker solves only the linear equations
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FIGURE 11: COMPUTED WATER LEVEL PROFILES FOR STOKER'S PROBLEM
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of motion.

| The most important aspect of this combuter run; however, 1is
the length of time step and reach length used. The reach length and
time step used by Stoker are dictated by the Courant stability criterion.
If he had used larger time steps or reach lengths, his numerical method
would have become unstable. Since the implicit method is unconditionally
stable, no such restrictions are necessary. The grid spacing is, then,
dictated purely by the resolution required for the problem. 1In many
cases, then, a much larger time or distance step, or both, may be used
by the implicit method.
8.2 NETWORK PROBLEM

This second example shows the versatility of the implicit
model. ‘It consists of a complicated network arranged so that the flows
differ in all of the branches. The schematization is shown in figure 12,
This is not an actual problem in that it does nbt correspond to any
specific river. It is intended, however, tb indicéte the type of net- '
work that may be handled by the implicit method.

The geometrical data are shown in Table 1. All of this data
are entered on data cards and used in the program as explaiﬁed in the
User's Guidé. A friction factor of 0.025 was used throughout, with
Mannings' formula used to calculaté the friction losses. The main
branch consists of nodes 1 to 11. ‘A branch containing nodes 12, 13,

14 and 15 with flow from node 3 to node 7 defines an island. A second
branch containing nodes 16, 17 and 18 with flow to node 14, represents
an embayment which has no flow but contributes to storage. A third
branch containing nodes 19 and 20 and receiving flow from node 9,
defines a delta region.

The model was run with a time step of one hour for a total of
5 time steps. Since only steady state conditions were required, a
weighting factor of 1.0 was used to ensure rapid convergence to a
steady state. The boundary conditions used were; a depth of 100 feet
at nodes 1 and 11 and zero velocity at node 16. Initial conditions were
a depth of 100 feet of water throughout the network and an initial
velocity of 6 feet per second was used.

The results obtained are not too surprising and show the
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FIGURE 12: SCHEMATIC PLANS OF THE RIVER NETWORK PROBLEM
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-
WIDTH OF | INVERT LEVEL
NODE | CHANNEL BELOW REACH MANNING'S
NUMBER| (FT.) | DATUM (FT.) | LENGTH (FT.) N COMMENTS

1 1000 0.00 25000 0.025 M

2 1000 1.25 25000 0.025 A

3 1000 2.50 800 0.025 I

4 600 2.50 25000 0.025 N

5 600 3.75 25000 0.025 c

6 600 5.00 800 0.025 H

7 1000 5.00 25000 0.025 A

8 1000 6.25 25000 0.025 N

9 1000 7.50 100 0.025 N

10 500 7.50 25000 0.025 E

11 500 8.75 1 0.025 L

12 800 2.50 25000 0.025 BRANCH
13 800 3.75 400 0.025 AROUND
14 800 3.75 25000 0.025 ISLAND
15 800 5.00 1 0.025

16 400 3.75 25000 0.025

17 400 3.75 25000 0.025 EMBAYMENT
18 400 3.75 1 0.025

19 500 7.50 25000 0.025 DELTA

20 500 8.75 1 0.025
TABLE 1: GEOMETRICAL DATA FOR NETWORK PROBLEM
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INITIAL
COMPUTED STEADY STATE
" NODE WATER | ,

NUMBER | VELOCITY | DEPTH | VELOCITY |WATER DEPTH | DISCHARGE
1 6.00 100.00 9.74 100.00 973989.7

2 6.00 100.00 9.76 99.78 973996.1

3 6.00 | 100.00 9.78 299,56 974014.6
4 6.00 100.00 6.99 99.56 417434.6
5 6.00 100.00 6.95 100.06 417441.0

6 6.00 100.00 6.92 100. 59 417431.3

7 6.00 100.00 9.68 100. 59 974005.2

8 6.00 100. 00 9.70 100. 40 973978.8

9 6.00 100.00 9.92 100. 20 973960.9
10 6.00 100.00 9.72 100.20 486980. 5
11 6.00 100.00 9.74 100.00 486977.3
12 6.00 100.00 6.99" 99.56 556580. 1
13 6.00 100.00 6.95 100.06 556588.7
14 6.00 100.00 6.95 100.06 556586.8
15 6.00 100. 00 6.92 100.59 556573.9
16 0.00 100.00 0.00 100. 06 0.0
17 0.00 100. 00 0.00 100.06 0.0
18 0.00 | 100.00 0.00 100.06 0.0
19 6.00 | 100.00 9.72 100.20 486980. 5
20 - 6.00 | 100.00 9.74 100.00 486977.3

Table 2:

INITIAL AND COMPUTED FLOW CONDITIONS FOR NETWORK

PROBLEM
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type of calculation that may be carried out using the model. The
initial data abstraction and keypunching of data cards took about 2 hours
and the computer time required for the computations was approximately
30 minutes. The versatility of the program is demonstrated in that,’
once data are available, setting up the data cards takes a very short
time and results can be obtained quite quickly. The results of this
computer run are shown in Table 2.

The run for 5 time steps produced quite good éonvergence to
a steady state solution. Comparing the results from the fourth timev
step to the results of the fifth time step has shown that the height
converged to within 0.01 feet and the velocities to within 0.07 feet
per second. The maximum difference in the discharge was about 72.2
cusecs and this is well within the accuracy of the equation solving
subroutine which was only working to 5 significant digits. The non-
conservation of mass mentioned in the chapter on stability does not
account for this 72.2 cusecs difference, since this example does not
involve unsteady flow. The non-conservation of mass shown here is due
entirely to the accuracy limits of the equation solving subroutine
(which may be changed easily) and to the use of only five time steps.
8.3 THE ST. CLAIR RIVER

The third example given is that of flow on an actual river
system. The actual river data are used and the results show the type
of answers that can be expected from the implicit model presented here.
In fact, the examples given are only a small portion of the work that
has been done on the St. Clair/Detroit River system. This work will be
published in a later report.

The St. Clair River joins Lake Huron and Lake St. Clair and
is approximately 28 miles long, about 2,000 feet wide and approximately
thirty feet deep. The river has been extensively dredged and is a
major navigational waterway. The lower end of the river, where it
empties into Lake St. Clair, is a complicated delta region with a very
large amount of swampy ground and very shallow channels. Historically,
the flow has varied between 100,000 and 240,000 cusecs with a 50 percent
exceedence level of 184,000 cusecs. The U.S. Army Corps of Engineers

have maintained an extensive water level gauging network on the river
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FIGURE 13: THE ST. CLAIR RIVER
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for a number of yecars [ 10]}.

A map of the river glving the node numbering Is shown (n
Figure 13. The geometrical data used in the model are given in Table 3.
Examination of the field sheets shows that the cross-sectional shape of
the river is approximated by a veéry wide rectangle and as a result, the
hydraulic radius may be expressed as the mean depth (Cross-sectional
Area/surface width). The river contains one major island, Stag Island,
which 1s included in the model. The upper limit of the model is at Fort
Gratiot and the lower 1imit is taken at Algonac, at the top of the delta
region. No attempt was made to model the flow in the delta region since
the section geometry of this region completely invalidates the hypothesis
of one dimensional flow and since there are not enough water level data
to properly calibrate a model.

A major problem in modeling a natural river lies in the choice
of a friction factor. In the case of the Sf. Clair River, a great deal
of information is available which allows for a very fine calibration.
The fact that changing the friction factor in a given reach affects
only the flow upstream of that reach is a useful point in calibration
processes.

The calibration period chosen for the St. Clair River was the
flow on 19 June, 1973. On this date, discharge measurements were being
taken in the river by the U.S. Army Corps of Engineers at St. Clair,
Michigan. The mean flow on this day was 215,000 cusecs. From this

start, the calibration procedure was:

1. Use a discharge of 215,000 cusec and a known water level
at Algonac.
2. Start with a Mannings friction factor of 0.020, which

from practical experience is too low for this river.
3. Make a computer run and compare the calculated water
levels with the observed water levels upstream.
4, Adjust the friction factor in the lowest sections of
the model until the calculated water level at the
second gauge upstream agrees with the observed water

levels.
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INVERT | s \
I e e R
DATUM
1 1000 34.99 7220 | 0.033 FT. GRATIOT
2 1300 35.10 3825 | 0.028 '
3 2870 23.11 4200 | 0.023 MBR
4 2200 | 31.76 | 12700 | 0.023
5 1950 28.70 12250 | 0.023 DRY DOCK
6 2060 29.81 3900 | 0.020 MARYSVILLE
7 2670 31.43 20200 | 0.020
8 2200 23.09 100 | 0.020
9 2200 27.10 18200 | 0.020
10 1620 31.18 6050 | 0.025 ST. CLAIR, MICHIGAN
11 1700 35.62 9000 | 0.025
12 2260 29.90 6200 | 0.025
13 2780 27.07 9500 | 0.024
14 3300 23.46 10950 | 0.023 MARINE CITY
15 2850 28.07 9200 | 0.023
16 2260 33.14 9050 | 0.025 ROBERT'S LANDING
17 2240 33.12 6100 | 0.022
18 2760 28.39 - - ALGONAC
19 1500 16.94 10200 | 0.020
20 1530 17.07 6300 | 0.020
TABLE 3: GEOMETRICAL DATA FOR ST. CLAIR RIVER SYSTEM

DATUM IS 576.80 (IGLD).

Move upstream in this fashion, adjusting friction factors for

one section at a time until all of the computed water levels

agree with the observed water levels within a certain predeter-

mined accuracy;

Using two observed water levels and the determined friction

factors, make another computer run to check that the discharge

"is correct.

60

If it is not, adjust all friction factors up or




down by the same relative amount until the computed and
observed discharges match properly.
Using this pfocedure, the model was calibrated for June 19,

1973 to within t0.08 feet as the maximum error in water level. This
accuracy is certainly within the expected limits of any one dimensional
model, assuming steady-étate flow conditions and considering the
practical accuracy of discharge measurements. The calibration process
used about 20 computer runs to match up the 9 water level gauges on the
river. Although the process of calibration could easily be incorporated
into the computer program, "intelligent guesses" allow a great savings
in computer time. ( .

After the model Qas calibrated fot the 19 June, 1973, two
additional runs were made to show that the model would predict properly.
The discharge for 19 June, 1973, was approximately 215,000 cusecs and
this corresponds to an extremely high flow condition. The additional
runs were: 18 July, 1968 which corresponds to a discharge of approxi-
mately 183,000 cusecs; a "medium" flow condition; and 13 November, 1964,
a "low" flow condition with a discharge of approximately 147,000 cusecs.
The observed water levels, computed water levels and differences are
shown in Table 4. Unfortunately, not all of the water level gauges
were in operation all of the time. However, a good indication of the
accuracy of the model is given by this table.

Note that the two tables are referred to different datums.
The abstraction of data was done and the model run with an arbitrary
horizontal datum of 576.80 feet. The results, however, are presented
at a datum of 570.00 feet to avoid the use of minus signs in the table.

To show that the model properly predicts transients, the model
was run for a period during which a large transient passed through the
St. Clair River. During December 3 - 5, 1970, a storm was in progress
and this storm resulted in a three foot storm surge on Lake Huron at
Fort Gratiot. At that time, three gauges were in operation in the St.
Clair River; one at Fort Gratiot, ome at St. Clair, Michigan, and one
at Algonac. Data are available from these gauges at hourly intervals.

A run was made using, as boundary conditions, the observed

water levels at Fort Gratiot and at Algonac. The schematization was
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wopg |- JUNE 19, 1973 JULY 18, 1968 NOV 13, 1964 ¥§g§;
NO- | oBs. |comp. [DIFF. |oBS. | coMp | DIFF. |oBS. | coMP |DIFF. | =
1 | 10.21 {10.21] - 7.91{7.91| - 5.00 | 5.00 | - 0.033
2 9.74 7.49 4,63 0.028
3 9.68 | 9.72 [ +0.04 [7.51| 7.45|-0.06 {4.72 | 4.57 |-0.15 | 0.023
4 9.64 7.38 | 4.51 | 0.023
5 9.33 | 9.27 [-0.06 |7.09] 7.05 | -0.04 4.23 0.023
6 8.87 | 8.95|+0.08 {6.73 | 6.77 |+0.04 [3.97 [ 3.97 | - 0.020
7 8.95 6.77 3.97 0.020
8 8.70 6.53 3.74 0.020
9 8.70 6.53 3.74 0.020
10 8.13 | 8.13 | - 6.03 | 6.03 | - 3.30 | 3.30 | - 0.025
11 7.99 5.91 3.19 0.025
12 7.69 5.72 3.01 0.025
13 7.65 5.60 2.89 0.024
14 7.36 | 7.42 |+0.06 5.38 2.66 0.023
15 | 7.19 5.16 2.45 0.023
16 6.92 | 7.00 |+0.08 |4.96 | 5.00 | +0.04 2.31 0.025
17 6.85 4.87 2.19 0.022
18 6.75 | 6.75 | - | 4.78| 4.78 | - 2.10 | 2.10 0.020
19 8.87 | 8.95 |+ .08 6.77 3.97 0.020
20 8.70 6.53 3.74 0.020
gggz 215,000 183,000 147,000
TABLE 4: OBSERVED AND COMPUTED WATER LEVELS FOR THE ST. CLAIR RIVER

UNDER VARIOUS DISCHARGES. DATUM IS 570.00 FT. (IGLD).
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revised to use only 13 nodes and all data from the steady state runs were
retained. Figure 14 shows the observed valves compared with the cal-
culated values for node 10 (St. Clair, Michigan). The agreement is

quite close, considering that only hourly water levels are available.
This time step 1is clearly too long to give adequate resolution in the

phase of the transient.
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CHAPTER 9
9.0 SUMMARY AND CONCLUSIONS

9.1 SUMMARY

' A scheme has been devised fér solving any Sgt of equations
describing open channel flow for any network of open channels. These
equations must describe one dimensional subcritical flow of a ‘
homogenous fluid. The shallow water equations were derived from
first principles and the derivation explicitly shows the assumptions
made for flow in elementary reéches and in junctioms. The stability
of the finite diffefence scheme was examined for the linear case and
a method for the solution of a generalized set of nonlihear
algebraic equations was described. The application of these techniques
to three sample problems was outlined.

A summary of the results follows:

1. By describing a network of open channels in terms of graph-theoretic
concepts, the flow relationships in any network may be described in
terms of.relationships between only four types of nodes.
2. The implicit method is extended to handle flow in networks of open
channels.
3. The derivation of the shallbw water equations for anvelementary
reach assumes homogenous flow, one dimensionality, and fixed section

geometry only.
4. The derivation of the junction equations assumes that the junction

nodes are very close together, that the Bernoulli terms of the momentum
equation are not important, and that turbulence and centrifugal
accelerations may be neglected.

5. A generalized expression for the stability factor |A| is developed
using the Von Neumann technique applied to the linearized finite
difference equations.

6. When the weighting factor, 0, for the finite difference scheme is
0.5<0<1.0, the implicit four point finite difference scheme is

unconditionally for the linear case. When 0.0<0<0.5, the implicit four
point finite difference scheme is conditionally stable.
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7. The truncation error, E, demonstrates that the implicit four point
scheme is consistent since it approaches zero as the time and distance
steps are reduced. | o |
8. The truncation error denonstrates that for linear equations the box
scheme, ©=0.5, has second order accuracy and this accuracy decreases to
first order as © approaches unity.
9. The box scheme conserves mass during one time step.

10. The equation solving algorithm requires that no critical section

| appears within the network, that flow is physically possible, and that
an initial guess to the solution be provided "reasonably" close to the
actual solution. | ‘ o

11. The equation solving algorithm does not depend upon the form of the
equationsvand so any set of equations, such as kinematic wave equations,
may be used with this computer model.

12. The model has been successfully applied to a number of specific

problems. The numerical examples bear out the analytical predictions.

9.2 ADVANTAGES AND DISADVANTAGES

The advantages of this particular model over others reported

in the literature are: ,
1. The computer program is independent of fhe network topology.
2. The program is independent of the location of the boundary
conditions.
3. The program is independent of the form of the governing equations.
4. The program handles all types of nonlinear terms.

Balanced against these advanﬁages is the single disadvantage
that the computer program takes an inordinately long time to run.
The equation solving subroutine makes no use of the fact that the
coefficient matrix is sparse and requires approximately 2N2 + %
function evaluations at each iteration, where N is the number of
unknowns for which solution is required. If advantage 3 is not
necessary, then a method exists for using sperse matrix techniques to
solve the equations. This method has been tested with a two dimensional
implicit model [8] and will result in a time saving of at least one

order of magnitude. In the two dimensional model, 1,200 equations are
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solved in 1/10 of a second in the IBM 370. The solution technique used
in that model requires N function evaluations for N unknowns and hence

is an order of magnitude faster than the technique used in this model.

9.3 CONCLUSIONS

The computer model developed in this report is a perfectly
feasible method for solving unsteady flow problems in networks of open
channels. This method is not dependent upon the particular form of the
equations of motion. The restrictions on the program are very simple
and require only that flow may be assumed to be one-dimensional and that
no critical section appears in the network. The practical aspects of
running the computer program and, more importantly, changing the

program to handle different cases, are discussed fully in the Appeﬁdices.
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APPENDIX 1 USER'S GUIDE

'This section deals with the computer implementation of the
theoretical investigation described in the previous section.
. The computer program is designed to handle all problems of open
channel flow in networks where the foliowing assumptions are valid:

1. TFlow is one-dimensional.

2. Geostrophic and wind-driven circulation are not important.

3. A quadratic resistance law such as Manning's or Chezy is
appropriate.

4. The geometry of the open channel network is constant with
time, that 1is, no deposition or scouring occurs.

5. Hydrostatic pressure prevails.

6. The section geometry can be schematized as rectangular in
cross-section. v

7. Flow is entirely sub critical.

8. Flow is homogenous in density.

The program implementing this theoretical investigation 1is MOD¥*.
It is programmed in FORTRAN IV for a CDC 3170 computer using a MASTER
operating system. All remarks about the program refer to this version.

The program requires 74 quarter pages of storage space on the
CDC 3170. This is equivalent to 37,888 real words. The word size on
the CDC 3170 is 48 bits. Integer size is 24 bits. Double precision
is not required for this word size but probably would be required for
a smaller word size. Compilation time for the program is approximately
21 seconds. )

A card reader and a 136 character line printer are the only

required peripherals.
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USING THE MODEL
1. Schematization

The first step in using the model is to schematize the 6pen
channel network as a direéﬁed graph. A node will appear on the graph
at every location where a solution is required. The nodes are num-
bered from 1 to N, where N = number of nodes in the schematization.

A main channel is chosen and the nodes in this main channel are num-
bered in sequence from upstream to downstream. For example,‘figures 9,

14 and 15 show some examples of graphs which are numbered correctly.

2. Abstraction of Data

All elevations used in the model must be referred to a
HORIZONTAL datum. This datum may be at any level except that two

conventions must be followed with regard to sign.

1. Z = water surface elevation abowe datum. If the initial water

surface is above datum, the numerical value must be positive.

2. H = elevation of channel invert (bottom) below datﬁm. If the
channel invert is below the horizontal datum the numerical value
must be positive. If the channel invert is above the datum, the

numerical value must be negative.

Top width of the channel is determined from the cross-section-
al appearance of the channel. The hydraulic mean depth is calculated by
dividing the cross-sectional area by the top width. If it is necessary
to allow arbitrary section geometry see the section on Program

Restrictions further on this paper.

3. Input Cards
When all data are abstracted, a separate DATA card should be

filled out for each node in the system. The format of this DATA card

is as follows:

Columns 1 - 4 - DATA, Format A4
6 - 7 - Section number; the number of the node to which this

card refers. Format 12
9 - 12~ the initial velocity at this node. Format F4.2
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14 - 18 - the initial water level at this node with respect
to the arbitrary horizontal datum, following the
convention stated above. | _

20 - 24 - the top width at this section.> Format F5.1

26.— 30 - the distance between the horizontal datum and the
channel invert. A Format F5.2

32 - 38 - the length of reach between.this node and the next

| node downstream. ‘ Format F7.1

40 - 44 - the lateral inflow per unit length of reach between
this node and the next node downstream. This value
must be positive in the case of inflow and negative
in the case of outflow. ) Format F5.3

46 - 49 -~ the average friction coefficient between this node
and the next node downstream. If this value is
greater than 1.0 the Chezy friction equation is used
and if the value is less than 1.0, Mannings friction

formula is used. Format F4.0

The MAIN and BRANCH cards set up the geometricél properties of
the open channelbsystem and. provide boundary conditions for the model.
The format for the MAIN card is:
Columns 1 - 4 - MAIN
14 - 15 - the largest node humber in the main channel.
Format I2
‘24 - 25 - node number at which the first boundary condition
is given. Format 12
33 - 35 - the type of the first boundary condition. May be
VEL@, HEIG, DISYP if the boundary condition is fixed

velocity, or height or discharge respectively;
| Format A4
44 - 45 - the node number of the second boundary condition.
Format 12
53 - 55 - the type of the second boundary condition. May be
VEL®, HEIG, DISH. ' Format A4
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Only one MAIN card may appear in a program.
One BRANCH card must appear for each distinct Branch in the

network. The format is:

Columns 1 - 4 - BRAN Format A4
13 - 14 - the smallest node number appearing in the branch
itself. Format 12
19 - 20 - the largest node number appearing in the branch
itself. Format I2

29 - 32 - code word describing whether the top end of the
branch recelves flow from another part of the network
or stands alone as a boundary condition.

If the code word is FROM, FORMAT A4, then the flow

is from another part of the river. The node number
from which the flow is received is placed in

Column 34 - 35, FORMAT 12.

If the code word is FIXE, FORMAT A4, then that node
stands alone as a boundary condition. The type of

boundary condition is given as VEL®, HEIG, or DISP

in colummns 35 -~ 38, FORMAT A4.

52 -~ 55 -~ code word describing whether the bottom end of the

branch provides flow to another part of the network
or stands alone as a boundary condition.

IE the code word is TO¥Y, FORMAT A4, the node number
to which flow is delivered is placed in Columns

57 - 58, FORMAT I2.

If the code word is FIXB, FORMAT A4, the type of
boundary condition is given as VEL®, HEIG, or DIS¥
in columns 58 - 61 FORMAT A4,

The WEIGHT card provides miscellaneous data required by the
computer program. All values on this card are provided by default in
thé Main Program. Therefore, the card does not have to be provided if
the default values are acceptable. Any of the values on the card may
be left blank if desired. The format is:

Columns 1 - 4 - WEIG Format A4
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9 -~ 11 - weighting factor for the finite-difference scheme.
~ Default value is 0.75, v . Format F3.3
22 - 25 - acceleration due to gravity. Default value is
32.172. - Format F4.2
35 - 36 - maximum number of iterations to be performed by
NONLIN. Default value is 10, Format I2
47 - 48 - number of significant digits to which NONLIN

produces solutions. Default value is 5.Format I2

The WEIGHT card may appear anywhere before the lst RUN card
in the Data Deck.

The RUN card controls the running of the Model in a steady-
state configuration. All DATA, MAIN, BRANCH and WEIGHT cards must
appear before the RUN card. The format is:

Columns 1 - 4 - RUNB
18 - 19 - the highest node number appearing in the

schematization, _ Format 12
31 - 33 - the length of time step to be used. Format I3
35 - 37 - the units used for the time step. May be SEC,'MIN

or HRS. Format A3

49 - 53 - the time at which the run is to be stopped.
Format 15

55 - 57 the units used for the stop time. May be SEC, MIN

or HRS. Format A3

The VABC card allows time varying boundary conditions to be
applied to the model. A RUN card must precede the VABC card so that the
model may come to a proper steady state with all of the arrays properly
initialized. The types and locations of boundary condition equations
may not be changed with the VABC card. The card format is:

Columns 1 - 4 - VABC
15 - 17 - 1length of time step to be used under variable
 boundary conditions. Méy be different from the time

step appearing on the RUN card. Format I3
19 - 21 - the units used for the time step. May be SEC, MIN
or HRS. ' Format A3
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32 - 36 - Stop time. The length of time through which the
model calculates; begins with the first calculation
done on the Run card. Format I5

38 - 40 - Units used for stop time. Format A3

48 - 76 - Boundary conditions codes. Up to 5 individual
nodes may have time dependent Boundary conditions.
These are inserted on the card as pairs of integers.
The first value in each pair is the node number at
which the boundary condition is specified and the
second i1s a code which provides the boundary
condition information. The format for these is
5(I2, 1X, 12, 1X). The codes used are:

01 - height is given by a function

02 - wvelocity is gilven by a function

03 ~ discharge 1s given by a function

04 - height is read in from data cards
05 - velocity is read in from data cards

06 - discharge is read in from data cards

Calculation of boundary conditions specified by codes 01, 02,
and 03 is done in subroutine CALCBC and must be user supplied. The
reading in of data cards specified by codes 04, 05, and 06 is done in
subroutine READBC and must also be user supplied.

The COMMENT cards allow comments to be interspersed with the
data. It causes no action in the program. Format is:
Columns 1 - & - C¥bb

5 - 80 - any alpha numeric string

The PRINT card prints out tables of values at the end of a
run. Each table starts on a new page and is neatly listed for plotting
purposes. This card is not required if the tables are not wanted. The
four tables printed out are: heights, velocities, discharges and
Transit Time. Each table contains calculated values for each reach for

each time step. The PRINT card allows the heights to be referenced to
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a geodetic elevation and allows the time to be printed out in seconds,

minutes or hours. The format is:

Columns

1 - 4 - PRIN : Format A4

19 - 20 -~ the highest node number for the table. The program

will print values for all nodes from 1 up to the
specified value. Format 12

30 - 32 - the increment in which the time is to be printed out.

May be SEC, MIN, or HRS. Default value is in

seconds. Format A3

43 - 47 - the elevation of the arbitrary datum. This value

is added to the elevations determined by the
program which are referred to the_arbitrary

horizontal datum of 0.00. Format F5.2

4, Practical Considerations

There are a number of practical considerations which must be

taken into account when running the program. These are listed here

for easy reference.

UNITS:

TIME:

WEIGHTING

Any system of units may be used for the model as long as they
are consistent. For example, all length units may be in
centimetres, metres, kilometres, feet or inches. 1If the units
are not in feet, however, the appropriate gravitational

constant must be inserted on the WEIGHT card.

Any convenient time units may be used on input. The program
works in seconds and all output from subroutines RUN or VABC

are similarly in seconds.

FACTOR: The weighting factor is exhaustively discussed in
Chapter 6. Briefly, however, the finite-difference scheme

is numerically stable for 0.50SWHTS 1.0. The rate of
convergence of the scheme is directly proportional to the
weight. In steady state flow, the weight affects only the
rate of convergence of the numerical scheme. In time-varying

flow, the weight may introduce phase lags and the smallest
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practicable weight (N0.55) should be used. The scheme will
not conserve mass 1f the weight is different than 0.50. The -
extent to which the scheme does not conserve mass is directly
proportional to the departure of the weight from 0.50 and
should not exceed about 5% even 1f the weight is increased

to 1.0.

TIME STEP: The time step to be used in the computation is fairly
critical for efficient computer usage. The numerical scheme
is stable regardless of the time step. Too large a time step
results in inaccuracy>of resblution and too small a time step
results in wasted computer time. The most useful guide is to
use a time step approximately equal to the shortest reach
length divided by kinematic wave speed. The kinematic wave
speed is v +1J§R where v = initial velocity in the reach,

g = acceleration due to gravity and h = depth of water in the

reach.

NUMBER OF NODES: The time required to complete the computations for one
time step is a function of (4N2 + 2N), where N = number of
nodes in the schematization. Thergfore, a large number of
nodes in the schematization can easily result in excessive
use of computer time. It is recommended that no more than
14 nodes be used at any one time 1if possible. A revision of
the equation solving subroutine may be possible. This
revision would make use of the fact that the coefficient
matrices are sparse and execution time should be speeded up

dramatically.

INITIAL CONDITIONS OR BOUNDARY CONDITIONS: The initial conditions used
by the subroutine NONLIN for the solution of the equations at
a particular time step are those values computed at the
previous time step. The initial conditions for the first time
step are input on the DATA cards. These initial conditions

may bg simply calculated using either Manning's equations or
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Chezy equations or may simply be estimated. If the system
is physically possible the model will converge to a steady
state within 8 or 9 time steps. A separate run to obtain
good initial conditions is recommended before any variable

boundary conditions are used.

The boundary conditions for the initial steady state
run are input on the DATA cards as initial values. For
example, if an initial height above datum at node 0l 1s
specified on the DATA card, that height is the boundary
condition and it remains constant throughout the time specified
on the RUN card. A discharge boundary condition is specifiéd
by requiring the initial discharge, i.e. the product of the
initial velocity and the cross—-sectional area, be equal to
the required discharge. The initial height and velocity may
change throughout the run, but the discharge will remain

constant.

NON—RECTANGULAR SECTION GEOMETRY: The program is presently set up for
‘rectangular cross-sections. This need not be the case in a
natural channel and can be overcome. If the assumption of a
rectangular channel does not hold, then the following changes

must be made before utilizing the model:

1. The equations of motion must be used in their most
general form and finite-difference equations rewritten.

2. Use of a subroutine such as PROPS, from the CIVLIB package,
must be incorporated to calculate hydraulic radius and

cross-sectional area within the function subroutine FUN.

The programming changes are easily made; however,
the price will be paid through increased computation time.
The degree of accuracy obtained through these refinements is

seldom warranted for large scale natural systems.

5. Output
1: START RUN

2: Should be a printout of all data cards up to and including the
first RUN card.
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3: One line containing weighting factor, gravitational constant,
maximum number of iterations used, and number of significant
digits used.

4: MODEL SET UP

One line containing indexes (up to twice the nuﬁber of sections).
One line containing the equation types used.
One line containing the links

5: For each time step. '
All calculations complete at time = seconds---—-—;——
No. of iterations =
One line containing velocities at each section
One line containing heights above datum at each section

6: Print card, if present

7: Four tables containing height vs. time, velocity vs. time,
discharge vs. time, and transit time vs. time.

8: ENDRUN

9: STOP

DIAGNOSTICS:
Apart from the diagnostics put out by the computer the model
also does a certain amount of error checking. These diagnostics are

listed in the order in which they occur in the listing of the program.

Message Meaning

Error - Incorrect Statement Type The last data card being read in

has errors in the first four

characters. Repunch the card.

More than 100 time steps called The stop time on the VABC card
for. is too large. Either arrange
the time steps and the stop time
so that less than 100 time steps
are required, or dimension VEL
(1,J), RBGT (1,J), DIS (I1I,J),
FR (I,J) to the appropriate
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Message

Solution matrix singular at
Iteration , time is

seconds —---- run stopped.

Warning -- Solution may not be

accurate, time =

Warning -- Check weights --

Solution may be unstable

Incorrect key word in boundary

conditions Stop Run.

Improper equation type —-- Run
stopped

Data point number = in
subroutine Run stopped.
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Meaning

dimensions and remove card num-

ber VBC 450 from subroutine VABC

The equations cannot be solved
with this combination of initial
conditions, boundary conditions
and equations. - Make sure you
have a physically realizable

situation.

Noniin took the full number of
iterations allowed and has not
found a solution to the equatioms.
- Make sure you have a physically
realizable situation and increase

the number of iterations allowed.

The weighting factor in the finite-
difference scheme is too small and
the solution will probably be un- .
stable. Increase the weighting

factor to 0.5 or greater.

Punching error on BRANCH card.

One of the subroutines DATA, MAIN,
BRANCH has set up the wrong equation
type into array IEQU. This warning

is called by subroutine FUN.

The named subroutine has determined
that you are attempting to use more
than 20 sections in the model.

- Re-dimension all of the COMMON
and change subroutine CHECK if you

must use more than 20 sections.



6. Narrative Description of Subroutines

MAIN PROGRAM:
Description:

Variables:

The main program provides default values for system

parameters, reads in data cards, and calls subroutines.

WHT = ﬁeighting factor in time

ISIGDIG = number of significant digits for equation
solution

MAXSA = maximum number of iterations by NONLIN

GRAV = acceleration due to gravity

ISW = switch used by VABC to disable fifst part
of RUN

TYPE = first 4 characters of data cards, used to
call the appropriate subroutine. TYPE may
be one of: DATA, CBBB, BRAN, MAIN, PRIN,
RUNB, VABC, WEIG

CARD = last 76 characters of data card. This array

is decoded in the appropriate subroutine

Notes: WHT, ISIGDIG, MAXSA, and GRAV may be reset by subroutine WEIGHT.
ISW will be reset by subroutine VABC.

Subroutine RUN

Description:

This subroutine runs the model in a steady state condition.
All equation types, initialization, and steady-state
boundary conditions have been set up in other subroutines.
The subroutine is in two parts. The first part decodes
the RUN‘card, prints out the model setup, changes all
time reference to seconds, and initialized wvariables.
This section is done once for every appearance of a RUN
card in the data deck. If RUN is called by VABC, ISW =1
and this first part is skipped.

The second part of subroutine RUN is a large. DO
loop, iterating on the number of time steps. It places
the present time value in arrays RHGT, VEL, DIS, and FR:

calculates all coefficients involving only the initial
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conditions for the present time step; calls NONLIN to
solve the equations; checks that a proper solution has
been obtained; inserts the solutions into the proper

arrays; and prints out the solutions.

Variables: ISW A switch which disables the first part of the
subroutine RUN. The first part of RUN is only
required the first time RUN is called in a

steady state condition.

IPR = highest section number in the model.
IDELT =  integer value of time step.
INC = units used for time step. May be SEC, MIN,
HRS.
ISTPT =  integer value of stop time.
ISP = units used for stop time. May be SEC, MIN, HRS.
\ = one dimensional array containing velocities.

On entry to a time step contains initial values
for that time step.

Z = one dimensional array containing water level
above datum. On entry to a time step, it
contains the initial values for that time step.

H = one dimensional array containing depth of
water below datum at each section.

B = one dimensional array containing width of
channel at each section.

QL = one dimensional array containing lateral inflow
per unit length of reach for the reach between
section I and section I + 1.

DK = one dimensional array containing friction
coefficient for the reach between section I
and section I + 1.

If DK> 1.0, the Chezy resistance law 1is used;
if DK<1l, the Manning resistance law 1s used.
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WHTN
IRUNS
ITIME
RHGT

' VEL
DIS
"FR

HTS |
HN

29
DZ
v P
ZP
CB
cc
CD
CE
MAXIT

MAXSA}

ISING

ISIGDIG

one dimensional array used by NONLIN. Contains
V and Z arrays as follows: V(I), Z(I), V(2),
Z(2), V(3), 2(3) ... V(IPR), Z(IPR).

weighting factor for the finite-differencing
scheme.

1. - WHT.

counter giving present run number.

present time value.

two dimensional array containing water levels
above datum at each section for each time step.
two dimensional array containing velocities

at each section for each time step.

two dimensional array containing discharge at
each section for each time step.

two dimensional array containing the Froude

number at each section for each time step.

various coefficients for the momentum and

continuity equations using only initial values.

maximum number of iterations allowed to NONLIN.

a flag returned by NONLIN. If the Jacobian
matrix is singular, ISING = 1 and no solution
is possible. 1If ISING = 0 then a solution is
obtained.

number of significant digits to which NONLIN

solves the equations of motion.
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Subroutine VABC

Description:

Variables:

This subroutine runs the model under time varying boundary
conditions. A preliminary call to subroutine RUN ensures
that all arrays are properly filled and that the model has
converged to a proper steady state. The subroutine is in

3 parts.

The first part decodes the VABC card, changes
all time references to seconds, and determines the number
of runs required. The second part calls either CALCBC or
READBC to input boundafy conditions and stores them in
the proper arrays. The third part extracts the proper
boundary conditions for a particular time step, calls RUN
for that time step, and iterates until the stop time has

been reached.

IDELT = the length of time step while VABC is used.
INCD =  time increment used for inputting time step.
ISTOP = stop time, the run will stop when this time

has been reached.
INCS = time increment used for inputting stop time.
ISECT = a one dimensional array containing the node
numbers where the boundary conditions occur.
ICODE = a one dimensional array containing the types
of variable boundary conditions at the

corresponding node number.

IRUNS = the present run number.
NRUNS = the last run number.
ISW = a switch, set in this subroutine to 1, to

disable the first part of subroutine RUN.

XBC = a two dimensional array containing the boundary
conditions. This array is filled in subroutines
READBC and CALCBC.

Z(IST) = the depth of water above datum at node number
IST. A boundary conditiom.

V(IST) =  the velocity at node number IST. A boundary

condition.

85



Subroutine CALCBC

Description:

A subroutine which must be changed by the user to allow
the boundary conditions to be specified as a functional
relationship. It calculates the boundary conditions for

the complete run at tone time and stores them in the

proper array, i.e. the Ith boundary condition is

calculated from time step IRUNS to time step NRUNS. The

Ith boundary condition for run number IR is placed on
XBC (IR,I).

Subroutine READBC

Description:

Another subroutine which must be user supplied to allow
the boundary condition to be read in from cards. The Ith
boundary condition for fun number IR is placed on XBC
(IR, I).

Subroutine DATA

Descriptioﬁ:

Variables:

' This subroutine reads the DATA card. Each DATA card

contains the section geometry, lateral inflow and
resistance coefficient for a given section. This
subroutine also sets up initial equation types in array
IEQU and assigns initial value to LINK., . The equation
types and links are modified to take boundary conditions
into account in subroutine MAIN and junction.conditions
in subroutine BRANCH.

section number to which DATA card refers.

T =
v{I) = initial velocity at the section.
Z(1) = initial water level above datum.

+ ve if bottom is below datum.

- ve if bottom 1is above datum.
DELTX (I) = length of reach between section I and I + 1.
QL(I)

lateral inflow per unit reach length between

section I and section I + 1.

DK(I) resistance coefficient between section I and

section I + 1.
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IEQU = one dimensional array containing equation types.
The two.equétions for tﬁe.reach between section
I and i + 1 aré-stored in IEQU (2*I-1) and
IEQU (2*I). This subroutine sets IEQU (2*I-1)
= 1 and IEQU (2*I) = 2. The boundary conditions
are set in subroutine MAIN and the junction con-
ditions are set in subroutine BRANCH.

LINK = a one dimensional array containing section
numbers. If section I is involved with section
K, for example, then LINK (2*I-1) or LINK (2*I)
would contain the value K. These values are
changed in subroutine MAIN and subroutine
' BRANCH.

Subroutine MAINB

Description: This subroutine processes the MAIN card and sets up the

boundary conditions for the main channel. These boundary
conditions may be set at any section in the main channel.
Values of IEQﬁ and LINK which are set in this subroutine
override those set by subroutine DATA. All DATA cards must
precede the MAIN card.

Variables: I = largest section number in main braﬁch. The
program assumes that the main branch starts at
section 1.
IU = section number at which the upstream boundary
condition occurs.
ICA = type of boundary condition at upstream end.
May be VEL§, HEIG, DIS.

1D = section number at which the downstream
boundary condition occurs

ICB = type of downstream boundary conditionm.

The subroutine assigns the boundary condition equation types
to IEQU (I-1) and IEQU (I). The section numbers at which the boundary
conditions hold are placed in LINK (I-1) and LINK (I).
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Subroutine BRANCH

Description:

This subroutine processes the BRANCH card and sets up
boundary conditions and/or junction conditions for the
branch. One Branch card must appear for each distinct
Branch in the model. The values of IEQU and LINK which

are set in this subroutine override those set by subroutine
DATA. All DATA cards must precede the BRANCH card.

Three basic types of branches are allowed in
this model; every branch has at least one junction with
the main channel or with another branch. The other end
of the branch may be a junction or it may be a free

boundary. Figure 14 shows these three types of branches.
IEQU and LINK are filled as follows:

1. At a juncfion with flow from/to IN, the two momentum
equations (fixea height) are Type 6. These are
stored in IEQU (2*IN-1) and IEQU (2*IN). LINK (2* IN-1)
‘and LINK (Z*IN) contain the two section numbers to
which section IN is joined.

2. The remaining equation at a junction is stored in
IEQU (2*IU-1) ‘and IN is stored in LINK (2*IU-1) if IU
is the upstream end of the Branch. If ID is the
downstream end of the Branch, the continulty equation
is stored in IEQU (2*ID) and IN is stored in LINK (2*ID).

3. If the upstream end of the Branch is a boundary
condition, then the appropriate equation type is stored
in IEQU (2*%IU-1) and IU is stored in LINK (2*IU-1) 1f
the upstream section number is IU.

4. 1If the downstream end of the Branch is a boundary
condition, the .section number is ID. Then, the
appropriate equation type is stored in IEQU (2#ID) and
ID is stored in LINK (2%*ID).

5. 1In all uses the displaced continuity equation between
sections IU and IU +1 is stored in IEQU (2*ID-1) and
IU is stored in LINK (2*ID-1).
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Note that the BRANCH card must come after the DATA cards since
equation types set in subroutine BRANCH must override those set by
subroutine DATA. '

Variables: IS =  upstream section number - the smallest
section number in the branch.
IE = downstream section number -xthe largest
section number in the branch. '
ICA = a code describing the equation type for thé
upstream end of the branch.
- if ICA = 4HFIXE then the upstream section
has a boundary condition of type ITA.
- 1f ICA = 4HFROM then'the upstream section
receives flow from section INL.
ICB "= a code describing the downstream eqﬁétion
type. .
- if ICB = 4HFIXE then the downstream section
has a boundary condition of type ITB.
- 1f ICB = 4HTPBY then the downstream section

donates flow to section number $UT.

Subroutine WEIGHT
Description: This subroutine reads the WEIGHT card if one is present

in the data deck. If no WEIGHT card is present or if any
values on'the card are zero or blank the default values
assigned by the MAIN program are used. These default

values are:

WHT = 0.75
"GRAV = 32.2
MAXIT = 10.
ISIGDIG = 5

Subroutine PRINT
This subroutine prints out .the arrays, RHGT, VEL, DIS, FR

from section 1 up to the section number called from the

PRINT card.
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Function Subroutine FUN

Description: This function subroutine contains all of the equations
describing the model and 1s called iteratively by sub-
routine NONLIN. At present, the model 1s set up with 8

types of eﬁuations.

Variables: K = argument set by NONLIN in the call to FUN.
TEQU(K)

equation type to be used with this call by
NONLIN.

LINK(K) = section number involved in Kth call. The
type of equation used is contained in IEQU(K).
Equations: The eight equation types used are:

1. Continuity equation between sections LINK(K) and
LINK(K) + 1.
2. Momentum equation between sections LINK(K) and
LINK(K) + 1.
3. Boundary condition - fixed velocity at section LINK(K).
4. Boundary condition - fixed height at section LINK(K).
‘ fixed discharge at section LINK(K).
6. Junction'condition - fixed water levels at section
(K + 1)/2 and LINK(K).
7. Divergent Junction condition - continuity equation
involving sections (K + 1)/2, LINK(K) and LINK(K) + 1.
8. Convergent Junction condition - continuity condition
involving (K +1)/2, LINK(K) and LINK(K) + 1.

5. Boundary condition

Subroutine NONLIN

Description: This subroutine solves the non-linear equations of motion
of the system. It calls both FUN and subroutine BACK.
This subroutine was originally presented in ALGOL[ 6] .
It was transformed into FORTRAN for this program and
reference should be made to the original literature for

discussion of the methods used.
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Variables:

N =

]

MAXIT

NUMSIG

SINGLE

POINT (N,N)
ISUB (N-1)
TEMP (N)
PART (N)
COE (N,N-1)

Subroutine BACK

‘maximum number of 2quations to be solved,

i.e. 2% number of nodes

maximum number of iterations allowed NONLIN.

The number actually used 1is returned.

number of significant digits to which answer

is to be accurate

one dimensional array contains initial values
to be used as trail solutions. On returm, X

contains the solution determined by NONLIN.

. name of function subroutine which contains the

equations FUN(K) = Kth function evaluated at
X(1), X(2), ..., X(N).

value returned by NONLIN. _

SINGLE = 0 if Jacobién matrix singular
SINGLE = 1 1if proper solution obtained.

.

} working arrays

i]

This subroutine is called by NONLIN and is an 4ntegral

part of that subroutine. It solves an upper triangularized

linear system generated by NONLIN.
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PROGRAM MODEL

C *%» . : _
C *%% PROGRAM FOR THE ONE DIMENSICNAL MODELLING OF A RIVER NETWORK
C **¥% SOLVING THE COMPLETE NON-LINEAR oSHALLOW WATER ZQUATIONS
C *** YSING A WEIGHTED IMPLICIT FINITE-DIFFERENCE SGCHEME,
C *4»
C *»*» OATEt AUGUST,1975
C *»*% COMPUTER COC 3170 MASTEZR 0.S.
C **% gYs L, Re MUIR '
C »*= PsCe BOX 5050
C #»» BURLINGTON, ONTARIO
C »*» CANADA
C LX X .
C *%* MODEL READS CAROS AND DETERMINES WHAT TYPE THEY ARE
C *+* INTEGER SIZEZ 1 ANN * OPTION IS USED
c LR X 2
C _
INTEGER TYPE,CARD(19) 48RAN,COM4DAT 4 MAN,RU,PRI
INTEGER POINT, VARSC
COMMON/10/X (40) yNyMAXSA, POINT(Ao.uo).Isuetsex.TFMP(AU).
¥ PART (40),COE (40, 41) ,ISIGDIG
COMNON/ZU/ItQU(QO),V(ZU),8(23)9H(20),Z(20),DELTX(ZOD'QL(ZO)v
- DK(20) yIPRyLINK (40) 4LIN(20) yIDELT9yISTPT yRMS9yGRAVyHWHT
COMMON/30/RHGT (100+21) yVEL(1004921)4DIS(100421)4FR(100,21)
COMMON/50/ISH,y IRUNS
"DATA BRAN/4HBRAN/,COM/LHC /9sDAT/4HOATA/ yMAN/LHMAIN/ ,
# RUZ/GHRUN /,PRI/4LHPRIN/ yIWHT/4HWEIG/ 4 VARBC/GHVABC/
c
C Y PR SERESFFFIrFFIYYPISPIFFIFSITIIII LTRSS RE ISR YR 2SS LR SR E R S E 22 2N
c
C *¥% DEFAULT VALUES FOR WEIGHT CARD
WHT=0,765 '
MAXSA=10
ISIGDIG=5
GRAV=32,172
ISH=0
PRINT100
c _
02 READ20G +TYPELCARD
IF(IFEOF(60).EQe=-11GO TO 15
ICARD=ICARD+1
PRIMN300,ICARD,TYPE 4CARD
C E X X3
C *+% TYPE DETERMINATION SECTION
C *+»

IF(TYPE.EQ.DAT)IGO TO 07
IF(TYPZ+£Q.COMIGO TO Q2
IF(TYPELCQe3RANIGD TO 08
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IF(TYPELEQ.MAN)GO YO 09
IF(TYPELEQ.PRIIGO TO 16
IF(TYPEEQG.RUIGO TO 10
[F{TYPE.EQ.VARBCIGO TO 11
IF(TYPEEQs IWHTIGO TO 17
PRINT4OD

50 T0 15

07 CALL DATA(CARD)
GO 70 02
08 CALL BRANCH(CARD)
GO TO 02
0S8 CALL MAINB(CARD)
GO 70 02 ‘
10 CALt RUN(CARD)
"GO T0 02
11 CALL VABC(CARD)
GO 70 02
15 PRIMNISGO
Stoe
16 CALL PRINT(CARD
GO To 02 '
17 CALL WEIGHT(CARD)
GO TO 62 '
100 FORMAT(1HQ,/410X,*START RUN*,/)
200 FORMAT(20A4)
300 FORMAT(SX+13+2X420A4)
400 FORMAT(09X+* ERROR INCORRECT STATEMENT TYPE.*/)
500 FORNMAT(//7 410X *END RUN*)
ZND
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SUBROUTINE VABC (CARD)
THIS SUBROUTINE RUNS THE MODEL WITH VARIABLE 30UNDARY CONDITIONS.,
THE VABC CARD MUST BE PRECEEDED BY A RUN CARD TO ENSURE THAT ALL
ARRAYS ARE PROPERLY INITIALIZED AND THAT THE HODEL HAS CONVERGED
TO AN ACCEPTABLE STEADY STATE CONDITION.
THIS SUBROUTINE WILL NOT ALLOW THE BOUNDARY CONDITIONS OR THE
EQUATION TYPE TO BE CHANGED FROM THOSE INITIALLY SET UP BY SuB-
ROUTINES DATA,MAINB,AND BRANCH,.
POSSIBLE BOUNDARY CONDITIONS ARE

VELOCITY -SPECIFIED OR CALCULATED

DISCHARGE-SPECIFIED OR CALCULATED

HEIGHT ABOVE DATUM- SPECIFIED OR CALCULATED.
THE USER MUST SUPPLY INPUT SUBROUTINEZS TO STORE THE BOUNDARY
CONCITIONS IN THE PROPER ARRAYS, SEE SUBROUTINES CALBC AND READBC
CODES FOR BOUNDARY CONDITIONS ARZ
HEIGHT IS SPECIFIED BY A FUNCTION
VELOCITY IS SPECIFISD AS A FUNCTION
DISCHARGE IS SPECIFIED AS A FUNCTION
HEIGHY IS READ IN AS DATA
VELOCITY IS READ IN AS DATA
DISCHARGE IS READ IN AS DATA

COMMON /201/ IEQU(#G)oV(ZO)98(20),H(20)qZ(ZO)pDELTX(éO)’QL(ZG)vDK

$(20) o IPRyLINK(4D) 4LIN(2G) yICELToISTPT,RMS,GRAVyWHT

COMMON 730/ RHGT(1CO0, 21),VEL(lDO,Zi);DIS(iOO.Zi),FR(iUO 21
COMMON 753/ ISHW,IRUNS

COMMON /707 XBC(10C.5)

DIMENSION ISECT(5), ICODE(S)

INTEGER HEIG

DAT A HEIG/ULHHEIG/

DATA ISR/4HVABC/

[T T S T L E TP E P T TP Y Y S I SRS LI T LI LS LS AL A b bt S A

xnx

EXY)

FYY

xn¥y
¥

DECCDE TIME STEP AND STOPPING TIME
DECODE (75,4C,CARD) IDELT,INCD,ISTOP,INCS

IF({INCO«EQe 3HHRS) IDELT = IDELT*3600
IF(INCD.EQe3HMIN) IDELT = IDELT*60
IFUINCSoER3HHRS)ISTOP = ISTOP*36G0
IF(INCS«EQe3HMINIISTOP = ISTOP*6(

TIME STEP AND STOP TIME ARE NOW IN SECONDS.
DECODE BOUNDARY CONDITION SECTION NUMBERS AND COOE
DECODE (75,50,CARD) (ISZCT(I),ICODE(I)»I=1,5) ~ -

IF BC AT SECTION I IS TO BE CALCULATED USE CALCBC. IF BC DATA IS
TO BE READ FROM CARDS USE READBC.
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C #¥»
10

20
C #4%

C *%»
30

33
31
34

32
35

4o
50
60

IRUNS = IRUNS+1

NRUNS = ISTOP/IDELT

IF (NRUNS+IRUNS, L".100) GO T0 10
PRIN 60 .

NRUMS = 1§50~ IRUNS

DETERMINE ALL BOUNDARY CONDITIONS AT ONCE
N0 20 I=1,5 ' |

IF (ISSCT(I).EN.G) GO TO 28

CALL CHECK(ISECT(I)4ISR)

IF (ICODE(I)sLEs3) CALL CALCBC (ISECT(I),ICODE(I)¢NRUNSsI)
IF (ICODE(I)eGEs4) CALL READBC (ISECT(I), IGODE(I)sNRUNS,I)
CONTINUE

ISW=1 DISABLES FIRST PART OF SR RUN.

ISW = 1 |

CARD = §

CALL SUBROUTINE *RUN* ONCE FOR EACH TIME STEP
DO 35 I=1,5

IF(ISECT(I)«EQ.0) GO TO 35

IST= ISECT(I)

IF(ICODE(I).EQs1) GO TO 33

IFCICOOE(I)NEs&) GO TO 31

Z(IST) = XBC(IRUNS,I)

GO T0 35 .

IFCICODE(I)LEQ+2) GO TO 34

IF(ICODE(I)«NEL5) GO TO 32

VIIST) = XBC(IRUNS,I)

GO TO 35

VIIST)=XBC(IRUNS,,I) Z/((H(IST)+Z(IST))I*B(IST))
CONTINUE

CALL RUN(CARD)

IRUNS = IRUNS+1

IF (IRUNS.LE.NRUNS) GO TO 3¢

RETURN

FORMAT (10XyI341X3A3510X+1I5,1XsA3)

FORMAT (43Xs5(I241X4I241X))

FORMAT (10X y*MORE THAN 1C0 TIME STEPS CALLED FOR%)
£ND
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C

SUBROUTINE RUN{CARD) -
#4% THIS SUBROUTINE RUNS A STEACY STATE MODEL

A ENDS AT IPR

any TIME INCREMENT IOELT
STOP TIME ISTPT

“xn

INTEGER CARD(19) 4 ITTYP(10)+CX(13)4yPOINTLISSS = -
COMMON/10 /X (40) yNyMAXSA4POINT (40,60) 4 ISUB(39) 4 TEMP (40D,
¥ PART (43) yCOE(40,441) yISIGODIG
COMMON/ZO/IEOU(QD)vV(ZG)oB(ZU),H(ZU)’Z(ZD)oDELTX(ZO)vQL(ZU),
* DK(20) ¢ IPRyLINK(40) 4 LIN(2G)  IDELT4ISTPT ,RMS,GRAV,,WHT
COMMON/30/RHGT(100,21), VEL(100,421) 4DIS(100,21)FR(100,21)
COMHON/&O/CA(lQ)qCB(19)yCC(19)’CD(19)'CE(ig)oHTS(19)’

» DVI19) 4 VP(19) 4DZ(19) yZP(19) yAS(19) ,70(19) ¢WHTN4HN(19)
COMMON/50/ISH, IRUNS
OATA CXoISECsIMIN,IHRS/19*U4H » 3HSEC, 3HMIN s 3HHRS/

DATA ISR/4LHRUNW /

g T TR FEET FY T F T P Y YRR IT IS F TS R 2L AL L L R R R L Ll et e b

x#% ISW IS SET IN SeRe VABC, AFTER THE INITIAL CALL TC RUN BY
¥¥* THE RUN CARD,y ALL SUBSEQUENT GALLS ARE MADE BY S.R. VABC
IF (ISW.EQe1) GO TO 0L
DECODE(76,100,CARD) IA,IB,INC,IC,ISP
100 FORMAT(13X4I12911XsI391X9A3911X41541%X4A3)
IF(IALNE.J) IPR=TA
IF({IBsNEsD)IDELT=IB
IF(ICeNESO) ISTPT=IC
CALL CHECK(IPR,4ISR)
N=2¥IPR
¥#+% PRINT OUT THE INITIAL VALUES OF THE ARRAYS IEQU AND LINK
#x% TQ ENSURE THE MODEL IS SET UP CORRECTLY
PRINT 1000,4WHToGRAVMAXSA,ISIGOIG

1000 FORMAT(1HO 92X *WHT=*,F 4,3, 5X,*GRAV =¥ ,FBe 345X, *MAXSA =%,

+ I3,5X,*#ISIGDIG =%,13)

PRINT 200,(I¢1I= 1’N)

PRINT 300, (IEQU(IY,I=1,4N)

PRINT 400, (LINKI{I) o I=1,N)
200 FORMAT (1H0,10X,*MOODEL SET UP*,/,* INDEX K#* quXo0(I2451X))
300 FORMAT (1H % IFQUIK)*,4X,40(I2+1X))
LO00 FORMAT({1H % LINK(KI*,LX,40(I2,1X))
*»s» INITIALIZE VARIABLES

K=1 ‘

IRUNS=(

No 3 I=1,IPR

X(K)=v{])

X{K+1)=2(1)
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03 K=K +2

C **® CHANGE ALL INPUT TIME REFERENCES TO SECONDS
IF(INCeEQ. ISEC) GO TO G6
[IFCINC. EQ.IMIN) GO TO 02
IF(INCoZQsIHRS) GO TO 01

71 IDELT=60%IDELT

G2 IDELT=60*IDELT

0t DELT =FLOAT(IDELT)
IF(ISP.EQ.ISEC) GO TO €9
IFCISP.EQ. IMIN) GO TO 08
IFCISP.EQ.IHRSY GO TO G7

07 ISTPT=60%ISTPT

(8 ISTPT=H60%ISTPT

09 CONTINUE

C #+» INITIALIZE ARRAYS
WHTN=1,0-WHT
ITIME=0,0
14 TRUNS=IRUNS+1
0¢ ITIME=ITIME+IDELT
RHGT (IRUNS,1)=ITIME
VEL (IRUNS,1)=ITIME
DIS(IRUNS,1)=ITIME
FRUIRUNS,1)=ITIME
C *%» CALCULATE GCOEFFICIENTS
NM=IPR=-1
D0 12 I=1,NH
VP(I)=V(I+1)+V ()
ZP(IV=Z(I+1)+Z(I)
ASII)=B(I)*H(T) 4B (I+1)¥*H(I+1) +WHTN* (B(I)*Z(T)+B(I+1)*Z(I+1))
DZCI)=WHTN*(Z(I+1)=-7(I))
ZOCTI)=WHTN*(VII+1)+V(I))
DVCI)=WHTN¥ (V(I+1)-V(I))
HTSHID=H(I)+H(I+1) +WHTN* (Z(I)+Z(I+1))
HNCI)=H(T+1)-H(I) +WHTN®(Z(T+1) =Z(1))
CACID=DELTX(I)/DELT
CBUI)= L U¥DELTX(I)*QL(I)/(B(I)+3(I+1))
CCUIY=DELT/OELTX(I) '
CO(IN=A(B(I+1)=B(I))/(R(I+1)+B(I))
C **% IF DK(I) IS LESS THAN 1.0,MANNINGS FRICTION IS
C ®**% ASSUMED. IF DK(I) IS GREATER THAN 1.0 THEN CHEZY
C *** FRICTION IS ASSUMED
IF(OK(I)elTels) GO TO 10
CE(IV=DELT*GRAV/ (DK (I)*DK(I))
GO TO 12
10 CE(I)=(DELT*GRAV*DK (I) *0K(I))/
% (CCHOIDV+Z (I +H(I+1)+Z(T+1) )%+ 0433333)+1,7621)
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12 CONTINUE

#8% SOLVE SYSTEM OF EQUATIONS TO

ey FOUR SIGMIFICANT DIGITS OR

hhs MAXIT MAXUIM NUMBER OF ITERATIONS
MAXTIT=MAXSA
CALL NONLIN(MAXIT,ISING,ISIGOIG)

**% CHECK TO SEE IF SOLUTION OBTAINED
IF(ISING«NELO) GO TO 13
PRIMNT 500,MAXIT,ITIME

S0C FORMAT(13X,*SOLUTION MATRIX IS SINGULAR AT ITZRATION*,I4,

+ *, TIME IS *,1I5, *SECONDS =---- RUN STOPPED*)
STOP
13 IF(MAXITLGEMAXSA) PRINT 600,ITIME

60C FORMAT (10X ,*WARNING SOLUTION MAY NOT 3£ ACCURATE AT TIME *, TI5,+

*SECCNDS*)

K==1
DO 05 I=1,IPR
K=K+2
VI =X (K]
Z{I)=X(K+1)
RHGTUIRUNS,,I+1)=2(1I)
VEL (IRUNS,I+1)=V(])
+»% CALCULATE DISCHARGT ND FROUDEZ NUMBER
DISCIRUNS,I+1)=V(I)*BII)*(HII)+Z(I))
FRUIRUNS,I+1) = DILTX(I)/ZU(V(I)I+V(I+1))*33,)
05 CONTINUE
PRINT 700+ ITIMEJHMAXIT
PRINY 800, (V(I)sI=1,IPR)
PRINT 9G0,(Z(I}yI=1,IPR)
700 FORMAT(1H/,/.% ALL CALCULATIONS COMPLETE FOR TI™E
+ === NO.OF ITERATIONS = *,12,/)
800 FORMAT (L1HO,*VEL*45X,20F6.2)
Q30 FORMAT (LH +*HEIGHT¥42X,20F6.2)
IF(ITIMELLTLISTPT) GO TO 14
RETURN
END
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SUBROUTINE WEIGHT (CARN)
¥%¥% THIS SUBROUTINE READS THE WEIGHT CARD

Rk WHT= WEIGHTING FACTOR IN FINITE DIFFERENCSE SCHEME

rex GRAV= GRAVITATICNAL CONSTANT.

*xu MAXSA= MAXIMUM NOe OF ITERATIONS BY NONLIN

s NUMSIG= NUMBER OF SIGNIFICANT FIGURES CALCULATED 3Y NONLIN
¥+% DEFAULT VALUES IF NO WEIGHT CARD IS PRESENT OR IF VALUES ON
res WeIGHT CARD ARE BLANK ARE

rrz WHT=0,55

ey GRAV= 32,2

*rx MAXSA= 7

e NUMSIG=5

¥¥x THESE DEFAULT VALUES ARE SET IN THE MAIN PROGRAM

INTEGER GARD(19),POINT
COMMON/10/X (40) sNyMAXSALPOINT (40,40)4ISUB(33),TEMP(40),
¥ PART (40) +COE(4Dy41),ISIGDIG
COMMON/2C/IEQUILG) 4 V(20 +BL20) 4H(20) 92020 ) 4DELTX(2G),QL(20)
* DK(20) yIPRSLINK (40) 5LIN(20) 3 IDELT o ISTPT,RMS,GRAV, WHT

DECODE(764100,CARD) RALRBLIGC,ID
130 FORMAT (LX 9F 342 +10XsFle248X912,10X, 12)
IF(IDGTL.3)ISIGDIG=1ID
IF{ICsGTo0) MAXSA=IC
IF(RBsGTe0,0) GRAV=RS
IF{RALGTe0asl) WHT =RA
IF(RA.GT.0.5) GO TO 01
PRINT 200 ‘
2JG FORMAT(1HO,*WARNING CHECK THAT COURANT STABILITY CRITERION IS
¥ SATISFIZED AS SOLUTION MAY PBE UNSTABLES#*)
01 RETURN
ZIND
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SUBROUT INE CALCBC (ISECT,ICODE sNRUNS,I)
THIS SURBROUTINE MUST BE USER SUPPLIED.
IT IS SUPPOSED TO CALCULATE THE APPROPRIATE
BOUNDARY CONDITIONS FOR THE MODEL AND PLACE
THEM IN THE APPROPRIATE ARRAYS.,
THE I-TH BOUNDARY CONDITION IS TU BE CALCULATED FROM THI TIME STEP
IRUNS+1 TO TIME STEP NRUNS AND PLACED IN THE ARRAY XBC( 11}
FUNCTION VALUZS IN THIS SUBROUTINE MUST B CHANGED BY THE
USER TO SUIT HIS CASEscesose
ISECT = THE SECTION NUMBER AT NHILH THE I-TH BOUNOARY CONDITIGON
OCCURS
ICODE = THE TYPR OF BOUNDARY CONDITION
1 VELOCITY
2 HEIGHT
3 DISCHARGE
NRUNS = LTOTAL NUMBER OF NUNS TO BE COMPLZTED
I = BOUNDARY CONDITION NUMBERssIEes THE FIRST, SECONU...FIFTH
BOUNDARY CONBITION CON THE VABC CARD
COMMON /707 XBC(100,5)
GO TO (10+20430+40450), 1

[

XBC(241) = 25.0
XBC(341) = 300
XBC (4y1) = 35.0
00 15 JJ=59 NRUNS
XBC(JJs1) = 40413
RETURN

RETURN

RETURN

RETURN

RETURN

END
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SUBROUTINE READBCU(ISECT,ICODE s NRUNS,I)

THIS SUBROUTINE MUST BE USER SUPPLIED

IT IS SUPPOSED TO READ IN THZ APPRCPRIATE BOUNDARY
CONCITIONS AND PLACE THEM IN THE PROPEZR ARRAY,
COMMON /7037 XBC(100,5)

D0 10 J=6,6c,12

II=J+11

READ 10Cs (XBC(KyI) s K=JyIX)
FORMAT{20Xy12(F4e?2))

CONTINUE

D0 15 J=5,65 .

XBC(JsI) = XBC(JyI) - 754880

RETURN

=NO
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SUSROUTINE DATA(CARD)
X% .
¥#% THIS SUBROUTINE READS IN ALL DATA PERTAINING TO
e SECTION I AND SETS yp INITIAL EQUATION TYPES,
*¥% I= SECTION NUMBER
¥E® V(IDI=INITIAL GUESS AT VZLOCITY
¥e¥ Z(IV=INITIAL GUESS AT STAGE ABOVE DATUM, +VE IF ABOVE DATUM
*yu ' =VE IF BELOW DATUM
¥¥2 3(I)= TOP WIDTH OF MAIN CHANNEL SECTION
¥®% H(I)= DEPTH OF SZCTION BOTTOM BELOW DATUM
*uy +VE IF BOTTOM IS 8ELOW DATUM
arz -VE IF 30TTOM IS ABOVE DATUM
¥2% DELX(I)= DISTANCE BETWEEN SEGTION I AND SECTION I+1
2E% QL(I)=LATERAL INFLOW PER UNIT LENGTH BETWEEN
*in SECTION I AND SECTION I+1,
¥E=¥ DK(I)=FRICTION FACTOR BETWEEN SECTION I AND SECTION I+1,
en IF DK(I)olTe1 ,MANNINGS FRIGTION IS ASSUMED,
¥xx IF DKUI)«GTe1, CHEZY FRIGTION IS ASSUMMED,
L 23
INTEGER CARD(19)
COMMON/ZO/IEQU(uo),V(zo).8120).H(Zﬂ).2(20).DELTx(20).QL(23).
3 DK(ZO),IPRVLINK(QOP,LIN(20)'IDELT.ISTPT.RNS.GRAV.NHT
DATA ISR/GHDATA/

'Oc3C)oc7c>oc7c36>oc7c:nc1c>n<7

C *#x
G *** DJFCODE SSCTION NUMBER
DECCDE (44156,CARY) I
1080 FORMAT(1X,I2,1X)
CALL CHECK(I,ISR)
C¥®** DECCDZ SECTION PROPERTIES
DECODZ(76,24C,CARD) V(I)oZ(I),B(I)'H(I)9DELTX(I)qQL(I)'DK(I)
200 FORMAT(QX.F@.ZgiXpFSoZ.iX,FS.1'1X,F5.2,1X9F7.1,1X-F5o3s1XyF4.0)
¥¥¥ SET UP INITIAL EQUATION TYPES IN IEQU ARRAY AND REACH NUMRERS
¥¥x IN LINK ARRAY. THESE NUMBERS ARE MOOIFIED IN MAINB.BRANCH,AND
®%® VARBC SUBROUTINES,
IN=2%*]
Tv=2*1-1
IcQU(IVI=Y
LINK(IV)=]
IEQU(INY=2
LINK(IN)=T
RETURN
IND

2 NoNe!
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SUBROUTINE MAINB(CARD)

THIS SUBROUTINE PROCESSES MAIN CARD

IT SETS UP BOUNDNRY CONDITIONS FOR THE MAIN RRANCH
THE POSSIBLE BOUNDRY CONDITIONS ARE

FIXED HEIGHT -- EQUATION TYPE 3
FIXED VELOCITY-=- ZQUATION TYPE &
FIXED DISCHARGE -- EQUATION TYPE 5

30UNDRY CONDITIONS MAY OCCUR AT ANY SECTION IN THE MAIN

3RANCH OF THE RIVER SYSTEM.

WHICH GOVERN A BRANCH.

NOTE THAT THE CLOSER THE TWO BOUNDRY CONDITIONS AREZ TO E£ACH

OTHER THE HIGHER IS THE PROBABLE ERROR IN THE SYSTEM, AND THE
HIGHER IS THE SENSITIVITY OF THE SYSTEM TO THE BOUNDARY CONDITIONS

INTEGER CARDI(19)
comvow/aa/leautao),V(20),8(20i.n(20) 7(20),DELTX(20).0L(20).

' DK(ZO),IPR,LINK(AO),LIN(ZQ).IDELT ISTPT sRMS,GRAV, WHT

DATA INF,IOUTFIHEI Gy IVEL/LHINFLy4HOUTF y4HHEIG 4HVELOY

DATA IDIS/3HOIS/ \
DATA ISR/G4HMAIN/ . @
DECCDE MAIN CARD. ™A IN, BRANCH FROM SECTION 1 TO SECTION I,

JECODE (52,1004 CARD) I,IU,ICA,I0,ICB

FORMAT(OX y12,8X 412, 7X, Ak,7X;I2 77Xy AL)

CALL GHECK(I,ISR) . .

DSCIDE ON EQUATION TYPES FOR BOTH BOUNDARY CONUITIONS

IF(ICACEQeIHEIGIIE=3

IF(ICALEQ.IVEL) IE=4
IF(ICA.EQ.INIS) [==5

IF(ICBWEQIHEIG)IS=3

IF(ICB.EQ.IVEL) IS=4

IF(ICB.EQ,IDIS) IS=5 '

UPSTREAM 3OUNDARY CONDITION AT SECTION IU IS TYPE ICA.
OOWNSTREAM BOUNNARY CONDITION AT SECTION ID IS TYPE ICB.
UPSTREAM 3C EQUATION TYPE PLACED IN IZQU(Z*T-1)
DOWNSTREAM BC EQUATION TYPE PLACED IN ISQU(Z*I)
IEQU(2%*T-1)=1¢

LINK(2#I-1)=TU

IEQUI2*T) =15

LINK(2*I)=1ID

RE TURN

END
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SUBROUTINE BRANCH(CARD) _
#x% THIS SUBROUTINE PROCESSZS BRANCH CARD
x¥¥ IT SETS UP THE BOUNDARY CONOITIONS WITHIN THE BRANCHES ANO

rER LINKS THE BRANCHES TO THE REST OF THE SYSTEM
¥¥% EQUATION TYPES SET IN THIS SUBROUTINE OVERRIDEZ THOSE
Bay SET UP IN SUBROUTINE *DATA*

*+% NOTE THAT SECTIONS INVOLVEOD IN A BRANCHING MUST NOT B:Z
»%¥ USED AS BOUNDARY CONDITIONS,
#uax JUNCTION £QUATIONS ARE AS FOLLOMS
#2% FIXED WATER LIVEL BETWEEN SECTIONS I,J = EQUATICON TYPE 6
»4% INFLOW JUNCTION CONTINUITY EQUATION = EQUATION TYPE 7
%% OUTFLOW JUNCTION CONTINUITY ZQUATICON = EQUAYTION TYPE 8
INTEGER CARD(19),0UT '
COMNON/ZU/IEQU(QU)’V(ZU)vB(ZO)9H(20)92(20)QOELTX(ZD)vQL(ZG)1
* OK{20) s IPRoLINK (40) yLIN(20) ¢ IDELT4ISTPT4RMS,GRAV4WHT
NDATA IFIXyIFRylVELfIHEI/“HFIXE’“HFROM;“HVELO,“HHEIG/.ITJ/QHTO
DATA IDIS/3HDIS/ '
DATA ISR/4HBRAN/
g
DECODE(Tﬁ,lOU'CAQD)IS!IE!ICA,ITAQICByITQ
CALL CHECK (1=, ISR)
JALL CHECK(IS,ISR)
IEN=2*T1E~-1
»»% IF INFLOW TO 3SRANCH IS FIXED VEL OR HZIGHT OR DISCHARGc
»¥% JSC THIS SECTION TO SET £QUATION TYPE
IF{ICA.NE,IFIX) GO TO 01
TIF(ITALEQ.IVEL)YIZAU(IEN) =04
IF(ITACEQeIHEIYIZQU(IEN)=3
IF(ITA.EQ.IDISYIZAUIEN) =5
LINK(IZEN)=IS
GO 70 02
01 IF(ICA.NE.,IFR) GO TO 05
NDZCCRE(764200yCARD) INL
2% THIS SECTION SETS EQUATION TYPES IF INFLOW IS FROM INL,.
CALL CHECKC(INL,sISR)
IEQU(2¥INL-1)= o
IEQU (2% INL) =6
LINK(2*INL=1) =INL+1
LINK(2¥INL)=IS
IEQU(2*IS~-1)=7
LINK(2#IS-1)=INL
LINK(2*IE=-1) = IS
E Y
nehahg IF OUTFLOW FROM BRANCH IS FIXED,SET ZQUATION TYPES HZIRZ
02 IF(ICB.NELIFIX) GO TO 03
IF(IT3.EQ.IHEI) IEQU{2*IE)=3
IF(ITY.EQ.IVEL) IEQUI2¥IE)=Y4
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03

04
C **

35

100
230
33C
43GC

IF(ITB.,EQ.INIS) IZQUI2*IE)=5

LINK(2#*IE)=1IC

GO T0 04 _ :

THIS SECTION SETS EQUATION TYPES IF OUTFLOW IS TO OUT
IF(ICB.NELITO) GO TO 05

DECCODC (76,4336, CARD) QUT

CALL CHECKI(OUT,ISR)

IEQU(2*QUT=-3) =¢

LINK(2*0UT=-3)=0UT

IEQU(2*OUT-2)=b

LINK(2#%0UT=-2)=]1IE

IEQU(2+IE)=8

LINK(2#IE)=0UT~1

LINK{(Z2#*IE-1)=1IS

RETURN

ERRCR IN BOUNDARY CONDITIONS

PRIMN 400

STOP
FORMAT{BXyI245LXeI298Xe At 92X gAt913X9AL2X4Ak)
FORMAT (29X ,12)

FORMAT (52X,12)

FORMAT (10X +*INCORRECT KEY WCRD IN BCUNDARY CONDITIONS*,///,
* 10X4¥*STOP RUN™)

END
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SUBROUT INE PRINT{CARD)

THIS SUBROUTINE PRINTS TABLES OF VALUES

CALCULATED 8Y THE MODEL.

THESE TABLES ARE?

1o WATZIR LEVELS

2o VELOCITY

DISCHARGE

TRANSIT TIME THROUGH THE REACH.

THE TIME UNITS IN THZ TABLE MAY BE IN SECsMIN,OR HRS,

THE DATUM OF THE WATER LEVEL MAY BE ADJUSTED IF NECESSARY,

INTEGER CARD(19)
COMMON/30/RHGT(100,21),VEL(100,21),0I5(100,21),FRE1G0,21)
COMMON/ S0/ ISW, IRUNS

OATA ISR/LHPRIN/

DECODZ (76+110,CARD) IPT,INC,DATUM
CALL CHECK(IPT,ISR)

ITF=IPT+1

IF(INCWEQs3IHSEC) GO TO G4
IF{INCs EQoa 3HMINY FAC=60.

IF (INC.,EQ.3HHRS) FAC = 3600,

DO €1 I=1,IRUNS

RHGT(Is1) = RHGT(I,1)/FAC

VEL{I,1) = VEL(I,1)/FAC

DIS(Ie1) DIS(I,1)/FAC
FR{Is1) = FR{(IS1)/FAC
CONTINUE

PRINT 11073

PRINT 12003,(I,I=1,IPT)

DO 04 I=1,IRUNS

30 ¢3 J=2,1ITF

RHGT(I+J) = RHGT(I,J) + DATUHN
PRIMT 1300, (RHGT(IoJ)oJd=1,1ITF)
CONTINUE

PRIMN 1400

PRINT 12004(I,I=1,IPT)

NO 05 T=1,IRUNS

PRINT 13005 (VEL(IWJ)ed=1,ITF)
CONTINUE

PRIM 1500

IF(ITF.GT.10) GO TO 07

PRIMT 17004(I4sI=1,1IPT)

DO 06 I=1,IRUNS
PRINT1800,(DIS(IyJ)sJ=1,41ITF)
CONTINUE
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GO TO 09
07 PRIMNTL17004,(I,1=1,10)
PRINT 1759, (I,I=11,IPT)
90 ¢8 I=1,IRUNS
PRINT180G0,(DIS{IsJ) sd=1s11)
PRINT18E0,(DIS{TI,J) 4J=12,ITF)
08 CONTINUE
39 PRINT16G0
PRIMN 1900, (IsI=1,IPT)
D0 16 I=1,IRUNS o
PRIMT. 2C004(FR(I4J)4J=1,1IPT)
10 CONTINUE
RETURN
110 FORNAT(iuX I2+9X3A83910XF5,2)
1170 FORMAT(1H1 ,45X *TABLE CONTAINING HEIGHTS VS TIME*,/)
1230 FORMATU(AH 4*TIME#,5X320(I244X)y7)
1300 FORMAT(1H sF7¢0+2Xs20(F5,241X))
1490 FORMATI{IHL1,45X*TABLE CONTAINING VELOGCITY VS TIME#,/)
1590 FORMAT(1H1 ,45X *TABLE CONTAINING DISCHARGE VS TIMZI#*#,/)
1690 FORMAT(1H1,45X,*¥TABLE CONTAINING TRANSIT TIMZ IN REACH*,/)
1700 FORMATC(IH o*TIME*,5X410(5X 41245X),/)
1750 FORMAT(1H 48X,10(10X%,12))
1830 FORMATI(IH ,F7e0+2X310(F10,1,2X))
1850 FORMAT(1H ,11X,10(2X4F10.1))
1900 FORMAT(1H (*TIME*,20(4X,1I2))
20300 FORMAT(1H 4F7e0+1Xe19F5,.1)
END
FUNCTION FUN{K)
L. ¥
&2 THIS SUBROUTINE IS CALLED BY NON-LIN AND TARULATES THE
EQUATIONS OF MOTION OF THE SYSTEM
*+% NON-LIN DETERMINES VALUES OF THE VARIABLES SUCH THAT
ey FUN=0,000 IN FACH CASE
INTEGER POINT
COMMON/10 /X (40 ) ¢N,MAXSA DOInrtuoyuc).Isua(sq).rEMP(AO).
* PART (40),COE(40,41),ISIGODIG
COMYON/ZD/I:QU(#O)'V(?O)'8(20).H(90)’Z(20)stLTX(ZOI,QL(ZO)q
» DK(20) s IPRyLINK (40) gLIN(20) o IDELT»ISTPTHRMS,GRAV, WHT
COMMON/402/CA(19),CB(19)5CC113)4CD(19),CE(19) 4HTS(19),
» DVI(13) gVF(13)4DZ(139),ZP (19)4AS(19),70(19) yWHTN,HN(19)
L X

*%» FIND EQUATION TYPE
IR Y

IR=IEQU(K) |
IF(TR.LTe1.0R¢IReGT+3) GO TO 10

GO TO(UL.BE,(3,34.[5,06,07,08909), IR
*¥&  CONTINUITY EQUATION
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IN=LINK(K)
J=2%IN-1
CW=ZOCIN) +WHT* (X{J) +X(J+2))
FUNSCACINI#IX(J4L)+X(J+3)=ZP(IN) I+ (CHTSUIN) +WHT* (X (J+1) ¢X(J+3)))*
OV OIN)+WHT* (X(J42) =X (J)) ) +CWH (HNIIN) +WHT* (X (J+3) =X (J¢1))) :
+ (HTSCIN) #WHT* (X (J+3) ¢X(J+1))I*CD(INI*CW=-CB(IN)
QETURN :
MCMINTUY ZGUATION
IN=LINK (K)
J=2*%*IN
CU=DZ(IN) +WHT#* (X (J+2)=X{(J))
CU=2.,*CU
CV=ZO(INY +WHT* (X (J=1) +X{J+1))
CX=1a/ (HTSCIN) +WHT® (X(J)+X(J+2)}))
CHW=HN(IN) +WHT® (X (J+2)=X(J))
CZ=CVI(IN) +WHT* (X(J+1)=X(J=-1))
CS=X{J=1)+X(J+1) =VP (IN)
FUN=CC (IN)*GRAVACU + 1,0%CS + CVH(CX* (1.0% (X(J)+X(J+2)=-ZP(IN))
+CECIN)*ABS(CV) + CCU(INY*CV¥CW) + CCCINY*(CV*CD(IN) + 2.%CZ))
RETURN
80UNDARY CONDITION =-FIXED VELOCITY
IN=LINK (K)
Iv=2+IN-1
FUN=X(IV)=-V(IN)
RE TURN
BO0UNDARY CONDITION -FIXED HEIGHT
IN= LINK (K) '
IV=2*IN
FUN=X(IV)=-Z(IN)
RETURN .
BOUNDARY CONDITIOM =-FIXED DISCHARGE
IN=LINK (K)
IV=2*1IN
FUN=XTIV=1)*BCINI* (H(IN)+X(IV))I=VIIN)*B(INI* (H(IN)+Z(IN))
RETURN
JUNCTION CONDITION -FIXE0 HEIGHT
IJUN= 2¥LINKI(K)
IV=(K+1) /2
IVI= 2% (IV)
FUN= XCIVI)=X(IJUN)
RETURN
CONTINUITY AT OIVERGENT JUNCTION
NBTAIN SZICTION NUMBERS
IN=LINK (K)
IBN=K/2+1 ’ .
IMN=IN+1
CONTINUITY EQUATION ¢
FUN= X{2*IN=1)*3(INI*(H(IN) +X(2*IN))=X{2*¥IBN=1)*B(IAN)* (H{INN)
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¥ #XA(2%IBN) ) =X (2*¥*IMN=1)*B(IMN)I* (H(IMN)+X (2+IMN))
RETURN
C *#%» CONTINUITY AT CONVERGENT JUNCTION
C OBTAIN SECTION NUMBERS
- 08 IN= LINK(K)+1
IBN=K/2
IMN=LINK(K)
C CONTINUITY EZQUATIONM
FUN=X(2¥IN-1)*B(IN)*(H(IN) +X(2*IN))=-X(2%I3N~ 1)‘B(IBN)4(H(IBN)
POAX(2¥IBN)) = X(2%*IMN=1)*BCIMNI* (HCIMN) +X(2*IMN))
RETURN
99 CONTINUE
RETURN
10 PRIM 100
100 FORMAT (1HO*UNRECOGNIZABLE EQUAFON TYPE «-=RUN STOPPFD*)
STOP
END
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SUBKOUTINE

G »%x»
C *+% SUBROUTINE

C *=+

CHECK(I, ISR)

CHECKS TO SEE If I IS BETWIEN 1-21

IF(IelEe21¢ANDSTWGECL) RETURN
PRINT 1U3,I,ISR

100 FORMAT(IHZT,

*DATA POINT NUMBIR =%,13,% IN SUBROUTINE
¢ F s STOP RUN*¥)

STOP

END
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SUBROUTINE MONLIN(MAXIT,SIMGLE yNUMSIG)

THIS SUBROUTIME SOLVES NON-LINEAR FQUATIONS,.
CONVERGENCZ IS ROUGHLY QUADRATIC

SOURCE ALGORITHM 316 COMMUNICATIONS OF ACM
VOLUMZ10,NUMBER11 yNOVEMBER)1967cesee INCLUOING THE
SUGGESTIONS IN CCMeOF AeCoMs VOL G214 9NOWe7 oJULY 4l
1971, P,493

IMPLEMENTED IN FORTRAN BY RYAN RAZ, FSBRUARY 1974
COMPUTER COC 3100 MASTER OeS.
ARGUEMENTS AND DIMENSIONS

N  NUMBER OF EQUATIONS
MAXIT MAXIMUM NUMBER OF ITERATIONS TO BE MADS
NUMBER ACTUALLY MADE PSTURNED IN MAXIT
NUMSIG NUMBER OF SIGNIFICANT DIGITS DESIRED
X{N) INITIAL GUESS TO SOLUTION, AFTER EXECUTION
IT IS THE SOLUTION
FUN NAME OF FUNCTION FUN(X,K)= K TH FUNCTION
EVALUATED AT X19X29seeXN
SINGLE VALUE RETURNED BY NONLIN
SINGLE= 0 JACOBIAN MATRIX SINGULAR
= 1 SOLUTION OBTAINED
POINT (MgN) yISUB(N=1) 4, TEMPIN) yPART(N) 4 COE (NyN+1)
WORKING ARRAYS ' :

SUBROMTING NIZIZIDED  BACK

INTEGER PAOINT,SINGLE,CONVRG .TALLY

COMMON/Z10/7X(LG) yNyMAXSA, PO*NT(QO;%D)9ISUB(3°),TFHD(Q0),
PART (40)+COE(40441),ISIGDIG

LOGICAL ST

CONVRG=1

SINGL=Z=1
RELCON=19 ¢ #** (~NJASIG)
D0 147 M=1,MAXIT

DO CG3 J=1,
POINT(1,J)=d
SHT =4, TRUZ.

00 100 K=1,N
IF(SWTIGO TO G100

CALL BACK(K)
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010 F=FUN(K)
FACTOR=,001
6206 TALLY=0
N0 040 I=KseN
ITEMP=POINT(K,I)
HOLC=X { ITZMF)
H=F ACTOR®HOLD
IF(FoEQoo GIH=FACTOR
X{ITEMPI=HOLO+H
IF(SWT)GO TO 030
CALL BACK(K)
030 FPLUS=FUNI(X)
PART(ITEMP)I=(FPLUS~F)/H
X{ITEMP)=HOLD
IF(ABS(F/AMAX1(01Z-100,ABS(PARTC(ITEMP))))oGTo01220) TALLY=TALLY+1
C&40 CONTINUE
IF(TALLY . LE.N=K)GOD TO {50
rACTOR=FACTOR* 10,1
IF(FACTOR.GT4WeS) 50 TO 150
Go YO 020
N5C IF(KeLT«NIGO TO Inf
IF(ABSUPARTIITEMP)) 4LELT1E-130)6G0 TO 15C
COE (KyN#+1)=0
KMAX=ITEZMP
GO TO 35
0o KMAX=POINT (1(,X)
JIRMAX=ABS(PART (K4AX))
KPLLUS=X+1 ‘
D0 8 I=KPLUS,H
JSUR=POINT (K, I)
TEST=A3S(PART JSU3))
IF(TESTLTLOERMAXIGO TO (70
DERMAX=TYEST
POINT(KPLUS,I)=KMAX
KMAX=JSUR
GO TO 080
078 POINT(KPLUS,I)=JSUB
080 CONTINUE .
IF(ABS(PART(KMAX) )4LT.01E-103)G0 TO 150
ISUB (K)=KMAX
COE(KyN#1)={
PARTS=PART (KMA X)
00 090 J=KPLUS,N
JSUB=POINT(KPLUS, J)
COE (K,JSUB)==-PART (JSUB) /PARTS
030 COE(KyN+1)=COZ (KyN+1)+PART (JSUB) *X(JSUB)
35 COE(KyN+1)=(COZ(K,N+1)=F)/PART (KMAX)+X (KMAX)
13C SWT=,FALSC.
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110

X(KMAX) =CNE(NyN+1)
IFIN.GTo1)CALL BACK (N)
IF(MeENL1)IGO TO 136G

DO 112 T=1,4W

IF(ARSE(TIMO(I)-X(T)) /AMAXT (ABSHIX(I)) L8~-100))GTLRELCONYHO TR

CONTINUE
CONVRG=CONVRG +1
IF(CONVRG.G=43)GO TO 160
GO 10 1230
CONVRG=1
CONTINUZ

20 140 I=L1,N
TP (L)=X (1)
RITURHN

SINGLEZ=(
HEXIT=H

2 TURA

T
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SUBROUT INE BACK(K)
SUBPROGRAM NEZDED BY NONLIN
SACK SOLVES A TRIANGULAR LINEAR SYSTEM

INTEGER POINT
COMMON/10/X(4D) yNyMAXSAyPOINT (404400 4ISUB(39) ,TEMP (40 ),
. PART (40) 4COE(40,41),ISIGDIG

KM=K

KMAX=ISUB(KM=-1)

X{KMAX) =0

DO €2 J=KM4N

JSUB=POINT (KM, J)

X{KMAX) =X {KMAX) +COE (KM=1,4SUB)I*#X(JSUD)
XIKMAX) =X {KMAX) +COE (KM=1,N+1)
KM= KM=1
IF(KMsGTL1)GO TO G
RETURN
ZND
FINIS
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