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ABSTRACT 

A method is presented for solving problems of one dimensional 
unsteady flow in arbitrary networks of open channels. The method uses 
a four point implicit weighted finite difference approximation to the 
shallow water, or St. Venant, equations. A stability analysis of the 
finite difference scheme for the linearized equations shows that the

‘ 

weighting factor is very important for stability and convergence. The‘ 

system has second-order accuracy and Conserves mass when the proper 
weighting factor is chosen. A complete description of an algorithm to 
solve any set of non-linear algebraic equations is presented which is 
useful for many other problems besides this particular application. 

The computer model is used to solve three different types of 
problems. The computer model gives good results for unsteady and 
steady state flow problems. A complete users guide and a listing of 
the Fortran program is included. 

111



ACKNOWLEDGMENTS 

The author wishes to eXpress his thanks to 
"Operation Preparedness" for instigating this project; 
to Dr. A.A. Smith of McMaster University, and Dr. S.J. 

Prinsenberg and Mr. R. Boulden of Ocean and Aquatic 
Sciences; Central Region, Research and Development 
Division, for critically reviewing the manuscript and 
providing many helpful comments; to Mrs._M. Kimmett, 
Mrs. V. Leroux and Mrs. J; Fiddes for typing the various 
drafts; and to Mr. R. Raz and Mr. R. Adamson for making 
many of the computer runs.. Any errors or omissions 
that remain are solely the responsibility of the

\ author.



TABLE OF CONTENTS 

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . v 
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . vii 
List of Figures . . . . . . .‘. . . . . . . .v. . . . . . . . . viii 
List of Tables . . . . .'. . . . . . . . . . . . . . . . . . . ix 
List of Symbols . . . . . . . . . . . . . . . . . . . . . .1. . x 

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . 1 
1.1 Types of Problems . . . . . . . . . . . . . . . . . . 1 
1.2 Outline of Research Program . . . . . . . . . . . . . 2 
1.3 Scope of This Report . . . . . . . . . . . . . . . . . 5 

CHAPTERZTHENETWORKASAGRAPH.............. 7 

CHAPTERBTHEIMPLICITMETHOD............... 11 

CHAPTER 4 EQUATIONS OF MOTION . . .‘. . . . . . . . . . . . 17 
4.1 Continuity Equation . . . .'. . . . . . . . . . . . . 17 
4.2 Momentum Equation . . . . . . . . . . . . . . . . . . 19 
4.3 Junction Equations . . . . . . . . . . . . . . . . . . 21 

CHAPTER 5 FINITE-DIFFERENCE SCHEME . . . . . . . . . . . . . 25 
5.1 Continuity Equation . .p. . . . . . . . . . . . . . . 26 
5.2 Momentum Equation . . . . . . . . . . . . . . . . . . 27 

CHAPTER 6 NUMERICAL PROPERTIES OF THE FINITE—DIFFERENCE SCHEME 31 
'6.1 Stability . . . . . . . . . . . . . . . . . . . . . . 31 
6.2 Approximation . . . . . . . . . . . . . . . . . . . . 35 
6.3 Conservation of Mass . . . . . . . . . . . . . . . . . 38 
6.4 Numerical Results . . . . . . . . . . . . . . . . . . 39 

CHAPTER 7 SOLUTION 0F EQUATIONS . . . . . . . . . . . . . . 41 
7.1 Newton's Method . . . . . . . . . . . . . . . . . . . 41 
7.2 Brown's Algorithm . . . . . . . . . . . . . . . . . . 42 
7.3 Matrix Formulation of Brown's Algorithm . . . . . . . 46 

CHAPTER 8 APPLICATIONS . . . . . . . . . . . . . . . . . . . 49 
8.1 Stoker's Problem . . . . . . . . . . . . . . . . . . . 49 
8.2 Network Problem . . . . . . . . . . . . . . . . . . . 53 
8.3 St. Clair River . . . . . . . . . . . . . . . . . . . 57 

CHAPTER 9 SUMMARY AND CONCLUSIONS . . . . . . . . . . . . . 65 
9.1 Summary . . . . . . . . . . . . . . . . . . 

' 65 
9.2 Advantages and Disadvantages . . . . . . . . . . . . . 66 
9.3 Conclusions . . . . . . . . . . . . . . . . . . . . . 67 

References . . . . . . . . . . . . . . . . . . . . . . . . . . 69 
Appendix 1 User's Manual for MOD* . . . . . . . . . . . . . . . 71 
Appendix 2 Program Listing . . . . . . . . . . . . . . . . . . 93 

vii



Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 

Figure 
Figure 
Figure 
Figure 
Figure 

\DmVG‘U'Il-‘UJNH 

10 
ll 
12 

14 

LIST OF FIGURES 

A River Network and its Graph Representation . 

Splitting of a Node . . .-. . . . . . . . 

The X-T Solution Plane . . . . . . . . . . 

An Interior Node . . . . . . . . . . , . . 

A Junction Node . . . . . . . . . . . . . 

Definition Sketch --An Irregular Channel . 

A Convergent Junction . ... . . . . . . . 

The X—T Solution Plane Showing the Weighting Factor 
Schematic Plan of the Ohio-Mississippi Junction for 
Stoker's Problem . . . . . . . . . . . . . 

Boundary Conditions on the Ohio River . . 

Water Level Profiles for Stoker's Problem 
Schematic Plan of Network Used for Example 
Chart of St. Clair River System ; . . . . 

Computed vs. Observed Water Levels . . . . 

viii

N 

12 
l4 
14 
16 
22 
24 

50 
51 
52 
54 
58
63



Table 
Table 
Table 
Table 

J-‘wND-J 

LIST OF TABLES 

Geometrical Data for Network Problem . 

Results for Network Problem . . 

Geometrical Data for St. Clair Problem . . 

Observed and Computed Water Levels for the 
Stu Clair River . . . . . . . . . . . . 

ix 

55 
56 
60

62



U‘U‘O‘m 

m. 

0‘ z» 

D'D‘D'OOOOO 

3|- 

H. 

H. La- 

cnnflB_W'—bH-H-:r 

w 
w 
m 
n

N 

x 
<
c

u 
m 
m
x 

>

*

W 

LIST OF SYMBOLS 

Coeefficient defined by equatibn 6.12 
Topwidth of conveyance section of channel; 
co-efficient defined by equation 6.12 
Topwidth of storage section of channel 

Function defined by equation 7.7 
Base of natural logarithms (2.718 . . .) 

Acceleration due to gravity
I 

Function defined by equation 7.7 
Depth of channel invert below arbitrary horiZontal datum, or 
In Chapter 6, a small perturbation in depth 
Total depth of flow

‘ 

In Chapter 6, an exact solution of the difference equations 
Matrix defined by equation 7.11 
Index 

,Imaginary unit,V-l, in Chapter 6 
' Index 
Linearized friction parameter defined by equation 6.2 
Index in space dimension ' 

Index in time dimension 
Lateral inflow per unit length 
Time 
Velocity . 

In Chapter 6, an exact solution of the difference equations 
Small perturbation in velocity 
Distance along the channel 
water level above datum 
Cross-sectional area 
Chezy friction factor 
Truncation error

I 

Friction force 
External force in X—direction 
Matrix defined by equation 7.11 
Mean depth of flow 
Jacobian Matrix 
Arbitrary function of space and time

X



OZ 

0" 

<WWOH’U’U'U 

-€-Q'9-‘Od>’CDJm 

Number of nodes in a network 
"Order of magnitude" 
Hydrostatic pressure 
Boundary pressure 
Wetted perimeter 
Volume rate of flow 
Hydraulic radius 
Slope of energy gradient 
Mean velocity 

Co-efficients defined by equation 5.5 

Wave frequency 
Mass of a fluid element 
Computational distance step 
Computational time step 
Perturbation error in_depth 
Perturbation error in velocity 
small positive number 
Correction factor for Bernoulli term 
Finite-difference weighting factor 
Stability co—efficient 
Constant (3.14159 . . .) 

Density 
Arbitrary function 
Wave number 
Average frictional shear stress

xi



CHAPTER 1 

1.0 INTRODUCTION 
The prediction of stage, discharge and other flow character— 

istics due to unsteady flow in open channels has been of interest to 
engineers for many years. The traditional methods of flow profile 
analysis and backwater calculation have been dealt with by a variety of 
numerical and semi-graphical procedures [9, 17]. These methods are 
based on rather simple, but ingenious assumptions and a variety of 
empirically developed laws relating to fluid motion. These methods 
have given "reasonably" accurate answers to some of the practical 
problems encountered in engineering, but their neglect of acceleration 
and their general inability to deal with unsteady flow restrict these 
methods rather severely. 4 

0n the other hand, the subject of fluid mechanics has always 
been more or less mathematically rigorous, but the resulting equations 
of motion have not been amenable to solution in any practical manner. 

.Since the 1930's, however, some of the methods of fluid mechanics have 
been applied to practical problems. This successful application has 
generally been at the cost of ignoring the inherent non-linearities in 
fluid flow problems and by making certain assumptions which were not 
always justified. 

The development of the digital computer since the 1950's has 
produced a revolution in open channel hydraulics. The intractability 
of the equations, produced from the principles of fluid mechanics, to 
analytical solution is no longer a hindrance, since the digital computer 
is able to perform the numerical integration of these equations. There 
is a large body of literature dealing with the use of the digital com— 
puter in problems of open channel flow. 
1.1 TYPES OF PROBLEMS 

Problems of open channel flow may be broadly classed as one, 
two or three dimensional problems, which respectively increase the 
order of generality and complexity. Three dimensional considerations 
are usually necessary when dealing with long wide estuaries with a 
highly stratified density structure. Two dimensional considerations 
[18] are usually only necessary in dealing with broad estuaries or



rivers, wide straits or gulfs. In these problems the effect of the 
earth's rotation and the effect of wind stress on the circulation may 
be quite important.

V 

Traditionally problems in open channel flows have been dealt 
with as one dimensional problems and it is for this class of problems 
that the computer model in this report is designed. This limitation 
to one dimension is not as confining as it may appear. Examples of one. 
dimensional open channel flow problems which may be encountered are: 

— Determination of mean velocities in an open channel 
when the water levels are known. 

- Effects of storm surges in river systems. 
- Prediction of tidal elevations in estuaries. 
— Flood routing problems. 
- Prediction of the effects on flow characteristics 

of changes in the geometry of waterways. 
— Determination of the flow in various branches of 

a network. 
The computer model developed in this report will deal with 

all of the above types of problems. 
1.2 OUTLINE OF RESEARCH PROGRAM 

This investigation is concerned with the one dimenSional 
mathematical modeling of unsteady flow in networks of canals, rivers 
and estuaries. The analysis will allow the computation of water 
elevation and velocity in any network of open channels to which the. 
following assumptions are applicable: 

1. Flow is physically poSsible. 
V 

2. Flow is entirely subcritical (i.e. The Froude 
number is less than 1.0). 

3. Flow is one dimensional. 
4. Appropriate boundary conditions are available. 
5. The section geometry of the channels is fixed 

(i.e. no deposition or scouring occurs). 
Flow in open channels can be described by two equations, one 

expressing the conservation of mass (the continuity equation) and one 
expressing the conservation of momentum in the longitudinal direction 
(the momentum equation). In general terms these equations form a set



of non-linear partial differential equations of the hyperbolic type.' 

Depending upon the assumptions made there are various methods which are 
available for the solution of these equations. These methods may be 
grouped as follows: 
1.2.1. Analytical Methods I 

These methods are characterized by the extremely high level 
of mathematical ability required to solve extremely simplified problems 
in fluid dynamics. Fluid motion is usually represented by the linear 
superposition of several harmonic functions of time. Section geometry 
is usually specified by a simple mathematiCal function such as a circle 
or an ellipse and the change in section geometry in the longitudinal 
direction is usually specified by an exponential function. The ultimate 
practicality of this method is limited by the necessity to linearize the 
equations of motion and by the necessity to simplify the section geo— 
metry to a.form that may be described by a simple function. Although 
previous researchers have expended much time on these solutions in the 

past, their usefulness for practical problems is very limited. 
1.2.2. Method of Characteristics 

In this method, the equations of motion are combined and 
solutions of the "characteristic" equation are sought by considering 
the propagation of small disturbances from an initial state. Develop- 
ment in this method is largely due to Dutch engineers and mathematicians. 
The method is well suited to problems in which an abrupt surface 
transition or critical sections appear (such as the development of a 

tidal bore). The method of solving the characteristic equations, 
however, may be fairly difficult. If friction is neglected, analytical 
or graphical solutions are relatively simple to obtain. 

In most practical applications some form of finite-difference 
method must be employed and then the disadvantage of this method lies 
in the highly irregular grid formed by "characteristics". 

The alternatives given by the irregular grid are to either 
accept the grid and interpolate for the final results or to interpolate 
at each node to find points from which characteristics emerge to inter— 
sect at the desired location. In either case, an unwieldy interpolation 
process may be avoided by using finite-difference methods directly from 
the partial differential equations.

3



1.2.3. Finite—Difference Methods 
These methods use finite—difference approximations to the 

partial derivatives appearing in the equations of motion and solve the 

resulting system of algebraic equations. It is the direct finite- 

difference methods that hold the most promise for the solution of 
engineering problems when a digital computer may be used to solve large 

systems of algebraic equations. In this case, "direct" means the con- 

version of the partial differential equations to a finite-difference 
formulation, without use of the characteristic equations. Two recent 

reviews of the various available methods are given in [19, 22]. 

There are two finite—difference methods, and the distinction 
between them lies in the method in which the finite—differences are 
formulated and resulting methods for the solution of the equations. 
The implicit method requires that all of the equations be solved simul- 

taneously in order to advance the solution one time step. The explicit 

method proceeds down the open channel solving only one equation at one 

time. There are a large number of finite-differencing schemes available 

for use with each method. 
Because of the bookkeeping and equation solving requirements 

of the implicit scheme, the explicit method is much simpler to use; 
however, the explicit schemes are restricted in the size of the com— 

putational time step required to ensure a stable computational 
procedure. Numerical stability is achieved when small errors introduCed 

in the computation diminish rather than increase in magnitude with 
succeeding computations. If too large a time step is used, the true 

solution to the equations may well be completely masked by the errors. 
The restriction in At is given by the well known Courant condition, 
which is: 

Ax M < 

where, B = width of water surface; A = cross-sectional area; g = 

acceleration due to gravity; u = velocity; and Ax = the distance interval 

used. If friction is important, Garrison et al[ 16] have shown that the 
maximum At may be further limited by the following stability criterion: 

At: [1 
‘ §i%%'33—W3] 

where n is the Manning friction factor.



Examination of the stability criteria will show that, for 
typical river applications, time steps on the order of a few seconds 
may be required.' For problems in large river systems which may involve 
tidal cycles or input hydrographs extending over several days, these 
small time steps cause the explicit method to be very wasteful of 
computer time. 

I
I 

Two other disadvantages of the explicit schemes are due to the 
equation solving method.' The computations start at one end of the river 
system and proceed from one end to the other. Therefore, the boundary

. 

conditions must be placed at either end of the channel in order that the 
computations may start. This restriction is not necessary with the

. 

implicit method and, as will be shown later, the implicit method allows 
boundary conditions to be placed anywhere within the system, subject of 
course to physical constraints. 

The other restriction on the explicit method is the difficulty 
in handling flow in networks. As the computations proceed downstream 
and reach a junction, some arbitrary decision must be made about how 
much of the flow enters each branch. The profiles in each branch must 
then be computed separately and the results, at the end of the branches, 
compared. If these results are incompatible, then the computation must 
start again at the top of the branch and this procedure iterated in some 
fashion until the flows match properly. In the implicit method, this 
problem does not arise since all of the equations are solved simultan- 
eously. 
1.4. SCOPE OF THE REPORT 

This report develops all of the theory required to construct 
and use a numerical model for simulating unsteady flow conditions in 
networks of open channels. 

The first section, although very short, gives a formal method 
for describing the flow relationships in any network and is necessary 
for understanding the computer storage scheme. The implicit method is 
then described and ektended from use in single channels to networks of 
channels. Equations of motion are derived and finite—difference ap- 
proximations are developed. 

The numerical properties of the linearized finite-difference 
scheme are analyzed by considering the numerical stability by means of



the Von Neuman technique. An expression for the truncation error is 
developed and the conditions for conservation of mass are investigated. 
All of these properties are found to depend upon the weighting factor, 
6, used in the finite—difference scheme. On the basis of this in- 
vestigation, a value of 6 very close to 0.5 is to be preferred. 

A little known method for the solution of systems of non— 
linear equations is described. It is independent of the form of the 
equations and deserves wider recognition, since it is applicable to any 
system of non—linear equations, not only the equations of fluid motion. 

Examples are given of the application of the computer model 
developed from the theory presented in this report. These examples 
show the versatility of the method. An appendix gives a user's guide 
to the model in enough detail for anyone to use the model and to modify 
the model if required for specific applications. Finally a complete 
Fortran listing of the computer program is given.



CHAPTER 2 

2.0 THE NETWORK AS A GRAPH 
The essential features of open channel flow in a network may 

be illustrated by considering a network as if it were a mathematical 
entity known as a graph. A graph, in mathematical terms, may be 
defined as a connected set of lines on a plane surface. The points 
at which various lines meet or cross are known as nodes and if direction 

may be determined the graph is said to be directed. The relationships 
in the graph are purely topological in that distance relationships are 
not preserved. 

The graph representation of a network of open channels 
consists of a number of lines called branches representing the elemen- 
tary reaches of the open channel network and a certain number of nodes, 
each of which identifies the location at which two or more branches 
intersect. To make the graph more general and at the same time more 
applicable to river or estuarine systems, additional nodes are allowed 
on the boundaries of the graph or at arbitrary locations on the graph. 
For example, the river system shown in figure 1(a) may be schematized 
into the graph shown in figure l(b). The branches of the graph are 
shown as lines and the nodes are shown as dots in the figure. 

‘ 

In modeling unsteady flow situations, each branch is considered 
equivalent to an elementary reach in the channel network. The nodes are 
placed at locations where flow properties are required or are known. At 
each node it is necessary to have the cross-sectional geometry of the 
open channel and during the solution of the equations of motion of the 
system it is assumed that the system parameters will vary continuously 
between adjacent nodes. Therefore, in the schematization of an open 
channel network it is necessary to take into account the physical 
parameters of a system and these considerations are reflected in the 
additional nodes selected for inclusion on the graph. 

It is possible to rearrange the graph so that each node has, 
at most, three branches connected to it. If more than three branches 
are connected to a particular node, as in figure 2(a), then the offending 
node may be split into two, or more, nodes each of which has three 
branches, as in figure 2(b). The physical distance between the new



~ 

(a) 
I 

- (b)

1 

FIGURE 1: A RIVER NETWORK AND ITS GRAPH REPRESENTATION



~/ 1/ 
nodes will be zergLIJThe,purpose-of’thi§”§EhéEatization is to identify 

_,_,l~.'u—7""'fIowflr3lationships and to simplify these relationships to an extent 
which allows simple bookkeeping for a computer program. 

(a) 

(b) 

’FIGURE 2. SPLITTING OF A JUNCTION NODE 

This splitting of nodes allows the identification of exactly 
four separate types of nodes. Each network can be schematized using 
only these four types of nodes. They are: 

1. A Bounding node, which is connected to only one branch. 
2. An Interior node, which is connected to exactly two 

branches. 
3. A Convergent node, which has two branches entering and one 

branch leaving. 
4. A Divergent node, which has one branch entering and two 

branches leaving. 

Types 3 and 4 are known collectively as Junction nodes. The



only difference between them lies in the direction chosen for the graph, 
and the distinction is made purely for the purpose of easing the computer 
programming difficulties. In an unsteady flow problem, any given junction 
node could be either type 3 or type 4 depending upon the direction of 
flow. This situation is automatically resolved by the computer program 
and a node is classified according to its type when all flow is in the 
positive direction. Making this distinction between convergent and di- 
vergent nodes eases the computer programming difficulties without making 
the theoretical treatment any more difficult.

10



CHAPTER 3

~ 
3.0 THE IMPLICIT METHOD 

I 

' 

0f the two types of finitevdifference schemes available for 
nthe solution of the equations of motion, the implicit scheme has been 
chosen for reasons which have been discussed briefly and will become 
clearer by the end of this section. 

' 

Consider a rectangular grid, not necessarily uniform, on the 
x—t plane as shown in figure 3. The function value and partial derivatives 
of a function, ¢, at x = x1 + Axi and t = tj + Efgi

22 

are given by: 
j+l 
1+1) ¢3 = mi + ¢i+l+ ¢i+l + ¢

~ fl=l j+1_j j+l__j 
3t 2Ati [¢i ¢i+¢i+1 ¢1+1 

Q) ~ 
Q)X 
=1j_j‘j+1_.j_ 

2A}:i [¢i+l ¢i+¢i+l cpi 

The above are applied to a single branched river or channel 
which contains only bounding nodes. At time t = tj+1, there are two 
'unknowns for each node or grid point; so that a river system containing 
N reaches, corresponding to N+l nodes, has 2(N+l) unknowns at time tj+l. 
For each pair of adjacent nodes at time tj+l, a continuity equation and 
a momentum equation may be written in finite—difference form relating 
the unknown values at time tj+1 to the known values at time tj. Since 
there are two equations between each pair of adjacent nodes, there are 
a total of 2N equations in 2(N+l) unknowns. The addition of any two 
additional independent equations relating unknowns will produce a set of 
2N+2 equations with 2N+2 unknowns which may be solved simultaneously to 
produce the solutions at time tj+l. 

This implicit method may easily be extended for use in a net— 
work of channels by considering the interior node shown in figure 4 and 
the junction node shown in figure 5(a). There are three nodes associated

ll
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tj+1 

AI; 

~ ~~~~ 

1 x1+1 1+2 

FIGURE 3: THE x-t SOLUTION PLANE
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~~~~~~ 
with the interior node shown in figure 4, two bounding nodes and the 

interior node itself. The system is comprised of two branches for which 

four equations may be written: The two boundary conditions supply the 

other two equations necessary for the computation of the six unknown 

quantities. 
Consider the junction node shown in figure 5(a) and split this 

junction node into three nodes as shown in figure 5(b). There are now 

six nodes associated with the original junction node and hence twelve 

unknowns. The three branches provide six equations, the three boundary 

conditions provide an additional three equations giving a total of nine 

‘equations for the twelve unknowns. 
» The three remaining equations necessary for a solution are 

provided fairly easily. At any junction, a continuity equation will 

relate the amount of water entering the junction to the amount of water 

leaving the junction. This continuity equation provides one equation. 

Noting that the actual distance between the junction nodes is zero will 

provide two additional equations since the water level at the three 

"junction nodes" must be equal. Hence, there are a total of twelve 

equations in twelve unknowns and the system of equations is solvable. 

Two advantages of the implicit method are immediately apparent 

at this point. The first is that the boundary conditions do not neces- 

sarily have to be specified at the bounding nodes. For the system of 

equations to be solvable, it is only necessary to have the requisite 

number of independent additional equations. As long as the boundary 

equations cannot be derived from the rest of the equations, they are 

mathematically necessary and sufficient for a solution. At any time step, 

then, any of the following combinations would give sufficient boundary" 

conditions for a solution in a single branched channel: 

1. any two water levels, at different locations 

any two velocities, at different locations 

. any height and a discharge 

. any height and a stage discharge curve

2

3 

4. any velocity and a discharge
5 

6. any velocity and a stage discharge curve

7 . any discharge and a stage discharge curve

13



FIGURE 4: AN INTERIOR NODE 

(a) 

4%} ‘L7 
(13) 

FIGURE 5: A JUNCTION NODE
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The following will not give sufficient boundary conditions 
since the system of equations would not be independent: 

1. any two discharges 
'2. any two stage discharge curves 
It should be noted that the boundary equations must be ex- 

pressed in terms of the same variables-that are used for the momentum 
and continuity equations. This, however, causes no difficulty whatso- 
ever, since the discharge is always an explicit function of velocity 
and.cross—sectional area is always a function of the water level. Using 
these additidnal relatidnships, it is always possible to express the 
boundary conditions in terms of the appropriate variables. ' 

Except for two cases, the simple algebraic requirement for two‘ 
additional, independent boundary equations will also satisfy the physical 
requirements for boundary conditions. The first exception is the 
occurrence of a transition section in the channel. In almost all versions 
of the equations of motion, this transition will appear as a discontinuity 
in the water surface profile. Therefore, to handle cases such as this, 
additional equations would be required to describe the transition section 
itself.‘ 

The second exception is due to the.physical process of measure- 
ment. If, in a very long channel, the boundary conditions are specified 
very close together, the inaccuracies in measurement may well be amplified 
both up and downstream. This, however, is a simple case of ill-conditioning 
and so care must be taken to ensure that the specification of boundary 
conditions is accurate enough to provide meaningful answers.‘ 

The second advantage of the implicit method is in the com— 
putation of flows around islands and in parallel channels. By solving all 
of the equations simultaneously, the flow in the various channels is 
derived automatically. The explicit method, which starts the computations 
at one end of a channel and proceeds upstream, does not have this ad— 
vantage. In the explicit method various complicated iterative techniques 
are required in order to balance the flow in various branches. The result 
may be a savings in computation time and difficulty; if a satisfactory 
method is found for the solution of large systems of simultaneous non- 
linear equations.

15
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CHAPTER 4 

4.0 EQUATIONS OF MOTION 
The equations of motion for one dimensional flow are derived 

in this section. These equations, known as the shallow water wave 
equations, or the St. Venant equations, consist of continuity and 
momentum equations for unsteady, non—uniform flow in non—prismatic open 
channels.

. 

The schematization of a section of open channel is shown in
A 

figure 6. The x co-ordinate is measured horizontally along the longi— 
tudinal axis of the channel and z is the diStance from an arbitrary 
horizontal datum to the water surface. The flow is assumed to be one 
dimensional and hence: channel curvature and Coriolis effects are 
neglected; the transverse water surface is horizontal; the density is 
homogeneous; and hydrostatic pressure prevails at all points in the 
channel. 

Development of the equations of motion may proceed by a number 
of methods. The conservation of mass and momentum may be formulated by 
the material (Lagrangian) method or by the control volume (Eulerian) 
method. In the material method, the equations are derived by considering 
the motion of a given mass of fluid, Am, for a small increment of time, 
At, in the vicinity of a fixed section. In the control volume method, 
the equations are derived by considering the flux of mass and momentum 
through a control volume fixed in space. 

Although the control volume method provides a much more 
elegant method for deriving the equations of motion, the material method 
will be used here since it gives more insight into the physical processes 
involved. 
4.1 CONTINUITY EQUATION 

The continuity equation may be derived from the law of con— 
servation of mass of a fluid element, Am. Assuming that there is no 
transport in the storage section of the channel and that no lateral 
inflow or outflow is present the total time derivative of the mass in 

the main channel is zero, that is: 
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— (Am) = fi—t (mm) = o 
O. F? 

density of the water2 .5" (DH (D ‘0 
II 

A = bh* = b(h+z) 
h* = hydraulic mean depth 
b = topwidth of conveyance section 

Two factors contribute to a change of mass in a moving element. 
These are: a change due to storage in a shallow portion of the cross- 
section which is equal to 

pbs ——-Ax 

where bs = topwidth of the storage section,and a change due to a lateral 
inflow or outflow caused by a small tributary or by bank infiltration, 
which is equal to 

qx 
where q is the lateral inflow per unit of longitudinal length. 

Hence, the continuity equation is 

(pAAx) = pb E5 Ax + qx ‘ (4-1) 9. 
dt 3 at 

In terms of partial derivatives, the total derivative is: 

d _ a 3 
dt at + u 3x 

where u is the average velocity at a'cross-section so that (4.1) may be 
written as 

3A 3A d 32 ‘ 

_ . Ax 5? + u Ax 3x + A a? (AX) + bs 5; AK ' qAx ' 0 (4'2) 

The term g? (Ax) may be handled as followsi 

at time t, Ax = x2 — x1 

and at time t + At, Ax"= (x2 + uAt + gfi AxAt) — (x1 + uAt) 

hence: d n _ Ax' - Ax _ Bu dt.(Ax) _ 
At 

' 53px 

and after dividing by Ax, equation (4.2) becomes 

3A 8A au 33 _ _ 
5; + u 3x + A ax + bS at q — 0 (4.3)

18



Noting that A = bh* 

__3h* . 332 
3t 3t 
3b = and SE 0 

equation 4.3 becomes
* 33— + uh* 29 + bh* a 25 

‘ 

_2 _ 
(b +'bs) at + “b 3x 3x 3x 

‘ q ' 0 (4'4) 

4.2 MOMENTUM EQUATION 
This equation is derived from Newton's Second Law, which states 

that the time rate of change of momentum is equal to the sum of the 

external forces acting on the moving fluid element. 
Assuming again that there is no transport in the storage 

section of the channel, the longitudinal momentum of a fluid element Am 

is given by 

(Am)u = (pAAx)-§ ? pQAx 

Newton's Second Law states that 

.‘L _ £19. d = 
dt (pQAx) - p dt + pQEE (Ax) ZFX . (4.5) 

using the relationships already derived for 

d .9. . . 

dt and dc(Ax), (4.5) becomes 

39 39 Bu =
‘ p (at + u 3x) + pQ 5; Ax 2Fx (4.6) 

The change in momentum flux due to lateral inflow is extensively 

discussed by Dronkers fll]. There is a change in the longitudinal momentum 
flux due to flow entering or leaving the main channel from the storage 

area, but the effect is dependent upon whether the water level is rising 

or falling and hence whether the lateral inflow is entering or leaving 

the storage area. It will be assumed in this discussion that lateral 

flows enter or leave the conveyance section at right angles to the longi— 

tudinal momentum flux. The schematization of a channel into conveyance 

and storage sections is an approximate method for accounting for non— 

uniform velocity distributions and further refinements to account for 

these non—uniform velocity distributions are not warranted.
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The above argument will only apply when the rate of lateral 
flow is very small compared to the flow-in the main channel. If this. 
rate is large, then the above argument does not apply and additional 
terms must be added to the momentum equation to account for the loss or 
gain in momentum due to the lateral inflow or outflow. 

The sum of the external forces, XFX, consists of P, the 
difference in hydrostatic pressure force on the two vertical cross- 
sections; PB, the x component of the horizontal pressure due to con- 
vergent boundaries of the section; and F, the friction force exerted by 
the boundaries. 

Hence, the three forces are: 
_ All ZFx — P — (P + 3x Ax)+PB F 

(4.7) 3P . — - 
ax Ax + PB - F 

The total force due to pressure on a vertical face is
* 

P = gh pg (h* - z') b' dz' 

where b' is the channel width at elevation z'. 
3? 32 h* ab‘ ‘ _ = _ * _ l __ I so ax pg 3x A + pg g (h 2 )8x dz (4.8) 

h* I I where the flow area A = g b dz 

The boundary pressure force is 
h* ab' = * _ l __. ' PB pgé (h z ) 3x Ax dz (4.9) 

The average frictional shear stress on the boundary of the fluid 
element is: 

= * W0 pg h SE 

where h* is the hydraulic mean depth and SE is the Slope of-the energy 
gradient. Hence the frictional force is: 

F = W0 (PrAx) = pgASEAx 

where b is the topwidth of the section. 
The slope of the energy gradient may be evaluated from the Chezy 

equation in which '

20



SE=343L* ,C h 

hence F = pgAAx 2421 > 
(4.10) 

.C.h* 

substituting into equation (4.7) 

_ 32 u u
‘ ZFx — —pg ax.AAx — pgAAx C h* (4.11) 

noting that the integrals from (4.8) and (4.9) cancel each other. 
Substituting (4.11) into equation (4.6) and dividing by the 

product DAx, the momentum equation is: 

3 3 3 3 Eq+u£~+Qa—:+gA-§+gA‘é:*=o (4.12) 

Since: 
Q = Au = b h* u = b(h + z)u 

E: 0 

an; 
at 

“0 

am g 
at 3: 

equation (4.12), after some algebraic manipulation and use of the chain 

rule, becomes: 

Bu 
‘ 

u 32 Su u2 ab .2: 8h* 32 u u _ 
at + h* at + 2n ax + b x + h* 5;- + g5; + g C h* 

— 0 (4.13) 

which is the final form of the momentum equation. 

4.3 JUNCTION EQUATIONS 
The schematization of a junction has resulted in the generalized 

junction shown in figure 7. For purposes of this discussion, the junction 
is considered to be convergent, but the argument could easily be applied 

to a divergent junction.

21



FIGURE 7: A CONVERGENT JUNCTION 

V 

The continuity equation is quite simple to write for a junction. 
Since the nodes are very close together, the storage in the junction may 
be ignored and so: 

Q1 + Q3 = <22 
' (4.14) 

That is, all of the water flowing into the junction must flow 
out . 

The conditions for a generalized momentum equation at a junction 
are very much more involved. If ul, u2, u3 are the velocities at nodes 

1, 2 and 3 respectively, a difference in water level may occur between 
the water levels at the various nodes. Since the distances between the 
nodes are very small, the terms 3%, Q gfi and the resistance term may be 
neglected in the momentum equation. If energy losses between node 1 and 
node 2 caused by non-uniformity of flow and acceleration or deceleration 

are taken into account by means of the factor n, equation (4.12) becomes:

22



' 

nu g3 + gA g; = o 
- 

- v 
' (4;15) 

Then dividing through by A and putting into finite-difference form, 
(4.15) becomes

I 

(u2 - u?) . (4.16) 

and therefore, the energy heads will be equal across the junction. 
Unfortunately this argument does not hold in practice. If the 

velocity at node 2 is smaller than at node 1, a considerable dissipation 
' 

of energy may take place and n could be considerably smaller than 1. 

Alternatively, if u2> ul, the value of n.may be very close to 1. Thus 

over a tidal cycle, or any unsteady flow condition, the value of n may 
be a time dependent function and in practice its value may be unknown and 

very difficult to determine. 
The reSult of this discussion is to indicate the problems in 

the development of generalized momentum equations for all junctions. If 

the differences in velocity through a junction are small and if centri— 

fugal accelerations do not play a large part in energy dissipation, then 
the two momentum equations required for the junction may be written as: 

21 = 22 . (4,17) 

21 = Z3 (4.18) 

If very accurate values for the water levels and velocities in 
a junction are required, both the Bernoulli forces and the centrifugal 
forces must be taken into account.
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FIGURE 8: THE x-t SOLUTION PLANE SHOWING THE WEIGHTING FACTOR, 9
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CHAPTER 5 

5.0 FINITE-DIFFERENCE SCHEME 
Since there is no known analytic solution to the partialv 

differential equations of flow except for a very few specific cases, some 

numerical procedure must be found. 0f the various implicit finite- 
difference techniques that have been used, the weighted four point scheme 
appears to have a number of advantages. Some of these advantages are: 

that the scheme may be used with a non-uniform distance grid; that 
convergence and stability may be controlled by varying the weighting 
factor as explained in chapter 6; and that the values of the unknown 2 

and u are obtained at each grid point. 
If we consider a rectangular grid placed on the x-t plane, 

the locations of points at which solutions of the unknowns are to be 
obtained are given by the intersections of the lines making up the net. 
Lines drawn parallel to the t-axis represent nodal‘points on an open 
channel and are spaced according to the corresponding nodal spacing on 

the open channel. They need not be a constant distance apart. Lines 
drawn parallel to the x-axis represent time steps and need not be a 

constant distance apart. 
Figure 8 shows a grid drawn upon the x—t plane. The function 

values and partial derivatives of the unknowns will be evaluated at the 
point R, which is located at (xIn + £23, tn + 9 Atfi) where 0 represents 
a weighting factor 05051.0. The fungtion values and the partial 
derivatives of any unknown, K, may then be expressed in terms of the 
values at the four grid points surrounding the point R in the following 
manner. 

n+1 n+1 
’ n n + K K + K 

N m m+1 _ m m+1 

3K ~ 1 n+1 n+1 _ n n 
at 

_ 
2At (Km + Km+l Km — Km+l) (5'2) 

n+1 n+1 n n K - K K - K 3K 2 m+l m _ m+1 m , 

TX 6(-————‘Ax ) + (l 6) (—-———Ax ) (5.3)

25



In advancing the solution of the equations from time step 
tn to time step tn+1, all of the values of K at time tn are assumed to 
be known. 

If 9 = 1, then the backward implicit scheme used by Dronkers 
[10] and by Baltzer and Lai[ 5] is obtained; If G = 0.5, then the box 
scheme used by Amien [1,2], Amien and Chu [ 3], Amien and Fang [4], and 
Freed [12, 13, 15] is obtained. If e = 0, then at explicit finite- 
difference scheme is obtained. The scheme is implicit for all 0 > 0. 

The numerical pr0perties of this scheme are discussed in detail in the 
following chapter. 
5.1 THE CONTINUITY EQUATION

, 

The continuity equation is given as equation (4.4); sub- 
stituting (5.1), (5.2), (5.3) into this equation yields: 

1 n+1 n+1 n, n 1§[(b+bs)m+ (b+bs)m+1] (2m + 2m+1 - zm - zml):| + 

n+1 n+1 n n
_ 

+ e(um 
+ um+1)+ (1_e) um + um+1) bm + bm+1 

' 2 2 2 J
~ * 

n+1 n+1 n = n 

i 

h* _ h* (h* _ h*
) 

m+1 m 
I 

m+1 m
I * 9( Ax ) 

(1_e) Ax
~ 

n+1 n+1 n n 
um + um+l um + um+1 bm+1 bm + 0 —— (1-9) * 

2 2 Ax 

+1 . n+1 n n [— h*“ + h* h* + h* m m+1) _ ( 
m m+1> *Le(————2 + (1 0) —————2 + 

*n+1 *n+l *n *n 
+(bm + bm+1)[o(h m 

+ h 
m+1) + (1-0) 

h m + h mei) * 
2 2 2 

n+1 _ n+1 un _un 
* 9(“m+1 “m 

) 
+ (1-9) 

( 
m+1 m) Ax Ax 

- q = 0 (5.4)'
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This rather unwieldy equation may be simplified by realizing 
that the only unknowns are the values of z and u with time superscripts 
of n + 1. Therefore, collecting terms 

HT = hm + z: 
HTS = hm+1 + hm + (1—6) (21:11 + 21:1) 
rm = hmfl — hm + (1—9) (21:1 — 2:) 

VP = 
“:1 + “L1 (5.5) 

'z¢ = (1—9) VP 
W = (1-9) (u:rFl 

— ug) 

DZ = (1-9) (2L1 — 2:) 
ZP = z; + z;+1 

substituting these values into (5.4) and dropping the time superscript 
yields:

1 — [(b+b ) + (b+b ) (z + z — ZP) + sm m 4At s m+1 m+1 

+ 2%;[ e(um + um+l) + z¢] [bm + bm+1] [B(zm+l — zm) + HN] 

+ 7i_x-[6(um + um+1) + 29)] [bm+1 - bm] [9(t1 + zm) + HTS] 

1. + mIbm+bm+1][e(zm+zm1) +HTS][9(um+1- um) +DV] 

_ q = o (5.6) 

which is the simple form of the continuity equation to be used in the 
computer program. 

5.2 THE MOMENTUM EQUATION 
The momentum equation is given as equation (4.13). Sub- 

stituting (5.1), (5.2)and (5.3) into the momentum equation yields:
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~_1_€1n+1+un+1 _un _un '

+ 2At m m+1 .m m+1 ' 

n+1 n+1 n n ' 

+[9(um :+ um+1 + I(1—9).(um + um+1)] 
I 

1 (Zn-fl + zn+1 _ n 
’ n+1 n+1 ‘ m m+1 n n 2At 

[6(h*m + h*m+l) + (1-6) (Men.1 + h*m+1)] 

un+1 un+1 un + un un+1 _ un+1 
+2 9(__m—2_‘E+_1) + (1-6) (Lrfl‘i'l) 96.31%) + (1-3“ 

un+1 + un+1 un + un ]2 m m+1 m m+1 
+2 
e<——2——) + (1-9)( 2 ) b m _ bm)

( 
(hm + bm+1) Ax 

m+1 
n+1 n+1 n n Exmm + h*m+1) + (1—6)(h*m + h*m+l)] 

n+1 n+1 n n 2 

[6(um + um+l) + (1—6) (um + u ):l -* +45 

hfitn+l _ h*n+l h*n _ h*n 
* e< ) + m+1 m m+1 m 

Ax ) + (MN—TX— 
zn+1 _ zn+1 Zn - zn 

+g 96.3%) + (1-9) (.J‘il-Exé‘l) +
I 

“n+1 + un+1 un + u1'1 

+g e (In—Tull.) + (1_9) (m_f.n'.fl) * 

n+1 n+1 u u 
e (m_. 

+1 n+1 n n h*n h* h* + hi: m+1 C2 [e(.__m__ ) + (1_e)(_m2___m'L1)] 

= '0 (5.7) 
28 
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Making the substitutions (5.5) and dropping the time super— 
scripts gives: 

1 ‘(6(um + um+l) + 2%) _ VP) + —- (z + z - ZP) + ZAt (6(zm + zm+l) + HTS) m m+1 
I ]

1 
2At (“m +. um+1 

fi; [(9(um + um+1) + Z¢)(6(um+l - um) + rm] + 

' b — b m+1 m u )+ Z¢i]2 -—-——-*- + m+l bm+1 + bm

+

+l + TX [(9%
2+ l [(e(um um“) + w) ] 

+ 2Ax [(9(zm Zm+l) + HTS] [6(e1+1 
- zm) + HN] ++ 

+ 
£5: |:e(zm+1 - zm) + 132] ':+ 

£2 [6(um + um+l)+ m] |e(uIn + um+1) + z¢| (5.8)+ 2C 
[9(zm + zm+l) + HTS] 

which is the momentum equation in finite—difference form.
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CHAPTER 6 

6.0 NUMERICAL PROPERTIES OF THE FINITE—DIFFERENCE SCHEME 
In chapter 4 the partial differential equations of motion of 

fluid flow in open channels were derived. In chapter 5 a set of finite- 
difference equations were derived which approximate the partial differen- 
tial equations. In the limit as the grid size tends to zero, these

‘ 

difference equations become the differential equations. In practice, 
however, the limit is never taken and the computation does not take 
place with an infinite number of decimal places. This chapter examines 
the stability, the computational error, and the convergence of the 
finite—difference scheme. 
6.1 STABILITY

' 

A solution to the set of partial differential equations is 
stable if and only if numerical errors introduced into the computation 
are not amplified during the course of computation to produce an un— 
bounded solution. 2 

One technique for investigation of stability was developed by 
J. Von Neumann. This technique follows the Fourier expansion of a line. 
of errors as time progresses. It is only applicable to linear Systems» 
and is based on the hypothesis that linear operators with variable co— 
efficients are stable if and only if all of their localized operators 
(i.e. where the coefficients are taken as constants), are stable. 

The equations of motion of a system are linearized by neglect- 
ing certain terms on the basis that their magnitude is relatively small. 
Considering a broad channel with no lateral inflow, a small perturbation 
in depth h abOve a mean depth Ho and velocity u above a mean velocity Vo 
yields, 

3h 3U _ 
at + H0 ax — 0 (6.1) 

Bu 3h _ 
at + gs— + ku 0 (6.2)X 

gVOn2 
4/3 

2.2 Ho 

where k = 

and n = Mannings roughness coefficient.
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Substituting the weighted, four point implicit finite- 
difference scheme given by equations 5.1 to 5.3, into the linearized 
equations of motion yields. 

n+1 n+1 n n 
( 
n+1 _ n+1 hm, + hm+1 — hm _ hm+1 + 9H um+l um ) 

+ & 2At o Ax 

(un - up) 
+ (1-6) H -—JEtl———-JE— = o - 

. (6.3) o Ax 

n+1 n+1 n n n+1 n+1 n+1 n+1 um + um+1 — um - um+l + e g(hufil hm + k 
(um um+l) + 2At Ax 2 

8(h;:+1 - hn) (un + u:+1) + (1-9) Ax 
m + k m 

2 
= 0 (6.4) 

as the exact finite-difference scheme. 
Since the finite-difference scheme represents a linear system, 

only one term in the Fourier series expansion of the errors need be 
considered. Therefore the errors are given by 

6h(x,t) h*(x,t)ei(ox+8) (6.5) 

6u(x,t) u%(x,t)ei(°x+3t) (6.6) 
where db and 6u are the errors in the depth and velocity 

respectively. These errors are functions of time and space: h* and u* 
are the exact solutions of the difference equations; 1 =A/zl! the 
imaginary unit; 8 = 2H/T, the wave frequency; a = 2H/L, the wave number; 
T = the wave period and; L = the wave length. 

These errors may be expressed at the discrete node points on 
the x-t plane. 

db = h*n ei(omAx + BnAt) m m 
n 11*“ ei(omAx + BnAt) 

1 

(6.7) m m 
“+1 =‘h*: ei(o(m+1)Ax + B(n+1)At) 

etc.
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The errors are assumed to be perturbations superimposed on 
the exact solution of the exact finite-difference equations. Therefore 
the solution provided by the ayatem at a point (m,n) would not be 

(h*); but would be
' 

(h*); + (h*):ei(UmAx + BnAt) (6.8) 

To obtain an expression involving the error terms, all the 
terms in the form of equation (6.8) are substituted into equations 
(6.3) and (6.4) and then equations (6.3) and (6.4) are subtracted. In 

other words, the exact finite-difference equations are subtracted from 
the finite—difference equations uhich contain the error. The result 

iomAx iBnAt _ iBAt 
e . e after dividing by, and substituting A - e is: 

h*l:>\(eiOAx + 1) - (ei‘JAX + 1)] + u*[Ho fi—f‘ (2ex + 2-28)(eiOAx-l)] = o 

and: 

h*[g %(26A+2-26)(embx - 1):I+ u#(ei°A" + 1) 1-1+kAt(eA + 1—9)] = o 

1 
(6.9) 

. 

' ioAx Then dividing further by e + 1 and substituting 
ioAx oAx e — l i tan(———9= ——-—-———— 2 eioAx + 1 

results in: 

(A—l)h* + [(2ex+2-2e)u-g:—: 1 tan(g%§-):|u* = o (6.10) 

and 

[(2ex+2—2e)g:—:: 1 tan (lg—"flm +I:A-1+kAc(ex+1—e):lu* = o (6.11) 

Equations (6.10) and (6.ll) represent two homogeneous linear 
equations in h* and u*.

‘ 

Since h* and u* are not both identically equal to zero, the 
determinant of this system must vanish, hence: 

(A-1)[A-1+e(x-1)b+b] + 4[e(A-1) + 1]2 a = 0 (6.12) 

Where: 

= £2 2% =. a gHo (Ax) tan ( 2 )and b kAt.
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Equation (6.12) is a quadratic in A-1 and may be solved to 

A = 1 8a6+b + i 4/16a3b2 ' 2(1+eb+4aez)‘ 2(1+6b+4aez) 
now if A = r+is then IAI =7r2 + s5 = 1*, where A*.is the complex 

obtain 

conjugate of A, and so 

_ 1+(2e-2)2 a + (e-1)b'
' 

IA! '1/1 + 467 a + 6b ‘ (6'13) 

For the finite-difference equations to be stable, the error 
at time t + At must be smaller than the error at time t. 

Now A is the growth factor for the propagation of all error 
waves through time. Therefore, if the system is to be stable in the 
sense that errors tend to zero monotonically then [AI < 1, independent 
of either a or b. If this condition is satisfied, then the finite- 
difference scheme will be stable, independent of the values of Ax and 
At, since a and b are functions of Ax and At. For Ill to be strictly 
less than 1 the numerator in equation (6.13) must be less than the 
denominator. 

Although the numerator may or may not be smaller than the 
denominator, depending upon the values of a and b, to ensure un- 
conditional stability the numerator must always be smaller than the 
denominator. This will be ensured if the coefficients in the numerator 
are always smaller than the corresponding coefficients in the denomi- 
nator. Since (8—1) < 6, then this requirement is satisfied if 

(29+2)2<4e2 
which means that 6>%. Therefore, if 9>0.5, the linear finite—difference 
equations are unconditionally stable. If 0<6<0.5, the linear finite— 
difference equations may be conditionally stable depending upon the 
values of Ax and At. 

When 9=%, substitution in equation (6.13) gives 

IA! 
=4ll+a-b/2 

l+a+b/2 

Hence, as long as b>0, the centered finite-difference equations 
are unconditionally stable. However, if b = 0, then there are no 
frictional effects in the river system and the centered finite- 
difference scheme becomes weakly stable.
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6.2 APPROXIMATION 

The finite—difference equations are an approximation to the 
exact partial differential equations, From the definition of a partial 
derivative, it is easilv seen that as the space-time grid size approaches 
zero, the solution of the finite—difference equations must approach the 
solution of the partial differential equations. However, in practice, 
the space-time grid size used is not zero and hence the difference 
between the exact solution and the solution of the difference equations 
must be determined. This error can only be examined qualitatively by 
deriving the functional form of the error. 

The differential equation izxcomputed about the centre point~ 
' At of the x-t grid, i.e. at point (xm + 2 tn + 2). 

Expanding K: and K2+l about the point (xm, tn + At/2) in a 
standard Taylor series gives 

(K")“+% = Kn+% — 93 (£5 
n+k 

+ AEcZKn;% - 953(33Kp;k + m m m 2 at m 8 5:25 48 3:15 ' 

+% 2 2 n+% 3 3 n+8 n+1 n+% = n+k .At. gg? At (a K At (a K 
(Km )m Km + 

2 (Btu? 
+ 8 5:2}? 

+ 48 EEF;3
+ 

Therefore, combining these two series results in

~ 
n+1 n n#% ' 

[km 
‘ Km 

_(§§ 
“+% 

+ Atz 33x “+* + At” 35K “+% + (6 14) 
L 

At -_ 3t 24 3t 3840 3t5 ' ' 

m m : 
‘ 

m m 
and 

n+1 n n+k : 

Kn+1 " Km+1 
_ = (g5) 

“+5 
+ A:2 83x)n+% ; At“ (3%)“£5 + At m+1 at m+1 24 3t3 m+1 3840 3:5 m+l 

(6.15) 
Now, expanding (6.14) and (6.15) in a two-dimensional Taylor series about 
the point (xm + Ax/2,Itn + At/Z) 

Kn+1 _ Kn m m = 35 + Atz 33K _ A5 32K + At2 ( 
a“K) + + At 3t 24 at 

V 

2 6x8t 24 axac3 ' ' '~ 
Ax2 |33K At2 35K \

' 

+ 8 [(axfat)+ 24 (2x23t3/ + ' ' - - - - (6.16)
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n+1 _ n 
Km+1 Km+1 = _3_1< + At:2 33K + g 32K + Atz 3"K + + At 3: 24 8t3 2 3x3: 24 3x3t3 .' ' ' 

4x2 
- 
sax At2 3% \ + 8 [axzat + 24 axzatzl +_. . . + . . . (6.17) 

Where all of the derivatives are understood to be written around the 
Ax At point (xm-+ , tn + 2) 

Using similar techniques, expansions may be obtained for: 

Kn+1 ; Kn ' 

m+1 m = g + M 33K _ 93 33:}; + M 3"K + + Ax ax 24 ‘5? 2 8t3x 24 3:73? ' ‘ ' 

Atz 33K s 
( 

35K - 

+ 8 [?t23x 
+ 24 atlax, + . . . - . . . (6.18) 

Kn+1 _ Kn+1 
m_+1 m _ 335 + M 33K +9; 32K + M 3"K + + Ax 

' 
3x 24 8x3 2 3t 24 acax3 ’ ° ' 

Atz 33K s 65K
‘ 

+ 8 [?tlax + 24 (gtzax, + . . . + . . . (6.19) 

Again, all derivatives are understood to be evaluated at the point 
Ax At 

(xm + 2’ tn + 2) 

Using these series expansions, the approximation to the 
derivatives of the function K may be expressed in a Taylor series. Thus: 

n+1 .n+l n n flzxm +Km1‘Km’Km1 
at 2At 

_ 3K Ac2 (33K s 32K At;2 35K
I 

‘ 
3t + 24 at? + 8 3x73: + s Bx‘at’ +' ‘ ' (6°20) 

n+1 n+1 n n E 2 e[Km+1 
— 

KIn 
:]+ (1_e) [l — Km] 3x Ax Ax~ _ 3K A: 32K s 3"K Atz (3.3K . s 

( 
85K '37” (26‘1)‘§l:atax + 24 (‘3c + s Bt‘ax T 24 Win:3 +
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s (33K) -' 

+ '53 + . . o 

These expressions may be substituted into the finite- 
difference equations for the linearized equations of motion to give 

3h Atz 33h + 4x2 3h At2 35h3 
5? + 24 3:3 8 (ax‘ac + 24 3x‘3t3 )+' 

Bu A: 32u s a“u 
: 

Atz a3u s asu- 
+ Ho [5; 

+ (ze'l) 2 (atax + 24 3t3x‘)+ 8 (3t73x + 24 atlaXJ’ + 

2 3
’ +%—%§+..]=o (an) 

for the continuity equation and 

au Ag: a3u s 
( 
32u Atz asu 

3E 24 W+ 8 3x‘3t+ 8 BxTat‘)+ 

3h 95 32h s a“h Atz 33h s 85h + 
g[2x 

+ (29'1) 2 (atax + 24 atax‘) + 8 (atax + 24 Bt‘ax‘) + 

s 33h _ +E—§F+ku+..]—O ‘62” 
for the momentum equation. 

The truncation errors E1 and E2 may be obtained by sub- 
tracting the exact partial differential equations (6.1) and (6.2) from 
(6.22) and (6.23) respectively, so that

I 

2 2 ‘0 At 3 u + g: 33 u ) + E1 = (29-1)Ho —2 (-——-—-atax tax 

Atz 33h 33u s 35u + 8 [33t3 + H0 SE75; + 24 “SET§;? + 

s 33h Atz 35h Ho a3u‘ 
+ 8 Eax‘ac + 24 3x’3t3 + 3’ 3x3) + - - - (6.24) 

_ A: 62h s a“h 
E2 " (29'1) g 2 °§E§i + 24 3t3x3) +
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_A_t_2 33L: 3% M 35h
" 

+ 8 [33t3+g (3t3x+ 3 a'tTa'x) 

s 32u At2 3% 5 aha ‘ 

+ 8 [kaxzat + 3 3X32“:3 + 3 5;?) ' ' ' (6'25) 

Clearly, both E1 and E2 approach zero as Ax and At approach 
zero and so the difference scheme converges to the solution of the 
partial differential equations. In addition, both (6.24) and (6.25) may 
be written in the form. E = (26-1) 0(At) + 0(At2) + 0(Ax2) (6.26) 

Therefore, the scheme has first order accuracy for linear 
equations with respect to At and second order aCcuracy with respect to 
Ax for any value of 05351. When 6 = 0.5, the scheme has second order 
accuracy and the farther 6 departs from this value, the larger the 
truncation error becomes. Equation (26) also shows that the accuracy 
of the solution is independent of the relationship between Ax and At. 

6.3 CONSERVATION 0F MASS 

I 

The total mass in a bounded system should be conserved during 
numerical computation if account-is taken of the increase or decrease 
of mass through the system boundaries. If mass is added during the 
course of computation, then wave amplitudes will increase with time 
and the computation will become unstable. 

The continuity equation may be written in the form 

$41313: o (6.27) 

The finite-difference approximation to equation (6.27) is: 

n+1 n+1 n n n+1 n+1 n 
.

n 
Am +Am+1'Am'Am+ Qm-O-l-Qm QnH-l-Qm l ‘ _ 

2At + 9 (—-——E;—————) + (1—6)6——7§:-0 — 0 (6.28) 

1 to m = M, gives Adding all the terms along the x-axis from m 

m = M-l n+1 n+1 M—l n n 
%’ti 2 Am + AnH-l _ 2 Am + Am+l = 

= l 2 =1 2
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= e (Q‘l‘+1 - Q3“) + (1-9) (0‘; — (2;) 

which may be written as 
change of volume = ‘ n+1 _ n+l‘ _ n _ n 

At . 9 (Q1 QM ) + (1 3) (Q1 QM) 

If 9 = 0.5 this becomes 
‘ 

= inflow - outflow 

'Thus, for one time step, the central finite-difference scheme 
conserves mass, so long as the mass which enters or leaves through the 
system boundaries is accounted for. 

When 6 = 1 

change in volume = Qn+1 _ Qn+1 
At 1 M 

and the system does not conserve mass to the same extent that it does 
when 6 = 0.5. The extent to which the system conserves mass is 
proportional to the extent to which 6 departs from 0.5. 
6.4 NUMERICAL RESULTS 

The analytical results obtained in the preceding sections 
were obtained using the linearized equations of motion. The equations 
derived in chapter 4 are non-linear and so the results obtained in this 
chapter are not necessarily applicable. The conservation of mass 
analysis used the equation of continuity derived in chapter 4 and so 
the results from it are directly applicable. 

The stability and convergence properties of a non-linear 
system may be investigated via numerical experiments. In this way, 
the effects of the non-linear terms may be calculated and some proper-_ 
ties of the non-linear system discovered. This method has many draw- 
backs with the most obvious one being that not all cases may be 
investigated. The results obtained by numerical experiment are far 
from convincing. 

The computer program described in this report has been run 
for a large variety of test cases, and the numerical results tend to 
agree closely with the results obtained from the analytic investigations.
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It should be noted that the implicit schane did tend to exhibit bounded 
oscillations with 6 = 0.5 when the wave period was quite short compared 
to the time step or when the wave was very large and abrupt. These 
oscillations died rapidly when 6 was increased beyond 0.5. The 
numerical damping of a wave is proportional to 9. That is, as 6 

becomes close to 1.0, waves are damped out quite rapidly, a reSult 
predicted by the analysis. 

In conclusion, the results of the analytic investigations are 
borne out by numerical experiments. 

.These results have also been confirmed by other investigators 
(13), and from their work, for unsteady flow situations, the "best" 
value of 6 is approximately 0.55. For steady state conditions, rapid 
convergence from inaccurate initial conditions may be obtained if 6 is 
increased to a value approaching 1.0.
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CHAPTER 7 

7.0 SOLUTION OF EQUATIONS 
The major difficulty with the implicit method has always 

been the simultaneous solution of a large number of equations. For 
many years, this difficulty was insurmountable and very little work 
‘was done using the implicit method. In recent years, however, both 
Freud and Amien have produced a number of papers dealing with the 
implicit method. They have used the Newton iteration scheme to 
solve the non—linear equations of motion in a single branched channel. 

In using the Newton iteration scheme, both Freud and Amien 
have made use of a particular formulation of the equations of motion 
and have used the fact that the coefficient matrix of the equivalent 
linear system is both banded and sparse. K.M. Brown [6, 7] has dev- 
eloped a modified Newton-like method for solving systems of non-linear 
algebraic or transcendental equations that is applicable to problems 
of open channel flow. The advantage of Brown's method is that the 
method makes no use of the form in which the equations are expressed. 
This means that a model may be designed which is totally independent 
of the particular formulation of the equations of motion to be used. 

The following explanation of Brown's algorithm is taken 
from his two papers. It is worth noting that althOugh this algorithm 
does not make any reference to the exact form of the equations of 
motion, it could be modified to do so. In practice, the coefficients 
of the equivalent linear system are sparse, with a maximum of six 
non—zero entries in each row. If this fact were taken advantage of, 
the operation of the algorithm could be speeded up dramatically. 
7.1 NEWTON'S METHOD 

Consider a system of N non-linear algebraic equations in N 
unknowns described by
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f1 (x) = f1(x1, x2, x3, ....., xN) =10 

f2 (x) = x2, x3, ...no, = 0 

3 a (7.1) 

fN (x) = fN(x1, x2, x3, ....., xN) = 0 

Then, let 21 = (xi, x2, ....., xi) be the ithapproximation to the 
solution in a suitably recursive scheme. If the recursive scheme is 
Newton's method, then the iteration scheme is given by: 

§“+1 = E“ - [3(1“)]‘1¥“, n = o, 1, 2. ..... (7.2) 

'where 3(f) is the Jacobian matrix [Bfilaxi] and the superscript n means 
that all functions involved are to be evaluated at i = E“. 

For this iteration procedure, the following convergence theorem 
is well—known.

I 

Theorem 1. 
If 

(i) in a closed region R whose interior contains a root 1 = ? of 
(7.1), each f1 is twice continuously differentiable for i = l, 
..., N. 

(ii) 3(f) is non-singular at i = ¥, and 
(iii) §° is chosen in R sufficiently close to i = ;. 
Then the iteration (7.2) is convergent to f. 

7.2 BROWN'S ALGORITHM 
Brown's algorithm is essentially a modified Newton's method 

based on Gaussian elimination. The forward triangularization of the 
full Jacobian matrix is approximated by working with one row at a time, 
eliminating one variable for each row treated. If the conditions of 
Theorem 1 apply, and x“ denotes the nth approximation to a root 1 = f 
of equations 7.1, then the method consists of the following steps: 

STEP 1
I 

Expand f1(;) in a Taylor series about the point :n and retain 
only the first order terms to obtain the linear approximation.
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+n‘ 
. 

->n 

f (;) = f (gn) + 3f1(x ) (x — x“) + 3f1(x ) (x - x“) + . 

1 1 --—-—- 1 l ---- 2 2 3x 3x 
1 2 

+n 
. + 3fl(§ ) (xN-a) (7.3) 

8xN 
STEP 2 

Equate the right hand side to zero andnsolve for the variable, 
say xN, whose bartial derivative 3f1(x ) is largest in 
absolute value. 

, 

axN 

———STEP 3 
_ 

3f (32“) 3f (32") 
Therefore' x = xg-N§1-——l-- ——l——-— (x -xn) - 

N j=1 i ' xN j j 

m M163) . 

- f1(x ) —8;N—— I 

(7.4) 

Provided that the trial solution g“ is sufficiently close to 
—>->+n + 

the root r, J(f ) will be close to J(f) = which+%s a non- 
singular matrix and hence at least one of the afiéé-l will 
be different from zero. 
Hence a solution such as the above (7.4) can always be 
carried out. 

+n "n ‘*‘n 
3fl(x ) 8f1(x 

)// 
3f1(x ) 

—§;T-—— and-——§;T—— ~§;;—-— , for J = 1, ..., N—l and 
J J 

f G“) M (in) 1 1 ———§-- are saved for later use. 
"N 

STEP 4 

Rename the lift Sidenof :quation (7A4) bN (x1, x2, f.., xN_1) 
and define bN = bN(xl, x2, ..... , xN_1). (7.5) 

STEP 5 

Define a function g2 of the N—l variables x1, ..... , xN_1 by 

g2 (x1, x2, ..., xN_1) = 

= f2 (x1, x2, ..., xN_l, bN (x1, x2, ..., xN_1)) (7.6)
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and 
n = n n n n 

g2 f2 (x1, x2, ..., xN_l, bN). 
‘ 

(7.7.) 

STEP 6 

Expand (7.7) in a Taylor Series, this time about the point 
n n n 

(x1, x2, ..... , xN_1), linearize and solve for the variable, 
say xN_1, whose corresponding partial derivative is largest 
in absolute value to obtain 

+n +n 
= n .N:2 (x _xn,- xN-l xN—1 J-l axj 3xN_1 j j 

31520:") 

axN-l 

where 3g2(;)/3xj is obtained by differentiating equation 

gfi“) (7.8) 

(7.6) using the chain rule to obtain 

3326:) 3f2(;n) an abN 

i = 
8x. + f2(x )'_§;5. xn xn n 

r 1’ 2’ 231-1: 

.___———-

J 

+n +n ‘ +n 
= 

3f2(x ) 
+ £2651) L 3f1(x ) 3f1(x 

)] 
3x. i 3x“J 

STEP 7 

Redefine the left hand side of (7.8) to be bN_1, which is a 

function of the N—2 remaining variables so that 

bN_1 (x1, x2, ..... , xN_2) = right hand side of (7.8) (7.9) 

STEP 8 

Again, save all of the ratios formed. Theorem 1 will state 
that this process is well-defined in that there does exist 
at least one non—zero partial derivative at each step in the 
process.
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STEP 9 

Define g3 
= f3 (x1, x2, ....., xNLZ, bN_1, bN) where 

bN_1 and bN are obtained by back substitution in the 
linearized equations (7.5) and (7.9). 

STEP 10 
Repeat the process of expansion in Taylor Series, 
linearization and elimination of one variable, saving 
all of the ratios formed at each Step. In this way one 
variable at a time is replaced by a b with gk being 
e nd d ab t th int (xn xn j n

) xpa e ou e po 1, 2, ....., xN_k+l . 

STEP 11 
At the last step in the elimination process 

gN 
= fN (x1, b2, b3, ....,, bN) 

where the bj's have been obtained by back substitution 
in the N-l rowed triangularized linear system which has 
been built up and now has the form: 

b =xn_iil 8gn—i+l I agn—i+l 
(b _xn) _ 8gn-i+l 3gn-i+l 

i i j=l 3x, 3x. j 3x. 3x 
3 J 1 3 

for i = N, N — l, ....., 2 (7.10) 

STEP 12 
Expanding and solving for X1 results in:

n 
= n _ n 3g 

X1 x1 [gN/WN] 
I

l 

. . n+1 Use this value of x1 as the improved approx1mation, x1 , 

to the first component, r , of the root ¥, call it b and 
1 1 

back solve the system (10) to get improved approximations 
to the other components rj. In the back-solving process, 
x3+1 will equal the corresponding bj. 
It should be noted that numerical examples show that this 

process is NOT equivalent to Newton's Method.
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7.3 MATRIX FORMULATION 
In the above description of the algorithm, the variables are 

eliminated in the order xN,lxN_1, ....., x2. This was done to facilitate 

a definite identification of the particular variable being eliminated. 
If the chain rule is used to expand each derivative agi/axi which appears 

in the algorithm, the following matrix representation of the forward 
part of the methdd is obtained:

~ 

(fi) (3?“ - E“) = (-E) 

where (i) = (hij) is given by 
_ 3f

- 

(hij) ’ 5;1 for 1 = 1, j = 1, 2, ..., N
j 

and if i = 2, ..., N, j =.l, ..., N 

8f / af / af / 3f / 

1+1 
1 113 1 Emu-1+2 » 

1 11H 1 1m 
(-1) , 

3f / af / 3f / 3f / 
2 i 2.3xN_1+2 ... 2 3xN_1 2.3xN 

3f / af / 3f / 
_ 

8f / 

(hij) = 1 8x1 1 axN—1+2 ... 1 3xN-1 i 3xN 

3f / 1 8f / 1 ax1~1--1+2 1 3xN 

3fi_1 ... a£i_1/a 
3xN—1+2 

and the argument of each fj is the progressive argument generated by 
the algorithm. 

By expanding the determinant in the numerator, it is easily 

seen that h = 0 for j > N-i+l. Hence, the matrix (H) is transverse 
ij 

upper triangular. The resultant matrix hij is in exactly the same form 

as the matrix which results from transverse triangularization of the 

Jacobian matrix J using Gaussian Elimination with partial pivoting.
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The argument of each fij in the triangularization form of J is simply 
n . x ; however, at the root, the two arguments coinc1de. 

For the 3 x 3 cases, the matrix has the explicit form 

f11 ‘f12 £13 

_ f11 f13 _ f12 f13 

f21 f23 f22 f23 o 

f13 f13 

H: 

f11 f12 f13 

f21 f22 f23 

f31 f32 f33 0 o 

f12 f13 

f22 f23 

and the arguments used for the function evaluations are: 

xn for flj, j = l, 2, 3 

n n n n . _ 
(x1, x2, b3 (x1, x2)) for fzj, J — l, 2, 3 

n n n n . = (x1, b2 (x1), b3 (x1, b2 (xl))) for f3j, J 1. 2, 3 

Brown [7] proves that under the hypothesis of Theorem 1 and 

for the type of iteration described above, the following theorem is true: 
Theorem 2 There exists a non-vanishing partial derivative at 

the ith step of the elimination process. 
Essentially, the elimination process consists of expanding 

each function in a Taylor Series about ri, linearizing, and solving for
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the variable whose corresponding partial derivative is largest in value. 

Theorem 2 states that there will always be a largest partial derivative. 

At each step of the elimination, all of the values of the variables 
found by the previous elimination steps are used in the appropriate 
equation. Back substitution into the system of equations results in.a 

solution at the first step of the iteration. The whole elimination 
process is restarted to obtain the second step of the iteration. 

The following local convergence theorem for iteration 
functions states that the above procedure will, indeed, converge to 
a solution. 

Theorem 3 Let the functions F1, F2, .....,’FN be defined in 

a region R, and let them satisfy the following conditions: 

i) The first partial derivations of F1, ....., FN exist and 
-are continuous in R. 

ii) The system. 

_§=§<§) 
++ 

has a solution r in the interior of R such that J(F) r=0, 
the zero matrix. 

Then there exists a number €>o such that an algorithm of 
the form 

+n+1 n x = F(x ) n, = 0, 1, 2, ..... 

-)- 
‘ +0 

converges to r for any choice of theistarting point, x ,

+ 
which satisfies IlF — x°|l<e, where ll'l‘ denotes the 
Euclidian norm. 

It can be proven that the Jacobian matrix will equal the zero 
matrix after a sufficient number of iterations. Hence, this proves that- 

the algorithm will converge.
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CHAPTER 8 

8.0 APPLICATIONS OF THE MODEL A 

A computer model, MOD*, has been written to perform all of 
the bookkeeping and calculations discussed in the previous chapters. 
A user's guide to MOD* and a complete listing of the FORTRAN program 

is given in the appendiCes. This program has been tested on a wide 
variety of problems and seems to work as expected. Three of the test‘ 

cases are presented here as illustrations of what may be done with the 
model. The three problems are: Stoker's famous problem of a flood

g 

routed through the junction of the Ohio and Mississippi rivers; a test 

case made up of a network; and the Saint Clair river system for a 

variety of flow conditions. The three test cases illustrate most of 

the considerations in setting up and using the numerical model. 
8.1 STOKER'S PROBLEM 

Stoker [21] used an explicit finite difference scheme to 
calculate the propagation of a flood wave through the junction of the 

Ohio and Mississippi rivers. His simplified model corresponded in a 

very rough way to the geometry of the actual river system. Figure 9 

shows a schematic plan of the junction. Upstream of the junction, both 
rivers are assumed to be 1,000 feet wide, rectangular, and have a 

constant bottom slope of 0.5 ft./mile. The downstream Mississippi River 

has a width of 2,000 feet, is rectangular and has a constant bottom 
slope of 0.49 ft./mile. This change in slope is necessary to allow a 

constant initial depth of water of 20 feet for uniform flow. A constant 
friction factor of 0.03 for Manning's n is used'throughout the river. 

The initial conditions used are that the water depth is 20 

feet throughout the river and the initial velocity is 3.49 feet/second. 
At the top of the Mississippi River, 50 miles from the junction, the 

depth of water is kept at a constant 20 feet. At the top of the Ohio 

River, the boundary condition (Figure 10) is given as a 20 foot in— 

crease in depth ( from an initial 20 foot depth to a final 40 foot 

depth) over a four hour period. This rate of rise, 5 feet per hour, is 

an extreme case since one of the biggest floods ever recorded in the 

Ohio River, which was in 1947, had a maximum rate of rise of only 0.7
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SCHEMATIC PLAN OF THE OHIO-MISSISSIPPI RIVER JUNCTION FOR 
STOKER'S PROBLEM
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feet/hour. The downstream boundary condition, 75 miles downstream from 
the junction, is given by a stage-discharge curve developed from 
Manning's formula. 

-50 
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20 
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FIGURE 10: BOUNDARY CONDITIONS FOR STOKER'S PROBLEM 

Stoker's solution to the problem used a variable reach length 
and a variable time step. The reach length was usually taken to be one 
mile. The time step was calculated, using the reach length and the 
expected speed of time of the disturbance, using the Courant stability 
criterion. This resulted in a time step between 0.024 hours and 0.17 
hours. For the implicit model, the reach length used was 12.5 miles 
upstream of the junction and 25 miles downstream of the junction. The 
time step used throughout was one hour. 

The results Of the computer run are shown in Figure 11. 
Although Stoker does not publish numerical results but only publishes 
graphs [21], a comparison of the results shows excellent qualitative 
agreement. The steepening of the wave front as it moves through the 
system is more pronounced with the implicit model than it is from 
Stoker‘s results. This would be expected, since this model takes into 
account non—linear effects and Stoker solves only the linear equations
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of motion. 
1 

The most important aspect of this computer run, however, is 

the length of time step and reach length used. The reach length and 

time step used by Stoker are dictated by the Courant stability criterion. 

If he had used larger time steps or reach lengths, his numerical method 

would have become unstable. Since the implicit method is unconditionally 

stable, no such restrictions are necessary. The grid spacing is, then, 

dictated purely by the resolution required for the problem. In many 

cases, then, a much larger time or distance step, or both, may be used 

by the implicit method. 
8 . 2 NETWORK PROBLEM ‘ 

This second example shows the versatility of the implicit 

model. ‘It consists of a complicated network arranged so that the flows 

differ in all of the branches. The schematization is shown in figure 12. 

This is not an actual problem in that it does not correspond to any 

specific river.- It is intended, however, to indicate the type of net-
I 

work that may be handled by the implicit method. 
The geometrical data are shown in Table 1. All of this data 

are entered on data cards and used in the program as explained in the 

User's Guide. A friction factor of 0.025 was used thrOughout, with 
Mannings' formula used to calculate the friction losses. The main 

branch consists of nodes 1 to 11. ‘A branch containing nodes 12, 13, 

14 and 15 with flow from node 3 to node 7 defines an island. A second 

branch containing nodes 16, 17 and 18 with flow to node 14, represents 

an embayment which has no flow but contributes to storage. A third 
branch containing nodes 19 and 20 and receiving flow from node 9, 

defines a delta region. 
The model was run with a time step of one hour for a total of 

5 time steps. Since only steady state conditions were required, a 

weighting factor of 1.0 was used to ensure rapid convergence to a 

steady state. The boundary conditions used were; a depth of 100 feet 

at nodes 1 and 11 and zero velocity at node 16. Initial conditions were 

a depth of 100 feet of water throughout the network and an initial 

velocity of 6 feet per second was used. 
The results obtained are not too surprising and show the
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FIGURE 12: SCHEMATIC PLANS OF THE RIVER NETWORK PROBLEM
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WIDTH 0F INVERT LEVEL 
N0DE CHANNEL BELOW REACH MANNING'S 

NUMBER (FT.) DATUM (FT.) LENGTH (FT.) N_ COMMENTS 

1 1000 0.00 25000 0.025 M 
2 1000 1.25' 25000 0.025 A 
3 1000 2.50 800 0.025 1' 

4 600 2.50 25000 0.025 N 
5 600 3.75 25000 0.025 C 
6 600 5.00 800 0.025 H 
7 1000 5.00 25000 0.025 A 
8 1000 6.25 25000 0.025 N 

9 1000 7.50 100 0.025 N 

10 500 7.50 25000 0.025 E 

11 500 8.75 1 0.025 L 

12 800 2.50 25000 0.025 BRANCH 
13 800 3.75 400 0.025 AROUND 
14 800 3.75 25000 0.025 ISLAND 
15 800 5.00 1 0.025 

16 400 3.75 25000 0.025 
17 400 3.75 25000 0.025 EMBAYMENT 
18 400- 3.75 1 0.025 

19 500 7.50 25000 0.025 DELTA 
20 500 8.75 1 0.025 

TABLE 1: GEOMETRICAL DATA FOR NETWORK PROBLEM

55



INITIAL
‘ 

COMPUTED STEADY STATE 
' 

NODE WATER '

V NUMBER VELOCITY DEPTH VELOCITY WATER DEPTH DISCHARGE 

1 6.00 100.00 9.74 100.00 973989.7 
2 6.00 100.00 9.76 99.78 973996.1 
3 6.00 

‘ 

100.00 9.78 999.56 974014.6 
. 4 6.00 100.00 6.99 99.56 417434.6 

5 6.00 100.00 6.95 100.06 417441.0 
6 6.00 100.00 6.92 100.59 417431.3 
7 6.00 100.00 9.68 100.59 974005.2 
8 6.00 100.00 9.70 100.40 973978.8 
9 6.00 100.00 9.72 100.20 973960.9 

10 6.00 100.00 9.72 100.20 486980.5 
11 6.00 100.00 9.74 100.00 486977.3 
12 6.00 100.00 6.99‘ 99.56 556580.1 
13 6.00 100.00 6.95 100.06 556588.7 
14 6.00 100.00 6.95 ‘100.06 556586.8 
15 6.00 100.00 6.92 100.59 556573.9 
16 0.00 100.00 0.00 100.06 0.0 
17 0.00 100.00 0.00 100.06 0.0 
18 0.00 '100.00 0.00 100.06 0.0 
19 6.00 

' 

100.00 9.72 100.20 486980.5 
20 I 6.00 

V 

100.00 9.74 100.00 486977.3 

Table 2: INITIAL AND COMPUTED FLOW CONDITIONS FOR NETWORK 
PROBLEM
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type of calculation that may be carried out using the model. The 

initial data abstraction and keypunching of data cards took about 2 hours 
and the computer time required for the computations was approximately 
30 minutes. The versatility of the program is demonstrated in that,‘ 

once data are available, setting up the data cards takes a very short 
time and results can be Obtained quite quickly. The reSults of this 
computer run are shown in Table 2. 

The run for 5 time steps produced quite good convergence to 
a steady state solution. Comparing the results from the fourth time, 

step to the results of the fifth time step has shown that the height 
converged to within 0.01 feet and the velocities to within 0.07 feet 
per second. The maximum difference in the discharge was about 72.2 
cusecs and this is well within the accuracy of the equation solving 
subroutine which was only working to 5 significant digits. The non- 

conservation of mass mentioned in the chapter on stability does not 
account for this 72.2 cusecs difference, since this example does not 
involve unsteady flow. The non-conservation of mass shown here is due 
entirely to the accuracy limits of the equation solving subroutine 
(which may be changed easily) and to the use of only five time steps. 
8.3 THE ST. CLAIR RIVER 

The third example given is that of flow on an actual river 
system. The actual river data are used and the results show the type 
of answers that can be expected from the implicit model presented here. 
In fact, the examples given are only a small portion of the work that 
has been done on the St. Clair/Detroit River system. This work will be 
published in a later report. 

The St. Clair River joins Lake Huron and Lake St. Clair and 
is approximately 28 miles long, about 2,000 feet wide and approximately 
thirty feet deep. The river has been extensively dredged and is a 

major navigational waterway. The lower end of the river, where it 
empties into Lake St. Clair, is a complicated delta region with a very 
large amount of swampy ground and very shallow channels. Historically, 
the flow has varied between 100,000 and 240,000 cusecs with a 50 percent 
exceedence level of 184,000 cusecs. The U.S. Army Corps of Engineers 
have maintained an extensive water level gauging network on the river

57



LAKE HURON
/

/
I 

1 I 

2 Samia 
Port 3‘ 
Huron

4 
.Jo 

12 , 

0.) 

13 
14 

15

6 

Anchor Bay 7
> ‘ WATER-LEVEL RECORDING STATION 

// 
mov‘ Mitchell 

ego LAKE ST CLAIR Bay 
.5525?\ é/oo 

FIGURE 13: THE ST. CLAIR RIVER

58



~ 

for n number of years [10]. 
A map of the river giving the node numbering is shown in 

Figure 13. The geometrical data used in the model are given in Table 3. 

Examination of the field sheets shows that the cross-sectional shape of 
the river is approximated by a very wide rectangle and as a result, the 

hydraulic radius may be expressed as the mean depth (Cross—sectional 
Area/surface width). The river contains one major island, Stag Island, 
which is included in the model. The upper limit of the model 18'8t Fort 
Gratiot and the lower limit is taken at Algonac, at the top of the delta 
region. No attempt was made to model the flow in the delta region since 
the section geometry of this region completely invalidates the hypothesis 
of one dimensional flow and since there are not enough water level data 
to properly calibrate a model. 

A major problem in modeling a natural river lies in the choice 
of a friction factor. In the case of the St. Clair River, a great deal 
of information is available which allows for a very fine calibration. 
The fact that changing the friction factor in a given reach affects 
only the flow upstream of that reach is a useful point in calibration 
processes. 

The calibration period chosen for the St. Clair River was the 
flow on 19 June, 1973. On this date, discharge measurements were being 
taken in the river by the U.S. Army Corps of Engineers at St. Clair, 
Michigan. The mean flow on this day was 215,000 cusecs. From this 
start, the calibration procedure was: 

1. Use a discharge of 215,000 cusec and a known water level 
at Algonac. 

2. Start with a Mannings friction factor of 0.020, which 
from practical experience is too low for this river. 

3. Make a computer run and compare the calculated water 
levels with the observed water levels upstream. 

4. Adjust the friction factor in the lowest sections of 
the model until the calculated water level at the 
second gauge upstream agrees with the observed water 
levels.
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- INVERT 
_ :'

I 

“:3? 1:151 1:221. 1:1? 
DATUM 

1 1000 34.99 7220 0.033 FT. GRATIOT 
2 1300 35.10 3825 0.028

' 

3 2870 23.11 I 4200 0.023 MBR 
4 2200 '31.76 12700 0.023 
5 1950 28.70 , 12250 0.023 DRY DOCK 
6 2060 29.81 3900 ‘ 0.020 MARYSVILLE 
7 2670 31.43 20200 0.020 
8 2200 23.09 100 0.020 
9 2200 27.10 18200 0.020 

10 1620 31.18 6050 0.025 ST. CLAIR, MICHIGAN 
11 1700 35.62 9000 0.025 
12 2260 29.90 . 6200 0.025 
13 2780 27.07 9500 0.024 
14 3300 23.46 10950 '0.023 MARINE CITY 
15 2850 28.07 9200 0.023 
16 2260 33.14 9050 0.025 ROBERT'S LANDING 
17 2240 33.12 6100 0.022 
18 2760 28.39 - -— ALGONAC 
19 1500 16.94 10200 0.020 
20 1530 17.07 6300 0.020 

TABLE 3: GEOMETRICAL DATA FOR ST. CLAIR RIVER SYSTEM 
DATUM IS 576.80 (IGLD). 

Move upstream in this fashion, adjusting friction factors fbr 
one section at a time until all of the computed water levels 
agree with the observed water levels within a certain predeter- 
mined.accuracy; 
Using two observed water levels and the determined friction 
factors, make another computer run to check that the discharge 
'is correct. If it is not, adjust all friction factors up or
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down by the same relative amount until the computed and 
observed discharges match properly. 

‘Using this procedure, the model was calibrated for June 19, 
1973 to within i0.08 feet as the maximum error in water level. This 
accuracy is certainly within the expected limits of any one dimensional 
model, assuming steady-state flow conditions and considering the 
practical accuracy of discharge measurements. The calibration process 
used about 20 computer runs to match up the 9 water level gauges on the 
river. Although the process of calibration could easily be incorporated 
into the computer program, "intelligent guesses" allow a great savings 
in computer time. 

l

‘ 

After the model was calibrated for the 19 June, 1973, two 
additional runs were made to show that the model would predict properly. 
The discharge for 19 June, 1973, was approximately 215,000 cusecs and 
this corresponds to an extremely high flow condition. The additional 
runs were: 18 July, 1968 which corresponds to a discharge of approxi- 
mately 183,000 cusecs; a "medium" flow condition; and 13 November, 1964, 

a "low" flow condition with a discharge of approximately 147,000 cusecs. 
The observed water levels, computed water levels and differences are 
shown in Table 4. Unfortunately, not all of the water level gauges 
were in operation all of the time. However, a good indication of the 
accuracy of the model is given by this table. 

Note that the two tables are referred to different datums. 
The abstraction of data was done and the model run with an arbitrary 
horizontal datum of 576.80 feet. The results, however, are presented 
at a datum of 570.00 feet to avoid the use of minus signs in the table. 

To show that the model properly predicts transients, the model 
was run for a period during which a large transient passed through the 
St. Clair River. During December 3 - 5, 1970, a storm was in progress 
and this storm resulted in a three foot storm surge on Lake Huron at 
Fort Gratiot. At that time, three gauges were in operation in the St. 
Clair River; one at Fort Gratiot, one at St. Clair, Michigan, and one 
at Algonac. Data are available from these gauges at hourly intervals. 

A run was made using, as boundary conditions, the observed 
water levels at Fort Gratiot and at Algonac. The schematization was
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NODE » ‘JUNE 19, 1973 JULY 18, 1968 NOV 13, 1964 
$328; N°° 08s. COMP. DIFF. OBS. COMP DIFF. OBS. COMP DIFF. n 

1 10.21 10.21 — 7.91 7.91 - 5.00 5.00 - 0.033 
2 - 9.74 7.49 4.63' 0.028 
3 9.68 9.72 +0.04 7.51 7.45 -0.06 4.72 4.57 —o.15 0.023 
4 9.64 7.38‘ 

. 4.51 
' 

0.023 
5 9.33 9.27 -0.06 7.09 7.05 -0.04 4.23 0.023 
6 8.87 8.95 +0.08 6.73 6.77 +0.04 3.97 3.97 - 0.020 
7 8.95 6.77 3.97 0.020 
8 8.70 6.53 3.74 0.020 
9 8.70 6.53 3.74 0 020 

10 8.13 8.13 - 6.03 6.03 - 3.30 3.30 - 0.025 
11 7.99 5.91 3.19 0.025 
12 7.69 5.72 3.01 0.025 
13 7.65 5.60 2.89 0.024 
14 7.36 7.42 +0.06 5.38 2.66 0.023 
15 

_ 

7.19 5.16 2.45 0.023 
16 6.92 7.00 +0.08 4.96 5.00 +0.04 2.31 0.025 
17 6.85 4.87 2.19 0.022 
18 6.75 6.75 - V'4.78 4.78 — 2.10 2.10 0.020 
19 8.87 8.95 + .08 6.77 3.97 0.020 
20 8.70 6.53 3.74 0.020 

3222 215,000 183,000 147,000 

TABLE 4: OBSERVED AND COMPUTED WATER LEVELS FOR THE ST. CLAIR RIVER 
UNDER VARIOUS DISCHARGES. DATUM IS 570.00 FT. (IGLD).
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revised to use only 13 nodes and all data from the steady state runs were 
retained. Figure 14 shows the observed valves compared with the cal- 
culated-values for node 10 (St. Clair, Michigan). The agreement is 
quite close, considering that only hourly water levels are available. 
This time step is clearly too long to give adequate resolution in the 
phase of the transient.
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CHAPTER 9 

9.0 SUMMARY AND, CONCLUSIONS 

9.1 SUMMARY 
7 

A scheme has been devised for solving any set of equations 
describing open channel flow for any network of open channels.‘ These 
equations must describe one dimensional subcritical flow of a

‘ 

homogenous fluid. The shallow water equations were derived from 
first principles and the derivation explicitly shows the assumptions 
made for flow in elementary reaches and in junctions. The stability 
of the finite difference scheme was examined for the linear case and 
a method for the solution of a generalized set of nonlinear 
algebraic equations was described. ‘The application of these techniques 
to three sample problems was outlined. 

A summary of the results follows: 
1. By describing a network of open channels in terms of graph-theoretic 
concepts, the flow relationships in any network may be described in 
terms of relationships between only four types of nodes. 
2. The implicit method is extended to handle flow in networks of open 
channels. 
3. The derivation of the shallow water equations for an elementary 
reach assumes homogenous flow, one dimensionality, and fixed section 
geometry only. 
4. The derivation of the junction equations assumes that the junction 
nodes are very close together, that the Bernoulli terms of the momentum 
equation are not important, and that turbulence and centrifugal 
accelerations may be neglected. 
5. A generalized expression for the stability factor IAI is developed' 
using the Von Neumann technique applied to the linearized finite 
difference equations. 

6. When the weighting factor, 0, for the finite difference scheme is 
0.5:9:i.0, the implicit four point finite difference scheme is 
unconditionally for the linear case. When 0.059:p.5, the implicit four 
point finite difference scheme is conditionally stable. 
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7.' The_truncation error, E, demonstrates that the implicit four point 
scheme is consistent since it approaches zero as the time and distance 
steps are reduced. . 

., 
_

I 

8. The truncation error demonstrates that for linear equations the box 
scheme, 050.5, has second order accuracy and this accuracy decreases to 

ifirst order as 9 approaches unity. 
7

_ 

9. The box scheme conserves mass during one time step. 
10.' The equation solving algorithm requires that no critical section 

- 

appears.within the network, that flow is physically possible, and that 
an initial guess to the solution be provided "reasonably" close to the 
actual solution. 

' 

‘ 

r _ 

11. The equation solving algorithm does not depend upon the form of the 
equations and so any set of equations, such as kinematic wave equations, 
may be used with this computer model. 

12. The model has been successfully applied to a number of specific 
problems. The numerical examples bear out the analytical predictions. 
9.2 ADVANTAGES AND DISADVANTAGES

_ 

The advantages of this particular model over others reported 
in the literature are:

, 

1. The computer program is independent of the network topology. 
2. The program is independent of the location Of the boundary 
conditions. 
3. The program is independent of the form of the governing equations. 
4. The program handles all types of nonlinear terms. 

Balanced against these advantages is the single disadvantage 
that the computer program takes an inordinately long time to run. 
The equation solving subroutine makes no use of the fact that the 
coefficient matrix is sparse and requires approximately 2N2 + % 
function eValuations at each iteration, where N is the number of 
unknowns for which solution is required. If advantage 3 is not 
necessary, then a method exists for using sparse matrix techniques to 
solve the equations. This method has been tested with a two dimensional 
implicit model [8] and will result in a time saving of at least one 
order of magnitude. In the two dimensional model, 1,200 equations are
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solved in 1/10 of a second in the IBM 370. The solution technique used 
in that model requires N function evaluations for N unknowns and hence 
is an order of magnitude faster than the technique used in this model. 

9.3 CONCLUSIONS 
The computer model developed in this report is a perfectly 

feasible method for solving unsteady flow problems in networks of open 
channels. This method is not dependent upon the particular form of the 
equations of motion. The restrictions on the program are very simple 
and require only that flow may be assumed to be one—dimensional and that 
no critical section appears in the network. The practical aspects of 
running the computer program and, more importantly, changing the 
program to handle different cases, are discussed fully in the Appendices.
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APPENDIX 1 USER'S GUIDE 

‘This section deals with the computer implementation of the 
theoretical investigation described in the previous section. 

I 

The computer program is designed to handle all problems of open 
channel flow in networks where the following assumptions are valid: 

1. Flow is one-dimensional. 
2. Geostrophic and wind—driven circulation are not important. 
3. A quadratic resistance law such as Manning's or Chezy is 

appropriate. 
4. The geometry of the open channel network is constant with 

time, that is, no deposition or scouring occurs. 
5. Hydrostatic pressure prevails. 
6. The section geometry can be schematized as rectangular in 

cross—section.
V 

7. Flow is entirely sub critical. 
8. Flow is homogenous in density. 
The program implementing this theoretical investigation is MOD*. 

It is programmed in FORTRAN IV for a CDC 3170 computer using a MASTER 
operating system. All remarks about the program refer to this version. 

The program requires 74 quarter pages of storage space on the 
CDC 3170. This is equivalent to 37,888 real words. The word size on 
the CDC 3170 is 48 bits. Integer size is 24 bits. Double precision 
is not required for this word size but probably would be required for 
a smaller word size. Compilation time for the program is approximately 
21 seconds.

I 

A card reader and a 136 character line printer are the only 
required peripherals.
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USING THE MODEL 
1. Schematization 

The first step in using the model is to schematize the open 
channel network as a directed graph. A node will appear on the graph 
at every location where a solution is required. The nodes are num- 
bered from 1 to N, where N = number of nodes in the schematization. 
A main channel is chosen and the nodes in this main channel are num- 
bered in sequence from upstream to downstream. For example, figures 9, 
14 and 15 show some examples of graphs which are numbered correctly. 

2. Abstraction of Data 
All elevations used in the model must be referred to a 

HORIZONTAL datum. This datum may be at any level except that two 
conventions must be followed with regard to sign. 

1. Z a water Surface elevation above datum. If the initial water 
surface is above datum, the numerical value must be P031tive- 

2. H = elevation of channel invert (bottom) below datum. If the 
channel invert is below the horizontal datum the numerical value 
must be positive. If the channel invert is above the datum, the 
numerical value must be negative. 

Top width of the channel is determined from the cross-section- 
al appearance of the channel. The hydraulic mean depth is calculated by 
dividing the cross-sectional area by the top width. If it is necessary 
to allow arbitrary section geometry see the section on Program 
Restrictions further on this paper. 

3. Input Cards 
When all data are abstracted, a separate DATA card should be 

filled out for each node in the system. The format of this DATA card 
is as follows: 
Columns 1 - 4 - 2535, Format A4 

6 - 7 - Section number; the number of the node to which this 
card refers. Format 12 

9 — 12- the initial velocity at this node. Format F4.2
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14 

20 
26 

32 

40 

4'5 

18 

24 

30 

38 

44 

49 

the initial water level at this node with respect 
to the arbitrary horizontal datum, following the. 
convention stated above. 

I

. 

the top width at this section.» Format F5.1 
the distance between the horizontal datum and the 
channel invert. 

A 

Format F5.2 
the length of reach between this node and the next 
node downstream. ‘ Format F7.1 
the lateral inflow per unit length of reach between 
this node and the next node downstream. This value 
must be positive in the case of inflow and negative 
in the case of outflow. 

3 
Format F5.3 

the average friction coefficient between this node 
and the next node downstream. If this value is 
greater than 1.0 the Chezy friction equation is used 
and if the value is less than 1.0, Mannings friction 
formula is used. Format F4.0 

The MAIN and BRANCH cards set up the geometrical properties of 
the open channel system and provide boundary conditions for the model. 

The format for the MAIN card is: 
Columns 1 

14 

’24 

33 

44 

53

4 

15 

25 

35 

45 

55 

yélfl 
the largest node number in the main channel. 

Format 12 
node number at which the first boundary condition 
is given. Format I2 
the type of the first boundary condition. May be 
XEEQ, §§;§,.Ql§§ if the boundary condition is fixed 
velocity, or height or discharge respectively. 

1 

Format A4 
the node number of the second boundary condition. 

Format 12 
the type of the second boundary condition. May be 
XELQ, Eggg, yl§§. 

' Format A4
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Only one MAIN card may appear in a program. 
One BRANCH card must appear for each distinct Branch in the 

network. The format is:~ Columns 1 - 4 - BRAN Format A4 
13 - 14 - the smallest node number appearing in the branch 

itself. Format 12 
19 - 20 — the largest node number appearing in the branch 

itself. Format 12 
29 -'32 — code word describing whether the top end of the 

branch receives flow from another part of the network 
or stands alone as a boundary condition. 
If the code word is FROM, FORMAT A4, then the flow 
is from another part of the river. The node number 
from which the flow is received is placed in 
Column 34 - 35, FORMAT 12. 
If the code word is Flgfi, FORMAT A4, then that node 
stands alone as a boundary condition. The type of 
boundary condition is given as XELQ, figlg, or Egg! 
in columns 35 - 38, FORMAT A4. 

52 - 55 - code word describing whether the bottom end of the 
branch provides flow to another part of the network 
or stands alone as a boundary condition. 
If the code word is Tgfié, FORMAT A4, the node number 
to which flow is delivered is placed in Columns 
57 - 58, FORMAT IZ. 
If the code word is Flgfi, FORMAT A4, the type of 
boundary condition is given as XELQ,.fl§l§, or Ql§§ 
in columns 58 — 61 FORMAT A4. 

The WEIGHT card provides miscellaneous data required by the 
computer program. All values on this card are provided by default in 
the Main Program. Therefore, the card does not have to be provided if 
the default values are acceptable. Any of the values on the card may 
be left blank if desired. The format is: 

Columns 1 — 4 - EEIG Format A4
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9 ~ 11 - weighting factor for the finite-difference scheme. 

V 

Default value is 0.75, 
V 

4 
Format F3.3 

22 - 25 - acceleration due to gravity. Default value is 
32.172. 

' 

_ 
Format F4.2 

3S — 36 e maximum number of iterations to be performed by 
NONLIN. Default value is 10, Format 12 

47 —‘48 — number of significant digits to which NONLIN 
produces solutions. Default value is 5.Format 12 

The WEIGHT card may appear anywhere before the lst RUN card 
in the Data Deck. 

The RUN card controls the running of the Model in a steady- 
state configuration. All DATA, MAIN, BRANCH and WEIGHT cards must 
appear before the RUN card. The format is: 

Columns 1 - 4 - BEN! 
18 - 19 — the highest node number appearing in the 

schematization, 
_ 

Format 12 
31 - 33 - the length of time step to be used. Format 13 
35 - 37 - the units used for the time step. May be SEC, MIN 

or HRS. Format A3 
49 — 53 — the time at which the run is to be stopped. 

Format I5 
55 — 57 the units used for the stop time. May be SEC, MIN 

or HRS. Format A3 

The VABC card allows time varying boundary conditions to be 
applied to the model. A RUN card must precede the VABC card so that the 
model may come to a prOper steady state with all of the arrays properly 
initialized. The types and locations of boundary condition equations 
may not be changed with the VABC card. The card format is: 

Columns 1 - 4 - YAEQ 
15 - l7 - length of time step to be used under variable 

boundary conditions. May be different from the time 
step appearing on the RUN card. Format I3 

19 - 21 - the units used for the time step. May be SEC, MIN 
or HRS. ' Format A3
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32 — 36 — Stop time. The length of time through which the 
model calculates; begins with the first calculation 
done on the Run card. Format IS 

38 - 40 - Units used for stop time. Format A3 
48 - 76 - Boundary conditions codes. Up to 5 individual 

nodes may have time dependent Boundary conditions. 
These are inserted on the card as pairs of integers. 
The first value in each pair is the node number at 
which the boundary condition is specified and the 
second is a code which provides the boundary 
condition information. _The format for these is 
5(12, 1X, I2, 1X). The codes used are: 

01 — height is given by a function 
02 — velocity is given by a function 
03 - discharge is given by a function 
04 — height is read in from data cards 
05 - velocity is read in from data cards 
06 - discharge is read in from data cards 

Calculation of bOundary conditions specified by codes 01, 02, 
and 03 is done in subroutine CALCBC and must be user supplied. The 
reading in of data cards specified by codes 04, 05, and 06 is done in 
subroutine READBC and must also be user supplied. 

The COMMENT cards allow comments to be interspersed with the 
data. It causes no action in the program. Format is: 
Columns 1 — z. — CW 

5 - 80 - any alpha numeric string 

The PRINT card prints out tables of values at the end of a 
run. Each table starts on a new page and is neatly listed for plotting 
purposes. This card is not required if the tables are not wanted. The 
four tables printed out are: heights, velocities, discharges and 
Transit Time. Each table contains calculated values for each reach for 
each time step. The PRINT card allows the heights to be referenced to
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a geodetic elevation and allows the time to be printed out in seconds, 
minutes or hours. The format is: 

Columns 1 — 4 — PRIN - Format A4 
19 - 20 ~ the highest node number for the table. The program 

will print values for all nodes from 1 up to the 
Specified value. Format 12 

30 - 32 - the increment in which the time is to be printed out. 
May be SEC, MIN, or HRS. Default value is in 
seconds. Format A3 

43 - 47 - the elevation of the arbitrary datum. This value 
is added to the elevations determined by the 
program which are referred to the arbitrary 
horizontal datum of 0.00. Format F5.2 

4. Practical Considerations 
There are a number of practical considerations which must be 

taken into account when running the program. These are listed here 
for easy reference. 
UNITS: 

TIME: 

WEIGHTING 

Any system of units may be used for the model as long as they 
are consistent. For example, all length units may be in 
centimetres, metres, kilometres, feet or inches. If the units 
are not in feet, however, the appropriate gravitational 
constant must be inserted on the WEIGHT card. 

Any convenient time units may be used on input. The program 
works in seconds and all output from subroutines RUN or VABC 
are similarly in seconds. 

FACTOR: The weighting factor is exhaustively discussed in 
Chapter 6. Briefly, however, the finite-difference scheme 
is numerically stable for 0.503WHTS 1.0. The rate of 
convergence of the scheme is directly proportional to the 
weight. In steady state flow, the weight affects only the 
rate of convergence of the numerical scheme. In time-varying 
flow, the weight may introduce phase lags and the smallest
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practicable weight (No.55) should be used. The scheme will 
not conserve mass if the weight is different than 0.50. The* 
extent to which the scheme does not conserve mass is directly 
proportional to the departure of the weight from 0.50 and 
should not exceed about 5% even if the weight is increased 
to 1.0. 

TIME STEP: The time step to be used in the computation is fairly 
critical for efficient computer usage. The numerical scheme 
is stable regardless of the time step. Too large a time step 
results in inaccuracy of resolution and too small a time step 
results in wasted computer time. The most useful guide is to 
use a time step approximately equal to the shortest reach 
length divided by kinematic wave speed. The kinematic wave 
speed is v +tJ§h where v = initial velocity in the reach, 
g = acceleration due to gravity and h = depth of water in the 
reach. 

NUMBER OF NODES: The time required to complete the computations for one 
time step is a function of (4N2 + ZN), where N = number of 
nodes in the schematization. Thergfore, a large number of 
nodes in the schematization can easily result in excessive 
use of computer time. It is recommended that no more than 
14 nodes be used at any one time if possible. A revision of 
the equation solving subroutine may be possible. This 
revision would make use of the fact that the coefficient 
matrices are sparse and execution time should be speeded up 
dramatically. 

INITIAL CONDITIONS OR BOUNDARY CONDITIONS: The initial conditions used 
by the subroutine NONLIN for the-solution of the equations at 
a particular time step are those values computed at the 
previous time step. The initial conditions for the first time 
step are input on the DATA cards. These initial conditions 
may be simply calculated using either Manning's equations or
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Chezy equations or may simply be estimated. If the system 
is physically possible the model will converge to a steady 
state within 8 or 9 time steps. A separate run to obtain 
good initial conditions is recommended before any variable 
boundary conditions are used. 

The boundary conditions for the initial steady state 
run are input on the DATA cards as initial values. For 

example, if an-initial height above datum at node 01 is 
specified on the DATA card, that height is the boundary 
condition and it remains constant throughout the time specified 
on the RUN card. A discharge boundary condition is specified 
by requiring the initial discharge, i.e. the product of the 
initial velocity and the cross-sectional area, be equal to 
the required discharge. The initial height and velocity may 
change throughout the run, but the discharge will remain 
constant . 

NON—RECTANGULAR SECTION GEOMETRY: The program is presently set up for 
“rectangular cross-sections. This need not be the case in a 

natural channel and can be overcome. If the aSSumption of a 

rectangular channel does not hold, then the following changes 
must be made before utilizing the model: 

1. The equations of motion must be used in their most 
general form and finite-difference equations rewritten. 

2. Use of a subroutine such as PROPS, from the-CIVLIB package, 
must be incorporated to calculate hydraulic radius and 
cross—sectional area within the function subroutine FUN. 

The programming changes are easily made; however, 
the price will be paid through increased computation time. 
The degree of accuracy obtained through these refinements is 
seldom warranted for large scale natural systems. 

5. Output 
1: START RUN 
2: Should be a printout of all data cards up to and including the 

first RUN card .
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3: One line containing weighting factor, gravitational constant, 
maximum number of iterations used, and number of significant 
digits used. 

4: MODEL SET UP 
One line containing indexes (up to twice the number of sections). 
One line containing the equation types used. 
One line containing the links 

5: For each time step.
V 

All calculations complete at time = seconds-----—s-- 
No. of iterations = 

One line containing velocities at each section 
One line containing heights above datum at each section 

6: Print card, if present 
Four tables containing height vs. time, velocity vs. time, 
discharge vs. time, and transit time vs. time. 

8: ENDRUN 
9: §n 

DIAGNOSTICS: 
Apart from the diagnostics put out by the computer the model 

also does a certain amount of error checking. These diagnostics are 
listed in the order in which they occur in the listing of the program. 

Message Meaning 
Error - Incorrect Statement Type The last data card being read in 

has errors in the first four 
characters. Repunch the card. 

More than 100 time steps called The stop time on the VABC card 
for. is too large. Either arrange 

the time steps and the stop time 
so that less than 100 time steps 
are required, or dimension VEL 
(I,J), REGT (I,J), DIS (I,J), 
FR (I,J) to the appropriate
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Message 

Solution matrix singular at 
Iteration , time is 
seconds ——-— run stopped. 

Warning -— Solution may not be 
accurate, time = 

Warning —- Check Weights —f 
Solution may be unstable 

Incorrect key word in boundary 
conditions Stop Run. 

Improper equation type 4- Run 
stopped 

Data point number = in 
subroutine Run stopped. 
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Meaning 
dimensions and remove card num— 
ber VBC 450 from subroutine VABC 

The equations cannot be solved 
with this combination of initial 
conditions, boundary conditions 
and equations. ~ Make sure you 
have a physically realizable 
situation. 

Nonlin took the full number of 
iterations allowed and has not 
found a solution to the equations. 
- Make sure you have a physically 
realizable situation and increase 
the number of iterations allowed. 

The weighting factor in the finite- 
difference scheme is too small and 
the solution will probably be un— . 

stable. Increase the weighting 
factor to 0.5 or greater. 

Punching error on BRANCH card. 

One of the subroutines DATA, MAIN, 
BRANCH has set up the wrong equation 
type into array IEQU. This warning 
is called by subrOutine FUN. 

The named subroutine has determined 
that you are attempting to use more 
than 20 sections in the model. 
- Re-dimension all of the COMMON 
and change subroutine CHECK if you 
must use more than 20 sections.



6. Narrative Description of Subroutines 
MAIN PROGRAM: 
Description: 

Variables: 

The main program provides default values for system 
parameters, reads in data cards, and calls subroutines. 
WHT weighting factor in time 
ISIGDIG = number of significant digits for eQuatiOn 

solution 
MAXSA = maximum number of iterations by NONLIN 
GRAV = acceleration due to gravity 
ISW = switch used by VABC to disable first part 

of RUN 
TYPE = first 4 characters of data cards, used to 

call the appropriate subroutine. TYPE may 
be one of: DATA, 0161616, BRAN, MAIN, PRIN, 
RUNB, VABC, WEIG 

CARD = last 76 characters of data card. This array 
is decoded in the appropriate subroutine 

Notes: WHT, ISIGDIG, MAXSA, and GRAV may be reset by subroutine WEIGHT. 
ISW will be reset by subroutine VABC. 

Subroutine RUN 
Description: This subroutine runs the model in a steady state condition. 

All equation types, initialization, and steady—state 
boundary conditions have been set up in other subroutines. 
The subroutine is in two parts. The first part decodes 
the RUN card, prints out the model setup, changes all 
time reference to seconds, and initialized variables. 
This section is done once for every appearance of a RUN 
card in the data deck. If RUN is called by VABC, ISW = l 
and this first part is skipped. 

The second part of subroutine RUN is a large D0 
loop, iterating on the number of time steps. It places 
the present time value in arrays RHGT, VEL, DIS, and FR: 
calculates all coefficients involving only the initial
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Variables: 

conditions for the present time step; calls NONLIN to 
solve the equations; checks that a proper solution has 
been obtained; inserts the solutions into the proper 
arrays; 

ISW 

IPR 
IDELT 
INC 

ISTPT 
ISP 

QL 

DK 

and prints out the solutions. 

A switch which disables the first part of the 
subroutine RUN. The first part of RUN is only 
required the first time RUN is called in a 

steady state condition. 
highest section number in the model. 
integer value of time step. 
units used for time step. May be SEC, MIN, 
HRS. 
integer value of stop time. 
units used for stop time. May be SEC, MIN, HRS. 
one dimensional array containing velocities. 
On entry to a time step contains initial values 
for that time step. 
one dimensional array containing water level 
above datum. On entry to a time step, it 

contains the initial values for that time step. 
one dimensional array containing depth of 
water below datum at each section. 
one dimensional array containing width of 
channel at each section. 
one dimensional array containing lateral inflow 
per unit length of reach for the reach between 
section I and section I + 1. 

one dimensional array containing friction 
coefficient for the reach between section I 

and section I + 1. 
If DK> 1.0, the Chezy resistance law is used; 
if DK<1, the Manning resistance law is used.
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WHTN 
IRUNS 
ITIME 
RHGT 

‘ 

VEL 

.DIS 

v FR 

HTS-l 

HN 

Z¢ 
DZ 
DV > 

2? 
CB 
cc 
cn 
CE 
MAXIT 
MAXSA} 
ISING 

ISIGDIG 

one dimensional array used by NONLIN. Contains 
V and Z arrays as follows: V(I), Z(I), V(2), 
Z(2), V(3), Z(3) ... V(IPR), Z(IPR). 
weighting factor for the finite—differencing 
scheme. 
1. - WHT. 
Counter giving present run number. 
present time value. 
two dimensional array containing water levels 
above datum at each section for each time step. 
two dimensional array containing velocities 
at each section for each time step. 
two dimensional array containing discharge at 
each section for each time step. 
two dimensional array containing the Froude 
number at each section for each time step. 

various coefficients for the momentum and 
continuity equations using only initial values. 

maximum number of iterations allowed to NONLIN. 

a flag returned by NONLIN. If the Jacobian 
matrix is singular, ISING = 1 and no solution 
is possible. If ISING = 0 then a solution is 
obtained. 
number of significant digits to which NONLIN 
solves the equations of motion.
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Subroutine VABC 
Description: 

Variables: 

This subroutine runs the model under time varying boundary 
conditions. A preliminary call to subroutine RUN ensures 
that all arrays are properly filled and that the model has 
converged to a proper steady state. The subrOutine is in 
3 parts. 

The first part decodes the VABC card, changes 
all time references to seconds, and determines the number 
of runs required. The second part calls either CALCBC or 
READBC to input boundary conditions and stores them in 
the proper arrays. The third part extracts the proper 
boundary conditions for a particular time step, calls RUN 
for that time step, and iterates until the stop time has 
been reached. 

IDELT = the length of time step while VABC is used. 
INCD = time increment used for inputting time step. 
ISTOP = stop time, the run will stop when this time 

has been reached._ 
INCS = time increment used for inputting stop time. 
ISECT = a one dimensional array containing the node 

numbers where the boundary conditions occur. 
ICODE = a one dimensional array containing the types 

of variable boundary conditions at the 
corresponding node number. 

IRUNS = the present run number. 
NRUNS = the last run number. 
ISW = a switch, set in this subroutine to 1, to 

disable the first part of subroutine RUN. 
XBC = a two dimensional array containing the boundary 

conditions. This array is filled in Subroutines 
READBC and CALCBC. 

Z(IST) = the depth of water above datum at node number 
IST. A boundary condition. 

V(IST) = the velocity at node number IST. A boundary 
condition.
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Subroutine CALCBC 
Description: A subroutine which must be changed by the user to allow 

the boundary conditions to be specified as a functional 
relationship. It calculates the boundary conditions for 
the complete run at tone time and stores them in the 

‘proper array, i.e. the IEE boundary condition is 
calculated from time step IRUNS to time step NRUNS. The 
Ith boundary condition for run number IR is placed on 
XBC (IR,I). 

Subroutine READBC 
Description: Another subroutine which must be user supplied to allow 

the boundary condition to be read in from cards. The TEE 
boundary condition for run number IR is placed on XBC 
(IR,I). 

Subroutine DATA 
Description: 

Variables: 

VThis subroutine reads the DATA card. Each DATA card 
contains the section geometry, lateral inflow and 
resistance coefficient for a given section. This 
Subroutine also sets up initial equation types in array 
IEQU and assigns initial value to LINK. ,The equation 
types and links are modified to take boundary conditions 
into account in subroutine MAIN and junction conditions 
in subroutine BRANCH. 

section number to which DATA card refers. I = 

V(I) = initial velocity at the section. 
2(1) = initial water level above datum. 

+ ve if bottom is below datum. 
— ve if bottom is above datum. 

DELTX(I) = length of reach between section I and I + 1. 

QL(I) lateral inflow per unit reach length between 
section I and section I + 1. 

DK(I) resistance coefficient between section I and 
section I + 1.
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IEQU = 

LINK = 

Subroutine MAINB 
This subrdutine processes the MAIN card and sets up the Description: 

Variables: 

_one dimensional array containing equation types. 
The two equations for the reach between section 
I and I + l are stored in IEQU (2*1-1) and 
IEQU (2*I). This subroutine sets IEQU (2*I—1) 
= 1 and IEQU (2*I) = 2. The boundary conditions 
are set in subroutine MAIN and the junction con- 
ditions are set in subroutine BRANCH. 
a one dimensional array containing section 
numbers. If section I is involved with section 
K, for example, then LINK (2*1—1) or LINK (2*I) 
would contain the value K. These values are 
'changed in subroutine MAIN and subroutine 

‘ BRANCH. 

boundary conditions for the main channel. These boundary 
conditions may be set at any section in the main channel. 
Values of IEQU and LINK which are set in this subroutine 
override those set by subroutine DATA. A11 DATA cards must 
precede

I 

IU 

ICA 

ID 

ICB 

the MAIN card. 

= largest section number in main branch. The 
program assumes that the main branch starts at 
section 1. 

= section number at which the upstream boundary 
condition occurs. 

= type of bOundary condition at upstream end. 
May be EELQ, EEIQ,IQI§. 

= section number at which the downstream 
boundary condition occurs 

= type of downstream boundary condition. 

The subroutine assigns the boundary condition equation types 
to IEQU (1-1) and IEQU (I). The section numbers at which the boundary 
conditions bold are placed in LINK (I-1)and LINK (I).
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Subroutine BRANCH
7 

Description: This subroutine processes the BRANCH card and sets up 
boundary conditions and/or junction conditions for the 
branch.‘ One Branch card must appear for each distinct 
Branch in the model. The values of IEQU and LINK which 
are set in this subroutine override those set by subroutine 
DATA. All DATA cards must precede the BRANCH card. 

Three basic types of branches are allowed in 
this model; every branch has at least one junction with 
the main channel or with another branch. The other end 
of the branch may be a junction or it may be a free 
boundary. Figure lg shows these three types of branches. 

IEQU and LINK are filled as follows: 

1. At a junction with flow from/to IN, the two momentum 
equations (fixed height) are Type 6. These are 
stored in IEQU (2*IN-1) and IEQU (2*IN). LINK (2* IN-l) 
Vand LINK (2*IN) contain the two section numbers to 
which section IN is joined. 

2. The remaining equation at a junction is stored in 
IEQU (2*IU-1)'and IN is stored in LINK (2*IU-1) if IU 
is the upstream end of the Branch. If ID is the 
downstream end of the Branch, the continuity equation 
is stored in IEQU (2*ID) and IN is stored in LINK (2*ID). 

3. If the upstream end of the Branch is a boundary 
condition, then the appropriate equation type is stored 
in IEQU (2*IU-1) and IU is stored in LINK (2*IU—1) if 
the upstream section number is IU. 

4. If the downstream end of the Branch is a boundary 
condition, the.section number is ID. Then, the 
appropriate equation type is stored in IEQU (2*ID) and 
ID is stored in LINK (2*ID). 

5. In all uses the displaced continuity equation between 
sections IU and IU +1 is stored in IEQU (2*ID-1) and 
IU is stored in LINK (2*ID-1).
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Note that the BRANCH card must come after the DATA cards since 
equation-types set in.subroutine BRANCH must override those set by 
subroutine DATA.

' 

Vafiébles: '> Is = upstream section number — the smallest 
section number in the branch. 

IE = downstream section number - the largest 
section number in the branch. 

ICA = a code describing the equation type for the 
upstream end of the branch. 
- if ICA = 4HFIXE then the upstream section 

has a boundary condition of type ITA. 
- if ICA = 4HFROM then the upstream section 

receives flow from section INL; 
ICB ' = a code describing the downstream equation 

type.
. 

— if ICB = 4HFIXE then the downstream section 
has a boundary condition of type ITB. 

- if ICB = 4HT¢EB then the downstream section 
donates flow to section number ¢UT. 

Subroutine WEIGHT 
Description: This subroutine reads the WEIGHT card if one is present 

in the data deck. If no WEIGHT card is present or if any 
values on'the card are zero or blank the default values 
assigned by the MAIN program are used. These default 
values are: 
WHT = 0.75 
'GRAV = 32.2 
MAXIT = 10. 

ISIGDIG = 5 

Subroutine PRINT 
This subroutine prints out-the arrays, RHGT, VEL, DIS, FR 
from section 1 up to the section number called from the 
PRINT card.
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Function Subroutine FUN 
Description: This function subroutine contains all of the equations 

describing the model and is called iteratively by sub- 
routine NONLIN. At present,.the model is set up with 8 
types of equations. 

Variables: K = argument set by NONLIN in the call to FUN. 
IEQU(K) equation type to be used with this call by 

NONLIN. 
LINK(K) = section number involved in Kth call. The 

type of equation used is contained in IEQU(K). 
Equations: The eight equation types used are: 

1. Continuity equation between sections LINK(K) and 
LINK(K) '+‘ 

1. 
I 

2. Momentum equation_between sections LINK(K) and 
LINK(K) + 1. 

3. BOundary condition - fixed velocity at section LINK(K). 
4. Boundary condition — fixed height at sectionIJNK(K). 

I 

fixed discharge at section LINK(K). 
6. Junction condition — fixed water levels at section 

(K + 1)/2 and LINK(K). 
7. Divergent Junction condition - continuity equation 

involving sections (K + 1)/2, LINK(K) and LINK(K) + 1. 
8. Convergent Junction condition - continuity condition 

involving (K +1)/2, LINK(K) and LINK(K) + 1. 

5. Boundary condition 

Subroutine NONLIN 
Description: This subroutine solves the non-linear equations of motion 

of the system. It calls both FUN and subroutine BACK. 
This subroutine was originally presented in ALGOL[ 6]- 
It was transformed into FORTRAN for this program and 
reference should be made to the original literature for 
discussion of the methods used. 
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Variables; N = 

II MAXIT 

NUMSIG 

SINGLE‘ 

POINT (N,N) 
1mm m-n 
TEMP(N) 
PART (N) 

COE (N,N-1) 

Subroutine BACK 
This subroutine is called by NONLIN and is an integral 

.maximum number of Equations to be solved, 
i.e. 2* number of nodes 
maximum number of iterations allowed NONLIN. 
The number actually used is returned. 
number of significant digits to which answer 
is to be accurate 
one dimensional array contains initial values 
to be used as trail solutions. On return, X 
contains the solution determined by NONLIN. 

1 name of function subroutine which contains the 
equations FUN(K) = Kth function evaluated at 
X(1), X(2), ..., X(N). 
value returned by NONLIN.

_ 

SINGLE = 0 if Jacobian matrix singular 
SINGLE = 1 if proper ablution obtained. 

working arrays 

ll 

part of that Subroutine. ’It solves an upper triangularized 
linear system generated by NONLIN.

91



¥¥u 
#4; 
¥¥¥ 

¥¢4 
4‘4 
4;; 
45$ 
4*; 
##4 
444 
¥¥¥ 
4*; 
444 
#:4 

CDCOC)OOOOOOOOODO 

##4 
0000 

t¥¥ 

02 

C :4: 
C :44 
C ¥¢¥ 

PROGRAM MODEL 
PROGRAM FOR THE ONE DIMENSIONAL MODELLING OF A RIVER NETNORK 
SOLVING THE COMPLETE NON-LINEAR oSHALLON HATER EQUATIONS 
USING A HEIGHTED IMPLICIT FINITE-DIFFERENCE SCHEME- 

DATE: AUGUST.1975 
COMPUTER CDC 3170 MASTER 0.3. 

BY: L. R. MUIR ' 

9.0. BOX 5050
. 

BURLINGTON. ONTARIO 
CANADA 

MODEL READS CARDS AND DETERMINES HHAT TYPE THEY ARE 
INTEGER SIZE 1 AND *.0PTION IS USED 

INTEGER TYPE.CARD(19)oBRANoCONoDATiHANoRnRI 
INTEGER POINT,VAR8C 
COMMON/10/X(#D),NgMAXSAvPOINT(h0gk0)oISUB(39)vTEMP(hD)v 

¥ PART(QO).COE(QU’41)oISIGDIG ' 

COMFON/ZU/IEQU(QOD,V(2U),B(20)9H(20)9Z(20)oDELTX(20’vQL(20)v 
‘ DK(20)9IPR.LINK(QU)oLIN(20)rIDELTyISTPT9RH59GRAV1HHT 
COMMON/3B/RHGTt100o21)9VEL(100,21).DIS(100921)oFR(100921) 
CONNON/SO/ISN’IRUNS 
'DATA BRAN/AHBRAN/.COMIBHC l,DAT/QHDATA/,MAN/hHMAINI. 
4 RU/kHRUN /oPRI/kHPRIN/yIHHT/kHHEIGI’VARBC/QHVABC/ 
¥¥¥¥4#¥4¥+4&4¥4¥¥¥‘¥¥¥¥¢#¥4¥¥¥¥¥¥¥4¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥!¥¥‘t¥¥¥ 

DEFAULT VALUES FOR WEIGHT CARD 
HHT=O.75 ' 

MAXSA=1O 
ISIGDIG=5 
GRAV=32.172 
ISN=0 
PRINT100 
READZOG.TYPE90ARD 
IF(IFEOF(60).EQ--1)GO TO 15 
ICARD=ICARO+1 
PRIPT300,ICARDyTYPE.CARD 
TYPE DETERMINATION SECTION 
IF(TYPE.EQ.DAT)GO TO 07 
IF(TYPE.EO.CON)GO TO 02 
IF(TYPE.EO.3RAN)GO TO 08
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07 

08 

09 

10 

11 

15 

16 

17 

100 
200 
300 
#00 
500 

IF(TYPEoEQeMAN)GO T0 09 
IF(TYPE.EO.PRI)GO T0 16 
IF(TYPE.EO.RUDGO T0 10 
IF(TYPE.EQ.VARBC)GO T0 11 
IF(TYPE.EQ.IHHT)GO T0 17 
PRIBTQOD 
GO TO 15 

CALL DATA(CARD) 
GO TO 02 
CALL BRENCH(CARD) 
GO TO 02 
CALL MAINB(CARD) 
GO TO 02 ‘ 

CALL RUN(CARD) 
‘GO TO 02 
CALL VA8C(CARD) 
GO TO 02 
PRIBTSOO 
STOP

: 

CALL PRINT(CARD) 
GO TO 02 ' 

CALL HEIGHT‘CARD) 
60 T0 02 ' 

F0RHAT(1HQ,/910X,*START RUN‘9/) 
FORHAT(20AQ) 
FORMAT(SXQISOZX920A“) 
p0RVAT(09X9‘ ERROR INCORRECT STQTEMENT TYPEo‘l) 
F0RPAT(///910X9*END RUN‘) 
END
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0000 

0000 

DO 

SUBROUTINE VABC (CARD) _ 
_ 

‘ ' 

‘** THIS SUBROUTINE RUNS THE MODEL HITH VARIABLE BOUNDARY CONDITIONS. “‘ THE VABC CARD MUST BE PRECEEDED BY A RUN CARD TO ENSURE THAT ALL 
‘** ARRAYS ARE PROPERLY INITIALIZED AND THAT THE MODEL HAS CONVERGED “* TO AN ACCEPTABLE STEADY STATE CONDITION. " 

‘** THIS SUBROUTINE HILL NOT ALLOW THE BOUNDARY CONDITIONS OR THE “* EQUATION TYPE-TO BE CHANGED FROM THOSE INITIALLY SET UP BY SUB- 
‘*‘ ROUTINES DATAgMAINBgAND BRANCH. 
‘** POSSIBLE BOUNDARY CONDITIONS ARE 
*** VELOCITY -SPECIFIED OR CALCULATED 
*** DISCHARGE-SPECIFIED 0R CALCULATED 
‘*‘ HEIGHT ABOVE DATUM- SPECIFIED OR CALCULATED. "* THE USER MUST SUPPLY INPUT SUBROUTINES TO STORE THE BOUNDARY “" CONEITIONS IN THE PROPER ARRAYS. SEE SUBROUTINES CALBC AND READBC 
*‘* CODES FOR BOUNDARY CONDITIONS ARE . 

“* 1 HEIGHT IS SPECIFIED BY A FUNCTION 
*‘4 2 VELOCITY IS SPECIFIED AS A FUNCTION “‘ 3 DISCHARGE IS SPECIFIED AS A FUNCTION 
’4‘ A HEIGHT IS READ IN AS DATA “* 5 VELOCITY IS READ IN AS DATA 
***‘6 DISCHARGE IS READ IN AS DATA 

COMMON IZDI IEQU(#0)9V(20)98(20).H(20).Z(20)90ELTX(20).QL(ZE)vDK 
$(20).IPR.LINK(HO).LIN(20).IDELTsISTPToRMS.GRAV.NHT 
COMMON [30/ RHGT(1GO.21).VEL(100.21).DIS(100.21).FR(1UO.21) 
COMMON l53/ ISNyIRUNS 
COMMON I7U/ XBC(1OC.5) 
DIMENSION ISECTKS). ICODE(SI 
INTEGER HEIG 
OATA'HEIC/AHHEIG/ 
DATA ISR/QHVABC/ 

#¥¥¥¥¥¥4#¥¥¥¥¥¥¥¥$¥4¥6¥44¥¥I¥¥¥#4‘¥¥¥¥444¥44¥¥¥¥¥¥¥¥¥¥¥#¥4¥#¥¥4¥4¥¥+# 

*‘* DECODE TIME STEP AND STOPPING TIME 
DECODE (769489CARD) IDELT.INCD.ISTOP.INCS 
IFTINCD.ED.3HHRS)IDELT = IDELT‘3600 
IF(INCD.EO.3HMIN)IDELT = IDELT‘60 
IFlINCS.EQ.3HHRS)ISTOP = ISTOP‘3600 
IF(INCS.EQ.3HMIN)ISTOP = ISTOP‘BU 

A‘** TIME STEP AND STOP TIME ARE NOH IN SECONDS. 

**‘ DECODE BOUNDARY CONDITION SECTION NUMBERS AND CODE 

DECODE (75950.CARD) (ISECT(I).ICODElIT1I=1.5) ~
‘ 

*** IF BC AT SECTION I IS TO BE CALCULATED USE CALCBC. IF BC DATA IS “* TO BE READ FROM CARDS USE READBC. -
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c 4## 
10 

20 
c 4## 

C ##4 
30 

33 

31 

3k 

32 
35 

#0 
50 

60 

IRUNS = IRUNS+1 
NRUAS = ISTOP/IDELT 
IF (NRUNStIRUNsoLEoiofl) GO TO 10 
PRIDT 60 - 

- ,‘ 
NRUhS = 150-IRUNS 
DETERMINE ALL BOUNDARY CONDITIONS AT ONCE 
DO 20 I=1v5 ‘

_ 

IF (ISECT(I).EQ.O) GO TO 29 
CALL CHECK(ISECT(I).ISR) 
IF (ICOOE(I).LE.3) CALL CALCBC (ISECT(I)oICODE(I)9NRUNS-I) 
IF (ICODE!I).GE.%) CALL READDC (ISECT(I);ICODE(I)9NRUNS.I) CONTINUE - 

ISN=1 DISABLES FIRST PART OF SR RUN. 
ISW = 1 '. 
CARD = 0 

CALL SUBROUTINE *RUN‘ ONCE FOR EACH TIME STEP 
DO 35 1:115 ' 

IF(ISECT(IT.EQ¢0) GO TO 35 
IST= ISECT(I) 
IF(ICOOE(I).EQ-1) GO TO 33 
IF(ICOOE(I).NE.A) GO TO 31 
Z(IST) = XBC(IRUNS.I) 
GO TO 35 - 

IF(ICODE(I).EQ.2) GO TO 3“ 
IF(ICOOE(I).NE.5) GO TO 32 
V(IST) = XBC(IRUNS¢I) 
GO TO 35 
V(IST)=XBC(IRUNS,I)/((H(IST)+Z(IST))‘B(IST)) 
CONTINUE

V 

CALL RUN(CARD) 
IRUNS = IRUNS+1 
IF (IRONS-LEaNRUNS) GO TO 30 
RETURN 
FORMAT (10X113y1X9A3a10XqI591X9A3) 
FORMAT (A3X95(I291X9I291X)) 
FORVAT(10X,¥MORE THAN 100 TIME STEPS CALLED FOR‘) 
END
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00000 

00000

C 

SUBROUTINE RUNKCARD) "
V 

4*“ THIS SUBROUTINE RUNS A STEAEY STATE MODEL "* ENDS AT IPR 
:4; TIME INCREHENT IOELT 

STOP TIME ISTPT 
:54 

INTEGER CARD(19)yITTYP(10)oCXl19)oP0INT9ISSS .

- 

COMMON/10/XKA0).N,MAXSA.P0INT(HO,QO)9ISUB(39)oTEHP(A0)v 
‘ PART(QU).COE(ED,Q1)vISIGDIG- 

_
_ 

COMMON/20/IEOUKAD)9V(ZE)98(20).H(20)’Z(20)oDELTX(20)vQL(20)’ 
* DK(20).IPR§LINK(48),LIN(25)[IDELT.ISTPT.RHS,GRAV,WHT 
C0MM0N/3B/RHGT(100921)yVELfiDOoZi)yDISliOOv21)vFR(100121) 
COMMON/h0/CA!19).CB(19)yCC(19)vCD(19)oCE(19)oHTS(19)v 

* tig).VP(19).ozx19:.ZPtig).AS(19).20(19).wHTN.HN(19) 
COHHON/SO/ISNoIRUNS 
DATA CX.ISEC.IMIN.IHRS/19*AH ,3HSEC.3HMIN,3HHR$/ 
DATA ISR/QHRUN / 

x###¥¥§8¥4#¥4¥¥4!¥t¥§¥‘¥#§¥¥¥4¥¢¥¥¥¥*#¥#l‘¥¥¥¥$¥¥¥¥¥¥#¥¢¥‘¥¥4¥¥¥‘¥4¥¥ 

“¥ IS” IS SET IN 80R. VABC, AFTER THE INITIAL CALL TO RUN BY 
*‘* THE RUN CARD, ALL SUBSEQUENT CALLS ARE MADE BY SuRo VABC 

IF (ISWOE001, GO T0 0“ 
DECODE‘76I1009CARD) IAOIBQINCIICIISP 

100 FORMAT(13X,12911XVI391X1A3911XQ1591X!A3) 
IF(IA¢NE.O)IPR=IA 
IF(IB.NE00)IDELT=IB 
IF‘IC.NE.0)ISTPT=IC 
CALL CHECKTIPRoISR) 
N=2¥IPR ' 

'

_ 

¥*¥ PRINT OUT THE INITIAL VALUES OF THE ARRAYS IEQU AND LINK 
‘*‘ TO ENSURE THE “ODEL IS SET UP CORRECTLY 

PRINT 1000,NHT,GRAV.MAXSA.ISIGDIG 
1000 FORVAT(1HGOZXQ¥HHT=¥,F“O3Q5XQ‘GRAV =‘1F60395X1¥MAXSA 3*, 

+ I395X7‘ISIGDIG =¥113) 
PRINT 2000(19I319N) 
PRIFT 3009(IEQUTI’OI=19N) 
pRIhT 490v‘LINKTI)vI=19N) 

200 FORNAT (1H0110X9‘MO0EL SET UP*’/V¥ INDEX K¥9AXOA0(I291X)) 
300 FORMAT (1H 9* IEQU(K)*9AX9AU(IZ$1X)) 
A00 FORNAT‘1H 9* LINK(K’¥9AX9AGTI201X)) 
*‘¥ INITIALIZE VARIABLES 

K=1 ‘ 

IRUNS=U 
00 G3 IzioIpR 
XTK)=V(I’ 
X‘K+1)=Z(I)
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03
C 
c a¥4 

01 
02 
06 

07 
98 
09

C 
C :4# 

14 
04 

C ¥¥» 

c :45 
C ¥4¥ 
C 444 

10 

K=K+2 

CHANGE ALL INPUT TIME REFERENCES T0 SECONDS 
IF(INC.EQ.ISEC) GO TO 06 IFIINCoqlNIN) GO.TO 02 
IF(INCoEQ.IHRS) GO TO 01 
IDELT=60*IDELT 
IDELT=60*IDELT 
DELT =FLOAT(IDELT) 
IF(ISPaEQ.ISEC) GO TO 09 
IF(ISP.EQ.IHIN) GO TO 08 
IFKISPofiQoIHRS) GO TO 07 
ISTPT=60‘ISTPT 
VISTPT=60‘ISTPT 
CONTINUE 
INITIALIZE ARRAYS 
WHTN=1.0-NHT 
ITIME=0o0 
IRUBS=IRUNS+1 
ITIME=ITIME+IDELT 
RHGT(IRUNS.1)=ITIME' 
VEL(IRUNS.1)=ITIME 
DIS(IRUNS.1)=ITIME 
FR(IRUNS,1)=ITIME 
CALCULATE COEFFICIENTS 
NM=IPR~1 
oo 12 I=1.Nm 
VP(I)=V(I+1)+V(I) 
ZP(I)=Z(I+1)+Z(I) 
ASKI)=B(I)*H(I)+B(I+1)“H(I+1)+HHTN*(B(I)'Z(I)+B(I*1)‘Z(I+1)) 
DZ(I)=HHTN*(Z(I+1)-Z(I)) 
ZO(I)=WHTN*(V(I+1)+V(I)) 
DV(I)=WHTN'(V(I+1)-V(I)) 
HTS(I)=H(I)+H(I+1)+HHTN¥(2(I)+2(I+1>) 
HN(I)=H(I+1)-H(I)+NHTN4(Z(I+1)-Z(I)) 
CAtI)=DELTX(I)/DELT 
03(1): h.U*DELTX(I)‘QL(I)/(B(I)+B(I+1))' 
CC(I>=DELT/OELTX(I) ' 

CD(I):(8(I+1)-B(I))/(R(I+1)+B(I)) 
IF DK(I) IS LESS THAN 1.0.MANNINCS FRICTION IS’ 

ASSUMED. IF DK(I) IS GREATER THAN 1.0 THEN CHEZY FRICTION IS ASSUHEU 
IF(DK(I).LT.1.) GO T0 10 
CE(I)=DELT*GRAVI(DK(I)*DK(I)) 
GO TO 12 
CEtI)=(DELT*GRAV*OK(I)‘0K(I))/ 

$ (((H(I)+Z(I)+H(I+1)+Z(I+1))4*0.33333)*1.7621)
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0000 

CO 

12 CONTINUE 
*‘” SOLVE SYSTEM OF EQUATIONS TO 
*** FOUR SIGNIFICANT DIGITS 0R 
*‘* MAXIT MAXUIM NUMBER OF ITERATIONS 

MAXITzMAXSA 
CALL NONLIN(MAXIT,ISING,ISIGDIG) 

*** CHECK TO SEE IF SOLUTION OBTAINED 
IF(ISING.NE.0) GO TO 13 
PRIBT SOOoHAXITolTIME 

508 FORMAT(1OX,‘SOLUTION MATRIX IS SINGULAR AT ITERATION‘,IQ, 
+ *. TIME IS “915. ‘SECONDS ---- RUN STOPPED‘) 
STOP 

13 IF(MAXIT.GE.MAXSA) PRINT 6009ITIME 
600 FORNAT(1DX,*WARNING SOLUTION MAY NOT BE ACCURATE AT TIME *. 159* 

*SECCNDS‘) 
K=-1 
DO 05 I=1.IPR 
K=K*2 
V(I)=X(K) 
Z(I)=X(K+1) 
RHGT(IRUNS.I+1)=Z(I) 
VEL(IRUNS.I+1)=V(I) 4“ CALCULATE DISCHARGE ND FROUDE NUMBER 
DIS(IRUNS.I+1)=V(I)*B(I)‘(HTI)+Z(I)) 
FR(IRUNS.I+1) = OELTX(I)/((V(I)+V(I+1))'33.) 

05 CONTINUE 
PRIhT 7UOvITIMEoHAXIT 
PRIhT 800y(V(I)qI=19IPR) 
PRIhT 900.(Z(I)9I=1vIPR) ‘ 

700 FORMAT(1H/./s‘ ALL CALCULATIONS COMPLETE FOR TIME 
+ --- N0.0F ITERATIONS = *9I2,/) 

800 FORMAT (1H0,*VEL‘15X.20F6.2) 
900 FORMAT (1H 9“HEIGHT*92X,20F6.2) 

IF(ITIME.LT.ISTPT) GO TO 14 
RETURN 
END 
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SUBPOUTINE NEIGHT(CARD) "4* THIS SUBROUTINE READS THE HEIGHT CARD ‘** WHT= NEIGHTING FACTOR IN FINITE DIFFERENCE SCHEME ‘“* GRAV= GRAVITATICNAL CONSTANT. ‘*‘ MAXSA= MAXIMUM NO. OF ITERATIONS BY NONLIN ‘¥‘ NUMSIG= NUMBER OF SIGNIFICANT FIGURES CALCULATED DY NONLIN "* DEFAULT VALUES IF NO WEIGHT CARD IS PRESENT OR IF VALUES 0N *‘*‘ HEIGHT CARD ARE BLANK ARE **“ WHT=0o55 *‘4 GRAV= 32.2 *** MAXSA= 7 *" NUMSIG=5 *‘* THESE DEFAULT VALUES ARE SET IN THE MAIN PROGRAM 
INTEGER CARD(19),POINT 
COMMON/10/X(AD).NgMAXSAoPOINT(h0vkfl)vISU8(39)oTEHP(A0)c 

* PART(40)9C0E(AD§AI)pISIGDIG 
COHMON/ZG/IEQU(QG)oV(20)9B(20)yH(20)oZiZC).DELTX(ZG)9QL(ZO)9 

* DKKZODoIPRoLINK(#0)1LIN(20),IDELToISTPTcRHSvGRAV9HHT 
DECODE(7591009CARD) RApRBoIC9ID 

100 F09"AT(#X,F3.2;10X.FQ.2’8X5I2910X912) 
IF‘ID.GT.D)ISIGDIG=I0 ' 

IF(IC.GToD) HAXSA=IC I 

IF(RB&GT.0.C) GRAV=R3 
IF(RA.GT.D¢5T GO TO 01 
DRIFT 200

T 

295 F0RMAT(1HDQTWAFNING CHECK THAT COURANT STABILITY CRITERION IS ‘ SATISFIED AS SOLUTION MAY BE UNSTABLE‘) 
Di RETURN 

ENG 
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HIV-V- 

4¥¥ 
444 
as}; 
1&4 
4#¥ 
l-‘U 
444; 
¥¥5 
4&¥ 
‘¥¥ 
##4 
#44 
»¥4 
14* 
¥¥4 
4+4 

10 

15 

20 
30 
A0 
50 

SUBROUTINE CALCBC (ISECT91CODEQNRUN80I) 
THIS SUBROUTINE MUST BE USER SUPPLIED. 
IT IS SUPPOSED TO CALCULATE THE APPROPRIATE 
BOUNDARY CONDITIONS FOR THE MODEL AND PLACE 
THEM IN THE APPROPRIATE ARRAYS. 
THE I-TH BOUNDARY CONDITION IS TO BE CALCULATED FROM THE TIME STEP 
IRUNS+1 TO TIME STEP NRUNS AND PLACED IN THE ARRAY XBC‘ ’I). 
FUNCTION VALUES INETHIS SUBROUTINE MUST BE CHANGED BY THE 
USER TO SUIT HIS CASEoo.oa.. l 

ISECT = THE SECTION NUMBER AT WHICH THE I-TH BOUNDARY CONDITION 
OCCURS 

ICODE = THE TYPR OF BOUNDARY CONDITION 
1 VELOCITY 
2 HEIGHT 
3 DISCHARGE 

NRUNS = LTOTAL NUMBER OF NUNS TO BE COMPLETED - 

I = BOUNDARY CONDITION NUMBERoolEo. THE FIRST.SECOND...FIFTH 
BOUNDARY CONDITION ON THE VABC CARD 

COMMON l70/ XBC(100,5) 
GO TO (10920930oA015031 I 

II 

II 

II 

XBC(2.1) = 25o0 
XBC(3.1) = 30.0 
XBC(A.1) = 35.0 
DO 15 JJ=59NRUNS 
XBC(JJ91) = 40.0 
RETURN 
RETURN 
RETURN 
RETURN 
RETURN 
END 
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s44 
4¥~ 
444 

100 
10 

15 

SUBROUTINE READBC(ISECTvICODEvNRUNS,I) 
THIS SUBQOUTINE MUST BE USER SUPPLIED 
IT IS SUPPOSED To READ IN THE APPROPRIATE BOUNDARY 
CONCITIONS AND PLACE THEM IN THE PROPER ARRAY. 
COMMON l70/ XBC(100.S) 
DO 10 J=6.65,12. 
II=J+11 
READ 10C. (XBC(K.I). K=J.II) 
FORVAT¢20X.12(FA.2))' 
CONTINUE 
DO 15 J=5.65 , 

XBC(J.I) = XBC(J.I) - 76.80 
RETURN 
END 
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444 
44* 
§¥¥ 
44a 
#44 
«44 
*V-A‘ 
#44 
444 
¥¥¥ 
#‘uv- 
¥44 
u4¢ 
##4 
#5:- 

~¥¥ 
+¢4 

'0cat)oc5C>ocOCUC)oc7c>n<1C>n<7 

c ¥¥# 
c ¥¥¥ 

100 

C4¥¥¢ 

200 
“#4 
¥¥¥ 
#4?- 

COO 

~4¥. 

SUBROUTINE DATA(CARD) 
THIS SUBROUTINE REAOS IN ALL OATA PERTAININC To SECTION I ANO SETS UP INITIAL EQUATION TYPES. I: SECTION NUMBER 
V(I)=INITIAL COESS AT VELOCITY Z(I)=INITIAL GUESS AT STAGE ABOVE OATOM. +VE IF ABOVE OATUM ' 

.-VE IF BELOH OATUM 3(1): TOP HIOTH OF MAIN CHANNEL SECTION H(I)= DEPTH OF SECTION BOTTOM BELON OATUM +VE IF BOTTOM IS BELOH OATuM -VE IF BOTTOM IS ABOVE OATOM DELX(I)= DISTANCE BETWEEN SECTION I ANO SECTION 1+1 ‘QL(I)=LATERAL INFLON PER UNIT LENGTH BETNEEN SECTION I AND SECTION I+1. DK(I)=FRICTION FACTOR BETWEEN SECTION I AND SECTION I+1. IF DK(I)oLT.1 .MANNINCS FRICTION IS ASSOMEO. IF OKTI).CT.1. CHEZY FRICTION IS ASSUMMEO. 
INTEGER CARD(19) 
COHMON/ZO/IEQU(#O)9V(20)93(20)9H(20).Z(ZD)oDELTX(20)9QL(23)o * DKCZO)yIPRwLINKTAO)yLIN(20)oIDELTyISTPTgRMSsGRAVoNHT DATA ISR/QHDATA/ 
DECODE SECTION NUMBER DECCDE (#9100’CAR3) I FDRMAT(1X,IZ¢1X) 
CALL CHECK(I,ISR) 
DECDDE SECTION PROPERTIES DECODE(76,ZJDOCARD) V(I)92(I)sB(I)oH(I)qflELTX(I)sQL(I)'DK(I) 
F0RHAT(QXyFk.2g1XpF5¢2.1XpFS.1'1XyFS.2,1X9F7.191XOF5o3’1XyF#.O) SET UP INITIAL EQUATION TYPES IN IEQU ARRAY AND REACH NUMBERS IN LINK ARRAYoTHESE NUMBERS ARE MODIFIED IN HAINBoBRANCHyAND VAREC SUBROUTINES. 
IN=2*I 
IV=2*I-1 
IEQU(IV)=1 
LINK(IV)=I 
IEQU(IN)=3 
LINK(IVI=I 
RETURN 
END 
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SUBROUTINE MAINFHCARD) 
*‘”‘ THIS SUBROUTINE PROCESSES HAIN CARD *"‘ IT SETS UP BOUNDRY CONDITIONS FOR THE MAIN BRANCH "”’ THE POSSIBLE BOUNDRY CONDITIONS ARE 44+ FIXED HEIQHT_-4 EQUATION TYPE 3 AAI FIXED VELOCITY-- EQUATION TYPE A ¥** FIxED DISCHARGE -- EQUATION TYPE 5 III BOUNDRY CONDITIONS MAY OCCUR AT ANY SECTION IN THE MAIN ¥** BRANCH OF THE RIVER SYSTEM. AIP HHICH COVERN A BRANCH. 4“ NOTE THAT THE CLOSER THE THO DOUNDRY CONDITIONS ARE To EACH *¥¥ OTHER THE HIGHER IS THE PROEADLE ERROR IN THE SYSTEM, AND THE EYE HIGHER IS THE SENSITIVITY OF THE SYSTEM TO THE BOUNDARY CONDITIONS #4: 

INTEGER CARD(19) - 

CDMMON/ED/IEQUTAO).VIED),B(EDT.H(20).Z(20).DELTX(20).QLIEDT. #‘ DKIEOT,IPR,LINK(AQ).LINTZOT.IDELT.ISTPT.RMS.CRAv.wHT 
DATA INF.IOUTF.IHEIC.IVEL/AHINFL.AHOUTF.AHHEIG.AHVELO/ 
OATA‘IDIS/SHDIS/

) DATA ISR/AHMAIN/ ,Y ., ,-
7 

¥‘4 DECCDE MAIN CARD.HAIN BRANCH FROM SECTION 1 TO SECTION I. DECODE152.IDO.CARD)‘I.IU,ICA.ID.ICB 
130 FDRMATI9X.I2;8x;Iz.7x,AA.7x.Iz.7x,AA) 

CALL QHECK(I.ISR). . I 
A g . 

. 

. . ¥¥¥ DECIDE ON EQUATION TYPES FOR BOTH BOUNDARY CONDITIONS ”IF(ICA.EQ.IHEICTIE=3 
IFIICA.EQ.IVELT IE=A 
IF(ICA.E0.IDIS) IE=5 
IF(ICB.EQ.IHEICTIS=3, 
IF(ICB.EQ.IVEL)'IS=A 
IFIICD.EQ;IDIS) IS=S » 

I 
'

' 

~¥# UPSTREAM BOUNDARY CONDITION AT SECTION IU IS TYPE ICA. ¥*E DONNSTREAH BOUNDARY CONDITION AT SECTION ID IS TYPE ICC. P+P UPSTREAHWBC EQUATION TYPE PLACED IN IEQU(Z*I-1) -‘P DONNSTREAM BC EQUATION TYPE PLACED IN IEQU(Z*I) IEQU(2*I-1)=IE 
LINK(2‘If1)=IU 
IEQU(2‘I)=IS 
LINKI2¥IT=ID 
RETURN 
END 
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SUBPOUTINE BRANCH(CARD) _ 

4*“ THIS SUBROUTINE PROCESSES BRANCH CARD 
‘*4 IT SETS Up THE BOUNDARY CONDITIONS WITHIN THE BRANCHES AND 
*** LINKS THE BRANCHES TO THE REST OF THE SYSTEM 
*'* EQUATION TYPES SET IN THIS SUBROUTINE OVERRIDE THOSE 
u4v SET UP IN SUBROUTINE *0ATA‘ *" NOTE THAT SECTIONS INVOLVED IN A BRANCHING MUST NOT BE 
*“T USEO AS BOUNDARY CONDITIONS. 
TIE JUNCTION EQUATIONS ARE AS FOLLOWS 
*4“ FIXED WATER LEVEL BETWEEN SECTIONS IoJ = EQUATION TYPE 6 
III INFLON JUNCTION CONTINUITY EQUATION = EQUATION TYPE 7 
*‘¥ OUTFLOW JUNCTION CONTINUITV EQUATION = EQUATION TYPE 3 

INTEGER CAROIIQTvOUT ' 

COMMON/ZU/IEQU(AU)1VIZD)ORI20)9H(20)QZ(20)QOELTX(20)QQL(29)1 
T OKIZOTQIPRgLINKIQU)9LIN‘ZO)9IOELTQISTPTQRMSoGRAVQWHT 
DATA IFIXqIFRQIVELoIHEI/QHFIXE’HHFROMQQHVELOQQHHEIG/vITO/AHTO / 
DATA IOIS/3HOIS/

I 

DATA ISR/4HBRAN/ 
u4¥ 

OECODEITB’IOOoCARD)ISyIEvICA’ITAQICBQITQ 
CALL CHECK(IE¢ISR) 
CALL CHECK‘ISyISR) 
IEN=2IIE'i 

*‘T IF INFLOW TO BRANCH IS FIXED VEL OR HEIGHT OR DISCHARGE 
*T“ USE THIS SECTION TO SET EQUATION TYPE 

IFIICAoNEoIFIX) GO TO 01 
IFIITAoEO-IVEL)IEQU(IEN)=Q 
IF‘ITAoEOoIHEITIEQU(IEN)=3 
IF‘ITAeEQoIOIS)IEQU(IEN)=5 
LINK(IEN)=IS 
GO TO 02 

Ol IF(ICA0NE0IFR) GO TO US 
OECCOEI76sZUUyCARO) INL "* THIS SECTION SETS EQUATION TYPES IF INFLOW IS FROM INL. 
CALL CHECK(INL9ISR) 
IEQU‘ZTINL‘1)= 6 
IEOUIZ“INL)=6 
LINK(2*INL'1)=INL+1 
LINKIZ‘INL)=IS 
IEQU(2*IS‘1)=7 
LINKI24IS‘1)=INL 
LINKI2“IE‘1) = IS 

#4» 
‘TE IF OUTFLOW FROM BRANCH IS FIXEDQSET EQUATION TYPES HERE 
02 IFIICBoNEoIFIX) GO TO 03 

IF(IT3¢EQ°IHEI) IEOUIZIIE)=3 
IF(ITH¢EQ.IVEL) IEOUI2¥IET=H 
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C

C 

##4 
03 

09 
¥+ 
35 

100 
230 
300 
#36 

IF(ITB°EQ-IDIS)‘IEQU(2‘IE)=5 
LINK(2*IE)=IE 
GO TO U# 

_

‘ 

THIS SECTION SETS EQUATION TYPES IF OUTFLON IS TO CUT 
IF(ICB.NE¢ITO) 50 T0 05 
DECODE(76v3UCoCARD) OUT 
CALL CHECK(OUT'ISR) 
IEQU(2¥OUT'3)=E 
LINK(2‘OUT-3)=0UT 
IEQU(2¥0UT-2)=6 
LINK(2“OUT‘2)=IE 
IEQU(2*IE)=8 
LINK(2‘IE)=OUT'1 
LINK(2*IE'1)=IS 
RETURN 
ERRCR IN BOUNDARY CONDITIONS 
PRIFT #00 
STOP 
FORMAT(8X.129QX91218X0A992X9A#113x9fl“92XvA“, 
F0RMAT(29X9I2) 
FORMATKSZXQIZ), 
FORNAT(1UX9‘INC0RRECT KEY WCRD IN BOUNDARY C0NDITIONS*.///9 

* 10X,'ST09 RUN‘) 
END 
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SUBROUTINE PRINTICARD) 
THIS SUBRDUTINE PRINTS TABLES OF VALUES 
CALCULATED BY THE MODEL. 
THESE TABLES ARE: 
1. WATER LEVELS 
2o VELOCITY 
DISCHARGE 
TRAASIT TIME THROUGH THE REACH. 
THE TIME UNITS IN THE TABLE MAY BE IN SECsMIN'OR HRS. 
THE DATUM OF THE WATER LEVEL MAY BE ADJUSTED IF NECESSARY. 
INTEGER CARDTiQ) 
COMMON/30/RHGT(100.21)oVEL(100921):DIST100921)9FR(100'21) 
COHPON/SO/IswlUNS 
DATA ISR/AHPRIN/ 
DECODE (759110.CARD) IPToINCoDATUM 
CALL CHECK(IPT.ISR) 
ITF=IPT+1 
IF(INC.EO.3HSEC) GO TO 01 
IF(INC.EQ.3HMIN) FAC=66. 
IF (INCOEQ03HHRS) FAC = 3600. 
DO 51 I=19IRUNS 
RHCT(I91) = RHGT(I,1)/FAC 
VEL(I,1) = VEL(I.1)/FAC 
DIS(Ioi) DIS(I.1)/FAC 
FRIIvl) = FR(Iql)/FAC 
CONTINUE 
PRIhT 1103 
DRIhT 1203yTIoI=1qIPT) 
DO 04 I=19IRUNS 
DO 53 J=29ITF 
RHGT(I.J) = RHGT(I9J) + DATUH 
PRIhT 13DU.(RHGT(I9J)¢J=1oITF) 
CONTINUE 
PRIBT 1A00 
PRINT 12009(IsIf1sIPT) 
DO 05 I=1yIRUNS 
PRIhT l3DJ,(VEL(IqJ)9J=1qITF) 
CONTINUE 
PRIhT 1500 
IF(ITFoGT.10) GO TO 07 
PRIhT i700oTI9I=1oIPT) 
DO 06 I=1sIRUNS 
PRItBOOo(DIS(IvJ)yJ=1sITF) 
CONTINUE 
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0000C) 

DOC) 

GO To 09 
07 FRIAT1700.TI.I=1.10) 

PRIAT 1750. (I.I=11.IPT) 
OO cg I=1.IRUNS 
PRIBTISOO.(DISIIvJ)3J=1911) 
PRIhT1850.(OIS(I.J)9J=12,ITF) 

06 CONTINUE 
09 PRIATIBGD 

pRITT 1900. (I.I=1.IRT) 
DO 10 I=1.IRUNS 

‘

- 

FRIFT.2000.(FR(I.J).J=1.IPT) 
10 CONTINUE 

RETURN 
110 FORMAT(14X.IE.9X»A3,1UX.FS.2) ‘

- 

1100 FORMATT1H1.A5X,¥TADLE CONTAINING HEIGHTS vs TINE¥./T 
1200 FORMATT1H ,*TIME495X920(I29HX).I) 
1300 FOQPAT(1H .F7.0.2X.20(F5.2.1x3) 
1u00 FORMATTIH1.A5X.*TABLE CONTAINING VELOCITY vs TIME*./) 
150: FORRATT1H1.ASX,¥TABLE CONTAINING DISCHARGE vs TIM5*,/)

_ 

1600 FORMATT1H1.ASX.*TABLE CONTAINING TRANSIT TIME IN REACH*./) 
1700 FORMAT(1H .4TINE¥,5x,10(5x.Ie.5x1,/) 
1750 FORMAT(1H .ax.10(10x.12)) 
1830 FORMAT(1H ,F?.0.2X.10(F10.1,2X)T 
1850 FORMAT(1H .11x.10(2x.F10.1)) 
1900 FORMAT(1H 5*TINE*.ZO(AX.IZTT 
2000 FORMAT(1H .F7.0.1X.19F5.1) 

END 
FUNCTION FUN(K) 

41-!- 
**+ THIS SUBROUTINE IS CALLED BY NON-LIN AND TADULATES THE 

EQUATIONS OF MOTION OF THE SYSTEM #44 NONoLIN DETERMINES VALUES OF THE VARIABLES SUCH THAT #44‘ FUN=0.000 IN EACH CASE 
INTEGER POINT

, 

CONNON/ID/XTAO).N,MAXSA.POINT(40,40).ISUOT39).TEHP(AO). 
1 PARTtkO),COE(aO,k1).ISIGDIG . 

CONVON/20/IEOU(40T.V(20).8T20).H(20).z<20).DELTXTZOI.OLT20). 
* DRTZO).IPR9LINK(40).LIN(20).IOELT.ISTPT.RNS.GRAV.NHT 
COHNON/AD/CAT19).CBT19).CCT19).CDIIDT.CET19).HTST19). 

* 00119),VFT19),OZT19).ZP(19).AS(19).ZO(19).NHTN.HN(19) 
14.4» 
:4# FIND EQUATION TYPE 
luv-4 

IR=IEQU(K)
I IF(IR.LT.1.0R.IR.GT.9) GO TO 10 

GO “W CONTINUITY EQUATION 

108



T) 

01 

11.441 

32 

~44 
01+ 

4¥+ 
53 

«HH- 
85 

N45 
0 6 

¥-v-¥ 

U7 

IN=LINK(K) 
J=2“IN-1 
CN=ZO(IN)+NHT’(X(J)+X(J+2)D 
FUN=CA(IN)*(X(J*1)+X(J+3)-ZP(IN!)+(HTS(IN)+WHT*(X(J+1)+X(J+3)))* 

(UV(IN)+NHT*(X(J+2)-X(J)))+CH4(HN(IN)+WHT*(X(J+3)-X(J+1))) - 

+ (HTS(IN)+NHT‘(X(J+3)+X(J+1)))‘CD(IN)*CN—CB(IN) 
RETURN - 

NCNENTUN EQUATION 
IN=LINK(K) 
J=2‘IN 
CU=DZ(IN)+NHT*(X(J+2)-X(J)) 
CU=2.*CU 
CV=ZO(IN)+NHT“(X(J-1)+X(J+1)) 
CX=1./(HTS(IN)+NNT4(X(J)+X(J+2)TT 
sHN(INT+NNTR(X(J+2)-X(J)T 
CZ=CV(IN)+HHT*(X(J+1)-X(J-1)) 
CS=X(J-1)+X(J+1)-VP(IN) 
FUN=CC(IN)*GRAV‘CU + 1.O*Cs + CV‘(CX*(1.U*(X(J)+X(J+2)-ZP(IN)) 

+CE(IN)4ABS(CV) + CC(IN)*CV*CN) + CCtIN)*(CV‘CD(IN) + 2.*CZ)) 
RETURN 
BOUNDARY CONDITION -FIXED VELOCITY 
IN=LINK(K) 
Iv=2+IN-1 
FUN=X(IV)-V(IN) 
RETURN 
BOUNDARY CONDITION ~FIXEO HEIGHT 
IN=LINK(K) ' 

IV=2*IN 
FUN=X(IV)-Z(IN) 
RETURN . 

BOUNDARY CONDITION -FIXED DISCHARGE 
IN=LINK(K) 
IV=2‘IN 
FUN=X(IV-i)*B(IN)*(H(IN)+X(IV))-V(IN)*8(IN)¥(H(IN)+Z(IN)) 
RETURN 
JUNCTION CONDITION -FIXED HEIGHT 
IJUN: 2*LINK(K) 
IV=(K+1)/2 
IVI= 2‘(IV) 
FUN: X(IVI)-X(IJUN) 
RETURN 
CONTINUITY AT DIVERGENT JUNCTION 
OBTAIN SECTION NUMBERS 
IN=LINK(K) 
IBN=K/2+1 ’

, 

IHN=IN+1 
CONTINUITY EQUATION 5 

FUN: XiZ‘IN-l)*3(IN)‘(H(IN)+X(2‘IN))~X(2‘IBN-1)*B(IBN)‘(H(IBN) 
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C #4!
C 
>08 

09 

10 
100 

* +X(2*IBN)i-X(2*IMN-1)*B(IHN)¥(H(IMN)+X(2‘IMN)) 
RETURN 
CONTINUITY AT CONVERGENT JUNCTION 
OBTAIN SECTION NUMBERS ’ 

IN: LINKKK)+1 
IBN=K/Z 
IMN=LINK(K) 
CONTINUITY EQUATION 
FUN=X(Z*IN-1)*B(IN)‘(H(IN)+X(2*IN))-X(2*I3N-1)*B(IBN)4(H(IB 

‘ +X(2‘IBN)) - X(2*IMN-1)*B(IMN)*(H(IHNI+X(2*IMN)) 
RETURN 
CONTINUE 
RETURN 
PRIhT 100 '

- FORMAT(1H0,*UNRECOGNIZABLE EQUATON TYPE ---RUN STOPPED‘) STOP . 

END 
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SUBROUTINE 
C 44» 
C'“*‘ SUBROUTINE 
C +‘+ 

CHECK(IvISR) 
CHECKS TO SEE IF I IS BETWEEN 1-21 

IF(I.LE.21.ANO.I.GE.1)RETURN 
PRIBT 1U3oI9ISR 

100 FORMAT(1HCo *DATA POINT NUMBER =¥.13.4 IN SUBROUTINE 
+ * ----- STOP RUN‘) 
STOP 
END 
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SUORoUTINE MONLIN(MAXIT,SINGLE.NUMSIGT 
THIS SURROUTINE‘SOLVES NON-LINEAR EQUATIONS. 

CONVERGENCE IS ROUGHLY QUADRATIC 
SOURCE ALGORITHM 316 COMMUNICATIONS OF ACM 

VOLUM310.NUMBERII.NOVEMBER.1967.....INCLUDING THE 
SUGGESTIONS IN CCM.0F A.C.M. VOL.14.N0.7.JULY.U 

1971. P.A93 

IMPLEMENTED IN FORTRAN ev RYAN RAz. FEBRUARY 1974 
COMPUTER COO 3103 MASTER 0.5. 
ARGUEMENTS ANO DIMENSIONS 

N NUMBER OF EQUATIONS 
MAXIT MAXIMUM NUMBER OF ITERATIONS TO BE MADE 

NUMBER ACTUALLY MADE RETURNED IN MAXIT 
NUMSIG NUMBER OF SIGNIFICANT DIGITS DESIRED 
X(N) INITIAL GUESS TO SOLUTION, AFTER EXECUTION 

IT IS THE SOLUTION 
FUN NAME OF FUNCTION FUN(X,KT= K TH FUNCTION 

EVALUATED AT X19XZ,...XN 
SINGLE VALUE RETURNED BY NONLIN 

SINGLE= 0 JACOBIAN MATRIX SINGULAR 
= 1 SOLUTION OBTAINED 

p0INT(NoN)vISUB(N-1)gTEMP(N)pPART(N),COE(NoN+1) 
WORKING ARRAYS '

. 

SUBROUTINE NEEDED BACK 
INTEGER POINT95INGLE9CONVRGqTALLY 
C0MM0N/10/X(h0).N.MAXSAnINT(A0s40)yISUB(39)vTEMD(40)v 

PART(AO)9C0E(40991)qISIGDIG - 

LOGICAL SNT 

CONVRG=1 
SINGLE=1 
QELCON=19.““(-NUHSIG) 
DO 14: M=IQHAXIT 
00 005 J=11r 
POINT(1’J)=J 
SHT=OTRUEI 
DO 100 K=19N 
IF‘SWT)GO T0 010 
CALL BACK(K) 
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010 F=FUN(K) 
FACTOR=o001 

020 TALLY=0 
DO 0#0 I=KvN 
ITEPPiPOINT(KoI) 
HOLD=X(ITEHF) 
H=FACTOR°HOLO 
IF(FoEQoo0)H=FACTOR 
X(ITEMP)=HOLO+H 
IF(SWT)GO TO 030 
CALL BACK(K) 

030 FPLUS=FUN(K) 
pART(ITEMP)=(FPLUS-F)/H 
X(ITEMP)=HOLD 
IF(ABS(F/AMAX1(015-1009ABS(PARTCITEMP))))oGT.01§20)TALLY=TALLY+1 

040 CONTINUE 
IF(TALLY.LE.N-K)GD T0 USU 
FACTOR=FACTOR‘1U.J 
IF(FACTOR.GT..S)GO T0 150 
GO TO 020 

BBC IF(K.LT.N)GO T0 065 
IF(ABS(PART(ITEHP)).LE.OlE-100)GO T0 156 
COE(K,N+1)=U 
KMAX=ITEM° 
GO TO 95 

C50 KMAX=POINT(K.K) 
JERNAX=ABS(PAQT(K4AX)) 
KPLCS=<+1 ‘ 

30 CBS I=KPLUS.N 
J§UR=POINT(KsI) 
TEST=ABS(PART(JSU3)) 
IF(TEST.LT.D€RMAX)GO T0 070 
DERMAX=TEST 
DOINT(KPLUS»I)=KMAX 
KMAX=JSUB 
GO TO 080 

070 POINT(KPLUS,I)=JSUB 
080 CONTINUE , 

IF(ABS(PART(KMAX)).LT.01E-100)GO TO 150 
ISUB(K)=KMAX 
COE(K9N+1)=U 
PARTS=PART(KMAX) 
DO 090 J=KPLU31N 
JSUB=POINT(KPLUS,J) 
COE(K.JSUB)=-PART(JSUB)[PARTS 

S90 COE(K9N+1)=COE(KoN+1)+PART(JSUB)*XKJSUB) 
95 COE(K9N+1)=(COE(K1N+1)-F)/PART(KMAX)+X(KMAX) 

130 SWT=9FALSEo 
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X(KMAX)=CDE(NvN+1) 
IF(hoGT91)CALL BACK(N) 
IF(P.EQ.1)GO T0 135 
00 115 =loN 
IF(ABS((T$¥9(I)-X(I))/AWAK1(ABS(X(I))oiS°1CCi).GT.RELCON)GO TC 
CONTINUE 
co~vwc=cowvac+1 
IF(CONVRG.GE.3)GO T0 160 
GO TO 130 
CONVRG=1 
CONTINUE 
JO 1&9 I=1.N 
TEWP(I)=X(I) 
RETURN 
SINGLZ=E waxxs 
aaruwu 
EMF: 
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SUBROUTINE'BACK(K) 
SUBPROGRAM NEEDED 3v NONLIN 

BACK SOLVES A TRIANGULAR LINEAR SYSTEM 

INTEGER POINT 
COHMON/lfl/X(h0).N.MAXSA,POINT(Q0940)oISUB(39)oTEHP(4O)9 

4_ PART(#U),C0E(#09Q1)vISIGDIG 
KM=K 
KMAX=ISUB(KM-1) 
X(KPAX)=0 
DO 02 J=KM,N 
JSUB=POINT(KH.J) 
X(KMAX)=X(KMAX)600E(KH°1,JSUB)‘X(JSU3) 
X(KVAX)=X(KMAX)+COE(KM-1,N+1) 
KM=KM-1 
IF(KH.GT.1)GO T0 01 
RETURN 
END 

HFINIS 
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