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ABSTRACT

Closure and reclamation of open pit mines in British Columbia will allow pits to fill with
runoff and groundwater. Some pit waters contain elevated heavy metals concentrations and
eventual overflows may pose a risk to aquatic resources. For this reason, Environment
Canada asked the authors to examine hydrodynamic mixing of pit waters, using as a model,
the very large Brenda Pit in south central British Columbia.

This paper provides an analysis of the hydrodynamics of a deep, temperature and
salt-stratified filled pit. Bulk parameters suggest that vertical entrainment of a deep layer is
unlikely but that horizontal wind mixing might be important. Modelling shows that the
water column should undergo 'overturn’; a feature not shown in the observations of
dissolved oxygen. Field observations also show a persistent deep warm salty layer for which
an explanation is offered.

RESUME

La fermeture et la restauration des mines a ciel ouvert en Colombie-Britannique permettra
leur remplissage par les eaux de ruissellement et I'eau souterraine. L'eau de certaines mines
contient des concentrations élevées en métaux lourds et les débordements éventuel
pourraient représenter un danger pour les ressources aquatiques. Pour cette raison,
Environnement Canada a demandé aux auteurs d'analyser le mélange hydrodynamique des
eaux contenues dans les mines, en utilisant comme modéle, la trés grande mine Brenda
située dans le centre-sud de la Colombie-Britannique.

Ce rapport documente une analyse de I'hydrodynamique d'une mine profonde remplie de
couches d'eau, stratifiées par des températures et salinités différentes. Les paramétres du
modele indiquent que I'entrainement vertical d'une couche profonde est improbable mais
que le mélange horizontal par le vent pourrait étre important. La modélisation montre que
la colonne d'eau devrait subir un < <renversement>>, une caractéristique non révélée par
les observations de l'oxygéne dissous. Les observations sur le terrain indiquent également
une couche salée chaude persistant en profondeur pour laquelle une explication est
présentée.
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Thermal Structure of Water-Filled Mine Pits

§1. INTRODUCTION

The Brenda Mines Pit near Peachland in the Okanagan region was closed in
1990 and the main pit area has been gradually filling with water to the point where
it now contains approximately 20 x 10% m® of water in a pit lake that is over 120
Iﬁetres deep. If the present filling strategies are maintained the pit will overflow
sometime in around 10-20 years, releasing pit water into the local stream system.

There is a need to quantify the vertical stability of the water in the mine pit.
This knowledge serves two purposes; (i) it identifies the likelihood of the water
presently at the bottom of the pit being mixed to the surface and (ii) it allows
projection of different conditions to estimate whether a layer can be injected into
the base of the water column in such a way that is protected from surface energy

fluxes and consequently be effectively capped.

§2. REVIEW

Physical limnology, that is, the study of the physical behaviour of lakes and
other inland waters, is a relatively new and sparsely populated field of resea,rél;,
The early work that provides broad classification of the thermal structure and mix-
ing in lakes (Wetzel 1983) must now be adjusted to incorporate new understanding
(Imberger and Patterson 1990).

Wetzel (1983) states that

a number of lakes do not undergo complete circuiation and the primary water mass does
not mix with a lower portion. Such lakes are termed meromictic. In meromictic lakes, the
deeper stratum of water that is perennially isolated is the monimolimnion... The two strata

are separated by a steep salinity gradient which is called the chemocline.

Thus, it is expected that it is desirable that a water filled mine pit be meromictic.
Other studies of relevance to the topic include those concerning nearby Mahoney

Lake (Northcote and Hall 1983, Ward et al. 1990), a shallow meromictic lake that
has its strong stability maintained by salinity. In addition, and possibly more
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relevant, is the study of the Berkeley Pit in Montana, described by Davis and
Ashenberg (1989). This pit has remarkably similar dimensions to the Brenda Pit,
however the density stratification is totally dominated by dissolved salts, whereas
temperature appears to play a significant role in the stratification of the Brenda

Pit (Stevens et al. 1994).

The physical mechanisms of importance in the epilimnion are often described by
“mixed layer” models (Imberger 1985) whilst transport in in the hypolimnion
in more typically described by quasi-empirical descriptions (Hondzo and Stefan
1993), although the mixed layer models do tend to rely heavily on coefficients from
observations also. The energy fluxes in and out of the water column are often not
emphasized enough in field studies (Fig. 1). The difficulties encountered when
modeling Ice-cover are described by (Patterson and Hamblin 1988) and Rogers
(1992).

§3. SITE DESCRIPTION AND AVAILABLE DATA

The Brenda Mines pit i1s at present around 130 metres deep allowing for debris
settlement (Fig. 2). The pit has an averaged radius near 130 metres at the
base and around 350 metres at the surface. Comparison with other meromictic
lakes in the Pacific Northwest (Walker 1974, Northcote and Hall 1983, Ward et
al. 1990) reveals that it is much deeper than the natural lakes surveyed. The
shoreline formed by the old pit walls rises quite steeply providing in the order of
100 metres of sheltering on most sides.

The Brenda Mines company have been collecting monthly data for the majority of
the period running from mid 1992 to the present. These data include temperature
and dissolved Oxygen profiles at 10 metre intervals throughout the water column
(Fig. 3). In addition there are analyses of the chemical composition from these
profiles and some wind observations from a nearby observation post. This data-set

forms one of the more extensive compilations for this type of water body.
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Data for the Brenda Mines Pit and other mines around the Province and in neigh-
bouring provinces is collated in Appendix iii (¢/- R. McCandless).

In addition to this data the Environmental Fluid Mechanics Group in the De-
partment of Civil Engineering at the University of British Columbia recorded
Conductivity-Temperature-Depth profiles in March and May of 1994. This instru-
ment records rapidly giving sub-metre scale spatial resolution in the vertical. It
provides a more complete picture of the density structure (Fig. 4). The profile
definitely indicates a pool of warmer water right at the very base of the pit. Be-
cause of the bathymetry it does not represent a large volume; however its existence
is puzzling and means that the physics and possibly chemistry of the pit lake is not
as simple as it might “normally” be. More complete information from the profiler
is included in Appendicies iv and v. The comparison between the two profiles is
discussed in Appendix vi.

In terms of providing a sound basis for numerical modeling the greatest deficit
in the data lies in the lack of weather data specific to the pit. This is of more
importance than the temperature and oxygen structure in many ways because it
is used to drive the simulations whereas the vertical stratification data is used

simply as a check.

§4. PARAMETRIZATION
Here we consider non-dimensional parameters based on the scales of the Brenda

Pit to infer its likely behaviour.
4.1 Wind circulation above the water surface

The steep walls of the unfilled portion of the pit suggest a certain degree of protec-
tion from the wind; however on-lake visual observations clearly indicate that there
is substantial wind energy transferred to the surface waters, with reasonable chop
developing over the 700 metre maximum fetch. To categorise the wind behaviour

we may consider the air in the pit above the water to form a cavity. A Reynold’s
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Number based on cavity length (1000 metres) and typical air speed during a period
of mixing (say 10 m/s) may form part of a Reynolds Number, Re, to indicate the
nature of the flow. Hence

Re = o (1)
where v, is the kinematic viscosity of air (16x107°m?s™!) and results in Re =
6 x 10%. This is four orders of magnitude greater than laboratory experiments
described by Koseff and Street (1985) (comparisons must be made with their high
Richardson’s Number experiments) and even at their reduced Re they encoun-
tered highly turbulent flow; we would expect the same at the water surface. It is
reasonable to expect that it is attenuated in magnitude however it is difficult to
say by how much without measurement. Systematic directionality is unlikely.
The average effective wind speed at the water surface will decrease as the aspect
ratio Hy /L is increased, where H,, is the height of the wall. However substantial
decreases are only likely to be felt when H,, /L = 1 as the cavity flow should split
into a series of cells of similar dimension. The Brenda Pit has an aspect ratio of

closer to 0.1.
4.2 Vertical Entrainment

An entrainment velocity may be estimated. This value describes the mean down-
wards velocity of the thermocline region under the action of stirring.

The experiments of Kranenburg (1985) and earlier have been compiled to provide
a model for deepening of a recirculating wind driven surface layer. One of the
greatest difficulties with laboratory simulations has been the surface layer to basin
length aspect ratio A = h; /L. In lakes this ratio is typically of order 0.001 however
laboratory experiments rarely achieve values less than 0.01. The Brenda Pit, due
to its small fetch, is actually more relevant to this entrainment literature than the

applications for which it was intended! It has an aspect ratio of around 0.014.
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The entrainment law is given by

Ux
Ue = CIE (2)

where the Richardson Number R: is an indicator of stability

. g'h
Ri = uil’ (3)
and
Ap
! —_— —
g = 20 g

is the modified gravitational acceleration. The density difference, Ap between the
epilimnion and the hypolimnion is required as is the thickness of the upper layer

ki and the friction velocity at the surface u.. The friction velocity is given by

u. = ,/Cp22T, (4)
Po

u, is the surface drift velocity, the drag coefficient is given by Cp = 1.3 x 10~2 and
the density of air may be taken as p, =~ 1.2 kgm 3. The experimental coefficient
C is generally assumed to hold a value of 0.23.

Substitution of conservative (in the sense of describing more energetic events than
would be the norm) summer time values (U = 10m/s, Ap = 1 kgm™3, hy = 10
m) gives a ux = 12 mms™?!, R: & 700 and hence u, = 4 x 107® m/s. This suggests
vertical penetrations of 0.3 of a metre in a 24 hour period. It can be imagined
that this small value is significant if the U were to persist for say a month. This

persistence is unlikely.

4.3 Upwelling

In recent years it has become apparent that much of the “vertical mixing” in lakes
is due, not solely to vertical turbulent transport, but also to horizontal motions
generated at the same time. These motions can bring the hypolimnion to the

surface at one end of the lake, exposing it to the wind and resulting in enhanced
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mixing. To parametrize this behaviour the Richardson number described by (3) is
combined with the surface layer aspect ratio A in a factor termed the Wedderburn

Number

W = Ri.A. (5)

A W > 1 represents stability whilst W <« 1 represents a high probability of
mixing. Values around unity represent transition where the timescales of internal
waves must be examined before the mixing can be anticipated (Stevens 1992).

Here we find that W, for the selected conditions is approximately equal to 10 which
suggests that perhaps some consideration should be given to internal waves; the
fundamental internal seiche is around 1.3 hours at the selected conditions. This
implies that even the highly variable wind conditions in the pit might still have
sufficient time to generate upwelling mixing. None of the numerical models known

to the authors includes this effect.
4.4 Buoyancy Inflows

Here we will consider two different buoyancy inflows; the first is that of the pumped
Tailings Pond water; in 1993 alone 2.6 x 10° m® of water was pumped into the
pit (H. Larratt, pers. comm.). The second buoyancy inflow is that which has
been observed to occur during some storm events. The storm generates waves
which in turn break on the shore and create a silt laden flow. This has, in one
instance, been observed to sink and samples taken at 70 metres indicated a band
of silt laden water. The interesting point is that while the storm driven plume
is observed to sink, the Tailings Pond water spreads out over the surface in the
manner of a positively buoyant plume. This occurs even though the Tailings Pond
water is injected into the pit by running it down the steep pit walls. Presumably
the walls in the region of the pumping are now relatively clean and thus these
inflows do not entrain significant levels of silts.

The tailings pond is relatively shallow (only a metre or so) and thus is likely to
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heat up substantially more than the deeper pit lake; this is partially because of
the depth limiting the volume which is being heated. If we assume an inflowing
density difference Ap; = 0.2 kgm™3 (roughly 2 degrees) enters the lake with a
given velocity we can use a parameter equivalent in form to (3) but now related to
Ap;, the inflow velocity u; and the inflow thickness, 6. The latter two are difficult
to infer but if we assume the inflowing layer is 0.01 m deep then assuming it occurs
over 1/4 the circumference of the pit then u; = Q/(circum. X §) where @Q is the
flow rate. Assuming the volume stated above is injected over 4 months @ = 0.25
m3s~!, circum=>550 metres then u; = 4.5 x 1072 ms™!. Consequently the inflow
Ri; = Ap;6/u? has a value of around 10~2 indicating that it will mix vigorously
upon entering the epilimnion. Thus, the inflow can be expected to form a bulk

flux to the entire epilimnion without forming a near-surface layer.

§5. MODELING

Here we describe an energy based approach as outlined by Fisher et al. (1979) and
partially described by Ward et al. (1990). The diffusion based model described in
Stevens et al. (1994) is still under development. The energy approach calculates
the amount of potential energy in the water column; an increase in the thickness
of the surface layer represents an increase in the overall potential energy of the
water column and this energy comes from the heat fluxes across the surface or the
wind stirring.

The parametrization described in §4 indicates entrainment of any existing lower
layer at depths of around 80 metres or more into the surface layer, is unlikely.
Furthermore any moderately saline layer deep in the water column should remain
intact. Consequently the heat and wind inputs we have employed can be considered

very coarse and conservative.
5.1 The model structure

The model is a mixed layer model in that it considers a layer of thickness h;
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overlying the rest of the pit lake. This layer is Ap lighter than the underlying fluid
(Fig. 5).
A heat loss from the surface, H (W/m?) results in thermally driven plumes that

i\
uf=(°‘gl ) : (6)

CpPo

fall with a velocity

where « is the coefficient of thermal expansion and ¢, is the specific heat of water.
This plume impacts on the thermocline region making its energy available for an

increase in potential energy of the water column. So that
AE,per unit area = pOCku?}At, (7)

where AE, is the change in potential energy per unit area, Cy is an empirical coef-
ficient from experiments and At is the time over which the plumes are generated.
Two points are worth noting here; the area A that is assumed is that of the depth
of the thermocline h;. By maintaining this as a function of depth gives the model
a quasi-second dimension.

Now we are able to calculate what change in h; is required to match this AE,.

This 1s calculated as
AE,

Ah =2 ,
Apghy

(8)

which through conservation of mass generates a new density difference of
Aphy /(AR + hy)

. This however is not the total change in density at the thermocline as the surface
cooling leads to a decreased Ap by directly decreasing the temperature as well as

through entrainment of the hypolimnion. This change in density is given by

Ap = ——.
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If we now reverse the situation and apply surface heating it is assumed that this
does not affect h; but via subsequent mixing it increases the averaged surface layer
temperature and thus decreases Ap.

The effect of wind mixing is not parametrized as suggested by Ward et al. (1990)
but rather we have chosen to use (2). This simply provides a Ah for a known time
step.

The lack of meteorological information has led us to select model distributions that
broadly suggest the Spring-Summer-Autumn cycle. The coarse calculations for (3)
have already suggested vertical wind mixing is likely to be of minor importance.
The model runs for 6 months with 12 hour time steps. The model provides a
surface layer depth and temperature. It is possible to add a conservative tracer.
In all cases, but the final case, described here the model starts with conditions
similar to those found in the pit at the beginning of June (Fig. 6). That is a
10 metre deep surface layer 10 degrees warmer than that beneath. Inputs include

heat fluxes across the surface, wind forcing and volumetric buoyancy inputs.
Run 2.1: Expected Heat Fluxes

The only input in this run was typical heating that might be expected; that is a
mean nighttime cooling of 80 W/m? and a mean daytime “heating” of - 20 W/m?2,
so that positive “heating” is actually a net loss of heat from the pit lake. The
temporal variations are meant to represent enhanced cooling as winter approaches.
The surface layer deepens less than expected (Fig. 7) although the actual surface

layer temperature is acceptable.
Run 2.2: Enhanced Heat Fluxes

Here (Fig. 8) the heat fluxes have been boosted well above reasonable levels in
an attempt to match the observations. However this results in marginal “improve-
ment” as the temperatures in run 2.1 were already close; any asymmetric change

in the heating, as required to deepen more rapidly, affects the temperature.
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Run 2.3: Expected Heat Fluxes Plus Wind

Now (Fig. 9) we add in a fortnightly wind of 10 ms™! which is an extreme
situation. The results do not show any particularly enhanced deepening but it does
lead to a slightly more rapid cooling. This in turn leads to the equivalent of “fall
overturn” around day 170. Essentially the surface layer becomes more dense than
that beneath. The curves after this day cannot be considered as representative of

reality.
Run 2.4: Expected Heat Fluxes Plus Inflow

This run (Fig. 10) has no wind but does include the significant bouyancy inflow
generated by the Tailings Pond Water. It provides results very similar to the
observations (Fig. 6). This indicates that the thermal structure is significantly
affected by this inflow.

Run 2.5: Deep Layer in Winter

The final run (Fig. 11) has no wind nor inflow. It has only the surface heat fluxes.
This run was designed to see if the falling plumes from winter time cooling would
impinge on a deeper (80 m) layer. In this parametrization this does not appear to
happen - the winter cooling serves to only cool the upper layer. The upper layer
is so thick that the parametrization has insufficient energy to provide any increase
in potential energy. Consequently it does not matter too greatly what salinity is

used to represent the lower layer if the energy does not penetrate this deeply.

§6. DISCUSSION
The crude modeling indicates that the Tailings Pond water is crucial to the devel-
opment of the surface layer. In addition the modeling indicates that overturning

should occur.

Three major questions remain; how far does “overturning” penetrate? There is no

data for deepening by thermal penetrative convection on this scale in the absence
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of horizontal motion. We have no way of knowing how deep the falling plumes
will penetrate. The second question is how did the temperature profile of Fig.
4 evolve? Is it transient or permanent? An additional CTD profile recorded in
May 1994 helps to answer this. It suggests that it is a transient effect and thus
represents an unknown mechanism for vertical transport (see Appendix Vi). The
final question regards the effect of seiches. The Wedderburn number described by
(5) suggests that the possibility of internal waves cannot be ignored. Significant
enhancement of mixing rates can occur if seiches are generated; data at positions

across the lake are required to determine if this is the case.
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FIGURES
Figure 1; A schematic of the mechanisms acting in a stratified mine pit lake
Figure 2; (a) Bathymetry contours and (b) average radius of Brenda Mines Pit-lake

Figure 3; Contours over depth and time of (a) temperature and (b) dissolved

oxygen, courtesy of Brenda Mines

Figure 4; A pair of vertical profiles of (a) temperature and (b) conductivity
recorded in the Brenda Mines Pit-lake at approximately 0.3 metre intervals

Figure 5; A sketch of the mixed layer model described in §5

Figure 6; Contours over depth and time of (a) temperature and (b) dissolved
oxygen, courtesy of Heather Larratt, for the surface region of the pit-lake

Figure 7; Run 2.1, showing (a) the heat fluxes (b) wind stress and the resulting

(c) thermocline position and (d) surface layer temperature all as functions of time
Figure 8; Run 2.2 with same captions as Figure 7

Figure 9; Run 2.3 with same captions as Figure 7

Figure 10; Run 2.4 with same captions as Figure 7

Figure 11; Run 2.5 with same captions as Figure 7
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FIGURE & : Temperature and Dissolved Oxygen Profiles
in the Pit Lake, 1993.
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Thermal Structure of Water-Filled Mine Pits

APPENDIX I: NOTATION
ue =vertical entrainment velocity (ms™?),

u; =velocity of Tailings inflow (ms™!),
u. =friction velocity (ms™!),
u s =velocity of falling plume (ms™'),
U =wind velocity (ms™!),
L =Pit-Lake length (m),
hi, Ah =absolute and change in surface layer depth (m),
H,, =Height of pit walls above water surface (m),
circum =1/4 of cicumference at surface (m),
6 =tailing inflow layer thickness (m),
Q =inflow (m3s™1),
AE, =change in Potential Energy (J),

~

H =Heat flux (W/m?),

C} =entrainment coefficient ,

-,

Cx =plume energy conversion coefficient,
Cp =air-water drag coefficient,
A =surface layer aspect ratio,
R; =Richardsons Number of surface layer,
R:; =Richardsons Number of inflow,
Re =Reynolds Number,
W =Wedderburn Number,
a =coefficient of thermal expansion (°C™?),
¢p =specific heat of water (Jkg_IOC"l),
vq =viscosity of air (m?s™1),
g’ =modified gravity (ms™?),
g =gravitational acceleration (ms™?),
Ap =density difference at thermocline (kgm™2),
Ap; =density difference between surface and inflow (kgm™2),
Ap' =change in density difference (kgm™2),
po =average density (kgm™3),
pa =air density (kgm™3),
25



Thermal Structure of Water-Filled Mine Pits

APPENDIX II: CODE

function output=brenda2(watts,wind,Q,dt);

% routine to look at surface layer penetration
% thru penetrative convection

% clsmar94..based on Fischer etal & Ward etal

INPU DS .t ittt ettt sessensesssassosnsanenansse
watts is rate of cooling....

wind is ustar (m/s)....

dt is time step in decimal days.....

nt is number of timesteps....

Q is inflow in m™3/s.....

nt=length(watts) ;

o P 0P o0 o0 of

% convert time to seconds...
dts=dt*3600*24;

% CONSTANTS. . ...ttt ienasannnnnn

grav = 9.81; %gravity obviously

alpha = 1.8e-4; % coeff thermal expan...use poly below
rhol = 1000; % density average

ceepee = 4882; % specific heat

visc = 1.0e~6; % kinem. visc

t_poly = [6.536332e-9,-1.120083e-6,1.001685e-4...

,-9.095290e-3,6.793952e-2,999.842594]; %$polynomial to
% calc tho from T
alpha_poly = [2.6667e-12,~-2.3030e-10,9.4848e-09
,-3.4818e-07,1.8334e-05,-6.8002e-05]; %poly to calc
% coeff therm exsp

% COEFFICIENTS . i cettrnrneeeecencensnnsccssasases
ceekay = 0.13; % Imberger....

ceetee = 0.5 ; & * "

cstar = 0.23; % Kranenburg

% INITIAL CONDITIONS...... ettt iienncnecnnccnnns

h = 80; % depth of initial layer (m) [10]
temp = 2; % initial temp of top layer (C) [15]
temphyp = 4; % temp of hypolimnion layer in C [5]
surfa = pi*35072; % surface area.... (m"2)

deetemp = 2; % deg. C of inflow over pit...

% storage vectors....
output=zeros(nt,3); % [h,rho ,time]

output(1l,1)=h;

output (1, 2)=temp;

output (1, 3)=polyval(t_poly, temphyp}-polyval (t_poly, temp);
for i=2:nt % start time loop......ccouun..

% get appropriate alpha
alpha=polyval (alpha_poly, temp) ;

% calculate plume speed uplume...(Ward et al)
uplume=(watts (i) *alpha*grav*h/ (rho0*ceepee))”0.333;
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Thermal Structure of Water-Filled Mine Pits

% keep coeff as Ck..possibly change?
coeff = ceekay ;

% area at depth h....
Area = pi * (350 - (460/120)*h)"2;

% calculate change in potential energy
% in time step dt..due to pluming...
% only if heat loss..........

if watts(i) > 0 % COOLING......~~memmmmm e

% total energy reqd per unit rate of deepening..
delEpdz=Area*ceetee*uplume”2
+ 0.5* (surfA+Area) *alpha* (temp-temphyp) *grav*h;

% work done by penetrative convect
workdone=Area*dts*coeff*uplume”3;

% calculate required change in surface layer....
delh=workdone/delEpdz;

% check for +ve...
$if delh < 0
%$delh=0;

$end

% calulate entrainment loss of heat....
deltempl=(temp-temphyp) *delh/ (h+delh); %

% calulate thermal component of heat change....
arearatio=2.*surfa/(surfA+Area);
deltemp2=arearatio*watts (i) *dts...

/ (ceepee*rho0*h); %

else % HEATING........
deltempl=0; % no entrainment with heating....
arearatio=2.*surfad/ (surfA+Area) ;
deltemp2=arearatio*watts (i) *dts...

/ (ceepee*rho0*h); %

delh=0.; % nochange in layer depth.....

% a +ve watts (cooling) => decrease in density difference...
% and a -ve leads to the opposite......
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Thermal Structure of Water-Filled Mine Pits

%new temperature
temp = temp - deltempl -deltemp2 ;

if temp < 0.
temp=0. ;
end

h=h+delh; %...... new layer thickness.....
% check for +ve...

ifh< O

h=0;

end

% wind mixing.........
if wind(i) > 0
delrho=polyval(t_poly, temphyp) -polyval (t_poly, temp) ;
Ri = (delrho/rho0) *grav*h/wind(i)”~2 ; % Richardson Number....
winddelh = cstar * Ri*(-1) * wind(i) * dts;
temp=temp?* (h/ (h+winddelh));
h=h+winddelh;
end

T o S I

if Q(i) >0

avgarea=(surfA+Area)/2;

flowdelh=Q (i) *dts/avgarea;

newtemp=(temp*h + flowdelh* (temp+deetemp))/ (h+flowdelh);

h=h+flowdelh;

temp=newtemp;
=3 s o -

fevaluate density difference
delrho=polyval (t_poly, temphyp)-polyval (t_poly, temp) ;

output (i,1)=h;

output (i, 2)=temp;
output (i, 3)=delrho;

end % endloop.....
out=real(out); % just in case.......

end
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Appendix ITII

AVAILABLE DATA FOR OTHER FILLED PITS

In 1982, 1992 and 1993, Environment Canada (DOE) personnel collected water
samples and profiles at seven filled pits in British Columbia, the Yukon
Territory, and Washington. Sample collection and handling followed DOE
protocols, with DOE's West Vancouver lab performing the analyses. A Hydrolab
Surveyor II instrument provided dissolved O,, pH, conductivity and temperature.

Table 1A-1G, Brenda Mines Ltd: This 33,000 tpd copper-molybdenum mine opened in
1970 and closed in 1990 with a two-year temporary closure 1983-1985. It has
filled to its present depth from runoff and waters pumped in from the tailings
pond. Water quality data reported here confirms and supplements the very large
data set collected by Brenda Mines Ltd and reported elsewhere.

Table 2A-2C, Nickel Plate South: Homestake Canada Inc now owns this 3400 TPD
gold mine near Hedley, BC, first opened in 1987. The small south pit was mined
in 1988 and 1989 and allowed to fill. Since DOE sampling in 1991, the pit has
been backfilled with waste rock.

Table 3A-3C, Gibraltar West pit: The large Gibraltar copper mine, 38,000 TPD at
full capacity, first opened in 1972 and mined several pits on the property
before closing temporarily in the fall of 1993. Waters in the small west pit
shows no evidence of the oxidation and increased metals content shown by waste
rock and waters elsewhere on the property, from which the company obtains
anode copper by leaching and solvent extraction (SX/EW).

Table 4A-4D, War Eagle pit: New Imperial Mines (Whitehorse Copper Mines Ltd)
mined the small War Eagle pit near Whitehorse, Yukon, between 1969 and 1971.
Until the early 1980's the city then used the pit area and ramp for disposal of
municipal waste. Pit waters reflect this runoff contamination in elevated
chloride and ammonia. The limited data set shows the absence of . oxygen, the
decrease in nitrate, and the increase in ammonia at depth, which suggests
meromixis.

Table 5A-5C, Wellpinit, Wa: The Midnite uranium mine on the Wellpinit
Reservation in north central Washington has two small pits. DOE sampled only
the lower or southern pit. Seepage from this pit is collected downslope and
pumped back. Thig 'recycling' of waters and high evaporation in this drybelt
area concentrates pit waters, which in turn precipitate a gelatinous aluminum
hydroxide. Note that mixing seems independent of high salt concentrations.

Table 6A-6C, Highland Valley Copper: This mine, Canada's largest metal mine,
has assembled three adjacent mining properties which have produced copper-
molybdenum ore since 1963. The large pit sampled, Highmont West, was mined
between 1980 and 1983 and has filled from runoff since that date. Water
quality resembles that at Brenda and Similco, except for elevated molybdenum.

Table 7A-7C, Similco-Ingerbelle: Similco Mines Ltd mined the Ingerbelle pit

beginning in 1972, and has allowed it to f£fill from runoff since 1884. Pit size
and water quality resemble those found at Brenda and Highland Valley Copper.
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Thermal Structure of Water-Filled Mine Pits

APPENDIX 1IV: CTD DATA: MARCH 10 1994

Figure iv-1 (a) pressure transducer check, (b) conductivity -vs- temperature for
three profiles, (c) drop speed of profile # 2 and (d) profile # 3.

Figure iv-2 (a) temperature and (b) conductivity profiles from profile # 3.
Figure iv-3 (a) temperature and (b) conductivity profiles from profile # 3, the top
30 metres of Figure iv-2.

Figure iv-4 (a) temperature and (b) conductivity profiles from profile # 3, the top
3 metres of Figure iv-2.

Figure iv-5 (a) the calculated density assuming seawater properties from conduc-
tivity and ignoring pressure component and (b) corresponding buoyancy frequency
squared profile.

Figure iv-6 contributions to density due to (a) temperature, (b) pressure (n.b. this
is static and ignored) and (c) conductivity.

Figure iv-7 (a) temperature and (b) corresponding heat flux based on a constant

thermal conductivity.
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Thermal Structure of Water-Filled Mine Pits

APPENDIX V: CTD DaATa: MAy 11 1994

Figure v-1 (a) salinity -vs- temperature and (b) drop speed of profile.

Figure v-2 (a) temperature and (b) conductivity profiles.

Figure v-3 (a) temperature and (b) conductivity profiles; the top 30 metres of
Figure v-2.

Figure v-4 (a) the calculated density assuming seawater properties from conduc-
tivity and ignoring pressure component and (b) corresponding buoyancy frequency
profile.

Figure v-5 contributions to density due to (a) temperature, (b) pressure (n.b. this
is static and ignored) and (c) salinity.

Figure v-6 (a) a comparison of the May 11 and March 10 temperature profiles and

(b) their difference.
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S—vs—T drop speed: pro4
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Temperature Profile (pro4)

Conductivity Profile (pro4)
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Calculated Density Q:;oi Buoyancy Frequency (pro4)
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temperature contribution pressure contribution salinity contribution
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Temperature Profiles
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Thermal Structure of Water-Filled Mine Pits

APPENDIX VI:

Report Submitted to Brenda Process Technology, May 1994
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Conductivity-Temperature-Depth Profiles
from the Brenda Mines Pit-Lake

CRAIG STEVENS

Environmental Fluid Mechanics Group,
Dept. of Civil Engineering, The University
of British Columbia, B.C. V6T 1Z4.

A Report submitted to Brenda Process Technology.

May 1994

Brenda Process Technology requested that an additional conductivity tem-
perature depth (CTD) profile be recorded in the pit-lake at the Brenda Mines Site
West of Kelowna. These data were recorded on May 11 1994. It was required
to complement an earlier profile recorded on March 10 1994. Both profiles were
taken in the deepest known part of the pit-lake, marked with a buoy by Heather
and Bruce Larratt. At the time of the March profile there was still at least 45
cm’s of ice/snow-ice over the pit-lake, this broke away from the pit walls around
mid-April and finally broke up approximately one week before the May 11 profile.

Figures 1la and b show the two temperature and conductivity profiles plotted
on the same figure, respectively. Figure 1¢ shows the difference between the two
temperature profiles. The May 10 profile proved to be slightly longer. This can
be attributed to filling of the pit-lake, melt water from the ice cover, finding
a deeper part of the lake or a pressure transducer calibration drift. It is most
likely a combination of the first three as the pumping from the tailings pond had
commenced prior to the second profile.

The point of the exercise was to quantify any change in the warm pool of water
found at the base of the March profile. This region roughly between 110 and 130
metres deep apparently was almost 1.5 degrees Celsius warmer that that above. In
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Brenda Mines Pit-Lake Profile

the absence of dissolved salts and other solids this would rise and mix with water
above it but the dissolved species maintain stability. We were concerned that it
represents some as yet determined mechanism for deep mixing.

The upper part of the March 10 profile was largely as expected with a profile
increasing from zero at the surface and reaching a temperature of maximum density
at around 4 degrees; the water column maintains this for the majority of the profile.
After ice-off the cold surface waters heat up, passing through the temperature of
maximum density at which point the temperature distribution should be pretty
much homogeneous. Once the temperature has increased above this level the
surface layer then begins the diurnal heating/cooling cycle with the addition of
wind mixing. This is complicated somewhat by the inflow. The newly formed
surface layer is very clearly delineated in figure lg, it is around 3 metres deep,
representing (based on a radius of 350 metres) an approximate volume of 1.2 x 10°
m3. This is around half the total volume of the pit lake injected in 1993 so it is
not possible that this warm surface layer is entirely attributed to the inflow. The
March profile has been offset by 3 metres to account for this new surface layer
region. '

The effects of the onset of spring spring stratification is not felt below 18
metres by the May profile. Above this from -18 to-12 metres there is a transition
region where slightly less saline fluid is maintaining stratification so that warmer
(but still less than 4 degrees) water can sit over cooler water beneath. There is
a well mixed region from -12 to -5 metres where it is apparent that the effects of
temperature and dissolved substances are matched and the layer is homogenous
in density. Above this we have the relatively warm surface layer. ,

All this varied structure behaves as expected and in the absence of unusual
buoyancy fluxes (geothermal, bio-generated) the rest of the water column beneath
30 metres could reasonably be assumed quiescent and isothermal as any heat
gradients would have been long ago smoothed out by diffusion. However, as stated,
what we found was a warm salty pool of water which persisted in the second profile
but in a diffused form. With an average radius of 100 metres and a thickness of
h = 20 metres this can be assumed to represent 6 x 10° m® which is roughly 2%
of the entire volume. With an average temperature perturbation in the “layer” of
-0.24 degrees between March and May, we can estimate the energy lost from the
deep pool over the month using the relationship

Thermal Energy per unit area = poc,hAT
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Brenda Mines Pit-Lake Profile

where po is an average water density (=~ 998kgm™3), ¢, is the specific heat (here ~
4882 Jkg=1°C) and AT is the temperature difference. This numerically evaluates
to around 3 x 107 J, and given that this occurs over one month this is a heat loss
of around 9 W.m™2.

If we compare this with the expected transport through molecular diffusion
using the steady-state flux model

acC
J= /ccg;
where J is the energy flux due to heat in W.m™2, & is the coefficient of thermal
conduction (here taken as 0.57 W.m~1°C~!) and 8C/dx is the local vertical tem-
perature gradient. The depth and time averaged 0C/0z is estimated to be around
0.026 °Cm™! so that the heat flux is then around J = 0.015 W.m™? (see Fig. 2
for the depth distribution). There is almost 3 orders of magnitude difference here
indicating that there must be some enhanced vertical transport.

It remains to be shown how this warm fluid arrived at the base of the water
column. It is my opinion that a storm event observed late last year (H. Larratt,
pers. comm.) generated significant entrainment of shoreline silts creating a heavy
warm fluid that sank to the base of the water column. This would then create
a double-diffusion type situation whereby the different “diffusion” rates of tem-
perature and the silts leads to turbulent transport and possible fingering. Other
possibilities such as biological production of heat or geothermal heating imply
steady state behaviour which is not what these two profiles indicate. This is one
of the questions we intend to answer with the proposed field study.

Figures:

Figure 1 Profiles from March 10 and May 11 of (a) temperature, (b) conductivity
and (c) the temperature difference.

Figure 2 The heat flux J is the lower 50 metres of the water column, the square
symbols are for the March data and the triangles, for the May data.
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