

Environment Canada

Environmental Protection Operations Directorate Environnement Canada

Direction générale des activités de protection de l'environnement

A Relative Risk Ranking of Selected Substances on the

National Pollutant Release Inventory

Surveillance Report EPS-5-AR-06-02 Atlantic Region

PROTECTION OPERATIONS DIRECTORATE REPORT SERIES

Surveillance reports present the results of research and monitoring programs carried out by the Environmental Protection Operations Directorate (EPOD). These reports will usually be published on a regular basis.

Other categories in the EPOD series include such groups as Regulations, Codes and Protocols; Policy and Planning; Economic and Technical Review; Technology Development; Briefs and Submissions to Public Inquiries; and Environmental Impact and Assessment.

Inquiries pertaining to Environmental Protection Operations Directorate Reports should be directed to:

Environmental Protection Operations, Atlantic Environment Canada 16th Floor, Queen Square 45 Alderney Drive Dartmouth, NS B2Y 2N6

ISBN No.: 0-662-43535-4 Cat. No.: En83-3/2006-2E

A Relative Risk Ranking of Selected Substances on the National Pollutant Release Inventory

Allison M. Dunn

Environmental Protection Operations, Atlantic Environment Canada Dartmouth, Nova Scotia

June 2006

EPS-5-AR-06-02

ABSTRAC	Τ	11
RÉSUMÉ.		///
ACKNOW	.EDGEMENTS	IV
1.0 INT	RODUCTION	5
2.0 MC	DEL OVERVIEW	6
	OXICITY AND FATE MEASURES	
2.2 5	SUBSTANCE SELECTION	8
3.0 DA	TA SOURCES AND TREATMENT	8
3.1 E	FFECTS DATA	
3.1.1	Acute rat oral and inhalation toxicity	9
3.1.2	Carcinogenicity rating	
3.1.3	Chronic non-cancer effect	10
3.1.4	Acute water flea and fish toxicity	10
3.1.5	Modifications to CHEMS toxicity parameters	10
3.2 E	XPOSURE POTENTIAL DATA	
3.2.1	Persistence	11
3.2.2	Bioaccumulation/Bioconcentration	
4.0 HA	ZARD VALUES	
	CONVERTING TOXICITY VALUES TO HAZARD VALUES	
4.1.1	Hazard values for acute rat oral and inhalation toxicity	
4.1.2	Hazard values for carcinogenicity ratings	
4.1.3	Hazard values for non-cancer effects	
4.1.4	Hazard values for acute Daphnia and fish toxicity	
	Converting Exposure Data into Hazard Values	
4.2.1	Persistence and bioaccumulation/bioconcentration factor	
4.2.2	NPRI environmental release amounts	
	PLYING THE CHEMS MODEL	
	OTAL HAZARD SCORE	
	RISK SCORE	
	INCERTAINTY SCORE	
6.0 RE	SULTS AND DISCUSSION	19
7.0 LIN	IITATIONS AND UNCERTAINTIES	24
	COMMENDATIONS	
	FERENCES	-
	4 1: FUGACITY MULTIMEDIA MODELS	
	(2: RATIONALE FOR ASSIGNING UNCERTAINTY FACTORS	
	(3: CANADIAN RANKS AND SCORES	
	(4: PROVINCIAL AND TERRITORIAL RANKS AND SCORES	
	(5: RAW DATA AND REFERENCES	

TABLE OF CONTENTS

ABSTRACT

The National Pollutant Release Inventory (NPRI) provides pollutant release and transfer data from point sources to various media in the Canadian environment. While the inventory serves as Canada's community right-to-know program, the growing number of listed substances and reporting facilities makes it exceedingly difficult for the public to discern which substances are of greatest concern in their respective communities. A chemical's impact is best characterized when its environmental release data is combined with its toxicity and environmental fate properties. Presently, the NPRI does not provide a synthesis of this critical information and there is a need to provide more context with NPRI data to increase its usability. To help deliver this context and guide future internal priority setting, a relative risk ranking has been compiled for a subset of NPRI substances using a modified Chemical Hazard and Evaluation Management Strategies (CHEMS) model. By making use of the paradigm, Risk = Toxicity x Exposure, the model combines toxicity, chemical fate properties and NPRI release data to yield a risk score for each substance. The resulting risk scores are ranked accordingly to provide a priority ranking of the substances. While the model makes use of toxicity and exposure data, the risk ranking produced does not represent a risk assessment. Limitations included the reliance on modelled data and default values to fill data gaps and uncertain reliability in reported NPRI data. In spite of its limitations, it is believed the CHEMS risk ranking scheme provides a useful tool for prioritizing NPRI substances.

RÉSUMÉ

L'Inventaire national des rejets de polluants (INRP) fournit des données sur les rejets et les transferts de polluants de sources ponctuelles dans l'environnement au Canada. L'inventaire sert au programme du droit de savoir de la collectivité Canadien. Cependant, en raison du nombre croissant de substances répertoriées et d'installations tenues de produire des déclarations, il est très difficile pour les Canadiens de déterminer quelles substances sont les plus préoccupantes dans leur collectivité. On peut mieux déterminer l'impact d'une substance chimique en combinant les données sur le rejet de la substance dans l'environnement, sa toxicité et son évolution dans l'environnement. Actuellement, l'INRP ne met pas en rapport ces renseignements essentiels. On doit fournir davantage de contexte avec les données de l'INRP pour en accroître la convivialité. Afin de fournir ce contexte et d'orienter l'établissement des priorités futures à l'interne, on a effectué, à l'aide d'une version modifiée du modèle CHEMS (Chemical Hazard and Evaluation Management Strategies), un classement des risques relatifs pour un sous-ensemble de substances de l'INRP. En utilisant le paradigme Risque = Toxicité x Exposition, le modèle allie de l'information sur la toxicité et l'évolution dans l'environnement aux données sur les rejets contenues dans l'INRP pour établir une cote de risque pour chaque substance. Ces cotes de risque permettent de classer les substances par ordre de priorité. Bien que le modèle utilise des données sur la toxicité et l'exposition, la cote de risque obtenue ne constitue pas une évaluation du risque. Le modèle comporte des limites, notamment la fiabilité des données modélisées et des valeurs de remplacement servant à combler les lacunes en matière de données et la variabilité des données déclarées aux fins de l'INRP. Malgré ces limites, le système d'établissement de cotes de risque à l'aide du modèle CHEMS est un outil utile pour classer les substances de l'INRP par ordre de priorité.

ACKNOWLEDGEMENTS

A special note of thanks is extended to the staff of Environment Canada's Existing Substance Branch in Ottawa who helped steer me in the right direction in the earlier days of embarking on this risk ranking exercise. In particular, sincere gratitude to Peter Robinson for all his help and cooperation in this work, most notably for sharing data collected by his Branch in support of DSL categorization, assisting with QSAR selection for aquatic toxicity endpoints and reviewing an earlier draft of this report. Thanks also to Philip Seeto who provided technical advice on French translation and compiled all the ranks and raw data in the appendices. Finally, I would like to extend my sincere thanks to Mary Swanson, Bill Ernst, and Chris Roberts for reviewing earlier drafts of the report and providing critical feedback.

1.0 INTRODUCTION

The National Pollutant Release Inventory (NPRI) was established in 1993 by Environment Canada in response to public demands to have access to industrial pollutant information. The purpose of the NPRI is to provide Canadians with comprehensive, national data on quantities of pollutants released, disposed and transferred by facilities operating in Canada. Under the authority of CEPA 1999, facilities that meet specific reporting criteria are required to submit an annual report to Environment Canada summarizing their pollutant releases and transfers. Currently, the inventory is comprised of 303 substances of concern and recent statistics indicate more than 8400 facilities report to the program.

The inventory of data, publicly accessible through Environment Canada's web site <<u>http://www.ec.gc.ca/pdb/npri</u>>, provides Canadians with pollutant releases to the environment on a per facility basis. Environment Canada also issues an annual National Overview report which provides a summary of pollutant releases and transfers to the Canadian environment, including pollutant release trends and profiles of substances released and transferred in the largest quantities through "top ten" lists. While these reports provide invaluable information on pollution sources in Canada and quantities of pollutants released to the Canadian environment, they nonetheless fall short of the public's desire for meaningful interpretation of the data.

A chemical's impact is better understood when its environmental releases are combined with its toxicity and environmental fate properties. Presently, the overview reports published by Environment Canada do not provide a synthesis of this critical information and there is, therefore, a need to place NPRI data within the context of environmental and health risks to increase its utility. To this end, Environment Canada, Atlantic Region has initiated efforts and provided greater context for NPRI data through the application of the Chemical Hazard and Evaluation for Management Strategies (CHEMS) model. The CHEMS model is an example of an algorithm which combines environmental releases, toxicity, and chemical fate properties to yield a priority ranking for a group of chemicals based on risk (Swanson et al. 1997). The model was originally developed by researchers at the University of Tennessee to compile a risk ranking for the U.S. Toxic Release Inventory and was used by Environment Canada, Atlantic Region to develop a priority ranking of NPRI substances released to the Atlantic environment (Environment Canada 2000). By providing a ranking of NPRI substances according to the relative risk they pose, the CHEMS model can guide internal priority setting of government programs aimed at reducing overall environmental risk and help Canadians understand the environmental risk of specific chemicals.

As an expansion of the Environment Canada work described above, Atlantic Region recently compiled a relative risk ranking for NPRI by applying a modified version of the CHEMS model. In contrast to the previous Environment Canada report, this evaluation goes beyond an Atlantic Region focus by providing national, provincial and territorial relative risk rankings for each province and territory. In addition, through modifications to the CHEMS model and by incorporating advances made in the science of categorizing substances for priority setting, this work attempts to overcome some of the limitations identified by the scientific and regulated community regarding Atlantic Region's use of CHEMS in its initial priority ranking of the NPRI. The following report details the risk ranking compiled for NPRI using 2003 data, including an overview of the CHEMS model, a description of the data collection procedure, data treatment, the risk ranking results and the model's limitations and uncertainties.

2.0 MODEL OVERVIEW

The CHEMS model combines toxicity and exposure endpoints to yield a relative risk ranking for a group of substances. Following the general paradigm of "risk = toxicity x exposure", a risk score is calculated by multiplying the sum of release-weighted toxicity endpoints by the sum of exposure endpoints:

Risk Score = [sum of release-weighted toxicity endpoints] x [sum of exposure endpoints]

When risk scores have been calculated for all substances in a group, the substances can be ranked accordingly; the higher ranked substances will pose a higher risk, while lower ranked substances will present a lower risk to the environment. Although the model makes use of measured and estimated toxicity and environmental fate values, the CHEMS risk ranking scheme does not represent a detailed risk assessment and should not be construed as such. Rather, the resultant quantitative risk ranking can be best used to identify priority substances for further study and evaluation and such scoring systems are generally regarded as the first tier of risk assessment (Solomon 1999).

2.1 Toxicity and Fate Measures

The modified CHEMS model employed by Environment Canada used six toxicity and three fate parameters to determine the overall risk of a substance (Table 1). Bioaccumulation, persistence and NPRI environmental release amounts are the three fate parameters included to represent a substance's exposure potential.

Effect / Parameter	Endpoint	Definition
HUMAN HEALTH		
Acute Oral	Rat Oral LD ₅₀	The quantity of a substance, expressed as the mass of substance per mass of test animal (mg/kg), which causes 50% mortality in a group of test animals within 14 days given a single oral dose.
Acute Inhalation	Rat Inhalation LC ₅₀	The concentration of a substance in air, expressed in mg/L, which causes 50% mortality in a group of test animals when inhaled continuously for 4 hours.
Chronic	Carcinogenicity	Based on United States Environmental Protection Agency (US EPA) and International Agency for Research on Cancer (IARC) classifications.
Chronic	Non-cancer	Based on the Reference Dose (RfD) or Reference Concentration (RfC). The RfD or RfC is the lifetime, average daily dose or concentration of a substance an individual can be exposed to without suffering adverse affects. RfDs and RfCs are normally determined by dividing the no- observable adverse effect level or concentration (NOAEL/NOAEC) in a chronic animal study by an uncertainty factor of 100 to account for intraspecies and interspecies variation. The NOAEL/NOAEC represents the highest test concentration that does not show any deleterious effects in the test animals exposed daily for up to 2 years.
ENVIRONMENTAL		
Acute aquatic	Fish 96-hour LC_{50}	The concentration of a substance in water (mg/L) which causes 50% mortality in a group of test fish (<i>Pimephales promelas</i> - fathead minnow) exposed continuously for 96 hours.
Acute aquatic	Water Flea 48-hour LC/EC ₅₀	The concentration of a substance in water (mg/L) which causes 50% mortality or immobilization in a group of test animals (<i>Daphnia magna</i>) exposed continuously for 48 hours.
EXPOSURE POTENTI	AL	
Persistence	Reaction Half-life	Reaction half-life is the time required for a substance to degrade to half its original concentration taking into consideration how it partitions in the environment, its respective half-lives in each environmental media (e.g. air, water, soil, sediment) and intermedia transport. This parameter was estimated by Level III fugacity modelling available through EPI Suite v3.12. ^a
Bioaccumulation/ Bioconcentration	Aquatic Bioaccumulation Factor (BAF) or Bioconcentration Factor (BCF)	Bioaccumulation factor (BAF) is the ratio of the concentration of a substance in an aquatic organism to the concentration in water, based on uptake from the surrounding medium and food. Bioconcentration factor (BCF) is the ratio of the concentration of a substance in an organism to the concentration in water, based only on uptake from the surrounding medium. When measured BAF/BCF data were not available, BCF was estimated using a quantitative structure-activity relationship (QSAR).
Release Amount	Release Weighting Factors (RWFs)	Calculated for each substance for each medium using the quantity of substance released to air, water and land reported to the 2003 NPRI.

Table 1: Parameters used by modified CHEMS model to represent exposure potential, human health and environmental effects

^a EPI Suite v3.12 is a collection of quantitative structure-activity relationship (QSAR)-based software that provides estimates for a number of environmental fate properties.

2.2 Substance Selection

The first risk ranking conducted by Atlantic Region included all substances listed on the NPRI. However, since some of the model parameters are not particularly relevant to metals (e.g. reaction half-life, bioaccumulation), the metals were removed from this risk ranking exercise. This approach was supported by Environment Canada's protocol for categorizing metals on the domestic substance list (DSL).¹

The toxicological and fate data used in the previous risk ranking effort was never subjected to a critical review and was derived from many unverified references and old data. As such, the toxicological and fate database was completely reviewed to build a robust data set for the current risk ranking. In the interest of making the data collection step less onerous, the NPRI list was reduced by applying some screening criteria. Substances that were either reported by 5 or more facilities *or* whose cumulative releases to the environment were greater than 10 tonnes in 2003 were included in the current risk ranking report. Based on these criteria, the final data set included 99 organic and non-metallic inorganic substances. Again, non-metallic inorganic substances were included in the subset and not metals since separate guidance has been developed for metal containing substances and the DSL guidance manual recommends grouping non-metallic inorganics for the purpose of DSL categorization.

3.0 DATA SOURCES AND TREATMENT

A considerable effort was made to compile a comprehensive database of measured toxicity and chemical fate data from reputable sources for all NPRI substances included in the ranking. Data gathering was assisted by Environment Canada's Existing Substances Branch (ESB) who shared data they had collected for the purpose of DSL categorization. A number of reliable sources were consulted for chemical toxicity and fate information as described below.

3.1 Effects Data

The majority of health and ecotoxicity data were obtained from monographs provided by the US EPA's Integrated Risk Information System (IRIS), International Agency for Research on Cancer (IARC), Agency for Toxic Substances and Disease Registry (ATSDR), Hazardous Substances Data Bank (HSDB), European Chemical Bureau's International Uniform ChemicaL Information Database (IUCLID), Canada's Centre for Occupational Health and Safety CHEMpendium Collection (CESARS, CHEMINFO), International Programme on Chemical Safety (Environmental Health Criteria), Priority Substance List (PSL) assessment reports and the US EPA's ECOTOX database. When measured data were unavailable, quantitative structure-activity relationships (QSARs), Expert judgement or default values were used to assign a value to each toxicity parameter.

¹ The Existing Substances Branch (ESB) of Environment Canada is tasked with categorizing the 23,000 substances on the DSL by 2006. Organic and non-metal-containing inorganic substances will be categorized on the basis of persistence, bioaccumulation and inherent toxicity whereas metals will be primarily categorized on the basis of inherent toxicity.

3.1.1 Acute rat oral and inhalation toxicity

Acute rat oral LD₅₀ values and inhalation LC₅₀ values were primarily obtained from HSDB, CHEMINFO, CESARS, and IUCLID. When more than one toxicity value was obtained for a chemical, the geometric mean was taken of all the values. The geometric mean, rather than the arithmetic mean, was used for all toxicity endpoints since the distribution of sensitivities of individual organisms in toxicity tests on most materials are more likely to be log normal than normal (US EPA 1995). In instances where the exposure period for the rat inhalation study was not equivalent to four hours, the LC₅₀ values were scaled to 4-hour exposures according to the following formula recommended by CHEMS (Swanson *et al.* 1997):

 $4-hr LC_{50} = t-hr LC_{50} \ge t/4$

In a few cases, when no acute rat inhalation toxicity information was available, chronic data (*i.e.* time-weighted average exposure limit²) or inhalation data from another species (mouse) was used to represent the LC_{50} for the chemical.

When no inhalation data were available from any sources, the following equation was used to estimate inhalation toxicity from oral toxicity (Green Seal 2005):

$$LC_{50} = \frac{\text{oral } \text{LD}_{50} \text{ x } \text{ABS}_{\text{GI}} \text{ x } \text{BW}}{\text{ABS}_{\text{inh}} \text{ x } \text{R } \text{x } \text{ET } \text{x } \text{CF}}$$

Where,

Oral LD_{50} = single dose LD_{50} for oral pathway ABS_{GI} = gastrointestinal absorption rate (0.8) BW = animal body weight (0.35 kg) ABS_{inh} = inhalation absorption rate, unitless (1.0) R = respiration rate for experimental animal (0.14 L/min) ET = exposure time (4 h) CF = conversion factor (60 min/h)

Lastly, in some cases when oral or inhalation toxicity information was lacking, these endpoints were assigned a value of zero if ingestion or inhalation could be ruled out as an exposure pathway. This was determined by reviewing the physical-chemical properties of the chemical (e.g. vapour pressure, Henry's Law constant), its NPRI distribution (*i.e.* percentages released to air, land and water) and environmental partitioning predicted by Level III fugacity modelling³. For example, if a chemical was determined to be a gas at room temperature, its Henry's Law constant predicted rapid volatilization and its NPRI distribution was 100% to air, then oral ingestion was ruled out as an exposure pathway. Similarly, if a chemical was shown to be a solid at room temperature, had very low volatilization potential and its NPRI distribution was mostly to land and water, then inhalation was ruled out as an exposure pathway and a zero was assigned for inhalation toxicity.

 $^{^{2}}$ The time-weighted exposure limit is the time-weighted average concentration of a chemical in air for a normal 8-hour work day and 40-hour work week to which nearly all workers may be exposed day after day without harmful effects.

³ Level III Fugacity modelling is a mass-balance approach that predicts a chemical's partitioning between 4 media (soil, sediment, air, water), according to its physical-chemical properties, reaction half-lives, intermedia transport velocities and advection rates under non-equilibrium conditions. See Appendix 1 for more information on fugacity modelling.

3.1.2 Carcinogenicity rating

Carcinogenicity ratings were obtained from IARC or IRIS. When a carcinogenicity rating was not available from either of the cited sources, the carcinogenicity rating for surrogate chemicals or supporting information from PSL Assessments and HSDB were used to assign a rating following the principles outlined by IARC and EPA. When no information was available, a default value was assigned to the chemical for its carcinogenicity rating.

3.1.3 Chronic non-cancer effect

The latest version of CHEMS includes the oral and inhalation No Observed Adverse Effect Level (NOAEL) as the chronic non-cancer effect (Swanson 2000a). The NOAEL is usually divided by a safety factor of 100 to yield a Reference Dose (RfD) or Reference Concentration (RfC) which is the average, lifetime daily dose a human can be exposed to without experiencing any deleterious effects. Occasionally, when uncertainties are present in the toxicological database (e.g. database incomplete, NOAEL not established, subchronic test used to establish NOAEL, increased sensitivity in the young), the NOAEL is divided by a safety factor greater than 100 to yield the RfD or RfC. In addition, some NOAELs are based on human occupational studies or scaled to human equivalent concentrations. As such, NOAELs are not always comparable across substances. Therefore, to allow for more consistent comparison between substances, the RfD and RfC was used in place of the oral and inhalation NOAEL to represent the chronic non-cancer effect.

Reference doses and concentrations were readily available from IRIS and ATSDR. When reference values were not available from these sources, supporting information from HSDB, PSL assessments, National Toxicology Program (NTP) reports and CHEMINFO was used to set an appropriate RfD or RfC. When both reference values were available, the more relevant exposure pathway was chosen based on NPRI distribution and environmental partitioning as determined by Level III fugacity modelling.

3.1.4 Acute water flea and fish toxicity

Acute aquatic data were sourced from the US EPA's ECOTOX database. Again, when more than one value was obtained for an active ingredient, the geometric mean was calculated. When measured data, suitable surrogates or other acceptable studies based on different exposure periods or species were unavailable to estimate ecotoxicity, Environment Canada's ESB was consulted for assistance with selecting the most appropriate QSAR for estimating *Daphnia magna* and fathead minnow toxicity. ESB expertise was sought since they had generated a number of *Daphnia magna* and fathead minnow toxicity estimates for DSL substances through application of various QSARs including, ECOWIN, TOPKAT, ASTER, OASIS and the Probablistic Neural Network (PNN).⁴ Based on their knowledge of the training sets used to develop these QSARs, ESB staff selected the most appropriate QSAR for each NPRI substance lacking aquatic toxicity information.

3.1.5 Modifications to CHEMS toxicity parameters

The original CHEMS model included a chronic aquatic endpoint (*i.e.* fish NOEC) (Swanson *et al.* 1997). However, since fish NOECs were not readily available in the literature and the QSAR suggested by the model for estimating fish NOECs was a permutation of other data used in CHEMS (*i.e.* log K_{OW} and 96-hour fish LC₅₀), the NOEC was not perceived to add value to the model and was excluded. For example, in the CHEMS risk ranking of the Toxic Release Inventory, all of the fish NOEC values were estimated using a QSAR based on 96-hour fish LC₅₀

⁴ Explanation of each of these QSARs is provided by ESB's *Guidance Manual for the Categorization of Organic and Inorganic Substances on Canada's Domestic Substance List* (Environment Canada 2003).

and log K_{OW} . The original CHEMS model also included an acute terrestrial parameter represented by the rat oral LD_{50} under environmental effects (Swanson *et al.* 1997). However, by including this endpoint twice in the model, the rat oral LD_{50} was doubly weighted. For our purposes, this endpoint was removed and a new environmental effect parameter was added to the model (*i.e. Daphnia magna* LC/EC_{50}). Other environmental endpoints were explored for inclusion in the model; however, due to lack of available, consistent data, acute *Daphnia magna* toxicity was the only suitable endpoint that could be added to CHEMS.

3.2 Exposure Potential Data

Exposure data were sourced from Environment Canada's ESB (Gobas 2000) or estimated using QSARs or fugacity modelling.

3.2.1 Persistence

In the most recent version of CHEMS, persistence is represented by water half-life determined by taking one over the sum of the inverse function of a substance's biological oxygen demand (BOD) half-life⁵ and the inverse function of a substance's hydrolysis half-life (Swanson 2000a):

Water Half
$$-life = \frac{1}{\left(\frac{1}{BOD} + \frac{1}{Hydrolysis}\right)}$$

However, after careful review of the water half-life equation, it was decided to replace this parameter with a more global estimate of environmental persistence. Since NPRI substances are released to all media and substances will move and partition to other media even if they are initially released to water, it seemed more reasonable for the persistence endpoint to include half-lives for air, soil, sediment and water. As such, an overall environmental half-life which incorporates half-lives for all environmental media was used to represent persistence in place of water half-life. Due to scarcity of reliable and comparable half-life data, persistence was estimated by fugacity modelling. The Level III model calculates three persistences, including persistence attributable to advection only (T_A), reaction only (T_R) and overall persistence (T_O). Overall persistence is a combination of advection and reaction and calculated as follows:

$$T_O = [1/T_A + 1/T_R]^{-1}$$

According to the model developers, global chemical persistence is best represented by reaction persistence, while local persistence is best represented by overall persistence (CEMC 2006). Advection can greatly diminish a substance's local concentration, without removing it permanently from the environment, and thereby reduce its overall half-life significantly. Considering Canada's large land area, a substance with high advection could be predicted to have very low overall persistence when in truth the chemical could be transported from one region in Canada to another where it could persist and potentially cause environmental effects. For example, fugacity modelling for dichloromethane predicts T_R of 2380 hr, T_A of 109 hr and T_O of 105 hr. Since advection is rapid relative to reaction, the chemical is removed from the local environment but likely persists in another area since its reaction half-life is predicted to be in excess of 90 days. To prevent underestimating the hazard of substances with markedly reduced

⁵ BOD half-life is the time required to biodegrade a chemical such that its BOD in water is reduced by 50%.

overall persistence due to rapid advection, the reaction half-life (T_R) was chosen to represent persistence over the overall half-life (T_O) .

As explained in Appendix 1, the level III fugacity model has many data requirements, including environmental emission rates. The emission rates are normally defaulted to 1000 kg/h for each medium. However, since NPRI release data is available for each medium, the respective annual releases to each medium were used in place of the default emission rates to allow for a more accurate estimate of reaction half-life. This provides a more sophisticated estimate of reaction half-life since persistence can be affected by what medium the substance is introduced into and how it moves from one medium to another.

3.2.2 Bioaccumulation/Bioconcentration

Bioaccumulation and bioconcentration factors for fish were supplied by Environment Canada's ESB (Gobas 2000). Although bluegill sunfish (*Lepomis macrochirus*) is the preferred species for this measure, factors from different fish species were included due to scarcity of bioconcentration data. If measured values were not available from ESB, the bioconcentration factor was estimated by the following QSAR developed by Bintein *et al.* (1993):

 $log BCF = 0.910(log K_{OW}) - 1.975 log[(6.8 x 10^{-7})K_{OW} + 1] - 0.786$

Log K_{OW} values used in the QSAR were sourced from the Epiwin's PhysProp Database. When measured log K_{OW} values were not available, they were estimated by Epiwin's KOWWIN QSAR.

4.0 HAZARD VALUES

Once the data was compiled, a hazard value (HV) was calculated for each parameter following the protocols outlined by Swanson *et al.* (1997). Transforming data to hazard values is an essential step in scoring systems as it normalizes all endpoints to the same relative scale and allows their further manipulation (e.g. addition, multiplication) by eliminating the complications of different units and varying magnitude. HVs ranged between 0 to 5 for effect parameters and 1 to 2.5 for persistence and bioconcentration factor. NPRI release amounts were transformed to release-weighting factors ranging between 1 and 10.

4.1 Converting Toxicity Values to Hazard Values

Toxicity endpoints were assigned HVs on a scale of 0 to 5 according to severity. A value of 0 represented negligible toxicity while a value of 5 indicated high toxicity. As discussed earlier, six endpoints were used to represent human health and environmental effects:

- rat oral LD₅₀;
- rat inhalation LC_{50;}
- carcinogenicity rating;
- reference dose/concentration (RfD/RfC);
- fish LC_{50} ; and
- water flea EC₅₀

4.1.1 Hazard values for acute rat oral and inhalation toxicity

HVs for the oral LD_{50} (HV_{OR}) and inhalation LC_{50} (HV_{INH}) endpoints were calculated using a continuous, logarithmic-linear function. Cut-off values for the LD_{50} were established based on

commonly accepted cut-off values (Swanson *et al.* 1997). The original cut-off values for the inhalation LC_{50} were set at >10,000 ppm and <31.6 ppm for assigning HVs of 0 and 5, respectively. However, based on the Office of Prevention, Pesticides and Toxic Substances Guideline for acute inhalation toxicity (US EPA 1998) and the Pest Management Regulatory Agency (PMRA) cut-off values for pesticide labelling, these limit values appeared to be outdated. Therefore, new cut-off values, consistent with the PMRA's protocol for pesticide labelling, were established. Accordingly, the rat inhalation LC_{50} cut-off values for setting HVs of 0 and 5 were > 2.0 mg/L and <0.05 mg/L, respectively. Table 2 illustrates the equations used to derive the HVs for the LD_{50} and LC_{50} endpoints. When no oral or inhalation toxicity information was available, a default hazard value of 2.5 was assigned to the chemical for that parameter.

Table 2: Equations used to derive hazard values from LD_{50} oral and LC_{50} inhalation data (Swanson *et al.* 1997)

 $\begin{array}{l} \mbox{Acute Oral Toxicity (HV_{OR})} \\ \mbox{If } LD_{50} \mbox{ oral } > 5000 \mbox{ mg/kg}, \mbox{ HV}_{OR} = 0 \\ \mbox{If } LD_{50} \mbox{ oral } \le 5 \mbox{ mg/kg}, \mbox{ HV}_{OR} = 5 \\ \mbox{For } 5 \mbox{ mg/kg} < LD_{50} \mbox{ oral } \le 5000 \mbox{ mg/kg}, \\ \mbox{ HV}_{OR} = 6.165 - 1.666 \mbox{ log}(LD_{50} \mbox{ oral}) \end{array}$

 $\begin{array}{l} \mbox{4-hour Acute Inhalation Toxicity (HV_{INH})} \\ \mbox{If } LC_{50} \mbox{ inhalation } > 2 \mbox{ mg/L}, \mbox{ HV}_{INH} = 0 \\ \mbox{If } LC_{50} \mbox{ inhalation } < 0.05 \mbox{ mg/L}, \mbox{ HV}_{INH} = 5 \\ \mbox{For } 0.05 \mbox{ mg/L} \le LC_{50} \mbox{ inhalation } \le 2.0 \mbox{ mg/L} \\ \mbox{HV}_{INH} = 0.9395 - 3.121 \mbox{ log}(LC_{50} \mbox{ inhalation}) \end{array}$

4.1.2 Hazard values for carcinogenicity ratings

HVs for carcinogenicity (HV_{CAR}) were assigned based on the method shown in Table 3. When carcinogenicity ratings were not available from IARC or IRIS and information was lacking to categorize a chemical based on expert judgment, the substance was assigned a default value of 1.5 for HV_{CAR} in accordance with recommendations made by Swanson and Socha (1997) regarding how to handle missing data in chemical ranking schemes. This default value (1.5) was chosen in place of the midpoint value (2.5) since 2.5 is not among the suite of carcinogenicity hazard values available (Table 3). Assigning a HV_{CAR} of 1.5 instead of 2.5 when carcinogenicity data is lacking offers a degree of conservatism without unrealistically inflating the contribution to hazard from carcinogenicity.

Table 3:	Carcinogenicity	scoring bas	ed on IA	ARC and	US EPA	classifications	(Swanson <i>et al</i> .
1997)							

IARC classification	HV _{CAR}	US EPA classification	HV _{CAR}
Group 4	0	Group E	0
Group 3	0	Group D	0
Not Applicable (no IA)	RC equivalent)	Group C	1.5
Group 2B	3.5	Group B2	3.5
Group 2A	4.0	Group B1	4.0
Group 1	5.0	Group A	5.0

4.1.3 Hazard values for non-cancer effects

HVs for non-cancer effects (HV_{NCAR}) were determined using the RfD or RfC. Upper and lower limits for the reference values were based on cut-offs provided by Swanson (2000a) for oral and inhalation NOAELs. Since the RfD and RfC are usually derived by dividing the NOAEL by a factor of 100, the cut-off values were also divided by a factor of 100. The equations shown in Table 4 were used to calculate HV_{NCAR} . When no information was available on which to base a reference value, a default hazard value of 2.5 was assigned to the chemical.

Table 4 : Equations used to derive HV_{NCA}	_R values from RfD or RfC (Swanson 2000a)
--	---

Non-Cancer Toxicity (HV _{NCAR}) – Oral	Non-Cancer Toxicity (HV _{NCAR}) – Inhalation
If RfD > 10 mg/kg, $HV_{RfD} = 0$	If RfC > 30 mg/m ³ , $HV_{RfC} = 0$
If RfD \leq 0.001 mg/kg, HV _{RfD} = 5	If RfC < 0.003 mg/m^3 , HV _{RfC} = 5
For 0.001 mg/kg \leq RfD \leq 10 mg/kg,	For 0.003 mg/m ³ \leq RfC \leq 2.0 mg/L
$HV_{RfD} = 1.25 - 1.25 \log(RfD)$	$HV_{RfC} = 1.846 - 1.25 \log(RfC)$

4.1.4 Hazard values for acute Daphnia and fish toxicity

HVs for acute aquatic toxicity to fish (HV_{AAF}) and water flea (HV_{AAD}) were calculated using 96hour fathead minnow (*Pimephales promelas*) LC₅₀ and 48-hour *Daphnia magna* LC₅₀ or EC₅₀ values, respectively, as illustrated in Table 5. A continuous, logarithmic-linear function was used to calculate both the HV_{AAF} and HV_{AAD} (Swanson *et al.* 1997). Commonly accepted cut-off values were chosen for the fish LC₅₀. The same cut-offs were applied to *Daphnia* LC/EC₅₀ values as supported by Snyder *et al.* (2000). When measured data or information on which to base *Daphnia* or fathead minnow toxicity were unavailable, a default hazard value of 2.5 was assigned to the chemical.

Table 5: Equations used to derive hazard values from fathead minnow LC_{50} (Swanson *et al.* 1997) and *Daphnia magna* LC/EC_{50} data (Snyder *et al.* 2000)

Acute Aquatic Fish Toxicity (HV_{AAF}) If $LC_{50} \ge 1000 \text{ mg/L}$, $HV_{AAF} = 0$ If $LC_{50} < 1 \text{ mg/L}$, $HV_{AAF} = 5$ For 1 mg/L $\le LC_{50} < 1000 \text{ mg/L}$, $HV_{AAT} = -1.67 \log (LC_{50}) + 5.0$ Acute Aquatic *Daphnia* Toxicity (HV_{AAD}) If $LC/EC_{50} \ge 1000 \text{ mg/L}$, $HV_{AAD} = 0$ If $LC/EC_{50} < 1 \text{ mg/L}$, $HV_{AAD} = 5$ For 1 mg/L $\le LC/EC_{50} < 1000 \text{ mg/L}$, $HV_{AAD} = -1.67 \log (LC/EC_{50}) + 5.0$

4.2 Converting Exposure Data into Hazard Values

Exposure endpoints were assigned HVs on a scale of 1 to 2.5. A value of 1 represented negligible persistence and bioaccumulation potential while 2.5 indicated high persistence and high bioaccumulation potential. As discussed earlier, three endpoints were used as surrogates for exposure potential:

- reaction half-life (persistence);
- aquatic bioaccumulation/bioconcentration factor (BAF/BCF); and
- NPRI release amount (exposure potential and route of entry).

4.2.1 Persistence and bioaccumulation/bioconcentration factor

Persistence and BCFs were assigned HVs ranging from 1 to 2.5. As with the effect parameters, higher HVs for exposure parameters represented a higher level of hazard and lower HVs represented a lower level of hazard in terms of environmental fate.

Table 6 illustrates the criteria used to determine HVs for reaction half-life and aquatic bioconcentration. Calculations for the reaction half-life HV (HV_{PERS}) and aquatic bioaccumulation/bioconcentration HV (HV_{BCF}) were based on a continuous, logarithmic-linear scale to generate values between 1 and 2.5 (Swanson *et al.* 1997).

 Table 6:
 Equations used to derive hazard values from Reaction half-life and Bioconcentration

 Factor (BCF) data (Swanson *et al.* 1997, Swanson 2000a)

Reaction Half-life (HV_{PERS})

If Reaction $t_{1/2} \le 4$ days, $HV_{PERS} = 1$ If Reaction $t_{1/2} > 500$ days, $HV_{PERS} = 2.5$ For 4 d < Reaction $t_{1/2} \le 500$ d, $HV_{PERS} = 0.311$ ln (Reaction $t_{1/2}$) + 0.568 Bioconcentration Factor (HV_{BCF}) If log(BAF/BCF) ≤ 1.0 , HV_{BCF} = 1 If log(BAF/BCF) ≥ 4.0 , HV_{BCF} = 2.5 For 1.0 < log(BAF/BCF) ≤ 4.0 , HV_{BCF} = 0.5 log(BAF/BCF) + 0.5

4.2.2 NPRI environmental release amounts

The NPRI environmental releases were not converted to hazard values like all the other parameters in the model. Instead, environmental releases reported to NPRI were converted to release-weighting factors (RWFs) on a scale of 1 to 10 (Table 7). Medium-specific RWFs were determined relative to the largest substance released in each medium. For example, ammonia was released to water in the largest quantity in the 2003 inventory. Therefore, ammonia's RWF_{water} was assigned the highest factor, 10, and RWF_{water} for all other substances were calculated relative to ammonia's releases to water. RWFs were calculated for air (RWF_A), water (RWF_W), land+water (RWF_{LW}) and total releases (RWF_T).

 Table 7: Calculation of release weighting factors

 $RWF_m = ln [release amount (kg)_m] + a$ where $a = 10 - ln [maximum release amount (kg)_m], and$ m = medium (water, air, land)

NPRI release data is reported under various categories as shown in Table 8. Therefore, to allow for reproducible risk ranking results, it is important to identify which categories were included to derive each RWF. For the purpose of calculating RWF_A , the release amount to air was determined by summing air releases from stacks, storage, fugitive, spills and other non-point sources.

On-Site Releases	On-Site and Off-Site Disposal	Off-Site Transfers
Air	Land	Treatment
 stack/point storage/handling fugitive spills other non-point 	 landfill containment land application or land farming underground injection storage (for off-site disposal only) 	 physical chemical biological incineration or thermal municipal sewage treatment plant (MSTP)
Surface Water		
 spills leaks direct discharge		
Land • spills • leaks • other		

 Table 8:
 NPRI release, disposal and transfer categories (Environment Canada 2004)

In the case of RWF_W, total water releases were determined by adding surface water spills, leaks, direct discharges plus transfers to MSTPs. Transfers to MSTPs were incorporated in the total since few MSTPs are designed to handle industrial effluents so many organic substances enter and leave these systems unchanged. The RWF_{LW} included all the categories included in RWF_W plus the amounts released to land as spills, leaks and other and disposed to landfills and landfarms. Underground injection and storage were not included in calculation for releases to land and water since these types of disposals are contained and unlikely to contaminate the surrounding area. Finally, the RWF_T was calculated by adding together all on-site releases, disposals to landfarm and landfill and discharges to MSTPs.

A method was developed to ensure that RWF values fell within a range from 1 to 10. By taking the natural logarithm of the release volume of each substance plus a constant (a), a normal distribution of data points was produced (Table 7). To ensure RWF values fell on a normalized scale from 1 to 10 representative of their release amounts, a cut-off value was established based on calculations shown in Table 9. Any release volume below this cut-off value was assigned a RWF of 1. This procedure ensured that release volumes less than the cut-off value would not produce a negative RWF or skew the resultant values.

Table 9: Calculation of Release Weighting Factor Cut-off Value

 $RWF_m = 1$ for release amount (kg) < b where $b = e^{(1-a)}$ m = medium

5.0 APPLYING THE CHEMS MODEL

Once all the toxicity, fate and environmental release data has been transformed into HVs or RWFs for a given set of chemicals, the CHEMS model has two applications. The HVs or the HVs and RWFs can be combined to generate a total hazard score (THS) or release-weighted risk score (RS), respectively, for each chemical. When the scores have been computed for each substance, they can be ranked accordingly in terms of hazard or risk.

5.1 Total Hazard Score

The CHEMS model compiles a total hazard score by multiplying the sum of effect HVs by the sum of exposure HVs as shown in Table 10.

Table 10:	Modified CHEMS Total Hazard Score
-----------	-----------------------------------

	Total Hazard Score (THS) = Effects × Exposure
Where:	$Effects = HV_{OR} + HV_{INH} + HV_{CAR} + HV_{NCAR} + HV_{AAF} + HV_{AAD}$ $Exposure = HV_{PERS} + HV_{BCF}$

For any given chemical, effects and exposure could have a maximum score of 30 and 5, respectively. Therefore, the maximum THS score for any given substance would be 150 (*i.e.* 5×30). A THS of 150 would indicate that a substance was extremely toxic, bioaccumulative and persistent in the environment. Conversely, a THS of 5 would indicate that a substance generally had low toxicity, persistence and bioaccumulation potential.

The THS gives an indication of a substance's hazard potential *if* it is present in the environment. *If* is emphasized in italics to underscore the fact that the total hazard score does not consider whether the chemical is present in the environment. Environmental presence is the single factor, aside from toxicity, which can have the greatest impact on increasing or diminishing a substance's risk to the environment or human health. However, since the THS does not incorporate environmental exposure, its use in prioritizing substances for risk assessment or management activities is limited to a theoretical scenario where all chemicals are released to the environment in the same quantity. The THS is the first step in characterizing a substance's hazard potential; incorporating environmental releases into the score gives a more accurate estimate of environmental risk and improves its utility for priority setting in the real world.

5.2 Risk Score

Clearly, to get a better perspective on the risk a chemical poses to the environment, environmental exposure must be included in the evaluation. The integration of toxicity, fate and environmental exposure data is made possible through the CHEMS risk score. While environmental releases reported to the NPRI are not equivalent to exposure concentrations, they nonetheless provide a good indicator of the relative presence of substances in the environment. Further, by combining environmental releases with toxicity, persistence and bioaccumulation data, the CHEMS risk score provides a reasonable proxy for risk. As shown in Table 11, environmental releases are incorporated into the CHEMS model by multiplying the effect HVs by their corresponding RWF to yield release-weighted HVs (wHVs). The specific RWFs in Section 4.2.2 were calculated intentionally as they reflect the exposure pathways for each of the toxicity measures. For example, HV_{INH} was multiplied by RWF_A since inhalation exposure generally occurs through air. Similarly, the aquatic endpoints were multiplied by the RWF_w since aquatic exposure to chemicals occurs via water. The chronic endpoints (HV_{CAR} and HV_{NCAR}) were multiplied by RWF_T since over a lifetime an individual can potentially be exposed to the total amount of the chemical deposited in the environment, regardless of its partitioning. Finally, HV_{OR} was multiplied by RWF_{LW} since oral exposures can result through ingestion of water and soil.

 Table 11: Release Weighting Factors Multiplied by Effect Hazard Values (Swanson et al. 1997)

$wHV_{OR} = HV_{OR} \times RWF_{LW}$	where:
$wHV_{INH} = HV_{INH} \times RWF_A$	RWF_{LW} = land/water release weighting factor
$wHV_{CAR} = HV_{CAR} \times RWF_{T}$	RWF_A = air release weighting factor
$wHV_{NCAR} = HV_{NCAR} \times RWF_T$	RWF_T = total release weighting factor
$wHV_{AAF} = HV_{AAF} \times RWF_W$	RWF_W = water release weighting factor
$wHV_{AAD} = HV_{AAD} \times RWF_{W}$	

After each effect HV is multiplied by its corresponding RWF, a risk score (RS) is calculated by employing the paradigm "risk = effects x exposure". Similar to the total hazard score, the sum of wHVs is multiplied by the sum of exposure HVs to yield a risk score for each substance as shown in Table 12.

Table 12: The Modified CHEMS Risk Score

 $\label{eq:Risk} \begin{array}{l} \mbox{Risk Score (RS) = Release-Weighted Effects \times Exposure} \\ \mbox{where:} & \mbox{Release-Weighted Effects $=$ wHV_{OR} + wHV_{INH} + wHV_{CAR} + wHV_{NCAR} + wHV_{AAF} + wHV_{AAD} \\ & \mbox{Exposure Potential $=$ HV_{PERS} + HV_{BCF} $} \end{array}$

Once all of the risk scores have been tallied for a group of substances, they can then be ranked according to their respective risk scores.

5.3 Uncertainty Score

While not included in the original CHEMS model, an uncertainty score was calculated for each substance to place its total hazard and risk ranks within the context of its data gaps. In general, each toxicity and fate endpoint for each substance was assigned an uncertainty factor ranging from 0 to 4 depending on the source and reliability of the data. For example, *measured* data were assigned an uncertainty factor of zero while toxicity and fate data derived from expert judgment, QSARs or surrogates were assigned an uncertainty factor of two. A description of the rationale used to assign uncertainty factors for other data deficiencies is provided in Appendix 2. Once

uncertainty factors had been assigned for each endpoint, they were summed to yield an uncertainty score for each substance up to a maximum score of 28.

The primary purpose of the uncertainty score is to ground truth a substance's overall hazard or risk rank. For example, a chemical with a very low uncertainty score and high risk rank would endorse its addition to a priority list for future management. The low uncertainty score confirms that mostly measured data were used to establish the risk score; therefore, risk managers can be assured the risk posed by the substance is real and not an artefact of inflated hazard values due to missing or estimated data. Similarly, a substance with a low risk rank but high uncertainty score may support its addition to a priority list since further study (primarily testing) is required before it can be judged to present a low risk.

6.0 RESULTS AND DISCUSSION

The methodology outlined above was employed to yield national rankings based on hazard and risk scores as shown in Table 13. The rank according to volume of release is also provided for comparison. Lastly the uncertainty score has been provided to place a substance's risk and hazard ranks within the context of its data gaps. For simplicity, only the ordinal ranks are shown for risk, hazard and volume whereas the score is provided for uncertainty.

It is important to note that the risk rankings are relative because the RWFs used in the model are assigned relative to the largest environmental releases to each medium. In this way, the model only allows for a comparison of risk between the substances included in the ranking. Comparison of risk scores between risk rankings compiled for separate groups of chemicals is not possible.

Substance	Risk Rank	Hazard Rank	Volume Rank	Uncertainty Score
Ammonia	1	36	1	6
Hydrogen sulphide	2	6	9	11
Sulphuric acid	3	26	5	10
Chlorine	4	19	25	11
Benzene	5	15	18	2
Acrolein	6	3	35	2
Formaldehyde	7	33	17	4
Hydrochloric acid	8	30	4	10
Hydrogen fluoride	9	43	11	9
Phosphorus (yellow or white)	10	2	73	10
Nonylphenol	11	13	37	7
Naphthalene	12	8	36	4
Chlorine dioxide	13	10	33	10
Methylenebis (phenylisocyanate)	14	5	41	9
Phenol (and its salts)	15	37	29	4
Hydrogen cyanide	16	1	56	10
Sodium nitrite	17	40	54	12
Acetaldehyde	18	45	20	4

Table 13: National Relative Rankings based on Risk, Hazard and Volume⁶

⁶ Complete scores and rankings are provided in Appendix 3.

Substance	Risk Rank	Hazard Rank	Volume Rank	Uncertainty Score
Carbon disulphide	19	16	10	12
Nitric acid	20	48	55	14
Dichloromethane	21	61	31	4
Nitrate ion in solution at $pH \ge 6.0$	22	76	2	12
Hexane:n-	23	32	8	8
Xylene (mixed isomers)	24	53	6	4
Styrene	25	49	13	4
Biphenyl	26	14	48	6
Ethylbenzene	27	46	21	4
Calcium fluoride	28	78	59	10
Tetrachloroethylene	29	12	53	2
Trichloroethylene	30	62	30	2
Chloroform	31	31	46	2
Polymeric diphenylmethane diisocyanate	32	22	47	9
Sodium fluoride	33	58	65	7
Fluorine	34	25	61	20
Toluene	35	77	7	2
Trimethylbenzene:1,2,4-	36	44	23	10
Chloromethane	37	69	32	8
Methanol	38	89	3	8
Toluene-2,4-diisocyanate	39	4	95	7
Butadiene:1,3-	40	55	45	8
Cyanide ion	41	9	75	6
Vinyl acetate	42	65	38	6
Di-t-butyl-4-methylphenol:2,6-	43	7	77	11
Dichlorobenzene:p-	44	18	63	4
Cyclohexane	45	68	19	8
Butoxyethanol:2-	46	83	26	12
Acrylonitrile	47	17	71	2
Butyl benzyl phthalate	48	21	64	2
Ethylene oxide	49	24	66	6
Carbon tetrachloride	50	11	89	2
Bis(2-ethylhexyl) phthalate	51	60	72	6
Toluenediisocyanate (mixed isomers)	52	20	79	7
Methyl ethyl ketone	53	92	12	8
Triethylamine	54	71	50	8
Ethylene glycol	55	95	15	9
Isopropylidenediphenol:p,p'-	56	23	70	9
Anthracene	57	27	68	8
Vinyl chloride	58	59	60	9
Cresol (mixed isomers and their salts)	59	63	52	8
Isoprene	60	38	67	8
Hydroquinone (and its salts)	61	28	97	7
Acrylamide	62	29	90	6
Dibutyl phthalate	63	34	74	2
Cumene hydroperoxide	64	35	96	15
Cumene	65	52	57	4
Chlorobenzene	66	39	86	2

Substance	Risk Rank	Hazard Rank	Volume Rank	Uncertainty Score
Benzoyl peroxide	67	41	99	12
Bis(2-ethylhexyl) adipate	68	42	78	5
Diethanolamine (and its salts)	69	81	51	7
Methyl isobutyl ketone	70	91	27	8
Methyl-2-pyrrolidone:N-	71	88	39	10
Butyl alcohol:n-	72	93	24	4
Decabromodiphenyl oxide	73	47	94	12
Propylene	74	82	22	11
HCFC-141b	75	66	44	14
Ethylene	76	84	16	11
Lithium carbonate	77	50	92	20
Acrylic acid (and its salts)	78	50	87	8
Ethyl acrylate	79	54	93	8
Bromine	80	56	85	14
Butyl acrylate	81	57	88	10
Nitrilotriacetic acid (and its salts)	82	67	81	14
Dichloroethane:1,2-	83	64	69	2
Thiourea	84	70	99	8
HCFC-142b	85	72	28	11
Dicyclopentadiene	86	73	76	8
Phthalic anhydride	87	74	91	13
Isopropyl alcohol	88	98	14	8
Formic acid	89	75	80	12
Butyl alcohol:i-	90	96	34	6
Methyl methacrylate	91	85	49	4
Dioxane:1,4-	92	79	84	8
Maleic anhydride	93	80	82	15
Dimethylformamide:n,n-	94	87	62	4
Butyl alcohol:tert-	95	94	58	8
Methyl tert-butyl ether	96	97	40	2
HCFC-22	97	86	42	9
Sulphur hexafluoride	98	90	43	9
Butyl alcohol:sec-	99	99	83	8

The national risk rank demonstrates a shift in priorities when a chemical's fate and toxicity are considered in combination with its environmental releases. According to risk scores, the highest ranked substances include ammonia, hydrogen sulphide, sulphuric acid, chlorine, benzene, acrolein, formaldehyde, hydrochloric acid, hydrogen fluoride, and phosphorus. Following NPRI convention (*i.e.* ranking by volume), nitrate ion, n-hexane, xylene, toluene and methanol would have received national attention; however, they are deemed to be of lower priority given their low hazard.

Similarly, a different priority ranking would result if it was based on hazard alone. In contrast to the national risk rank, a priority ranking based on hazard would not include ammonia, sulphuric acid, formaldehyde, hydrochloric acid or hydrogen fluoride among its top ranks. Instead, it would include tetrachloroethylene, toluene-2,4-diisocyanate, cyanide ion, 2,6-dibutyl-4-methylphenol, p-dichlorobenzene, acrylonitrile and carbon tetrachloride – substances that all ranked much lower in terms of risk.

The risk rank also demonstrates a few risk principles through the rankings for ammonia and phosphorus. In spite of ammonia's medium rank for hazard, its high volume pushes ammonia into first place for risk. This outcome is expected considering, with the exception of four other chemicals, national ammonia releases are one to seven orders of magnitude greater than all other chemicals ranked. This demonstrates the following risk principle – a substance with moderate hazard can present a high risk to the environment if its environmental loading is high.

Conversely, in spite of the low volume rank for phosphorus, its high hazard rank raises its risk rank to eleventh highest, thereby illustrating that a substance with low environmental loading but high hazard can pose a high risk to the environment.

Clearly, the risk rank provides a superior prioritization of NPRI substances since it combines persistence, bioconcentration and toxicity data with NPRI release quantities. In spite of the clear cut ordering of risk suggested by the ordinal rank, the CHEMS risk ranking results should not be substituted for quantitative risk assessment nor used as an absolute for setting priorities. Rather, relative risk rankings generated by CHEMS should be used by risk managers as a tool for identifying priority substances for further evaluation.

To ground truth the risk ranking and ensure attention is focused on the most risky substances, the uncertainty score should be reviewed for each substance along with its relative risk rank. The uncertainty score helps substantiate a substance's overall rank and can also identify substances that require further study (*i.e.* those with high uncertainty scores). For example, a risk manager can be fairly certain that ammonia, benzene, formaldehyde and acrolein should be placed on a national priority list for further attention given their relatively low uncertainty scores. Similarly, the public can be assured that n-butyl alcohol, 1,2-dichloroethane and methyl methacrylate pose a low risk to the environment and human health since their low hazard and risk ranks are accompanied by low uncertainty scores. Finally, the moderate uncertainty scores for hydrogen sulphide, sulphuric acid, chlorine and hydrochloric acid suggest additional study or testing of these chemicals may be warranted to reduce the uncertainty of their respective risk ranks.

In addition to providing a national priority ranking, CHEMS can also be used to generate priority rankings for smaller geographical areas. To illustrate this concept, the relative risk rankings for Canada and a sample of its provinces are provided in Table 14⁷.

⁷ Relative risk, hazard and volume scores and ranks are provided for each province and territory in Appendices 4a-4l.

	Risk Rank							
Substance	CA	NS	NB	ON	QC	SK	AB	вс
Ammonia	1	1	1	1	1	2	1	1
Hydrogen sulphide	2	2	3	4	4	1	2	2
Sulphuric acid	3	3	2	2	3	10	4	6
Chlorine	4	4	12	3	5	3	12	15
Benzene	5	7	9	7	8	4	3	10
Chlorine dioxide	6	20	7	11	2	5	15	3
Acrolein	7		5	5	9		8	19
Formaldehyde	8	10	4	17	6	14	9	4
Hydrochloric acid	9	6	11	6	13	12	11	7
Hydrogen fluoride	10		13	12	7	6	7	5
Phosphorus (yellow or white)	11			9	29		5	17
Nonylphenol	12		6	8	20		37	31
Naphthalene	13	8	20	16	17	7	6	22
Methylenebis(phenylisocyanate)	14			10	34		16	11
Phenol (and its salts)	15	12	14	13	21	18	26	14
Hydrogen cyanide	16	5		14				
Sodium nitrite	17			15	14		47	42
Acetaldehyde	18	9	8	22	11	9	18	8
Biphenyl	19	22		29	43		10	25
Carbon disulphide	20			31		13	13	9
Nitric acid	21		27	18	18	28	52	45
Dichloromethane	22			19	16		24	13
Hexane:n-	23	13	15	21	24	11	14	18
Calcium fluoride	24			24	10	31	34	52
Xylene (mixed isomers)	25	19	19	20	28	8	21	21
Styrene	26	11		28	19	15	20	12
Nitrate ion	27	15	16	23	26	16	19	16
Ethylbenzene	28	16	17	27	30	17	17	24
Tetrachloroethylene	29			32	12		36	29
Trichloroethylene	30	14		26	27		55	34

Table 14: National and Provincial Relative Risk Rankings

A review of the rankings reveals that ammonia, hydrogen sulphide and sulphuric acid are the most common top ranking substances across the country. While top risk ranked substances are similar across the country, subtle differences exist between the provincial and national ranks (e.g. lower ranking for chlorine in NB, AB, BC, phosphorus in QC, formaldehyde in ON, SK, nonylphenol in AB, BC). The ranking differences highlight the power of CHEMS to identify priority substances for distinct geographical regions. Since the NPRI collects data on a per facility basis, it is possible to create relative risk rankings for very small areas. Presumably, given the different use and release patterns of chemicals throughout the country, unique priority lists could be developed for individual communities. Instead of being daunted by the entire, unwieldy NPRI list, the community-specific rankings would help Canadians glean more intelligible information from NPRI data and focus their efforts on reducing substances that present the most risk to their respective communities.

Whether used as a tool to set internal priorities within Environment Canada or to help Canadians navigate their way through the NPRI, the CHEMS risk ranking scheme is certainly an improvement from prioritizing and presenting NPRI substances in terms of total tonnes released.

7.0 LIMITATIONS AND UNCERTAINTIES

To make the overall risk rank more robust and reduce the uncertainty associated with the risk ranks, a data set comprised of mostly empirical data is desired. However, uncertainty from data deficiencies is inevitable when the CHEMS model, or any other risk ranking model for that matter, is applied to a large group of substances used in Canadian commerce. Although a great effort was made to collect measured data, and while the majority of data collected were measured (55%), many data deficiencies exist for NPRI substances. Consequently, as shown in Table 15, QSARs, expert judgment and default values were used to satisfy a number of endpoints in the CHEMS model. Most notably, the majority of BAF/BCFs and all persistence data (reaction $t_{1/2}$) were modelled.

Endpoint	measured data (%)	estimated data ¹ (%)	missing data ² (%)
Rat oral LD ₅₀	89	10	1
Rat inhalation LC ₅₀	67	33	0
Carcinogenicity	63	11	26
Reference Dose/Concentration	70	28	2
Daphnia EC ₅₀	67	30	3
Fish LC ₅₀	68	29	3
Reaction $t_{1/2}$	0	100	0
log K _{OW}	94	6	0
BAF/BCF	21	79	0

Table 15: Percentage of measured, estimated and missing data points

¹Estimated by QSAR or expert judgement.

² Data requirement fulfilled by default value.

It is widely accepted that persistence and bioaccumulation data are scarce in the literature. For this reason, it's not surprising that a contract let by ESB (Gobas 2000) to locate bioaccumulation data only found BAF/BCFs for approximately 140 DSL substances – twenty-one of which were substances included in the NPRI risk rank. To overcome this glut of missing data, the bioconcentration potential was estimated by a QSAR relating log K_{OW} to BCF. This practice is readily accepted by environmental fate experts when BCF data is unavailable (Environment Canada 2003) and helps diminish some of the uncertainty associated with estimated BCFs.

With respect to persistence, literature searches conducted by Environment Canada staff in headquarters and the Atlantic region yielded very few comparable half-life data for use in the NPRI risk ranking. However, most experts agree that the available models used for persistence prediction are fairly reliable (Robinson 2003). Therefore, due to scarcity of data and following expert recommendation, the fugacity model was chosen to estimate reaction half-lives for NPRI substances included in the risk rank.

Further, to shore up any uncertainty associated with choosing the most appropriate QSAR for the aquatic toxicity data gaps, ESB staff were consulted for expert opinion. Lastly, to counteract the uncertainty associated with using estimated and default values, an uncertainty score was calculated for each substance to balance its risk score with its data deficiencies. In this way, the uncertainty score helps identify data rich and data poor substances.

Measured data can also be a source of uncertainty if the test was not conducted according to good laboratory practice and erroneous toxicity values could result. To diminish uncertainty from outliers, the geometric or arithmetic mean was calculated when multiple values were available for an endpoint.

In large part, the CHEMS effect measures are derived from rat studies and acute exposures. As a result, the model could benefit from the inclusion of chronic aquatic and terrestrial studies. However, unless a significant amount of new data is generated, this suggestion is practically infeasible due to the paucity of these studies in the current literature. Further, including such effect measures in the CHEMS model would increase the overall uncertainty of the risk ranking since most chronic endpoints would likely be fulfilled by expert judgment, QSARs or default values.

The NPRI risk rank is also limited as it only encompasses a third of the NPRI substances and excludes substances with lower reporting thresholds (e.g. arsenic, lead, dioxins/furans, hexachlorobenzene, and polycyclic aromatic hydrocarbons). However, most of the latter substances have been extensively studied, have had a PSL assessment and/or been added to the CEPA list of toxic substances and are, therefore, being adequately managed by the government of Canada. A great deal of effort would be required to compile a comprehensive toxicity and fate database for all the organics and non-metallic inorganics on the NPRI. While this exercise is necessary to make the risk ranking applicable to all scenarios in Canada, it is uncertain what benefit would be derived from gathering such information. Given the criteria used to scale down the current risk rank (i.e. only substances with cumulative releases equivalent to or greater than 10 tonnes or reported by 5 or more facilities were included), it's unlikely that the national priority ranking would change even after a comprehensive database is compiled. For example, it is expected that substances more commonly reported or released in higher quantities would take precedence nationally over those substances released in very small quantities or reported by only a few facilities. With respect to metals, since the exposure endpoints in the CHEMS model are irrelevant for metals, a new ranking scheme needs to be developed to prioritize these substances.

A final uncertainty compromising the NPRI risk rank is the variability in the NPRI data itself. Since NPRI does not require polluters to measure their actual releases to the environment, a large portion of the inventory is estimated (*i.e.* based on mass balance, emission factors or engineering estimates). For this reason, the releases reported to the inventory have a certain amount of error associated with them. In addition, without resident experts on staff for each reporting sector and routine inspections to ensure consistent and complete reporting across all sectors, the inventory's comprehensiveness is in doubt. The NPRI is currently researching ways to improve the quality and comprehensiveness of NPRI data through data verification and on-site inspections. Therefore, program initiatives dedicated to improving reporting compliance and the inventory's data quality will help to reduce the uncertainty associated with NPRI release amounts in future NPRI risk ranking iterations.

8.0 **RECOMMENDATIONS**

- Ranking NPRI substances according to risk is a useful tool to assist priority setting within environmental and human health protection agencies and community groups with narrowing their focus on substances that present the greatest risk to their environment rather than those released in the greatest quantity.
- The CHEMS risk ranking model is a first step in identifying substances for further evaluation. Following higher tiers of risk assessment, risk managers can take action on substances earmarked by CHEMS, including the development of pollution reduction criteria, limiting the use of selected chemicals or perhaps instituting an economic instrument for those pollutants presenting the greatest environmental risk.
- There is some uncertainty associated with the risk scores due to data gaps being filled by modeling, expert judgment or default values and the uncertain reliability and comprehensiveness of reported NPRI data. Some of the uncertainty has been accounted for through the uncertainty score provided for each substance. Further, future program initiatives aimed at improving NPRI data quality should help reduce uncertainty from NPRI data.
- The work only encompasses a third of the NPRI substances and excludes metals. Therefore, a ranking system needs to be developed to prioritize metals on the NPRI; the current model is not appropriate since the exposure parameters (BAF/BCF, persistence) are not relevant to metals. While metals are beyond the scope of this report, a similar ranking system based on inherent toxicity and NPRI releases could be developed to prioritize metals on the NPRI. One obstacle to developing such a system is the absence of metal speciation information for metals reported to the NPRI. Currently the NPRI collects metal release data in the absence of parent compound information and thus the valence state of the metal is unknown. Without parent compound information, it is not possible to ascertain the bioavailability of reported metal releases. As such, until NPRI reporting is modified to collect this pertinent information, worst case scenario approaches would likely be used for assigning valence states, thereby adding uncertainty to the final ranking results.
- While the database is not comprehensive for all organics, it is a good start to help prioritize many of the substances on the NPRI. To make the tool applicable to all scenarios in Canada, a significant amount of time will be needed to collect toxicity and exposure data for the remaining NPRI substances. The benefit of expending resources on data collection for the remaining substances is questionable since the screening criteria used in the current risk rank should adequately address hazardous substances released in low quantities, provided they are commonly reported.

9.0 **REFERENCES**

- Agency for Toxic Substances and Disease Registry (ATSDR). Department of Health and Human Services. 2003. http://www.atsdr.cdc.gov/
- Bintein, S., Devillers, J. and W. Karcher. 1993. Non-linear dependence of fish bioconcentration on n-octanol/water partition coefficient. SAR QSAR Environ. Res. 1:29-39.

Canadian Centre for Occupational Health and Safety (CCOHS). 2003. http://www.ccohs.ca/

- Canadian Environmental Modelling Centre (CEMC). 2006. Level II Model. http://www.trentu.ca/cemc/models/L2v300.html
- Environment Canada. 2000. A Risk Screening of National Pollutant Release Inventory Substances in the Atlantic Provinces. Environmental Surveillance Report EPS-5-AR-00-3. July 2000.
- Environment Canada. 2003. Guidance Manual for the Categorization of Organic and Inorganic Substances on Canada's Domestic Substances List. Determining persistence, bioaccumulation potential and inherent toxicity to non-human organisms. June 2003, Existing Substances Branch.
- Environment Canada. 2004. Guide for Reporting to the National Pollutant Release Inventory. Ottawa: Minister of Public Works and Government Services Canada.
- European Chemicals Bureau. 2003. European chemical Substances Information System (ESIS): International Uniform Chemical Information Database (IUCLID). http://ecb.jrc.it/esis/
- Gobas, F. 2000. Identification of Bioconcentration and Bioaccumulation Factors for Substances on the DSL: Parts 1-V. Prepared under contract for the Chemicals Evaluation Division, Environment Canada, Hull, Quebec. February 2000.
- Green Seal. 2005. Green Seal standard GS-37: Environmental Standard for General-Purpose, Bathroom, Glass, and Carpet Cleaners Used for Industrial and Institutional Purposes (2nd edition). March 2005, Green Seal, Inc. http://www.greenseal.org/standards/gs37.pdf
- Hazardous Substances Data Bank (HSDB). 2003. http://toxnet.nlm.nih.gov/
- International Agency for Research on Cancer (IARC). 2003. http://www.iarc.fr/

International Program on Chemical Safety (IPCS). 2003. http://www.inchem.org/

- Mackay. D. 1991. Multimedia Environmental Models: The Fugacity Approach. Lewis Publishers, CRC Press, Boca Raton, Florida.
- Robinson, P. 2003. Personal communication. Electronic mail to Allison Dunn on October, 29, 2003.
- Solomon, K. R. 1999. Ecotoxicological Risk Characterization Lecture Notes. Centre for Toxicology, Bovey Building, University of Guelph, pp. 136-142.

- Snyder, E.M., Snyder, S.A., Giesy, J.P., Blonde, S.A., Hurlburt, G.K., Summer, C.L., Mitchell, R.R and D. M. Bush. 2000. SCRAM: A Scoring and Ranking System for Persistent, Bioaccumulative, and Toxic Substances for the North American Great Lakes. Part I. Structure of the Scoring and Ranking System. *Environmental Science and Pollution Research* 7(1):52-61.
- Swanson, M.B., Davis, G.A., Kincaid, L.E., Schultz, T.W., Bartmess, J.E., Jones, S.L., George, E.L. 1997. A Screening Method for Ranking and Scoring Chemicals by Potential Human Health and Environmental Impacts. *Environmental Toxicology and Chemistry* 16(2): 372-383.
- Swanson, M.B., and Socha, A. (eds). 1997. Chemical Ranking and Scoring: Guidelines for Relative Assessments of Chemicals. Pensacola, FL; Society of Environmental Toxicology and Chemistry (SETAC).
- Swanson, M.B. 2000a. Personal communication. Electronic mail to C. Roberts on December 4, 2000.
- US EPA. 1995. Final Water Quality Guidance for Great Lakes System. Federal Register, Volume Number Thursday, March 23, 1995. pp. 15366-15425.
- US EPA ECOTOX Database. 2003. http://www.epa.gov/ecotox/
- US EPA Exposure Tools and Software: EPI Suite v.3.12. 2005. http://www.epa.gov/oppt/exposure/docs/episuitedl.htm
- US EPA Integrated Risk Information System (IRIS). 2003. http://www.epa.gov/iris/
- US EPA. 1998. Health Effects Test Guidelines OPPTS 870.1300. Acute Inhalation Toxicity. Office of Prevention, Pesticides and Toxic Substances. EPA 712-C-98-193.

APPENDIX 1: FUGACITY MULTIMEDIA MODELS

The Level I, II and III fugacity models are based on the work of Mackay (1991). While each model becomes generally more sophisticated with increasing levels, each model attempts to provide a picture of how a chemical partitions in the environment. In all cases, model simulation requires the input of chemical and environmental properties.

In the Level I simulation, the volumes and densities of all 7 media (air, water, soil, bottom sediment, suspended sediment, fish and aerosols), organic carbon content of soil, sediment and suspended sediment, fish lipid content and physicochemical properties (water solubility, vapour pressure, log K_{OW} , melting point) must be supplied. While these criteria are required for input, it is possible to run any fugacity model by using the assumptions for volumes, densities, organic and fish lipid content provided by the model developers. The Level I model describes how a fixed quantity of conserved (non-reacting) chemical introduced into the environment partitions at equilibrium between the 7 media listed above. In this iteration there is no consideration of reaction.

The Level II model adds another level of sophistication by requiring reaction rates for all media and advective flow residence times for air, water and sediment burial. As opposed to introducing a fixed amount of chemical, the Level II model simulates a situation in which a chemical is continuously discharged at a constant rate and a steady-state is achieved in which input and output rates are equal. The medium receiving the emission is unimportant, because the chemical is assumed to become instantaneously distributed at equilibrium condition. In addition to providing environmental distribution of the chemical, by including advection and reaction rates, the Level II fugacity provides an estimate of chemical persistence and identifies which loss processes will be most important in removing a chemical from the environment.

The Level III simulation requires data on intermedia transport velocities and takes into account the movement of chemical from one medium to another in the calculation of environmental persistence. Unlike Level II, the Level III model does not assume equilibrium between media. This simulation provides a more realistic description of a chemical's fate including the important degradation and advection losses and the intermedia transport processes. The distribution of the chemical between media depends on how the chemical enters the system, (e.g. to air, water, or both) and the mode of entry affects the overall environmental persistence.

More information about fugacity modelling can be obtained from Mackay (1991).

APPENDIX 2:	RATIONALE FOR	ASSIGNING	UNCERTAINTY FACTORS
-------------	---------------	-----------	---------------------

Type of Uncertainty	Uncertainty Factor	N
Rat Oral LD ₅₀		
Measured data	0	88
HV=0 based on expert judgement (<i>i.e.</i> ingestion unlikely)	1	9
Different species used	2	1
No information	4	1
Rat Inhalation LC ₅₀		
Measured data	0	66
HV=0 based on expert judgement (<i>i.e.</i> inhalation irrelevant pathway)	1	12
Time-adjusted LC ₅₀ , surrogate chemical used or Green Seal equation	2	20
Time-adjusted and different species (mouse)	3	1
Carcinogenicity Rating		
IARC or EPA evaluation	0	62
Surrogate or expert judgement based on supporting studies	2	11
No information	4	26
Reference Dose/ Reference Concentration		
IRIS monograph or ATSDR Maximum Residue Limit	0	69
Expert judgement based on supporting studies, exposure limit	2	28
No information	4	2
Daphnia magna EC/LC ₅₀		
Measured data	0	66
QSAR/surrogate/different exposure period/ LC_{50} > water solubility	2	29
QSAR-derived value of surrogate chemical	3	1
No information	4	3
Fathead minnow LC ₅₀		
Measured data	0	67
QSAR/surrogate/different species/ LC50> water solubility	2	24
QSAR & LC ₅₀ > water solubility/ QSAR-derived value from surrogate/ QSAR but ESB predicts high uncertainty	3	5
No information	4	3
BAF/BCF		
measured data	0	21
QSAR based on measured log Kow, expert judgement	2	71
QSAR based on modelled log K _{OW}	3	7
Reaction half-life		<u> </u>
Level III fugacity model	2	99

APPENDIX 3: CANADIAN RANKS AND SCORES

Substance	Risk Score	Risk Rank	Hazard Score	Hazard Rank	Total Release (tonnes)	Volume Rank	UF total
Ammonia	338.06	1	33.83	36	66463.318	1	6
Hydrogen sulphide	302.01	2	62.98	6	4871.019	9	11
Sulphuric acid	277.39	3	38.12	26	10636.701	5	10
Chlorine	244.46	4	45.53	19	824.913	25	11
Benzene	233.78	5	46.82	15	1703.912	18	2
Acrolein	191.91	6	69.50	3	305.38	35	2
Formaldehyde	189.36	7	34.87	33	1974.372	17	4
Hydrochloric acid	188.82	8	36.58	30	10751.557	4	10
Hydrogen fluoride	179.64	9	30.04	43	3785.693	11	9
Phosphorus ¹	178.26	10	73.66	2	8.105	73	10
Nonylphenol	168.77	11	47.13	13	177.098	37	7
Naphthalene	157.78	12	57.77	8	256.725	36	4
Chlorine dioxide	157.29	13	50.95	10	448.285	33	10
Methylenebis (phenylisocyanate)	148.28	14	65.22	5	105.084	41	9
Phenol ²	142.83	15	33.59	37	733.441	29	4
Hydrogen cyanide	139.39	16	80.74	1	28.39	56	10
Sodium nitrite	130.45	17	32.13	40	38.575	54	12
Acetaldehyde	130.09	18	29.48	45	1246.53	20	4
Carbon disulphide	121.95	19	46.22	16	3825.992	10	12
Nitric acid	120.03	20	28.92	48	33.394	55	14
Dichloromethane	116.98	21	24.68	61	705.394	31	4
Nitrate ion ³	115.12	22	18.58	76	42818.814	2	12
Hexane:n-	112.94	23	35.89	32	5978.501	8	8
Xylene ⁴	108.30	24	26.78	53	7513.538	6	4
Styrene	104.18	25	28.20	49	2428.082	13	4
Biphenyl	94.26	26	47.03	14	66.601	48	6
Ethylbenzene	93.37	27	29.15	46	1148.335	21	4
Calcium fluoride	90.63	28	17.22	78	20.615	59	10
Tetrachloroethylene	87.46	29	48.08	12	41.871	53	2
Trichloroethylene	86.29	30	24.49	62	720.636	30	2
Chloroform	82.43	31	36.21	31	69.888	46	2
Polymeric diphenylmethane diisocyanate	80.71	32	40.48	22	66.963	47	9
Sodium fluoride	77.00	33	25.53	58	12.106	65	7
Fluorine	72.26	34	38.59	25	15.888	61	20
Toluene	71.60	35	18.40	77	6660.354	7	2
Trimethylbenzene:1,2,4-	69.82	36	29.55	44	957.588	23	10
Chloromethane	68.54	37	23.26	69	652.497	32	8
Methanol	67.18	38	7.51	89	23357.077	3	8
Toluene-2,4-diisocyanate	67.10	39	67.10	4	0.011	95	7
Butadiene:1,3-	65.26	40	26.24	55	77.491	45	8
Cyanide ion	63.99	40	57.62	9	6.149	75	6
Vinyl acetate Di-t-butyl-4-methylphenol:2,6- Dichlorobenzene:p- Cyclohexane	58.79 58.65 56.76 56.33	42 43 44 45	24.29 58.65 45.66 23.47	65 7 18 68	136.682 2.747 13.037 1558.118	38 77 63 19	6 11 4 8

Substance	Risk Score	Risk Rank	Hazard Score	Hazard Rank	Total Release (tonnes)	Volume Rank	UF total
Butoxyethanol:2-	52.28	46	11.61	83	794.389	26	12
Acrylonitrile	50.48	47	46.01	17	8.601	71	2
Butyl benzyl phthalate	50.41	48	43.02	21	12.575	64	2
Ethylene oxide	50.12	49	39.50	24	11.875	66	6
Carbon tetrachloride	49.37	50	49.37	11	0.384	89	2
Bis(2-ethylhexyl) phthalate	46.51	51	24.87	60	8.217	72	6
Toluenediisocyanate ⁴	44.69	52	44.69	20	1.586	79	7
Methyl ethyl ketone	44.21	53	6.86	92	3233.255	12	8
Triethylamine	42.85	54	22.45	71	48.065	50	8
Ethylene glycol	41.24	55	5.57	95	2323.543	15	9
Isopropylidenediphenol:p,p'-	40.22	56	40.22	23	8.77	70	9
Anthracene	39.36	57	37.56	23	10.218	68	8
Vinyl chloride	39.30	58	25.28	59	20.049	60	9
Cresol ⁵		50		63	42.499	52	9 8
	38.00		24.37				
Isoprene	37.62	60	33.37	38	11.276	67	8
Hydroquinone ²	37.48	61	37.48	28	0.002	97	7
Acrylamide	37.32	62	37.32	29	0.252	90	6
Dibutyl phthalate	34.58	63	34.58	34	6.779	74	2
Cumene hydroperoxide	34.23	64	34.23	35	0.007	96	15
Cumene	33.99	65	26.82	52	27.688	57	4
Chlorobenzene	33.20	66	33.20	39	0.608	86	2
Benzoyl peroxide	32.05	67	32.05	41	0	99	12
Bis(2-ethylhexyl) adipate	31.69	68	31.69	42	2.173	78	5
Diethanolamine ²	31.26	69	13.75	81	47.22	51	7
Methyl isobutyl ketone	31.07	70	6.97	91	737.921	27	8
Methyl-2-pyrrolidone:N-	30.75	71	8.64	88	118.322	39	10
Butyl alcohol:n-	30.47	72	6.42	93	934.562	24	4
Decabromodiphenyl oxide	29.06	73	29.06	47	0.059	94	12
Propylene	28.22	74	12.67	82	1110.184	22	11
HCFC-141b	27.91	75	23.92	66	93.437	44	14
Ethylene	27.21	76	11.21	84	2188.485	16	11
Lithium carbonate	26.84	77	26.84	50	0.132	92	20
Acrylic acid ²	26.84	77	26.84	50	0.561	87	8
Ethyl acrylate	26.57	79	26.57	54	0.114	93	8
Bromine	25.97	80	25.97	56	0.665	85	14
Butyl acrylate	25.75	81	25.75	57	0.386	88	10
Nitrilotriacetic acid ²	24.99	82	23.81	67	1.31	81	14
Dichloroethane:1,2-	24.68	83	24.36	64	9.104	69	2
Thiourea	22.54	84	22.54	70	0	99	8
HCFC-142b	21.34	85	21.34	72	735.502	28	11
Dicyclopentadiene	20.79	86	20.79	73	3.713	76	8
Phthalic anhydride	20.29	87	20.29	74	0.211	91	13
Isopropyl alcohol	19.56	88	2.95	98	2339.335	14	8
Formic acid	19.23	89	19.23	75	1.571	80	12
Butyl alcohol:i-	18.02	90	4.61	96	316.567	34	6
Methyl methacrylate	16.90	91	9.79	85	50.177	49	4
Dioxane:1,4-	16.38	92	16.38	79	0.76	84	8

Substance	Risk Score	Risk Rank	Hazard Score	Hazard Rank	Total Release (tonnes)	Volume Rank	UF total
Maleic anhydride	14.75	93	14.75	80	1.116	82	15
Dimethylformamide:n,n-	12.69	94	9.04	87	13.748	62	4
Butyl alcohol:tert-	11.76	95	6.17	94	24.047	58	8
Methyl tert-butyl ether	11.50	96	4.60	97	107.23	40	2
HCFC-22	9.13	97	9.13	86	104.957	42	9
Sulphur hexafluoride	7.01	98	7.01	90	95.079	43	9
Butyl alcohol:sec-	1.65	99	1.65	99	0.829	83	8

¹ yellow or white ² and its salts

³ in solution at pH \ge 6

⁴ mixed isomers

⁵ mixed isomers and their salts

APPENDIX 4: PROVINCIAL AND TERRITORIAL RANKS AND SCORES

	Risk	Risk	Hazard	Hazard	Total Release	Volume	
Substance	Score	Rank	Score	Rank	(tonnes)	Rank	UF total
Ammonia	329.75	1	33.83	14	1234.703	2	6
Hydrogen sulphide	258.50	2	62.98	2	59.548	8	11
Sulphuric acid	239.32	3	38.12	8	981.652	3	10
Chlorine	226.86	4	45.53	7	40.68	10	11
Hydrogen cyanide	220.14	5	80.74	1	13.531	18	10
Hydrochloric acid	176.88	6	36.58	10	2038.986	1	10
Benzene	170.90	7	46.82	6	15.161	15	2
Naphthalene	122.52	8	57.77	3	0.779	27	4
Acetaldehyde	115.12	9	29.48	17	18.373	14	4
Formaldehyde	100.25	10	34.87	12	9.127	19	4
Styrene	97.96	11	28.20	19	46.72	9	4
Phenol ¹	92.46	12	33.59	15	1.199	26	4
Hexane:n-	91.40	13	35.89	11	27.265	11	8
Nitrate ion ²	87.60	14	18.58	26	201.304	6	12
Trichloroethylene	81.03	15	24.49	22	14.1	17	2
Ethylbenzene	69.13	16	29.15	18	5.343	22	4
Chloromethane	65.95	17	23.26	25	14.3	16	8
Methanol	64.50	18	7.51	31	497.715	4	8
Xylene ³	61.10	19	26.78	21	24.941	12	4
Dibutyl phthalate	56.42	20	34.58	13	5.03	23	2
Chlorine dioxide	50.95	21	50.95	4	0	33	10
Trimethylbenzene:1,2,4-	50.10	22	29.55	16	2.712	24	10
Biphenyl	47.03	23	47.03	5	0	33	6
Ethylene glycol	45.88	24	5.57	32	287.524	5	9
Cyclohexane	45.29	25	23.47	24	7.937	20	8
Toluene	43.47	26	18.40	27	18.563	13	2
Anthracene	37.56	27	37.56	9	0	33	8
Cumene	28.57	28	26.82	20	0.326	28	4
Cresol ⁴	25.59	29	24.37	23	0.226	30	8
Propylene	23.19	30	12.67	29	6.545	21	11
Isopropyl alcohol	20.71	31	2.95	33	103.523	7	8
Ethylene	17.45	32	11.21	30	2.145	25	11
Diethanolamine 1	13.75	33	13.75	28	0.245	29	7

APPENDIX 4a: Relative Risk, Hazard and Volume Scores and Ranks for Nova Scotia

¹ and its salts

² in solution at pH ≥ 6.0

³ mixed isomers

⁴ mixed isomers and their salts

					Total		
Substance	Risk Score	Risk Rank	Hazard Score	Hazard Rank	Release (tonnes)	Volume Rank	UF total
Ammonia	329.38	1	33.83	14	1071.541	3	6
Sulphuric acid	322.29	2	38.12	9	1622.277	2	10
Hydrogen sulphide	269.63	3	62.98	2	39.994	17	11
Formaldehyde	242.27	4	34.87	13	209.469	5	4
Acrolein	221.52	5	69.50	1	42.556	16	2
Nonylphenol	220.03	6	47.13	5	3.4	25	7
Acetaldehyde	192.73	7	29.48	18	153.489	7	4
Benzene	182.04	8	46.82	6	23.716	18	2
Chloroform	181.14	9	36.21	11	57.005	10	2
Hydrochloric acid	172.63	10	36.58	10	169.93	6	10
Chlorine	154.54	11	45.53	7	109.896	8	11
Hydrogen fluoride	152.33	12	30.04	16	52.09	12	9
Chlorine dioxide	142.42	13	50.95	4	50.719	13	10
Phenol ¹	120.12	14	33.59	15	55.596	11	4
Hexane:n-	97.25	15	35.89	12	48.47	14	8
Nitrate ion ²	94.09	16	18.58	24	368.434	4	12
Ethylbenzene	82.55	17	29.15	19	16.188	19	4
Methanol	75.08	18	7.51	30	2207.058	1	8
Xylene ³	65.16	19	26.78	21	46.645	15	4
Naphthalene	57.77	20	57.77	3	0	34	4
Toluene	51.00	21	18.40	25	73.54	9	2
Cyclohexane	48.75	22	23.47	23	14.869	20	8
Trimethylbenzene:1,2,4-	48.16	23	29.55	17	2.359	26	10
Fluorine	38.59	24	38.59	8	0	34	20
Ethylene glycol	37.94	25	5.57	32	1.033	27	9
Methyl ethyl ketone	30.50	26	6.86	31	11.611	21	8
Nitric acid	28.92	27	28.92	20	0	34	14
Butadiene:1,3-	26.24	28	26.24	22	0	34	8
Propylene	22.49	29	12.67	27	5.706	24	11
Diethanolamine 1	13.75	30	13.75	26	0	34	7
Methyl tert-butyl ether	13.61	31	4.60	33	6.94	23	2
Isopropyl alcohol	13.59	32	2.95	34	10.025	22	8
Ethylene	11.21	33	11.21	28	0	34	11
HCFC-22	9.13	34	9.13	29	0.856	28	9

APPENDIX 4b: Relative Risk, Hazard and Volume Scores and Ranks for New Brunswick

¹ and its salts

² in solution at pH \ge 6.0

³ mixed isomers

Substance	Risk Score	Risk Rank	Hazard Score	Hazard Rank	Total Release (tonnes)	Volume Rank	UF total
Ammonia	323.26	1	33.83	5	210.35	2	6
Sulphuric acid	153.38	2	38.12	2	16.8	4	10
Hydrochloric acid	153.17	3	36.58	3	43.99	3	10
Nitrate ion ¹	108.79	4	18.58	8	299.87	1	12
Dichloromethane	97.17	5	24.68	7	1.728	8	4
Hexane:n-	93.38	6	35.89	4	4.748	7	8
Toluene	53.66	7	18.40	9	15.8	5	2
Methanol	50.75	8	7.51	10	11.738	6	8
Chlorine	45.53	9	45.53	1	0	10	11
Bromine	25.97	10	25.97	6	0	10	14

APPENDIX 4c: Relative Risk, Hazard and Volume Scores and Ranks for Prince Edward Island

¹ in solution at pH \ge 6.0

APPENDIX 4d:	Relative Risk, Hazard and Volume Scores and Ranks for Newfoundland and
Labrador	

Substance	Risk Score	Risk Rank	Hazard Score	Hazard Rank	Total Release (tonnes)	Volume Rank	UF total
Benzene	348.82	1	46.82	5	77.805	7	2
Sulphuric acid	331.49	2	38.12	7	353.64	3	10
Ammonia	313.57	3	33.83	9	443.002	2	6
Acrolein	268.63	4	69.50	1	48.961	14	2
Chlorine	243.79	5	45.53	6	15.25	16	11
Hydrogen sulphide	177.29	6	62.98	2	4.68	21	11
Xylene ¹	150.14	7	26.78	15	25.314	15	4
Biphenyl	144.22	8	47.03	4	11.846	18	6
Acetaldehyde	130.60	9	29.48	12	55.142	12	4
Hexane:n-	129.53	10	35.89	8	252.263	4	8
Toluene	123.89	11	18.40	17	64.311	11	2
Ethylbenzene	122.49	12	29.15	13	4.488	22	4
Phenol ²	94.49	13	33.59	10	54.758	13	4
Methanol	75.08	14	7.51	19	752.759	1	8
Cyclohexane	67.11	15	23.47	16	72.235	8	8
Trimethylbenzene:1,2,4-	64.02	16	29.55	11	5.063	20	10
Cyanide ion	62.94	17	57.62	3	0.092	23	6
Cumene	58.07	18	26.82	14	12.568	17	4
Diethanolamine ²	52.04	19	13.75	18	9.329	19	7
Ethylene glycol	47.60	20	5.57	22	162.394	5	9
Methyl ethyl ketone	45.84	21	6.86	21	67.08	9	8
Methyl isobutyl ketone	42.20	22	6.97	20	66.676	10	8
Methyl tert-butyl ether	24.03	23	4.60	23	99.835	6	2
Isopropyl alcohol	2.95	24	2.95	24	0.002	24	8

¹ mixed isomers

² and its salts

					Total		
Substance	Risk Score	Risk Rank	Hazard Score	Hazard Rank	Release (tonnes)	Volume Rank	UF total
Ammonia	336.34	1	33.83	31	9215.821	1	6
Sulphuric acid	273.42	2	38.12	22	759.525	8	10
Hydrogen sulphide	254.82	3	62.98	5	216.688	17	11
Chlorine	236.75	4	45.53	17	129.211	22	11
Formaldehyde	224.92	5	34.87	29	628	9	4
Chlorine dioxide	223.72	6	50.95	9	80.679	24	10
Hydrogen fluoride	201.63	7	30.04	38	1452.455	3	9
Benzene	159.50	8	46.82	14	44.963	30	2
Acrolein	150.34	9	69.50	2	11.65	44	2
Acetaldehyde	132.76	10	29.48	40	251.946	16	4
Tetrachloroethylene	130.60	11	48.08	11	29.356	35	2
Hydrochloric acid	130.48	12	36.58	26	403.075	11	10
Sodium nitrite	130.25	13	32.13	35	0	85	12
Dichloromethane	126.79	14	24.68	53	261.215	15	4
Naphthalene	125.98	15	57.77	7	3.664	53	4
Nitric acid	121.26	16	28.92	42	0.481	60	14
Styrene	120.43	17	28.20	43	1154.779	5	4
Nonylphenol	117.15	18	47.13	12	8.464	46	7
Calcium fluoride	113.45	19	17.22	68	7.245	47	10
Phenol ¹	108.35	20	33.59	32	164.132	21	4
Fluorine	106.21	21	38.59	21	15.6	38	20
Sodium fluoride	104.92	22	25.53	51	11.5	45	7
Hexane:n-	102.92	23	35.89	28	331.809	13	8
Nitrate ion ²	93.75	24	18.58	66	1363.874	4	12
Dichlorobenzene:p-	92.13	25	45.66	16	13	40	4
Chloroform	88.70	26	36.21	27	12.057	42	2
Trichloroethylene	81.69	27	24.49	54	68.331	25	2
Xylene ³	79.26	28	26.78	47	824.654	7	4
Phosphorus ^₄	73.66	29	73.66	1	0	85	10
Ethylbenzene	72.13	30	29.15	41	27.539	36	4
Methanol	69.52	31	7.51	77	4081.275	2	8
Toluene-2,4-diisocyanate	67.10	32	67.10	3	0.002	77	7
Methylenebis (phenylisocyanate)	65.22	33	65.22	4	0.101	69	9
Butyl benzyl phthalate	63.81	34	43.02	19	12.467	41	2
Trimethylbenzene:1,2,4-	63.65	35	29.55	39	59.806	27	10
Bis(2-ethylhexyl) phthalate	63.57	36	24.87	52	6.147	48	6
Bis(2-ethylhexyl) adipate	59.23	37	31.69	37	0.147	85	5
Di-t-butyl-4-methylphenol:2,6-	58.65	38	58.65	6	0.145	66	11
Toluene	58.10	39	18.40	67	1057.345	6	2
Cyanide ion	57.62	39 40	57.62	8	0.294	61	6
Acrylonitrile	56.77	40 41	46.01	15	1.722	54	2
Butadiene:1,3-	53.85	41	40.01 26.24	49	5.341	54 50	8
Carbon tetrachloride	49.37	42	20.24 49.37	49 10	0.252	50 62	8 2
Toluenediisocyanate ³	49.37 48.65	43 44	49.37 44.69	10	0.252	59	7
Anthracene	40.00	44 45	44.69 37.56	23	5.709	59 49	8
Biphenyl	47.24	45 46	47.03	23 13	0.071	49 72	6

APPENDIX 4e: Relative Risk, Hazard and Volume Scores and Ranks for Quebec

	Risk	Risk	Hazard	Hazard	Total Release	Volume	
Substance	Score	Rank	Score	Rank	(tonnes)	Rank	UF total
Cresol ⁵	46.06	47	24.37	55	13.84	39	8
Ethylene glycol	43.63	48	5.57	82	214.327	18	9
Vinyl acetate	43.15	49	24.29	56	5.117	51	6
Methyl ethyl ketone	41.20	50	6.86	80	265.257	14	8
Polymeric diphenylmethane							
diisocyanate	40.48	51	40.48	20	0.101	69	9
Cyclohexane	40.22	52	23.47	59	16.452	37	8
Triethylamine	37.53	53	22.45	61	4.02	52	8
Hydroquinone ¹	37.48	54	37.48	24	0	85	7
Acrylamide	37.32	55	37.32	25	0.146	65	6
Dibutyl phthalate	35.68	56	34.58	30	1.353	56	2
Isoprene	33.37	57	33.37	33	0.001	78	8
Chlorobenzene	33.20	58	33.20	34	0.083	71	2
Benzoyl peroxide	32.05	59	32.05	36	0	85	12
HCFC-141b	29.73	60	23.92	57	35.23	33	14
Propylene	29.44	61	12.67	70	210.055	19	11
Butyl alcohol:n-	29.07	62	6.42	81	40.029	32	4
Dimethylformamide:n,n-	29.05	63	9.04	75	11.958	43	4
Methyl isobutyl ketone	27.92	64	6.97	79	57.65	28	8
Cumene	27.25	65	26.82	46	1.244	57	4
Lithium carbonate	26.84	66	26.84	44	0.132	67	20
Acrylic acid ¹	26.84	66	26.84	44	0.16	64	8
Ethyl acrylate	26.57	68	26.57	48	0.022	73	8
Ethylene	26.16	69	11.21	72	197.496	20	11
Butoxyethanol:2-	25.94	70	11.61	71	43.763	31	12
Butyl acrylate	25.75	71	25.75	50	0.216	63	10
Nitrilotriacetic acid ¹	23.81	72	23.81	58	0.002	77	14
Methyl methacrylate	23.57	73	9.79	73	35.007	34	4
Butyl alcohol:i-	22.89	74	4.61	83	123.769	23	6
Thiourea	22.54	75	22.54	60	0	85	8
HCFC-142b	21.34	76	21.34	62	423.1	10	11
Dicyclopentadiene	20.79	77	20.79	63	0.006	75	8
Isopropyl alcohol	20.57	78	2.95	85	359.36	12	8
Phthalic anhydride	20.29	79	20.29	64	0.01	74	13
Formic acid	19.23	80	19.23	65	0.091	70	12
Diethanolamine ¹	16.82	81	13.75	69	1.683	55	7
HCFC-22	9.13	82	9.13	74	64.8	26	9
Methyl-2-pyrrolidone:N-	8.64	83	8.64	76	0.979	58	10
Sulphur hexafluoride	7.01	84	7.01	78	50.53	29	9
Methyl tert-butyl ether	4.60	85	4.60	84	0	85	2

² in solution at pH ≥ 6.0

³ mixed isomers

⁴ yellow or white

⁵ mixed isomers and their salts

APPENDIX 41: Relative		iu unu voi		s und ream		10	
Substance	Risk Score	Risk Rank	Hazard Score	Hazard Rank	Total Release (tonnes)	Volume Rank	UF total
Ammonia	327.98	1	33.83	36	23265.171	2	6
Sulphuric acid	282.69	2	38.12	26	4950.662	5	10
Chlorine	256.54	3	45.53	19	454.659	24	11
Hydrogen sulphide	237.49	4	62.98	6	1380.286	11	11
Acrolein	208.04	5	69.50	3	151.708	33	2
Hydrochloric acid	198.39	6	36.58	30	5756.623	4	10
Benzene	196.67	7	46.82	15	499.709	23	2
Nonylphenol	192.92	8	47.13	13	165.205	31	7
Phosphorus ¹	192.86	9	73.66	2	8.102	58	10
Methylenebis (phenylisocyanate)	171.29	10	65.22	5	99.168	36	9
Hydrogen fluoride	162.63	11	30.04	43	623.244	17	9
Phenol ²	153.27	12	33.59	37	121.395	35	4
Hydrogen cyanide	147.97	13	80.74	1	12.319	51	10
Sodium nitrite	145.36	14	32.13	40	37.288	43	12
Naphthalene	141.88	15	57.77	8	51.014	41	4
Formaldehyde	137.63	16	34.87	33	382.43	27	4
Nitric acid	131.11	17	28.92	48	32.818	47	14
Dichloromethane	122.03	18	24.68	60	298.179	28	4
Xylene ³	115.24	19	26.78	52	4110.052	6	4
Nitrate ion ⁴	114.74	20	18.58	74	25582.821	1	12
Chlorine dioxide	113.52	21	50.95	10	130.43	34	10
Hexane:n-	107.10	22	35.89	32	1488.744	10	8
Acetaldehyde	101.05	23	29.48	45	296.46	29	4
Polymeric diphenylmethane							
diisocyanate	97.24	24	40.48	22	64.951	38	9
Trichloroethylene	97.20	25	24.49	61	635.177	16	2
Ethylbenzene	96.15	26	29.15	46	584.874	20	4
Styrene	94.63	27	28.20	49	414.002	26	4
Cyanide ion	84.21	28	57.62	9	5.186	63	6
Carbon disulphide	81.15	29	46.22	16	59.6	39	12
Tetrachloroethylene	78.50	30	48.08	12	12.05	53	2
Calcium fluoride	77.53	31	17.22	76	10.299	55	10
Chloromethane	77.35	32	23.26	68	610.595	18	8
Sodium fluoride	76.15	33	25.53	57	0.606	76	7
Trimethylbenzene:1,2,4-	70.66	34	29.55	44	429.204	25	10
Acrylonitrile	67.58	35	46.01	17	6.829	60	2
Toluene-2,4-diisocyanate	67.10	36	67.10	4	0.009	89	7
Butadiene:1,3-	67.09	37	26.24	54	34.86	44	8
Biphenyl	65.37	38	47.03	14	8.928	56	6
Methanol	63.32	39	7.51	87	5960.507	3	8
Ethylene oxide	61.14	40	39.50	24	6.726	61	6
Butoxyethanol:2-	59.95	41	11.61	81	749.842	14	12
Di-t-butyl-4-methylphenol:2,6-	59.01	42	58.65	7	2.602	65	11
Toluene	58.12	43	18.40	75	3238.012	7	2
Cyclohexane	56.20	44	23.47	67	646.978	15	8
Isoprene	54.52	45	33.37	38	11.274	54	8

APPENDIX 4f: Relative Risk, Hazard and Volume Scores and Ranks for Ontario

Substance	Risk Score	Risk Rank	Hazard Score	Hazard Rank	Total Release (tonnes)	Volume Rank	UF total
Triethylamine	53.62	46	22.45	69	33.417	46	8
Isopropylidenediphenol:p,p'-	53.41	47	40.22	23	8.765	57	9
Butyl benzyl phthalate	50.23	48	43.02	21	0.008	91	2
Carbon tetrachloride	49.37	49	49.37	11	0.001	95	2
Methyl ethyl ketone	48.27	50	6.86	90	2620.643	8	8
Bis(2-ethylhexyl) phthalate	47.39	51	24.87	59	2.07	66	6
Dichlorobenzene:p-	45.66	52	45.66	18	0.037	88	4
Toluenediisocyanate ³	44.69	53	44.69	20	0.694	73	7
Ethylene glycol	42.09	54	5.57	93	1267.586	12	9
Nitrilotriacetic acid ²	41.98	54 55	23.81	95 66	1.308	69	9 14
Anthracene	40.69	55 56	37.56	27	4.466	64	8
Cresol ⁵	40.09 39.80	50 57	24.37	62	21.206	49	8
Fluorine	38.59	58	38.59	25	0.288	43 81	20
Vinyl chloride	38.47	50 59	25.28	23 58	8.064	59	9
Hydroquinone ²	37.48	60	37.48	28	0.004	94	3 7
Acrylamide	37.32	61	37.32	20	0.002	85	6
Chloroform	36.21	62	36.21	29 31	0.006	93	2
Chlorobenzene	35.58	63	33.20	39	0.525	33 77	2
Methyl isobutyl ketone	34.83	64	6.97	89	558.09	22	8
Decabromodiphenyl oxide	34.63	65	29.06	47	0.059	87	12
Dibutyl phthalate	34.58	66	29.00 34.58	34	0.009	80	2
• •	34.38 34.29	67	8.64	34 86	71.943	37	10
Methyl-2-pyrrolidone:N-	34.29 34.23	68	34.23	35	0.007	92	10
Cumene hydroperoxide Butyl alcohol:n-	34.23 33.04	69	6.42	35 91	809.799	92 13	4
,	33.04 32.05	09 70	32.05	91 41	009.799	13 97	4 12
Benzoyl peroxide Vinyl acetate	32.05 31.89	70	32.05 24.29	41 64	5.631	97 62	6
,	31.69	71	24.29 31.69	04 42	2.023	67	5
Bis(2-ethylhexyl) adipate Propylene	29.05	72	12.67	42 80	2.023 583.062	21	5 11
HCFC-141b		73 74		80 65		21 40	14
Acrylic acid ²	28.63		23.92		58.207		
Cumene	26.84 26.82	75 76	26.84	50 51	0.401	79	8
		76 77	26.82	53	1.894	68 86	4 8
Ethyl acrylate	26.57		26.57		0.092		
Ethylene	26.02	78	11.21	82	590.418	19	11
Bromine	25.97	79	25.97	55	0.665	75	14
Butyl acrylate	25.75	80	25.75	56	0.164	83	10
Dichloroethane:1,2-	24.36	81	24.36	63	0.008	91	2
Diethanolamine ²	23.78	82	13.75	79	12.177	52	7
HCFC-142b	21.34	83	21.34	70	205.706	30	11
Isopropyl alcohol	20.84	84	2.95	96 74	1526.83	9	8
Dicyclopentadiene	20.79	85	20.79	71	0.77	72	8
Phthalic anhydride	20.29	86	20.29	72	0.165	82	13
Formic acid	19.23	87	19.23	73	0.819	71	12
Butyl alcohol:i-	18.90	88	4.61	94	163.405	32	6
Dioxane:1,4-	16.38	89	16.38	77	0.438	78	8
Methyl methacrylate	16.03	90	9.79	83	15.152	50	4
Butyl alcohol:tert-	15.93	91	6.17	92	23.014	48	8
Maleic anhydride	14.75	92	14.75	78	1.088	70	15

Substance	Risk Score	Risk Rank	Hazard Score	Hazard Rank	Total Release (tonnes)	Volume Rank	UF total
HCFC-22	9.13	93	9.13	84	34.57	45	9
Dimethylformamide:n,n-	9.04	94	9.04	85	0.129	84	4
Sulphur hexafluoride	7.01	95	7.01	88	42.94	42	9
Methyl tert-butyl ether	4.60	96	4.60	95	0	97	2
Butyl alcohol:sec-	1.65	97	1.65	97	0.679	74	8

¹ yellow or white

² and its salts

³ mixed isomers

⁴ in solution at pH \ge 6.0

⁵ mixed isomers and their salts

					Total		
Substance	Risk Score	Risk Rank	Hazard Score	Hazard Rank	Release (tonnes)	Volume Rank	UF total
Ammonia	338.33	1	33.83	13	3731.192	1	6
Hydrogen sulphide	220.12	2	62.98	2	103.189	7	11
Sulphuric acid	189.14	3	38.12	9	38.5	12	10
Hexane:n-	114.01	4	35.89	11	354.21	3	8
Dichloromethane	108.56	5	24.68	21	41.313	10	4
Chlorine	96.24	6	45.53	6	4.768	18	11
Styrene	93.70	7	28.20	18	54.012	9	4
Acetaldehyde	89.57	8	29.48	15	21.485	15	4
Hydrochloric acid	88.58	9	36.58	10	10.253	17	10
Nitrate ion ¹	83.81	10	18.58	25	219.018	5	12
Benzene	78.92	11	46.82	5	1.396	20	2
Xylene ²	69.03	12	26.78	19	139.255	6	4
Nitric acid	65.95	13	28.92	17	0	39	14
Methylenebis							
(phenylisocyanate)	65.22	14	65.22	1	0.001	35	9
Methanol	64.92	15	7.51	32	1009.836	2	8
Cyanide ion	57.62	16	57.62	3	0.013	30	6
Toluene	56.31	17	18.40	26	325.257	4	2
Ethylbenzene	54.86	18	29.15	16	3.459	19	4
Nonylphenol	47.13	19	47.13	4	0	39	7
Butyl benzyl phthalate	43.02	20	43.02	7	0.1	28	2
Polymeric diphenylmethane diisocyanate	40.48	21	40.48	8	0	39	9
Methyl ethyl ketone	36.89	22	6.86	34	77.017	8	8
Ethylene glycol	35.35	23	5.57	36	36.1	13	9
Formaldehyde	34.87	24	34.87	12	0.299	23	4
Trimethylbenzene:1,2,4-	29.55	25	29.55	14	0.273	24	10
Butyl alcohol:n-	25.41	26	6.42	35	26.157	14	4
Vinyl chloride	25.28	27	25.28	20	0	39	9
Trichloroethylene	24.49	28	24.49	22	0.004	32	2
Cyclohexane	23.47	29	23.47	23	0.012	31	8
Formic acid	19.23	30	19.23	24	0.001	35	12
Butyl alcohol:i-	16.26	31	4.61	37	10.776	16	6
Isopropyl alcohol	16.02	32	2.95		40.515	11	8
Diethanolamine ³	13.75	33	13.75	27	0.21	25	7
Propylene	12.67	34	12.67	28	0.014	29	11
Butoxyethanol:2-	11.61	35	11.61	29	0.156	26	12
Ethylene	11.21	36	11.21	30	0.001	35	11
HCFC-22	9.13	37	9.13	31	0.149	27	9
Methyl isobutyl ketone	8.16	38	6.97	33	0.604	21	8
Methyl tert-butyl ether	4.60	39	4.60	38	0.455	22	2

APPENDIX 4g: Relative Risk, Hazard and Volume Scores and Ranks for Manitoba

¹ in solution at pH \ge 6.0

² mixed isomers

³ and its salts

APPENDIA 4n. Relative					Total		
Substance	Risk Score	Risk Rank	Hazard Score	Hazard Rank	Release (tonnes)	Volume Rank	UF total
Hydrogen sulphide	383.23	1	62.98	1	655.658	2	11
Ammonia	338.34	2	33.83	12	2445.559	1	6
Chlorine	260.04	3	45.53	7	29.711	15	11
Benzene	254.27	4	46.82	4	213.029	6	2
Hydrogen fluoride	160.67	5	30.04	15	73.8	10	9
Naphthalene	137.31	6	57.77	2	5.459	23	4
Chlorine dioxide	125.09	7	50.95	3	21.63	18	10
Xylene ¹	119.85	8	26.78	22	112.083	8	4
Acetaldehyde	118.27	9	29.48	17	16.477	20	4
Sulphuric acid	115.23	10	38.12	8	6.379	22	10
Hexane:n-	114.48	11	35.89	10	238.299	5	8
Hydrochloric acid	113.95	12	36.58	9	39.923	13	10
Carbon disulphide	113.51	13	46.22	5	67.8	11	12
Formaldehyde	109.54	14	34.87	11	16.384	21	4
Styrene	99.21	15	28.20	20	76.01	9	4
Nitrate ion ²	94.90	16	18.58	26	368.82	4	12
Ethylbenzene	84.06	17	29.15	18	19.502	19	4
Phenol ³	73.78	18	33.59	13	0.037	31	4
Trimethylbenzene:1,2,4-	66.26	19	29.55	16	22.116	17	10
Methanol	63.21	20	7.51	34	517.519	3	8
Cyclohexane	51.41	21	23.47	24	25.902	16	8
Toluene	48.66	22	18.40	27	56.186	12	2
Acrylonitrile	46.01	23	46.01	6	0.05	30	2
Benzoyl peroxide	32.05	24	32.05	14	0	40	12
Ethylene glycol	30.12	25	5.57	38	0.381	28	9
Ethylene	29.68	26	11.21	32	177.257	7	11
Nitric acid	28.92	27	28.92	19	0	40	14
Propylene	27.51	28	12.67	30	31.072	14	11
Cumene	26.82	29	26.82	21	0.036	32	4
Bromine	25.97	30	25.97	23	0	40	14
Formic acid	19.23	31	19.23	25	0	40	12
Methyl isobutyl ketone	17.39	32	6.97	35	2.187	24	8
Calcium fluoride	17.22	33	17.22	28	0.196	29	10
Diethanolamine ³	13.75	34	13.75	29	0	40	7
Methyl ethyl ketone	13.44	35	6.86	36	0.95	25	8
Butoxyethanol:2-	13.19	36	11.61	31	0.468	27	12
Butyl alcohol:n-	11.41	37	6.42	37	0.893	26	4
Methyl-2-pyrrolidone:N-	8.64	38	8.64	33	0	40	10
Butyl alcohol:i-	4.61	39	4.61	39	0	40	6
Isopropyl alcohol	2.95	40	2.95	40	0	40	8

APPENDIX 4h: Relative Risk, Hazard and Volume Scores and Ranks for Saskatchewan

¹ mixed isomers

² in solution at pH \ge 6.0

³ and its salts

APPENDIX 41: Relative Risk, Hazard and Volume Scores and Ranks for Alberta							
Substance	Risk Score	Risk Rank	Hazard Score	Hazard Rank	Total Release (tonnes)	Volume Rank	UF total
Ammonia	312.37	1	33.83	25	11995.657	2	6
Hydrogen sulphide	277.25	2	62.98	4	1465.754	9	11
Benzene	235.33	3	46.82	12	791.623	12	2
Sulphuric acid	209.31	4	38.12	19	1767.929	7	10
Phosphorus ¹	208.50	5	73.66	1	0.002	63	10
Naphthalene	186.66	6	57.77	5	195.539	22	4
Hydrogen fluoride	183.02	7	30.04	30	1134.937	10	9
Acrolein	175.83	8	69.50	2	49.967	27	2
Formaldehyde	158.10	9	34.87	24	360.977	17	4
Hydrochloric acid	156.10	10	36.58	21	474.611	14	10
Chlorine	139.03	11	45.53	14	31.117	31	11
Carbon disulphide	136.00	12	46.22	13	2384.588	4	12
Hexane:n-	124.45	13	35.89	23	3194.761	3	8
Nitrate ion ²	123.84	14	18.58	52	12937.484	1	12
Biphenyl	121.89	15	47.03	11	45.71	29	6
Methylenebis (phenylisocyanate)	115.70	16	65.22	3	0.104	57	9
Ethylbenzene	102.88	17	29.15	33	473.021	15	4
Acetaldehyde	102.20	18	29.48	32	179.95	23	4
Chlorine dioxide	87.95	19	50.95	7	15.099	36	10
Styrene	86.45	20	28.20	35	158.233	24	4
Xylene ³	79.67	21	26.78	38	2115.797	6	4
Vinyl acetate	77.81	22	24.29	45	125.85	25	6
Trimethylbenzene:1,2,4-	76.73	23	29.55	31	433.713	16	10
Dichloromethane	76.64	24	24.68	41	28.661	32	4
Fluorine	74.51	25	38.59	18	0	70	20
Phenol ⁴	71.95	26	33.59	26	300.072	19	4
Ethylene oxide	66.99	27	39.50	17	5.149	41	6
Butadiene:1,3-	64.81	28	26.24	39	15.335	35	8
Methanol	64.67	29	7.51	63	2249.891	5	8
Cyclohexane	62.20	30	23.47	47	767.26	13	8
Toluene	57.96	31	18.40	53	1561.795	8	2
Cyanide ion	57.62	32	57.62	6	0	70	6
Vinyl chloride	56.14	33	25.28	40	11.985	38	9
Carbon tetrachloride	49.37	34	49.37	8	0.131	54	2
Tetrachloroethylene	48.08	35	48.08	9	0.459	50	2
Nonylphenol	47.13	36	47.13	10	0.025	61	7
Polymeric diphenylmethane diisocyanate	45.97	37	40.48	16	1.911	45	9
Dichloroethane:1,2-	45.32	38	24.36	44	8.172	40	2
Toluenediisocyanate ³	44.69	39	44.69	15	0.076	58	7
Calcium fluoride	42.98	40	17.22	54	2.815	43	10
Diethanolamine 4	42.58	41	13.75	56	21.474	34	7
Ethylene glycol	40.66	42	5.57	68	318.416	18	9
Cumene	38.60	43	26.82	37	11.571	39	4
Anthracene	37.56	44	37.56	20	0.043	60	8
Chloroform	36.21	45	36.21	22	0.62	48	2

APPENDIX 4i: Relative Risk, Hazard and Volume Scores and Ranks for Alberta

Substance	Risk Score	Risk Rank	Hazard Score	Hazard Rank	Total Release (tonnes)	Volume Rank	UF total
Isoprene	33.37	46	33.37	27	0.001	64	8
Sodium nitrite	32.13	47	32.13	28	0	70	12
Bis(2-ethylhexyl) adipate	31.69	48	31.69	29	0.15	53	5
Methyl ethyl ketone	31.14	49	6.86	65	41.808	30	8
Ethylene	29.91	50	11.21	59	1120.768	11	11
Nitric acid	28.92	51	28.92	34	0.05	59	14
Propylene	27.99	52	12.67	57	210.411	20	11
Acrylic acid ⁴	26.84	53	26.84	36	0	70	8
Trichloroethylene	24.49	54	24.49	42	0.024	62	2
Cresol ⁵	24.37	55	24.37	43	0.105	56	8
Nitrilotriacetic acid ⁴	23.81	56	23.81	46	0	70	14
Triethylamine	22.45	57	22.45	48	0.568	49	8
Dicyclopentadiene	22.35	58	20.79	50	2.789	44	8
Butyl alcohol:n-	21.96	59	6.42	66	47.812	28	4
HCFC-142b	21.34	60	21.34	49	106.696	26	11
Methyl isobutyl ketone	20.74	61	6.97	64	23.856	33	8
Formic acid	19.23	62	19.23	51	0.66	47	12
Isopropyl alcohol	17.09	63	2.95	70	202.251	21	8
Dioxane:1,4-	16.38	64	16.38	55	0.322	51	8
Butyl alcohol:i-	11.93	65	4.61	69	12.804	37	6
Butoxyethanol:2-	11.61	66	11.61	58	0.117	55	12
HCFC-22	9.13	67	9.13	60	3.886	42	9
Dimethylformamide:n,n-	9.04	68	9.04	61	1.661	46	4
Methyl-2-pyrrolidone:N-	8.64	69	8.64	62	0	70	10
Butyl alcohol:tert-	6.66	70	6.17	67	0.243	52	8

¹ yellow or white

² in solution at pH \ge 6.0

³ mixed isomers

⁴ and its salts

⁵ mixed isomers and their salts

					Total		
Substance	Risk Score	Risk Rank	Hazard Score	Hazard Rank	Release (tonnes)	Volume Rank	UF total
Ammonia	336.06	1	33.83	24	12815.684	1	6
Hydrogen sulphide	333.17	2	62.98	4	945.222	6	11
Formaldehyde	183.40	3	34.87	23	367.686	9	4
Hydrogen fluoride	166.66	4	30.04	27	449.167	8	9
Sulphuric acid	152.30	5	38.12	18	139.337	14	10
Hydrochloric acid	148.76	6	36.58	20	1814.166	3	10
Acetaldehyde	136.57	7	29.48	29	253.208	10	4
Chlorine dioxide	130.46	8	50.95	7	149.728	12	10
Carbon disulphide	130.23	9	46.22	12	1314.004	5	12
Benzene	120.76	10	46.82	11	18.322	23	2
Methylenebis (phenylisocyanate)	107.11	11	65.22	3	5.71	32	9
Styrene	103.13	12	28.20	32	524.326	7	4
Dichloromethane	97.15	13	24.68	38	74.298	17	4
Phenol ¹	91.28	14	33.59	25	36.252	19	4
Nitrate ion ²	87.95	15	18.58	50	1477.189	4	12
Chlorine	85.59	16	45.53	13	9.621	27	11
Phosphorus ³	73.66	17	73.66	1	0.001	64	10
Hexane:n-	72.24	18	35.89	22	34.285	20	8
Acrolein	69.50	19	69.50	2	0.538	44	2
Methanol	69.41	20	7.51	61	6065.044	2	8
Xylene ⁴	58.64	21	26.78	35	113.834	15	4
Naphthalene	57.77	22	57.77	5	0.27	45	4
Cyanide ion	57.62	23	57.62	6	0.133	49	6
Ethylbenzene	57.57	24	29.15	30	13.904	24	4
Chloromethane	53.40	25	23.26	45	27.602	22	8
Butadiene:1,3-	50.59	26	26.24	36	6.112	29	8
Tetrachloroethylene	48.08	27	48.08	8	0.006	60	2
Toluene	47.81	28	18.40	51	248.902	11	2
Nonylphenol	47.13	29	47.13	9	0.004	63	7
Biphenyl	47.03	30	47.03	10	0.046	53	6
Triethylamine	44.86	31	22.45	46	10.06	25	8
Toluenediisocyanate 4	44.69	32	44.69	14	0.005	62	7
Trichloroethylene	41.74	33	24.49	39	3	34	2
Polymeric diphenylmethane diisocyanate	40.48	34	40.48	15	0	70	9
Isopropylidenediphenol:p,p'-	40.22	35	40.22	16	0.005	62	9
Ethylene oxide	39.50	36	39.50	17	0	70	6
Anthracene	37.56	37	37.56	19	0	70	8
Cresol ⁵	37.48	38	24.37	40	7.122	28	8
Methyl-2-pyrrolidone:N-	37.14	39	8.64	60	45.4	18	10
Chloroform	36.21	40	36.21	21	0.2	46	2
Methyl ethyl ketone	33.73	41	6.86	64	148.889	13	8
Sodium nitrite	32.13	42	32.13	26	1.287	40	12
Trimethylbenzene:1,2,4-	31.68	43	29.55	28	2.04	37	10
Cyclohexane	31.65	44	23.47	44	5.814	30	8
Nitric acid	28.92	45	28.92	31	0.045	54	14

APPENDIX 4j: Relative Risk, Hazard and Volume Scores and Ranks for British Columbia

Substance	Risk Score	Risk Rank	Hazard Score	Hazard Rank	Total Release (tonnes)	Volume Rank	UF total
Lithium carbonate	26.84	46	26.84	33	0	70	20
Cumene	26.82	47	26.82	34	0.049	52	4
Butyl acrylate	25.75	48	25.75	37	0.006	60	10
Dichloroethane:1,2-	24.36	49	24.36	41	0.924	41	2
Vinyl acetate	24.29	50	24.29	42	0.084	50	6
Nitrilotriacetic acid ¹	23.81	51	23.81	43	0	70	14
Methyl isobutyl ketone	22.49	52	6.97	63	28.858	21	8
Dicyclopentadiene	20.79	53	20.79	47	0.148	48	8
Phthalic anhydride	20.29	54	20.29	48	0.036	56	13
Formic acid	19.23	55	19.23	49	0	70	12
Ethylene glycol	17.26	56	5.57	67	1.445	39	9
Calcium fluoride	17.22	57	17.22	52	0.06	51	10
Diethanolamine ¹	16.05	58	13.75	54	2.102	36	7
Propylene	15.81	59	12.67	55	4.213	33	11
Butyl alcohol:n-	15.10	60	6.42	65	9.872	26	4
Isopropyl alcohol	15.07	61	2.95	69	96.829	16	8
Maleic anhydride	14.75	62	14.75	53	0.028	57	15
Ethylene	12.28	63	11.21	57	2.304	35	11
Butoxyethanol:2-	11.61	64	11.61	56	0.043	55	12
Methyl methacrylate	9.79	65	9.79	58	0.018	58	4
Butyl alcohol:i-	9.47	66	4.61	68	5.813	31	6
HCFC-22	9.13	67	9.13	59	0.696	43	9
Sulphur hexafluoride	7.01	68	7.01	62	1.609	38	9
Butyl alcohol:tert-	6.17	69	6.17	66	0.79	42	8
Butyl alcohol:sec-	1.65	70	1.65	70	0.15	47	8

² in solution at pH \ge 6.0

³ yellow or white

⁴ mixed isomers

⁵ mixed isomers and their salts

Substance	Risk Score	Risk Rank	Hazard Score	Hazard Rank	Total Release (tonnes)	Volume Rank	UF total
Ammonia	295.74	1	33.83	1	0.778	2	6
Ethylene glycol	55.74	2	5.57	2	33.84	1	9

APPENDIX 4k: Relative Risk, Hazard and Volume Scores and Ranks for Nunavut

Substance	Risk Score	Risk Rank	Hazard Score	Hazard Rank	Total Release (tonnes)	Volume Rank	UF total
Ammonia	318.22	1	33.83	6	33.86	3	6
Benzene	268.24	2	46.82	4	18.188	4	2
Hydrogen cyanide	267.77	3	80.74	1	2.54	8	10
Cyanide ion	255.98	4	57.62	3	0.431	13	6
Butadiene:1,3-	156.22	5	26.24	10	15.843	5	8
Hexane:n-	103.49	6	35.89	5	3.647	7	8
Hydrogen sulphide	62.98	7	62.98	2	0	16	11
Xylene ¹	59.43	8	26.78	9	0.963	9	4
Trimethylbenzene:1,2,4-	57.28	9	29.55	7	0.302	14	10
Methanol	50.54	10	7.51	15	3.735	6	8
Cyclohexane	48.74	11	23.47	11	0.659	10	8
Toluene	41.53	12	18.40	12	0.643	11	2
Propylene	40.07	13	12.67	13	59.106	2	11
Ethylene	37.42	14	11.21	14	98.096	1	11
Ethylbenzene	33.58	15	29.15	8	0.017	15	4
Ethylene glycol	26.28	16	5.57	16	0.497	12	9

APPENDIX 41: Relative Risk, Hazard and Volume Scores and Ranks for Northwest Territories

¹ mixed isomers

APPENDIX 5: RAW DATA AND REFERENCES

Information included in these tables is derived from 18 major references; these are cited throughout by the following abbreviations:

ASTER: QSAR used by ESB to predict aquatic toxicity for substances on the DSL for the purpose of categorization. See Appendix 5 of ESB's *Guidance Manual for the Categorization of Organic and Inorganic Substances on Canada's DSL* (Environment Canada 2003) for description of ASTER.

Calculated: As estimated from log K_{OW} based on the equation: log BCF = 0.91 * log K_{OW} - 1.975 * log(6.8e-07 * K_{OW} + 1.0) - 0.786 [Bintein 1993].

CESARS: Chemical Evaluation Search and Retrieval System, Canadian Centre for Occupational Health and Safety (CCOHS). Available: http://www.ccohs.ca/. Retrieval 2003-2006.

CHEMINFO: Chemical Profiles Created by CCOHS. Available: http://www.ccohs.ca/. Retrieval 2003-2006.

CHRIS: Chemical Hazards Response Information System, CCOHS. Available: http://www.ccohs.ca/. Retrieval 2003-2006.

ECOTOX: ECOTOXicology Database System, U.S. Environmental Protection Agency. Available: http://www.epa.gov/ecotox/. Retrieval 2003-2006.

ECOSAR: QSAR used by ESB for estimating inherent toxicity of substances on DSL. See Appendix 5 of categorization manual (Environment Canada 2003) for description of ECOSAR.

EHC: Environmental Health Criteria Monographs, International Programme on Chemical Safety. Available: http://www.inchem.org/. Retrieval 2003-2006.

Green Seal: 2005. Green Seal standard GS-37: Environmental Standard for General-Purpose, Bathroom, Glass, and Carpet Cleaners Used for Industrial and Institutional Purposes (2nd edition). March 2005. Green Seal, Inc.

HSDB: Hazardous Substances Data Bank, United States National Library of Medicine. Available: http://toxnet.nlm.nih.gov/. Retrieval 2003-2006.

IARC: International Agency for Research on Cancer, World Health Organization. Available: http://www.iarc.fr/. Retrieval 2003-2006.

IRIS: Integrated Risk Information System, U.S. Environmental Protection Agency. Available: http://www.epa.gov/iris/. Retrieval 2003-2006.

IUCLID: International Uniform Chemical Information Database, European Chemicals Bureau. Available: http://ecb.jrc.it/esis/. Retrieval 2003-2006.

KOWWIN: QSAR available through EPI Suite v3.12 that provides log K_{OW} estimates. Available through EPI Suite software downloadable from: http://www.epa.gov/oppt/exposure/docs/episuitedl.htm.

OASIS: QSAR used by ESB for estimating inherent toxicity of substances on DSL. See Appendix 5 of categorization manual (Environment Canada 2003) for description of OASIS.

PhysProp: Physical-chemical property database available through EPI Suite v3.12. Available: http://www.epa.gov/oppt/exposure/docs/episuitedl.htm. Retrieval 2003-2006.

PNN: Probablistic Neural Network. QSAR used by ESB for estimating inherent toxicity of substances on DSL. See Appendix 5 of categorization manual (Environment Canada 2003) for description of PNN.

TOPKAT: QSAR used by ESB for estimating inherent toxicity of substances on DSL. See Appendix 5 of categorization manual (Environment Canada 2003) for description of TOPKAT.

Rat Oral LD₅₀

Chemical	LD₅₀ (mg/kg)	LD ₅₀ range	N	Reference(s)	UF _{or}
Acetaldehyde	1008	640 - 1930	5	1) CESARS 2) HSDB 3) EHC 167, 1995	0
Acrolein	44	42 - 46	2	1) CHEMINFO 2) CESARS 3) EHC 127, 1991	0
Acrylamide	168	124 - 203	5	1) CHEMINFO 2) CESARS	0
Acrylic acid ¹	170	33.5 - 360	4	1) CHEMINFO 2) CESARS 3) EHC 191, 1997	0
Acrylonitrile	92	72 - 186	14	1) CESARS 2) CHEMINFO 3) EHC 28, 1983	0
Ammonia	350		1	HSDB	0
Anthracene	16000		1	1) IUCLID	0
Benzene	3098	810 - 10032	13	1) CHEMINFO 2) HSDB 3) CESARS	0
Benzoyl peroxide	7710		1	HSDB	0
Biphenyl	3655	2400 - 5040	4	1) CHEMINFO 2) IUCLID	0
Bis(2-ethylhexyl) adipate	7143	5600 - 9110	2	HSDB	0
Bis(2-ethylhexyl) phthalate	20011	6860 - 30600	5	1) CESARS 2) HSDB	0
Bromine	2600		1	IUCLID	0
Butadiene:1,3-	5480		1	1) HSDB 2) IUCLID	0
Butoxyethanol:2-	1110	470 - 3000	8	1) HSDB 2) CESARS 3) CHEMINFO	0

Chemical	LD ₅₀ (mg/kg)	LD ₅₀ range	N	Reference(s)	UF _{or}
Butyl acrylate	2534	500 - 8053	8	1) HSDB 2) CESARS 3) CHEMINFO	0
Butyl alcohol:i-	2762	2460 - 3100	2	HSDB	0
Butyl alcohol:n-	1588	790 - 2510	3	1) HSDB 2) CHEMINFO	0
Butyl alcohol:sec-	6480		1	HSDB	0
Butyl alcohol:tert-	3077	2733 - 3500	3	1) HSDB 2) IUCLID	0
Butyl benzyl phthalate	7782	2330 - 16500	5	1) HSDB 2) CESARS	0
Calcium fluoride	4250		1	HSDB	0
Carbon disulphide	988	100 - 3188	4	1) HSDB 2) CESARS 3) CHEMINFO	0
Carbon tetrachloride	5135	2800 - 23432	14	1) HSDB 2) EHC 208, 1999 3) CESARS	0
Chlorine				Expert judgement (HV $_{OR}$ =0); ingestion unlikely pathway as chlorine is gas at room temperature.	1
Chlorine dioxide	292		1	CESARS	0
Chlorobenzene	2644	1427 - 4000	5	1) HSDB 2) EHC 128,1991 3) CESARS 4) CHEMINFO	0
Chloroform	1060	445.5 - 2180	9	1) HSDB 2) EHC 163, 1994 3) CESARS	0
Chloromethane	1800		1	HSDB	0
Cresol ²	1454		1	CHEMINFO	0
Cumene	2605	1400 <u>5000</u>	4	1) HSDB 2) CESARS 3) CHEMINFO	0

Chemical	LD ₅₀ (mg/kg)	LD ₅₀ range	N	Reference(s)	UF _{or}
Cumene hydroperoxide	458	382 - 550	2	1) CHRIS 2) IUCLID	0
Cyanide ion	8.4	3.4 - 26	5	CESARS	0
Cyclohexane	29820		1	HSDB	0
Decabromodiphenyl oxide	>5000		1	IUCLID	0
Dibutyl phthalate	14201	8000 - 20000	3	1) HSDB 2) EHC 189, 1997 3) CESARS	0
Dichlorobenzene:p-	2071	500 - 3863	4	1) HSDB 2) CESARS	0
Dichloroethane:1,2-	854	670 - 1308	8	1) HSDB 2) EHC 176, 1995 3) CESARS	0
Dichloromethane	2115	1410 - 3048	12	1) HSDB 2) EHC 164, 1996 3) CESARS	0
Dicyclopentadiene	493	346.5 - 820	6	1) HSDB 2) CHRIS 3) IUCLID	0
Diethanolamine ¹	1771	710 - 3450	13	1) HSDB 2) CHRIS 3) IUCLID	0
Dimethylformamide:n,n-	3815	2200 - 7550	12	1) HSDB 2) EHC 114, 1991 3) IUCLID	0
Dioxane:1,4-	5518	4200 - 7120	6	1) CESARS 2) CHEMINFO	0
Di-t-butyl-4-methylphenol:2,6-	1832	890 - 2450	8	1) HSDB 2) CESARS 3) IUCLID	0
Ethyl acrylate	1461	193 - 14800	11	1) HSDB 2) CESARS 3) EHC 191, 1997	0

Chemical	LD₅₀ (mg/kg)	LD ₅₀ range	N	Reference(s)	
Ethylbenzene	4309	3500 - 5460	5	1) HSDB 2) EHC 186, 1996 3) CESARS	0
Ethylene				Expert judgement (HV $_{\rm OR}$ =0); ingestion unlikely pathway as medium of concern is air and all NPRI releases are to air.	1
Ethylene glycol	7502	4000 - 15280	22	1) HSDB 2) CESARS 3) IUCLID	0
Ethylene oxide	323	280 - 365	3	1) HSDB 2) PSL Assessment 2001 2) EHC 55, 1985	0
Fluorine				Expert judgement (HV_{OR} =0); ingestion unlikely pathway as fluorine is a gas at room temperature. Soluble in water with decomposition forming HF. Medium of concern is air.	1
Formaldehyde	283	100 - 800	2	HSDB	0
Formic acid	1402	730 - 3050	5	1) HSDB 2) CESARS 3) IUCLID	0
HCFC-141b	>5000		1	HSDB	0
HCFC-142b				Expert judgement (HV $_{OR}$ =0); ingestion unlikely pathway as HCFC-142b is a gas at room temperature and medium of concern is air.	1
HCFC-22				Expert judgement (HV $_{OR}$ =0); ingestion unlikely pathway as HCFC-22 is a gas at room temperature and medium of concern is air.	1
Hexane:n-	25057	15800 - 32400	7	1) HSDB 2) EHC 122, 1991 3) CESARS	0
Hydrochloric acid	700		1	1) IUCLID	0
Hydrogen cyanide	4.1	3.62 - 4.5	3	1) IUCLID	0

Chemical	LD₅₀ (mg/kg)	LD ₅₀ range	N	Reference(s)	UF _{or}
Hydrogen fluoride				Expert judgement (HV $_{\rm OR}$ =0); ingestion unlikely since gas at room temperature, medium of concern is air and NPRI distribution is 100% to air.	1
Hydrogen sulphide				Expert judgement (HV $_{\rm OR}$ =0); ingestion unlikely since gas at room temperature and medium of concern is air.	1
Hydroquinone ¹	554	302 - 1080	7	1) HSDB 2) CHEMINFO 3) IUCLID	0
Isoprene	2125	2043 - 2210	2	IUCLID	0
Isopropyl alcohol	5194	4710 - 5500	5	1) HSDB 2) EHC 103, 1990	0
Isopropylidenediphenol:p,p'-	4018	3200 - 5660	9	1) HSDB 2) IUCLID	0
Lithium carbonate	525		1	IUCLID	0
Maleic anhydride	648	235 - 1090	11	1) HSDB 2) CESARS 3) CHEMINFO 4) IUCLID	0
Methanol	8499	5628 - 13000	7	1) EHC 196, 1997 2) CHEMINFO	0
Methyl ethyl ketone	2679	800 - 5520	7	1) HSDB 2) EHC 143, 1992 3) CESARS	0
Methyl isobutyl ketone	3093	2080 - 4600	2	1) HSDB 2) CESARS	0
Methyl methacrylate	8362	7800 - 9400	4	1) HSDB 2) CESARS 3) CHEMINFO	0
Methyl tert-butyl ether	3518	2963 - 3866	3	1) EHC 206, 1998 2) CHEMINFO	0

Chemical	LD₅₀ (mg/kg)	LD ₅₀ range	N	Reference(s)	
Methyl-2-pyrrolidone:N-	4668	3598 - 7900	12	1) HSDB 2) CESARS 3) IUCLID	0
Methylenebis (phenylisocyanate)	>10000		1	1) CHEMINFO	0
Naphthalene	1974	1100 - 2600	6	1) HSDB 2) CESARS	0
Nitrate ion ³	1386	1200 - 1600	2	IUCLID (Studies conducted on various salts of nitric acid: NaNO ₃ , KNO ₃ , NH ₄ NO ₃ .)	0
Nitric acid	430		1	IUCLID (human LDLo)	2
Nitrilotriacetic acid ¹				No information, default value (HV _{OR} =2.5)	4
Nonylphenol	1511	580 - 2462	11	1) PSL Assessment 2000 2) IUCLID	0
Phenol (and its salts)	462	317 - 650	9	1) HSDB 2) EHC 161, 1994 3) CESARS	0
Phosphorus ⁴	3.03	3.03 - 3.03	1	HSDB	0
Phthalic anhydride	1726	800 - 4020	3	1) HSDB 2) CESARS	0
Polymeric diphenylmethane diisocyanate	>10000		1	CHEMINFO	0
Propylene				Expert judgement (HV $_{OR}$ =0); ingestion unlikely since propylene is a gas at room temperature, medium of concern is air and more than 99% of NPRI releases are to air.	1
Sodium fluoride	41	32 - 51.6	2	HSDB	0
Sodium nitrite	145	85 - 200	3	IUCLID	0
Styrene	2236	1000 - 5000	2	HSDB	0
Sulphur hexafluoride				Expert judgement (HV _{OR} =0); ingestion unlikely since gas at room temperature and medium of concern is air.	1
Sulphuric acid	2140		1	CHEMINFO	0

Chemical	LD ₅₀ (mg/kg)	LD ₅₀ range	N	Reference(s)	UF _{or}
Tetrachloroethylene	2433	250 - 13000	9	1) HSDB 2) CESARS 3) CHEMINFO 4) IUCLID	0
Thiourea	564	20 - 6200	6	1) HSDB 2) IUCLID	0
Toluene	5289	2600 - 7530	11	1) HSDB 2) EHC 52, 1986 3) CHEMINFO	0
Toluene-2,4-diisocyanate	5982	5800 - 6170	2	1) HSDB 2) CESARS	0
Toluenediisocyanate ⁵	4842	3060 - 7500	4	1) HSDB 2) CESARS	0
Trichloroethylene	4398	2402 - 7200	3	1) HSDB 2) CESARS 3) CHEMINFO	0
Triethylamine	460		1	1) CESARS	0
Trimethylbenzene:1,2,4-	3876	3280 - 5000	3	1) CHEMINFO 2) HSDB	0
Vinyl acetate	2920		1	HSDB	0
Vinyl chloride	>4000		1	IUCLID	0
Xylene ⁵	5657	3523 - 8700	8	1) HSDB 2) EHC 190, 1997 3) CESARS 4) CHEMINFO	0

² mixed isomers and their salts

³ in solution at pH \ge 6.0

⁴ yellow or white

⁵ mixed isomers

Chemical	LC ₅₀ (mg/L)	LC ₅₀ range	N	Reference(s)	
Acetaldehyde	19.41	15.7 - 24	2	1) CHEMINFO 2) EHC 167, 1995/ IUCLID	0
Acrolein	0.02	0.018 - 0.021	2	1) CESARS 2) EHC 127, 1991	0
Acrylamide	1.4			Green Seal	2
Acrylic acid ¹	3.71	3.60 - 3.83	2	CHEMINFO	0
Acrylonitrile	1.10	0.92 - 1.30	3	1) CESARS 2) CHEMINFO 3) IUCLID	0
Ammonia	1.39		1	IUCLID	0
Anthracene				Expert judgement (HV _{INH} =0); inhalation unlikely as anthracene is not likely to form vapour.	1
Benzene	43.77		1	CHEMINFO/ IUCLID	0
Benzoyl peroxide				Expert judgement (HV _{INH} =0); not likely to present inhalation risk as media of concern are soil and water.	1
Biphenyl	30.5			Green Seal	2
Bis(2-ethylhexyl) adipate				Expert judgement (HV _{INH} =0); inhalation unlikely pathway as Henry's Law predicts low volatility and media of concern are soil, sediment, and water.	1
Bis(2-ethylhexyl) phthalate	> 10.62		1	IUCLID	0
Bromine	21.7			Green Seal	2
Butadiene:1,3-	285		1	HSDB/ IUCLID	0
Butoxyethanol:2-	2.26	2.18 - 2.35	2	CHEMINFO	0
Butyl acrylate	14.31		1	CHEMINFO	0
Butyl alcohol:i-	25.30	24.3 - 26.4	2	1) HSDB 2) CESARS	0
Butyl alcohol:n-	24.25		1	HSDB	0
Butyl alcohol:sec-	24.25			Read-across from n-butyl alcohol	
Butyl alcohol:tert-	> 30.32		1	1 IUCLID	
Butyl benzyl phthalate	> 6.7		1	IUCLID	0

Chemical	LC₅₀ (mg/L)	LC ₅₀ range	N	Reference(s)	
Calcium fluoride	35.4			Green Seal	2
Carbon disulphide	12.5		1	HSDB	2
Carbon tetrachloride	50.33		1	IUCLID	0
Chlorine	0.27	0.22 - 0.33	2	1) HSDB 2) IUCLID	2
Chlorine dioxide	2.4			Green Seal	2
Chlorobenzene	11.65	8.58 - 13.65	3	1) EHC 128, 1991 2) CHEMINFO	0
Chloroform	47.70		1	HSDB	0
Chloromethane	5.3		1	HSDB	0
Cresol ²	12.1			Green Seal	2
Cumene	39.2		1	CESARS	0
Cumene hydroperoxide	1.37		1	IUCLID	0
Cyanide ion	0.02			HCN used as a surrogate to estimate CN ⁻ inhalation toxicity as CN ⁻ likely forms HCN when emitted to air.	2
Cyclohexane	13.9		1	IUCLID	0
Decabromodiphenyl oxide	12.05		1	IUCLID	2
Dibutyl phthalate	> 15.68		1	IUCLID	0
Dichlorobenzene:p-	17.3			Green Seal	2
Dichloroethane:1,2-	8.4		1	CESARS	0
Dichloromethane	> 2			1) HSDB 2) CESARS	0
Dicyclopentadiene	3.82	2.70 - 5.41	2	1) IUCLID	0
Diethanolamine ¹				Expert judgement (HV _{INH} =0); inhalation pathway unlikely as Henry's Law predicts low volatility and media of concern are soil and water.	1
Dimethylformamide:n,n-	> 5.9		1	IUCLID	0
Dioxane:1,4-	48.60	46 - 51.4	2	1) CESARS 2) CHEMINFO	0
Di-t-butyl-4-methylphenol:2,6-				Expert judgement (HV _{INH} =0); inhalation unlikely pathway as media of concern are soil and water and only 1% of NPRI releases are to air.	1

Chemical	LC ₅₀ (mg/L)	LC ₅₀ range	N	Reference(s)	
Ethyl acrylate	5.74	3.6 - 8.93	5	1) HSDB 2) CHEMINFO 3) EHC 191, 1997	0
Ethylbenzene	17.2		1	EHC 186, 1996	0
Ethylene	> 12.52		1	IUCLID	0
Ethylene glycol				Expert judgement (HV _{INH} = 0); inhalation pathway unlikely as Henry's Law predicts low volatility and media of concern are soil and water.	1
Ethylene oxide	2.63		1	HSDB/ PSL Assessment 2001	0
Fluorine	0.06		1	HSDB	3
Formaldehyde	0.44	0.31 - 0.59	3	1) HSDB 2) CESARS	0
Formic acid	5.28	3.76 - 7.4	2	1) CHEMINFO 2) IUCLID	0
HCFC-141b	295		1	HSDB	0
HCFC-142b	1644.17			IUCLID	0
HCFC-22	775		1	EHC 126, 1991/ IUCLID	0
Hexane:n-	209.73	169.18 - 260	2	CESARS	0
Hydrochloric acid	0.93	0.56 - 1.18	6	1) IUCLID 2) CHEMINFO	2
Hydrogen cyanide	0.02	0.02 - 0.04	4	1) HSDB/IUCLID 2) IUCLID	2
Hydrogen fluoride	0.32	0.21 - 0.48	7	1) HSDB 2) CHEMINFO 3) IUCLID	2
Hydrogen sulphide	0.66	0.63 - 0.70	2	1) CESARS 2) IUCLID	0
Hydroquinone ¹				Expert judgement ($HV_{INH} = 0$); inhalation pathway unlikely as Henry's Law predicts low volatility, medium of concern is water and 100% of NPRI releases are to water.	1
Isoprene	180		1	HSDB/ IUCLID	0
Isopropyl alcohol	55.07	41.8 - 72.6	2	1) EHC 103, 1990 2) CHEMINFO	0

Chemical	LC₅₀ (mg/L)	LC ₅₀ range	N	Reference(s)	
Isopropylidenediphenol:p,p'-				Expert judgement (HV _{INH} = 0); inhalation pathway unlikely as Henry's Law predicts low volatility, medium of concern is soil and 93% of NPRI releases are to land.	1
Lithium carbonate	> 2.17		1	IUCLID	0
Maleic anhydride	5.4			Green Seal	2
Methanol	83.87		1	CHEMINFO	0
Methyl ethyl ketone	11.72	3.98 - 34.5	2	1) HSDB 2) CESARS	0
Methyl isobutyl ketone	23.13	16.35 - 32.71	2	CESARS	0
Methyl methacrylate	29.04		1	IUCLID	0
Methyl tert-butyl ether	85		1	HSDB	0
Methyl-2-pyrrolidone:N-	5.18	3.1 - 8.8	3	IUCLID	0
Methylenebis (phenylisocyanate)	0.41	0.37 - 0.49	3	1) HSDB 2) CHEMINFO	0
Naphthalene	1.05		1	IUCLID	2
Nitrate ion ³	0.17		1	HNO_3 used as surrogate as NO_3^- likely forms HNO_3 when emitted to air.	2
Nitric acid	0.17		1	HSDB	0
Nitrilotriacetic acid ¹				Expert judgement (HV _{INH} = 0); not relevant route of exposure.	1
Nonylphenol				Expert judgement ($HV_{INH} = 0$); inhalation pathway unlikely as fugacity modelling indicates media of concern are water and soil. Further, air is not considered a compartment of concern in PSL environmental risk assessment.	1
Phenol ¹	> 1.8		1	IUCLID	2
Phosphorus ⁴	1.08		1	IUCLID	2
Phthalic anhydride				Expert judgement ($HV_{INH} = 0$); inhalation pathway unlikely as Henry's Law predicts low volatility, media of concern are soil and water and 99% of NPRI releases are to water.	1
Polymeric diphenylmethane diisocyanate	0.49		1	CHEMINFO	0
Propylene	> 86		1	CHEMINFO	0

Chemical	LC ₅₀ (mg/L)	LC ₅₀ range	N	Reference(s)	UFINH
Sodium fluoride				Expert judgement (HV _{INH} = 0); inhalation pathway unlikely as media of concern are soil and water and 100% of NPRI releases are to land.	1
Sodium nitrite	5.5		1	IUCLID	0
Styrene	16.83	11.8 - 24	2	HSDB	0
Sulphur hexafluoride	5.97		1	CHEMINFO	0
Sulphuric acid	0.26		1	CHEMINFO	0
Tetrachloroethylene	27.13		1	IUCLID	0
Thiourea	> 0.9		1	IUCLID	0
Toluene	30.4	28.1 - 33.2	3	1) HSDB 2) CHEMINFO 3) IUCLID	0
Toluene-2,4-diisocyanate	0.1		1	HSDB	0
Toluenediisocyanate 5	0.23	0.10 - 0.36	3	HSDB	0
Trichloroethylene	57.09	43.0 - 67.2	3	1) HSDB 2) CESARS 3) CHEMINFO	0
Triethylamine	4.14		1	HSDB	0
Trimethylbenzene:1,2,4-	18		1	CHEMINFO	0
Vinyl acetate	12.89	11.4 - 14.4	3	1) HSDB 2) CHEMINFO	0
Vinyl chloride	86.14		1	CHEMINFO	0
Xylene ⁵	55.62	28 - 104	6	1) HSDB 2) CESARS 3) CHEMINFO	0

² mixed isomers and their salts

³ in solution at pH \ge 6.0

⁴ yellow or white

⁵ mixed isomers

Carcinogenicity Rating

Chemical	Carcinogenicity Rating	Reference(s)	
Acetaldehyde	2B	IARC. VOL.: 71 (1999) (p. 319)	0
Acrolein	3	IARC. VOL.: 63 (1995) (p. 337)	0
Acrylamide	2A	IARC. VOL.: 60 (1994) (p. 389)	0
Acrylic acid ¹	3	IARC. VOL.: 71 (1999) (p. 1223)	0
Acrylonitrile	2B	IARC. VOL.: 71 (1999) (p. 43)	0
Ammonia	3	EHC 54, 1986.	2
Anthracene	3	IARC. Suppl. 7 (1987) (p. 57: Group 3)	0
Benzene	1	IARC. Supplement 7: (1987) (p. 120)	0
Benzoyl peroxide	3	IARC. VOL.: 71 (1999) (p. 345)	0
Biphenyl	2A	IARC. Supplement 7: (1987) (p. 322)	0
Bis(2-ethylhexyl) adipate	3	IARC. Vol.: 77 (2000) (p. 149)	0
Bis(2-ethylhexyl) phthalate	3	IARC. VOL.: 77 (2000) (p. 41)	0
Bromine	3	IUCLID dataset. Section 5.7 concludes residues of up to 500 ppm total bromine in diets fumigated with methyl bromide are not carcinogenic in F344 rats and there was no evidence of bromine having carcinogenic properties.	2
Butadiene:1,3-	2A	IARC VOL.: 71 (1999) (p. 109)	0
Butoxyethanol:2-	-	No information, default value (HV _{CAR} = 1.5)	4
Butyl acrylate	3	IARC. VOL.: 71 (1999) (p. 359)	0
Butyl alcohol:i-	D	read-across assessment for 1-butanol (71-36-3)	2
Butyl alcohol:n-	D	IRIS. 03/01/1991	0
Butyl alcohol:sec-	D	read-across assessment for 1-butanol (71-36-3)	2
Butyl alcohol:tert-	D	read-across assessment for 1-butanol (71-36-3)	2
Butyl benzyl phthalate	3	IARC. VOL.: 73 (1999) (p. 115)	0
Calcium fluoride	3	PSL assessment. No consistent evidence.	2
Carbon disulphide	-	No information, default value (HV _{CAR} = 1.5)	4
Carbon tetrachloride	2B	IARC. Vol.: 71 (1999) (p. 401). IRIS. 06/01/1991	0
Chlorine	-	No information, default value (HV _{CAR} = 1.5). IRIS. 01/01/1993. Carcinogenicity assessment unavailable.	4
Chlorine dioxide	D	IRIS. 10/12/2000	0
Chlorobenzene	D	IRIS. 03/01/1991	0

Chemical	Carcinogenicity Rating	Reference(s)	UF _{CAR}
Chloroform	2B		
		IARC. VOL.: 73 (1999) (p. 131). IRIS. 10/19/01	0
Chloromethane	3	IARC. VOL.: 71 (1999) (p. 737).	0
Cresol ²	С	IRIS. 08/01/1993	0
Cumene	D	IRIS. 08/01/1997	0
Cumene hydroperoxide	-	No information, default value (HV _{CAR} = 1.5)	4
Cyanide ion	D	IRIS. 03/01/1991	0
Cyclohexane	-	No information, default value (HV_{CAR} = 1.5). IRIS. 09/11/2003. Carcinogenicity assessment unavailable.	4
Decabromodiphenyl oxide	3	IARC. VOL.: 71 (1999) (p. 1365).	0
D'hada a biha la ta			
Dibutyl phthalate	D		0
Dichlorobenzene:p-	2B	IRIS. 02/01/1993	0
Dichloroethane:1.2-	2B	IARC. VOL.: 73 (1999) (p. 223) IARC. VOL.: 71 (1999) (p. 501)	0
Dichloromethane	2B		0
Dicyclopentadiene		IARC. VOL.: 71 (1999) (p. 251) No information, default value (HV _{CAR} = 1.5)	4
	3		0
Dimethylformamide:n,n-	3	IARC. VOL.: 77 (2000) (p. 349)	0
Dioxane:1.4-	2B	IARC. VOL.: 71 (1999) (p. 545)	0
Di-t-butyl-4-methylphenol:2,6-	3	IARC. VOL.: 71 (1999) (p. 589)	0
Ethyl acrylate	2B	IARC. Suppl. 7 (1987) (p. 59)	0
Ethylbenzene	2B	IARC. VOL.: 71 (1999) (p. 1447)	0
Ethylene	3	IARC. Vol.: 77 (2000) (p. 227).	
Ethylene glycol	-	IARC. VOL.: 60 (1994) (p. 45)	0
Ethylene oxide	1	No information, default value ($HV_{CAR} = 1.5$)	4
Fluorine	-	IARC. VOL.: 60 (1994) (p. 73)	0
Formaldehyde	2A	No information, default value (HV _{CAR} = 1.5)	4
•	2A	IARC. Vol.: 62 (1995) (p. 217) No information, default value (HV _{CAR} = 1.5). IRIS. 10/01/1991. Carcinogenicity	0
Formic acid	-	assessment unavailable.	4
HCFC-141b	3	Read-across IARC assessment for HCFC-22.	2

Chemical	Carcinogenicity Rating	Reference(s)	
HCFC-142b	3	Read-across IARC assessment for HCFC-22.	2
HCFC-22	3	IARC. VOL.: 71 (1999) (p. 1339)	0
Hexane:n-	-	No information, default value (HV _{CAR} = 1.5). IRIS. 09/01/1991. Carcinogenicity assessment unavailable.	4
Hydrochloric acid	3	IARC. VOL.: 54 (1992) (p. 189)	0
Hydrogen cyanide	-	No information, default value (HV _{CAR} = 1.5)	4
Hydrogen fluoride	3	PSL assessment. No consistent evidence	2
Hydrogen sulphide	-	No information, default value (HV _{CAR} = 1.5). IRIS. 07/28/2003. Carcinogenicity assessment unavailable.	4
Hydroquinone ¹	3	IARC. VOL.: 71 (1999) (p. 691)	0
Isoprene	2B	IARC. VOL.: 71 (1999) (p. 1015)	0
Isopropyl alcohol	3	IARC. VOL.: 71 (1999) (p. 1027)	0
Isopropylidenediphenol:p,p'-	-	No information, default value (HV _{CAR} = 1.5)	4
Lithium carbonate	-	No information, default value (HV _{CAR} = 1.5)	4
Maleic anhydride	-	No information, default value (HV _{CAR} = 1.5)	4
Methanol	-	No information, default value ($HV_{CAR} = 1.5$)	4
Methyl ethyl ketone	-	No information, default value (HV _{CAR} = 1.5). IRIS. 09/26/2003. Carcinogenicity assessment not available.	4
Methyl isobutyl ketone	-	No information, default value (HV _{CAR} = 1.5). IRIS. 04/25/2003. Carcinogenicity assessment not available.	4
Methyl methacrylate	3	IARC. VOL.: 60 (1994) (p. 445)	0
Methyl tert-butyl ether	3	IARC. VOL.: 73 (1999) (p. 339)	0
Methyl-2-pyrrolidone:N-	-	No information, default value ($HV_{CAR} = 1.5$)	4
Methylenebis (phenylisocyanate)	3	IARC. VOL.: 71 (1999) (p. 1049)	0
Naphthalene	С	IRIS. 09/17/1998	0
Nitrate ion ³	-	No information, default value (HV _{CAR} = 1.5)	4
Nitric acid	-	No information, default value ($HV_{CAR} = 1.5$)	4
Nitrilotriacetic acid ¹	2B	IARC. VOL.: 73 (1999) (p. 385)	0
Nonylphenol	С	PSL assessment does not rule on carcinogenicity. Nonylphenol negative in bacterial tests, but induced DNA damage in human sperm, lymphocytes and MCF-7 breast cancer cells exposed in vitro.	2
Phenol ¹	3	IARC. VOL.: 71 (1999) (p. 749)	0
Phosphorus ⁴	-	No information, default value ($HV_{CAR} = 1.5$)	4

Chemical	Carcinogenicity Rating	Reference(s)	
Phthalic anhydride	-	No information, default value ($HV_{CAR} = 1.5$). IRIS. 05/01/1992. Carcinogenicity assessment not available.	UFCAR 4
Polymeric diphenylmethane diisocyanate	D	IRIS. 02/07/1998	0
Propylene	3	IARC. VOL.: 60 (1994) (p. 161)	0
Sodium fluoride	3	IARC. Supplement 7: (1987) (p. 208)	0
Sodium nitrite	-	No information, default value (HV _{CAR} = 1.5)	4
Styrene	2B	IARC. VOL.: 60 (1994) (p. 233)	0
Sulphur hexafluoride	3	PSL assessment. No consistent evidence.	2
Sulphuric acid	1	IARC. VOL.: 54 (1992) (p. 41)	0
Tetrachloroethylene	2A	IARC. VOL.: 63 (1995) (p. 159)	0
Thiourea	3	IARC. VOL.: 79 (2001) (p. 703).	0
Toluene	3	IARC. VOL.: 71 (1999) (p. 829)	0
Toluene-2,4-diisocyanate	2B	IARC. VOL.: 71 (1999) (p. 865)	0
Toluenediisocyanate 5	2B	IARC. VOL.: 71 (1999) (p. 865)	0
Trichloroethylene	2A	IARC. Vol.: 63 (1995) (p. 75)	0
Triethylamine	-	No information, default value (HV _{CAR} = 1.5)	4
Trimethylbenzene:1,2,4-	-	No information, default value (HV _{CAR} = 1.5)	4
Vinyl acetate	2B	IARC. VOL.: 63 (1995) (p. 443)	0
Vinyl chloride	1	IARC. Supplement 7: (1987) (p. 373)	0
Xylene ⁵	3	IARC. VOL.: 71 (1999) (p. 1189)	0

² mixed isomers and their salts

³ in solution at pH \ge 6.0

⁴ yellow or white

⁵ mixed isomers

Reference Dose/Reference Concentration

Chemical	Study	NOAEL/C ¹	LOAEL/C	Uncertainty Factor	RfD/RfC		Reference
Acetaldehyde	4-week rat	8.775		1000	0.009	0	RfC. IRIS. 10/01/1991.
Acrolein	13-week rat		0.023	1000	0.000	0	RfC. IRIS. 06/03/2003.
Acrylamide	90-day rat	0.2		1000	0.000	0	RfD. IRIS. 03/01/1991.
Acrylic acid ²	13-week mouse		0.325	300	0.001	0	RfC. IRIS.05/01/1995.
Acrylonitrile	2-year rat		1.940	1000	0.002	0	RfC. IRIS.12/01/1991.
Ammonia	12.2-year human	2.3		30	0.077	0	RfC. IRIS 05/01/1991.
Anthracene	90-day mouse	1000		3000	0.333	0	RfD. IRIS. 07/01/1993.
Benzene	6.3-year human occupational	8.2		300	0.027	0	RfC. IRIS. 04/17/2003.
Benzoyl peroxide	exposure limit	5		1	5.000	2	RfC. CHEMINFO/ CHRIS (Exposure limit = 5 mg/m ³)
Biphenyl	chronic rat	50		1000	0.050	0	RfD. IRIS. 08/01/1989.
Bis(2-ethylhexyl) adipate	developmental/ 1-generation rat	170		300	0.567	0	RfD. IRIS. 07/01/1992.
Bis(2-ethylhexyl) phthalate	1-year guinea pig		19.000	1000	0.019	0	RfD. IRIS. 05/01/1991.
Bromine	exposure limit	0.654		1	0.654	2	RfC. CHEMINFO/ CHRIS (Exposure limit = 0.1 ppm)
Butadiene:1,3-	2-year mouse		1.950	1000	0.002	0	RfC. IRIS. 11/05/2002.
Butoxyethanol:2-	14-week rat		380.000	30	12.667	0	RfC. IRIS. 12/30/1999.
Butyl acrylate	2-year rat		14.000	300	0.047	2	RfC. HSDB.
Butyl alcohol:i-	13-week rat	316		1000	0.316	0	RfD. IRIS. 04/01/1999.
Butyl alcohol:n-	13-week rat	125		1000	0.125	0	RfD. IRIS. 09/01/1990.
Butyl alcohol:sec-	multi-generation reproductive/ development rat	657		300	2.190	0	RfD. IRIS (see methyl ethyl ketone assessment). 9/26/2003.
Butyl alcohol:tert-	2-year rat/mouse		180.000	1000	0.180	2	RfD. CHEMINFO.
Butyl benzyl phthalate	6-month rat	159		1000	0.159	0	RfD. IRIS. 02/01/1993.
Calcium fluoride	occupational studies (+20year)	0.2		100	0.002	2	RfD. PSL Assessment for Inorganic Fluorides. 1993.
Carbon disulphide	12.1-year occupational		19.700	30	0.657	0	RfC. IRIS. 08/01/1995.

Chemical	Study	NOAEL/C ¹	LOAEL/C	Uncertainty Factor	RfD/RfC		Reference
Carbon tetrachloride	12-week rat	0.71		1000	0.001	0	RfD. IRIS. 06/01/1991.
Chlorine	2-year rat	14.4		100	0.144	0	RfD. IRIS. 06/01/1994.
Chlorine dioxide	2-month rat		0.645	3000	0.000	0	RfC. IRIS 10/12/2000.
Chlorobenzene	13-week dog	27.25		1000	0.027	0	RfD. IRIS. 07/01/1993.
Chloroform	7.5-year dog	1		100	0.010	0	RfD. IRIS. 10/19/2001.
Chloromethane	11-day continuous mouse	94.6		1000	0.095	0	RfC. IRIS. 07/17/2001.
Cresol ³	90-day neurotoxicity rat	50		1000	0.050	0	RfD. IRIS (o-, m-cresol). 09/10/1990.
Cumene	13-week rat	435		1000	0.435	0	RfC. IRIS. 08/01/1997.
Cumene hydroperoxide	90-day rat	6	22.143	300	0.018	2	RfC. HSDB.
Cyanide ion	2-year/ subchronic rat	10.8		500	0.022	0	RfD. IRIS. 02/01/1993.
Cyclohexane	2-generation reproductive rat	1822		300	6.073	0	RfC. IRIS. 09/11/2003.
Decabromodiphenyl oxide	2-year rat	1		100	0.010	0	RfD. IRIS. 02/01/1995.
Dibutyl phthalate	1-year rat	125		1000	0.125	0	RfD. IRIS. 08/01/1990.
Dichlorobenzene:p-	2-generation reproductive rat	75		100	0.750	0	RfC. IRIS. 11/01/1996.
Dichloroethane:1,2-	Maximum Residue Limit				2.428	0	RfC. ATSDR (MRL = 0.6 ppm). Sept. 2001.
Dichloromethane	2-year rat	5.85		100	0.059	0	RfD. IRIS. 03/01/1988.
Dicyclopentadiene	exposure limit	27		1	27.036	2	RfC. CHEMINFO/CHRIS.(Exposure limit = 5 ppm)
Diethanolamine ²	90-day rat/mouse		15.000	1000	0.015	2	RfD. NTP technical report on toxicity studies of diethanolamine (CAS No. 111- 42-2) administered topically and in drinking water to F344/N rats and B6C3F1 mice. 1992. National Toxicology Program, Toxicity Report Series No. 20, NIH publication No. 92-3343. U.S. Department of Health and Human Services.
Dimethylformamide:n,n-	5 (1-15) year occupational		7.900	300	0.026	0	RfC. IRIS. 10/01/1990.
Dioxane:1,4-	2-year rat	9.6		300	0.032	2	RfD. CHEMINFO.

Chemical	Study	NOAEL/C ¹	LOAEL/C	Uncertainty Factor	RfD/RfC		Reference
Di-t-butyl-4-							
methylphenol:2,6-	2-geneneration rat		25.000	1000	0.025	2	RfD. HSDB.
Ethyl acrylate	2-year rat	102		100	1.024	2	RfC. CHEMINFO.
Ethylbenzene	developmental rabbit/rat	434		300	1.447	0	RfC. IRIS. 03/01/1991.
Ethylene	2-year rat	615		300	2.049	2	RfC. HSDB.
Ethylene glycol	2-year rat	200		100	2.000	0	RfD. IRIS. 09/01/1989.
Ethylene oxide	2-year rat		2.200	1000	0.002	2	RfC. PSL Assessment. Sept. 2001.
Fluorine	occupational (children)	0.06		1	0.060	0	RfD. IRIS. 06/01/1989.
Formaldehyde	2-year rat	15		100	0.150	0	RfD. IRIS. 09/01/1990.
Formic acid	13-week rat/ mouse	10.8		1000	0.011	2	RfC. NTP technical report on toxicity studies of formic acid (CAS no: 64-18-6) administered by inhalation to F344/N rats and $B6C3F_1$ mice. 1992. National Toxicology Program, Technical Report Series No. 19. U.S. Department of Health and Human Services.
HCFC-141b	2-year rat	1,281		100	12.812	2	RfC. HSDB.
HCFC-142b	2-year rat	14710		300	49.033	0	RfC. IRIS. 07/01/1995.
HCFC-22	2-year/ developmental rat	5260		100	52.600	0	RfC. IRIS. 11/01/1993.
Hexane:n-	6.2 (1-12) year occupational		73.000	300	0.243	0	RfC. IRIS. 07/01/1993.
Hydrochloric acid	chronic rat		6.100	300	0.020	0	RfC. IRIS. 07/01/1995.
Hydrogen cyanide	5-10 year occupational		7.070	1000	0.007	0	RfC. IRIS. 09/01/1994.
Hydrogen fluoride	Maximum Residue Limit				0.016	0	RfC. ATSDR (MRL = 0.02 ppm). Sept. 2003.
Hydrogen sulphide	10-week rat	0.64		300	0.002	0	RfC. IRIS. 07/28/2003.

Chemical	Study	NOAEL/C ¹	LOAEL/C	Uncertainty Factor	RfD/RfC		Reference
Hydroquinone ²	2-year rat/ mouse		25.000	1000	0.025	2	RfD. NTP Technical report on the toxicology and carcinogenesis studies of hydroquinone (CAS No. 123-31-9) in F344/N rats and B6C3F1 mice (gavage studies). 1989. National Toxicology Program, Technical Report Series No. 336, NIH Publication No. 90-2812, U.S Department of Health and Human Services.
Isoprene	2-year mouse		1.950	1000	0.002	2	RfC. IRIS (1,3-butadiene). 11/05/2002.
Isopropyl alcohol	2-year rat/ 16-month mouse	219		100	2.195	2	RfC. CHEMINFO.
Isopropylidenediphenol:p,p'-	2-year rat		50.000	1000	0.050	0	RfD. IRIS. 07/01/1993.
Lithium carbonate						4	No information, default value (HV _{NCAR} =2.5)
Maleic anhydride	2-year/multi-generation rat	10	20.000	100	0.100	0	RfD. IRIS. 07/01/1993.
Methanol	90-day rat	500		1000	0.500	0	RfD. IRIS. 07/01/1993.
Methyl ethyl ketone	Developmental rat/mouse	1517		300	5.057	0	RfC. IRIS. 09/26/2003.
Methyl isobutyl ketone	Developmental rat/mouse	1026		300	3.420	0	RfC. IRIS. 04/25/2003.
Methyl methacrylate	2-year rat	7.2		10	0.720	0	RfC. IRIS. 03/02/1998.
Methyl tert-butyl ether	2-year rat	259		100	2.590	0	RfC. IRIS. 09/01/1993.
Methyl-2-pyrrolidone:N-	28-day rat	300		1000	0.300	2	RfD. HSDB.
Methylenebis (phenylisocyanate)	2-year rat	0.06		100	0.001	0	RfC. IRIS. 02/07/1998.
Naphthalene	2-year mouse		9.300	3000	0.003	0	RfC. IRIS. 02/17/1998.
Nitrate ion ⁴	epidemiological surveys	1.6		1	1.600	0	RfD. IRIS. 10/01/1991.
Nitric acid	exposure limit	5		1	5.154	2	RfC. CHEMINFO. (Exposure limit = 2 ppm)
Nitrilotriacetic acid ²	18-month rat		375.000	1000	0.375	2	RfD. HSDB.
Nonylphenol	3-generation reproductive rat	12		100	0.120	2	RfD. PSL Assessment Report for nonylphenol and its ethoxylates. December 2000.
Phenol ²	developmental rat	93		300	0.310	0	RfD. IRIS. 09/30/2002.

				Uncertainty			
Chemical	Study	NOAEL/C ¹	LOAEL/C	Factor	RfD/RfC		Reference
Phosphorus ⁵	1-generation reproductive rat	0.015		1000	0.000	0	RfD. IRIS. 02/01/1993.
Phthalic anhydride	2-year mouse		1562.000	1000	1.562	0	RfD. IRIS. 09/07/1988.
Polymeric diphenylmethane diisocyanate	2-year rat	0.06		100	0.001	0	RfC. IRIS. 02/07/1998.
Propylene	2-year rat/ mouse		1536.678	1000	1.537	2	RfC. NTP Technical Report on the Toxicology and Carcinogenesis Studies of Propylene (CAS No. 115-07-1) in F344/N rats and B6C3F ₁ mice. 1985. National Toxicology Program, Technical Report Series No. 272. U.S. Department of Health and Human Services.
Sodium fluoride	occupational studies (+20yr)	0.2	> 0.2	100	0.002	2	RfD. PSL Assessment for Inorganic Fluorides. 1993.
Sodium nitrite	2-year rat/ mouse	70		100	0.700	2	RfD. NTP Technical Report on the Toxicology and Carcinogenesis Studies of Sodium Nitrite (CAS No. 7632-00-0) in F344/N rats and B6C3F1 mice. 2001. National Toxicology Program, Technical Report Series No. 495, NIH Publication No. 01-3954. U.S. Department of Health and Human Services.
Styrene	8.6 (+/- 4.5) year occupational	34		30	1.133	0	RfC. IRIS. 07/01/1993.
Sulphur hexafluoride	exposure limit	5974		1	5973.579	2	RfC. CHEMINFO. (Exposure limit = 1000 ppm)
Sulphuric acid	exposure limit	1		1	1.000	2	RfC. CHEMINFO. (Exposure limit = 1 mg/m ³)
Tetrachloroethylene	6-week rat	14		1000	0.014	0	RfD. IRIS. 03/01/1988.
Thiourea						4	No information, default value (HV _{NCAR} =2.5)
Toluene	5.7 (+/- 3.2) occupational study/ 2- year rat		119.000	300	0.397	0	RfC. IRIS. 08/01/1992.
Toluene-2,4-diisocyanate	prospective occupational study	0.002		30	0.000	0	RfC. IRIS. 09/01/1995.
Toluenediisocyanate 6	prospective occupational study	0.002		30	0.000	0	RfC. IRIS. 09/01/1995.

Chemical	Study	NOAEL/C ¹	LOAEL/C	Uncertainty Factor	RfD/RfC		Reference
Trichloroethylene	Maximum Residue Limit				0.537	0	RfC. ATSDR (MRL = 0.1 ppm). Sept. 1997.
Triethylamine	28-week/ 10-day rat	19.5		3000	0.007	0	RfC. IRIS. 04/01/1991.
Trimethylbenzene:1,2,4-	4-week rat		500.000	1000	0.500	2	RfD. HSDB.
Vinyl acetate	2-year rat/mouse	5		30	0.167	0	RfC. IRIS. 10/01/1990.
Vinyl chloride	149-week rat	2.5		30	0.083	0	RfC. IRIS. 08/07/2000.
Xylene ⁶	90-day rat	39		300	0.130	0	RfC. IRIS. 02/21/2003.

¹ NOAEC units (mg/m³); NOAEL units (mg/kg/day)

² and its salts

³ mixed isomers and their salts

⁴ in solution at pH ≥ 6.0

⁵ yellow or white

⁶ mixed isomers

Fathead Minnow 96-hour LC₅₀

Chemical	96-hour LC ₅₀ (mg/L)	LC₅₀ range	N	Reference	UF _{fish}
Acetaldehyde	33.85	30.80 - 37.20	2	ECOTOX	0
Acrolein	0.03	0.01 - 0.06	8	ECOTOX	0
Acrylamide	117.49	109.00 - 124.00	3	ECOTOX	0
Acrylic acid ¹	7.90		1	ТОРКАТ	2
Acrylonitrile	16.90	8.40 - 34.00	2	ECOTOX	0
Ammonia	6.96	5.90 - 8.20	2	ECOTOX	0
Anthracene	1.30		1	TOPKAT (LC ₅₀ 30x> water solubility)	3
Benzene	22.02	12.60 - 33.47	5	ECOTOX	0
Benzoyl peroxide	3.66		1	PNN (estimate considered highly uncertain by ESB)	3

Chemical	96-hour LC₅₀ (mg/L)	LC ₅₀ ra	ange	N	Reference	UF_fish
Biphenyl	2.32	1.45 -	3.50	4	ЕСОТОХ	0
Bis(2-ethylhexyl) adipate	0.001			1	ТОРКАТ	2
Bis(2-ethylhexyl) phthalate	1106.20			1	ECOTOX (LC ₅₀ 3800x > water solubility)	2
Bromine					No information, default value (HV _{AAF} =2.5)	4
Butadiene:1,3-	92.10			1	ТОРКАТ	2
Butoxyethanol:2-	8000.00			1	ТОРКАТ	2
Butyl acrylate	2.10			1	ТОРКАТ	2
Butyl alcohol:i-	1484.02	1430.00 -	1513.58	3	ECOTOX	0
Butyl alcohol:n-	1857.64	1730.00 -	1940.00	3	ECOTOX	0
Butyl alcohol:sec-	3670.00			1	ECOTOX	0
Butyl alcohol:tert-	6410.00			1	ECOTOX	0
Butyl benzyl phthalate	1.87	1.50 -	2.32	2	ECOTOX	0
Calcium fluoride	245.99	180.00 -	315.00	4	ECOTOX (expressed as fluoride)	0
Carbon disulphide	4.00			1	IUCLID (guppy)	2
Carbon tetrachloride	42.53	41.40 -	43.30	3	ЕСОТОХ	0
Chlorine	0.036	0.002 -	1.13	13	ECOTOX IUCLID	0
Chlorine dioxide	0.06	0.02 -	0.17	2	HSDB	0
Chlorobenzene	21.68	7.70 -	35.40	7	ECOTOX	0
Chloroform	100.90	70.70 -	171.00	6	ECOTOX	0
Chloromethane	268.28			1	ECOSAR	2
Cresol ²	12.80			1	ECOTOX	0
Cumene	6.32			1	ECOTOX	0
Cumene hydroperoxide	158.47			1	OASIS	2
Cyanides	0.15	0.08 -	0.35	37	ECOTOX (HCN and NaCN)	0
Cyclohexane	36.88	4.53	117.00	5	ECOTOX	0

Chemical	96-hour LC₅₀ (mg/L)	LC ₅₀ range	N	Reference	UF _{fish}
Decabromodiphenyl oxide	735.62		1	OASIS (LC ₅₀ 30,000x > water solubility)	3
Dibutyl phthalate	1.37	0.85 - 3.9	95 7	ECOTOX	0
Dichlorobenzene:p-	8.67	2.40 - 34	.50 10	ЕСОТОХ	0
Dichloroethane:1,2-	125.60	116.00 - 130	6.00 2	ЕСОТОХ	0
Dichloromethane	315.53	193.00 - 502	2.00 4	ЕСОТОХ	0
Dicyclopentadiene	42.68	12.00 - 103	3.00 4	ЕСОТОХ	0
Diethanolamine ¹	1081.60	100.00 - 47	10.00 5	ЕСОТОХ	0
Dimethylformamide:n,n-	10503.05	10400.00 - 10	600.00 3	ЕСОТОХ	0
Dioxane:1,4-	10314.07	9850.00 - 108	800.00 2	ЕСОТОХ	0
Di-t-butyl-4-methylphenol:2,6-	0.25		1	ASTER	2
Ethyl acrylate	2.50		1	ECOTOX	0
Ethylbenzene	21.80	9.09 - 48.	.51 4	ЕСОТОХ	0
Ethylene	100.97		1	ECOSAR	2
Ethylene glycol	45633.42	8050.00 - 72	860.00 7	ЕСОТОХ	0
Ethylene oxide	84.00		1	ECOTOX	0
Fluorine				No information, default value (HV _{AAF} =2.5)	4
Formaldehyde	24.10		1	ECOTOX	0
Formic acid	7004.91		1	ECOSAR	2
HCFC-141b	149.40		1	TOPKAT (HCFC-142b)	3
HCFC-142b	149.40		1	ТОРКАТ	2
HCFC-22	708.37		1	ECOSAR	2
Hexane:n-	2.50		1	ECOTOX	0
Hydrochloric acid	11.53		1	IUCLID (bluegill sunfish, pH 3.25, converted to HCI equivalent concentration)	2
Hydrogen cyanide	0.14	0.12 - 0.1	6 6	ECOTOX	0
Hydrogen fluoride	245.99	180.00 - 31	5.00 4	ECOTOX (expressed as fluoride)	0

Chemical	96-hour LC₅₀ (mg/L)	LC ₅₀ r	ange	N	Reference	UF _{fish}
Hydrogen sulphide	0.04	0.007 -	0.78	27	ЕСОТОХ	0
Hydroquinone ¹	0.04			1	TOPKAT (experimental database)	0
Isoprene	78.80	74.83 -	86.51	8	ECOTOX	0
Isopropyl alcohol	9246.17	6550.00 -	11100.00	4	ECOTOX	0
lsopropylidenediphenol:p,p'-	4.65	4.60 -	4.70	2	ECOTOX	0
Lithium carbonate					No information, default value (HV_{AAF} =2.5)	4
Maleic anhydride	768.00			1	ТОРКАТ	2
Methanol	28793.75	28200.00 -	29400.00	2	ECOTOX	0
Methyl ethyl ketone	3220.00			1	ECOTOX	0
Methyl isobutyl ketone	527.09	505.00 -	540.00	3	ECOTOX	0
Methyl methacrylate	269.29	130.00 -	460.00	12	ECOTOX	0
Methyl tert-butyl ether	672.00			1	ECOTOX	0
Methyl-2-pyrrolidone:N-	1072.00			1	IUCLID	0
Methylenebis (phenylisocyanate)	1.60			1	ТОРКАТ	2
Naphthalene	5.10	1.99 -	7.90	5	ECOTOX	0
Nitrate ion ³	6000.00			1	IUCLID (NaNO ₃ , rainbow trout)	2
Nitric acid	6.30			1	HSDB (rainbow trout, pH 4, converted to HNO_3 equivalent concentration)	2
Nitrilotriacetic acid ¹	82787.46			1	ASTER (LC ₅₀ 1.4x > water solubility)	3
Nonylphenol	0.16	0.128 -	0.270	5	ECOTOX	0
Phenol ¹	31.29	23.00 -	67.50	20	ECOTOX	0
Phosphorus ⁴	0.06	0.02 -	0.56	6	ECOTOX	0
Phthalic anhydride	22.50			1	ТОРКАТ	2
Polymeric diphenylmethane diisocyanate	1.60			1	TOPKAT (CAS RN 101-68-8)	3
Propylene	178.00			1	ТОРКАТ	2
Sodium fluoride	245.99	180.00	315.00	4	ECOTOX (expressed as fluoride)	0

Chemical	96-hour LC₅₀ (mg/L)	LC₅₀ range	N	Reference	UF _{fish}
		-			
Sodium nitrite	5.16	2.30 - 20.00	3	ECOTOX	0
Styrene	21.64	4.00 - 59.30	6	ECOTOX	0
Sulphur hexafluoride	245.99	180.00 - 315.00	4	ECOTOX (expressed as fluoride)	0
Sulphuric acid	42.00		1	IUCLID (mosquito fish)	2
Tetrachloroethylene	19.11	13.40 - 23.80	5	ECOTOX	0
Thiourea	> 600		1	IUCLID	0
Toluene	35.62	12.60 - 77.40	21	ECOTOX	0
Toluene-2,4-diisocyanate	164.50		1	ECOTOX	0
Toluenediisocyanate 5	164.50		1	ECOTOX (CAS RN 584-84-9)	2
Trichloroethylene	48.20	40.70 - 66.80	4	ECOTOX	0
Triethylamine	43.70		1	IUCLID	0
Trimethylbenzene:1,2,4-	7.72		1	ECOTOX	0
Vinyl acetate	25.53	14.00 - 44.00	11	ECOTOX	0
Vinyl chloride	3300.00		1	ТОРКАТ	2
Xylene ⁵	25.64	13.40 - 42.00	4	ECOTOX	0

¹ and its salts

² mixed isomers and their salts

³ in solution at pH \ge 6.0

⁴ yellow or white

⁵ mixed isomers

Daphnia	magna 48-hour	LC/EC ₅₀

	48-hour				
Chemical	EC/LC ₅₀ (mg/L)	EC/LC ₅₀ range	N	Reference(s)	UFAAD
Acetaldehyde	11.67	4.7 - 48.25	3	ЕСОТОХ	0
Acrolein	0.06	0.03 - 0.093	5	ЕСОТОХ	0
Acrylamide	160.00		1	ECOTOX	0
Acrylic acid ¹	32.70		1	ТОРКАТ	2
Acrylonitrile	9.12	7.38 - 10.95	5	ECOTOX	0
Ammonia	4.18		1	ECOTOX	0
Anthracene	0.22	0.036 - 3.03	3	ECOTOX (EC ₅₀ 5x > water solubility)	2
Benzene	93.90	9.23 - 682	17	ECOTOX	0
Benzoyl peroxide	2.43		1	ECOSAR	2
Bis(2-ethylhexyl) adipate	0.66		1	ECOTOX	0
Bis(2-ethylhexyl) phthalate	4.69	2 - 11	2	ECOTOX (EC/LC ₅₀ 16x > water solubility)	2
Bromine	1.00		1	ECOTOX	0
Butadiene:1,3-	40.35		1	ECOSAR	2
Butoxyethanol:2-	22.40		1	ТОРКАТ	2
Butyl acrylate	9.81		1	ECOSAR	2
Butyl alcohol:i-	1230.54	1003 - 1300	4	ECOTOX	0
Butyl alcohol:n-	1983.00		1	ECOTOX	0
Butyl alcohol:sec-	4227.00		1	ECOTOX	0
Butyl alcohol:tert-	5504.00		1	ECOTOX	0
Butyl benzyl phthalate	2.85	0.62 - 92	12	ECOTOX	0
Calcium fluoride	249.59	98 - 385	8	ЕСОТОХ	0
Carbon disulphide	2.10		1	ECOTOX	0
Carbon tetrachloride	35.00		1	ЕСОТОХ	0
Chlorine	0.09	0.017 - 0.15	6	ECOTOX IUCLID	0
Chlorine dioxide				No information, default value (HV _{AAD} =2.5)	4

	48-hour				
Chemical	EC/LC ₅₀ (mg/L)	EC/LC ₅₀ range	N	Reference(s)	
Chlorobenzene	11.97	0.585 - 86	13	ЕСОТОХ	0
Chloroform	98.64	51.571 - 758	8	ECOTOX	0
Chloromethane	57.00		1	ТОРКАТ	2
Cresol ²	5.50		1	ECOSAR	2
Cumene	10.72	0.601 - 34.3	6	ЕСОТОХ	0
Cumene hydroperoxide	5.14		1	ECOSAR	2
Cyanides	2.19	2 - 2.4	2	ECOTOX (KCN)	0
Cyclohexane	3.79		1	ECOTOX	0
Decabromodiphenyl oxide	0.00		1	ECOSAR	2
Dibutyl phthalate	3.33	2.99 - 3.7	2	ЕСОТОХ	0
Dichlorobenzene:p-	8.21	2.2 - 13.5	5	ECOTOX	0
Dichloroethane:1,2-	306.42	160 - 1430	7	ECOTOX	0
Dichloromethane	500.63	135.808 - 1682	4	ECOTOX	0
Dicyclopentadiene	10.50		1	ECOTOX	0
Diethanolamine ¹	115.27	55 306	11	ECOTOX	0
Dimethylformamide:n,n-	6888.49	14.1 - 15700	12	ЕСОТОХ	0
Dioxane:1,4-	9040.90		1	ECOSAR	2
Di-t-butyl-4-methylphenol:2,6-	0.08		1	ТОРКАТ	2
Ethyl acrylate	24.30		1	ECOSAR	2
Ethylbenzene	8.41	2.123 - 75	6	ЕСОТОХ	0
Ethylene	31.70		1	ТОРКАТ	2
Ethylene glycol	47347.96	41000 - 57600	8	ECOTOX	0
Ethylene oxide	201.82	137 - 300	3	ECOTOX	0
Fluorine				No information, default value (HV _{AAD} =2.5)	4
Formaldehyde	20.58	14.6 - 29	2	ECOTOX	0

	48-hour				
Chemical	EC/LC ₅₀ (mg/L)	EC/LC ₅₀ range	Ν	Reference(s)	
Formic acid	151.20		1	ECOTOX	0
HCFC-141b	1.60		1	TOPKAT (HCFC-142b)	3
HCFC-142b	1.60		1	ТОРКАТ	2
HCFC-22	37.60		1	ТОРКАТ	2
Hexane:n-	3.88		1	ECOTOX	0
Hydrochloric acid	56.00		1	IUCLID (72-hour LC ₈₀)	2
Hydrogen cyanide	2.19	2 - 2.4	2	ECOTOX (KCN)	0
Hydrogen fluoride	249.59	98 - 385	8	ECOTOX	0
Hydrogen sulphide				Expert judgement (HV_{AAD} =5); European chemical Substances Information System datasheet indicates H_2S is very toxic to aquatic organisms.	2
Hydroquinone ¹	0.19	0.13 - 0.29	2	ECOTOX	0
Isoprene	3.20		1	ТОРКАТ	2
Isopropyl alcohol	1754.09		1	ECOSAR	2
Isopropylidenediphenol:p,p'-	10.20		1	ECOTOX	0
Lithium carbonate				No information, default value (HV _{AAD} =2.5)	4
Maleic anhydride	196.90		1	ТОРКАТ	2
Methanol	8976.66	3289 - 24500	2	ECOTOX	0
Methyl ethyl ketone	5091.00		1	ECOTOX	0
Methyl isobutyl ketone	1841.00		1	TOPKAT (experimental database)	0
Methyl methacrylate	69.00		1	IUCLID	0
Methyl tert-butyl ether	622.00	542 - 681	3	IUCLID	0
Methyl-2-pyrrolidone:N-	4897.00		1	IUCLID	0
Methylenebis (phenylisocyanate)	0.03		1	ТОРКАТ	2
Naphthalene	5.37	1.6 - 22.6	12	ECOTOX	0
Nitrate ion ³	490.00		1	ECOTOX (KNO ₃)	0
Nitric acid	3581.00		1	ECOTOX (nitric acid, sodium salt)	0
Nitrilotriacetic acid ¹	39.50		1	TOPKAT (experimental database)	0

Chemical	48-hour EC/LC₅₀ (mg/L)	EC/LC ₅₀ range	N	Reference(s)	
Nonylphenol	0.13	0.0848 - 0.19	2	ECOTOX (mixed isomers, CAS# 25154-52-3)	0
Phenol ¹	18.51	4.2 - 100	29	ECOTOX	0
Phosphorus (yellow or white)	0.03		1	ECOTOX	0
Phthalic anhydride	61.40		1	ТОРКАТ	2
Polymeric diphenylmethane diisocyanate	0.03		1	ТОРКАТ	2
Propylene	8.10		1	ТОРКАТ	2
Sodium fluoride	249.59	98 - 385	8	ECOTOX	0
Sodium nitrite	8.97	8.3 - 9.7	2	ECOTOX (96-hour LC50)	2
Styrene	18.55	4.7 - 59	3	ЕСОТОХ	0
Sulphur hexafluoride	249.59	98 - 385	8	ЕСОТОХ	0
Sulphuric acid	29.00		1	IUCLID (24-hour EC ₅₀)	2
Tetrachloroethylene	10.11	7.5 - 18	4	ЕСОТОХ	0
Thiourea	9.00		1	ECOTOX	0
Toluene	25.14	6 - 310	8	ECOTOX	0
Toluene-2,4-diisocyanate	1.50		1	ТОРКАТ	2
Toluenediisocyanate ⁴	12.50		1	IUCLID	0
Trichloroethylene	40.42	7.752 - 100	8	ЕСОТОХ	0
Triethylamine	200.00		1	IUCLID	0
Trimethylbenzene:1,2,4-	3.61		1	ECOTOX	0
Vinyl acetate	21.20		1	ТОРКАТ	2
Vinyl chloride	2.70		1	ТОРКАТ	2
Xylene ⁴	0.50		1	TOPKAT (experimental database)	0

¹ and its salts

² mixed isomers and their salts

³ in solution at pH ≥ 6.0

⁴ mixed isomers

Reaction Half-life

Chemical	Reaction half-life (days) ¹				
Acetaldehyde	1.59				
Acrolein	7.54				
Acrylamide	21.46				
Acrylic acid ²	3.75				
Acrylonitrile	6.29				
Ammonia	24.33				
Anthracene	11.13				
Benzene	12.96				
Benzoyl peroxide	42.50				
Biphenyl	2.91				
Bis(2-ethylhexyl) adipate	21.83				
Bis(2-ethylhexyl) phthalate	20.04				
Bromine	26.17				
Butadiene:1,3-	0.21				
Butoxyethanol:2-	3.70				
Butyl acrylate	3.70				
Butyl alcohol:i-	2.97				
Butyl alcohol:n-	2.36				
Butyl alcohol:sec-	2.03				
Butyl alcohol:tert-	16.13				
Butyl benzyl phthalate	14.42				
Calcium fluoride	23.63				
Carbon disulphide	3912.50				
Carbon tetrachloride	5208.33				
Chlorine	45.42				
Chlorine dioxide	1262.50				
Chlorobenzene	20.38				
Chloroform	135.83				
Chloromethane	339.58				
Cresol ³	0.86				

Chemical	Reaction half-life (days) ¹
Cumene	2.64
Cumene hydroperoxide	24.63
Cyanides	25.42
Cyclohexane	2.16
Decabromodiphenyl oxide	217.50
Dibutyl phthalate	2.85
Dichlorobenzene:p-	48.33
Dichloroethane:1,2-	61.67
Dichloromethane	99.17
Dicyclopentadiene	0.03
Diethanolamine ²	12.50
Dimethylformamide:n,n-	8.92
Dioxane:1,4-	18.50
Di-t-butyl-4-methylphenol:2,6-	52.92
Ethyl acrylate	0.76
Ethylbenzene	2.53
Ethylene	1.52
Ethylene glycol	12.29
Ethylene oxide	32.17
Fluorine	43.75
Formaldehyde	7.46
Formic acid	13.50
HCFC-141b	2550.00
HCFC-142b	4750.00
HCFC-22	2983.33
Hexane:n-	2.77
Hydrochloric acid	146.25
Hydrogen cyanide	172.92
Hydrogen fluoride	508.33
Hydrogen sulphide	1337.50
Hydroquinone ²	21.67

Chemical	Reaction half-life (days) ¹				
Isoprene	0.14				
Isopropyl alcohol	5.17				
lsopropylidenediphenol:p,p'-	54.17				
Lithium carbonate	21.67				
Maleic anhydride	6.71				
Methanol	14.58				
Methyl ethyl ketone	14.58				
Methyl isobutyl ketone	1.35				
Methyl methacrylate	0.82				
Methyl tert-butyl ether	5.42				
Methyl-2-pyrrolidone:N-	20.00				
Methylenebis (phenylisocyanate)	16.71				
Naphthalene	34.17				
Nitrate ion ⁴	23.38				
Nitric acid	25.04				
Nitrilotriacetic acid ²	12.50				
Nonylphenol	19.71				
Phenol ²	11.96				
Phosphorus ⁵	259.58				
Phthalic anhydride	21.67				
Polymeric diphenylmethane diisocyanate	16.71				
Propylene	0.42				
Sodium fluoride	21.67				
Sodium nitrite	21.71				
Styrene	0.31				
Sulphur hexafluoride	5958.33				
Sulphuric acid	21.67				
Tetrachloroethylene	91.67				
Thiourea	21.67				
Toluene	2.97				
Toluene-2,4-diisocyanate	53.75				

Chemical	Reaction half-life (days) ¹
Toluenediisocyanate ⁶	3.39
Trichloroethylene	6.63
Triethylamine	2.00
Trimethylbenzene:1,2,4-	0.64
Vinyl acetate	0.69
Vinyl chloride	2.17
Xylene ⁶	1.69

¹Estimated by Level III fugacity modelling available through EPI Suite v3.12. Note: all reaction half-lives were assigned an uncertainty factor of 2 since they were estimated by the fugacity model.

² and its salts

³ mixed isomers and their salts

⁴ in solution at pH \ge 6.0

⁵ yellow or white

⁶ mixed isomers

Log BAF/BCF

Chemical	Log BAF/BCF	Log BCF Reference		Log Kow used	Log Kow reference
Acetaldehyde	-1.10	calculated	2	-0.34	PhysProp
Acrolein	2.54	log BCF (bluegill sunfish), Gobas 2000	0		
Acrylamide	-1.40	calculated	2	-0.67	PhysProp
Acrylic acid ¹	-0.47	calculated	2	0.35	PhysProp
Acrylonitrile	1.68	log BCF (bluegill sunfish), Gobas 2000	0		
Ammonia	-2.04	calculated	2	-1.38	PhysProp
Anthracene	2.81	log BCF (fathead minnow), Gobas 2000	0		
Benzene	3.15	log BCF (striped bass), Gobas 2000	0		
Benzoyl peroxide	2.36	calculated	2	3.46	PhysProp
Biphenyl	2.83	calculated	2	3.98	PhysProp
Bis(2-ethylhexyl) adipate	1.43	log BCF (bluegill sunfish), Gobas 2000	0		
Bis(2-ethylhexyl) phthalate	2.83	log BAF (pacific staghorn sculpin), Gobas 2000	0		
Bromine	0.15	calculated (using QSAR-derived Kow) Inorganic so unlikely to bioaccumulate.	2	1.03	KOWWIN
Butadiene:1,3-	1.02	calculated	2	1.99	PhysProp
Butoxyethanol:2-	-0.03	calculated	2	0.83	PhysProp
Butyl acrylate	1.36	calculated	2	2.36	PhysProp
Butyl alcohol:i-	-0.09	calculated	2	0.76	PhysProp
Butyl alcohol:n-	0.01	calculated	2	0.88	PhysProp
Butyl alcohol:sec-	-0.23	calculated	2	0.61	PhysProp
Butyl alcohol:tert-	-0.47	calculated	2	0.35	PhysProp
Butyl benzyl phthalate	4.06	log BCF (striped seaperch), Gobas 2000	0		
Calcium fluoride	-1.31	calculated (using QSAR-derived Kow) Inorganic and ionic so unlikely to bioaccumulate.	2	-0.58	KOWWIN
Carbon disulphide	0.98	calculated	2	1.94	PhysProp
Carbon tetrachloride	1.48	log BCF (bluegill sunfish), Gobas 2000	0		
Chlorine	-0.01	calculated (using QSAR-derived Kow) Inorganic gas so unlikely to bioaccumulate.	2	0.85	KOWWIN
Chlorine dioxide	-3.72	calculated (using QSAR-derived Kow) Inorganic gas so unlikely to bioaccumulate.	2	-3.22	KOWWIN
Chlorobenzene	2.88	log BAF (blue catfish), Gobas 2000	0		

Chemical	Log BAF/BCF	Log BCF Reference		Log Kow used	Log Kow reference
Chloroform	0.78	log BCF (bluegill sunfish), Gobas 2000	0		
Chloromethane	0.04	calculated	2	0.91	PhysProp
Cresol ²	0.99	calculated	2	1.95	PhysProp
Cumene	2.54	calculated	2	3.66	PhysProp
Cumene hydroperoxide	1.18	calculated (using QSAR-derived Kow)	3	2.16	KOWWIN
Cyanide ion	-1.01	calculated	2	-0.25	PhysProp
Cyclohexane	2.34	calculated	2	3.44	PhysProp
Decabromodiphenyl oxide	-1.50	calculated (using QSAR-derived Kow)	3	12.11	KOWWIN
Dibutyl phthalate	3.13	log BAF (striped Seaperch), Gobas 2000	0		
Dichlorobenzene:p-	2.45	log BAF (spotted sea trout), Gobas 2000	0		
Dichloroethane:1,2-	0.3	log BCF (bluegill sunfish), Gobas 2000	0		
Dichloromethane	0.35	calculated	2	1.25	PhysProp
Dicyclopentadiene	1.72	log BCF (bluegill sunfish), Gobas 2000	0		
Diethanolamine ¹	-2.09	calculated	2	-1.43	PhysProp
Dimethylformamide:n,n-	-1.71	calculated	2	-1.01	PhysProp
Dioxane:1,4-	-1.03	calculated	2	-0.27	PhysProp
Di-t-butyl-4-methylphenol:2,6-	3.78	calculated	2	5.1	PhysProp
Ethyl acrylate	0.42	calculated	2	1.32	PhysProp
Ethylbenzene	2.08	calculated	2	3.15	PhysProp
Ethylene	0.24	calculated	2	1.13	PhysProp
Ethylene glycol	-2.02	calculated	2	-1.36	PhysProp
Ethylene oxide	-1.06	calculated	2	-0.3	PhysProp
Fluorine	-0.59	calculated (using QSAR-derived Kow) Inorganic gas so unlikely to bioaccumulate.	2	0.22	KOWWIN
Formaldehyde	-0.47	calculated	2	0.35	PhysProp
Formic acid	-1.28	calculated	2	-0.54	PhysProp
HCFC-141b	1.31	calculated	2	2.3	HSDB
HCFC-142b	1.08	calculated (using QSAR-derived Kow) Gas at room temperature so unlikely to bioaccumulate.	2	2.05	KOWWIN
HCFC-22	0.20	calculated	2	1.08	PhysProp

Chemical	Log BAF/BCF	Log BCF Reference		Log Kow used	Log Kow reference
Hexane:n-	2.76	calculated	2	3.9	PhysProp
Hydrochloric acid	-0.29	calculated (using QSAR-derived Kow) Inorganic and ionic so unlikely to bioaccumulate.	2	0.54	KOWWIN
Hydrogen cyanide	-1.01	calculated	2	-0.25	PhysProp
Hydrogen fluoride	-0.58	calculated (using QSAR-derived Kow) Inorganic gas so unlikely to bioaccumulate.	2	0.23	KOWWIN
Hydrogen sulphide	-2.04	calculated	2	-1.38	PhysProp
Hydroquinone ¹	-0.25	calculated	2	0.59	PhysProp
Isoprene	1.42	calculated	2	2.42	PhysProp
Isopropyl alcohol	-0.74	calculated	2	0.05	PhysProp
Isopropylidenediphenol:p,p'-	2.23	calculated	2	3.32	PhysProp
Lithium carbonate	-1.20	calculated (using QSAR-derived Kow) Ionic so unlikely to bioaccumulate.	2	-0.46	KOWWIN
Maleic anhydride	0.69	calculated (using QSAR-derived Kow)	3	1.62	KOWWIN
Methanol	-1.49	calculated	2	-0.77	PhysProp
Methyl ethyl ketone	-0.52	calculated	2	0.29	PhysProp
Methyl isobutyl ketone	0.41	calculated	2	1.31	PhysProp
Methyl methacrylate	0.47	calculated	2	1.38	PhysProp
Methyl tert-butyl ether	0.18	log BCF (common carp), Gobas 2000	0		
Methyl-2-pyrrolidone:N-	-1.13	calculated	2	-0.38	PhysProp
Methylenebis (phenylisocyanate)	3.87	calculated (using QSAR-derived Kow)	3	5.22	KOWWIN
Naphthalene	3.06	log BCF (white mullet), Gobas 2000	0		
Nitrate ion ³	-0.59	calculated (using QSAR-derived Kow) Inorganic and ionic so unlikely to bioaccumulate.	2	0.21	KOWWIN
Nitric acid	-0.59	calculated (using QSAR-derived Kow) Inorganic and ionic so unlikely to bioaccumulate.	2	0.21	KOWWIN
Nitrilotriacetic acid ¹	-4.25	calculated (using QSAR-derived Kow) Inorganic and ionic so unlikely to bioaccumulate.	2	-3.81	KOWWIN
Nonylphenol	2.43	log BCF (fathead minnow), Gobas 2000	0		
Phenol ¹	3.67	log BCF (fathead minnow), Gobas 2000	0		
Phosphorus ⁴	-1.03	calculated (using QSAR-derived Kow) Inorganic so unlikely to bioaccumulate.	2	-0.27	KOWWIN

Chemical	Log BAF/BCF	Log BCF Reference		Log Kow used	Log Kow reference
Phthalic anhydride	0.67	calculated	2	1.6	PhysProp
Polymeric diphenylmethane diisocyanate		Expert judgement (HV _{BCF} =1). Not likely to bioaccumulate as substance is a polymer.	2		
Propylene	0.82	calculated	2	1.77	PhysProp
Sodium fluoride	-0.58	calculated (using QSAR-derived Kow) Inorganic and ionic so unlikely to bioaccumulate.	2	0.23	KOWWIN
Sodium nitrite	-0.73	calculated (using QSAR-derived Kow) Inorganic and ionic so unlikely to bioaccumulate.	2	0.06	KOWWIN
Styrene	1.90	calculated	2	2.95	PhysProp
Sulphur hexafluoride	0.74	calculated	2	1.68	PhysProp
Sulphuric acid	-2.79	calculated (using QSAR-derived Kow) Inorganic and ionic so unlikely to bioaccumulate.	2	-2.2	KOWWIN
Tetrachloroethylene	1.79	log BCF (fathead minnow), Gobas 2000	0		
Thiourea	-1.77	calculated	2	-1.08	PhysProp
Toluene	1.96	log BCF (fathead minnow), Gobas 2000	0		
Toluene-2,4-diisocyanate	2.61	calculated (using QSAR-derived Kow)	3	3.74	KOWWIN
Toluenediisocyanate ⁵	2.61	calculated (using QSAR-derived Kow)	3	3.74	KOWWIN
Trichloroethylene	1.23	log BCF (bluegill sunfish), Gobas 2000	0		
Triethylamine	0.53	calculated	2	1.45	PhysProp
Trimethylbenzene:1,2,4-	2.51	calculated	2	3.63	PhysProp
Vinyl acetate	-0.12	calculated	2	0.73	PhysProp
Vinyl chloride	0.69	calculated using QSAR-derived Kow	3	1.62	KOWWIN
Xylene ⁵	2.05	calculated	2	3.12	PhysProp

¹ and its salts

² mixed isomers and their salts

³ in solution at pH ≥ 6.0

⁴ yellow or white

⁵ mixed isomers