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Abstract

A mathematical model representing steady-state regional groundwater flow in a three-
dimensional, non-homogeneous, anisotropic groundwater basin is developed. Two independent
methods of solution are presented: the analytical separation of variables technique is used to solve the
two-dimensional, three-layer case; the numerical finite-difference approach is used to solve the general
case. The numerical method is more versatile, mathematically simpler, and well-suited to computer-
oriented methods of data storage. Computer programs have been written for both methods; the output
consists of plotted potential nets from which flow patterns can be constructed.

The potential patterns for over 70 hypothetical cases are presented to illustrate the qualitative
and quantitative control exerted on the flow system by:

(a) the “depth/lateral extent” ratio of the ground-water basin.
(b) the configuration of the water table.
(c) the geologic configuration and resultant permeability contrasts.

The concept of “natural basin yield” is introduced.

The mathematical model approach using numerical solutions and the digital computer can be
used both as a reconnaissance tool preceding field investigation and as an interpretive tool following
the field program. The results of mathematical model analyses on two actual groundwater basins in the
Canadian prairies are presented.



CHAPTER 1

Introduction

PREVIOUS WORK; MOTIVATION AND OBJECTIVES OF PRESENT STUDY

In 1940, M. King Hubbert published his classic paper “The Theory of Ground-Water Motion”. In
this paper the physical laws governing the steady-state flow of groundwater were presented for the first
time in their exact mathematical framework. At the same time a parallel course, in which formal
mathematics was used to describe and predict fransient hydrological phenomena, was being followed
by many other hydrologists and applied mathematicians. The fundamental difference between the two
approaches, apart from the time factor, was one of scale; while Hubbert concerned himself mainly with
the large-scale regional effects of his theory, workers in the transient field used the individual well as
their unit of study. The immediate applicability of the latter studies in the determination of local
aquifer conditions resulted in a preoccupation with the well and well field throughout the period
1935-1960 and led to the mathematical solution of almost all the meaningful problems in well
hydraulics.

In the 1960’s, attention has again turned to the regional picture and the groundwater basin has
been re-established as an acceptable unit of hydrological study. The first significant additions to
Hubbert’s original work were published in 1962 and 1963 by J. Toth. The most important
contribution of these two papers is the basic concept that exact groundwater flow patterns can be
obtained mathematically as solutions to formal boundary value problems. This method offers a
theoretical approach to complement the usual field techniques.

Toth’s papers also opened the investigation of the factors affecting regional groundwater flow
systems. Toth considered the case of a two-dimensional section through a homogeneous basin and
developed the flow patterns resulting from two separate water-table configurations. While the method
used by Toth is reasonably general, the actual formulae and quantitative results are restricted to the
specific cases considered.

The literature of the soil physics and land drainage fields provides another source of background
material. The works of Luthin and Day (1955), Luthin (1957), Kirkham (1958), and Wesseling (1964)
provide a source of solutions to flow problems similar to those considered in this study. As with Toth’s
work, the solutions are limited to homogeneous media and apply only to the specific cases treated.

The desire to extend the available solutions to more general cases provided the primary
motivation for the present study. In addition, there is the obvious need to continue the investigation of
the factors controlling groundwater flow systems.

The two objectives of this study can therefore be stated:

1. To develop a suitable mathematical model such that theoretical solutions can be obtained, in the
form of flow patterns for a general three-dimensional non-homogeneous groundwater basin with
any water-table configuration.

2. To investigate, using the mathematical model, the qualitative and quantitative effects of the
configuration of the water table and the underlying geological configuration on the groundwater
flow system.

The practical significance of such a study is confirmed by a statement from the initial News
Bulletin of the Canadian National Committee of the International Hydrologic Decade: ‘“‘The problem
of finding water for man’s needs is not a new one. What is new is the magnitude and extent of the
accelerating demand. A question urgently requiring an answeér is therefore: Is sufficient known about



the processes associated with fresh water resources of the inhabited or inhabitable parts of the world to
determine if these resources are adequate to meet the growing demand?

Apart from the obvious application to basin-wide development of groundwater resources, an
understanding of the regional groundwater flow regime is prerequisite to the undertaking of many
engineering projects, among them underground nuclear waste disposal and the impounding of a
reservoir behind a large dam.

The development of a suitable model led the author down two separate mathematical paths:
first, toward the formal analytical methods used by Téth; and second, toward a more powerful method
using numerical solutions.

Numerical methods were introduced to the groundwater hydrology literature by Stallman (1956)
for the analysis of regional water levels. Fayers and Sheldon (1962) and Tyson and Weber (1964) were
the first to employ numerical solutions in connection with mathematical models of groundwater basins
and aquifers. In the land drainage field, Luthin and Gaskell (1950) and Kirkham and Gaskell (1951)
used numerical solutions to assist in design. Shaw and Southwell (1941) have described a numerical
procedure for deriving flow nets for seepage through earth dams. The general use of mathematical
models using a digital computer has been recommended by many authors, notably Walton (1962).

A number of texts proved so valuable in the development of this work, and the fundamental
concepts they contain are so intertwined with the new aspects of this study that further individual
reference to them throughout the text is practically impossible. For the development of the
mathematics involved in the analytical solutions, reference was made to Wylie (1960), Sneddon (1957),
Sokolnikoff and Redheffer (1958), Byerly (1959), Kellogg (1953), Carslaw and Jaeger (1959), and
Moon and Spencer (1961). For the special application of such solutions to hydrological settings,
Muskat (1946), Luthin (1957), Scheidegger (1960), and Polubarinova Kochina (1962) proved valuable.

Of the many available texts on numerical analysis, Forsythe and Wasow (1960), and McCracken
and Dorn (1964) proved most useful. Others of note are Ralston and Wilf (1960), Salvadori and Baron
(1961), Todd, J. (1962), Thom and Appelt (1961), and Panov (1963). Todd, D.K. (1959), and Harr
(1962) were used as general references for groundwater hydrology.

An abridged version of this study is published in a series of three papers in Water Resources
Research (Freeze and Witherspoon, 1966, Freeze and Witherspoon, 1967, Freeze and Witherspoon,
1968). The papers emphasize the mathematical development of the method and present the essential
qualitative and quantitative interpretations.

DEFINITIONS

Throughout the literature of groundwater hydrology, the terminology tends to be inconsistent. It
is necessary therefore, to define the author’s concept of some of the terms which appear in this study.

Recharge refers to that water which percolates down through the unsaturated zone to the
water-table and actually enters the dynamic groundwater flow system. This definition excludes that
portion of the moisture surplus which enters the ground and increases the soil moisture content, but
does not enter the flow pattern itself. The term is not to be confused with the actual areal precipitation
which may, in some cases or some areas of the basin, lead to groundwater recharge and in other cases
or in other areas may not.

Discharge is that water which is discharged from the dynamic groundwater flow system by means
of stream baseflow, springs, seepage areas, and evapotranspiration.

A discharge area is an area where the direction of groundwater flow is toward the water table.
L]

A recharge area is an area where the direction of groundwater flow is away from or parallel to the
water table.

A groundwater basin is a three-dimensional, closed system which contains the entire flow paths
followed by all the water recharging the basin. The flow pattern within a given basin may be simple



involving only one recharge area and one discharge area, or complex involving many.

These definitions do not deny the existence of groundwater “‘recharge” to a “discharge area”.
Water which percolates down to the saturated zone in a discharge area will encounter upward rising
groundwater, and the “dynamic groundwater flow pattern” that such water will enter is one of upward
motion. The result of the recharge must therefore be a rise in the water table, and the only possible
route which such water can subsequently follow is the return to the surface via one of the agents of
discharge, when conditions permit. In a recharge area, on the other hand, a certain amount of recharge
is required just to maintain the water table. In periods of no recharge, the water table will fall. Any
water which does enter the dynamic flow system in a recharge area will be transmitted away from its
point of entry along some flow path within the groundwater basin toward an area of discharge.

The use of the term “water table” can lead to confusion. In this report the water table is
considered to be an imaginary surface beneath the surface of the ground at which the pressure is
atmospheric. The water table does not coincide with the surface separating the zone of saturation from
the unsaturated zone. Such a surface, sometimes known as the air-water interface, will occur at the top
of the zone of capillary saturation, somewhat above the water table. As has been shown by Hubbert
(1940), the “conception of the water table as a surface of discontinuity between a zone of saturation
and a capillary fringe having fundamentally different physical characteristics is a misleading
fiction...... The equipotential surfaces cross this isobaric surface without interruption and extend to
the air-water interface. . . ... The fluid flow obeys precisely the same laws in the region where p <1
atmosphere as in that characterized by p > 1 atmosphere”. To be entirely rigorous, therefore, one
should consider the air-water interface as the upper boundary of the flow system. There are advantages,
however, in the construction of the mathematical model, to considering the water table, i.e., the
surface where p = 1 atmosphere, as the upper boundary of flow, and in this study, as in Toth (1962,
1963b,c), this slight inaccuracy has been allowed. This point is discussed further under the heading
“Assumptions of Study”. '

In the construction of a regional groundwater flow net, should one consider the upper boundary
of the system (in our case, the water table) as a flow line or as an equipotential? It is neither.
Considering a groundwater basin as a three-dimensional closed system, if the water table were a flow
line, all the percolating water attempting to enter the flow system would be transmitted down the flow
line along the water table. This single flow line would thus carry increasing quantities of water from the
groundwater divide to the sink and no alternative routes would be possible, as a single flow line cannot
split. The assumption of the water table as a flow line would thus preclude the existence of any
three-dimensional flow system.

The suggestion that the water table is an equipotential line is equally invalid, for in this case,
groundwater flow would have to be perpendicularly toward or perpendicularly away from the water
table. As we know that both situations exist within a single groundwater basin and as it is obvious that
this cannot be true if the water table has a single potential value, this concept is also incorrect.

On review it can be seen that the definition of the water table has an equipressure (isobaric) line
does not infer it to be an equipotential line. This will be clarified after the introduction of the concept
of hydraulic potential.

The misconception that the water table is a flow line has probably arisen from the considerable
body of work on seepage through earth dams. Here, the assumption that there will be no “‘recharge”
from above through the dam to the “water table” within the dam is a realistic assumption and such a
“water table” is indeed a flow line. The water table on a regional scale, however, is much more
analogous to the seepage face which may occur at the lower end of an earth dam. The seepage face is in
fact a situation identical to a regional water table in a discharge area.

To complete this argument, suffice it to say that, in general, one would expect both flow lines
and equipotentials to meet the water table obliquely. The water table becomes a flow line only in
regions where there is no groundwater recharge from above and lateral flow exists, and it becomes an
equipotential only when the groundwater motion is perpendicular to it, as is often the case in the
region around a groundwater divide or where wide flat valley sinks exist.



BASIS OF MATHEMATICAL MODEL

Hydraulic Potential

The existence of a three-dimensional groundwater flow system implies the existence
of a corresponding three-dimensional potential field. A field, by definition, is a region, at every
point of which there corresponds a value of a physical quantity. The field in this case is the
groundwater basin. The physical quantity, ‘‘which must be capable of measurement at every point in
the field and whose properties must be such that the flow always occurs from regions in which the
quantity has higher values to those in which it has lower, regardless of the direction in space”
(Hubbert, 1940), is the hydraulic potential. Hubbert (1940) has shown that the hydrautic potential can
be obtained as a generalization of the Bernoulli theorem relating the elevation, pressure and velocity
along a given flow line of a fluid in frictionless flow. In groundwater flow, the velocity term is
negligible and the hydraulic potential is the sum of the gravitational and pressure potentials. It can be
written:

_ p dp
(1.1) $=gz +fp0 >
For liquids, this reduces to:
(12) P = gz + E_;_EQ.

where:

& =hydraulic potential at any point P in the field.

g =acceleration due to gravity.

z =elevation of P above a standard horizontal datum.
p = pressure at the point P.

P, = atmospheric pressure

@ =density of water.

If a piezometer is placed at point P, the liquid will rise to a hexght h above the standard datum
Applying the identity:

(1.3) p=pgth-z) +p,
to equation (1.2):
[pgth ~2) +p ]~

14) =g+ 5 =gh

The magnitude of the fluid potential is thus indicated by the height h of the piezometer and is
numerically equal to h multiplied by the acceleration due to gravity.

Considering (1.1), we see that the potential of a fluid at point P is the work required to transmit
a unit of mass of the fluid from zero elevation and a pressure of 1 atmosphere to point P at elevation z
and pressure p. The units of hydraulic potential in the dynamical c.g.s. system are ergs/gm; in the
gravitational c.g.s. system, gm/cm/gm. Hubbert (1940) has noted that the hydraulic potential is a force
potential.

The quantity h = 9 is known as the hydraulic head. It is measured in units of centimeters of water
or feet of water above standard datum. As the hydraulic head equals the hydraulic potential divided by
a constant, it too is a potential quantity and will consequently obey all the laws of potential theory.
Since it is measured in units which are simple and which have geometrical significance in regional
groundwater flow, the hydraulic head will be used as the potential function throughout this study. For
this reason, the hydraulic head is denoted from this point on by ¢, a Greek letter commonly used for
quantities having the properties of potential functions. We note that:

(1.5) ¢=h



where:

¢ =hydraulic head at point P, a potential function
h =elevation above standard datum of the liquid level in a piezometer inserted at P.

Returning to our discussion of the previous section, it is now clear, by reference to (1.2), that an
isobaric line is not an equipotential.

Darcy’s Law

Having defined the hydraulic potential and the hydraulic head we can proceed to state
Darcy’s law for the flow of water through a porous medium. For flow in the x-direction of an x,y,z
coordinate system in a homogeneous medium, Darcy’s law states:

b
(16) vx =K o2

where: .

vy = velocity in the x-direction
K = permeability
¢ = hydraulic head

Similar expressions can be written for flow in the other two coordinate directions.

Throughout this study, the viscosity and temperature of groundwater are assumed to remain
constant so that the coefficient of permeability is a function of the medium alone. The permeability
can be measured in velocity units (ft/min,cm/sec) or as the rate of flow through a cross-sectional area
(gpm/ft?).

For non-homogeneous media where the permeability varies continuously with the space
variables, the permeability must be written K(x,y,z). For anisotropic media, thé permeability is no
longer a scalar but becomes a second order symmetric tensor.

For further discussion of Darcy’s law and the permeability tensor, the reader is directed to
Scheidegger (1960, 1963), Liakopoulos (1965) and Fayers and Sheldon (1962).

Equation of Continuity

The law of conservation of matter is expressed by the equation of continuity which, for fluid
flow through a porous media, takes the form (Muskat, 1946):
&(pvy) S5(pv S(pv )
( X + ( y) n ( z) ——f P

(1.7 5X 5y 5z 5t

where:

VxoVyVg = velocities in the three coordinate directions

p = density of water
f = porosity of porous medium
t = time

At any given time, p is assumed to be constant with respect to the space variables and we can
remove it from within the partial derivatives. Transposing it to the right-hand side, we are left with:

ov
Xy

gv_y+ 8vy f &p
8x 5y 8z  p 8t

(1.8)
It will be shown, and indeed it is one of the basic assumptions of this study, that regional

groundwater flow can be represented as a steady-state boundary value problem. For steady flow, there
is no change in conditions with time and the right-hand side of (1.8) becomes zero. We are left with:

ox Sy 6z



Laplace’s Equation and Richards’ Equation

We can now combine the appropriate form of Darcy’s law (1.6) with the equation of continuity
(1.9). For a homogeneous medium we have:

8 89 ) 8o ) 8¢ . 820 520 82¢
(1.10) 2 %y 8 87y . & k8 y_ -89 e L k& _
5x ( 6x) by ( 5)’) bz bz ) 5x2 8y? 5z2
829 | 8%y 8%¢
111 828 L 9% 079

( )5x2 +5Y2 +522

which is Laplace’s equation. In two dimensions, (1.11) becomes:

82¢ 8%¢
1.12) —— 4+ =—= = 0
(1.12) 5x2 522

For a non-homogeneous medium, (1.9) becomes:

N 597, & 897 , 8 58] _
(1.13) " [K(x,y,z) 6x] + 5y [K(x,y,z) 6y] + 52 I:K(x,y,z) 62] =0

or, in two dimensions:

8 5¢ & 8¢
.14) —|K L 2 1 =
a )SX[mnM]+azﬁmw&] 0
In soil science literature, this equation is known as Richards’ equation and it will be referred to by that
name throughout this report.

The subscript notation for partial derivatives will be used interchangeably with the standard
notation used above. With the subscript notation, (1.12) and (1.14) become:

(1.12) ¢xx + 92z = O

(1.14) [K(x2)¢xlx + [K(x,2)9z]; = O

Boundary Conditions

We have defined the partial differential equations which describe the steady-state regional flow
of groundwater: Laplace’s equation for a homogeneous medium, Richards’ equation for the non-
homogeneous case. It is now necessary to define the region in which we wish to solve the appropriate
equation, and to note the boundary conditions which exist along the boundaries of the region. For the
sake of convenience we shall restrict ourselves in this section to a two-dimensional vertical section.

Hubbert (1940) was the first to consider this problem, although he did so only qualitatively.
Figure la shows his “approximate flow pattern in uniformly permeable material between the sources
distributed over the air-water interface and the valley sinks”. It can be seen that the diagram is
symmetric, and it is sufficient to consider one half the flow system. '

For the more general case of a non-homogeneous medium and a less regular water table, the
physical model might look like Figure 1b. Such a model assumes a horizontal impermeable boundary at
some depth and imaginary vertical impermeable boundaries representing the major groundwater
divides.

It is now possible to put this physical model into mathematical terms. Figure 1c shows such a
mathematical model for the homogeneous case. The equation which must be solved is Laplace’s
equation and the region in which it must be solved is that shown cross-hatched in the diagram. An x-z
coordinate system has been set up with the origin at the lower left-hand corner such that at any point
P(x,z) within the region there is a corresponding value of the potential ¢.

Since there is no flow across the impermeable boundaries, the gradient across such boundaries
must be zero. This is represented by the boundary condition SB.XQ =0 along the vertical impermeable

boundaries and 6—2‘2 = 0 along the horizontal base.
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Figure 1. A suitable physical and mathematical model



To develop the boundary condition along the water table it is necessary to return to the
expression for the hydraulic potential:

(12) w = gz + Lo

At any point on the water table, the pressure is atmospheric so that the second term disappears.
Therefore: ® = gz or in terms of the hydraulic head: ¢ = z. The hydraulic head (our potential function)
at any point on the water table is thus equal to the elevation of the point above the standard datum,
i.e., above the basal impermeable boundary denoted by z = 0. The values of z, and thus ¢, along the
water table are a function of x, so that the boundary condition along the water table can be
represented by ¢ = f(x) where f(x) is the equation of the water-table configuration.

Similar mathematical models may be developed for the non-homogeneous case and for
three-dimensional problems. The approach, however, varies with the method of solution and a more
detailed account of the mathematical model (including, for example, the applicable boundary
condition between layers of different permeability) must await the choice of suitable methods of
solution. It should be noted that the first sections of both Chapters 2 and 3 involve a further discussion
of the appropriate mathematical models.

Methods of Solution

There are several methods of solution for boundary value problems involving partial
differential equations. These methods can be divided into two broad fields: analytical solutions
involving classic formal mathematics; and numerical solutions using the finite difference approach.

For Laplace’s equation, three separate analytical methods can be listed:

1. Separation of Variables

2. Green’s Functions

3. Conformal Mapping
The first of these results in solutions in the form of converging infinite series; the second provides
closed solutions but is limited to boundary value problems of a very regular nature; the third,
conformal mapping, is a branch of the theory of complex variables and, rather than being a direct
method of solution, is a tool which may be used to reduce a complicated problem to one which is
amenable to one of the first two methods of solution.

In Chapter 2, the separation of variables technique is used to obtain analytical solutions to
Laplace’s equation. There are no advantages to be gained by using Green’s functions so this method has
not been applied. The possible applications of conformal mapping are investigated, but with little
success.

The general form of Richards’ equation is non-linear and satisfactory analytical solutions are not
available.

Both Laplace’s equation and Richards’ equation are easily solved using the finite-difference
approach and in Chapter 3 the numerical solutions are fully developed.

A high-speed digital computer is used in both the analytical and numerical techniques but the
nature of the usage is different in the two cases. In the analytical method, the solution is obtained
without the aid of the computer and is in the form of a long algebraic expression representing the
potential at any point (x,z) in the field. The computer is then used to obtain the numerical values of o)
independently at many points in the region, thereby defining the potential field. In the numerical
technique, a network of nodes representing the groundwater basin is set up and the method of solution
involves the computation of ¢ at each point of the nodal array.

ASSUMPTIONS OF STUDY

1. There exists an impermeable basement at some depth above which all rock is permeable, if only
to the slightest degree.



2. The Concept of a groundwater basin is a valid one, that is, there exists a three-dimensional closed
hydrologic unit bounded on the bottom by a horizontal impermeable basement, on the top by
the ground surface and on all sides by imaginary, vertical, impermeable boundaries representing
the major groundwater divides.

3. The upper boundary of the flow system is the water table.

4.  The configuration of the water table is known, and a reasonable estimate of the subsurface
permeability contrasts can be made.

5.  The position of the water table is steady, that is, it does not fluctuate with time. This
corresponds to what is referred to in soil science literature as the “steady rainfall” case, a better
term for which might be the ‘“‘steady recharge” case. The recharge fo the water table (or
discharge from the water table) is the amount necessary to maintain it in its equilibrium position
at every point along its length at all times. It is thus a case of dynamic equilibrium. This
assumption of a steady water table enables us to treat regional groundwater flow as a steady-state
problem.

In defence of these assumptions, a few comments and amplifications are necessary. First, it
should be noted that the initial assumption implies that one can discard the terminology of “‘confined”
and “unconfined” aquifers. All the geological formations within the basin have some permeability, no
matter how small. As shown by the results, to be presented later, the conditions inferred by the term
“confined aquifer” will arise when we have a high permeability formation underlying one with a
permeability many magnitudes lower.

While the second assumption specifies a horizontal impermeable basement, it is possible to
consider the case of a sloping impermeable basement by introducing a wedge-shaped formation of very
low permeability at the base of the model.

It should also be pointed out that vertical impermeable boundaries need not exist under every
topographic high; indeed, this is one of the questions this study is designed to investigate. It has been
found in the field, however, that the extent of a groundwater basin is controlled by major topographic
features. This comment leads us to the fourth assumption which is that the configuration of the water
table is known. In many locations, but not all, it is valid to assume that the water table will follow the
topographic configuration. This fact, emphasized by Toth (1962, 1963b), has subsequently been
criticized by many workers whose experience has not led them to the same conclusion. It is reasonable,
however, to assume that the water table will have its highs beneath the major regional topographic
highs and its lows contiguous to the major topographic lows. Whether the water table reflects every
hummock in the topography is a moot point and one which must be investigated in the field in any
area in which the methods outlined in this report are to be employed. In areas where the water table
follows the topography, setting up the mathematical model is simple, requiring only topographic
information; in areas where the relationship is doubtful, the configuration of the water-table must be
obtained independently. It is, of course, realized that the water table will be closer to the surface in a
discharge area than in a recharge area.

The fifth assumption, that of a steady-state water table, is the assumption most basic to the
study and is also the one most liable to criticism. It can be defended on the basis of the following:

1. The zone of fluctuation of the water table is only a very small percentage of the total saturated
depth of the groundwater basin. For the regional scale of this investigation the difference of a
few feet between the high water and low water positions of the water table will have little effect
on the flow patterns.

[\

The relative configuration of the water table usually remains the same throughout the cycle of
fluctuations, that is, the high points remain the highest and the low points remain the lowest.

If either (1) or (2) is not true, then the methods of this study must be adapted. It may be necessary to
run several models of a single basin, each with a different water-table configuration, representing the
fluctuating position of the water table at various periods in time. As an example, consider a small
prairie pothole in a hummocky terrain. Meyboom (1966) has suggested that the water table in the
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vicinity of such potholes is liable to reverses in slope such that the pothole is a discharge area through
part of the year and a recharge area in the remainder. This is truly a transient behaviour and cannot be
represented by a steady-state assumption. Flat water tables which accept irregular recharge due to local
irregularities in rainfall patterns are also conductive to major changes in flow pattern with time.

Toth (1963a), in reply to the objections of Davis (1963) states: *. . .the theory gives the long
term average of the potential distribution. The theory does not yield quantitatively-transient
configurations of the flow pattern. ... ... " He recommends using “‘the mean position of the water
table, the average of that of many dry and wet seasons” as the upper boundary of flow.

The third assumption is one of convenience. It would be more rigorous to assume the upper
boundary of the saturated flow system to be the air-water interface at the top of the capillary zone,
but there are two distinct advantages to using the water table. First, it is convenient in establishing the
upper boundary condition of the mathematical model and second, it is easily measured in the field.
This assumption can be validated on the same grounds as the fifth: the configuration of the water table
is similar to that of the air-water interface and the vertical distance between the two is negligible in
comparison with the total depth of the groundwater basin.

Perhaps an even more logical approach would be to consider the entire saturated-unsaturated
system as continuous, which it is (Luthin and Day, 1955), and use the ground surface as the upper
boundary of flow. The numerical solution presented in this paper is, in fact, applicable to such a
system but the high variability of permeability contrasts which result from the existing soil moisture
profiles places a serious strain on the capacity of the digital computer to handle such problems on a
regional scale.

The five basic assumptions listed above hold throughout this study regardless of whether
analytical or numerical solutions are being employed. For the numerical method, they constitute the
only assumptions. The analytical method, on the other hand, is limited by further restrictions which
will become apparent in the first section of Chapter 2 dealing with the analytical mathematical model.
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CHAPTER 2

Analytical Solutions

MATHEMATICAL MODEL FOR ANALYTICAL METHOD

The use of the formal analytical method of solution results in three further restrictions to the
mathematical model: :

1. The analytical method is restricted to two dimensions. The mathematical theory for the solution
of boundary value problems in three dimensions is available, but in the case of regional
groundwater flow it would necessitate the representation of the water table, an irregular
two-dimensional surface, by an algebraic expression f(x,y). This would be impossible for any
realistic water-table configuration. If, on the other hand, we consider a two-dimensional vertical
section through the basin, the problem is reduced to finding an algebraic expression for the line
representing the water table. This is a much simpler task and one which is considered under the
heading “Generalized water-table configuration”. In order that a two-dimensional section be
considered representative of the basin, it must be taken perpendicular to the contours of the
water-table surface, i.e., parallel to the direction of slope of the water table.

[

Since analytical solutions to Richards’ equation are unknown, we are restricted to the use of
Laplace’s equation. This means we cannot consider the general non-homogeneous case of a
permeability which varies continuously with the space variables. We can, however, treat layered
cases where the basin consists of two or more horizontal geologic formations having different
permeabilities. Each geological unit, however, must be homogeneous and isotropic with respect
to permeability. The boundary conditions which must be satisfied between the layers are listed
under a separate heading.

3. We must use the rectangular approximation described below.

Rectangular Approximation

The available analytical methods of solution to Laplace’s equation are limited to regions
of a very regular shape. We cannot solve the problem in the region shown crosshatched in
Figure 2a so we must approximate the cross-hatched region by a rectangle. This is accomphshed
by applying the boundary condition ¢ = f(x) along the upper surface of a rectangle instead of
along the line representing the position of the water table. This “rectangular approximation”
is shown in Figure 2b. The boundary value problem which we originally wished to solve (Figure 2a) is a
special one in that the boundary condition ¢ = f(x) also defines the region in which we wish to solve
the problem. By transferring the potential distribution ¢ = f(x) onto the upper surface of the rectangle,
we have in effect made the region of solution constant but we may still represent any water-table
configuration by varying f(x). We are, however, ignoring the small wedge of area which exists between
the horizontal upper edge of the rectangle and the true position of the water table. The method is thus
limited to regional slopes of a few degrees. The range of validity of the rectangular approximation is
investigated in Chapter 4 using the numerical method of solution as a check.

Generalized Water-Table Configuration

Toth (1962, 1963b) solved the problem of regional groundwater flow for a homogeneous
medium and two specific water-table configurations. The two configurations are:

(2.1a) f(x) = 2o + cx
(2.1b) f(x) = zo + c¢'x + a'sin b’ x

The first represents a water table whose elevation increases linearly from the valley bottom to the
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water divide. The second has a sine curve imposed upon this regional slope. The parameters are:

= elevation of the water table above datum at the valley bottom
= angle of slope of water table

tan a

a/cos

= b/cos

amplitude of sine curve

2m/A

= wave length of the sine curve

=08y
[

> o M o e
H

[t is the author’s desire to obtain a mathematical expression for a generalized water-table
configuration, one which would include those treated by Toth as well as any other realistic water-table
configurations. Such an expression is:

(2.2) f(x) = 2o + ¢;x (for 0 < x < xp)

=270 + 1X; + (X — Xy) (forx, < x < x,)
=70 + c1x; T Xy X)) F c3(x - x2) (for x, < x < X3)
=zot X T X, —x ) + ck(xk = Xk—1) + ck41(x — Xk)
(for xkx < x <'s)
As shown in Figure 3, this represents a series of straight-line segments. The slopes ¢y, 2, .. ... .. Ck+1
and the positions of x,, X, ...... Xk are arbitrary so that any configuration of straight line

segments can be represented. To prove the generality of this expression, it will be shown in a later
section of this chapter that, by choosing the appropriate series of straight-line segments, one can obtain
the identical potential pattern as that produced using Toth’s sine curve.

Interlayer Boundary Conditions
There are two boundary conditions which must be satisfied at the surface of discontinuity
separating two horizontal layers of differing permeability:

23) ¢ = ¢

8¢, 8¢z
Ky — = —e
24) K, 52 K, 52

The first condition (2.3) expresses the requirement that the potential be continuous across the surface
of discontinuity. Equation (2.4) states that the normal component of velocity must be continuous at
the surface of discontinuity. This is merely another way of stating the tangent law for the refraction of
flow lines across a permeability boundary.

We are now in a position to obtain an analytical solution to our mathematical problem, using the
separation of variables technique and the rectangular approximation described above.

ANALYTICAL SOLUTION TO TWO-DIMENSIONAL THREE-LAYER
PROBLEM WITH GENERALIZED WATER-TABLE CONFIGURATION

The mathematical model is a two-dimensional, vertical section through a groundwater basin, with
a generalized water-table configuration and three geologic layers. The following terminology is used:

= horizontal coordinate direction
vertical coordinate direction

N
I
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(x,z) = coordinates of any point P in field
s = lateral extent of basin

2o = depth of basin

r; = vertical distance from z = O axis (basal impermeable boundary) to contact between
layer 1 and layer 2

r, = vertical distance from z = O axis to contact between layer 2 and layer 3

K, = permeability of Layer 1

K; = permeability of Layer 2

K3 = permeability of Layer 3

¢1(x,z) = hydraulic head at any point (x,z) in Layer |

$2(x,z) = hydraulic head at any point (x,z) in Layer 2

¢3(x,z) = hydraulic head at any point (x,z) in Layer 3 ‘

Xi1Xz,..Xk = horizontal distance from x = O axis (left-hand vertical impermeable boundary)
to each break in slope in the generalized water-table configuration

CiC2, . .Ck+ = slopes of various straight-line segments in generalized water-table configuration.

The boundary value problem which we wish to solve is, in actuality, three interrelated boundary
value problems (Figure 4). It is necessary to obtain three separate expressions for ¢,, ¢, and ¢,
representing the hydraulic head, i.e., the hydraulic potential expressed as the head of water above the
basal datum plane, in each of the three layers. For layer 1, where the permeability is K, ,$; must
satisfy the Laplace equation:

§,¢ 8%

@s5) 28, 20 g (where 1, < z < o)
8x2 522

and the boundary conditions:

(2.62) %L(O,z) =0
(2.6b) —(sz) = O

8 &¢
(260) Ky g () = Kz oot (x1)

(2.6d) ¢1(x,r1) = ¢a(x.1y)

(2.6e) ¢,(x,z0) = f(x)

where:

(2.6f) f(x) = zo + cyx _ (for 0 < x < xy)
=20 t cixp T ocx = xy) (for x; < x < x3)

zo t Xy t (X2 = xq) +....+ ck(xk — Xk—1) + ck+1(X — Xk)
(for xk < x < s)

In layer 2, with permeability K, , we have:

829, 4 829,

— =0 (where I g Z S rl)
5x? 522

2.7)

and the boundary conditions:
69,
8a) — (0,2 = 0
(282) £ (02)
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8¢,

(280) 5=

(S,Z) =0

b6¢ 6
(28C) Kl S”Z‘l— (x,r[) = K2 gf_z(x:rl)

(28d) lPl(X’rl) = @2(X’rl)

5¢
E§3— (x,r2)

B
(2.8¢) K, _%_(x,rz) = K,
6z
(2.8f) ¢a(x,r2) = ¢3(x,12)

In layer 3, with permeability k;,p; must satisfy:

2, 2, ;
2.9) 679s ; 8o 0 (where 0 <z <'1p)
5x2 522 B

and the boundary conditions:

8¢5
2.10a) —= =
(2109 {2 (02) = 0
d¢3
2.100) 222 (s7) =
(2.10b) 5 (s,2) 0
5¢3
2.10c) —= =
(2100 £ (x0) = 0

8¢ 56
(2.10d) K =2(xr) = K, 5 (o)

(2]06) ¢2(X,r2) = (}:)3()(,[2)

Having defined the problem, we may proceed to solve it using the method of separation of
variables. Consider first layer 3, and assume a product solution:

(211) $3(x,2) = X;3(x)Z5(2)
Substituting this expression into (2.9) yields:

d?X d?z
212) 2, R |y 0 EBO
dx? dz?®
Using the notation:
dX ,  dz . d?X wo 4?7 "
@13y L350 _ o L@ L A0y 80 Z,
dx dz dx? dz?®

(2.12) becomes:
(214) Z3X3” + X3Z3” =0
Dividing through by X3Z; then gives:

X 12 Z 1

(215) =2 + 22 - ¢

or
X " Z 1

(2.16) > - - 22 _ aconstant = i
X3 Z,

Since the left-hand side is a function of x alone and the right-hand side is a function of z alone, both
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sides must be equal to a constant §. We must investigate the sign of §:
Case 1: 3> 0. Then (2.16) yields two ordinary differential equations:
(2.17) X;3" = BX; 0
(2.18) Zs" + Bz =0
The solution to (2.17) is:
(2.19) X3 = F cosh \/Ex + G sinh /g x (where F and G are constants)

]

and therefore

(2.20) X;' = F+/Bsinhv/B x + G+/B coshvB x
The solution to (2.18) is:

(221) Z3; = HsinvBz + Jcos/B z (where H and J are constants)
By (2.11), ¢53(x,2) = X3(x)Z;(2z); therefore

5¢;(x,2 ,
(22) 220D oz,

Boundary condition (2.10a) then implies:

%(O,Z) =0 = X5 (0)Z3(z) => X3'(0) =0 =>G =0

and boundary condition (2.10b) becomes:
8¢5 0= v _ Py = = -
3‘;(‘—‘ (S,Z) =0 = X3 (S)Z:;(Z) == X3 (S) =0=F =0

Therefore F = G = 0 and we have no solution. Therefore § 3 0

Case 2: = 0. Then (2.16) yields:

(2.23) X3 =0

(224) Z;" =0
The solution to (2.23) is:

(225) X5 = Fx + G (where F and G are. constants)
Therefore:

(2.26) X3’ = F

The solution to (2.24) is:

(2.27) Z3 = Hy + (where H and J are constants)

and hence

(228) 7, = H

Boundary condition (2.10a) then implies, using equation (2.22):

g?—(o,z) =0 = X3'(0)Z5(z) = X3'(0) = 0= F =0

Boundary condition (2.10¢) becomes:

6¢5 o = Ly = Y = ) = -

S x0) =0 =X3x)2Z3(0) = Z; (0) =0 =>H =0

Therefore F = H = 0 and ¢3 = X3Z3; = GJ = a constant, which is not a solution. Therefore § # 0.
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Case 3. Since > 0 and 8 # O, then § < 0. Let =~ A% (2.16) becomes:

X3II 2311
2.29) —/— = - = - N
(2.29) X, 7,

The two resulting ordinary differential equations are:
(230) X3" + AX; =0

(231) Z3" - NZ3 =0

Considering (2.30) first; the solution is:

(232) X3 = Fcos Axx + G sin Ax

and consequently:

(2.33) X3' = — AFsin &x + MG cos Ax

Since ¢3 = X;3(x)Z;3(z), boundary condition (2.10a) becomes:
8¢3 - _ ’ _ ' _

3)—(——(0’2) =0 = X3 (0)Z3(z) => X37(0) = 0

Therefore from (2.33);
0=x2G=>G=0

and (2.33) becomes

(2.34) X3 = — AFsin Xx

Applying boundary condition (2.10b) yields:

5 :
gf—f’(s,z) =0 => X'(s) = 0

Therefore from (2.34):
0 = -AF sin As
If AF =0, there is no solution. Therefore

sinAs = 0
TOAS = mn

(2.35) A = 07
S

These values of A\ represent the eigenvalues of the problem. Since G = 0 and A =

from (2.32):
(2.36) X; = Fcos M
S

The solution to (2.31) is:
(2.37) Z; = Hcosh Az = Jsinh Az
Applying boundary condition (2.10c) we find J = 0 and therefore

(2.38) Z; = Hcosh T2
s
The product solution is therefore:
¢3 = X323 = F cos m . H cosh ‘n-l"sﬂ—z
S

Combining the constants F and H into one constant, we have:

18
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m = 0,1.2,.....
m=012,.....

e we have,
m = 0,1,2,.....
m = 012,.....
m = 0,1,2,.....



(2.39) ¢3(x,z) = A cos BI¥ coep MTZ
s s

Before applying the upper boundary conditions (2.10d) and (2.10e) which describe the interrela-
tionship of ¢, and ¢;, we must develop an analogous expression to (2.39) for ¢,.

Once again we assume a product solution:

(240) ¢, = X2(x)Z,(2)

Therefore,
8% "
(241) TsxTz = X,"Z,
§2¢ "
(2.42) 6“’; = X2,
VA

and (2.7) becomes:
243) X,"2, + X32," =0
Dividing through by X,Z, and transposing yields:

X" z
(2.44) 22 - - 22 _ aconstant = - a
X2 Z2

"
2

where the constant must be less than zero by the same reasoning as for § in the development of the

expression for layer 3.

The ordinary differential equations corresponding to (2.44) are:
245) X, + a?’X, =0
246) Z," - da*Z, =0
The solution to (2.45) is:
(247) X; = Kcosax + L sin ax
Therefore,
(2.48) X,' = — aKsinax + aL cos ax
From boundary conditions (2.8a):

(2.49) i;%_(o,z) =0 = X,'00) = 0

Therefore, from (2.48), L = 0. From boundary condition (2.8b).
6 '
(2.50) Sipi(s,z) =0 = X,6) =0
X

From which we deduce

sinas = 0 _ n
as = nm , n

_ mm

q = o7

Recall that:

We thus have two infinite sets of identical eigenvalues

I

(where K and L are constants)



T

(ie, ag = 0 = Ao, a7 = =A1, Ay — n A,, etc.),
s

w

one set for the solution of ¢5 in layer 3, the other for the solution of ¢, in layer 2.

We cannot choose n and m independently because the two solutions for ¢, and ¢5, thus far
independent of one another, will subsequently be related (see below) by means of the interlayer
boundary conditions (2.10d) and (2.10e). In effect, we have only one boundary value problem and it
must have a single unique set of eigenvalues. It is this property of the uniqueness of the eigenvalues
which allows us to obtain three independent series solutions, one for each layer, which contain a single
Fourier constant A, which is a function of m (page 24).

Therefore we can write:

a =017 _ m=0172,...........
S

Since L=0and a = 27 we have, from (2.47):
s

(2.51) X, = Kcos B m=0172...........
S

The solution to (2.46) is

(252) Z, = Mcoshaz = Nsinh az

or substituting for a:

(2.53) Z, = M cosh “—15712- + Nsinh ‘_“? m = 0,1,2

The product solution, from (2.51) and (2.53) is:

po = X9Z, = K cos 17X [M cosh M Nsinhm—ﬂz:l
s $ : 8

or combining constants:

(2.54) ¢i(x2) = cos WX [B cosh ™™ 4 C sinh %] m = 012,.....
$ s $
Using equation (2.5) and boundary conditions (2.6a) and (2.6b) we can arrive at an identical
expression to (2.54) for layer 1. It is:

(2.55) ¢,1(xz) = cos X [D cosh ™% 4 E sinh ﬂ’?_] m=012.....
S S S

Equations (2.39), (2.54) and (2.55) give us solutions for ¢,, ¢,, and ¢ in terms of 5 arbitrary
constants, A, B, C, D and E. We can reduce the number of arbitrary constants to one by considering
the interlayer boundary conditions. Let us first consider (2.39) and (2.54) and the boundary
conditions (2.10d) and (2.10e):

mmnx mmnz
A cos —= cosh —=
s

=

|
o
o

I

(2.39) ¢3(x.2)

(2.54) ¢2(x,2) cos %‘ [B cosh L“SEE + C sinh anz] m= 0,12,.....

(2.10d) K, 89 (xr) = Ky O¥3 (x,rz)
o0z bz

(2.10e)  ¢,(x,1;) = 93(x,12)
Applying (2.10¢) to (2.39) and (2.54) yields
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x mnr, mnx - m7r, mnx mnr,
(2.56) A cos B cosh = I:B cos ——— cosh + Ccos —— sinh —=
s $ 5 s s $

Transposing:
mmx ' X :
(2.57) (A-B)cos —— cosh oz _ ¢ cos % gpp T2
S S 8 $
Therefore:
(258) ¢ = —A-B
mnr,
tanh ——=
8
We may now substitute (2.58) into (2.54) to eliminate C:
A cos TTX gpp M2 B cos X gjpp M7TZ
(2.59) ¢2(x,2) = Bcos ITX cosh MTZ 3 LA 5 s
8
y tanh —22 tanh T2
$ $

To eliminate B from (2.59) we must apply boundary condition (2.10d) to (2.39) and (2.54).
This yields:

K
(2.60) A [cos T Sinh m7Tr2] o —3{[8 cos % Ginh m7rr2] o7
s s

S K3 S S S
mmx mnr, | mmw
+ |Ccos —— cosh —

S S s

Substituting (2.58) for C yields:

mmx mnr, , mm K,
[A cos —— cosh? —=2] — . =
s s s

(2.61) I:A cos % Sinh mnrz:l mr_ K,
$ $ s .. mar,
sinh ——~
s
I, mnu
K mnax mnr, | mm [B cos I cosn? 8 ) -
:EL [B cos —— sinh —S—z—:l ~ - ) — S
? ’ sinh —2
S
from which:
K K
(2.62) A[sinh2 T2 _ 22 cosh? _”i"_rl] - 2 -
3 S K3
Therefore:
(263) B = A[cosh2 e Ky sinh? ————mm2:|
S K, S

Substituting this expression for B into (2.59) gives:
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mmx mnz mar K . mnr,
(2.64) $,(x,2) = Acos — cosh —— (cosh? —= — 2 sinh? ——2
s s ] K,
mmx mnz  mar K mnar
A cos —— sinh —— (1 = cosh? —2 4 22 sinh? —2
s S s K, s
+
mmr
tanh ——2

Introducing the notation:

K
(2.65) W(m,ry Ky Ks,5) = cosh? o2 — =3 gipp2 702
N K2 S
(2.66) V(muy,KsKzs) = — =W
mnr,

we are left with the following expressions for ¢, and ¢; in terms of the single constant A:

(2.67) ¢,(x,2) = A cos _rr?( [cosh % (W) + sinh M7% (V):' m = 0,12,.....
D
(2.39) ¢3(x,2) = A cos B cosh M2 m = 0,12,.....
$ $

We must now examine the effect of the interlayer boundary conditions (2.6¢c) and (2.6d) on
equations (2.55) and (2.67) above:

(2.55) ¢,(x,2) = cos EL;T} [D cosh ESI—Z + E sinh —n%@:l m = 0,12,.....

. by 8¢
(2.6¢c) K, 5—2_1_ x,qr) = K; EZ—Z— (x,r1)

(2.6d) ¢(x11) = $2(x,1y)

Applying (2.6d) to (2.55) and (2.67) yields:

(2.68) [A(W) — D]cos M cosh 2L 4 A(V) sinh M s 7
s $
= E cos m sinh it
s s
from which
AW) -D
(269 E = [—(—)__-—r—] + A(V)
m
tanh ﬂ].__l_
s

Substituting (2.69) into (2.55) eliminates E:

(2.70) ¢,(x,2) = D cos MAX cosh MTZ A(V) sinh MAZ os MTX
$ $ $ s

[A(W) - D] cos DX gjpp MT2
-+ S S m = 012,.....
tanh 1
s
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Now applying (2.6¢) to (2.70) and (2.67), we obtain:

m
(2.71) (D cos M7 inh _m%rl) ooy A(V) (cos Tg cosh in—ni)ﬂr
s S s s

[A(W) — D] (cos m;rx cosh i )_n;_n

S

+ mnr
tanh — L

S
K
_ Kooy s X [(Smh T MT Wy 4 (cosh TRy 7 (V)]
K, ) s s s s

Bringing A terms to the left-hand side and D terms to the right-hand side, we get:

mnr,

(W) (cosh> —— — —Z sinh? ——1)
(2.72) (A cos TXy m7m s K, X
5 s ., mar,
sinh ——~
\ :
—_— K, (D cos M7X ) %n
+ [cosh Vva - = :I - S
§ K, mar,

sinh ———
s

Therefore:

K
(273) D = Al:(W) (cosh? =Tt — 22 sinh? ) 4 cosh UL sinn T v) 4 ——E—z):l
S S S S 1

1

Substituting (2.73) into (2.70) for D yields:

m K mr
(2.74) ¢1(x,2) = A cos % cosh 2% [(W) (cosh? 2TL _ K_2 sinh? 25—1)
s S S 1

r K : Mz mmx
+ cosh T sinh — 1 MO - K—z)] + A(V)sinh T2 o5 2%
s $ 1 s $

A(W) cos T ginh T2 A gos M™X gipp MTZ
S s s S . M7y
+ —— - o (W) (cosh —
tanh - : tanh ——L
§ S
2 , mmr, mary, . mar, K,
- —= sinh®* ——) 4+ cosh sinh VMa--=2)
1 N Kl
m=0,12,.....

Let:

mnr, K, . mar,
h? —— sinh? ———

(2.75) T(m,r, K, K;,s) = cos —=
s K,

and:

r K
(2.76) U(m,r1,12,K,,K2,K3,8) = (W)(T) + cosh L sinh m’s’ LW -
S 1

The expression (2.74) for ¢, then becomes:



(277 ¢,(x,2) = A cos %‘ cosh M7z (8)
s

s mnr,

+ A cos P ginh % [(V) + W - m = 0,12

S

Further, defining:

(278) R(m,r,K;.Ky,9) = 1-M
mnr;
tanh ——

S

(279)  Y(m,r,.r2,K;,K5,K3,8) = (W) (R) + (V)[l + % - T:]

gives:

(2.80) ¢,(x,2) = A cos 2% [cosh m7Z (y) + sinh M7Z (Y):\ m=0,12,.....
S S

s
We now have expressions for ¢, (2.80), ¢, (2.67), and ¢5 (2.39) in terms of the single arbitrary

constant A. Each expression represents an infinite number of solutions corresponding to the values of
m=0,1,2,..... Since Laplace’s equation is linear, we may sum these solutions to give

(2.812) ¢,(x,2) = 50 A cos LLLUES [cosh mnz (U) + sinh mnz (Y):I
m= $ $ s

(2.81b) ¢,(x,2) = rr%l 5 Am cos mmx [cosh E‘.S’E (W) + sinh anz (V)]
(2.81¢) ¢a(x,2) = T Am cos 27X ¢osh mnz
m=0 S S

We have now applied all the boundary conditions to all three layers except the upper water table confi-
guration:

(2.82) ¢1(x,20) = f(x)
Therefore from (2.81a)

mnm

(2.83) f(x) = 50 Ap cos X [cosh %0 (U) + sinh _m_:?ﬂ (Y)]
m= 8

N

Let:

(2.84)  Q(m,ry,12,K1,K2,K3,5,20) = cosh —m:—z" V) + sinh_“%z—" (Y)

Then (2.83) becomes:

(285) f(x) = % Amcos ™. Q
m=0 s

But this represents a half-range Fourier cosine expansion over the interval (0,s) and we know from the
theory of Fourier series (Wylie, 1960; Byerly, 1959) that:

2 S
(2.86) Am = a fo fx) cos E.;IE dx

(2.87) Aq = % fg f(x) dx (since Q = 1 for m = 0)
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and the expressions for ¢, ¢2, and @3 become, from (2.81):

A = .
(2.88) 9,(x,2) = — + I Am cos X {cosh MTZ(U) 4 sinh D72 (Y)]
2 m=1 s s S
A = .
(2.89) ¢.(x,2) = R Am cos TX cosh MTZ (W) + sinh T72 (V):l
2 m=1 s S S
Ay i mmx mnz
(290) o3(x,2) = — + T Amcos—— cosh ——
2 m=l] s S

To determine Am and Ao, we must evaluate the integrals in (2.86) and (2.87) for the expression
(2.6f) for f(x) representing the generalized topographic configuration. Considering the integral in
(2.83) first, we have:

(2.91) f(s) f(x) cos ITX gy = jgl f(x) cos ﬂg dx + f::z f(x) cos m—:X dx
s 1

+ ﬁ(3 f(x) cos mAX Gx 4. .. +J‘S f(x) cos mmx o
%2 s Xk S

We will evaluate the integrals on the right-hand side in turn:

(2.92) f())(1 f(x) cos m_:x dx = fgl (zo + c1X) cos _m1srx dx

max X3 max
=zofx1cos idx+clf X cos —= dx
0 S 0 s

ZoS i, MAX, s .2 max | max . max | X1
=— S —" 4¢,(—) |cos — +-—=sin —

mn s mn s s s dg

2

ZpS . mAx s mnx; |, max, . max;
=20 5in —2 ¢ () [cos + sin -1

mm s mm s s $

(293) [ f(x) cos P dx = X2 (75 + c\x, + px - c2x1) cos X g
X1 N X1 S

X2 mnx mmx
= (20 + c1xy = Cx1) 7 cos T dx + ¢, fxzxcos*dx
X1 s X1 s
s . ommx . mmx
=[zo + x1(c; — )] | = sin 2 _ sin !
mn s s
2
s mmx, max, = mmTX, . max max, . mnx
+ c(—) |cos - cos + % sin 2 _ L sin I:I
mn s $ s s s

X3 mnx

(2.94) jj:3 f(x) cos mrX 4x = J [zo + cixy + ca(x2 = x1) + c3x — c3x,] » cos TTX gx
2 S S

X2

=20 + xe(ci — &) + x(c; ~ ¢3)] [(rn—sﬂ)] [sin mifi ~ sin Tﬁ]

S

s .2 mnx; mmX, ~ MAX; . MAX; MAX, . mMAX,
+ ¢3(—) CO§ ——= — COs + sin - sin
mm s s s s s s
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(2.95) fik f(x) cos % dx = f)s( l:zo + Xy F ey —xy) Fee + cp(xk — Xk—1)
k

+ g (X — xk)] cos M™X 4x
$

= [Zo + Xl(cl - Cz) + X2(C2 - C3) +.... 4+ xk(ck — Ck+1)] [n%] [—sin@&]

S

2
S mnx mmnx mmx
+ gy () [cos mr — cos ok 7K Gy _._K]
mn S S

Summing (2.92) through (2.95):

(2.96) f(s) f(x) cos MX dx = (=) {[—xl(cl ~ ¢,)] sin XL
S mm S

mnx,

+ [%2 (c2 = ¢3)] sin —

: . ommxk s 2 mnx
+ [ xn(ck — ck41)] sin ’—} + (=) {[Cx - ¢,] cos ——
s mm s

+ [e3 — c3] cos mmXa
s

: mmx s 2 mmx mmx
+ [ck — ¢k+,] cos —S—E +Ck+4, cos mn} +(r-r;71) [c; — ¢a] Lsin ——+
X X
+ [c2 — c3] m—:—i sin —T—S—z
+ [ek - ckqy] MK sin mms(k - cl}
Simplifying:
2
mnx s mmx mnx
(2.97) f(s) f(x) cos — dx = (-—ﬂ) [(c; — ¢3) cos Lo +(ck — Ck+,) cos k
m

s 2 mXQ
+ Ck4q COS MW — Cy) = (n?) [ck+, cos mm — ¢; + 5221 (cg — cqq) coOS ]

Therefore, from (2.86) and (2.97):

(298) A -2 (_S_)2 Ck4q COS mm — ¢ + l2< (cp — ¢ )COSTEQ_
' m = SQ mn +1 1 Q___l Q Q+l S

Now to get an expression for Ag, we must expand:

(2.99) f; f(x)dx = f(’)" f(x)dx + f:f f(x)dx + ..... + fik f(x)dx
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Evaluating these integrals separately:
(2.100) f(’)“ f(x)dx = f;‘ (2o + ciX)dx = zox + ~5-
(2.101) f;:2 f(x)dx = jj? (Zo + cixp + X — Cx)dx = (ZgX + ;XX — €3%X;X + ¢ )fx2
1 1
Therefore:

CaX CaX, 2
(2.102) f:: f(x)dx = zpX; + C1X1X3 — €% Xg + %L — ZoX1 — C1X1? 4 Cpxy % — 2!

(2.103) ™3 f(x)dx
X2

f:3 [zo + ciXy1 + ca(x2 — X1) + c3x — c3x,]dx
2

= ZoX3 — ZoX2 + (€1 — ¢2)X1X3 + (€2 — ¢3)X2X3
’ 2
—(c1 — c2)x1xy + ((:_3__ C2)X2? + £3%s
2 2
S S
(2.104) ka f(x)dx = ka [zo + c1X; + ca(Xy — xy) +... .. + cplxg - xk_.l)
2
+ ok, (x = xp)dx = zos — zoxy — (i — 815'24'_1))(1(2 + El%
+ (e — ) (x18 = x1xg) + (c2 — €3) (X258 — XaXy)
+ ... + (Ck—, ~ o) (Rg—ys — Xk X)) + (g — Ck4,IXKS

Summing (2.100) through (2.104):
S X12 X22
(2.105) fO f(x)dx = zos + (c; — ¢;) (T - x18) + (c3 = ¢3) (“2—— X25)

Ck+ §2
2

2
be
+..... + (°k+1 - Ck) (71( - Xks) +
k X’ “k+
= Zo$ + QE[ (CQ+1 - CQ) (—2—— - XQS) + "_2—1 S2
Therefore from (2.87 and 2.105):

AO I k k X 2
(2.106) ° = l:z s+ P2 4 S (con. — g_ ]
> T 5 &y ot — e ( 5 T xes)

We have now completely solved the boundary value problem shown in Figure 2. The solution is:

A
Q107 () =+ B Amcos ™ [oosh TTEQU) 4 s M7 (v)|
m=

(2.107b)  $,(x,z) = 2o + z Am cos T [COSh T2 (W) + sinh 172 (V):l
m=] s §

|
[\

A
(2.107¢) ¢3(x,2) = — + Z Am cos M7X cosh M2
2 m=1 s S

where
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Ap 1 Ck4 k XQZ-
(2107d) 7 = ; [Zos + ‘—2_1— 32 + QEI (CQ+1 - CQ) (7 — XQS)

2 § o k _ cos MTXQ
(2.107¢) Amp = 86[(%) {ck+l cos mm — ¢, + z (cg — c@+1) R }
mmr, K3 .12 mnr,
2 = 2 ~ = sinh? —=
(2.107f) W = cosh S K, sin ;
(2.107g) \/:L:)%1 —
tanh 2
s
(2107}1 T = COSh2 mmy, _ E Sil’]h2 mnr,
S K, S
(2.107)) R = l—iT—r—
tanh ——
s

K
(2.107k) U = (W)(T) + cosh oL sinh oL (V) (1 = 2
S S

Q10Tm) Y = D ®) + (V) (1 + 2 =T

mnz, mnzg

(2.107n) Q = cosh (U) + sinh

(Y)

We may confirm this solution by showing that Laplace’s equation is satisfied in each of the three layers
and that each of the boundary conditions shown in Figure 4 is satisfied.

N

Consider first, the expression (2.107a) for ¢, :

5¢ -
(2.108) o% (x,z) = £ Am(sin M) m [cosh MAZ (U) + sinh LWZ(Y)iI
6x m=1 $ s S S

and therefore:
8¢,
. — =0
(2.6a) 5x (0,2)
61:
(2.6b) 6%‘ (s2) = 0

Now from (2.107a) and (2.108):

8%¢ =
22N o T Ap cos DX (2 [cosh MTZ(U) + sinh T2 (Y)]
6x m=1 S ] s s
and
879, - max ,mm2 mnz mnz
52 2 Ap cos 92 (%) |cosh === (U) + sinh —(Y):]
Z m=] S S S S

and Laplace’s equation (2.5) is satisfied.

We can show, in exactly the same manner, that equations (2.7) and (2.9) for ¢, and ¢3, and

boundary conditions (2.8a), (2.8b), (2.10a) and (2.10b) are satisfied. To show (2.10c¢), we differentiate
(2.107¢) with respect to z to obtain:

28



6¢3 =
mrx . . maz| mm
— = EI[Am COs —— smh—:,—~
s s s

Then

8¢
(2.10c) 53 (x,0) = 0

To check the interlayer boundary conditions, consider first (2.6d):

A o m .
(2109) pi(xri) = 2+ £ A cos TS"—X[cosh —S@(U) + sinh -m_”.'(Y)]
m=1 S

m

A & mnx
(2.110) @,(x,1y) = -—7—0 + Z] Am cos TIE:osh

LWy + sinh 0 (V)]
m= S

S

We must show that the bracketed term of (2.109) is equal to the bracketed term of (2.110). Expanding
this term by means of (2.107k and m):

mm m K r
[cosh m:r, (U) + sinh m:rl (Y):l = cosh —q—r—l W) l:cosh2 %ﬁ - K_2 sinh? %]
S . | |

mnr mar . K
+ cosh? —1 sinh — (V) (1 - —2y
S S Kl
mnr K m
(1 — cosh? —E—l + —2 sinh? -ﬂ)
mi
+ sinh 0L (w) : s
§ mmr,
tanh ——
s
mnr K mnr K mr
+ sinh S(V) (1 + =2 — cosh? L+ 22 sinh? 5
s K, S K, S

K .
— cosh T (W) + sinh Sl [cosh2 m V) (-
s : S s K,

mr K m
+ (V) (1 = cosh? 201 fz cosh? r,):]
s s

1

- I:cosh i"?l (W) + sinh m_zrl (V):|
Similarly, to check (2.8f):

A o
(2.111)  @a(x,13) = —20 + 2 Anm cosﬂq—:—X [cosh ik (W) + sinh s (V)]

m=] § S

A o
(2.112) g3(x,13) = 0y Z Amq cos mnx I}osh mﬂrz:l
2 m=] S S

and using (2.10f and g):
[cosh T2 Wy + sinh @2(V)]
S §

mmr,

mmr, K, mnr, .= M7r,
cosh® —= — 2 ¢osh sinh ——= + cosh
$ 2 s $ s

(1-W) .

cosh it (W) + cosh i (1-W)
$ s

mnr,
= [:COS]’I ————}
$
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For boundary condition (2.6¢) we have:

8¢ =

(2113) K2 (1) = 2 Am cos oo [sin T o (Y)] Ky
62. m:] S 8
8¢, = max [ m7r, mmnr,

(2.114) K, —"(x,r;) = 2 A cos —— |[sin — (V) (—*)Kz
8z m=1 8 s

Considering the portion of the summation in (2.113) which is not common to (2.114) we have, upon
expansion:

K, [s )]
m K . mar
= Kl[sinh Rt (W) (cosh? MM 22 Gon2 BTy 4 ginp? —2
S S K, S
(1 — cosh® 024 4 RK—I nh? 2700y
m7r s s
+ cosh? Lw) !
s .. om7n,
sinh S

mar K mnr K, . mar
+ cosh —;—1 V) (I + 22 — cosh® — + —2 sinh? ——l ]

K, s K,
= K, [(W) sinh 0 cosh? UL (W) sinh® 01
s
mar
+ (V) sinh? 0 cosh L (V) 22 gnh? T coqn M0
(W) cosh? i (W) cosh* — s K
S S 2 , mury | mar;
+ - - +(W)-— cosh® —— sinh
n s
sinh s sinh 21701
K m mnr,; | mar
S+ (V) K_2 cosh = _ (V) cosh® =t 4+ (V) ~2 cosh —* sinh? ——
1 1

mamr;

m r,]

K
+ K_: (V) cosh

“ W]

and (2.6c¢) is satisfied. The final interlayer condition is (2.8e) and:

K
K, [K—: (W) sinh

(W) + cosh il

K, [sinh T

] K,

56 - ]
(2.115) K, g(zﬁz (x,r) = T A cos Ln—ﬁ(l}m
8

m=1]

2 Amp cos mmx [sinh mnr2:| (~—) K,
s

m=]

5¢
(2.116) K3 22 (x,15)
62

Expanding the non-common portion of the summation in (2.115):

]

(W) + cos

K, [sinh T
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- mmr,

cosh? (I -w
mar
= K, [sinh —2 (W) +
S . mnr,
sinh
L s
K, | sinh? 202 (W) + cosh?® oz _ (W) cosh? rﬂ{l

L S S S

sinh ma

S

K, [(W) (<1) + cosh? m:rz]

. mnr,
sinh

mar, K; . mmr, mmr,
K, [— cosh? + —2 sinh® ——= 4 cosh? —=
s K, S s

., m7r,
sinh

K, [sinh m"rz]
S

The only remaining boundary condition to be satisfied is (2.6e): ¢;(x,z¢) = f(x) where f(x) is given by
(2.6f). It is not possible to check this boundary condition by merely substituting z = z4 in (2.107a) in
the usual manner, as it is as difficult to tell whether the resulting series satisfies the boundary condition
as it is to tell whether the original series represents the solution. Fortunately, we can make reference to
some applicable Fourier series theory. The so-called Dirichlet conditions, stated below, guarantee that
the upper boundary condition is satisfied:

“If f(x) is a bounded periodic function which in any one period has at most a finite number of
maxima and minima and a finite number of points of discontinuity, then the Fourier series of
f(x) converges to f(x) at all points where f(x) is continuous and converges to the average value of
the right- and left-hand limits of f(x) at each point where f(x) is discontinuous™ (Wylie, 1960).

It is possible to show directly that the upper boundary condition is satisfied for the two end
points of the boundary for the case of a single uniform slope from x = 0 to x = s. In this case k =0,
Ck 4+ =¢; = ¢ and we have from (2.107a):

A > z
(2.117) ¢1(X,29) = 70 + El Ay cos r_nzr_x I:cosh m—ZZO—(U) + sinh Mo (Y)]
m= 2 S

or using expressions (2.107d, e and n):

$1(x,20) = 1 |:ZoS + 528—2] + T [ 2 (c cos mm — ¢) cos M’_‘] [Q]

s m=1 LQn*m? s
=ZO+~C—S—+2C—2S Z  (cos mn - 1) cos Tﬂ-—l2
2 T m=1 m
1
:ZO+_(.:_S.-—4_CZSZm2 cosrp_n?_(.
2 ™ m=1,35.... S
For x = s we have
oo _]..._
01(s8,20) = 2o + S 4 4—25 > m?
2 ™ m=1,3,5
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But it can be shown (Olmsted, 1959) that:

- _17 _
(2.118) }i gns S
Therefore:
(2.119) ¢,(s,20) = 2o + C_2S + % ) g2 a4 s
Similarly:
(2.120) ¢,(0,2z9) = 2o + % _jr_gs ) gz -

REDUCTION OF GENERAL SOLUTION TO SIMPLER CASES

The three-layer case with generalized topographic configuration is not the most general problem
which can be treated analytically. For example, it would be possible to develop a solution for the
n-layer case. It is felt, however, that the three-layer case represents the logical limit to which analytical
solutions need be taken. The introduction of more boundary conditions would only result in an
excessive amount of laborious mathematics and would lead to solutions which are so cumbersome that
evaluation at enough points to define a flow pattern might prove prohibitive, even with the help of a
digital computer. Numerical methods, described in Chapter 3, offer a far more suitable method of
tackling these more complicated problems.

Of more practical interest is the reduction of the solution developed in the preceding section for
the three-layer case to that of simpler cases. In this section, solutions for the two-layer case with
generalized topography and the homogeneous case with three different topographic configurations are
presented.

Two-Layer Case with Generalized Water Table

If we let K; =K, (Figure 4a) in (2.107f), the expression for W becomes:

K . mar
(2.107f) W = cosh? m’s”2 - g sinh? 2

2 S

V then becomes, from (2.107g):

V = 1__W_=o

mar,
tanh

N

The expressions for T and R remain unchanged but, upon inserting W =1 and V=0in (2.107k and
m), U and Y become:

mar,

(2.107k) U = (W)(T) + cosh ﬂ;ﬂ V) (1 - 2) -

2.107m) Y = W) R) + (V) (1 + .‘é_ 1y -

Therefore: N

(2.107n) Q = 2 (U) + sinh

The solution (2.107) therefore reduces to:
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(2.121a)

(2.121b)

(2.121¢)

A oo
d(x,2) = SLLI Am cos mnX [cosh mmz (T) + sinh mmz (R)]
2 m=1 S S
A = :
$(x,2) = ) Am cos m7X [cosh -IETLZ-]
2 m=1 S S

A o
$3(x,2) = =2 + T Am cos max [cosh m_7rz]
2 m=1 s s

As is to be expected, ¢,(x,2) = ¢3(x,z) and the definition of r, is rendered meaningless. If we let
r; =r the solution to the two-layer problem with generalized topography (Figure 5d) is:

(2.122a)

(2.122b)
where:’

(2.122¢)

(2.122d)

(2.122¢)

(2.122f)

(2.122¢)

A o
p1(x,2) = —29 + X  Amp cos mmX [cosh D72 (T) + sinh 172 (R)]
$ s

m=1 s
A oo
wa(X,2) = — + £  Ap cos mX cosh BAZ
2 m=1 s s
Ag 1 ck+1 o k xg? ]
So _ 1 it Snd - X~ xgs
3 5 [zos + s QE] (co41 cg) (2 2s)

k

2
Am = Sz—Q {(ﬁr) [Ck+1 cos mm — o + T (cg — Coyp) o3

T = cosh? 271 _ Ka sinh? L
S 1 S
R _+t-=-T
tanh AL
s
mmz
Q = cosh ® (T) + sinh M7T%0 (R)

N S

Homogeneous Case

mnXx

I

To reduce the two-layer solution (2.122) to the homogeneous case with generalized topography
(Figure 5c¢) let

K, =K,

(2.123a)

where:

mnz,

.Then T=1,R=0, Q =cosh and
A -
p(x2) = =2 + 3 Am cos BT cosh MTZ
2 m=] s S

Ao 1 Ck+1 k xg2 ]
2.123b) — = — z - - -
@ty 2 = s+ TS 4 2 o - & - e

(2.123¢)

) s 2 k
App = ———— {(——) [ck+1 cos mr — ¢; + X (cQ — cg41) cos
mnz, | mm

s cosh =1

"] |

As an example, consider the topographic configuration shown in Figure 5b representing a flat
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valley with steep flanks leading up to a shallow regional slope. In the notation of the generalized
topography (Figure 4), k = 2 so that (2.123b and c) yield:

Ao 1 ¢ X2 2
(2.124) 5 =7 I:zos + —2i 2 4+ (¢, - cy) (7' - x18) + (¢3 - c;)(% - xzs)]
2
(2.125) Ap = 2z {(}—) I:c;, cos mn — ¢; + (¢; - ¢,) cos X
s cosh mnz, | mm s

max
+ (ca — c3) cos 2]}
S

The simplest topographic configuration is a uniform valley slope as shown in Figure 5a. In this
case k =0,¢;=cpy, =cand

Ay 1 cs?
(2126) 7 = —;— [L()S + T:]

2 s 2
(2.127) Ay = — {(‘Ef) [c cos mm - c:”
0
s

Therefore:

2 o
(2128) p(xz) = - [zos + Ei] o5 [z
$ 2 m=1] |s osh Mo

2
[(i) (c cos mm — c)] cos MTX ogh MTZ
mmo S S

mmx mnz
cos —=— cosh ——=
S S

oc

= 70 4 cS docs
= zq S gz
2 7™ m=13,5. .. 2 mnzg
m* cosh ——

s

This is the solution presented by Téth (1962).

The five solutions which have been developed in this and the preceding section are summarized in
Figure 5 (a through e) beginning with the simplest (Toth) solution and proceeding to the general
three-layer solution.

DIGITAL COMPUTATION

Equation (2.107 a through n) representing the analytical solution to the two-dimensional,
three-layer problem with generalized water-table configuration has been programmed, in Fortran IV
language, for solution on a digital computer. The required input data are the values of the parameters
which describe the geometry and properties of the model. The output is in the form of tables of values
of the potential at a specified number of points in the field. In addition, a subroutine has been written,
for use on an off-line plotter, which contours the resulting values of ¢ and produces a plotted
equipotential net. The complete program printout, a list of variables, an explanation of the required
input data and its necessary format, and a list of recommended values for certain computing
parameters can be found in Appendix A.
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This program can, of course, be used for all simpler cases (for example, the homogeneous case)
by an appropriate valuation of the parameters.

SELECTED RESULTS FOR COMPARISON WITH THE PREVIOUS
ANALYTICAL SOLUTIONS OF TOTH

Figure 6a shows the potential distribution for a basin with s = 20,000 ft, z, = 10,000 ft (ie.,a
depth/s ratio of 0.5) and a water table with a constant regional slope of 0.02. The analytical program
(Appendix I) was used to calculate the value of the potential at about 5,000 points arranged in an
equally-spaced 101 X 51 grid. Referring to Figure 4, the homogeneous basin is simulated by putting K,
=K, =Kj and assigning arbitrary values (which must lie between 0 and zo) to r, and r,. Similarly, the
simple slope is obtained by setting k = 0 and ¢, = 0.02. The.result is identical to Figure 3 of Téth
(1962).

Figure 6b is a recomputation of Figure 2g of Toth (1963b). The water-table configuration is a
sine curve imposed on a regional slope of 0.02. The amplitude of the sine curve is 200 ft; the wave
length is 5,000 ft. Toth’s solution was programmed and used to obtain this potential pattern.

Figure 6¢ shows the result when the sine curve is approximated by a series of straight-line
segments and the analytical program (Appendix A) is used to calculate the potentials. Even with the
rather gross approximation of the sine curve used in Figure 6c, the results are nearly identical with
those of Figure 6b. An even closer match could be obtained by considering a more complex
configuration of generalized water table, using more straight-line segments to represent the sine curve.
It is felt that Figure 6¢ demonstrates the ability of the generalized water table to approximate, to a
very high degree of accuracy, the potential pattern arising from any water table configuration.

APPLICATIONS OF CONFORMAL MAPPING

One of the most displeasing assumptions of the analytical method is that of the rectangular
approximation, whereby the polygonal shape of the field (Figure 3) is represented by a rectangle. It is
logical to investigate the possibility of avoiding this approximation by the use of conformal mapping.

Conformal mapping is an applied technique of the theory of complex variables by which a
region, in which a function is defined which satisfies Laplace’s equation, may be transformed into a
simpler region where an analytical solution is available. The conformal transformation which is
ostensibly applicable to the problem of two-dimensional regional groundwater flow is the so-called
Schwarz-Christoffel transformation which maps the upper half plane of the complex, plane onto the
interior of a polygon in the image plane. Our problem is just the reverse; we wish to transform the
interior of the polygon onto the upper half plane, obtain an analytical solution for the potential
function ¢ in this region and then transform the answers back again.

We will present the conclusion to this investigation first. The Schwarz-Christoffel transformation
which, in theory, is capable of performing the transformation we wish, cannot be applied in practice to
an irregular polygon with more than three finite vertices. By way of explanation, the following brief
outline of the theory (after Wylie, 1960) is presented.

The mapping function is given by:

(2.129) W = K f[(z = x;) @M1 _ yy(em-1
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W = image in the W-plane of any point z in the upper half plane of the z-plane.

X1,X2 oennnn Xp = points on the x-axis (real axis) in the x-plane such that the image of the point x,
under the transformation is the point W, in the W-plane. Similarly, x,»W,, . ... ... Xn>Wp
and W Wy, . ... .. W, form a polygon in the image plane.

0,0 ... on = interior angles of the polygon at the vertices W, , W,,....... W, in the W-plane.

K,C = arbitrary constants.
One can think of (2.129) as the result of two transformation:
(2.130) t = [ ["] dz
(2.131) W = Kt + C

The first transforms the x-axis into some polygon; the second translates, rotates and dilates it. If the
polygon determined by (2.130) is similar to the given polygon, the constants K and C in (2.131) can be
determined to make the two polygons coincide.

To guarantee the similarity of the two polygons, the corresponding angles must be equal and the
corresponding sides must be proportional. For polygons of n sides, (n-3) conditions, apart from the
equality of corresponding angles, are necessary for similarity. Hence in mapping a polygon of n sides
onto a half plane, three of the image points x,,X,,....... Xn can be assigned arbitrarily and the
remaining n-3 are determined by the n-3 conditions of similarity.

One can see that for n=3 (triangle) all three points X, , X,, X3 can be arbitrarily chosen, and they
can be chosen in such a way that the integration in (2.129) is a simple one, in terms of elementary
functions. For an n-sided polygon, the resulting integration is usually impossible to carry out; the only
exceptions are the so-called degenerate polygons where one or more of the vertices lie at infinity. Since
our polygon involves only finite vertices, the Schwarz-Christoffel transformation is inapplicable.

For a complete account of the theory of conformal mapping, the reader is referred to Churchill
(1960); an excellent account of the Schwarz-Christoffel transformation is given by Walker (1933);
Kober (1957) has prepared a’ “Dictionary of Conformal Representations” which includes the
Schwarz-Christoffel transformation. Harr (1962), Polubarinova-Kochina (1962), Luthin (1957), and
Muskat (1946) all contain examples of the application of conformal mapping to hydrogeological
problems.
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CHAPTER 3

Numerical Solutions

MATHEMATICAL MODEL FOR NUMERICAL METHOD

The partial differential equations which mathematically describe the two-dimensional steady-
state regional flow of groundwater have been shown in Chapter 1 to be Laplace’s equation:

§2¢ | 8% .
(3.1) 8_)(‘2”+5_Z;”=0 or Yxx + ¢gz = 0

for the case of homogeneous permeability ; and Richards’ equation:

(3.2) % [K(x,z) %ﬂ + 55; I:K(x,z) ‘g—ﬂ -0

or [K(x,z) ¢xlx + [K(x,2)¢z]z = O
for the non-homogeneous case; where:

¢(x,z) = hydraulic head = hydraulic potential expressed as the head of water above same
datum plane

K(x,z2) = permeability

and x and z are the horizontal and vertical coordinate directions. These equations define the flow in a
vertical two-dimensional field bounded by the water table on top, a real impermeable boundary on the
bottom, and vertical imaginary impermeable boundaries on either side. The following boundary
conditions applied to either Laplace’s or Richards’ equation define the representative boundary value
problem (Figure 7a). :

(3.3) ng(x,O) =0 or 9z(x,0) = 0
ﬂ(o,z) =0 or ¢x(0z) = 0
&x :
89 (s2) = 0 or dx(sz) = 0
&x

¢ = f(x) along the water table.

Analytical solutions to this problem have been given in Chapter 2. They suffer from three severe
limitations: the restriction to two dimensions; the rectangular approximation; and the restriction to
homogeneous or layered cases.

These limitations are all removed by the use of numerical methods. The field within which the
solutions are valid is the complete cross-section (of Figure 7a for example). Both Richards’ equation
and Laplace’s equation are treated in a similar manner and there is no limitation on the geometry of
the permeability contrasts. In addition, permeabilities which vary continuously with depth or distance,
and anisotropic conditions are easily handled. Three-dimensional problems are also amenable to
numerical treatment and such problems are discussed in a separate section following the two-
dimensional development.
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In any numerical technique for solving a partial differential equation, the continuum of points
(x,z) making up the field and its boundaries are replaced by a finite set of points (xp, zp) arranged in a
grid over the region. The partial differential equation (3.1) or (3.2) which determines ¢ (x,z) over the
field is then replaced by a finite system of simultaneous linear equations, one equation for each
meshpoint. This process is known as discretization and the resulting equations are finite-difference
equations. If a mesh containing n nodes is used, the value of ¢ at each of these n points is determined
by the solution of the system of n simultaneous linear finite-difference equations. The resulting value ¢
(xp,zp) for the meshpoint (xp, zp) is considered as a representative value of ¢ (x,z) for a small
two-dimensional region of nearby points (x,z) of the field.

The discretization of a partial differential equation boundary value problem and its ultimate
solution on a digital computer involves the following series of operations and decisions:

1. A suitable mesh must be chosen.
2. Finite-difference equations must be developed for the interior points of the mesh.

3.  Finite-difference equations which suitably represent the boundary conditions must be developed
for points on the boundary. :

4.  Finite-difference equations must be devéloped for the exceptional points of the mesh, such as
along boundaries between different mesh spacings.

5. . A method of solution of the resulting system of equations must be chosen.
6.  The results of (1.) to (5.) must be programmed for solution on a digital computer.
Each of these aspects of the problem will be discussed in the following sections.

Since the development of the finite difference equations differs slightly between Laplace’s and
Richards’ equation, the homogeneous and non-homogeneous cases will be treated separately.

TWO-DIMENSIONAL HOMOGENEOUS CASE
Mesh

A regular, square, graded mesh, as shown in Figure 7b has been chosen for the solution of both
homogeneous and non-homogeneous problems. The term “‘regular” means that in any given coordinate
direction the mesh spacing is constant within each subdivision of the graded net. Forsythe and Wasow
(1960) have noted two considerations which favour the regular spacing of nodes in digital computing.
First, for irregular nets the determination of the appropriate finite-difference equations to replace the
partial differential equation requires an amount of computation which may be prohibitive. Second, for
maximum speed, automatic computers demand simplicity of structure in a problem and regular
networks are much simpler than irregular ones. Of the available regular meshes (square, rectangular,
triangular, hexagonal, etc.) the square net and the rectangular net are the most suitable for the present
problem. The availability of the finite-difference mathematics and error analyses for square nets is an
added advantage to the non-professional mathematician.

A “graded” net is one in which several degrees of refinement of mesh spacing are used. In the
present problem the field is subdivided into five horizontal strips with three different mesh spacings (h,
2h and 4h) as shown in Figure 7b. These are two reasons for using this graded net:

1. The water-table configuration must be approximated by a series of straight-line segments
joining various mesh points; a large number of nodes in this region allows a more accurate
approximation. On the other hand, the construction of equipotential contours in the lower
region does not require this much refinement and a sparser network can be used.

2. A refined mesh is needed to reveal the solution in more detail in interesting regions within the
overall field. Such regions are most likely to occur in the upper zone near the surface or as
horizontal aquifers or aquicludes at depth; hence the inclusion of the horizontal zones of
intermediate mesh spacing (2h).
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The method of identifying nodal points can be described with reference to Figure 7b. Each
vertical line in the mesh is designated by the notationI=1,1=2,..... .. , I =N; each horizontal line
isdenoted by J=1,J=2_....... , 4 =L (N =57, L=24in the diagram); the intersection of the Ith
vertical line with the Jth horizontal line represents the location of the node (I,J). In the graded mesh
many of the vertical lines do not extend across the full field and along such lines, nodal points exist
only where the line is defined. For example, there are no nodes at the intersections of the line I = 3
with the horizontal lines J = 1,2,9 or 10. The total number of nodes is thus considerably less than
N x L.

The boundaries between regions of different mesh spacing occur along the horizontal nodal lines
J=JA,1=1JB,)J=]C,and J=JD (JA=3,JB=8,JC=10,JD = 12 in the example). These four values
are input parameters in the programmed solution and can be varied to suit the needs of each individual
problem. In fact, certain of the zones may be omitted, if desired, to create a simpler mesh. In all, seven
different networks can be defined by the appropriate designation of the parameters JA, JB, JC and JD.
They are denoted by MESH = 1, MESH =2, ....... , MESH = 7 and are shown schematically on
Figure 8. MESH = 7 is the general network previously shown in Figure 7b. It should be noted that the
refinement across a given interface is always half the larger mesh spacing. This is a necessary condition
in the development of the finite-difference equations for interfacial nodes.

While the use of a graded mesh from the point of view expressed above is desirable, in practice a
severe limitation on its use was found to exist. This limitation lies in the difficulty of defining the
optimum relaxation factor. The nature of this parameter and the difficulties associated with it when
working with a graded mesh are discussed later in this chapter under the heading “Solution of
finite-difference equations” and in Appendix B where the computer program for the numerical method
is presented. Of the six numerical computer programs written, only one incorporates the seven graded
meshes. A regular square or rectangular mesh has been used throughout the rest of the study. In the
interests of completeness and generality, however, the following sections include discussions of the
graded as well as uniform meshes.

Finite-Difference Equations for Interior Nodes

An interior node is one which occurs within one of the graded subdivisions of the field; it does
not lie on an external boundary nor on an interfacial boundary between different mesh sizes. Such a
node has four neighbouring nodes equidistant from it.

To find the finite-difference equation for an interior node in the homogeneous case, we must
replace the second order partial derivatives of Laplace’s equation:

(3.1) ¢xx + ¢z = O

by differences. Let us consider the first term of this equation first. recall that the definition of the
partial derivative with respect to x of a function of two variables ¢(x,z) is:

8¢ _ lim ¢(x + hz) — ¢(x,2)

(3.4)

sx h-0 h

On a digital computer it is impossible to take the limit as h-0 but it is possible to approximate the
limit by assigning to h some arbitrarily small value; in fact, we have already done so by designing a
nodal network with a mesh spacing of h.

For any value of z, say zo, we can now expand ¢ (X,z,) in a two-term Taylor’s series expansion
about the point (X¢, o) as follows:

(x - Xo)?

5 Pxx (£,20)

(3.5) 9(x20) = ¢(X0,Z0) + (X — Xo) Px(X0,20) +

_ 2
where: x < ¢ < xg and w oxx (§,z9) is the Lagrangian form of the remainder

(Sokolnikoff and Redheffer, 1958). If we let x = x4 + h (this is known as a forward difference, see
Figure 9a), equation (3.5) becomes:
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To obtain the approximation for ¢xx we write the difference equation for ¢xx in terms of ¢x using the
forward difference expression (3.8) as follows:

2
(3.6) ¢ (xo + hzo) = 0(X0,20) + hox(X0,20) + % dxx (§,20)

and

(3.7 ¢x(x0.z0) = ko + h’ZO)h_ ?(Xo.0) - % Pxx (§Z0)

If we approximate ¢y by:

¢(xo + hzo) — ¢(Xo0.20)

(3.8) 9¢x(X0,20) = h

the truncation error will be:

(39) Ep = - % oxx (£:Z0)

where: xo < £ < Xg + h

We can obtain a similar expression to (3.8) by substituting the backward difference x=x, — h into
(3.5). This yields: '

¢ (x0,20) — #(xo — hyzg)
h

(310) (,")x(Xo,Zo) =
with a truncation error

h |
(3.11) Er = ) oxx(£,20) ;3 Xo — h < § < Xx¢

ox (X0 + hzg) — $x(Xo0.20)
h

(3.12)  ¢xx(X0,Z0) =

and substitute the backward difference expression (3.10) for ¢x in (3.12).

Therefore:

$p(xo + hzo) — 20(x0.20) + ¢(xo — hjzo)
h’l

(3.13)  ¢xx(Xo0.z0) =
It can be shown (McCracken and Dorn, 1964) that the error due to truncation is:

h? |
(3.14) Ep = - 1 oxxxx(EZo) ; Xo —h < § < x9 + h

In a similar manner, we can develop a difference expression for ¢z, the second term of Laplace’s
equation:
¢)(XOJZO + k) - 2¢(X0)ZO) + ¢(X0720 - k)

k2

(3.15)  ¢zz(x0,20) =

For a square net, h = k, so that

¢ (X020 + h) — 20(x0.20) + 9(X0,20 — h)

(3.16) 72 (Xo,20) = h2

and Laplace’s equation:
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(B.1) ¢xx + ¢z2z = 0

becomes:
3.17) }]1‘2 [¢(xe + hzo) + 9(xo — hjze) + ¢(X0,20 + h) + ¢(Xe,20 — h)

- 4p(x0,29)] = O

and

(.18) ¢ (Xozo) = -“{ [6(xo + hze) + &(xo — hzo) + $(Xozo + h) + d(Xozo — h)]
for each point (xo, zo ). If we let (xq, Zo) be the nodal point (I,J), we have:

(3.19) (1)) = % [o(l + 1) + o0 = 1D+ ¢(J + 1) + ¢(J — 1)]

For any node (I,J), we can represent (3.19) schematically as shown in Figure 9b. Such a diagram,
which depicts the pattern of points involved in a difference operator together with the appropriate
numerical coefficients, is called a stencil.

When MESH = 1 (figure 8), equation (3.09) holds for each interior node in the field. For the
refined meshes, (3.19) becomes:

(3.20) (L)) =% e + 20) + o(1 - 20) + o1} + 1) + ¢(1J - 1]
for interior points in the zone of intermediate mesh spacing, and
(B21) ¢(1d) = %[q&(l + 40+ ol —4T) + o + 1) + ¢(LJ = D]

for interior points in the zone of largest mesh spacing.

Equation (3.19) is known as the standard 5-point Laplace difference equation. It is also possible
to arrive at a different 5-point approximation using the square of nodes surrounding the node in
question. There are also 9-point approximations, 20-point approximations and many others (Forsythe
and Wasow, 1960). These more complicated formulae offer higher accuracy but do not offer any other
advantages and often have serious disadvantages.

Schenk (1963) has used a less rigorous method of arriving at a finite-difference representation of
Laplace’s equation in his book on computer methods in heat flow. An analogous groundwater
derivation would be as follows. Consider Figure 9¢ which represents the node (I,J) and its neighbouring
nodes. Groundwater is considered to flow between the node (I-1, J) and (1,J) along a channel that is h
units long, h units wide, and one unit deep perpendicular to the paper. Darcy’s law states that

- ¢
(322) Q = KA £F

so that the flow into the node along this channel is

Kh[¢( - 1) - ¢(1,))]

(3.23) Q = X

Considering the flow into the node from all four neighbouring nodes we have
(324) Q = K{[w(l - L) - o@D + [¢d + LI) - (D] + [e(I + 1) - o(1,)]
+ lo(I = 1) = oD}
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but Q = 0 for steady-state conditions and we arrive once again at

(3.19) ¢(1)) = %[gb(l + 1) + 00 = L) + o) — 1) + ¢(1) + D]

A more thorough treatment of the error analysis touched on by equations (3.9), (3.11) and
(3.14) can be found in Forsythe and Wasow (1960) or McCracken and Dorn (1964).

We have defined suitable finite-difference approximations (3.19), (3.20), (3.21) for Laplace’s
equation for each interior node in a square, graded mesh. Similar expressions can be developed for a
rectangular mesh by omitting the h =k simplification.

Finite-Difference Equations for Nodes on the Boundary

The finite-difference expressions for nodes on an external boundary must satisfy both Laplace’s
equation and the boundary conditions at that point. We will consider first the basal impermeable
boundary (J = 1). Along this line each node (I, J) has only three neighbouring nodes. For MESH =1,
(Figure 8) they are (I1—1,J), (1 +1,J)and (I, ] + 1). In order to satisfy the boundary condition of no
flow across the impermeable boundary we imagine an image node (I, J — 1) such that ¢(1,J-1) =
H1,J+1). The finite-difference equation then becomes:

(3.25)  ¢(L)) = ;—[¢(1 13 4 6@ + L) + oI + 1) + ¢ - D]
or
(3.26) o(,]) = 4l[¢(1 —1J) 4 ¢l + 1) + 26T + D]

The same result can be obtained using Schenk’s analysis with a horizontal flow channel of h/2 units
and a vertical channel of h units.

For a node on the left impermeable boundary:

(3.27) ¢(1)) = —[¢(1J + 1) + o] = D + 20 + 1I)]

1
4
and for the left corner node:

(3.28) ¢(l)) = 51[¢(1,J + 1) + ¢(0 +1D]

Similar expressions hold for the right vertical boundary.

If MESH = 1, the I, J coordinates of the neighbouring nodes may differ from the above equations
and will vary with the mesh spacing. The stencils for equations (3.26), (3.27) and (3.28) as well as all
other boundary configurations are included in Figure 12.

The fourth boundary of the region is the water table. Its configuration is approximated by a
series of straight-line segments joining the nodes nearest to the actual position of the water surface
(Figure 10a), As shown in Chapter 1, the value of ¢ on the water-table and therefore at these
representative nodes is just the elevation of the water table above some basal datum plane. The nodal
point location of the water table and the values of ¢ at these nodes are the input parameters in the
digital computer solution using the numerical method. All nodes above the water table are given the
value 0 and are excluded from the iterative procedure used to solve the array of finite-difference
equations.

The possible presence of a steep water table as shown in Figure 10b necessitates the development
of another finite-difference expression. The standard S5-point formula (3.19) is not applicable since the
point (I-1, §) lies above the water table and ¢(1-1, J) has been arbitrarily set equal to zero. For this

situation, the Mikeladze formula for the improvement of boundary values is used (Panov, 1963). The
resulting expression is:
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Figure 11.  Graded mesh

(3.29) ¢ = 1—18{&;)(1 Sl o+ 4+ LY+ 30T + D+ o) - ni}

where by symmetry:

(330) 60 = 5, ) = JAI + 1) + 60 — 1, J ~ 1))

Similar expressions can be developed for steeper water tables (for example, one which traverses
three vertical squares to one horizontal), as well as for negative slopes. The various possibilities are
included in Figure 12 and the stencils in Figure 13.

Finite-Difference Equations for Nodes on Interfacial Boundaries in a Refined Mesh

Figure 11 shows a typical boundary between two sizes of mesh spacing. The standard 5-point
formula can be used for points such as (I, J=1) which are entirely within the large mesh or for points
entirely within the small mesh such as (I,J + 1). For the node (I,J) we have:

(3.31) o)) = i[cb(l =20 + o + 20) + ¢ + 2 + oI - 1]

There are several possible formulae for the node (1 + 1, J) (Forsythe and Wasow, 1960). The simplest is
to obtain ¢(I + 1, J) as an average of its two nearest horizontal neighbours.

Nodes which are on both an external boundary and an interfacial boundary have separate
finite-difference expressions but offer no new concepts. Special formulae are also necessary when the
water-table configuration is represented by a node on the first horizontal line above a mesh interface
(for example: the line J + 1 in figure 11). In all, 40 different finite-difference expressions are needed to
treat all the nodal cases which occur in the most general mesh. Their occurrence is shown in Figure 12
for MESH = 7, and the corresponding stencils are detailed in Figure 13.

Solution of Finite-Difference Equations

The previous sections have shown how Laplace’s equation (3.1) and its attendant
boundary conditions (3.3) can be discretized into a system of n simultaneous linear algebraic
equations, one for each node of an n-node mesh. There are also n unknowns, namely, the
values of ¢ at each of the n nodes. The method of solution of such a system of equations varies with n;
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Cramer’s rule or Gauss elimination is used for small n (say 3 or 4), hand relaxation when n is larger but
tractable, and iterative solutions using a digital computer for very large n. For the problem of regional
groundwater flow, large intricate meshes are necessary and the value of n is generally of the order
2,000 to 12,000. In this case, the only possible method is an iterative solution.

The simplest iterative procedure is the Gauss-Seidel method which can best be described
following the treatment in McCracken and Do (1964). Consider as an example, n = 3 (i.e. 3 equations
in 3 unknowns):

(3323) d11Xy + d192X2 + d13X3 — bl
(332b) A7 1X1 + d72X9 + dp3X3 — bz
(332C) dz1X1 + ad32X, + d33X3 = b3

Ifayy,a,,,and az; are all non-zero, we can rearrange (3.32) to read:

(3.33a) x, = aL (by — aj2X; — ajj3x3)
11

(3.33b) x5, = a—l— (br ~ a;1X; — a33X3)

22

1
(333¢c) x3 = — (b3 ~ az;x; — a32X2) -
d33

Take any first approximation to the solution and call it x,(®), x,(°), x;¢®)_ This approximation can
then be used in (3.33a) to solve for a new approximation as follows:

(3.342) x, ) = L

a1

(b, - al2x2(0) - a13743(0))

Then using (3.33b) and the value x, () from (3.34a), we can calculate:

(3.34b) Xz(l) = a—l (b, - azlxl(]) - a237(3(0))
22
Similarly:

(3.34¢) x; () = 1 (bs — az,;x, ) - a327(2(1))

d33
We have now completed the first iteration. The resulting values of x, ('), x, (1), x5¢1 are then used in
the same way to obtain the results of the second iteration x, ?), x,?), x3(2). The process is continued
until the results of two successive iterations differ by an amount that falls within a specified tolerance.
The convergence of the iterative scheme is guaranteed in the case of a system of n equations if two
conditions are satisfied. In the nomenclature of (3.32) these sufficient conditions are:

(3.35) lajl = laj |+ + lajioy |+ 13l +oo o+ ain |
for all i; and for at least one i:
(3.36) ajil > fag, | +--- - + lajji—, | + iajj+, | +- -+ lajnl

Now let us examine a few of the finite-difference equations of our discretized boundary value
problem. Figure 14 lists the appropriate equations for nine points about the origin, together with the
(1, J) coordinates of these points and the number of the source finite-difference equations as developed
in the preceding sections.

It is immediately evident that the system of n equations is sparse (i.e. most of the coefficients are
zero) and it can be séen by inspection that the conditions (3.35) and (3.36) are satisfied.
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The case of n equations in n unknowns can be expressed in matrix form as
(3.37) A¢ = B
or
(3.38) ajj9j = bj

where
A = ajj = matrix representation of the coefficients of ¢ a@Qn.

B = bj = matrix representation of the elements of the right-hand side of the n finite-difference
equations (Figure 14). For those points where one of the terms in the finite-difference
expression is an input value along the water table, the right-hand side will be non-zero.

Another way of stating the sufficient conditions (3.35) and (3.36) is that the iterative procedure will
converge if the spectral norm u of the matrix C = I-A is less than one. A is defined above and I is the
identity matrix. The spectral norm is always less than one for Laplace’s equation (Young, 1954; Fayers
and Sheldon, 1962), if a uniform mesh is used.

A marked improvement in computing time can be accomplished by introducing a relaxation
parameter, w, in the Gauss-Seidel method. This is done by overcorrecting the values of ¢ (I1,J)
obtained from (3.19) through (3.30) as follows:

(3.39) ¢>(I,J)8;)rr = woa)® + (1 - ) ¢(1,J)S;r‘rl)

(L[4 @4 @G|9

(L3 @3 G 413

(LI2) (@lf2) @G22y 4|2

(L @1 @1 4 1

) SOURCE
COORDINATES|  FINITE -
OF DIFFERENCE | NINE REPRESENTATIVE FINITE-DIFFERENCE EQUATIONS
POINTS EQUATION | FROM THE SYSTEM OF n EQUATIONS
a, 1) 3.28 20(1, 1) — (2, 1) .o — #(1,2)=0
2 1) 3.26 —o(1, 1) +46(2, 1) —&(3, 1).......... —26(2,2)=0
3.1 326 | ... —¢(2, 1) +4¢(3, 1) —¢(4, 1)—29(3,2)=0
1,2) 3.27 — (L, 1) +46(1,2) —2¢(2,2) —#(1,3)=0
(2,2) 319 | ... — (2, 1) —é(1,2) —46(2,2) —#(3,2) —¢(2,3)=0
(3, 2) 319 | —¢@, 1) —$(2,2) ~48(3, 2) —4(4, 2) —9(3,3)=0
(1,3) 3.27 | —é(1, 2) +4¢(1, 3) —26(2, 3) —¢(1, 4)= 0
2, 3) 309 —(2,2) —o(1, 3) +46(2, 3) —4(3,3) —$(2,4)= 0
(3.3) 3.9 | —¢(3, 2) —6(2, 3) +46(3, 3) —é(4, 3) —4(3,4)=0

Figure 14.  Representative finite-difference equations
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where:

¢(1,J)g;)rr = corrected value of ¢(1,J) for k' iteration

o1

value of ¢ (1,J) obtained from (3.19) through (3.30) for kth iteration
¢(1,J)<(:l:);r1)= corrected value of ¢(I,J) for previous iteration

w = relaxation factor

When w = 1, (3.39) reduces to the Gauss-Seidel method. This method when applied to elliptic
difference equations is called the Liebmann method or the method of successive displacements. For
1<w<?2 the procedure is known as the extrapolated Liebmann method or the successive over-
relaxation method. The optimum value of w is given by (Young, 1954):

o 2
3.40) wept = 1 + L
(A <oopt [ ]

where:

1 = spectral norm of C (see discussion following (3.38)). Fayers and Sheldon (1962) note that “it is
difficult to make reliable estimates for 4. u is known exactly for Laplace’s equation in a rectangle but
is not known for regions of general shape and properties”. McCracken and Dorn (1964) have shown the
relation between the number of iterations and w for a particular problem involving Laplace’s equation
in a square region with Dirichlet boundary conditions. This figure and a corresponding one for the
problem under consideration are included in Appendix B. Young (1954) has shown that, using the
optimum w, reductions in computer time of up to 100 times over the standard Liebmann method are
possible for large meshes.

Unfortunately, the extrapolated Liebmann method, using the relaxation factor cw, does not
always converge. Certain necessary conditions on the matrix A (3.37) have been established by Young
(1954) and reported in Forsythe and Wasow: (1960). An advanced knowledge of matrix theory would
be necessary to grasp the full meaning of these conditions. They are stated here in their simplest form
and without further explanation; the interested reader is referred to the paper and text quoted above.

1. Matrix A must be definite.

2. Matrix A must have property (A). A square matrix A of order N is said to have property (A) if
there exists a permutation matrix B such that BABT is diagonally block tridiagonal. BT is the
transpose of B.

When a regular square of rectangular mesh is used in the numerical mathematical model
representing regional groundwater flow the resulting matrix satisfies the above conditions and the
extrapolated Liebmann method always converges. The use of a graded mesh, however, and its
attendant finite-difference expressions causes changes in the properties of the matrix such that the
above two conditions are not always satisfied. Under these circumstances, the definition of the
optimum w, or indeed the question of whether an optimum «w exists at all, becomes a difficult if not
impossible task for the non-professional mathematician. The practical aspects of this problem are
discussed further in Appendix B.

The extrapolated Liebmann method, described above, is an example of an “explicit” iterative
method. That is, at the kth iteration, we arrive at a value of ¢ (I,J) which can be determined by itself
without the necessity of simultaneously determining a group of other values of ¢ for other (I, J). “In
contrast are implicit formulas, by which a group of components of ¢ (1, J) are defined simultaneously
in such an interrelated manner that it is necessary to solve a linear subsystem for the whole subset of
components at once before a single one can be determined,” (Forsythe and Wasow, 1960). An implicit
procedure which has been successful in many cases and which can result in savings in computer time of
up to 25 times over the extrapolated Liebmann method is the alternating direction implicit method of
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Peaceman and Rachford (1955). Fayers and Sheldon (1962) state: “For Laplace’s equation in a
rectangular region it has been demonstrated that the method will converge significantly faster than the
successive overrelaxation procedure. Unfortunately, a mathematical analysis of the rate of convergence
of the method does not exist for general problems ........ ” Young also warns in Todd (1962): “In
spite of the apparent advantages of the Peaceman-Rachford method, there are several reasons why one
might hesitate to use it for some problems in preference to successive overrelaxation. The latter
method is undoubtedly simpler. Also the basic formulas for the Peaceman-Rachford method are
considerably more complicated ..... The Peaceman-Rachford method may well be better for
sufficiently small h but it is not clear whether, for a given case, it will be better for the particular value
of h being used. Moreover, although the theory underlying the successive overrelaxation method has
been extended to include a wide class of partial differential equations, including Laplace’s and to
include nonrectangular regions, the theory for the Peaceman-Rachford method is limited to problems
involving a very restricted class of partial differential equations and the rectangle.”

For these reasons and because computer times were not found to be excessive, the extrapolated
Liebmann method of successive overrelaxation has been used in the present study. The use of
alternating direction implicit scheme should not, however, be ruled out for hydrogeological studies. In
particular, the adaptation of the Peaceman-Rachford method to three dimensions by Douglas and
Rachford (1956) may prove useful. ‘

TWO-DIMENSIONAL NON-HOMOGENEOUS CASE

The regular square and rectangular mesh configurations used in the homogeneous case are equally
suitable for the non-homogeneous case.

The fundamental difference between the two cases is the necessity of solving Richards’ equation:

(3.2) [K(x2)¢xlx + [K(x,2)¢z]z = O N

when the permeability becomes a function of position as opposed to the simpler Laplace equation
(3.1) which holds when the permeability is homogeneous. Richards’ equation (3.2) belongs to a class of
equations known as ‘‘quasi-plane-harmonic” (Southwell, 1946). Discretization of boundary value
problems involving quasi-plane-harmonic partial differential equations can be carried out using the
usual finite-difference approximations to the first and second order partial derivatives occurring in the
equations. As shown in the development of the finite-difference expressions for Laplace’s equation in
the homogeneous case, we can approximate ¢y at the point (x¢, Zo) by:

¢(xo + h,zo) — ¢(Xo,Z0)

(3.8) ox(x0,20) = o

or by:

¢(X0,Zo) —_ ¢(X0 - h,Zo)

(3.10) ¢x(x0,20) = h

Adding (3.8) and (3.10) yields:

¢(xo + hz¢) — ¢(xo — h,Zo)
h

(3.41) 2¢x(x0,20) =

Therefore:

¢(X0 + h,Zo) - ¢(X0 - h,ZO)
2h

(3.42) ¢x(x0,20) =

- We have now defined a third finite-difference approximation to ¢x(x¢,Zq)-
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Similarly:

¢(XO>Z0 + h) - (p(XO;ZO - h)
2h

(343)  ¢zx0.20) =

In the simplified notation of Figure 15a, we let (xq, z¢) be the node A and let B, C, D and E represent
the surrounding nodes. We then have:
$B — ¢D

(344 (Gp = =

$E — @C

(345) (x0a = 2o

It is not necessary, however, that h always represent the nodal spacing and ¢x and ¢, always be
approximated at a node. The finite-difference expressions are equally valid if we let h become half the
mesh spacing h/2 and use (3.42) and (3.43) to approximate the derivatives of ¢ at the mid-points
between the nodes. Referring to Figure 15b we then have:

(346) (o0 = B2
(347) oy = AP
Ga8) GO = LA
(349) oy = A%

Returning to Richards’ equation (3.2) we now approximate the first term at the point A by:

(Ko — Koxpy
h

(3.:50) ([K(x,2)dxlx)A =

then using (3.48) and (3.49) we obtain:

Kif(¢a = ¢¢) — Kpv(@g — é4)
h’l

G5 ([K(x2)dxlx)a =

Similarly the second term of Richards’ equation becomes, using (3.48) and (3.49):

Kin@a — ¢p) — Kilep — ¢a) .

2

(3.52) ([K(x,2)dz]2)p = h

Adding (3.51) and (3.52) and equating to zero as in (3.2) yields for the finite-difference approximation
at the point A:

(3.53) Ki(ép — ¢A) — Kin@a — ¢p) + Ky (@g — 04) — K[j(¢a — ¢0) = O
or

Kiop + Kp¢c + Kpep + Kpyeg

3.54 =
(3:3%) 9a Ky + K + Ky + Kyy

Reverting to our (I, J) coordinate system, let us consider an interior node (I, J) and its four nearest
neighbours. In the general non-homogeneous, anisotropic case we allow a different horizontal and
vertical permeability to be associated with each nodal point. If we arbitrarily select the notation shown
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Figure 15.  Development of finite-difference equations for two-dimensional,

non-homogeneous case
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in Figure 15¢ with Ky (I, J) referring to the permeability between the nodes (I, J) and (I, J + 1) and
Ky (1, 1) referring to that between (I, J) and (I + 1,1), equation (3.54) becomes:

[Kyd,) - o + 1J) + Ky(LDHo@J + 1)

+ Ky - 1.0)-¢d - L) + Ky@J - 1) ¢ (1J — 1]
[Kg@J) + Ky(@L,) + Ky - 1J) + Ky@J - D]

(3.55) (1)) =

Once again the non-rigorous Darcy’s Law approach can be used to gain an intuitive understanding
of the physical meaning of the finite-difference equation. In Figure 15d, the inflow into the node (I, J)
from the node (I-1, J) is:

Kud - 1.0 -h-[od - 1) - ¢(@1d)]

(3.56) Q = -

Upon considering the components of flow into (I, J) along the flow channels from the other three
neighbouring nodes and summing to zero (steady-state conditions), we are led once again to (3.55).

Equation (3.55) is the finite-difference expression for an interior node in the general
non-homogeneous, anisotropic problem. For the non-homogeneous but isotropic problem where:

(3.57) Ky(d,J)) = Ky(@J) = K@)
(3.55) becomes:

{KAD [0 + 11 + 000 + D] + K@= 1.0)6(1 = L1 + KAJ = Do(Ld - 1}
(3.58) (1)) = 2KA)) + K1 - 1)) + K@J - 1)

If we wish to study layered structures in which the permeability remains constant across an entire
horizontal line of nodes, then K varies only with depth and (3.55) becomes:

KOV + 1.0) + ¢ — 1) + o(L] + 1)] + KJ - D@ — 1)}
3KO) + KO - 1)

(3.59) ¢ (1)) =

Comparison of equation (3.55) and its corresponding stencil (Figure 15¢) with equation (3.19)
and its stencil (3 in Figure 13) will reveal a close relationship between the finite-difference equations of
the homogeneous and non-homogeneous cases. In fact, all 40 homogeneous finite-difference equations
can be adapted to suit the non-homogeneous and/or anisotropic cases with the aid of the stencils of
Figure 13 and the permeability notation shown in Figure 15¢. As an example, consider equation (3.27)
(stencil 28 of Figure 13) for the isotropic non-layered case. The new finite-difference expression is:

KO [o(IJ + 1) + 2¢(1 + 1,D)] + K(I,J -~ Do(dJ - 1)

(3.60) ¢(1)) = 3K(LJ) + K(IJ - 1)

A more complicated example would be the adaptation of (3.29) (stencil 30 of Figure 13) to the case of
a layered media. The new equation is:
{K(J)[3¢(I,J + 1D+ 491 + L) + 8¢(1 — 20)] + KU - 1) 3¢(1J - l)}

Go1) ¢d)) = ISK(J) + 3K(J ~ 1)

For those cases such as equation (3.31) (stencil 6 of Figure 13), it is necessary to average K(J) and K(J
+ 1) to obtain the permeability to be applied between the nodes (I, J) and (1, J + 2).
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THREE-DIMENSIONAL CASE

The mathematical model for the three-dimensional case is a nodal array (Figure 16a) with a mesh
spacing of h in the x and y directions and a mesh spacing of k in the z direction. In plan (i.e., looking
down from above at any x-y plane) the model may approximate any arbitrary areal extent of a
groundwater basin (Figure 16b). As in the two-dimensional case, the model is bounded on all sides by
vertical impermeable boundaries and at the base by a horizontal impermeable boundary. The values of
the potential (expressed as the head of water above the basal datum) along the water table are inserted
in the appropriate nodes to approximate the position of the water-table surface. The computer
program is limited to cases where, the water table does not jump more than one vertical node in each
horizontal mesh spacing. The origin is at the front lower left of the model, and as shown, it may be
outside the actual physical extent of the groundwater model. The manner in which such nodes are
removed from the iterative procedure is covered in the data deck instructions for Numerical Program 6
in Appendix B. This computer program is written for the three-dimensional case which is
non-homogeneous but isotropic, with respect to permeability. We will use the Darcy Law approach to
calculate the finite-difference expression for an interior node in the array for the non-homogeneous
isotropic case. The permeability K (I, K, J) associated with any node (I, K, J) is assumed to apply along
the three positive axes extending from (I, K, J) to its neighbouring nodes. Referring to Figure 16¢c,
consider the steady-state flow into the node (I, K, J,) from its six neighbouring nodes. We have:

[‘V(I - 13K’J) - (P(I’KJ)] [‘P(I:K - laj) - (/:’(LK:J)]

(3.62) K({ - 1,K.J) : hk + KK - 1.3) - hk
(K — 1) — o(LK,J LK + 1.3) - ¢(LKJ
+ K([,K,J _ 1) [(IU( EEt l)k (V( Pt} )]h2 + K(I,J’K) [(P( ,K 1, )h (p( WK )]hk
51 + 1K) - o(LK,J (KT + 1) — o(1KJ
+ kaxn 17 J) — oK KAKJ) [pLKI + 1) ~ 90KD] 5 _

h k
Multiplying through by 1/k and letting h/k = a we have, after collecting terms:

(3.63) ¢(1LKJ) = {KAKD [¢(1 + LKI) + ¢(IK+ 1)) + a?$(LKJ + 1)]
+ KO-t KD o(I-1KJ) + KIK-1,0)¢(IK-1]J)

+ KAKJ - 1) $(1K,J -1)a}

{2+a®KAK ) + KI- 1K) + KIK - 1)
+ a’K(IKJ - D)}

The same expression may be developed using the standard finite-difference approximations used in the
previous section.

Similar equations may be derived by either method for nodes on an external boundary.

A uniform mesh is used in the three-dimensional model so there are no finite-difference
expressions for nodes on a mesh boundary.

The extrapolated Liebmann method using the relaxation factor w is employed in the computer
program (Numerical Program 6, Appendix B) for the three-dimensional case.

DIGITAL COMPUTATION

Six computer programs have been written using the numerical method to solve the boundary
value problem representing regional groundwater flow. The computing meshes and finite-difference
equations used in the programs have been developed in the preceding sections; the extrapolated .
Liebmann method has been used throughout. The complete FORTRAN IV printout of each program,
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together with a listing of the FORTRAN variable names, the necessary input data, the input deck
format, recommended values for certain parameters and a discussion of the factors affecting solution
speed are included in Appendix B.

The output from these programs is a printout of the value of ¢ expressed as the head of water
above the basal datum plane, at each node point in the mesh. Special subroutines, for use on an
automatic x-y plotter, which enable contoured plots of the potential field to be constructed, can be
incorporated in the program if a plotter is available. These subroutines are included in the programs in
Appendix B. Having once obtained the plotted results, the flow pattern can easily be constructed by
drawing flow lines orthogonal to the plotted equipotential lines. Numerous examples of the resulting
flow nets are included in Chapters 4, 5 and 6.
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CHAPTER 4

Comparison of Analytical and
Numerical Methods

INDEPENDENCE OF METHODS

Analytical solutions to the mathematical model representing regional groundwater flow have
been presented in Chapter 2 and numerical solutions in Chapter 3. It is important to note that the two
methods are entirely independent. While both approaches employ mathematical solutions, they
represent two different branches of mathematics. In the analytical solutions, the theory of partial
differential equations and Fourier series is used; in the numerical method, recourse is made to the field
of numerical analysis. One can therefore consider the two approaches as two different modelling
methods as independent from one another as, say, a sand model is from an electric analog.

Having clarified this point, we can proceed to compare the solutions obtained by the two
methods so that each can be used as a check on the other.

MATCHED SOLUTIONS

We are limited, of course, in our comparison of solutions, to cases which can be solved by both
methods. Due to the limitations of the analytical method, we are restricted to homogeneous or layered
media. In addition, the analytical solutions are obtained using the rectangular approximation while the
numerical solutions can be obtained in a region more representative of the true groundwater basin.

Figure 17 shows four sets of matched solutions. Only the potential nets are shown. Flow lines
could be constructed orthogonal to the equipotential lines but for the sake of clarity they have been
omitted. (Several of the flow nets in Chapter 5 show both flow lines and equipotential lines.)

Figure 17a is an analytical solution, using the rectangular approximation, for a homogeneous
medium with a water-table configuration represented by a sine curve superimposed on a constant
regional slope of 0.02. This is one of the cases treated by Toth (1963). Figure 17b is the identical
problem solved by the numerical method. For the sake of comparison the rectangular approximation
has been maintained. Qualitatively the results are identical; quantitatively there are some very slight
differences. At point A, the equipotential lines are closer together in the numerical solution than in the
analytical; at point B in Figure 17b, the equipotential has a configuration somewhat different from the
corresponding equipotential in Figure 17a.

The reason for these minor deviations lies in the nature of the convergence inherent in each
method. In the analytical solution, the result is in the form of an infinite series which, when
programmed for the computer, must be represented by a finite number of terms. A small truncation
error is thus introduced. In the numerical method, the iterative procedure converges to a solution. It,
too, must be truncated when an acceptable tolerance has been reached. Therefore, a slight error due
to incomplete convergence is always introduced.

Considering the total independence of the two approaches, and despite the very minor variations,
the author considers Figure 17 (a and b) to represent an excellent check on the methods.

Figure 17c is a numerical solution to the same problem as Figure 17 (a and b) but without the
rectangular approximation. The values of the potential along the water table, rather than being placed
along a single horizontal line are inserted at the node nearest the actual position of the water table. In
Figure 17c, a small nodal array (51 x 27) was used and the “nearest node”” was always located on one
of two horizontal nodal lines. In this problem, the rectangular approximation is improved only to the
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degree that a single step is introduced. The use of a larger nodal array would allow the water table to be
represented in a stepwise fashion involving several steps instead of just one.

The quantitative effect of this slight improvement in the representation of the groundwater basin
can be seen in Figure 17¢. The central equipotential which meets the basal boundary at 0.5s in Figure
17b is shifted upstream in 17c. The configuration of the equipotentials in the upper right-hand corner
is also somewhat affected.

Figure 17 (d and e) represents an analytical and numerical solution in a region more
representative of a real groundwater basin. The lateral extent of the basin is 12 times its depth. The
water-table configuration is that of a flat alluvial valley at the left, a steep valley flank, and a gentle
constant regional slope. The total relief over the area is 0.0167 times the lateral extent of the basin
(1,000 ft in 60,000). The media is homogeneous. In Figure 17d (the analytical solution), the
rectangular approximation is used. In Figure 17e (the numerical solution), the water table is
represented in stepwise fashion. Once again the results are qualitatively identical but the closer
approximation to the true basin inherent in the numerical method results in slight quantitative
differences in the upstream half of the basin.

Figure 17 (f and g) shows a non-homogeneous example, involving three layers with the relatively
more permeable layer in the middle. The water-table configuration might result from a composite
topography consisting of a major valley, a gentle constant slope, and hummocky terrain in the
upstream portion of the basin.

All the previous examples involve rather complex water-table configurations. Figure 17 (h and i)
shows the perfect match obtained for a homogeneous case with a simple water table.

Many other anlytical-numerical matched solutions were obtained but the four presented in this
section should be sufficient to indicate the compatibility of the results. The fact that the answers
obtained by the two independent methods are, in effect, identical is taken as proof that the results of
each method are correct.

RANGE OF VALIDITY OF THE RECTANGULAR APPROXIMATION

The matched solutions of Figure 17 show the deviations from the true answer which result from
the use of the rectangular approximation. A natural question arises: “What is the range of validity of
the rectangular approximation? ”, or more succinctly: “Is there a limiting value of the regional
water-table slope above which the analytical method of solution is not valid? .

The answer is somewhat nebulous and can best be summed up as follows: qualitatively, the
rectangular approximation is valid for large regional slopes of 5-10 degrees; quantitatively, it becomes
invalid at very small regional slopes of the order of 1-2 degrees.

The qualitative aspects of a regional groundwater flow system consist of the relative distribution
of recharge and discharge areas and the depth, extent, and order of the component sub-basins within
the large regional basin. The quantitative results are the numerical values, at any point in the flow
system, of the hydraulic potential, the groundwater velocity, and the quantity of groundwater flow.

As shown by the comparisons of Figure 17, the qualitative aspects of the flow patterns are
unchanged by the use of the rectangular approximation. This has been shown to be true for regional
slopes of up to 5 per cent and would apparently hold for any: realistic regional water-table slope.

Quantitatively, the approximation becomes worse as the slope becomes greater and as the depth
of the groundwater basin becomes less. Figure 18 (a through g) shows the effect.

Figure 18a gives the potential pattern for a cross-section through a basin 20,000 feet long and
1,000 feet deep with a uniform regional water-table slope of 0.02. The solution is analytical, employing
the rectangular approximation. Figure 18b is the numerical solution showing the potential values in the
true region. Figure 18c shows the result for a slope of 0.05. In Figure 18, b and ¢ are shown with
dimensionless values along the coordinates. If one considers s = 20,000 feet as in Figure 18a, then the
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contour interval in Figure 18 (a and b) is 20 feet and in 18c¢ is 50 feet.

Figure 18 (d and e) shows the case of a 2 per cent regional water table slope as the upper
boundary of a deeper groundwater basin. Figure 18f is for a 5 per cent slope and Figure 18g, a 10
per cent slope. The contour interval in Figure 18 (d, e and f) is one twentieth of the total head; in
Figure 18g it is one tenth of the total head.

These seven diagrams show that, while the nature of the potential pattern is unchanged, the
actual quantitative value of the potential at any point in the section, especially in the upstream half,
may be overestimated by the use of the rectangular approximation, even for very small regional
water-table slopes, For example, the uppermost equipotential contour in Figure 18a lies to the left of
the lower right-hand comer of the region while it is to the right of the corner in Figure 18b. The
correct value of the potential at this point, as found by the numerical method (Figure 18b), is less than
that found using the analytical method and the rectangular approximation (Figure 18a).

Figure 18 (h and i) offers a comparison for a hummocky water-table configuration. The contour
interval in Figure 18i is twice that in Figure 18h.

ADVANTAGES OF NUMERICAL METHOD

The superiority of the numerical method of solution has been made clear in the previous chapters
of this report. It is the purpose of this section to review the objections to the analytical method and to
list in one place the advantages of the numerical method.

Analytical solutions suffer from three severe limitations:

1. The field must be approximated by a rectangle, thus limiting the quantitative validity of the
results to small regional water-table slopes.

2. Richard’s equation is not amenable to analytical solution. The only non-homogeneous case
which can be solved analytically is the case of n horizontal layers. If n > 3, the solutions
become mathematically inconvenient.

3. It is impossible to represent realistic three-dimensional, water-table configurations by a
suitable boundary condition. Analytical methods are thus limited to two dimenstions.

The advantages of the numerical method can be summed up as follows:
1. The three restrictions listed above are all removed:

(a) The true shape of the field may be represented to a very close approximation. There is no
limit on the regional water-table slope.

(b) Richards’ equation and Laplace’s equation are handled in an identical fashion. The
numerical method is thus capable of treating the general non-homogeneous anisotropic
case.

(c) It is possible to construct three-dimensional models representing groundwater basins.

2. The numerical solution is general. Only one mathematical derivation is necessary in order to
design a computer program which can handle any water-table configuration and any geologic
configuration. (The six numerical computer programs listed in Appendix B all contain the
identical mathematical steps. The difference lies in the complexity of the problem each
program can handle, the corresponding method of punched card input and the resultant
limiting size of the problems.) The analytical method, on the other hand, requires a separate
mathematical derivation for each change in the model. In addition, the mathematics involved
in the numerical method is far simpler than that used in the analytical method.

3. For simple cases, the computer time is approximately the same for either method. As the
complexity of the problem increases, however, the computer times involved in the analytical
solutions increase, whereas those for the numerical programs remain more nearly constant.
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4. Remson, Appel and Webster (1965) have noted that “a great advantage of the
finite-difference digital computer approach is that it is compatible with machine-oriented
methods of data storage and retrieval”. They further state their belief that “machine-oriented
storage will eventually be used for most types of groundwater data. It is likely that
groundwater investigators will have libraries of programs capable of achieving certain types of
solutions. It will be necessary only to take the data deck or tape for a given aquifer and the
suitable program to a nearby computer to achieve a solution”.

For the reasons listed above and particularly in view of the scientific advantages in Section 1 (a),
(b), and (c), the numerical method outlined in Chapter 3 is considered to be the fulfillment of the first
objective of this study, namely to develop a suitable mathematical model and method of solution for
the case of a non-homogeneous anisotropic groundwater basin with any water-table configuration.

The numerical method has therefore been used to carry out the second objective which is the
investigation of the qualitative effects of the water-table configuration and geologic configuration on
regional groundwater flow. The results of this investigation are recorded in Chapters 5 and 6.

The next two chapters are restricted to two-dimensional vertical sections through the basin. The
use of three-dimensional models is discussed in Chapter 7.
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CHAPTER §

Qualitative Results; The Effect of Water-Table
Configuration and Geology on Regional
Groundwater Flow

FACTORS AFFECTING THE POTENTIAL FIELD

Any potential field defining any flow system, whether it be groundwater, heat, electricity, or
otherwise, results from the interrelation of three governing factors:

1. The shape of the region in which the potential field is defined.
2. The existing boundary conditions.
3. The nature of the inhomogeneities in the properties which control the flow within the region.

For the specific potential field representing regional groundwater flow, we have defined the
shape of the region in our two-dimensional numerical mathematical model. The region is roughly
rectangular with vertical sides, a horizontal base and an irregular upper boundary (the water table).
There are two ways in which we can control the shape of the region; by changes in the water-table
configuration, which result in minor changes in the shape of the region; or by changing the
“depth/lateral extent” ratio. By changing this ratio, we can examine all cases from that of a deep basin
of limited lateral extent, to the more usual case of a shallow groundwater basin of large lateral extent.

The boundary conditions which exist on the external boundaries of the region are also explicitly
defined by the mathematical model. The only boundary condition which we can tamper with is that of
the water table and it is not the nature of the boundary condition that we can change but merely its
numerical value and the position at which it is applied. This is done by the delineation of the
water-table configuration.

The property of the medium which affects the nature of the potential field within the region is,
of course, the permeability. We must therefore investigate the effect of inhomogeneity and anisotropy
of permeability on the groundwater flow patterns. In this study we have concentrated our attack on
an investigation of the effects of inhomogeneity; in particular the effect of various geometric
configurations of permeability ratios and the effect of changing the numerical values of the ratios
themselves. A short section on anisotropy, with several examples, is presented to show the applicability
of the method.

We can summarize the factors affecting the potential field as follows:
1. The depth/lateral extent ratio.
2. The water-table configuration.
3. The geologic configuration controlling the permeability contrasts.

The effect of these factors is investigated in the remaining sections of this chapter.
POTENTIAL DIAGRAMS
The results of this chapter are presented in the form of potential field diagrams, representing

solutions to the various cases considered. Seventy-four diagrams are shown (Figures 19 through 25).
The majority of the diagrams show the equipotential net only. A few diagrams (Figure 19 a and h for
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example) include the flow pattern itself in the form of streamlines. (These are not quantitative flow
nets but serve only to indicate the direction of flow.) It is felt that the interested reader can construct
the streamlines either on paper or in his mind, for those cases in which they are not included.

The diagrams are dimensionless, having a lateral length of “s”. The horizontal and vertical
coordinate axes are divided into segments 0.1s, 0.2s, etc. (In the computer programs it is necessary to
specify numerical values for the dimensions of the region; in Figure 19a, s = 60,000 feet. The resulting
flow net will apply to any region with the same depth/lateral extent ratio.)

Three different depth/lateral extent ratios were used, resulting in three different sizes of diagram
(e.g., Figure 19 d,e and f). The least depth/lateral extent ratio was used most because it was considered
to be the most representative of a real groundwater basin,

The diagrams are true scale; there is no vertical exaggeration.

The water-table configuration is shown by a heavy line at the top of the contoured region. Those
plotted points which appear above the water table are due to the approximation of the slope of the
water table in stepwise fashion.

The permeability contrasts are denoted within the field. The permeabilities may also be
considered as dimensionless as it is the permeability ratio which controls the nature of the potential
field. For example, in Figure 20a, the same potential net would result from permeabilities of 10 and
100 as exists for 1 and 10. The quantity of flow through the basin would of course be different.

All the solutions presented in this chapter were obtained using the numerical method.

The computing parameters together with the “depth/s” and “total relief/s” ratios are labelled
beneath each diagram. The depth is measured at the lowest topographic point. The total relief is the
difference in elevation of the water table between its highest and lowest points. For example, in Figure
19a the depth = 0.0833s, total relief = 0.0167s and depth + total relief = 0.1s which is where the water
table meets the right-hand boundary.

The computer run number also gives a certain amount of information. Referring once again to
Figure 19a, the number N-3G-1 tells us that the numerical (N) method was used, employing Numerical
Program 3 and topographic configuration G. The 1 is the actual run number and is of no significance to
the reader. All diagrams which have a G in their computer run number have the same topography.
Other topographies are represented by the letters D, E, F, H, K etc.

In some diagrams, the closeness of the contour interval results in a hodgepodge of dots in one
particular portion of the plot, usually near the major valley sink at the left of the diagram. The author
is assuming that the interested reader can properly appraise each situation without the help of
interpretive lines. For example, at the left end of the K = 1 layer in Figure 20a, the vertical rows of
points are actually the result of closely-spaced near-horizontal equipotential lines. The flow is upward
and the valley is a discharge area as one would expect.

GENERAL EFFECT OF WATER-TABLE CONFIGURATION

The investigation of the effect of the water-table configuration on regional groundwater flow
patterns was begun by Toth (1962, 1963b, c). He considered two cases: a constant gentle regional
slope such as one would expect to find in the flat prairie, and a water table with the configuration of a
sine curve as one might expect in hummocky terrain. With the increased versatility of the methods
introduced in this report, we can now investigate water-table configurations of a more irregular nature,
and ones more representative of actual field conditions.

Figure 19 (a through j) presents 10 flow patterns representative of 10 different water-table
configurations bounding a homogeneous basin. The following table describes the water-table
configurations shown in the diagrams.

It is recognized that these water-table configurations do not represent all possible cases but it is
felt that they constitute a broad enough spectrum with which to obtain generalized conclusions.
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Water-

Figure ng)?ll)t“liz- Description
uration

19a G Gentle, constant, regional slope.

19b F Broad flat valley, with gentle, constant regional slope extending from
valley edge to topographic high.

19¢ T Flat valley, with water table from valley edge to topographic high
represented by a parabola, approximated by five straight line segments
of decreasing slope. The fifth segment is horizontal.

19d E Narrow flat valley with steep valley flank and constant regional slope

extending from valley edge to topographic high. (Configuration D which
appears in Figure 20 is similar to E but one half of the total relief is
taken up in the steep valley flank in D, only one quarter in E.)

19e N As E, but with depth/lateral extent ratio of 0.125 (1:8) instead of
0.08333 (1:12).

19f As E, but with depth/lateral extent ratio of 0.25 (1:4).

15h H Broad flat valley, with water table from valley edge to topographic

high consisting of a series of highs and lows superimposed on a
regional slope.

=

19¢ K A composite of E and H with a broad valley, a steep valley flank, a
gentle regional slope in the downstream half of the basin and a
hummocky configuration in the upstream half.

19i P As H, but with depth/lateral extent ratio of 0.125.

19j S Depth/lateral extent ratio of 0.25. Water table consists of a broad flat
valley and several segments of varying slope.

As stated earlier, we are avoiding the controversy as to whether the water table always mirrors
the topography. It is undoubtedly true, however, that in many cases the water-table configuration and
the topographic configuration will be the same. :

The directions of the stream lines are shown in Figure 19 (a and h). Figure 19a is a recalculation
of one of Toth’s earlier results. The recharge area is the upstream half of the basin, the discharge area
the downstream half of the basin and the so-alled “mid-line” is at the centre point. The position of
the mid line at the mid point occurs only for this constant slope case. It is therefore better defined asa
“hinge line” (or hinge point in two dimensions) which hinges the recharge area and the discharge area.
In this simple case, there is only one recharge area and one discharge area. In Figure 19h, it can be seen
that the result of a hummocky water-table configuration is a series of recharge and discharge areas with
many hinge lines.

The diagrams speak for themselves and little discussion is necessary. The interested reader
should examine each potential plot for its quantitative and qualitative ramifications. Quantitatively,
one can note the gradient at various points in the region and the intensity of recharge or discharge at
various points along the water table. Chapter 6 contains a detailed discussion of quantitative
interpretations. Qualitative points of interest are the distribution of recharge and discharge areas, and
the depth and lateral extent of the component sub-basins of the major groundwater basin. These latter
two points are of sufficient importance to warrant separate sections of this chapter for discussion.

The following is a summary of the conclusions inherent in a perusal of Figures 19a through 19j:

1. In a recharge area, the equipotential lines meet the water table obliquely with the acute angle
on the upslope side. In a discharge area, the acute angle is on the downslope side. At the
hinge point, the equipotential meets the water table at right angles.
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2. The existence of a high in the water-table configuration, whether it be a major regional high
or a minor reversal in slope, results in recharge at that point and for some distance on either
side. The existence of a low results in discharge at that point and for some distance on either
side. (This conclusion holds only for two-dimensional sections taken parallel to the direction
of dip of the water-table slope. In Chapter 7, consideration is given to the adaptation of this
principle to three dimensions.)

3. If the spacing between equipotential contours is x feet, then an equipotential line must meet
the water table at every point along its length which represents an increase in elevation of x
feet. Steep water-table slopes therefore result in many equipotential lines and high gradients
near the water table (and indeed to some depth). Shallow slopes are conducive to low
gradients and near-horizontal flow. Flat slopes represent equipotential lines themselves and
result in very low upward (valley bottom) or downward (hilltop) gradients.

4. A gentle constant regional water-table slope over a homogeneous medium (Figure 19a) results
in flow which is essentially horizontal. Recharge is concentrated at the upstream end of the
recharge area, discharge at the downstream end of the discharge area.

5. The existence of a broad flat valley (Figure 19b) means that while the hinge line is still at
about 0.5s it is now closer to the downstream end of the constant regional slope.

6. A parabolic water table (Figure 19c) results in recharge which is more evenly distributed
down the slope.

7. The existence of a major valley (Figure 19d, e and f) concentrates the discharge in the valley.
The hinge line occurs midway up the steep valley flank. Two zones of concentration of recharge
occur one at the upstream end of the recharge area and the other in the recharge portion of
the steep valley flank and extending just above the break in slope. This quantitative
ramification may be exaggerated in Figure 19d in that the parabolic water table of F igure 19¢
is a more likely configuration than that of Figure 19d.

8. The existence of a hummocky water-table configuration (Figure 19h) results in numerous
sub-basins within the major groundwater basin. Water which enters the flow system in a given
recharge area may be discharged in the nearest topographic low (first-order basin), or may be
transmitted to a distant minor topographic low (second-order basin) or to the regional
discharge area in the major valley bottom (third-order basin).

9. Larger depth/lateral extent ratios (Figure 19i) result in a larger proportion of the recharge
entering the higher-order flow system (i.e., the individual hummocks exert smaller influence
on the total flow pattern).

GENERAL EFFECT OF GEOLOGY

In this section, 26 potential patterns are presented (Figure 20, a through z) in order to show the
effect of a wide range of geologic configurations on regional groundwater flow patterns. In order to
isolate the effect of the geology from that of the topography, only two water-table configurations have
been used. Figure 20 (a through () uses water-table configuration D (a major valley at the left of a
constant regional slope); Figure 20 (r through z) uses water-table configuration H (hummocky
topography). For each of these water-table configurations, a wide range of permeability contrasts are
investigated including two-layer cases, three-layer cases, partial aquifers, and sloping aquifers and
“aquicludes”. Most of the diagrams consist only of the equipotential patern, but a, 1, q and t show the
streamlines. In this section, the diagrams are discussed individually or in small groups in order to
isolate the various features they show. Generalizations regarding the effect of the geologic
configuration are included in the following two sections under the heading “Factors controlling the
distribution of recharge and discharge areas” and “Factors controlling the depth and lateral extent of
groundwater basins”.
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Figures 17¢ and 20 (a and b)

Figure 17e presents the potential pattern resulting from water-table configuration D and a
homogeneous medium. Figure 20 (a and b) shows the effect of the introduction of a basal aquifer with
a permeability 10 times that of the overlying layer. The result is essentially horizontal flow through
the aquifer. It is recharged through.the low permeability layer above. A vertical component to the
flow is thus introduced in the upper layer, one which did not exist in the homogeneous case. One
should note the downstream increase in the gradient in the aquifer. The increase in gradient makes it
possible for the aquifer to accept an increasing number of flowlines from the upper layer. The discharge
is concentrated in the valley bottom; the entire constant regional slope is a recharge area.

The thickness of the basal aquifer has little effect on the nature of the flow pattern as shown by
a comparison of a and 20b of Figure 20. The quantity of water flowing through the system
represented by Figure 20b would of course be much less than that flowing through the system
represented by Figure 20a.

Figure 20 (b, ¢, d and e).

This group of potential patterns shows the effect of increasing the permeability of the basal
aquifer. As the permeability ratio increases, the following changes can be noted:

1. The vertical upward or downward flow through the overlying low-permeability layer becomes
more pronounced. For example, in the upstream recharge areas at the right-hand side of the
diagrams, the flow becomes more vertical, the vertical flow exists over a larger area and the
vertical gradient increases.

2. The horizontal gradient in the aquifer decreases but the quantity of flow (which can be
calculated using Darcy’s Law) increases,

3. The hinge line moves upslope, creating larger discharge areas. This is a result of the increased
quantity of water flowing through the basal aquifer which must escape as the influence of the
left-hand vertical impermeable boundary is felt. The magnitude of the effect may not be
entirely realistic as it is possible that, for permeability ratios of 1000:1 (Figure 20e), the
“major valley” at the left of the diagram would not create an imaginary impermeable
boundary. Horizontal flow through the aquifer might proceed to the left until a more
pronounced topographic influence was encountered.

Figure 20 (f, g and h).

A comparison of f, g and h of Figure 20 with Figure 17e, and with each other, shows that the
flow pattern resulting from a two-layer case when the upper layer has the largest permeability is almost
identical to that of the homogeneous case. The quantity of flow is, of course, considerably different in
each of the four cases. The fact that a geologic configuration exists which results in a potential pattern
identical to that of the homogeneous case points out the fallacy of using piezometric data to obtain
quantities of regional flow. In a common method, the potential pattern is delineated by piezometric
information, and if it looks homogeneous, the permeability is measured near the surface and assumed
to hold at depth. These diagrams, particularly 20h, show that a grossly erroneous figure could be
obtained. It is clear that good permeability data are necessary before quantitative estimates of regional
flow can be obtained.

Figure 20 (i, j and k)

These diagrams show three three-layer cases; no new concepts are introduced but the effect on
the potential pattern of various permeability contrasts in three-layer configuration.

Figure 20(1, mand n)

The effect of lenticular bodies of high permeability and the particular importance of their
position in the basin are shown in Figure 20 (I, m and n.)
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The presence of a partial basal aquifer in the upstream half of the basin (Figure 20 I) results in a
discharge area which occurs in the middle of the constant regional slope. The occurrence of such a
discharge area under strictly topographic control would, of course, be imposssible. The majority of the
flow which has entered the system in the upper half-basin is discharged at this point. What was
originally a single basin in the homogeneous case has become two basins under the influence of the
partial aquifer.

When the partial, basal aquifer occurs in the downstream half of the basin (Figure 20m), the
central discharge area does not exist and indeed recharge in the region over the aquifer is concentrated.
The zone of most intensive recharge is thus shifted from the upstream portion of the basin in the
homogeneous case to the downstream portion when the partial aquifer exists.

Figure 20n shows the aquifer in a lens-like position. In this case there is recharge over the
upstream end of the lens and discharge over the downstream end. There is horizontal flow through the
lens and in a “shadow zone” beneath it.

The effects shown in Figure 20 (1, m and n) for a permeability ratio of 10:1 would be more
pronounced were a higher permeability contrast used.

Figure 20 (0, p and q)

Figure 20 (o and p) shows the effect of a sloping aquifer on the flow pattern. In Figure 200,
there is concentrated recharge (quantitatively) where the K = 10 layer outcrops. The point where the
upper boundary of the K = 10 layer meets the water table is a major hinge line with a large discharge
area below it. Recharge again takes over just above the break in slope and discharge occurs once again
in the major valley.

In Figure 20p, a completely different situation results. Here, recharge occurs through the K =1
layer in the upper three quarters of the basin and flow through the aquifer is up and out of the system,
creating a discharge area at the outcrop.

Figure 20q shows the reverse situation to that of 200 and the result is a rather unexpected
discharge area at the outcrop of the low-permeability layer. The general nature of the pattern reflects
the desire of the water to take the shortest route across the low-permeability layer between the two K
= 10 aquifers.

Figure 20 (r, sand t).

These diagrams show three two-layer cases where the water-table configuration is hummocky.
Once again, Figure 20r, with the high permeability layer at the surface, shows little difference from
the homogeneous case (Figure 19h). The effect of a basal aquifer (Figure 20, s and t) is to provide a
highway for the flow which passes under the low-permeability surface layer and restricts the depth of
the small first-order basins so that their entire flow is contained in the low-permeability surface layer.

Figure 20 (u, v, w, x, y and z).

Figure 20 (u and v) shows two three-layer cases. Diagrams w and x show the effect of increasing
the permeability in a lenticular aquifer beneath hummocky terrain. Note the shadow zone beneath the
aquifer. Diagrams y and z show the effect of increasing the permeability in a sloping aquifer.

FACTORS CONTROLLING DISTRIBUTION OF RECHARGE AND DISCHARGE AREAS |

The water-table configuration and the geologic configuration have been identified throughout
this report as the broad governing factors which control regional groundwater flow. Both these
properties of the basin can exist in a infinite variety; it is the challenge of this section to extract from
this infinite variety a set of governing principles deduced from the type situations for which potential
patterns have been developed in this study. Sixteen potential plots (Figure 21, a through p) are
presented.
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Position of the Hinge-Line in a Simple System

A simple flow system is one with a single recharge area and a single discharge area. The boundary
between the two is the hinge line.

The position of ‘the hinge line can be affected by both water-table configuration and geologic
configuration. Figure 21 (a, b, and c) shows the effect exerted on the hinge line by the water-table
configuration in a simple two-layer system. In Figure 21a, the case of a constant regional slope, the
hinge line occurs at the midpoint of the basin. The introduction of a broad flat valley with no steep
valley flank (Figure 21b) produces little change but the presence of a deeply incised valley (Figure 21c)
causes the hinge line to shift over to the valley flank. The discharge is thus concentrated in the valley
and along the lower portion of the valley flank. The percentage of the surface area of the drainage
basin which can be considered as a discharge area is 50 per cent in diagrams a and b, Figure 21, but less
than 10 per cent in diagram c. In a three-dimensional basin it could be even less.

The effect of the permeability of the basal aquifer on the hinge line has already been shown in b,
c,d,and e of Figure 20. Reference to these diagrams will show that the hinge line moves upslope as the
permeability ratio increases. Large permeability ratios are thus conducive to large discharge areasin a
simple system where a subsurface “highway” exists.

Causes of Discharge

At least 7 distinguishable type configurations of topography and geology which lead to
groundwater discharge can be ascertained.

1. The existence of a major topographic low of sufficient magnitude to create an imaginary
vertical impermeable boundary which extends the full depth of the basin will cause
concentrated groundwater discharge into the valley. In Figure 21d, two such discharge areas
are apparent, one at either end of the basin. A third valley, having less relief, exists at the
centre of the diagram between two local highs. This valley also forms a discharge area but the
discharge is restricted to flow which has entered the flow system in one of the two portions of
the recharge area shown. Any water which enters the K = 10 basal layer is transmitted
beneath the valley to one of the two major discharge areas. In other words, the imaginary
impermeable boundary beneath the central valley exists only in the upper layer.

2. Minor topographic lows will also cause discharge areas. These first-order systems may be
sufficient to capture the flow from the entire depth of the basin (To6th, 1963b, ¢) in the
homogeneous case or may be restricted to the upper layers as in Figure 21 (e and f).

3. A break in slope, even though both slopes are positive, may be sufficient to cause small
quantities of groundwater discharge just below the steep components of slope. This
phenomenon is illustrated in Figure 21g. The major discharge area for the basin is located at
C; isolated points of discharge occur at A and B.

4. Discharge areas which are entirely the result of geologic control occur at the surface above the
pinchout of a high-permeability layer. The extent of the discharge area and the intensity of
discharge depends on (a) the position of the partial aquifer within the basin and (b) the
permeability contrast between the aquifer and the surrounding medium.

The various possibilities are shown in Figure 21 (h, i, j, k, | and m). The least effect is caused
by partial aquifers near the surface (Figure 21j), and the greatest effect by high-permeability
partial aquifers (Figure 21m) and those located in the upstream portion of the basin (Figure
21h). Figure 21k portrays the effect of an alluvial fill of high permeability. It exerts little
influence on the flow pattern.

5. The intensity of discharge and the size of the discharge area can be increased by the presence
of a downstream sloping aquifer of high permeability (Figure 21n). The outcrop of the aquifer
is a recharge area.
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6. If the aquifer slopes upstream, its outcrop will become a discharge area as shown in Figure
21p.

7. The existence of an upstream-sloping, low-permeability layer will result in groundwater
discharge just upstream from the outcrop area (Figure 210). The intensity of discharge and
the size of the discharge area will depend.on the thickness and orientation of the
low-permeability layer and on the permeability contrast. An example of a downstream-sloping,
low-permeability layer is shown in Figure 20g.

FACTORS_CONTROLLING DEPTH AND LATERAL EXTENT OF GROUNDWATER BASINS

The best introduction to this section consists of a re-examination of many of the’ diagrams in
Figure 21, this time considering the changes which have been wrought in the size of groundwater basins
by the changes in geologic or water-table configuration. For example, in Figure 21 (h through o),
topographic configuration G is used. One can recall that, for the homogeneous case (Figure 19a),
simple, uniform, near-horizontal flow system resulted. The introduction of the geological inhomo-
geneities in Figure 21 create sub-basins within the major basin. The concept of a total basin yield is thus
negated and one must consider each component basin separately. It is logical, therefore, to examine the
factors which control the depth and lateral extent of these sub-basins. To this end, 12 potential
patterns. Figure 22 (a through |) are presented in this section. Since it is the hummocky water-table
configurations which are most conducive to the establishment of small first-and second-order flow
systems, configurations H and K are used in Figure 22.

We must first draw the readers attention to an earlier diagram, Figure 19h, which shows a
homogeneous basin with water-table configuration H. Here we find that the majority of flow takes
place near the surface in small first order basins but that a certain amount of flow circumvents these
near surface systems to enter higher order flow systems. At least one flow path traverses the entire
basin. Toth (1963b, c) has shown that the influence of the hummocks increases as: (a) the amplitude’
of the hummocks increases and (b) the depth/lateral extent ratio decreases. The groundwater basin
may even be broken up into a series of small first-order sub-basins with no flow traversing the entire
basin.

The effect of introducing an aquifer into the system is to create a highway for groundwater flow
such that the percentage flow traversing the entire basin increases. The percentage of total flow which
enters the basin-wide flow system depends on three parameters:

1. The permeability ratio between the aquifer and the low permeability layers.
2. The depth/lateral extent ratio of the basin.

3. The percentage of the total depth taken up by the high-permeability layer.

‘

The effect of these factors is shown in Figure 22(a, b, ¢ and d). Diagrams a, b, and c show the
influence of the high-permeability highway. In Figure 22d, the low-permeability ratio, small
~ depth/lateral extent ratio, and narrow thickness of the aquifer combine to reduce the effectiveness of
the aquifer. In this case, the major groundwater basin has been transformed into a series of first order
basms with no basin-wide groundwater flow.

In Figure 22, e and f show the effect of partial layers; g, h, i and j show four different geologlc
configurations beneath water-table configuration K. In each case, at least two orders of groundwater
basin are evident.

In Figure 22 the effect of sloping stratigraphy is examined in k and 1. An interesting pair of
streamlines to consider is shown in Figure 22k; here, the difference of a few feet in the point of
recharge will make the difference between the water entering a minor first-order system or the major
regional system.

The practical significance of the discussions presented in this and preceding sections of this
chapter is discussed more fully in Chapter 8.
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THE EFFECTIVE DEPTH TO A BASAL IMPERMEABLE BOUNDARY

One of the basic assumptions of this study requires the presence of a horizontal impermeable
boundary at some depth. Another assumption suggests that there is no such thing as a completely
impermeable formation. The resolution of this seeming paradox lies in the fact that there are certain
geologic configurations which create the same effect on the potential pattern as would an impermeable
boundary.

Figure 23a shows a two-layer case with a simple water-table configuration. The equipotential
lines cross the K = 10 layer vertically and meet the assumed impermeable boundary perpendicularly as
they must. In Figure 23b another low-permeability layer has been added beneath the aquifer. The
effect on the flow pattern is negligible. The equipotential lines still cross the aquifer vertically and meet
its lower boundary perpendicularly. They proceed without refraction (except at the extremities of the
flow net) vertically over most of the K = 1 layer to the assumed impermeable boundary at the base of
the model. In effect, the lower boundary of the K = 10 layer has acted as a horizontal “impermeable
boundary”. Figure 23c shows the same phenomenon for a model with a more complex water-table
configuration.

The conclusion, which is an important one from the point of view of designing models to
represent actual groundwater basins, can be stated as follows: the effective depth to a basal-
impermeable boundary can be taken as the depth to the lower boundary of the lowermost
high-permeability layer in the system; equipotential lines below this boundary can be assumed to
remain vertical. This statement will be quantitatively more exact as the permeability contrasts increase.

THE VALIDITY OF THE ASSUMPTION OF VERTICAL IMPERMEABLE BOUNDARIES

All of the hypothetical groundwater basins modelled in this study are assumed to be bounded on
either side by imaginary vertical impermeable boundaries. The presence of such boundaries beneath
major topographic divides and even beneath small hummocks in the water table is well documented
and is not in doubt. Whether these boundaries are indeed vertical is a question which bears
investigation.

The controlling factor is the symmetry of the water-table configuration on either side of the
divide. In Figure 24, the water-table slope to the right of the valley is kept constant in all three
diagrams. The slope to the left of the valley is equal to the right-hand slope in Figure 24a, half the
right-hand slope in Figure 24b, and twice the right-hand slope in Figure 24c. The latter two diagrams
represent extreme cases of assymmetry which would not often exist in the field.

It can be seen that the imaginary impermeable boundary will be exactly vertical only if the
water-table configuration is symmetric on either side of the valley. The deviation from the vertical in
Figure 24(b and c), however, is not large, and comparison of the potential nets in the right-hand
portion of the three diagrams shows that the effect on the flow pattern is small and is restricted to the
vicinity of the valley. Considering the extremeness of the cases considered, it is concluded that, in
general, the assumption of vertical impermeable boundaries is valid, and that the effect of assymmetry
across water-table divides is small.

ANISOTROPIC FORMATlONS

Thus far, the study of the effect of geology on regional flow patterns has been restricted to cases
involving large-scale inhomogeneities in permeability. All the geological formations have been assumed
to be isotropic with respect to permeability.

‘When anisotropy exists, the problem of analysing regional groundwater flow becomes more
complex The numerical method is well suited to the analysis of such problems, and Figure 25 shows
three simple cases to illustrate the method.

In Figure 25, a and b show the effect of anisotropy on the regional groundwater flow pattern in a
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homogeneous medium bounded by the same simple water-table slope of Figure 19d. In Figure 25a, the
horizontal permeability is 10 times the vertical, and for illustrative purposes, this situation is reversed
in Figure 25b. The effect of these permeability configurations is best realized by comparing the
flowlines of these figures with those of Figure 19d for the isotropic case. Figure 25c is a two-layer case
that combines the anisotropy conditions a and b of Figure 25 in one system. This could be
representative of a vertically-fractured formation overlying a horizontally-stratified layer.

Considerable care must be exercised in the construction of flowlines in anisotropic media since
the flowlines will not in general intersect the equipotentials at right angles. Two methods are available.
The first (Maasland, 1957) utilizes the transformed section whereby an equivalent homogeneous
isotropic system is obtained by suitably expanding or shrinking the coordinates of each point in the
anisotropic medium. The transformation is:

= Kok 7 x

>
!

' 1/2
Y = Kok 2y
where x and y are the original coordinates, x" and y’ the transformed coordinates, Kn and Ky the

horizontal and vertical permeabilities, and Ko is an arbitrary constant having the dimensions of Kn
and Ky.

Figure 25d shows the transformed section for the two-layer case of Figure 25c. In the upper
layer, we choose Ko = 1; then x' = x, y' = y/\/TO, and the vertical dimension is reduced by a factor of
V10. In the lower layer, we choose Ko =10;then x' =x, y'= /10 y, and the vertical dimension is
expanded by a factor of 4/10. The position of the interlayer boundary AA’ is shown on both diagrams.

Once the equipotentials have been transferred from the real (Figure 25¢) to the transformed
(Figure 25d) section, a homogeneous isotropic flownet can be drawn in the transformed section and
the flowlines transferred back to the true case. Several random flowlines are shown to illustrate the
direction of flow.

The method of the transformed section indicates that the effect of varying the anisotropic ratio
in a homogeneous medium is identical to that of varying the depth lateral extent ratio. The diagrams
presented by Téth (1963b), which were designed to show the effect of the depth lateral extent ratio in
a homogeneous basin bounded by a hummocky water table, could therefore also be interpreted in
terms of the effects of anisotropy.

A second method has recently been described (Liakopoulos, 1965), whereby the direction of
flow at any point in an anisotropic medium can be determined with the aid of the permeability ellipse
and without the necessity of a transformed section. Figure 25e shows the permeability ellipses for both
upper and lower layers of Figure 25¢. The direction of flow at any point can be obtained graphically as
follows:

1. Draw a vector in the direction of the hydraulic gradient (i.e., perpendicular to the equipoten-
tial at the point in question).

2. Draw a tangent to the ellipse at the point where the vector cuts the ellipse.
3. The direction of flow is perpendicular to the tangent line.

In the constructions shown on the two ellipses in Figure 25e, the direction of the hydraulic
gradient is the same in each case. The resulting direction of flow, however, is radically different and is
dependent on the prevailing direction of anisotropy. '

It should be noted that all the cases treated in Figure 25 have axes of anisotropy that coincide
with the coordinate directions. The more general case of a skewed anisotropy requires a more
complicated mathematical approach utilizing the concept of permeability in tensor form. Numerical
solutions employing the finite element method (Zienkiewicz, 1966) appear to be well suited to this
problem.

A
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CHAPTER 6

Quantitative Results; N atural Basin Yield

QUANTITATIVE FLOW NETS

The diagrams in the preceding chapter were limited to potential nets and qualitative flow nets in
which the streamlines indicated the direction of flow but did not have quantitative significance. It is
possible, of course, to construct quantitative flow nets from the potential patterns representing
regional groundwater flow. Figure 26 shows a quantitative flow net for the case of a partial basal
aquifer with a water-table configuration consisting of major topographic valleys at both left and right
and a lesser topographic low in the centre of the diagram between two regional highs. The flow lines
are drawn orthogonal to the equipotential lines and in such a way that curvilinear squares are formed
throughout the K = 1 region. Due to the refraction of the flow lines at the permeability interface,
curvilinear rectangles ten times as long as they are wide will result in the K = 10 layer. The flow net
shown in Figure 26 was constructed graphically. Harr (1962) provides a good reference for the graphical
construction of quantitative flow nets.

Once having defined the flow net, one can calculate the discharge in each flow channel by
Darcy’s Law:

(6.1) Q = K'A—(p-Am-w
As

where Q = discharge through a segment of the flow net.
K = permeability.
A¢ = drop in hydraulic head between equipotential surfaces.
As = length of flow path in the segment of the flow net.
Am= width of the segment of the flow net perpendicular to direction of flow.

w = thickneés of the flow system perpendicular to the plane of the diagram.

For the square portion of the net, As= Am, and considering a unit thickness of the system (w = 1) we
are left with '

(62) Q = K- A¢

The discharge in each flow channel remains constant throughout its length and the discharge in
all flow channels is equal. One can therefore determine the total discharge through the groundwater
basin by summing the quantities of flow in the individual channels.

Although Figure 26 and the above discussion are in terms of a two-dimensional flow system, the
same approach can be used in a three-dimensional basin.

Referring once again to Figure 26, one can see that the existing water-table configuration and
geologic conditions give rise to three separate groundwater basins (separated by a dashed line in the
diagram and denoted by A, B, and C). It is interesting to note that basin A has a small arm extending
up to the right flank of the central valley, a situation that could not have been anticipated by other
means than that of a theoretical model.

Using (6.2), one can easily calculate the quantity of flow in each basin. For s = 60,000 ft,A¢ =20
ft, and recalling that the K = 1 and K = 10 values were relative, we will arbitrarily assign to the upper
layer a permeability of 5 gpd/ft?. This gives rise to a flow channel discharge of 100 gpd (per foot of
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thickness of the flow system perpendicular to the diagram). By simply counting the flow channels in
the three basins, we arrive at the following discharges:

Qp = 1950 gpd
Qp' = 800 gpd
Qc = 1450 gpd

NATURAL BASIN YIELD

The quantity of flow through an undeveloped basin under natural conditions is hereby defined as
the “natural basin yield”. The quantities calculated in the preceding section represent the natural basin
yields of the three component basins of Figure 26.

Under the assumption of a steady-state water table, the value of the natural basin yield will
represent a constant discharge which does not change with time. It is important to recall that our
definition of a ‘“steady-state” water table (Chapter.1) does not deny the existence of water table
fluctuations. It does state that their effect on the flow patterns will be small, if:

(a) the zone of fluctuation of the water table is only a small percentage of the total saturated
depth of the groundwater basin; and

(b) The relative configuration of the water table remains the same throughout the cycle of
fluctuations.

If these two conditions are satisfied, the small uniform fluctuations in the water table will not result
in any-significant change in the nature of the flow pattern, or therefore in the quantity of flow through
the basin. The natural basin yield is therefore a near-constant quantity which represents a unique
property of the basin; it will not fluctuate significantly with time and is relatively independent of
rainfall conditions.

The effect of small-scale cycles of rainfall resulting in wet and dry periods through the year will
serve to cause the fluctuations in the water table which we have pointed out can often be
approximated by a steady-state average:- The effect of an increase in the total annual precipitation
would be a more permanent raising of the water table which, while it would increase the groundwater
storage of the basin, would not significantly affect the natural basin yield. The natural basin yield can be
considered as a measure of the quantity of water which a given basin can accept, and is therefore a
measure of the groundwater recharge to the basin. The ultimate effect of a long-term increase in annual
precipitation would therefore be that a greater proportion of the increased rainfall would become
surface runoff.

In defence of requirement (a), it can be noted that in the semi-arid Canadian prairies, the
usual annual fluctuations in the water table are of the order of 5 feet and are always less than 10; the
maximum difference in elevation of the water table between an extended period of wet years and dry
is of the order of 20 feet and the depths of groundwater basins are 300-2000 feet. Under these
¢onditions, if requirement (b) is not violated, the concept of natural basin yield is valid.

If either of the conditions (a) or (b) is violated, then the methods of this chapter must be
adapted. It may be necessary to calculate the natural basin yield on a monthly basis, for example, using
twelve different water table configurations representing the fluctuating position of the water table
throughout -the year. For example, Meyboom (1966) has shown that, in the vicinity of a willow ring in
hummocky moraine, the water table undergoes transient fluctuations such that the enclosed temporary
slough is a recharge area at certain times of the year and a discharge area at others. He has prepared a
water balance for the slough which required consideration of 29 separate time intervals throughout the
year. A mathematical model analysis of such a flow system would presumably require a similar number
of steady-state runs. In such cases, a transient mathematical model would probably be more efficient.

The natural basin yield is a consequence of the existing pbtential field which in turn is controlled
by the water table configuration and the geometry and value of the permeability contrasts created by
the geologic configuration.
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THE ESTIMATION OF BASIN SAFE YIELD

The safe yield of a groundwater basin is the amount of water which can be withdrawn from it
annually without producing an undesired result (Todd, 1959). The undesired result may be depletion
of the resource, impairment of the quality of the water, or the creation of an economic or legal
problem. Considering the safe yield from a strictly quantitative point of view, it is logical to inquire as
to the relation between the safe yield and the natural yield of a basin.

They are not the same thing because the natural basin yield refers to a virgin basin which has not
undergone groundwater development. The introduction of a major well field will change the
conditions governing the existing flow pattern by creating a cone of depression in the water table in the
case of an “unconfined aquifer” or lessening the potential at depth as would be the case in the
development of a “confined aquifer”. The effect of this artificial discharge from the basin will be to
create a new flow pattern from which a new basin yield can be derived for that stage of development.
Further development will result in further changes which usually tend to increase the groundwater
yield. There is some optimum development for the basin which maximizes the safe yield.

When the initial groundwater development of a virgin basin is contemplated, calculation of the
natural basin yield as determined from the results of a mathematical model analysis will provide a
conservative estimate of the basin groundwater yield which could be tapped in the initial development.
When the effects of this initial development on the previously existing flow pattern have been
determined, a new model can be constructed which includes the effects of the well field. This model
can then be used to estimate the expected basin yield from further groundwater development.

Used in this stepwise fashion, the mathematical model can be useful in estimating the order of
magnitude of the basin safe yield.

This is an important concept which has ramifications in the basin-wide development of
groundwater resources. For example, consider the-three component basins of Figure 26. While all three
have an approximately equal surface area, basins A and C have a natural basin yield nearly twice that of
B (Qp = 1,850 gpd, Qg = 800 gpd, Qc = 1,450 gpd). Because basin C also has a permeable basal
aquifer, it would seem to be the optimum location for groundwater development.

This method may have only limited application to basins which are already heavily developed
such as those around the large metropolitan centres of the United States and Canada, but it can be very
useful in planning the development of the many virgin basins which abound in the Canadian prairies
and northland.

THE EFFECT OF THE GROUNDWATER FLOW PATTERN ON THE
COMPONENTS OF THE HYDROLOGIC CYCLE

Above the flow net in Figure 26 is a recharge-discharge profile showing the quantitative
distribution of recharge and discharge across the basin. The cross-hatched areas above the centre line
represent recharge; below the line is discharge. Different hatchings are used for each of the three basins.
The areas above and below the line must be equal for each basin. The units are arbitrary.

This form of plot was introduced by Davis (1963) in a criticism of Téth’s first paper (1962).
Davis held that the concentrations of discharge and recharge required by Toth’s flow patterns were
impossible. Toth (1963) countered in a reply that, while the distribution of recharge and discharge
required by his theory may seem unconventional, it is probably correct. The results of the present
study confirm Téth’s opinion. The construction of quantitative flow nets for any of the seventy-one
potential plots included in Chapter 5 will reveal concentrations of discharge and recharge at various
points on the surface of the basin. In Figure 26, basins A and C have zones of concentrated discharge in
the valley and zones of concentrated recharge near their upstream ends. The zones of concentration are
separated by zones in which the quantity of both recharge and discharge is low. In basin B the quantity
of recharge and discharge is more evenly spaced.
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Klute, Scott and Whisler (1965) have noted similar concentrations in their analysis of
steady-state flow in a saturated inclined-soil slab. Further field studies are needed to confirm the
existence of such zones of concentration in nature.

This recharge-discharge regime will have an important effect on the other components of the
hydrologic cycle. For example, evapotranspiration will be concentrated in discharge areas where the
water table is kept high by the upward rising groundwater. If all the discharge in basin B were
discharged by evapotranspiration over the entire discharge area (s = 60,000 ft, A =20 ft, Qg = 800
gpd/ft thickness L plane of the diagram), the rate of evapotranspiration would be 0.11 inch/day.

Similarly the average annual groundwater component of surface runoff could be calculated using
the mathematical model. The effects of bank storage, a major factor in the fluctuation of the baseflow
with time, however, cannot be taken into account, so the method is not practicable without further
adaptation.

If a stream were flowing parallel to the plane of the paper in Figure 26, say down the left-hand
flank in basin A, one would expect the groundwater component of the stream to increase downstream.
In theory there should be no groundwater component to the stream while it traverses the recharge area;
indeed the stream may be influent at this point. Several methods for separating the groundwater
component from a stream hydrograph are available (Meyboom, 1961; Kunkle, 1962; Linsley, Kohler
and Paulhus, 1949).

While the rainfall falling on a basin can be assumed to be areally uniform, taking no note of
whether it is falling on a recharge area or a discharge area, its behaviour upon reaching the ground will
be influenced by the existing groundwater flow pattern. In recharge area, a downward potential
gradient exists which would tend to take a larger percentage of the moisture surplus into the ground
than in a discharge area. Water which infiltrates to the water table in a recharge area will enter the
dynamic groundwater flow system and be transmitted to a distant point of discharge. Water which
infiltrates to the water table in a discharge area can only be transmitted back to the surface again by an
agent of discharge, such as evapotranspiration, when conditions permit.

In summary, it can be stated that the nature of the groundwater flow pattern will have an
important effect on the quantity and areal concentration of the other components of the hydrologic
cycle, in particular the evapotranspiration and surface runoff. The use of the mathematical model to
derive theoretical quantitative flow nets can be an important tool in the calculation of a basin-wide
water balance.

109



CHAPTER 7

Three-Dimensional Models

SAMPLE SOLUTION

Figure 27 is a map.showing the assumed water-table configuration for an area in the vicinity of
the towns of Readlyn and Ormiston in southwestern Saskatchewan, Canada. The region is bounded on
the west and south by a major drainage divide and on the north and east by a major topographic high.
The area forms a sub-basin of the Old Wives Lake internal drainage basin.

The geologic configuration has been represented by a two-layer case, the upper layer representing
the relatively impermeable glacial till and underlying deposits of silt and clay of the Tertiary
Ravenscrag Formation, and the lower layer the highly permeable sands of the Cretaceous Eastend
Formation. A permeability ratio of 50:1, based on the few known measurements in the vicinity, has
been used. The Eastend Formation is underlain by several hundred feet of relatively impermeable shale
of the Cretaceous Bearpaw Formation, so the base of the Eastend sands was considered to be the
effective impermeable boundary. ’ '

Initial runs in which the permeabilities in each layer were assumed to be isotropic failed to give
results consistent with field observation. A solution which did provide good agreement was obtained
using a horizontal: vertical anisotropy factor of 20:1 in both layers. The resulting permeability
configuration is therefore:

Kuh = 1.0 (upper layer, horizontal)
Kyy = 0.05 (upper layer, vertical)
Kinh = 50.0 (lower layer, horizontal)
Kiy = 2.5 (lower layer, vertical)

The potential values were obtained at each node in a 25 x 25 x 10 mesh using Numerical Program
6 (Appendix B). This program is not designed to accept anisotropic problems, but the desired
anisotropy can be simulated by expanding the vertical dimensions of the model in the same manner as
in the graphical construction of flow patterns (see Harr, 1962). The output for the problem is a
printout of the potential at each node in the three-dimensional mesh, and a series of vertical
two-dimensional sections through the model. Six of these sections are shown in Figure 28; their
locations are indicated in Figure 27. The sections are plotted with an exaggerated vertical scale of
20:1.

In general, flow linés and equipotential lines will not meet at right angles in anisotropic cases
(Liakopoulos, 1965) or cases where the results are represented on diagrams with an exaggerated vertical
scale (van Everdingen, 1963). Caution must therefore be exercised in the delineation of flow patterns
using potential nets obtained from the solution of mathematical models. In Figure 28, for example, the
vertical exaggeration would have to be reduced to 4.47 to 1 (\/Kp/Ky = 4.47) before flow lines could be
constructed orthogonal to the equipotential lines.

It is interesting to note that the concepts developed in the two-dimensional studies are upheld in
the sections taken through the three-dimensional model. A few observations of interest are:

1. There are several groundwater basins within the system.

2. The size of the discharge area is controlled to a large degree by the valley slope. Large flat
valleys (left centre BB', right centre EE') have large discharge areas; shallow slopes (left AA")
create medium-sized discharge areas; and steep valley flanks (left DD’, left EE") produce small
discharge areas.
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3. In the left centre of cross-section EE', there is a topographic low which acts as a recharge area
rather than a discharge area. This could not exist in a strictly two-dimensional model or in a
two-dimensional section taken parallel to the direction of slope of the water table. It does
exist in this arbitrarily-oriented section through the three-dimensional potential field because
the valley itself has a gradient perpendicular to the paper and the section is cutting the valley
near its upstream end, where it acts as part of the surrounding recharge area, rather than in its
downstream portion where it becomes a discharge area.

From the three-dimensional model, one can produce a map showing the distribution of recharge
and discharge areas, as well as cross-sections which show the depth, lateral extent, and order of the
component groundwater basins.

LIMITATIONS AT THE PRESENT TIME (1966)

In theory it is possible to represent any groundwater basin by a three-dimensional mathematical
model. The previous section illustrates the type of solution which can be obtained. The completely
general application of the methods and programs presented in this report is restricted by a computer
limitation. This limitation involves the available core storage in the computer which in turn limits the
number of nodes which can be used to represent the groundwater basin. The author found that with an
IBM 7094 computer with a storage capacity of 32,000, models were limited to 7,500 nodes. This means
a maximum model size of 25 x 25 x 12.

It is clear that this number of nodes is not sufficient to represent complicated water table
topographies or geological configurations for large basins. It is sufficient, however, to produce
meaningful results for small basins with simple water table configurations and geology.

It is possible to increase the effective core storage by use of intermediate storage on magnetic
tape or auxiliary disc storage. It is not practical to use tapes when iterative numerical procedures are
employed, but three dimensional programs can be written, using disc storage to overcome the above
limitation.

There is a further encouraging aspect to this problem and that is the rate at which core storage is
being increased as bigger and better computers come onto the market. Computers with 200,000
memory are now available. Forsythe and Wasow (1960) have summarized the situation as follows:
“Problems with three-space dimensions cannot possibly be solved in great detail now, and probably will
not be solvable in great detail with the machines of the foreseeable future. They are currently possible in
moderate detail if there is no time dependence and are now very easy in sketchy detail even if they
depend on time. The machines’ of the 1960’ should permit time-dependent problems in three
dimensions to be attacked in moderate detail”.

In summary, we conclude that, at the present time (1966), the use of three-dimensional
mathematical models should be limited to small, simple basins that can be adequately represented by
7,500 nodes, The best way to handle large, complex basins is with a series of two-dimensional models
representing vertical sections taken parallel to the direction of dip of the water-table slope. An example
of such a section through an actual groundwater basin is given in Chapter 8.
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CHAPTER 8

Integration of Theovetical Approach
with Freld Methods

PRACTICAL SIGNIFICANCE OF THEORETICAL RESULTS

An understanding of the regional groundwater flow regime is a prerequisite to basin-wide
development of groundwater resources. The qualitative and quantitative ramifications of the existing
flow pattern must be taken into account in order to determine the optimum location and design of any
proposed project in the development. To emphasize the practical significance of the type of results
which can be obtained with the mathematical model approach, a few pertinent examples follow:

1. In order to calculate the basin safe yield, the depth and lateral extent of the basin must be
known. This is not as simple a task as it may first appear and the theoretical results are
invaluable in delineating the size and order of the component basins.

2. The natural basin yield obtained from a quantitative analysis of the theoretical flow pattern
will provide a conservative estimate of the probable basin safe yield.

3. The geometry of the flow pattern will pinpoint zones of concentration of flow and may
suggest optimum locations for well fields.

4. The chemical quality of the groundwater will be inferior in a discharge area, due to
the progressive solution of salts over the flow route and the effectiveness of the
evapotranspirative process in the concentration of salts in near-surface discharging ground-
water. If the flow routes are long enough to establish a Chebotarev sequence (Chebotarev,
1955), the chemical nature of the groundwater will change from recharge to discharge area.

5. The location of recharge and discharge areas is also important if artificial recharge is proposed.
Obviously recharge rates will be greater and the process more effective if the project is located
in a natural zone of concentrated recharge.

6. As pointed out in Chapter 6, the nature of the groundwater flow pattern may exert
considerable influence on the surface water hydrology.

It is felt that the use of the mathematical-model approach may be valuable at two different stages
of a groundwater investigation, first as a reconnaissance tool preceding the field investigation, and
second as an interpretive tool following the field investigation.

AS A RECONNAISSANCE TOOL

The investigation of a groundwater basin, whether it be for research purposes or for expected or
increased groundwater development, must include a well-designed and economic field program. The
theoretical approach can be used at the planning stage to optimize the field program.

At this stage of the investigation, the model would consist of an estimated water-table
configuration, probably based on the assumption that the water table mirrors the topography, and a
geologic configuration based on any available information. To prepare such a model, reference need
only be made to topographic maps and geologic maps and sections. Any other available information,
such as soils maps, water-level records, or results of previous hydrological investigations, should be
incorporated. The resulting flow pattern can then be used to determine the optimum locations for
piezometer installations, pump tests, and the collection of water samples for chemical analysis. It can
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also act as a guide in the mapping of recharge and discharge areas, the location of springs, and the
expected occurrence of phreatophytic vegetation.

The field program should also be designed to check the assumptions of the method and to
improve on the basic data used in the reconnaissance model. This would involve actual measurement of
the water table configuration, determination of the permeability contrasts by pump test or Hvorslev
piezometer test, delineation of the geometry of the permeabilities by drilling or geophysical means, and
an investigation to determine whether the assumption of a steady-state water table is valid (i.e., the
fluctuations in water-table elevation with time must be small in comparison with the total saturated
depth of the basin, and the relative highs and lows in the water-table configuration must be maintained
throughout the year).

AS AN INTERPRETIVE TOOL

Following the field program, a second mathematical model can be prepared, utilizing the
information obtained in the field investigation. The results of this model can be used to calculate the
natural basin yield. They may also be useful in the design of the component projects in a basin-wide
groundwater development.

If this interpretive model is not compatible with field observation, then it can be assumed that
some major factor has been misinterpreted or overlooked. For example, the permeability configuration
at depth may be more complex than that assumed in the model, or the formations may possess a higher
or lower factor of anisotropy than that considered. The mathematical model can then be used on a
trial-and-error basis in an attempt to pinpoint the unsuspected situations which have eluded the
investigator in the field.

GRAVELBOURG AQUIFER

An example of the application of the two-dimensional, mathematical-model approach to a field
situation is provided by the Gravelbourg aquifer. This is a shallow sand and gravel aquifer which occurs
within the glacial deposits near Gravelbourg, Saskatchewan, Canada. The hydrogeology of the aquifer
has been studied in detail by the author (Freeze, 1964). Figure 292 shows the potential net and
interpretive flow directions deduced from the extensive field investigation.

Figure 29b shows the flow pattern obtained from a reconnaissance two-dimensional math-
ematical model based on the known water-table configuration, known geometry of geological
formations (see Legend), and assumed values of the permeability contrasts. The permeability of the
aquifer was known from the results of a pump test (K = 130 gal. per day per ft*), whereas the other
values had to be estimated from measurements by other workers in similar formations nearby
(Meyboom and van Everdingen, personal communication). All four values were then reduced to the
simple dimensionless ratio 100:10:1:0.5. All formations were assumed to be isotropic. The resulting
potential net is a peculiar one showing almost entirely vertical equipotentials. All flow is
near-horizontal and each topographic divide acts as a vertical impermeable boundary. The results of the
model clearly do not correspond with the more complex potential pattern found in the field.

Consequently, a series of interpretive models was designed using the same water-table and
geological configurations but varying the permeability (which in this case was the property most open
to question). A straight increase in the permeability ratios failed to resolve the question but the
introduction of a 100:1 horizontal: vertical anisotropy together with increased permeability ratios
produced a potential pattern (Figure 29¢) which, while not identical to the field results, was very
similar.

In an attempt to determine the upper limit of possible permeability values, the model in Figure
29d was run. The true values of the average formation-wide permeabilities must lie between those of ¢
and d, Figure 29d. This trial-and-error approach points out how the mathematical-model method can
be used to determine basin-wide permeability values. It is possible that such values have more validity
in the study of basin-wide resources than do permeability values determined by in-situ point
determinations such as pump test or piezometer tests.
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Further changes in the model which might produce an even closer fit to the observed data
(Figure 29a) are:

1.
2.

A smaller factor of anisotropy.

Anisotropy only in the “lower stratified drift”, or possibly even a vertical anisotropy in the
glacial till.

. Inclusion of the glacial lake clay (low permeability) in the model. It was excluded in the

models shown because it was assumed to lie above the water table.

Used as an interpretive tool, the results of the theoretical flow patterns suggest:

1.

A large factor of anisotropy, which was not discovered in the field studies, probably exists in
the Gravelbourg aquifer.

The flow through the silty clay does not extend under Wiwa Creek as suggested by the field
investigation. Several models, were extended further to the northeast as far as Old Wives Lake,
the major discharge area in the vicinity of the Gravelbourg aquifer. The results of these
models thus included the effects of the northern upland (Figure 29a). In all cases, an
imaginary, vertical impermeable boundary was created beneath Wiwa Creek. Wiwa Creek
valley apparently acts as the major discharge area for the Gravelbourg aquifer. (It should be
noted that less anisotropy and a larger permeability ratio might result in underflow beneath
Wiwa Creek. This is an example of a question which has been raised by the use of the
mathematical model but which should be solved in the field. In this case a piezometer nest
around Wiwa Creek valley would resolve the question.)

SUGGESTIONS FOR FUTURE WORK

. With the present mathematical model:

(a) A study of the effect of anisotropy of permeability on regional groundwater flow
patterns.

. Adaptation of the mathematical model:

(a) To treat transient water-table conditions.
(b) To include the effect of well fields as a source of discharge or recharge.

(c) To include the unsaturated zone above the water table in such a way that the position of
the water table can be calcilated from a boundary condition involving the rainfall
pattern.

. Improvements in the computer technology:

(2) An investigation into the possible uses of intermediate storage with the computer so that
large three-dimensional problems can be run.

(b) An investigation of implicit iterative procedures.

(c) An investigation of the properties of the relaxation factor w so that the optimum value of
w may be found for each problem and divergent iterative cases can be avoided.

.. In the field:

(a) A correlation between flow patterns obtained by field investigation, and interpretive
theoretical models. (This is presently being done by the author in the Old Wives Lake
drainage basin in southern Saskatchewan, Canada.)

(b) An investigation of the field occurrence of anisotropic formations with the aim of
delineating the usual and maximum factors of anisotropy present in various geological
formations.

(c) An examination of streamflow records to determine the quantitative effect of existing
groundwater flow patterns on surface water hydrology.
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CHAPTER 9

Conclusions

118

1. Tt is possible to develop a mathematical model such that theoretical solutions can be obtained
for the problem of regional groundwater flow in a three-dimensional, non-homogeneous,
anisotropic groundwater basin. The potential function is the hydraulic head. The applicable
partial differential equations are Laplace’s equation for the homogeneous case and Richards’
equation for the non-homogeneous case. The field is bounded by a horizontal impermeable
boundary at the base, imaginary vertical impermeable boundaries on all sides and a
steady-state water table on top. The solutions are in the form of potential nets from which
flow patterns can be constructed.

2. Two independent methods of solution are available:

(a) The formal analytical theory of the solution of partial differential equations using Fourier
series.

(b) The finite-difference approach of numerical analysis. The analytical method is restricted
to two-dimensional, homogeneous or layered cases and must be solved using the rectangular
approximation. The numerical method removes these restrictions and in addition is mathemat-
ically simpler and well suited to computer-oriented methods of data storage and retrieval.

3. Computer programs have been written for both methods and matched solutions obtained.

4. The Schwarz-Christoffel transformation cannot be applied in practice to remove the

assumption of the rectangular approximation from the analytical solution. The rectangular
approximation is qualitatively valid for large water-table slopes but becomes quantitatively
invalid at small regional slopes.

5. The following three factors affect the qualitative nature of the flow pattern:
(a) The depth/lateral extent ratio of the basin.
(b) The configuration of the water table.

(¢) The geological configuration and the values of the resulting permeability contrasts.

The flow patterns for seventy-one hypothetical cases are shown in Chapter 5 to illustrate the
control these factors exert on the size of the component sub-basins of the major groundwater
basin, and the distribution of recharge and discharge areas.

6. For any groundwater basin with a given water-table configuration and geologic configuration,
the quantity of flow through the basin is a unique property which is defined to be the
“natural basin yield”. [t can be used to estimate the basin safe yield.

7. The amount of recharge and discharge varies across a basin. The zones of concentration can
best be delineated using a recharge-discharge profile. The configuration of the groundwater
flow pattern exerts a quantitative influence on the other components of the hydrologic cycle.
In particular, it will serve to concentrate evapotranspiration and the groundwater component
of surface runoff in certain areas of the basin.

8. The three-dimensional program is at present (1966) limited to small basins. Larger, more
complex basins are best treated by representive two-dimensional models. The improvement of
high-speed digital computers will remove this limitation in the near future.

9. The mathematical model approach using numerical solutions and the digital computer can be



10.

used in practice both as a reconnaissance tool preceding field investigation and as an
interpretive tool following the field program.

The results of mathematical ‘model analyses on two actual groundwater basins in the
Canadian prairies have emphasized the importance of horizontal-vertical anisotropy of
permeability on regional groundwater flow patterns.
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APPENDIX A

Computer Program for Analytical Solution

This appendix contains:

1. A complete printout of Analytical Program 6, the programmed solution of equation (2.107)
representing the analytical solution for the two-dimensional, three-layer problem with
generalized water-table configuration. The programming language is FORTRAN 1V,

2. A list of the program variables, related to the algebraic parameters they represent. Reference
to equation (2.107) and Figure 4 is recommended.

3. A table of instructions for the assembling of an input data deck, listing the required input and
the necessary format.

4. A table of recommended values for cartain of the computing parameters.

5. The results of an analysis of the parameters W, V, T, R, U, Y, and RATIO. The expressions
representing these variables must be reduced to their simplest form at each step in the
solution. The degree of reduction is dependent on the x and z value of the point at which it is
being calculated and also varies with the term of the infinite series (the value of m). A failure
to take this analysis into account when preparing the program results in overflows within the
computer. Only the results of the analysis are presented; the developments are simple and are
left to the reader. The only purpose of including such an analysis here is to enable the reader
to follow the steps in the program if he wishes. '

The programs were run at the University of California Computer Centre at Berkeley on a Direct
Couple System consisting of an IBM 7040 and an IBM 7094, Plotting was carried out by a Calcomp
565 x-y plotter.

Computer times varied between 2 and 10 minutes depending on the complexity of the problem.

The plotting subroutine is adapted from J6 BC XYP4; writeups of this program are available
from the Library, University of California Computer Center, Berkeley.
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List of Program Variables

Basic Parameters

Program Model
S S
ZZERO Zg
EX(LA) LA =1 K Xq
C(LA) LA = I, K+1 Cq
M m
K k
Pl ' T
RONE I,
RTWO I,
PERM]1 K,
PERM?2 K,
PERM3 K,
X(DH I =1N X
) J=1,L z
PHI(1,J) ¢
DELX Ax . .
DELZ Az } grid spacing
DELPHI A¢ — for contours
PHIMIN @ — minimum
PHIMAX ¢ — maximum
XONE = X(1) value of x at origin
ZONE = Z(1) value of z at origin

SWITCH = SLIMIT = value of y at which ™Y becomes negligible in comparison with e¥. (The two
terms are identical but were given different names to differentiate their roles —
see “Analysis of Parameters”.)

IPLOT = 1, equipotential plot will be plotted in 8" x 5" field (to fully fill field, must use
s = 20,000 ft
2o = 12,000 ft)
=2 equipotential plot will be plotted in 16" x 5" field (to fully fill field must use
s = 40,000 ft
2o = 12,000 ft)
=3 equipotential plot will be plotted in 24" x 5" field (to fully fill field must use
s = 60,000 ft

2o = 12,000 ft)

Defined in Program

k x?
SUMA = 2 (cgy1 — ) (= — x¢9)
2=1 2
CONST = Lzgs + suma + Kh 2y 2 20
s
k . mmxg
SUMB = QZ (cg — cg41) cO8s ———
:1 N
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2
COEFFM) = 2 (3) [ckq. cos mm — ¢, + SUMB]
mn
RATI = K, /K,
RAT2 = Ks/K,
ONE = DX
S
TWO = mnz
) S
THREE (M) = 20
S
FOUR(M) = m—:r‘—
FIVE(M) = 0
S
SIX = THREE(M) - TWO
SEVEN = THREE(M) + TWO
W(M) = W A
V(M) = v
M) =T
R(M) =R \ M = 1, KUTOFF
U(M) =u
Y(M) =Y
UY(M) =U+Y
RATIO:

p—

cosh E‘ﬂ(U) + sinh 74 (Y):|
mmnze (Y)]

cosh ﬂ’_z (W) + sinh D72 (V)]

In ¢, zone; RATIO =
Z

cosh —S——O(U) + sinh 2o (Y)]

L.

[cosh Lm—zjl
S

[cosh M7 (U + sinh 2720 (Y)]
S

In ¢, zone; RATIO = =

I

In ¢3 zone; RATIO

FACT = cos M™% . RATIO
s

TERM = COEFF - FACT

SUM = sum of TERMs

PHI (1,J) = CONST + SUM
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Data Deck — Analytical Program 6

Group Card Format Data

A 1 2A6 any desired title.

B 1 7110 N,L X, KUTOFF, IPLOT

C 1 4F18.8 P1,S,ZZERO,DELX
2 " DELZ,DELPHI,PHIMIN,PHIMAX
3 " ZONE,XONE,RONE,RTWO
4 ! PERM1,PERM2,PERM3,SWITCH
5 " SLIMIT

D 1 4F18.8 EX(LA), LA=1,K; 4 values per card.
2 "

E 1 4F18.8 C(LA), LA=1,K+1; 4 values per card
2 "

Recommended Values

KUTOFFE =
Pl
-DELPHI

ZONE
XONE
SWITCH
SLIMIT

i

il

1

]

50
3.14159

L o -Lof (PHIMAX — PHIMIN)

10 20
0.0

0.0
20.0
20.0

Note: r; and r, must not equal z, or zero.

Case 1

W(M)

I

V(M)

T(M)

R(M)

it

um)

Y(M)

RATIO: ¢y, ¢,

Analysis of Parameters

FOUR(M) > SWITCH
FIVE(M) > SWITCH

2 K3
[cosh®* (FIVE)] [1 - —K—:' +

1 — W(M)

[cosh? (FOUR)] [1 - E] LK

1 - T(M)

K2

K;

21K,

K] Kl

K2

(M) + WM) 2 — 2

K,

1 = UM)

or ¢35 ZONE:

K,

(i) SIX > SWITCH: RATIO = 0.0
(ii) SIX < SWITCH: RATIO = e—SIX
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Case 2
FOUR(M)' > SWITCH

FIVE(M) < SWITCH

W(M) [cosh? (FIVE) ] |:1 Kz] s
- Lo WMy
v " tanh (FIVE)
TM) = [cosh? (FOURY)] [1 - %:I + lé_z
1 1
R(M) = 1 — T(M)

[T(M) - II((——l’ - W(M) - T(M) + W(M) 1;_2]

tanh (FIVE)

- UM)

UM) = WM) T(M) +

i [ - W)
YO0 = WO+ ERIVE)

RATIO: ¢, zone
(i) SIX > SWITCH: RATIO

(i) SIX < SWITCH: RATIO

0.0
SIX

It

RATIO: ¢, zone
(a) TWO > SWITCH

() SIX > SWITCH: RATIO
(i) SIX < SWITCH: RATIO
(b) TWO < SWITCH
(i) SEVEN > SLIMIT
1. SIX > SWITCH: RATIO
2. SIX < SWITCH: RATIO
(i) SEVEN < SLIMIT:

[wESX + ¢"SEVEN) v(SIX - SEVEN)]

0.0
SIX

0.0
SIX

il

1
RATIO = ——
° U+Y

RATIO: ¢; zone
(a) SIX > SWITCH: RATIO = 0.0

(b) SIX < SWITCH
(i) SEVEN > SLIMIT

1. SIX > SLIMIT: RATIO = 0.0
. _ 1 -SKX
2. SIX < SLIMIT: RATIO = U+Ye

(i) SEVEN < SLIMIT
_ 1 (-SIX , .-SEVEN
RATIO = U+Y(e + e )
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Case 3
FOURM) < SWITCH
FIVE(M) < SWITCH

W(M)

V(M)

T(M)

R(M)

UuM)

Y(M)

as defined in (2.107)

RATIO: ¢, zone
(a) THREE < SWITCH

cosh TWO (U) + sinh TWO (Y)
cosh THREE (U) + sinh THREE (Y)

(b) THREE > SWITCH
(i) SEVEN > SLIMIT
1. SIX > SLIMIT: RATIO = 0.0
2. SIX < SLIMIT: RATIO = ¢ SIX
(ii) SEVEN < SLIMIT

RATIO = G+1_Y [ (S + ¢ SEVEN) | (V) (SIX — ¢ SEVEN)]

RATIO =

RATIO: ¢, zone
(a) THREE < SWITCH

cosh TWO (W) + sinh TWO (V)
cosh THREE (U) + sinh THREE (Y)

(b) THREE > SWITCH
(i) SEVEN > SLIMIT
1. SIX > SLIMIT: RATIO = 0.0
2. SIX < SLIMIT: RATIO = XY . =SIX
U+Y

RATIO =

(i) SEVEN < SLIMIT

RATIO = G—h [ow)(e7SX 4 SEVEN) 4 (v)(¢7SIX - SEVEN)]

RATIO: ¢35 zone
(a) THREE < SWITCH

cosh TWO

RATIO =
cosh THREE (U) + sinh THREE (Y)

128



(b) THREE > SWITCH
() SEVEN < SLIMIT

1 —SIX —SEVEN
I = —
RATIO (e + e )

(i) SEVEN > SLIMIT
1. SIX > SLIMIT: RATIO = 0.0

2. SIX < SLIMIT: RATIO = —— ¢SIX
U+Y

il
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C ANALYTICAL PROGRAM &

130

542
540

541
1

2

23

21

15
20

22
25

161

160

165
170

180
101

205
202

203

DIMENSION X(101)sZ(61)sPHI(101s61)sEX{1D 1sC(101)sW(100)sV(1I00}
1T(100)sR100)U(100)sY(100)sUY(100)+sCOEFF(100)sTHREF(100)»
2FQUR(100)sFIVE(100)sEMPI(100)

COMMON PHIsNoL yPHIMINSPHIMAXsDELPHI s XONE sZONEsDELXsDELZ » IPLOT

READ 540,TITLE1,TITLEZ2

FORMAT (2A6)

IF (TITLEL) 541,1000s541

READ 1» NoL oKosKUTOFF,IPLOT

FORMAT (T110)

READ 23P13SsZZFROsDFELXsDELZ sDELPHI 3PHIMIN,PHIMAX »ZONE 3 XONE 4 RONFE
1RTWOSPERM]1 y PERM2 yPERM3 ¢ SWITCH S SLIMIT

FORMAT (4F18.8)

READ 29 (EX(LAYsLA=1,4K)

KK=2K+1

READ 2+ (C{LA)»LA=1,4KK)

IF (K=0) 23,523,221

SUMA=0,0

GO TO 25

DO 22 LA=1,K

TERMA=(CILA+1)~CILA)I#(EX(LA)®¥%2/2,0~-EX{LA)*S)

IF (LA-1) 15,15,20

SUMA=TERMA

GO TO 22

SUMA=SUMA+TERMA

CONTINUE

CONST=(ZZERO#S+C(KK)®#SH#2/2 40+SUMA) /S

RAT1=PERM2/PERM1

RAT2=PERM3/PERM2

DO 100 M=1,KUTOFF

CM=FLOAT (M)

EMP (M) =CM%P]

IF (K~O) 161,161,160

QUMB— 1.

GO TO 101

DO 180 LA=1,K
CONE=FEMP I (M)*EX(LA)/S

TERMB={C(LA}~C{LA+1))*COS(CONE)

IF (LA-=1) 16591659170

SUMB=TERMB

GO TO 180

SUMB=SUMB+TERMB
CONTINUE

COEFF (M= (S/EMPI (M) ) #*#2% (C(KK)*COS{EMPI (M) )=C{1)+SUMB)*2, O/S

THREE(M)=EMPI(M)#ZZERO/S

FOUR(M)=EMPI{M)*®*RONE/S

FIVE(M)=EMPI (M)Y®RTWO/S

IF (FOUR(M)~SWITCH) 203,203,205

IF (FIVE(M)=SWITCH) 202,202,100

EXPS=EXP(FIVE{M))

COSHS={EXP5+1,0/EXP5) /2.0

SINHS5=(EXP5~140Q/EXP5)/240

TANHS5=SINH5/COSHS

W(M)=COSHS##23% (] ,0—-RAT2)+RAT2
V{M)=(1,0-W(M))/TANHS

UY(M)y=w(M)+V (M)

GO TO 100

EXPS=EXP(FIVE(M})

COSHS5=(EXP5+140/EXP5)/24,0



1060

13

14
16

305
302
308
310
311
303
314
312
313
315
316
317
306
318
319
320
633
321
322
401

402

403

404

SINHS=(EXPS5~140/EXP5)}/2¢0
TANH5=SINH5/COSHS
EXP4=gEXP{FOUR(M))
COSH4=(EXP4+1,0/EXP4)/2,.,0
SINH4={EXP4~1.0/EXP4)/ 240
TANH&=SINH4 /COSH4
W(M)=COSH5*#2% (1 ,0-RAT2)+RAT2
VIM)z=(1,0~W(M))/TANHS
T(M)=COSH4#*#23 (] ,0~RAT1)+RAT1
R(My=(10~T(M))/TANHS4
UIM)sWIM)ET(M)+COSHLRSINH4#*V (M) # (1.0-RAT1)
Y(M)=W{M)¥R{M)+VIM)#(1,0+RATI-T(M))
UY(M)y=U(M)+Y (M)

CONTINUE

DO 26 I=1sN

IF (I-1) 13,13514

X(1)=XONE

GO TO 16

X¢1)y=X(I-1)1+DELX

DO 26 J=1lsl

IF(J=1) 69698

Z(1)=ZONE

GO TO 11

Z(J)=2(J-1)1+DELZ

DO 24 M=1,KUTOFF
ONE=EMPI(M)Y#X(1)/S
TWO=EMPI(M)Y®*Z(J)/S
SIX=THREE(M)—-TWO

SEVEN=THREE (M}+TWO

IF (FOUR(M)=SWITCH) 303,303,305
IF (FIVE(M)~SWITCH) 30253025306
IF (Z(J)-RTWO) 633:633,308

IF (Z(J)-RONE) 3109310,306

IF (TWO-SWITCH) 3119311306

IF (SEVEN-SLIMIT) 405+405,306

IF (Z(J)=RTWO) 318,318,314

IF (2Z(J)Y=RONE) 31553159312

IF {(THREE(M)=SWITCH) 404+4045313
1F (SEVEN=SLIMIT) 403,403,306

IF (THREE(M)=~SWITCH) 4064065316
IF (SEVEN=-SLIMIT) 40554054317

IF (SIX=~SLIMIT) 407,407+401

IF (SIX=SWITCH) 402,402,401

IF (TWO-SWITCH) 3203204319

IF {(SIX~SLIMIT) 408,408,401

IF (THREE(M)=~SWITCH) 41144115321
IF (SIX~SWITCH) 3219321401

IF (SEVEN-SLIMIT) 4099409322

IF (SIX~SLIMIT) 408,408,401
RATIO=0.0

GO TO 400

RATIO=21,0/EXP{SIX)

GO TO 400

EXP6=EXP(SIX)

EXPN6=1,0/EXP6

EXP7=EXP(SEVEN)

EXPNT=14,0/EXP7

RATIO= (UMY (EXPNG+EXPNTI+Y (M) * (EXPN6—=EXPNT))/UY (M)
GO TO 400

EXP2=EXP{TWO)
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EXPN2=1,0/EXP2
EXP3=EXP(THREE (M})
EXPN3=140/EXP3
COSH2=(EXP2+EXPN2) /2.0
SINH2={(EXP2~EXPN2)/2.0
COSH3={EXP3+EXPN3) /240
SINH3=(EXP3-EXPN3)/2.0
RATIO=(UIM)*COSH2+Y (M) ®SINH2) / (U(M) #COSH3+Y (M) #SINH3)
GO TO 400
405 EXP6=EXP(SIX)
EXPN6=1.0/EXP6
EXPT=EXP (SEVEN)
EXPN7=140/EXP7
RATIO=(W(M)* (EXPNG+EXPNT)I+V (M) *(EXPN6=EXPNT))/UY (M)
GO TO 400
406 EXP2=EXP(TWO)
EXPN2=1,0/EXP2
EXP3=EXP({THREE (M))
EXPN3=1,0/EXP3
COSH2=(EXP2+EXPN2)/240
SINH2=(EXP2=-EXPN2)/240
COSH3={EXP3+EXPN3) /2.0
SINH3=(EXP3-EXPN3)/2,0
RATIO=(W(M)#COSH2+V (M) %SINH2) / (U(M)#COSH3+Y (M) *#SINH3)

GO TO 400

407 RATIO=(W(M)+VIM))/Z(EXP(SIX)*UY(M))
GO TO 400

408 RATIO=140/(UY(M)HEXP(SIX})
GO TO 400

409 EXP6=EXP(SIX)
EXPN6=1.0/EXP6
EXPT=EXP(SEVEN)
EXPNT=140/EXPT
RATIO=(EXPN6+EXPNT) /ZUY (M)
GO TO 400
411 EXP2=zEXP(TWO)
EXPN2=1,0/EXP2
EXP3=EXP(THREE (M} )
EXPN3=1.0/EXP3
COSH2={(EXP2+EXPN2)/2.0
COSH3=(EXP3+EXPN3) /2.0
SINH3=(EXP3~-EXPN3)/2.0
RATIO=COSH2/ (U(M)*COSH3+Y (M) *SINH3)
400 IF (RATIO—-0,0001) 2651400,1400
1400 FACT=RATIO*COS{ONE)
TERM=COEFF(M}#FACT
IF (M=1) 801+801,810
801 SUM=TERM
GO TO 24
810 SUM=zSUM+TERM
24 CONTINUE
26 PHI(15J)=CONST+SUM
PRINT 30+TITLE1,TITLE2
30 FORMAT (1H1,22H NUMERICAL PROBLEM 2A6//12Xs4HX(1)//7)
PRINT 60 {X(I)sI=1yN)
PRINT 50
50 FORMAT (1H1,12Xs4HZ(J)//)
PRINT 60s(2{J)sJd=1,L)
60 FORMAT (10F12.4)

132



[a¥aka!

PRINT 70
70 FORMAT (1H1s10Xs8HPHI(IsJ}//)
DO 80 I=1sN
PRINT 72,1
72 FORMAT (1HO»12Xs2HI=»13//)
80 PRINT 82s(PHI(IsJ)sJ=1Hl)
82 FORMAT (10F124%)
CALL CONTOR
CALL COCNEXT

GO TO 542
1000 CALL CCEND

STOP

END

SUBROUTINE CONTOR

DIMENSION PHI{10161)sT(493)e9XX(2)9ZZ(2)eXXX(2)9Z22(2)

COMMON PHI yNyL yPHIMINSPHIMAX sDELPHI 9 XONE s ZONE »DELX»DELZ »IPLOT

COMMON /CCPOOL/ XMINsXMAXsYMINsYMAXsCCXMIN,CCXMAX»CCYMINY CCYMAX

IF (IPLOT=2) 40441442
40 XMIN==1875.0

XMAX=231254.0

YMIN=-425040

YMAX=12250,0

CCXMIN=10040

CCXMAX=1100.0

CCYMIN=25060

CCYMAX=910.0

CALL CCBGN

CatlL CCGRIND (6HNOLARLS)

XMINzOQO

XMAX=20000,0

YMIN=0.0

YMAX=1200040

CCXMIN=175,0

CCXMAX=975,0

CCYMIN=42040

CCYMAX=900,0

CALL CCBGN

CALL CCGRID (1+1096HNOLBLSs146)

WRITE (98+20)
20 FORMAT (116HO° 0elS «25 0e3S Oe4S

1 0,55 0e6S 0475 ¢85 095 S)

CALL CCALTR (1754094054090, 1)

CALL CCALTR ( 98040s42040305151H0)

CALL CCALTR (9804095004009 154H01S)

CALL CCALTR (98040+58040305134H062S)

CALL CCALTR (9804096600909 194H063S)

CALL CCALTR (980,0974040309134H0+4S)

CALL CCALTR (9804058204050 9195H055)

CALL CCALTR (9804039004090 5194H0465)

GO TO 43 .
41 XMIN=—-1875,0

XMAX=43125.0

YMIN=~425040

YMAX=1225040

CCXMIN=100,0

CCXMAX=2100.0

CCYMIN=250.0
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CCYMAX=910.0
CALL CCBGN
CALL CCGRID (6HNOLBLS)
XMIN=20.0
XMAX=400004.0
YMIN=0,0
YMAX=120004,0
CCXMIN=175.0
CCXMAX=1T7T754,0
CCYMIN=420,0
CCYMAX=900,0
CALL CCBGN
CALL CCGRID (1,20,6HNOLBLS,146)
WRITE (98,21)
21 FORMAT (117THO 15 028
1 0e3S «4$S 0+53)
CALL CCALTR (175405405409051)
WRITE (98,23)
23 FORMAT (113H 0e6S 0,78
1 0.85 ¢9S $)
CALL CCALTR (989409405403041)
CALL CCALTR (1780409642060309141H0)
CALL CCALTR (178040558040905154H0418)
CALL CCALTR (1780609740405 05194H042S)
CALL CCALTR (1780405900409 09154H0435)
GO TO 43
42 XMIN=-1875.0
XMAX=63125,0
YMIN=-4250,0
YMAX=1225040
CCXMIN=1004.0
CCXMAX=3100.0
CCYMIN=25040
CCYMAX=910.0
CALL CCBGN
CALL CCGRID (6HNOLBLS)
XMINZO.O
XMAX=6000040
YMIN=0,0
YMAX=12000,0
CCXMIN=17540
CCXMAX=25T7540
CCYMIN=42040
CCYMAX=9004,0
CALL CCBGN
CALL CCGRID (1+30,6HNOLBLSs156)
WRITE (98,22)
22 FORMAT (115H0 0elS
1 «25 035 }
CALL CCALTR (175405405.050,1)
WRITE (98,24)
24 FORMAT (114H 0445
1 055 «6S )
CALL CCALTR (980,0940540350+1)
WRITE (98+25)
25 FORMAT (114H 0«75 085
1 095 S)
CALL CCALTR (177840+¢405,09051)
CALL CCALTR (258040+42040509141H0)
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43

51
53

54

~No s

75

16
80

82

83
85

10
11

13

CALL CCALTR (2580e05660e0905194H0e1S)
CALL CCALTR (258040390003 035194H0625)
Lt=L-1

NN=N-1

DO 1 J=l,lLL

DO 2 I=1sNN

PHILOW=AMINI (PHI{(I13J)sPHI(I4+1sJ)sPHI(I+1yJ+1)sPHI(IJ+1}))
PHIHIZAMAXY (PHI(IpJ)sPHI(I+Y9J)sPHI(I+1sJ+1)sPHI(IsJ+1))
IF (PHIHI-PHILOW) 232551

IF (PHILOW=PHIMAX) 5395342

IF (PHIHI-PHIMIN) 24545

IF (PHILOW-PHIMIN) 54354455

AA=PHIMIN

GO TO 2

AA= FLOAT(IFIX((PHILOW=PHIMIN)/DELPHI)+1)#DELPHI+PHIMIN
IFLAG=0

Ti(ls1)=PHI({],J)

T(2s1)=PHI(TI+19J)

T(3s1)=PHI(I4+19J+1)

T(as1)=PHI(1sJ+1)
T(1s2)=XONE+FLOAT(I-1)*DELX
T(2+2)=T(1s2)4+DELX

T(3+2)=T(242)

T(4s2)=T(1s2)
T(1,3)=Z0ONE+FLOAT(J-1)%DELZ
T(293)=T(193)

T(3+3)=T(193)+DELZ

T(4+93)=T(3,43)

K=0

IF(T(191)=T(291)) 791147
Fa(AA=T(1s1))/(T12+1)=T(1l»1))

IF (F~1,0) 71s71s11

IF(F) 11»11,8

IDIOT=1+IFLAG
XXCIDIOT)I=(1e0=F)*T(192)Y+F#T7(242)
ZZUIDIOT)I=(1e0-F)#T (193 )+F%T(2,3)
FaXX(IDIOT)/25.0

G=FLOAT(IFIX(F))

H=F~G

IF(H=0,50) 75,7576
XXX(IDIOT)I=G#25.0

GO TO 80
XXXCIDIOT)I=FLOAT{IFIX(XX(INIOT)/25.,0)1+1)1#25,0
FF=ZZ(IDIOT)/25.0

GG=FLOAT({IFIX(FF))

HHzFF -GG

IF(HH=0450) 82482483
2ZZ(IDIOT)I=GG#25,0
GO TO 85
2ZZ{IDIOT)=FLOAT(IFIX(ZZ(IDIOT)/250)+1)%2540
IFCIFLAG) 10+1049

CALL CCPLOT{XXX$ZZZ +29s6HNOJOINs1s1)
XXX{1)y=XXX(2)

222(1)=222(2)

GO TO 11

IFLAG=1

K=K+1

IF{K=4) 13912512

TT1=T(1ls1)

TT2=2T(1e2)
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136

131

12
14
15

TT3=2T(1,3)

DO 131 NA=1,3

DO 131 NB=1,3
T(NBsNA) =T (NB+13sNA)
T(4s1)=TT1
T(492)=TT2
T(493)=TT3

GO TO 6

AA=AA+DELPHI
IF(AA=PHIHI) 15,15,2
IF (AA=PHIMAX) 343,2
CONTINUE

CONTINUE

RETURN

END



APPENDIX B

Computer Programs for Numerical Solutions

Table 1 lists the six numerical programs and the salient features of each. A more complete
presentation in the form of (1) complete program printouts for each program, (2) list of variables, (3)
tables of data deck instructions, and (4) table of recommended values for certain of the computing
parameters is given after the following discussion of the computer aspects of this study.

The major limitation in the use of the numerical method is the availability of core storage in the
computer. This creates an upper limit to the number of nodes which can be used for a given problem.
For Numerical Programs 1, 2 and 3 (Table 1) the maximum number of nodes which can be
accommodated on an IBM 7094 is approximately 12,000. A net with N = 301, L = 41 was used for
many of the problems, a 201 x 61 mesh for others. The program printouts are dimensioned for the 301
x 41 case. In Numerical Programs 4 and 5, the necessity of dimensioning the permeability values
associated with each node reduces the possible number of nodes to 6,000 and 3,000 respectively. The
three-dimensional case, Numerical Program 6, is designed for 7,500 nodes.

The computing time required to obtain a solution to a given problem depends on (1) the number
of nodes in the mesh, (2) the value of the relaxation parameter w, (3) the desired tolerance, and (4) the
size of the discrepancy between the initial inserted values and the final results.

The effect of the first factor is self evident. More nodes lead to a larger number of iterations and
hence longer computing times.

As mentioned in Chapter 3, the choice of the optimum value of w on mathematical grounds can
be a difficult task. McCracken and Dorn (1964) give some indication of the range of values which
should be considered by way of a graph showing the relation between the number of iterations and w

Table 1
. Sub- Max. .
Program Content Main rou- No. of Contouring
Program | . Subroute
tines Nodes
Numerical Program 1 Two dim., homogeneous, 1 1 301x41 CONONE
square mesh
Numerical Program 2 | Two dim., homogeneous, 7 1 18 | 301x41 CONTWO
meshes (Figure 8)
Numerical Program 3 | Two dim., layered, isotropic, 1 2 | 301x41 CONTHR
square mesh
Numerical Program 4 | Two dim., non-homogeneous, 1 2| 151x41 CONFOR
isotropic, square mesh
Numerical Program 5. | Two dim., non-homogeneous, 1 2 | 101x31 CONFIV
anisotropic, rectangular mesh
Numerical Program 6 | Three dim., non-homogeneous, 1 4 | 25x25x12 CONSIX
isotropic, 3D rectangular mesh. CONSIX
CONSKX
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for a particular problem involving Laplace’s equation in a square region with Dirichlet boundary
conditions (Figure 30a). A similar graph (Figure 30b) for a simple two-layer problem using Numerical
Program 3 indicates the optimum value of w to be 1.85. This value was used for most runs with
Numerical Programs, 1, 3, 4, 5 and 6.

For Numerical Program 2, the introduction of the refined mesh and the corresponding three-term
finite-difference expressions caused changes in the properties of the matrix (representing the n simulta-
neous linear equations) which affected the optimum value of w. For w = 1.85, the iterative procedure
diverged in many cases and did not lead to a solution, w = 1.2 was found satisfactory in several cases
but an insufficient number of runs were made to determine the optimum . In fact the optimum ¢
may be different for each problem. To avoid the divergent results, the ordinary Liebmann method (w=
1.0) was used for most runs using Numerical Program 2. Due to the resultant lengthy computing times,
this program, and therefore the refined meshes, were used very little in the study. Further work must be
carried out to delineate the factors which affect the overrelaxation factor before the extrapolated
Liebmann method can be applied systematically to cases involving refined meshes. A short discussion
of the cause of the divergent results is included in Chapter 3 under “Solution of finite-difference
equations”.

The computer programs are written so that the iterative procedure continues until the difference
between the computed values of ¢(1,J) from one iteration to the next is less than some desired tolerance
for all nodes in the mesh. Experience has shown that a tolerance of 0.1 or 0.01 often gives satisfactory
results, but not always; 0.001 always represents satisfactory convergence and does not involve a
significant increase in the number of iterations; 0.0001 lengthens the computing time significantly with
little improvement in results. It has been noted that the greater the permeability difference within the
model, the smaller the tolerance must be. The conclusions stated above apply to permeability ratios of
up to 1:1,000.

An important warning must be issued here. Incomplete convergence due to the specification of
too large a tolerance can lead to an equipotential plot which may appear correct but is in fact wrong.
Figure 31 shows the effect of decreasing the tolerance on the results of a specific problem. Only Figure
3lc is correct; the specification for any lower tolerance would result in the same potential
configuration.

Perhaps the most influential factor in controlling computing time is the insertion into the mesh
of the initial values of ¢ from which the iterative method proceeds toward the final result. If a reasonably
accurate guess of the final result can be made, a very few iterations will produce an answer, whereas
the insertion of a poor set of initial values may lead to the use of a prohibitive amount of computer
time. A method of inserting initial values in vertical bands (and in layers within each band in Programs,
3, 4 and 5) was found to lead to reasonably rapid convergence without the necessity of punching an
unreasonable number of data cards. The method is documented in the data deck instructions for each
of the programs.

The work reported in this study was done at the University of California Computer Center at
Berkeley. The Center operates a Direct Couple System (DCS) consisting of an IBM 7040 and an IBM
7094. In this configuration, the 7040 handles all input/output, while the 7094 compiles, assembles and
executes programs. An off-line Calcomp 565 plotter in connection with an IBM 1401 was used to
obtain the equipotential plots.

Computer times for the majority of two-dimensional cases reported in Chapters 5 and 6 were
between 2 and 3 minutes. Problems involving high permeability ratios ran somewhat longer.
Three-dimensional problems required 30-60 minutes computer time.

The contouring method in the eight plot subroutines in Table 1 is the same. The only differences
in the program lie in their correspondence with the main program through DIMENSION and COMMON
statements and in their generality. CONONE through CONFOR are restricted to three sizes of plot;
CONFIV and the sections through the 3D model can handle any size of plot acceptable to the plotter.
The plotting subrouting is adapted from J6 BC XYP4; writeups of this program are available from the
Library, University of California Computing Center, Berkeley.
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Figure 30. Number of iterations required for convergence as a function of the relaxation factor w
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COMPUTER RUN NO: N-3D-10
NO. OF NODES: 301x 31

Figure 31.

NO. OF ITERATIONS: 233
MESH: 1

TOTAL RELIEF/S: 0.0167

The effect of the tolerance on the convergence of the solution
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List of Program Variables for Two-Dimensional Programs

{Numerical Programs 1 Through 5)

Parameter Definition Program
1 2 3 4 S

N Number of x nodes X X X X X
L Number of z nodes X X X X X
XD x values of N nodes X X X X X
v/0)) z values of L nodes X X X X X
DELX Ax (= Azin 1,2,3,4) X X X X X
DELZ Az X
ALPHA DELX /DELZ X
ALFA (ALPHA)? X
XONE X(1) = value of x at origin X X
ZONE Z(1) = value of z at origin X X X
MESH X
JA X
JB . . X

Mesh configuration, see Figure 8
JC X
D X
S s X X X X X
ZZERO Z, X X X X X
PHI(1,]) ¢ X X X X X
DELPHI Ay — for contours X X X X X
PHIMIM Minimum value of ¢ X X X X X
PHIMAX Maximum value of ¢ X X X X X
OMEGA relaxation factor w X X X X X
TOL tolerance (i.e. tolerable residue) X X X X X
KART maximum number of iterations X X X X X
KAR number of iteration X X X X X
RES residue after KARtN iteration x| x| x| x| x
I value of J at each value of I for which boundary

values of PHIN(I) apply X X X X X
PHIN(D) boundary values of ¢ along water-table X X X X X
JRITE(D) o -3+ X X X X X
JLEFT(I) ua - 3da-1n X X X X X
MM no. of vertical fields used in inserting GUEST(M)

initial values X X
MMM MM + 1 X
NP(M) values of I, bounding vertical fields. Note:

NP (1) = 1, NP(MMM) = N X X X X X
GUEST(M) initial values inserted in the MM vertical

strips, converted to GUESS(I) X X X X X
GUESS(I) initial values for each column of nodes,

from GUEST(M) X X X X X
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Parameter Definition Program
3 5

INPUT = 0:' 1 layer per vertical strip

= 1: 2 layers per vertical strip X X
JI value of J above which initial values given by

GUESS(I), below which initial values given by

GUESQ(I); used only when INPUT = 1 X X
GUESR(M) initial values inserted in the MM vertical strips

above J = JI, converted to GUESQ(I) X X
GUESQ(I) initial values for each column of nodes;

from GUESR(M) X X
PERM(J) permeability of Jth layer of nodes X
MP number of horizontal strips used in inserting

PERK(M) X X
LP(M) values of J, bounding horizontal strips

Note: LP(1) = 1, LP(MMP) = L
MMP MP + 1
PERK(M) values of permeability inserted in the MP strips,

then converted to PERM(J) X
IMPERM = 0: 1 zone per horizontal strip

= 1: MA(J) zones per layer of nodes
MA(J) MA zones in the Jth layer of nodes
MC(M) values of I which bound the MA zones.

Note: MC(1) = 1, MC(MA(J)) = N.

There must be L sets of values of MC(M),

one for each layer of nodes X
PERM(L,J) permeability of node (1,)
PERMH(L,J) horizontal permeability of (1,J) X
PERMV(L) vertical permeability of (1,J) X
EEEES&:; } identical to PERK(M) but for anisotropic case ;(
IPLOT 1 }

= 2 1 see Apendix I X

=3
SX X(N)
SZ = Z(L) X
SXPL Horizontal width of plot equals (SXPL — 1.75)

inches
SZPL Vertical height of plot equals (SZPL — 4.20) inches
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Data Deck — Numerical Problem 1

Group Card Format Data

A 1 2A6 any desired title

B 1 1415 N, L, MM, IPLOT, KART

C 1 7F10.2 DELX, DELPHI, PHIMIN, PHIMAX, TOL, XONE, ZONE
2 ! OMEGA, S, ZZERO ,

D 1 7F10.2 PHIN(I), I = 1,N; 7 values / card
2 : :
3

E 1 2413 JJ(1), I = 1,N; 24 values / card
2 : :
3

F 1 1415 NP(M), M = 1,MMM; 14 values / card
2 7F10.2 GUEST(M), M = 1,MM; 7 values / card

Data Deck — Numerical Problem 2

Identical to Numerical Problem 1 except:

B

| 1

1415

N, L, MM, MESH, JA, 1B, JC, JD, IPLOT, KART

Note: 1.

All layers of a given mesh spacing must be at least 2 nodal spacings high.

2. The water-table configuration must be approximated by nodes entirely within the upper-
most subdivision.

Data Deck — Numerical Problem 3

Group Card Format Data
A 1 2A6 any desired title
B 1 1415 N, L, MM, MP, IPLOT, INPUT, JI, KART
C 1 7F10.2 DELX, DELPHI, PHIMIN, PHIMAX, TOL, XONE, ZONE
2 " OMEGA, S, ZZERO
D 1 7F10.2 PHIN(I), I = IN; 7 values / card
2 : .
3
E 1 2413 JI(D, I - 1,N; 24 values / card
2 : :
3
F 1 1415 NP(M), M = 1,MMM; 14 values / card
2 7F10.2 GUEST(M), M = 1 MM; 7 values / card
if INPUT = 1, add:
3 7F10.2 GUESR(M), M = 1,MM; 7 values [ card
G 1 1415 LP(M), M = 1 MMP; 14 values / card
2 7F10.2 PERK(M), M = 1,MP; 7 values / card
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Data Deck — Numerical Problem 4

Group Card Format Data
A 1 2A6 any desired title
B 1 1415 N, L, MM, MP, IPLOT, INPUT, JI, INPERM, KART
C 1 7F10.2 DELX, DELPHI, PHIMIN, PHIMAX, TOL, XONE, ZONE
2 " OMEGA, S, ZZERO
D 1 7F10.2 PHIN(I), [ = I,N; 7 values / card
2 . .
3
E 1 2413 JJ(D, 1 = 1,N; 24 values / card
2 : :
3
F 1 1415 NP(M), M = 1,MMM; 14 values / card
2 7F10.2 GUEST(M), M = 1,MM; 7 values / card .
if INPUT = 1, add:
| 3 | 7F102 | GUESR(M), M = 1,MM; 7 values / card
G if INPERM = 0, use:
1 1415 LP(M), M = 1,MMP, 14 values / card

2 7F10.2 PERK(M), M = 1,MP; 7 values / card
if IMPERM = 1, use:

1 1415 MAQJ), J = 1,L; 14 values/ card

(a){2 1415 MC(M), M = 1,MA(1)+1; 14 values / card
3 7F10.2 PERK(M), M = I,MA(1); 7 values / card
4 1415 ~

(b){5 7E10.2 }same as(a) but forJ = 2

etc.uptoJ = L

Data Deck — Numerical Problem 5
Identical to Numerical Problem 4 except:

Group Card Format Data
B 1 1415 "| N, L, MM, MP, INPUT, JI, INPERM, KART
C 1 7F10.2 DELX, DELZ, DELPHI, PHIMIN, PHIMAX, TOL, XONE
2 ! ZONE, OMEGA, S, ZZERO, SXPL, SZPL, SX
3 " Sz
G if IMPERM = 0, Use:
1 1415 LP(M), M = 1, MMP; 14 values / card
2 7F10.2 PERKH(M), M = 1 MP; 7 values / card
3 " PERKV(M), M = 1,MP; 7 values / card
if INPERM = 1, Use:
1 1415 MA(J), J = 1,L; 14 values / card
2 1415 MC(M), M = 1,MA(1) + 1; 14 values/ card
(a)43 7F10.2 PERKH(M), M = I,MA(1); 7 values / card
4 7F10.2 | PERKV(M), M = 1,MA(1); 7 values / card

5 1415
(b)<6 7F10.2 Same as (a) but forJ = 2
7 7F10.2

Etc.uptoJ = L
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List of Program Variables for Numerical Program 6

The following parameters are identical with those of the two-dimensional programs:

N
L

X(1)
Z(3)
DELX
DELZ
DELPHI

ALPHA KAR
ALFA KART
PHIMIN SX
PHIMAX SZ
OMEGA

TOL

RES

The following parameters are identical with those of the two-dimensional programs, except for an
increase in dimension:

PHI (I, K, J)
17 (1, K)
PHIN (I,K)
PERM (I,K,])

All other parameters listed for two-dimensional problems are not used or are replaced in the
three-dimensional program.

The following

new parameters are introduced:

M Number of y nodes

Y(K) y values of M nodes

SY Y(M)

SXPL Horizontal width of plot equals (SXPL — 1.0) inches

SYPL Horizontal width of plot equals (SYPL — 1.0) inches

SZPL Vertical height of plot equals (SZPL — 1.0) inches

MAY = 0, initial values are inserted by planes in y—z direction
= 1, initial values are inserted by planes in x—z direction

GUESI(D) initial values for each plane of nodes in y—z direction; used only when
MAY =0

GUESK(K) initial values for each plane of nodes in x—z direction; used only when
MAY = 1

IPLOT(1) =0, plot
=1, no plot
for each value of I, i.e., for each y~z section through the 3D model.

KPLOT(K) } . —

JPLOT()) same as IPLOT(I) but for other two coordinate directions

IPERM(J) = ] — single permeability for entire jth layer of nodes

= 2 — cach row of nodes in Jth layer given its own permeability. Rows
taken in y-direction

= 3 — as 2 but rows taken in x-direction

= 4 — each y-direction row may be broken up into MA(I) segments and
MAC(I) permeabilities entered.

= 5 — each x-direction row may be broken up into NA(K) segments and

NA(K) permeabilities entered.
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PERLI the single permeability for IPERM(J) = |

PERL2(I) the row permeabilities for IPERM(J) = 2

PERL3(K) the row permeabilities for IPERM(J) = 3

MA(D) no. of segments in each y-direction row for IPERM(J) = 4

MB(MK) values of K bounding each segment. Note: MB(1) = 1, MBMA(D+1) = M
PERL4(ME) permeabilities entered in segments for IPERM(J) = 4

NA(K) no. of segments in each x-direction row for IPERM(J) = 5

NB(NK) values of I bounding each segment. Note: NB(1) = 1, NB(NA(K) + 1) = N
PERLS(NE) permeabilities entered in segments for IPERM(J) = 5

Data Deck — Numerical Problem 6

Group Card Format Data
A 1 2A6 any title desired
B 1 1415 N, M, L, MAY, KART
C 1 7F10.2 DELX, DELZ, TOL, OMEGA, SX, SY, Sz
2 " ALPHA, PHIMIN, PHIMAX, SXPL, SYPL, SZPL, DELPHI
D 1 7F10.2 PHIN(LK), I = I,N; K = I,M, 7 values / card
2 . ie. K=1;1=1N
3 K=2,1=1N
. . etc.
E 1 2413 KPLOT(K), K = 1,M; 24 values / card
2 " IPLOT(I), 1 = 1,N; 24 values / card
3 " JPLOT(J), J = 1,L; 24 values / card
F 1 2413 HAK) I = IN; K = ILM; 24 values / card
2 . ie. K=1;1=1N
3 K=21=1N
. : etc.
1 2413 IPERM(J), J = 1,L; 24 values / card
H if MAY = 0, use:
1 7F10.2 GUESI(I), I = I,N; 7 values / card
2 X .
if MAY = 1, use:
1 7F10.2 GUESK(K), K = 1,M; 7 values/ card
2 : .
I if IPERM(J) = 1, use:
1 7F10.2 PERL1
if IPERM(J) = 2, use:
1 7F10.2 PERL2(I), 1 = 1,N; 7 values / card
2 . :
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if IPERM({J) = 3, use:

1 7F10.2 PERL3(K), K = 1,M; 7 values / card
2 . .
if IPERM(J) = 4, use:
(a) 1 1415 MA(D), 1 = 1,N; 14 values / card
2 . .
(b) ( A){l 1415 MB(MK), MK = 1,MA(1)+1; 14 values / card
2 7F10.2 PERL4A(ME), ME = 1,MA(1); 7 values / card
(B){3 1415 same as (A) but for]l = 2
4 7F10.2 etc.cuptol = N
if IPERM(J) = 5, use:
(a) 1 1415 NA(K), K = 1,M; 14 values [ card
2 : :
(b) (A){l 1415 NB(NK), NK = 1 ,NA(1)+1; 14 values/ card
2 7F10.2 PERLS(NE), NE = 1,NA(1); 7 values / card
(B){3 1415 same as (A) but forK = 2
4 7F10.2 etc.uptoK = M

l]{EPEAT GRIOUP I FOR Efl\CH VALUE OF J

Note: For those columns of nodes in an (I,K) position which are outside the physical extent of the
model (Figure 16) use the following values:

1, K =1
PHIN(LK) = 0.0

These nodes will then be ignored in the iterative procedure and the vertical impermeable boundaries
will be simulated in the correct position.

Recommended Values of Certain
Computing Parameters

XONE = 0.0

ZONE = 0.0

DELPHI = 1/10to 1/20 of (PHIMAX — PHIMIN)

TOL = 0.001 (or less if permeability ratio exceeds 1:1000)
KART = 3000

OMEGA = 1.85 for Numerical Programs 1, 3,4, 5,6

1.00 for Numerical Program 2 (Pending further investigation)
PHI(1,J) must always be > 0.0
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C NUMERTICAL PROGRAM 1
COMMON X(301)sZ(41)sPHI(301s41)sPHINI301)4+JJ(301)»GUESS(301)»
lNP(IO),GUEST(IO),JRITE(BOI)sJLEFT(Sol),N'L.MMoIPLOT.DELX.DELPHI.
ZPHIMINGPHIMAX s TOL s XONE 3 ZONE sOMEGA 9 S9Z2ZEROLRES
1001 READ 13,TITLE1l,TITLE2
IF (TITLE1) 1000,90,100
1000 READ 10y NsL MMy IPLOTsKART
READ 11, DELXsDELPHI 3PHIMINsPHIMAX » TOL » XONE  ZONE s OMEGA 3 S+ZZERO
READ 11s (PHIN(I)pI=lyN)
READ 12y (JJU(I)sI=1yN)
MMM=MM+1
READ 10, (NP(M),Mz] 4 MMM)
READ 119(GUEST(M) M=l yMM)
10 FORMAT (1415%)
11 FORMAT (7F1042)
12 FORMAT (2413)
13 FORMAT (2A6)
DO 305 M=]1,MM
NPR=NP (M}
NPQe=NP (M+1)
DO 306 I=NPRJNPQ
306 GUESSI(13=GUEST(M)
305 CONTINUE

ZZERA=FLOAT(JJ{1)~1)%DELX
SA=FLOAT(N-1)#DELX
IF (ZZERA-ZZERO) 38,140,138
140 IF (SA=S) 38,130,138
38 PRINT 39
39 FORMAT (1H1,18H CHECK GEOMETRY)
GO TO 1001
130 DO 60 I=1,N
IF (I=1) 6262464
62 X(1}=XONE
GO TO 60
64 X(I)=X{1-1)+DELX
- 60 CONTINUE
DO 70 J=1,L
IF (J=1) 72,72+74
72 2(1)=ZONE
GO TO 70
T4 Z(J)=Z(J-1)+DELX
70 CONTINUE

DO 1050 I=1sN
JRITE(IY=JJ(1)=JJ(]I+])
SJLEFT(I)=JJ(1)y=JdJU(I-1)
DO 1050 J=1,L
IF (J=JJ(I)) 1051»1049,1048
1048 PHI(I,J)=0.0
GO TO 1050
1049 PHI(I»J)=PHIN(T)
GO TO 1050
1051 PHI(I,J)=GUESS(])
1050 CONTINUE

DO 105 KAR=1,KART
RES=0,0
DO 701 K=1l,L



41
43
44
42
46
48

50
47
51

180

183

182

181

185

186

187

188

189

190

191

193

192

24
25
26
28
29

30

31

32
33

34
702

J=L+1-K

DO 701 I=1,N

IF (I-1) 41541442

IF (J=1) 32432443

IF(J=JJ(I)) 44425926

IF (URITE(I)-1) 28,28+180

IF (1=N) 46947947

IF (J~=1) 34,34,448

IF (J=JJU1)) 49425426

1F (JULEFT{(I)=1) 50»50,181

IF (JRITEtI)-~1) 393,182

IF (J=1) 33433,51

IF (J=JJ(1)) 52925426

IF (JLEFT(I)=1) 2452449183

IF (J=JJ(I+1)) 28,28+29

IF (J=JdJ(1=-1)) 24924929

IF (JU=JJ(I+1)) 3935193

IF (JRITE(I)=1) 1855185,186

IF (J=JJ(I=1)) 343,192

IF (JJ(I=1)~JdJtl+1)) 188,187,190

IF (J=JJ(I-1)) 353,29

IF (J-JJ(I~-1)) 393,189

IF (U=JJ{I+1)) 1925192429

IF (J=JJ(I+1)) 3,3,191

IF (J=JJ(I=1)) 1935193,29

JJA=JII(D)=JJ{I+]1)

JJUB=JJ(1)~J

DELTA=DELX*¥FLOAT(JUB/JJA)
PHIT=PHIN(I)=FLOAT(JJIB/JIJAY*{(PHIN(I)=PHIN(I+1))
GO TO 31

JJC=JJ(1)=~JJU(I-1)

JJID=JJ(1Y)=J

DELTA=DELX#FLOAT(JJD/JJIC)
PHIT=PHIN(I)}=FLOAT{JJD/JIJCI¥(PHIN(I)=PHIN(I~1)})
GO TO 30
DOF=(PHI(I+1sJ)+PHI(I=1sJ)+PHI(TIsJ+1)4+PHI(TIsJ=1))/4e0
GO TO 702

DDFe(PHI(I 3 J+1)+PHI(14J=1)42.0%PHI(I~15J))/440
GO TO 702

DDF=PHIN(T)

GO TO 702

DDF’OQO

GO TO 702

DDFe (PHI( I3 J+1)+PHI(19J=1)42.0#PHI(1+1sJ))/440
GO TO 702 .
DOF=(PHI(I»J4+114PHI(I9J=1))/2.0

GO TO 702
DOF=(DELX*(DELX*PHIT+DELTA#PHI(I+19J)))/{DELX+DELTA) #%2+(DELTA*

1(PHI(TsJ+1)+PHI(15J~11))/(2.0%(DELX+DELTA))

GO 10 702
DDF=(DELX*(DELX*PHITHDFELTA*PHI(I~1+J)) )/ (DELX+DELTA)*#2+(DELTA¥

T(PHI(T »J+1)14PHI(I,,J=1)))/(2.0%{DELX+DELTA}))

GO TO 702

DDF=(PHI(IJ+1)+PHI(I+19J))/2.0

GO TO 702

DDF=(PHI(I1,J+1)+PHI(I=15U))/240

GO TO 702

DDFa (PHI(I+1sJ)+PHI(I=14J)+20%PHI(15J+1))/440
GAF=ABS(DDF~PHI(I+J))

IF (GAF-RES) 701,701,703



[a¥ala!

703 RES=GAF _ _
701 PHI(I,J)=OMEGA*DDF+(1+0—OMEGA)*PHI (1,J)

IF (RES-TOL) 120,105,105
105 CONTINUE

120 PRINT 200+KAR,RES
200 FORMAT (1H1»I110,F10.5)

PRINT 300sTITLE1sTITLE2

300 FORMAT (1H1,y24H1 NUMERICAL PROBLEM 2A6//12Xs4HX(1)//)
PRINT 600s (X(1)sI=1leN)
PRINT 500

500 FORMAT (1H1,12X,4HZ(J)7/)
PRINT 600s(Z2(J)ysJ=1,L)
600 FORMAT (10F12e4)
PRINT 700
700 FORMAT (1H1s10Xs8HPHI(IsJ)//)
DO 800 I=1sN
PRINT 7201
720 FORMAT (1HO312X»2HI=»13//)
800 PRINT 820y (PHI(IsJ)sJ=1sl)
820 FORMAT (10F12.4)
CALL CONONE
CALL CCNEXT

GO T0O 1001
90 CALL CCEND

STOP

END

SUBROUTINE CONONE
COMMON X(301)sZ(41)sPHI(301+41)sPHIN(301),JJ{301)sGUESS(301),
INP(10)sGUESTI10)sJRITE(301)»JLEFT(301) sNoL oMMy IPLOT»DELXsDELPHI
2PHIMINSPHIMAX s TOL s XONE » ZONE »OMEGA s S»ZZEROHLRES
DIMENSION T(&453)9XX(2)+22(2)
COMMON /CCPOOL/ XMINsXMAX»YMINsYMAX s CCXMIN, CCXMAX 9 CCYMIN S CCYMAX
IF (IPLOT=2) 404941442
40 XMIN=-1875.0
XMAX=2312540
YMIN==4250,0
YMAX=12250.0
CCXMIN=10040
CCXMAX=1100,0
CCYMIN=250.0
CCYMAX=9104,0
CALL CCBGN
CALL CCGRID (6HNOLBLS)
XMIN=0.0
XMAX=2000040
YMIN==0,001
YMAX=12000,0
CCXMIN=175.0
CCXMAX=9T75,0
CCYMIN=420.0
CCYMAX=900,0
CALL CCBGN
CALL CCGRID (1,10,6HNOLBLSs1+6)
WRITE (98+20)



20

41

21

23

42

FORMAT (116H0O 0415 25
0e55 De6S 0475 «8S

CALL CCALTR (175e09405403091)

CALL CCALTR ( 980609420403 0s1,41H0)

CALL CCALTR (980e09500603505154H0.15)

CALL CCALTR (98040958040505194H0425)

CALL CCALTR (9800966005051 94H0435)

CALL CCALTR (9804037404001 s4H0645)

CALL CCALTR (9804098204090 5194H0,5S5})

CALL CCALTR (9804009004090 154H046S)

GO TO 43

XMIN=—1875,0

XMAX=643125.0

YMIN==425040

YMAX=12250.0

CCXMIN=10040

CCXMAX=2100,0

CCYMIN=250.0

CCYMAX=29104,0

CALL CCBGN

CALL CCGRID (6HNOLBLS)

XMIN=0,0

XMAX=40000.,0

YMIN=-0,001

YMAX=12000,0

CCXMIN=175,0

CCXMAX=1T775.0

CCYMIN=420,0

CCYMAX=900,4,0

CALL CCBGN

CALL CCGRID (1920+s6HNOLBLS,156)

WRITE (98s21)

FORMAY (117HO e1S

0435S 4S5

CALL CCALTR (1754054050905 1)

WRITE (98923)

FORMAT (113H 065
0.8S «95

CALL CCALTR (9894054054020, 1)

CALL CCALTR (1780409420400 11H0O)

CALL CCALTR (1780e0+58040909154H0615)

CALL CCALTR (1780e0s7404035051,4H0e2S)

CALL CCALTR (1780e¢09900e090s194H0e35)

GO TO 43

XMIN==-1875,0

XMAX=63125.0

YMIN==425040

YMAX=12250.0

CCXMIN=100.0

CCXMAX=3100,0

CCYMIN=250.0

CCYMAX=9104,0

CALL CCBGN

CALL CCGRID (6HNOLBLS)

XMINzO L0

XMAX=6000040

YMIN=-0,001

YMAX=12000,0

CCXMIN=175,0

CCXMAX=2575,4,0

035

0495

Oe

25
Ce55)



22
1

24
1

25
1

43

51
53

56
101

102
105
106

103
107
109
108
110
113

111
114

112

54

CCYMIN=420.,0
CCYMAX=900.,0
CALL CCBGN

CALL CCGRID
WRITE (98,22

(1+30,6HNOLBLS»1+6)
)

FORMAT (115H0

CALL CCALTR

WRITE (98»24
FORMAT (114H
055

CALL CCALTR

WRITE (98925
FORMAT (114H

CALL CCALTR
CALL CCALTR
CALL CCALTR
CALL CCALTR
Li=L~1

NN=N~1

DO 1 J=1l,LL
DO 2 I=1,NN

25
{175409405405051)
)

(9804094054030 1)
)

075

098

(1778409405405091)
(258060,420e090s1,41H0)
(258040366N409091:4H0415)
(258040+900e0309144H0e25)

0.15
0.3S

0.8S

PHILOW=AMINI(PHI(TsJ)sPHI(I+1,J)sPHI(I+19J+1)sPHI(I9J+1))
PHIHI =AMAX1(PHI(I»J)sPHIC(TI+19J)sPHI(I+1sJ+1)sPHI(I4U+1))
IF (PHIHI-PHILOW) 2,2,451

IF (PHILOW=PHIMAX) 53,53,2

IF (PHIHI-PH

IMIN) 24595

IF (PHILOW-PHIMIN) 56454455
IF (PHILOW=-1040) 101,101,554

TA=PHI(14+J)
TB=PHI(1+1sJ

)

TC =PHI(I+1yJ+1)

TOsSPHI(IyJ+1
IF (TA~10.0)
IF (TB=10.0)
IF (TC~10.,0)
PHILOW=AMIN1
GO TO 55

IF (TB=10.0)
IF(TD~10.0)

)
10251025103
2:2+105
292+106

(TBLTC)H

107,107,108

23249109

PHILOW=AMIN1(TA»TD)

GO TO 55

IF (TC-TD) 1105112,111

IF (TD=1040)
PHILOW=AMIN1
GO TO 5%
IF (TC=~1040)
PHILOW=AMIN1
GO TO 55

112,112,113
(TASTBLTD)

11251125114
(TAsTB»TC)

PHILOW=AMIN1(TA,TB)

GO TO 55
AA=PHIMIN
GO TO 3

AA= FLOAT(IFIX((PHILOW~PHIMIN)/DELPHI)+1)}#DELPHI+PHIMIN

IFLAG=0

T(1le1)¥=PHI(]I»J)
T(2s1)=PHI(I414J)
T{3»1)1=PHI(I+1,J+])

S)



10
11

13

131

12
14
15

T(asl)=PHI{IyJ+1)
T(ls2)=X(I)
T(2:2)=T(1+2)4+DELX
T(392)=T(2+2)
T(4+2)1=T(1+2)

T{ls3)=2(J)

T(2+3)=T(1,3)
T(3s3)=T(1e3)+DELX
T(4+3)=T(3,43)

K=0

IF (T(1s1)=100) 115114600
IF (T(291)~10e0) 1141146
IF(T(1es1)=T(2s1)) 79117
Fae{AA=T(1s13)1/(T(2s1)=T(1y1))
IF (F=1,0) 71s71»11

IF(F) 11,11,8
IDIOT=1+1FLAG
XX{IDIOT)I=(10=F)%T(192)+F%T(2+2)
ZZ(IDIOT)I=(1e0~F}#T {193 )+F#T(243)
IF(IFLAG) 1091049

CALL CCPLOT (XX92ZZ9256HNOJOINs191)
XX(1)=XX(2)

22(1)y=22(2)

GO TO 11

IFLAG=1

KeK+]

IF(K=4) 13512512
TT1=T(1e1)

TT2=T(1s2)

TT3=2T{(1+3)

DO 131 NA=1,3

DO 131 NB=1,3

T(NByNA)=T (NB+1sNA)
Tt4,11=TT1

T(4s2)=2TT2

T(4+3)=TT3

GO TO 613

AA=AA+DELPHI

IF(AA-PHIHIY 1551542

IF (AA~-PHIMAX) 39392
CONTINUE

CONTINUFE

RETURN

END



C NUMERICAL PROGRAM 2
COMMON X(301)sZ(41)sPHI(30141)sPHIN(301)sJJ(301)sGUESS(3011},
INP(10)sGUEST(10) o JRITE(301)sJLEFTI301) oNsL yMMeMESH I JA»JBJCsJDy
2IPLOT+DELX sDELPHI sPHIMINSPHIMAX» TOL s XONE s ZONE yOMEGA 9 S+ ZZERO 9 RES
ANAsNBsKAR J
7000 READ TOOlsTITLELSTITLEZ
7001 FORMAT (2A6)
IF (TITLEl) 7300,1000,7300
7300 READ 300sNsL yMMyMESH,yJA»JB s JC s Dy IPLOT 4KART
READ 301 +DELXsDELPHI JPHIMINSPHIMAX»TOL » XONE 3 ZONE yOMEGA S92 2FRO
READ 301s (PHIN(I)YsI=14N)
READ 302, (JJ(T1)sI=1,N)
MMMe=MM+ 1
READ 300 (NP(M) M=l MMM)
READ 3015 (GUEST(M) sM=zlsMM)
300 FORMAT (1415)
301 FORMAT (7F10.2)
302 FORMAT (2413) _
DO 305 M=] MM -
NPR=NP (M)
NPQ=NP({M+1)
DO 306 I=NPRNPQ
306 GUESS(I1)=GUEST (M)
305 CONTINUE

DO 330 I=1sN

IF (I-1) 3314331,332
331 X{(1)=XONE

GO TO 330
332 Xt1)=aX(I-1)+DELX
330 CONTINUE

DO 340 J=1,L

IF (J=1) 341»341+362
341 Z(1)=ZONE

GO TO 340
362 IF (JC—L) 363,350,350
363 IF(JD=L) 342,343,343
342 IF (J=JA) 34453444345
345 IF (J=JB) 3469346347
347 IF (J=JC) 344,344,349
349 IF (J=JD) 346346350
343 IF (J=JA) 34653465352
352 IF (J=JB) 350,350,353
353 IF (J=JC) 34643465350
344 Z(J)=Z(J=1)+4.0#DELX

GO TO 340
346 Z(J)=Z(J=1)+2.0%DELX

GO TO 340
350 Z(J)=Z(J=1)+DELX
340 CONTINUE

Z1=FLOAT{JJ(1)~JC)*DELX
ZJ=FLOAT(JJ(1)=JD)*DELX
ZK=FLOAT(JD=JC)*24 O#DELX
ZL=FLOAT(JC=JB)#4 4, O*DELX
ZM=FLOAT (JB=JA) %2, O#DELX
ZN=FLOAT(JA=1)#4,0*DELX
ZO=FLOAT (JC~JB)#2 4 0#DELX
ZP=FLOAT (JB=JA ) #DELX



2Q=FLOAT(JA-1)%2,0%DELX
ZR=FLOAT{(JJ(1)~JB)*DELX
IF (JC=L) 370,371,371
371 ZZERA=ZR
GO TO 375
370 IF (JD=L) 372,373,373
373 ZZFRA=ZQ+ZP+Z0+Z1
GO TO 375
372 ZZERA=Z J+ZK+ZL+ZM+ZN
375 IF (ZZFERA-ZZERO) 376+377+376
377 SA=FLOAT(N~-1)#DELX
IF (SA=S) 3764320376
376 PRINT 378
378 FORMAT (1H1l,1&4 CHECK GEOMETRY)
GO TO 7000

320 DO 328 I=1,N |
JRITE(I)=JJ(T11=JJ(I+1)
JLEFT(I)=JJ(1)=JJ(1-1)
DO 328 J=1l,L
IF (J=JJUI)) 325,326,327

327 PHI(1,J)=040
GO TO 328

326 PHI(I,J)1=PHIN(I)

GO TO 328
325 PHI(1,J)=GUESS(T)
328 CONTINUE

DO 206 KAR=z=1,KART
RES=0.0
GO TO (40+609809100+120+140+160) sMESH
40 CALL MESH]
GO TO 205
60 CALL MESH2
GO TO 208
80 CALL MESH3
GO TO 208
100 CALL MESH4
GO TO 208
120 CALL MESHS
GO TO 205
140 CALL MESHE
GO TO 205
160 CALL MESH7
205 IF (RES~TOL) 400+206+206
206 CONTINUE

400 PRINT 401sKARHRES
401 FORMAT (1H1s110,F1045)

PRINT 403sTITLELI,TITLE2
403 FORMAT (1H1s24H1 NUMERICAL PROBLEM 2A6/712Xs4HX(1)/7)
PRINT 404s{(X(1)p1=14N)
PRINT 405
408 FORMAT (1H1,12Xe4HZ(J)//)
PRINT 404+(Z(J)yJd=1,4L)
404 FORMAT (10F12.4)
PRINT 415
415 FORMAT (1H1s10XsBHPHI(I+J)//)



NAN

DO 406 I=1,N

PRINT 4071
407 FORMAT (1HO»12Xs2HI=413/7)
406 PRINT 408s (PHI(IsJ)sJslsl)
408 FORMAT (10F12.4)
414 CALL CONTWO

CALL CCNEXT

GO TOo 7000
1000 CALL CCEND

STOP

END

SUBROUT INE MESH]

COMMON X(301)’Z(41)’PH1(301941)vPHIN(301)tJJ(301)’GUESS(301)9
INP(IO)’GUEST(IO)’JRITE(301)9JLEFT(301)ON’L!MM’MESH’JAQJB’JC’JD’
ZIPLOTQDELX,DELPHI,pHIMIN,PHIMAXQTOL’XONE’ZONE’OMEGAQS’ZZEROORES’
3NAsNB,KARsJ

DO 701 K=1,L

J=L+1-K

DO 701 I=1sN

IF (1-1) 41441442

41 IF (J=1) 32,32,43

43 IF(J=JJ(1)) 444925426

44 IF (JRITE(I)=1) 284+28+180
42 1F (1-N) 46547547

46 IF (J=1) 34434448

48 IF (J=JJ(1)) 49,425,286

49 IF (JLEFT(I)=1) 509509181
50 IF (JURITE(I)=1) 3,3,182
47 IF (J=1) 33,33,51

51 IF (JU~JJ(I)) 52,25,26

52 IF (JLEFT(I)=1) 244249183
180 IF (J=JJ(I+41)) 28:528,29
183 IF (J=JJ(I=1)) 2424429
182 IF (J=JdJ(I+1)) 34935193
181 IF (JURITE(1)-1) 185,185,186
185 IF (J-JJ(I=1)) 3+3,192
186 IF (JJtI=1)=JJ(1+1)) 188,187,190
187 IF (JU=JJlI=1)) 3,3,29

188 IF (J=JJ(I-1)) 3,3,189
189 IF (J=JJ{I+1)) 192,192,29
190 IF (J=JJUI+1)) 353,191
191 IF (JU=JJ(I=1)) 1935193,29
193 JUA=JJ(1)~JJ(T+1)

JUB=JJI(1)~J

DELTA=DELX®*FLOAT (JJB/ JJA)

PHIT=PHIN(I)=FLOAT (JJUB/JJAY*(PHIN(I)=PHIN({I+1})

GO TO 31

192 JUC=J0J(1)=JJ(I~-1)
: JJD=JJd(1)-J .

DELTA=DELX®*FLOAT(JJD/JJIC)

PHIT=PHIN(I)=FLOAT(JUD/JJCYH*(PHIN(I}=PHIN(I-1))

GO TO 30

3 DOF=(PHI(I+1s ) +PHI(I=1,J)+PHI(1sJ+1)4+PHI(143J=1))/440

GO TO 702

24 DOF=(PHI(I yJ+1)4PHI(1sJ=-1)1+2e0#PHI(I~=14J))/440
GO TO 702
25 DDF=PHIN(I)



GO TO 702
26 DDF=0.0
GO TO 702
28 DDF=(PHI(IJ+1)1+PHI(19J=1)1+2e0%#PHI(1+15J))7/440
GO TO 702
29 DDF=(PHI(I,J+1)+PHI(IsJ~1))/240
GO TO 702
30 DDF=(DELX*(DELX*PHIT+DELTA®PHI (I+15J)))/ (DELX+DELTA)#%2+(DELTA#
T(PHI(IsJ+1)+PHI(I5J=1)))/(2+0%(DELX+DELTA})
GO TO 702
31 DDF=a(DELX*(DELX#PHIT+DELTA#PHI(I~15J)))/ (DELX+DELTA) ##2+(DELTA#*
T(PHI(IsJ+1)+PHI(I,J-1)))/(2.0%{DELX+DELTA))
GO TO 702
32 DDF=(PHI{I,J+1)+PHI(I+15J))/2.0
GO TO 702
33 DDF={PHI{TIsJ+1)1+PHI(I=19J))/240
GO TO 702
34 DDF=(PHI(I+1,J)+PHI(I=1,J)+240%PHI(I5J+1))/440
702 GAF=ABS(DDF~-PHI(1sJ))
IF (GAF~RES) 701+701»703
703 RES=GAF
701 PHI(I4J)=OMEGA¥DDF+(1+0~OMEGA)*PHI(T+J)
RETURN
END
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SUBROUTINE MESH2
COMMON X(301)sZ(41)sPHI(301541)sPHIN{(301),JJ(301)»GUESS(301),
INP(10) sGUEST(10)sJRITE(301)sJLEFTI301) sNsL yMMsMESHsJASIBsJCsJDy
2IPLOT 4DELX s DELPHI 3 PHIMINgPHIMAX » TOL s XONE 3 ZONE s OMEGA 3 S9ZZEROSRES,
ANAsNBsKAR»J
DO 704 K=1lsbL
J=L+1-K
NA=N=1
IF (J=JC) 61+63,75
61 CALL AAA
GO TO 704
63 CALL BBB
GO TO 704
75 CALL CCC
704 CONTINUE
RETURN
END

SUBROUTINE MESH3 .

COMMON X(301)+Z(41)sPHI(301+41)sPHIN(301),JJ(301)sGUESS(301)5,
INP(10)»GUEST(10) s JRITE(301) s JLEFT(301) sNsL 4MMyMESHsJA»IB»JC»JDy
21PLOT yDELX s DELPHI yPHIMINPHIMAX » TOL s XONE s ZONE yOMEGA+SsZZEROSRES
3NASNBsKAR»J

DO 710 K=1,L

J=L+1-K

NA=N=1

NB=N=2

IF (J=JC) 81,83,82

82 IF (J—-JD) 84+85+96
81 CALL DDD
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GO TO 710
83 CALL EEE

GO TO 710

84 CALL FFF
GO TO 710

85 CALL GGG
GO TO 710

96 CALL CCC

710 CONTINUE
RETURN
END

SUBROUTINE MESH4
COMMON X(301)9Z(41)sPHI(301+41)sPHIN(301),JJ(301)sGUESS(301),
INP(10)sGUEST(10)sJRITE(301) s JLEFT(301) sNsL yMMyMESH» JAsJBsJC+JD,
ZIPLOT,DELX;DELPHIoPHIMIN,PHIMAX9TOL9XONE'ZONE,OMEGA;S,ZZERO;RES.
3NASNBsKAR»J
DO 720 K=1,L
J=L+1-K
NA=N~1
IF (U=JB) 101,102,733
733 IF (J=JC) 734,735,736
101 CALL HHH
GO TO 720
102 CALL PPP
GO TO 720
734 CALL AAA
: GO TO 720
735 CALL B8BB
GO To 720
736 CALL cCCC
720 CONTINUE
RETURN
END

SUBROUT INE MESHS
COMMON X(301)sZ(41)sPHI(301s41)sPHIN(301),JJ(301)sGUESS(301),
INP(10)sGUESTI10)sJRITE(301)sJLEFT(301) sNoL sMMsMESHsJA»JIBsJICsUD,
2IPLOT,DELXsDELPHI s PHIMINsPHIMAX s TOL s XONE 9 ZONE » OMEGA » S5 Z2ZEROyRES
3NASNB,KARyJ
DO 750 K=1,L
J=L+1=-K
NA=N-1
NB=aN-2
IF (J=JB) 121,122,752
752 IF (J=JC) 753,754,755
755 IF (J—=JD) 756,757+ 778
121 CALL AAA
GO TO 750
122 CALL RRR
G0 TO 750
753 CALL DDD
GO TO 750
754 CALL EEE
GO TO 750
756 CALL FFF
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GO TO 750
757 CALL GGG
Go TO 750
778 CALL CCC
750 CONTINUE
RETURN
END

SUBROUTINE MESH6
COMMON X(301)»Z(41)sPHI(3019641)sPHIN(301),JJ(301)sGUESS(301),
INP(10)sGUEST(10)»JRITE(301) s JLEFT(301) sNsLsMMyMESH»JA»JIB»JCs»JUD
2IPLOTsDELXsDELPHI sPHIMINSPHIMAX s TOL 9 XONE »ZONE s OMEGA »S92ZZEROSRES»
3NAYNBsKARs J
DO 782 K=1,sL
J=L41-K
NA=N=~1
IF (J-JA) 783,784,785
785 IF (J=JB) 786,787,788
788 IF (J=JC) 789,790,791
783 CALL AAA
GO TO 782
784 CALL BBB
GO TO 782
786 CALL HHH
GO TO 782
787 CALL PPP
GO TO 782
789 CALL AAA
GO TO 782
790 CALL BBB
GO TO 782
791 CALL CCC
782 CONTINUE
RETURN
END

SUBROUTINE MESHT
COMMON X(301)9Z2(41)sPRI(301s41)sPHIN(301)»JJ(301)»GUESS{301)»
INP(10)sGUEST(10)sJRITE(301)+JLEFT(301) sNsL s MM,MESHyJAYJBJC 3D
2IPLOT oDELXSsDELPHI oPHIMIN PHIMAX s TOL s XONE s 2ONE yOMEGA 89 22ZERORES,
3NAYNBsKAR J
DO 792 K=1l,l
Jat41-K
NA=N=1
NB=N-2
1F (J=JA) 793,794,795
795 IF (J=JB) 7969797798
798 IF (J=JC) 799,800,4801
801 IF (J-JD) 802,803,804
793 CALL DDD
GO TO 792
794 CALL EEE
GO TO 792
796 CALL AAA
GO TO 792
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797
799
800
802
803

804
792
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. 500

[aNa¥a!

498

64
66
65
&7

2

10
14
16

18

20
702

703

701
706

68

CALL RRR
GO TO 792
CALL DDD
GO TO 792
CALL EEE
GO TO 792
CALL FFF
GO TO 792
CALL GGG
GO TO 792
caLl cccC
CONTINUE
RETURN
END

SUBROUTINE AAA

COMMON X(30119Z(41)+sPHI(301541)sPHIN(301)4JJ(30))sGUESS(301)»
INP(10)sGUESTIIO0)sJRITE(301) s JLEFT(301) sNsLsMMsMESHsJASIBsJC D>
2IPLOT yDELXsDELPHI yPHIMINSPHIMAX » TOL s XONE s ZONE sOMEGA 3 S92ZEROSRES
INAsNBsKARS J

IF (KAR=1) 499,499,498

DO 500 I=24NAy2

PHI(1,J)=0.0

DO 706 I=14Ns2

IF (J=1) 64964465

IF (I=1) 14914466

IF (I-N) 16+18,18

IF (I-1) 10410467

IF (I-=N) 2420520
DDF={PHI(I+23J)+PHI(I=23J)+PHI{TI9J+1)4+PHI{19J~1}))/440
GO TO 702

DOFs(PHI(I s J+1)+PHI(19J=1)+2s0%*PHI(I4243J))/44e0

GO TO 702

ODF=(PHI( I 3 J+1)14+PHI(1423J))/2,0

GO TO 702
DOF=(PHICI+23J)4+PHI(1=243J)+20%PHI{1,0+1))/4e0

GO TO 702

DOF=(PHI( =23 J)+PHI(T19sJ+1))/2.0

GO TO 702

DOF=(PHI(I 9 J+1)14PHI(T3J=1)42.0#PHI(I=23J))/440
GAF=ABS(DDF=PHI(I+J))

IF (GAF-RES) 701,701,703

RES=GAF

PHI(I »J)=OMEGA*DDF+({10~OMEGA)Y#PHI([sJ)

CONTINUE

RETURN

END

SUBROUTINE BEB

COMMON X{301)5Z(41)sPHI(301541)sPHIN(301)JJ(301)»GUESS(301)5
INP(10) sGUEST(10)»JRITE(301) sJLEFT(301) sNaL sMMsMESHs JAsJBsJCsJDs
21PLOT +DELX 9 DELPHI sPHIMIN s PHIMAX s TOL s XONE s ZONE s OMEGA » S » 22 ERO s RES
INAINB s KAR J ‘

DO 707 I=1sNs2

IF (JJ(I)=JC) 25525468

JCC=JC+1
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70
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90

6

23
25
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35

36
37
702

703
701
707

502

71
72

75

74

76
180
183
182
181
185
186
187
188
189
190
191
193

IF (JJUI)=JCC) 25969989

IF (I-1) 351535,70

IF (I-N) 37436536

IF (I-1) 27,27,90

IF (I-N) 6523423 .
DDF=(PHI(I+23J)+PHI(I=23J)+PHI(I+J+2)4+PHI(1,J-1))/440

GO TO 702

DOF=(PHI(T3J+2)+PHI(19J=1)42.0#PHI(I=243J))/440

GO TOo 702

DDF=PHIN(I)

GO TO 702

DDF=a (PHI(] 9 J+214PHI(19J=1)+240%PHI(I424J)) /440

GO TO 702 .

DDF=4 4 O#PHI(13J+1)/9e0420%PHI(TI3J-1)/9e PHI(I+2+J)1/3.0
GO TO 702

DDF =4 40#PHI(19J+1)/9e0+2s0#PHI(19J-1)/9e PHI(I=-2+J)1/3.0
GO TO 702

DDF =4 O#PHI(IyJ+1)/9e0+2e0%PHI(I9J=1)/9¢ (PHI(I+25J)+PHI(I=25U))/
160

GAF=ABS(DDF-PHI(I,J))

IF (GAF-RES) 701+701703

RES=GAF

PHI(I »J)=OMEGA*DDF+{1+0-OMEGA)#PHI(1,J)

CONTINUE

DO 502 1=25NA,2

PHI(IsJ)=(PHI(I+13J)+PHI{(I~1+J))/240

RETURN

END

SUBROUTINE CCC

COMMON X{(301)»Z(41)sPHI(301541)sPHIN(301)+JJ(301)sGUESS{301)>
INP{10)sGUEST(10)sJRITE(301)sJLEFT(301) ¢NelL sMMeMESHsJA»JIBsJCr»JD)»
2IPLOTsDELXsDELPHI 3PHIMIN PHIMAX s TOL s XONE 3 ZONE s OMEGA 3 S3ZZERQRES
3NAsNBsKARS»J

DO 708 I=1sN

IF (J=JJUI}) 71925426

IF (I=1) 72+72473

IF (JRITE(I)=1) 28,+28+180

IF (I-N) 74575+75

IF (JLEFT(I)=1) 24+24,183

IF (JLEFTU(I)=-1) T76+765181

IF {JRITE(I)~1) 3,3,182

IF (J=JJ(I+41)) 28,28,29

IF (J=JdJ{I=1)) 24424429

IF (J=JJ(141)) 393,193

IF (JRITE(I)-1) 185,185,186

IF (J=JJ(I=1)) 3934192

IF (JJ(I=1)=JJ(I+1)) 18891879190

IF (JU=JJ(I=-1)) 343,29

IF (J=JJ(I-1)) 343,189

IF (J=JJU{I+1)) 1924192429

IF (JU=JJ(I41)) 353,191

IF (J=JJ(1=1)) 193»193,29

JIA=JI(T1)=JJ(1+1)

JUB=JJit11~J

DELTA=DELX#FLOAT(JJB/JJA)}
PHIT=PHIN(I}=FLOAT(JJB/JJAY*(PHIN(I)=PHIN(I+1))



GO TO 31
192 JJC=JgI(1)=JJ(I=1)
JJO=JJ(1)-J
DELTA=DELX#FLOAT (JJD/JIJC)
PHIT=PHIN(I)=FLOAT(JJID/JJCYH(PHIN(I)=PHIN(I=-1))
GO TO 30
3 DDF=(PHI(I+1sJ)+PHI(T1~=19J)+PHI(T»J+1)+PHI(I+J-1))/4.0
GO TO 702
24 DDF=(PHI(I,J41)+PHI(T 9 J=1)+2e0%¥PHI(I=1+J))/440
GO TO 702
25 DDF=PHIN(I)
GO TO 702
26 DDF=0.,0
GO TO 702
28 DDFe(PHI(I U+ 1)+PHI(I 3 J=1)1+2.0#PHI(I+13J)}/4e0
GO TO 702
29 DDF=(PHI(13J41)4PHI(I5J=1)1/2.0
GO TO 702 s
30 DDF=(DELX*(DELX#PHITH+DELTARPHI(I+1sJ)))/(DELX+DELTA)##2+(DELTA*
T(PHI(IsJ+1V4+PHI(15U=1)))/(2.0%#(DELX+DELTA))
GO TO 702
31 DDF=(DELX*(DELX#PHIT+DELTA#PHI(I~1,J)) )/ (DELX+DELTA)Y%#2+ (DELTA%*
1(PHI(I s J4+1)4PHI(IsJ=-1)))/(2.0%#(DELX+DELTA})
702 GAF=ABS(DDF=PHI(1+J))
IF (GAF=RES) 701,701,703
703 RES=GAF
701 PHI(I4J)=OMEGA#DDF+(10-OMEGA)#PHI(T,J)
708 CONTINUE
RETURN
END

SUBROUTINE DDD
COMMON X(301)sZ(41)sPHI(301541)sPHIN(301),JJ(301)sGUESS(301)>
INP(10)»GUEST(10)sJRITE(301)sJLEFT(301) oNoL sMMsMESHsJASJIBsJCsJD»
2IPLOT sDELX s DELPHI »PHIMINsPHIMAX » TOL 3 XONE 3 ZONF yOMEGA sS92ZERQOSRES,
3NASNBsKARSJ
IF (KAR-1) 51055104511
510 DO 512 I=2yNA,2
512 PHI(1sJ)=0,0
DO 513 1=3,NBs4
513 PHI(I,J)=04,0
511 DO 712 I=1sNs&
IF (JU~1) B7+87,88
87 IF (1I-1) 13,13,89
89 IF (I-N) 15,17,17
88 IF (I-=1) 9+9+90
90 IF (I-N) 1,19,19
1 DOF=(PHI(I+4 s J)4PHI(I=4 s J)+PHI(IsJ+1)4PHI(I9J=1))/4e0
GO TO 702
9 DDF=(PHI(TsJ+1)+PHI{I »J=1)142.0*PHI(I+44J)) /4,0
GO TO 702
13 DDF=(PHI{I+sJ+1)+PHI(I+4»J))/2,0
GO TO 702
15 DDF=(PHI(I+45J)+PHI(I=49J)420%#PHI(14U+1))/440
GO TO 702
17 DDF=(PHI(I=49J)}4PHI{(IsJ4+1))/2,0
GO TO 702
19 DDF=(PHI(IJ+1)14PHI(I 3J=1)4240%#PHI(I-44J))/440
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GO0 TO 702

GAF=ABS (DDF=PHI(15J))

IF (GAF-RES) 70157015703

RES=GAF
PHI(15J)=0OMEGA#DDF+(140—~OMEGA)#PHI(15J)
CONTINUE

RETURN

END

SUBROUTINE EEE

COMMON X(301)+Z(41)sPHI(301541)sPHIN(301),JJ(301)sGUESS{301)»
INP({10)sGUEST(10)sJRITE(301)9JLEFT(301) sNsL sMMsMESH JA9JBsJCeJID,
2IPLOT sDELXsDELPHI yPHIMINSPHIMAX » TOL s XONE 3 ZONE s OMEGA 3 S5S9ZZFROSRES S
3NASNBKARS J

IF (KAR-1) 51455144515

DO 516 1=23sNA»2 . -
PHI(1+J)=0.,0

DO 715 I=1sNsé

IF (I-1) 1151191

IF (I-N) 44521,21
DDFs(PHI(I+43J)4PHI (I =43 J)+PHI( I 4J+2)4+PHI(I+J-1))/4.0

GO TO 702

DDF=(PHI(I »yJ+2)+PHI(I 9J=1) 42 0¥PHI(I44,5J)) /440

GO TO 702

DDF=(PHI( 1 9 J+2)4PHI(] 3J=11420%PHI(I=44J))/840
GAF=ABS(DDF=PHI(IsJ))

IF {(GAF=RES) 701,701,703

RES=GAF

PHI(I 2 J)=OMEGA*DDF+(1e0~OMEGA)*PHI(1,4J)

CONTINUE

DO 517 I=3,NB,s4

PHI(T »)={(PHI(TI+2sJ)+PHI(I~2+J))/2.0

RETURN

END

SUBROUTINE FFF

COMMON X(301)s2(41)sPHI(301941)sPHIN(301)+JJ(301)sGUESS(301)
INP(10)sGUESTI(10)sJRITE(301)sJLEFT(301) sNosL yMMeMESH» JASJBsJCsJDy
2IPLOT sDELXsDELPHI yPHIMINSPHIMAX s TOL y XONE 3 2ZONE yOMEGA 3S»2ZEROSRES
3NASNBKAR» J

IF (KAR=-1) 518,5184519

DO 520 1=24NA,2

PRI{I+J)=04,0

DO 716 I=14Ns2

IF (1I=-1) 10s10s92

IF-(I=N) 2520520
DOFm(PHI(I423J}+PHI(I=23J)+PHI(19J+1)+PHI(I9J=1))/44e0

GO TO 702

DDF=(PHI{I3J4+1)+PHI(I93J=1)42.0%PHI(I+25J))/44,0

GO TO 702

DDF=(PHI( I3 J+1)4PHI (1 4U=1)420#PHI(1=2,J))/440

GO TO 702

GAF=ARS(DDF=PHI(1+J))

IF (GAF—=RES) 701,701,703

RES=GAF
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701 PHI(T «J)=OMEGA*DDF+(1e0~OMEGAYXPHI(I4J)
716 CONTINUE

RETURN

END

SUBROUTINE GGG
COMMON X(301)9Z(41)sPHI(301941)sPHIN(301)+JJ(301)sGUESS(301)>
INP(10)sGUEST(10)sJRITE(301)sJLEFT(301) oNsL yMMsMESHs JA»JIBJCsJDy
2IPLOT yDELXsDELPHI yPHIMINyPHIMAX s TOL s XONE sZONE sOMEGA +S9ZZERO4RES
3NAsNBsKARs J
DO 718 I=1,4Ns2
IF (JJ(I)=JD) 25425,93
93 JDD=JD+1
1F (JJ(I)~JDD) 25994996
94 IF (I-1) 35935495
9% IF (1-N) 37+36+36
96 IF (I-=1) 2792797
97 IF (I-N) 6923423
6 DDFe(PHI(I+42sJ)+PHI(I=23J)+PHI(I3J+2)14PHI(I4JU=~1))/440
GO TO 702
23 DDFe(PHI(19J+2)4PHI(I 4 J~1)+2s0%#PHI(1=2,J))/440
GO TO 702
25 DDF=PHIN(I)
GO TO 702
27 DOF=2(PHI(IsJ42)4PHI(I s J=1)+2.0%PHI(T142,J))/440
GO TO 702
35 DDF=40%PHI(193J+1)1/9e0+20#PHI(I9sJ=~1)/9¢ PHI(I425J)/3.0
GO TO 702
36 DDF=440#PHI(15J+1)/940420%¥PHI(19J=11/9s PHI(I=2»J)/3.0
GO TO 702
37 DDOF=40#PHI(15J41)/9e042e0#PHI(19J=1)/9e (PHI(I+23J)+PHI(I=24J))/
1640
702 GAF=ABS(DDF=PHI(IsJ})
IFf (GAF~RES) 701,701,703
703 RES=GAF
701 PHI(I »J)=OMEGA#DDF +({1e0~OMEGA)Y#PHI(I4J)
718 CONTINUE
DO 525 I=2sNA,2
525 PHI(TsJ)=({PHI(I4+1sJ)14PHI(I=19U))/240
RETURN
END

SUBROUTINE HHH
COMMON X{301)+Z2(41)sPHI(301s41)+PHIN{(301)9sJJ(301)sGUESS(301),
INP(10)sGUEST(10)sJRITE(301) s JLEFT(301) sNsL ¢sMMyMESHs JA9JIBsJC»JDy
2IPLOT yDELXsDELPHI yPHIMINyPHIMAX s TOL y XONE 9 2ONE yOMEGA 4S5 922ERORES,
3NAsNBsKAR s J
DO 740 I=1,N
IF (JU~1) 1061065107
106 IF (I-1) 32,32,108
108 IF {(I-N) 34433,33
107 IF (1-1) 28+28+109
109 IF (I-N)} 35,3524
3 DDFzs(PHICI+1pJ)+PHI(I=19J)+PHI(TI yJ+1)4PHI(IsJ-1))/440

GO TO 702
24 DDFs(PHI(I»J+1)14PHI(I9J=1)142.0%#PHI(I=1,J})/440
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GO TO 702

DDF=(PHI(I 3 J+1)+PHI(I9J=1}420%PHI(I4+15J))/440
GO TO 702

DDF=(PHI( I 9 J+1)4PHI(I4+419J))/2.,0

GO TO 702

DDF=(PHI(I3J4+1)+PHItI=14J))/2.0

GO TO 702
DOF=(PHI(I4+1sJ)+PHI(I-13J)+20#PHI(19J41))/4,0
GAF=ABS(DDF~PHI(IsJ))

IF (GAF-RES) 701,701,703

RES=GAF

PHI(I 3 J)=OMEGA#DDF+(1e0~OMEGA)*PHI(I»J)
CONTINUE

RETURN

END

SUBROUTINE PPP

COMMON X(301)4,Z2(41)sPHI(301,41),PHIN(301),JJ(30)),GUESS(301),
INP(10)»GUEST(L10)sJRITE(301 )} s JLEFT(301) sNalL sMMsMESH JA9JIB»JC e JDy
2IPLOT s DELX s DELPHI yPHIMIN 3PHIMAX » TOL s XONE 3 ZONE yOMEGA s S»ZZEROSRES
3NAsNBsKAR s J

DO 742 I=Y4Ny2

IF (1-1) 389384110

IF {(I-N) 40539,39
DDF=(PHI(IoJ+1)+PHI(IsJ=2)142e0%PHI([4+24J})/440

GO TO 702

DDF=(PHI(T 4 J+1)4PHI(14J=2)42.0#PHI(1~2,J))/440

GO TO 702 .
DDF=(PHI(I1423J)+PHI(I=23J)Y+PHI{IJ+1)4PHI(T9J=2))174,0
GAF=ABS(DDF=-PHI(1+4))

IF (GAF-RES) 701+701+703

RES=GAF

PHI(I 3J)=OMEGA#®DDF+(1e0~OMEGA)#PHI(I4J)

CONTINUE

DO 530 [=24NA,2

PHI(I )= (PHI(I+1,)+PHI(I=19J))/260

RETURN

END

SUBROUTINE RRR

COMMON X(301)sZ(461)sPHI(301+41)sPHIN(301)+JJ(301)»GUESS(301)»
INP(L10O)sGUEST{10)sJRITE(301)»JLEFT(301) sNel sMMyMESHe JA»JBsJCsJDs
2IPLOTsDELXsDELPHI oPHIMINPHIMAX 9 TOL ¢ XONE 9 ZONE s OMEGA 352 ZZEROWRES
3NAsNBsKAR»J

IF (KAR-1) 130451305131

DO 552 1=29NAy2

PHI(I+J)=0.0

DO 780 I=z1sNst

IF (I=1) 12412,135

IF (1-N) 5922422

DDF=(PHI(I+4 9 J)+PHI(I =49 J)+PHI(T 4 J+1)4+PHI(I4J=2))/440

GO TO 702

DDF=(PHI(14J+1)+PHI(I13J=2)420%PHI(I444J))/440

GO TO 702

DDF=(PHI{(I 9 J+1)+PHI(19J=2)+2.0%PHI(I=44J))/440



702

703
701
780

554

40

20

41

GAF=ABS(DDF—PHI(IsJ))

IF (GAF-RES) 701,701,703

RES=GAF
PHI(1»J)=OMEGA#DDF+(10-OMEGA}#PHI(I,4J)
CONTINUE

DO 554 I=34NBs&
PHI(I»J)=(PHI(I42sJ)4+PHI(1=25J))/240
RETURN

END

SUBROUTINE CONTWO

COMMON X(301)9Z(41)sPHI(301941)sPHIN(301)4,JJ(301)sGUESS(301)
INP(I10)sGUEST(10)»JRITE{301)sJLEFT(301) sNsLyMMsMESHsJA»JB»JCsJDy
2IPLOT»DELXsDELPHI yPHIMINYPHIMAX » TOL ¢ XONE 3 ZONE ¢ OMEGA 4S9 ZZEROSRES»
3NAsNBsKARSJ

DIMENSION T(453)sXX(2)922(2) .
COMMON /CCPOOL/ XMINsXMAX s YMIN, YMAXsCCXMINSCCXMAX 9CCYMINCCYMAX
IF (IPLOT=2) 40+41+42

XMIN==1875,0

XMAX=23125%.0

YMIN=-4250.,0

YMAX=12250.0

CCXMIN=100,0

CCXMAX=110040

CCYMIN=250.0

CCYMAX=910.0

CALL CCBGN

CALL CCGRID (8HNOLBLS)

XMIN=0.0

XMAX=200004,0

YMIN=z-0,001

YMAX=212000,0

CCXMIN=175.0

CCXMAX=9T75,4,0

CCYMINZ42040

CCYMAX=900,0

CALL CCBGN

CALL CCGRID (151046HNOLBLSs146)

WRITE (98+20)

FORMAT (116H0Q 0415 «25 0e3S 0e4S
1 0.5S 0e6S 0.7S ¢85S 095 S}
CALL CCALTR (175403405,090,451)

CALL CCALTR ( 980,05420,030s1s1H0)

CALL CCALTR (9804095004090 194H0415)

CALL CCALTR (9804,09580e03905194H0.25)

CALL CCALTR (980409660,0305194H063S)

CALL CCALTR (9804097400901 94H0645)

CALL CCALTR (98040982040909194H05S)

CALL CCALTR (98040990040309194H06S5)

GO TO 43

XMIN==1875,0 .

XMAX=43125,0

YMIN=~4250,0

YMAX=1225040

CCXMIN=100.0

CCXMAX=2100.0

CCYMIN=25040

CCYMAX=910,0

CALL CCBGN

CALL CCGRID (6HNOLBLS)



XMIN=0,0
XMAX=4000040
YMIN=-0,001
YMAX=12000.0
CCXMIN=17540
CCXMAX=177540
CCYMIN=420.0
CCYMAX=900,0
CALL CCBGN
CALL CCGRID (15209+6HNOLBLSs156)
WRITE (98521)
21 FORMAT (117HO .15 0.25
1 0,35 <45 0455)
CALL CCALTR (175.054054050s1)
WRITE (98423)
23 FORMAT (113H 0465 0475
1 0.8S .95 S)
CALL CCALTR (989405405.05051)
CALL CCALTR (1780405420+0+0s151HO)
CALL CCALTR (178040+58040505154H0415)
CALL CCALTR (178040+740¢0505154H0¢25)
CALL CCALTR (1780.05900405051+4H0435)
GO TO 43
42 XMIN=-1875,0
XMAX=63125,0
YMIN=~425040
YMAX=12250,0
CCXMIN=100.0
CCXMAX=3100,0
CCYMIN=250,0
CCYMAX=91040
CALL CCBGN
CALL CCGRID (6HNOLBLS)
XMIN=040
XMAX=60000,0
YMIN==0,001
YMAX=1200040
CCXMIN=175,0
CCXMAX=257540
CCYMIN=420,0
CCYMAX=90040
CALL CCBGN
CALL CCGRID (153056HNOLBLS,156)
WRITE (98»22)
22 FORMAT (115H0 0e1S
1 .25 0435S )
CALL CCALTR (17505405405051)
WRITE (98524)
24 FORMAT (114H 0445
1 0.5S 65 )
CALL CCALTR (980+05405405051)
WRITE (98525)
25 FORMAT (114H 075 0.85
1 0495 S)
CALL CCALTR (177B«03405405051)
CALL CCALTR (258040542040509151H0)
CALL CCALTR (2580,0566040505154H0415)
CALL CCALTR (2580405900¢05051354H0425)
43 Li=L-1



601
605
607
603

604

602
615
616
617
610

611

612
650

51
53

56
101

102
105
106

103
107
109
108
110
113

111
114

112

54

NN=N-1

DO 1 J=1sLL

GO TO (604+601560296019602+6019602) sMESH
IF (JU=JA) 603,604,605
IF (J=JB) 604,603,607
IF (J=JC) 603,604,604
KK=2

GO TO 650

KK=1

GO TO 650

IF (J=JA) 6104611,615
IF (J=JB) 611,610:616
IF (JU=JC) 610+611+617
IF (J=JD) 611+612+612

KK=4

GO TO 650

KK=2

GO TO 650

KK=1

DO 2 I=14sNNyKK
IK=I+KK

PHILOW=AMINI(PHI{(IsJ)sPHI{(IKsJ)sPHI(IKyJ 1)sPHI(IsJ+1))
PHIHI =AMAX1(PHI(I14J)sPHI(IKsJ)sPHI(IKsJ 1)sPHI(1,J+1))
IF (PHIHI=-PHILOW) 24251

IF {PHILOW=PHIMAX) 53453,2

IF (PHIHI-PHIMIN) 24545

IF (PHILOW~PHIMIN) 56954955

IF (PHILOW=-10,0) 101»101+54

TA=ZPHI(I,J)

TB=PHI(IKsJ)

TC=PHI{IKsJ+1)

TO=PHI(IsJ+1)

IF (TA=10e0) 10251025103

IF (TB~=10.0) 2424105

IF (TC-=1040) 2925106

PHILOW=AMINI(TB,TC)

GO TO 55

IF (TB~10.0) 1075107108

IF(TD=1040) 2525109

PHILOW=AMINI{(TA,TD)

GO TO 55

IF (TC~TD) 11051125111

IF (TD=-10.0) 11251125113

PHILOW=AMINY{(TA,T8,TD)

GO TO 55

IF (TC~1040) 11251125114

PHILOW=AMINL{TA»TB»TC)

GO TO 55

PHILOW=AMIN1(TA,TB)

GO TO 5%

AA=PHIMIN

GO TO 3 .
AA= FLOAT(IFIX((PHILOW-PHIMIN)/DELPHI)+1)#DELPHI+PHIMIN
IFLAG=0

T(lel)=PHI(IsJ)

T(291)=PHI(IK,sJ)

T(3s1)=PHI{IK»J+1)

T(49)1)=PHI(TsJ+1)

T(1s2)=X(1)

T(292)=X(1IK)



10
11

13

131

1614
1615
1616
1617
1620
12
14
15

T(392)=T(242)
T(4+2)=T(1,2)

T(1s3)=2(J)

T(293)=T(1s3)
T(3+3)=T(1s3}+DELX
T(493)=T(3,3)

K=0

IF {(T{(ls1)—10e0) 11,411,600
IF (T(291)~10.0) 1151156
IF(T(Le1)=T(2s1)) Tsll,7
F(AA=T(1es1))/7(T(2s1)~T(1ls1))
IF (F-=1,0) 71,7111

IF{F) 1191198
IDIOT=1+IFLAG
XX(IDIOT)I=(1eO~F)RT (12} +F%T(2,2)
ZZUIDIOT)I=(1e0=F)#T(193)+F#T(2,3)
IF(IFLAG) 10510,9

CALL CCPLOT (XX9ZZ22s6HNOJOINS1,1)
XX(1)=XX(2)

22(1)y=22{2)

GO TO 11

IFLAG=1

K=K+1

IF(K=4) 13,12,12
TT1=T(1s1)

TT2=2T(1+2)

TT3=T(1,3)

DO 131 NA=1,3

DO 131 NB=1,3
TINBsNA)Y=T(NB+1sNA}
Tl4e1)=TT1

T(4+2)=TT2

T(4+3)=TT3

IF (K-2) 1620+16144+1620

IF (J=JA) 1620,11,1615

IF (U-JB) 1620+1151616

IF (J=JC) 16201151617

1F (J—~JdD) 162051141620

GO TO 613

AA=AA+DELPHI

IF(AA-PHIHI) 1591542

IF (AA-PHIMAX) 343,42
CONTINUE

CONTINUE

RETURN

END



C NUMERICAL PROGRAM 3
COMMON X (301192 (41)sPHI(301+41)9PHIN(301)sJJ(301)sGUESS(301)>
INP({10)sGUEST(10)»JRITE(301)»JLEFT(301)sPERM(41)sPERK(41)sLP(41),
2GUESR(10) sGUESQ(301) sNsl sMMy IPLOTsDELX s DELPHI s PHIMINSPHIMAX»TOL
3XONE!ZONE’OMEGA’SQZZERODRES’KAR’J’INPUT’JI
7000 READ 303sTITLEL1.TITLEZ
1F (TITLEl) 304,1000+304
304 READ 300sNsLsMMyMP 4 IPLOT » INPUT »JIsKART
READ 301sDELXsDELPHI3PHIMINSPHIMAX »TOL y XONE 3 ZONE sOMEGA» S»2ZERO
READ 301s (PHIN{I)sI=1sN)
READ 302»(JJl(I)sI=1,4N)
300 FORMAT (1415)
301 FORMAT (7Fl0.2)
302 FORMAT (2413)
303 FORMAT (2A6)
MMM=MM+ 1
READ 300, (NP(M)M=]4MMM)
READ 301 (GUEST (M) sM=1,MM}
1F (INPUT=1) 6001+6000,6000
6000 READ 301y (GUESR(M)sM=1,MM)
6001 DO 305 M=uly MM
NPR=NP (M}
NPQ=NP (M+1)
DO 306 1=NPRNPQ
IF (INPUT=1) 306630696306
6306 GUESQ(I1)=GUESR(M)
306 GUESS{I)I=GUEST (M)
3085 CONTINUE
MMP=MP+1
READ 300y (LP(M)sM=]1,MMP)
READ 301s (PERK({M)sM=1,MP)
DO 1120 M=]1,MP
LPR=LP (M)
LPQ=LP(M+]1)
DO 1121 J=sLPR,LPQ
1121 PERM({J)=PERK(M)
1120 CONTINUE

DO 330 I=1.N

IF (1-1) 331+331,332
331 X{(1)=XONE

GO TO 330
332 X{I1=X{I-1)+DELX
330 CONTINUE

DO 340 J=1sL

IF (J=1) 3419341+342
341 Z2(1)=ZONE

GO TO 340
342 2(J)=Z(J-1)+DELX
340 CONTINUE

2ZERA=FLOAT(JJ(1)~1)#DELX
IF (ZZERA=~ZZERQ) 3769377+376
377 SA=FLOAT(N-1)#DELX
IF (SA=S) 37623204376
376 PRINT 378
378 FORMAT (1H1l,18H CHECK GEOMETRY)
GO TO 7000



[aNaNaXaNa

320

327

326
325
6401
6402
64013

6400
328

40
205
206
400
401
403

405
404
415
407
406

408
414

1000

DO 328 I=1,N
JRITE(I)=JdJ(1)=JJ(1+])
JLEFT(T)=JdU( 1) ~JdJ(I-1)
DO 328 J=1,L

IF (J=JJ(I)) 325+3264+327
PHI(I+J)=0.0

GO TO 328
PHI(I4J)=PHIN(I)

GO TO 328

IF (INPUT-1) 6400640146401
IF (JU~J1) 6402+64034+6403
PHI(1+J)=GUESS(I)

GO TO 328
PHI{I,J)=GUESG(])

GO TO 328
PHI(1+J)=GUESS(I)
CONTINUE

DO 206 KAR=1,KART
RES’O.O

CALL MESHI1A

IF (RES-TOL) 400,206,206
CONTINUE

PRINT 401,KAR,RES
FORMAT (1H1+s110,F10.5)

PRINT 403+TITLE1STITLE2

FORMAT (1H1,24H1 NUMERICAL PROBLEM 2A6/7/12Xs4HX(1}/7/)
PRINT 4045 (X{I)sI=14N)
PRINT 405

FORMAT (1H1912Xs4HZ(S)//)
PRINT 404s(Z(J)sJd=1,L)
FORMAT (10F12+4)

PRINT 415

FORMAT (1H1,10Xs8HPHI(I,J)//)
DO 406 I=1,N

PRINT 407!

FORMAT (1HO»12Xs2HI=Zs13//)
PRINT 408s (PHI(IsJ)sJ=1sl)
FORMAT (10F12.4)

CALL CONTHR

CALL CCNEXT

GO T0 7000

CALL CCEND

STOP

END

SUBROUTINE MESHI1A

COMMON X(301)sZ(41)sPHI(301541)sPHIN{(301)sJJ(301)sGUESS(301)»
INP{10)sGUEST(10)2sJRITE(301)»JLEFT(301) +PERM(4]1)»PERK(41)9LP (41,
2GUESR(10)sGUESQ(301)sNsL oMMy IPLOTsDELX yDELPHI sPHIMINsPHIMAX »TOL »
3XONE 9 ZONEsOMEGA 9 S+ ZZFEROSRESIKAR»Js INPUT s JI

DO 701 K=1,L

J=bL+1=K



DO 701 I=1,sN
IF (1-=1) 41941942
41 IF {(J=1) 32,+32,43
43 IF(J=JJ(1)) 44,425,526
44 1F (JRITE(I)=1) 28,28,180
42 IF (I-N) 464947947
46 IF (J=1) 34,34,48
48 IF (J=JJ(1)) 49425426
49 1F (JLEFT(I)=1) 505505181
50 IF (JRITE(1)~1) 3,3,182
47 IF (J=1) 33,33,51
51 IF (J-=JJ(1)) 52254926
52 IF (JLEFT(I)=1) 244244183
180 IF (J=JJ(I+1)) 28+28+29
183 IF (J=JJ(I=1)) 24424,29
182 IF (J=JJ(I+1)) 343,193
181 IF (URITE(I)=-1) 1854185,186
185 IF (J=JJlI=1)) 353,192
186 IF (JJ(I-1)~JJ(I+1)) 18851875190
187 IF (J=JJ(I-=1)) 393,29
188 IF (J-JJ(I-1)) 343,189
189 IF (J=JJ(I+1)) 192,192,29
190 IF (J-JJlI+1)) 343,191
191 IF (JU=JJ(I=1)) 193,193,29
193 JUA=JJI(1Y)=JJ(T1+1)
JUB=JJ(1)~J
DELTA=DELX*FLOAT(JJB/JJA)
PHIT=PHIN(I)=FLOAT(JJB/JJAY ¥ (PHIN(I)~-PHIN(I+1))
GO TO 31
192 JUC=JJ(1)=JI(I~1)
JJD=JJ (1) =J
DELTA=DELX*#FLOAT (JJD/JJC)
PHIT=PHIN(I)=FLOAT(JID/JIJCOY ¥ (PHIN(I)=-PHIN(I-1))
GO TO 30
3 DOF=(PERM(JY#(PHI(I4+19J)+PHI(I=1sJ)+PHI(1,J+1))+PERM(J-1)%PHI (1,
1J=11) /(3. 0%PERM(JI+PERM(J-1})
G0 TO 702
24 DDF={PERM(J)#(PHI(I4J+1)+PHI(I~1sJ)%240) PERM(J=1}¥PHI(I,J~-1))
1/(3.0%PERM(JI+PERM(J-1))
GO TO 702
25 DDF=PHIN(I)
GO TO 702
26 DDF=0,0
60 TO 702
28 DDF=(PERMI{J)#(PHI(I3J+1)4PHI(I141,J)%240) PERM(J=1)¥PHI(IyJ~1))
17 (3, 0%PERM(J)+PERM(J~11)
GO TO 702
29 DDF=(PERM(J)#PHI(I4J+1)+PERM{J-1I1#PHI(1,J=1))/(PERM{J)+PERM(J=112}
GO TO 702

30 DDP=(PERM(J)s*(PHI(I+1 J)+DELX/DELTA%PHIE)+SSDELTA&DELX)/(Z.O*HELX

1))u(pnnugJ)xrﬁx(I,J+1E+PERM(J-1;*PHI(I i1 )/iPERMSJ)*(DELX/DELTA
253'38);82 »(PERM{ J)+PERM

31 DDFa(PERM(J)+(PHEI(I-1,J)+DELX/DELTA*PHIT )+ ( ( DELTA+DELX)/(2,0+DELX
1))*(PERM(J)*PHI(I,Jf15+P§RM(Jfl)&?HI(I,Jzigs)/(PERM§J)Z{§ELX/DELTA.
%;%.?%+%£E§LEA¢DELI)/(Z.O*DELX))*(PERH(J)+PERM(J—1))

32 DDF=(PHI(IyJ+1)4+PHI(I+14J))/240
GO TO 702

DELTA+DELX)/{2.04DELX) J-1)))



aNa¥al

33

34
702

703
701

40

20

41

DDOF=(PHI(I s J+1)4+PHI(I~15J))/2.0
GO TO 702
DDF=(PHI(I+1sJ)+PHI(I=13J)+2e0%PHI(14J+1))/440

GAF=ABS(DDF=PHI(1sJ))

IF (GAF-RES) 701+701+703

RES=GAF
PHI(I¢J)=OMEGA%*DDF+(1+0~OMEGA)#PHI(1,J)
RETURN

END

SUBROUTINE CONTHR

COMMON X{301)9Z2(41)sPHI(301s41)sPHIN(301)sJJ(301)1sGUESS(301)
INP{10)sGUESTI(10)sJRITE(301) s JLEFT(301)»PERM(I4L)PERK(41)sLP(41),
2GUESR(10)»GUESQ(301) sNyL sMMyIPLOTSDELX yDELPHI oPHIMINPHIMAX s TOL s
AXONE »ZONEsOMEGA »SsZZERQsRESSKAR»Js INPUT 3 J1]

DIMENSION Tl4p3)9sXX{2)+221(2)

COMMON /CCPOOL/ XMINXMAX s YMINsYMAX 3 CCXMIN,CCXMAX s CCYMIN CCYMAX
IF (TPLOT=2) 40441942

XMIN==1875.,0

XMAX=2312540

YMIN==425%0.0

YMAX=212250.0

CCXMIN=100,0

CCXMAX=1100,0

CCYMIN=250.,0

CCYMAX=91040

CALL CCBGN

CALL CCGRID (6HNOLBLS)

XMIN=0O.0

XMAX=20000,0

YMIN==0,001

YMAX=12000.0

CCXMIN=175,0

CCXMAX=975.0

CCYMIN=4204,0

CCYMAX=900,0

CALL CCBGN

CALL CCGRID (1910»6HNOLBLS,196)

WRITE {98+20)

FORMAT (116HO 0e1S5 25 0e3S Qe4S
1 0458 0«65 0475 85 095 S)
CALL CCALTR (175409405409051)

CALL CCALTR ( 980409420409 05151H0)

CALL CCALTR (98B0,0350040909194H0e15)

CALL CCALTR (9804095800905 194H042S)

CALL CCALTR {980409660e030+196H043S)

CALL CCALTR (9804097400901 34H044S)

CALL CCALTR (980e09820e0302194H065S)

CALL CCALTR (98040+9004030514H0.65)

GO TO 43

XMIN=-1875.0

XMAX=4312540

YMIN=-4250,0

YMAX=12250.0

CCXMIN=100,0

CCXMAX=210040

CCYMIN=250,0

CCYMAX=910,0



21

23

42

22

CALL CCBGN

CALL CCGRID (6HNOLBLS)

XMIN=0.0

XMAX=40000.0

YMIN=-0,001

YMAX=12000.,0

CCXMIN=175.0

CCXMAX=177540

CCYMIN=420.0

CCYMAX=900.0

CALL CCBGN

CALL CCGRID (192056HNOLBLSs1+6)

WRITE (98s21)

FORMAT {117HO 15
1 O3S o84S
CALL CCALTR (175409405405051)

WRITE (98,23)

FORMAT (113H 065

1 0.85 « 95
CALL CCALTR (989.03405403091)

CALL CCALTR (17804039420e0+s0s141H0)
CALL CCALTR (1780405580409035194H0.15)
CALL CCALTR (1780407400901 154H0425)
CALL CCALTR (1780403s900¢03505154H0e35)
GO TO 43

XMIN=2-1875,0

XMAX=63125%,0

YMIN=~4250.0

YMAX=12250.0

CCXMIN=100.0

CCXMAX=3100.0

CCYMIN=250.0

CCYMAX=910.0

CALL CCBGN

CALL CCGRID (6HNOLBLS)

XMIN=0,0

XMAX=60000.0

YMIN=-0.001

YMAX=12000,0

CCXMIN=17540

CCXMAX=25T75.0

CCYMIN=420,0

CCYMAX=900,0

CALL CCBGN

CALL CCGRID (193056HNOLBLS»Y96)

WRITE (98+22)

FORMAT (115HQO

1 «25

CALL CCALTR (1750040540904 1)

WRITE (98y24)

24 FORMAT (114H D.45

25

1 0e5S 65
CALL CCALTR (980+054054090+1)

WRITE (98525)

FORMAT (114H I )

1 0.9S

CALL CCALTR (1778405405.05051)
CALL CCALTR (2580405420e050s191HO)
CALL CCALTR (2580405660e0350s154H041S)

0.1S
035

O

0e7S

085

25
0e5S5)

S)

S)



CALL CCALTR (258040390003 035194H042S)
43 Li=bL-}]
NN=zN-1
DO 1 J=1l,LL
DO 2 I=1sNN
PHILOW=AMINYI(PHI(IsJ)sPHI(I+)9J)sPHI{(I+19J+1)sPHI(I,J+1))
PHIHI =AMAX1(PHI(IsJ)»PHI(T414J)sPHI(I+19J+1)sPHI(I4J+1))
IF (PHIHI-PHILOW) 242551
51 IF (PHILOW=PHIMAX) 53,53,2
53 IF (PHIHI-PHIMIN) 245,45
5 IF (PHILOW=PHIMIN) 56454455
56 IF (PHILOW-10.0) 101,101,54
101 TA=PHI(I W)
TB=PHI(I41sJ)
TC =PHI(I+1,J+1)
TO=PHI(IsJ+1)
IF (TA-10.0) 102,1025103
102 IF (TB=1040) 2425105
105 IF (TC=1040) 2924106
106 PHILOW=AMINI(TB,TC)
GO TO 55
103 IF (TB=1040) 107+107,108
107 IF(TN=10,0) 25245109
109 PHILOW=AMINI(TA,TD)
GO TO 55
108 IF (TC-TD) 110,112,111
110 IF (TD=10.0) 112,112,113
113 PHILOW=AMINLI(TA,TB,TD)
GO TO 55
111 IF (7TC~10.0) 112,112,114
114 PHILOW=AMIN1(TASTBTC)
GO TO 55 .
112 PHILOW=AMINI(TA,TB)
GO TO 55
54 AA=PHIMIN
GO T0O 3
55 AA= FLOAT(IFIX((PHILOW-PHIMIN)/DELPHI)+1)#DELPHI+PHIMIN
3 IFLAG=O0
T{ls1)=PHI(T,J)
T(291)=2PHI(I+19J)
T(3s1)=PHI(I+19J+1)
T(4s1)=PHI(],Jd+1)
T(ls2)=X(1)
T(2+2)=T(1,2)+DELX
T(392)=T(2s2)
T(492)=T(1s2)
T(1e3)=2(J)
T(2+3)=T(143)
T(3+3)=T(193)+DELX
T(493)=T(3,3
4 K=0 )
613 IF (T{ls1)=10e0) 114114600
600 IF (T(2»1)~10.0) 11,1146
6 IF{T(1e1)=T(251)) Tsll,7
T Fae(AA~T{1s1))/7(T(251)=T{1s1}))
IF (F=140) 71571511
71 IF(F) 11s11,8
8 IDIOT=1+IFLAG
XX(CIDIOT)=(140~F)®T(192)+F*T(242)
ZZUIDIOT)I=(1e0=F)RT(1s3)+F%#T(2,+3)



10
11

13

131

IFCIFLAG) 10+10,9
CALL CCPLOT (XX9ZZ32y6HNOJOINS151)

XX {1)=XX(2)y
22(1)y=2Z2(2)

GO 70 11

IFLAG=]

KeK+1

IF(K=4) 13412,12
TT12T(1,1)
TT2=T(1s2)
TT3=T({1,3)

DO 131 NA=1,3

DO 131 NB=1,3
TI(NByNAY=T (NB+1,4NA)
Tlayl)=TT1
Tt4s2)=TT2
Tt4+3)=TT3

GO TO 613
AA=AA+DELPHI]
IF(AA=PHIHI) 15,15,2
IF (AA~PHIMAX) 3,3,2
CONRTINUE

CONTINUE

RETURN

END



C NUMERICAL PROGRAM 4
COMMON X(151)92(41)sPHI(151941)sPHIN(151)4JJ(151)9sGUESS(151)
INP(10)sGUEST(10)sJRITE(151) yJLEFT{151),PERM{151341})sPERK(41),
2LP{41)sGUESR{10)sGUESQ(151)9sMA(41)sMCE10)sNsL oMM,
3IPLOTyDELXsDELPHI sPHIMIN PHIMAX s TOL 9 XONE » ZONE yOMEGA 3 S932ZEROWRES
GKAR 2 J 9 INPUT o J1 s INPERMsMB yMD
7000 READ 7001 sTITLEYTITLEZ
7001 FORMAT (2A6)
IF (TITLE1l) 7300,1000,+7300
7300 READ 300sNoL yMMyMP L IPLOT s INPUT s JI s INPERM4KART
READ 301sDELXsDELPHI sPHIMINsPHIMAX ¢ TOL s XONE ¢ ZONE yOMEGA » 53ZZERO
READ 301s (PHIN(I)sI=1,yN)
READ 302s(JJ(I)sI=1sN)
300 FORMAT (1415)
301 FORMAT (T7F1042)
302 FORMAT (2413)
MMM=MM+1
READ 300, (NP(M)sM=1,MMM)
READ 301»(GUEST(M)eM=]yMM)
IF (INPUT=-1) 6001+6000,6000
6000 READ 301 (GUESR(M) ¢M=1yMM)
6001 DO 305 M=1,MM
NPR=NP (M)
NPQ=NP (M+1)
DO 306 I=NPRINPQ
IF (INPUT=1) 3069630696306
6306 GUESQ(I)=GUESR (M)
306 GUESSII)=GUEST (M)
305 CONTINUE
IF (INPERM=1) 6010,60114+6011
6010 MMP=MP+1
READ 300y (LP(M)sM=]1,MMP)
READ 301y (PERK(M)yM=1,MP}
DO 1120 M=1,MP
LPR=LP(M)
LPQ=LP(M+1)
DO 1121 J=LPR,LPQ
i DO 1121 I=1,N
1121 PERM(19J)=PERK(M)
1120 CONTINUE
GO TO 6012
6011 READ 300s (MA(J)sJd=1,sl)
DO 6022 J=1,L
MB=MA(J)+1
MD=MA ( J}
READ 300y (MC(M)sM=]1sMB)
READ 301s (PERK{M)sM=1,4MD)
DO 6021 M=]1,MD
MCR=aMC (M) b
MCQ=MC(M+1)
DO 6020 I=MCR,MCQ
6020 PERM(I,J)=PERK (M)
6021 CONTINUE
6022 CONTINUE

6012 DO 330 I=1,N
IF (1-1) 331,331,332
331 X({1)=XONE
GO TO 330



332
330

341

342
340

377
376
378

320

327
326
325
6401
6402
6403

6400
328

40
205
206
400
401
403

405
404
415
407
406

408
414

X(I)=X(I=-1)+DELX
CONTINUE

DO 340 J=1,L

IF (J=1) 34193419342
Z(1)=ZO0ONE

GO TO 340
Z(J)y=Z(J~1)+DELX
CONTINUE

ZZERA=FLOAT(JJ(1)-1)#DELX

1F (ZZERA-ZZERO) 3769377376
SA=FLOAT (N~-1)%DELX

IF (SA=S) 37693209376

PRINT 378

FORMAT (1H1,18H CHECK GEOMETRY)
GO TO 7000

DO 328 I=1,N
JRITE(1)=JJ(1)=JJ(I+1)
JLEFT( D) =JdJ(1)=JJ{1~1)

DO 328 Jml,L

IF (J=JJ(1)) 325,3269327
PHI(1,J)=0.0

GO TO 328
PHI(IsJ)=PHIN(I)

GO TO 328

1IF (INPUT=1) 6400564016401
IF (J=JI) 6402,6403,6403
PHI(1,J)=GUESS(])

GO TO 328
PHI(I,J)=GUESQ(I)

GO TO 328
PHI(I$J)=GUESS(I)
CONTINUE

DO 206 KAR=1,KART
RFS=0,0

CaLL MESH1B

IF (RES~TOL) 40052065206
CONTINUE

PRINT 401sKAR,SRES
FORMAT (1H1»1105F10e5)

PRINT 403+TITLEL1STITLE2
FORMAT (1H1,24H1 NUMERICAL PROBLEM 2A6//12Xs4HX(1)//)
PRINT 404 (X(I)sI=1sN)

PRINT 405

FORMAT (1H1s12X»4HZ(J)//)
PRINT 4049(Z(J)sJ=1Hl)

FORMAT (10F12e4%)

PRINT 415

FORMAT (1H1,10Xs8HPHI(I»J)//)
DO 406 I=1sN

PRINT 407s1

FORMAT {1HO0»12X,2HI=913//)
PRINT 408y (PHI(IsJ)sJ=1lsl)
FORMAT (10F124)

CALL CONFOR
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CALL CCNEXT

GO TO 7000
1000 CALL CCEND

STOP

END

SUBROUTINE MESH1B
COMMON X(151)9Z(41)sPHI(151541)oPHIN(151)9JJ(151),GUESS(151),
INP(1OJsGUEST(10)»JRITE(L1IS51) s JLEFT(151)4sPERM(151941)sPERK({41)
2LP(41)sGUESR(10)+GUESQ(151) 9MA(41)sMC(10) sNsL sMM,
3IPLOT 4DELXyDELPHT yPHIMIN,PHIMAX 3 TOL  XONE 4 ZONE yOMEGA 3S59ZZEROWRES,
4KARsJ9 INPUT 3 J1 s INPERMeMB 9MD
DO 701 K=1,L
Jzl+1-K
DO 701 I=1,N
IF (I-1) 41341942
41 IF (J=1) 32,32,43
43 IF (J=JJ{I)) 44,425,426
44 IF (JURITE(1)~1) 284+28+180
42 IF (1-=N) 4644747
46 IF (J=1) 34,434,448
48 IF (J=JdJ(1)) 49425426
49 1IF (JLEFT(I}~]1) 50+50+181
50 IF (JRITE(I)=1) 3+3,182
47 IF (J=-1) 33,33,51
51 IF (JU=JJ(1)) 529254926
52 IF (JLEFT(I1)=1) 244244183
180 IF (J=JJlI+1)) 28428429
183 IF (JU=JJ(I=11) 24524429
182 IF (J~JJ(I+1)) 3935193
181 IF (JURITE(I)=1) 185,185,186
185 IF (J=JJ(I=1)) 353,192
186 IF (JUJ(I-1)-JJ(1+1)) 188+187+190
187 IF (J=JJ(I-=1)) 3+3,429
188 IF (J-JJli-1)) 3,3,189
189 IF (J=JJ(I+1)) 192,192,229
190 IF (J=JJ(I+1)) 3,3,191
191 IF (JU=JJ(1=1)) 1934193429
193 JUA=JJ(I)=JJ(I+]1)
JJB=JgJ(1)~J
DELTA=DELX*FLOAT(JJB/JJA)
PHIT=PHIN(I)}~-FLOAT(JJB/JJAYR(PHIN(I)=-PHIN(I+1))
GO TO 31
192 JUC=JdJ(1)-JdJ(I=-1)
JJD=Jd(1y=~-J
DELTA=DELX®*FLOAT(JJD/ JJC)
PHIT=PHIN(I)=FLOAT(JID/JJCI®(PHIN(I)-PHIN(I~-1)}
GO0 TO 30
3 DDF=(PERM( T J)#PHI(I+13J)+PERM(I=14J)#PHI(I=1sJ)+PERMI{TI o J)*PHI(],
1J41)+PERM{T 4 J=1)%¥PHI(1sJ=1) )/ {240*PERM(I 9 J)+PERM(I~14J)+PERM
2(1sJ=11Y)
GO TO 702
24 DDF=(PERM(I=13J)#240%¥PHI(I=13J)+PERM{TI 4J)#PHI(I,J+1)+
2PERM( T3 J=1)#PHI(T4J-1))/(PFRM(I13J)+2,0%¥PERM(I=14JI+PERM(]I4J=1))
GO TO 702



[aNaNaNaKe!

25 DDF=PHIN(I)
GO TO 702
26 DDF=0.,0
GO TO 702

28 DDF=(240%PERM( Ty JI)#PHI(T+13J)+PERM(13JY¥PHI(T 3 J+1)+PERM(TsJ~1)#PHI

1(TsJ=1))/(34OH#PERM( I J)+PERM(T,J~1))
GO TO 702
29 DDF=(PERM(IsJ)*PHI(143J+1)+PERM{I,J-1)#PHI(I,J-1))/(PERMIIsJ)+
1PERM(15J-1))
GO TO 702 :

30 DDE:SPERM(I,J)&PHI(I+1,J)+DELX/DELTA*PHI1‘)+( DELTA+DELX) /(2,0
1BELX )*(PERM(I,J%—»@HI(I,J+1)+PEBI~I(’I,J-1)*PHI 1,3-1)))/(PERY(I,J)
2»)«51)mr.x/mmm1.o +( (DELPA+DRILX) /(2 ,09ELX) ) PRAM( I, T)+PERM( T, J=1
3

60 TO 702

31 DDPF=(PERM(I-1,J)*PHI(I-1,J)+PERM(I,J)*PEITDELX/DELTA+((DELTA+DELX
1)/(2,04DELX) )% PERM(T, 3 PAI( T, I+ J+PERM( I, J-1)*PHI(T,~1)))/(PERM
2(T, 7}« DELX/DELTA+PERM{ 1-1,7) + ( { DELTADELX)/ (2. 0-0BLX) §

3 m:élfg'z'l)))
32 DDF=(PHI(IsJ+1)+PHI(I+1+J))/72.0
GO TO 702

33 DDFB(PERM(I’J)*PHI(I,J+1)+PERM(I~1,J)*PHI(I—1;J))/(PERM(I’J)+

1PERM(1=1+J))
GO TO 702
34 DDF=(PERM(IQJ)*PHI(I+19J)+PERM(I‘loJ)*PHI(I-loJ)+2¢O*PERM(IvJ)*
1PHI(I3J+1))/(30%PERM( I J)+PERM(I 1,J))
702 GAF=ABS(DDF=PHI(IsJ))
1IF (GAF=RES) 701+701,703
703 RES=GAF
701 PHI(15J)=OMEGA®DDF+(1e0~OMEGAI#PHI(IsJ)
RETURN
END

«(PERM(I,JT)

SUBROUT INE CONFOR

COMMON X(151)9Z(41)sPHI(151s41)sPHIN(151)5JJ(151)sGUESS(151),
INP{10)sGUEST(10)sJRITE(151) s JLEFT(151) ,PERM(151941)»PERK(41),
2LP(41)sGUESR(10)»GUESQ(151) sMA(41)sMC(10) 9NsL oMM,
31PLOT yDELX, DELPHI yPHIMINSPHIMAX s TOL s XONE s ZONE » OMEGA 3 S»ZZERORES,
4KAR s Js INPUT »JT » INPERMyMB»MD

DIMENSION T(4s3)sXX(4)sZ214)

COMMON /CCPOOL/ XMINgXMAXsYMINs YMAXyCCXMINsCCXMAXsCCYMIN, CCYMAX
IF (IPLOT=2) 40441442

40 XMIN=-187540

XMAX=2312540

YMIN=~425040

YMAX=12250.0

CCXMIN=10040

CCXMAX=1100.0

CCYMIN=250,0

CCYMAX=910.0

CALL CCBGN

CALL CCGRID (6HNOLBLS)

XMIN=z0.0

XMAX=20000,0

YMIN==0,001



20

41

21

23

42

YMAX=1200040

CCXMIN=175.0

CCXMAX=9T7540

CCYMIN=420,0

CCYMAX=90040

CALL CCBGN

CALL CCGRID (1510s6HNOLBLSs156)
WRITE (984,20)

FORMAT (116HO 0615 25
1 0e5S 0e6S D75 ¢85
CALL CCALTR (175e03405409091)

CALL CCALTR ( 980¢0+420e0903s1,51H0)
CALL CCALTR (9804095004001 s4H041S)
CALL CCALTR (9804055804001 94H0425)
CALL CCALTR (9804096606001 94H0e35)
CALL CCALTR (9804097406001 s4H045)
CALL CCALTR (9804058204001 94HN45S)
CALL CCALTR (9804059004001 54H0465)
GO TO 43

XMIN==187540

XMAX=4312540

YMIN=2=4250,40

YMAX=1225040

CCXMIN=100,0

CCXMAX=210040

CCYMIN=25040

CCYMAX=910.0

CALL CCBGN

CALL CCGRID (6HNOLBLS)

XMIN=OQO

XMAX=40000.0

YMIN=-0,001

YMAX=12000.0

CCXMIN=1T75.0

CCXMAX=177540

CCYMIN=420.0

CCYMAX=900.0

CALL CCBGN

CALL CCGRID (1+20s6HNOLBLS,126)
WRITE (98+21)

FORMAT (117HO 15
1 0435 e 45
CALL CCALTR (175604405409091)

WRITE (98+23) .

FORMAT (113H ’ 0e6S

1 0«85 95

CALL CCALTR (98%9405405405051)

CALL CCALTR (1780605420.0509151H0)
CALL CCALTR (1780405580400 s194H0e15)
CALL CCALTR (1780405740405 051+4H042S)
CALL CCALTR (1780e099000905154H035)
GO TO 43

"XMIN=~1875.0

XMAX=6312540

YMIN==425040

YMAX=1225040

CCXMIN=1004,0

CCXMAX=3100,0

CCYMIN=250.0

025

0.7S

0455)

S)



22
1

24
1

25
1

43

51
53

56
101

105
106
102

103
107
109

108
110
113

111
114

112

CCYMAX=910.0
CALL CCBGN
CALL CCGRID
XMIN‘OQO
XMAX=6000040
YMI NS“OQOO].
YMAX=12000.,0
CCXMIN=175%,0

(6HNOLBLS)

CCXMAX=257540

CCYMIN=420,0
CCYMAX=900.0
CALL CCBGN

CALL CCGRID
WRITE (9822

{1»30»6HNOLBLSy146)
)

FORMAT (115H0

CALL CCALTR

WRITE (98,24

FORMAT (114H
0.55

CALL CCALTR
WRITE (98,25
FORMAT (114H

CALL CCALTR
CALL CCALTR
CALL CCALTR
CALL CCALTR
Li=L~1

NN=N-1

DO 1 J=1lslL
DO 2 I=1sNN

25
(175405405409041)
}
0«45

65

(980.09&05.0v0,1)
)

075

0695

(177840+405404091)
(2580605420050 1,1H0)
(2580.0’660009091’4H0.1$)
(2580,0990040509194H0425)

DelS
0.3S

PHILOW=AMINL (PHI(I »J)oPHI(I+19J) sPHI(I4+15J+1})sPHI(19J+1}))
PHIHI =AMAXL(PHI(I¢J)sPHI(I+13J)sPHI(I+1sJ+1)sPHI(I,U+1))
IF (PHIHI-PHILOW) 242451

IF (PHILOW=PHIMAX) 53453,2

IF (PHIHI-PH

IMINY 24555

IF (PHILOW-PHIMIN) 564954455
IF (PHILOW=10e0) 101,101+54

TA=PHI(14J)
TB=PHI(I+1,J

)

TC=PHI(I+1yJ41)

TD=PHI(1+J+1
IF (TA=10.0)
IF (TC-10.0)
PHILOW=AMIN1
IF (TB=10.0)
60 TO 55

IF (TB-10.0)
IF(TD=~10.0)
PHILOW=AMIN]
GO TO 55

)
102,102,103
2929106

(TBTC)
2929105

107,107s108

2929109

{TA»TD)

IF (TC~TD) 110s1124111

IF (TD-10.0)
PHILOW=AMIN1
GO TO 55
IF (TC~-10,0)
PHILOW=AMIN1
GO TO 55

112,112,113
(TAsTB»TD)

11291129114
{TA,TB,TC)

PHILOW=AMIN1(TA,TB)



GO TO 55
54 AA=PHIMIN
GO TO 3
55 AA= FLOAT(IFIX((PHILOW-PHIMIN)/DELPHI)+1)#DELPHI+PHIMIN
3 IFLAG=0 -
T(le1)=PHI(IsJ)
T(2s1)=PHI(I+14J)
T(3s1)aPHI(I+1sJ+1)
T(4s1)1=PHI(TsJ+1)
T(1ls2)=X(1)
T(2+2)2T(1e2)+DELX
T(392)1=T(2+2)
T(4s2)=T(1,42)
T(1e3)=2(J)
Ti293)=T(193)
T(3+3)=T(1s3)+DELX
T(4+31=T(3,3)
4 K=0
613 IF (T(1ls1)~10e0) 11,11,600
600 IF (T(251)=10.0) 1141146
6 IF(T(Le1)=TU2,1)) T9ll,7
7 FelAA=T{1s1))/(T(251)~Ti{ls1l))
IF (F=1e0) TlsT1l,1l
71 IF(F) 11,11,8
8 IDIOT=1+1FLAG
XX(IDIOT)IR(1e0=F)%T(152)4F%*T(2,2)
ZZUIDIOT)IB(1e0~F)#T (193 )+F%T(2,+3)
85 IF(IFLAG) 1091049 ‘
9 CALL CCPLOT (XX9ZZs296HNOJOINs1s1)
XX(1)y=XX(2)
ZZ2t1y=22(2)
GO TO 11
10 IFLAG=1
11 K=K+1
IF(K=4) 13512412
13 TT1=T{1l,1)
TT2=2T(1+2)
TT3=T(1+3)
DO 131 NA=1,3
DO 131 NB=1,3
131 T(NB,NA)Y=T(NB+1,NA)
T(4s1)=TT1
T(4+2)=TT2
T(493)=TT3
GO TO 613
12 AA=AA+DELPHI
14 IF(AA=PHIHI) 1551542
15 IF (AA-PHIMAX) 34342
2 CONTINUE
1 CONTINUE
RETURN
END



C NUMERICAL PROGRAM §

COMMON X(101192(31)9PH!(101'31)OPHIN(101).JJ(101)0GUE55(101’0
lNP(10)1GUEST(10)0JRXTE(IOI)$JLEFT(101);PERMH(101031)9PERMV(101031’
Z,PERKH(31)9PERKV(31)9LP(31)’GUESR(ID)'GUESQ(101)vMA(3l)QNC(10‘0
3NtL,MMQDELXvDELPHloPHIMIN.PHIMAX;TOL;XONE,ZONE,OMEG&-S;
QZZEROpR559KARgJ’INPUTyJIoINPERMbMBQMDQDELZ’ALPHA'ALFA'SXPLQSZPL
595X 52

7000 READ TJO01eTITLELSTITLEZ
7001 FORMAT (2A8)
IF (TITLE1)Y T300,1000,7300
T300 READ 300eNsLoMMyMP 3 INPUT 1 INPERM,KART

READ 3019DELX’DELZ'DELPHI’PHXMIN,pHIMAX,TOL.XONE’ZONE.OMEGAOS'
12ZERQ ¢ SXPL +SZPL s SX 952

RFAD 3C1y (PHIN(I)eI=z=1yN)

READ 302:(JJT1)sI=1,4N)

300 FORMAT (1415)
301 FORMAT (7F10.2)
302 FORMAT (2413)

MMMaMM4+ |

READ 3004 (NP({M) M=l MMM}

READ 201+ {GUFESTIM) pM=]1,MM)

IF (INPUT-1) A001+8600046000

6000 RFAD 301s (GUESR(M)sM=1,MM)
6001 DO 305 M=1,MM

NPR=NP (M)

NPQaNP (M+1)

DO 306 IaNPR,,NPQ

IF (INPUT=1) 306+6306456306

6306 GUESQ(1)=GUESRIM)
306 GUESS(I)I®GUEST(M)
305 CONTINUE
IF (INPERM=1) 6010+6011,6011
6010 MMP=MP+1
READ 300¢ (LP(M)eM=l,MMP)
READ 301s (PERKH(M)oMz=1,MP)
READ 381s (PERKVIM),Mal,MP})
DO 1120 M=l ,MP
LPRal P(M)
LPU=LP(M+])
DO 1121 JaLPRLWLPQ
DO 1121 1=1,4N
PERMMI(T 4 J)aPERKH (M)
1121 PERMVI(IJ)aPERKVI(M)
1120 CONTINUE

GO TD 6012
6011 READ 300y (MA({UY»Jm1l,L)

DO 6022 J=lsL

MRsMA(J)+1

MD=MA(J)

READ 300s (MC{M)sMz=],MR)

READ 301, (PERKH{M) sM=21,MD)

READ 301y (PERKV(M)eMz1,MD)

DO 6021 M=l MDD

MCR=MC (M)

MCQ=MC(M+1)

DO 6020 1=MCR,MCH

PERBHI(I s J1=PERKH (M)

6023 PERMV(],J)=PERKV{M)
6021 CONTINUE



6022
6012
331

332
330

341

342
340

377
378
378

320

327
326

325
6401
6402
6403

6400
323

4n
205
206

400
401

403

405

CONTINUE

DO 330 I=1,N

IF (1-1) 3314331,332
X(1)=XONE

GO TO 1330
X{I)=x{I-1)+DELX
CONTINUE

DO 340 J=1,L

IF (J=1) 3413415342
Z{1)=ZONE

GO TO 340
Z{J)y=Z2{J=1)+DELZ
CONTINUE

Z2ERA=FLOATIJJ(1)-1)¥#DELZ

IF (ZZERA-ZZERO) 37649377376
SA=FLOAT(N-1 ) #DELX

IF (SA=5) 37693209376

PRINT 378

FORMAT (1H1,18H CHECK GEOMETRY)
GO TO 7000

DO 328 1=1.N
JRITE(D)=JJ(11=JJ(I+])
JLEFT( 1Y =0J{IYy=JJ(]I~-1)

DO 328 J=1,lL

IF (J=JdJl1)) 32543264327
PHI(TsJ)2040

GO TO 328
PHI{T+J)=PHIN(T)

GO TO 328

IF (INPUT=1) 6400+6401,6401
IF (J=JI) 640246403,6403
PHItT.J)=GUESS(])

GO TO 328
PHI(1