$$
04-526
$$

Environment Canada Water Science and Technology Directorate

Direction générale des sciences et de la technologie, eau Environnement Canada

Seasonal and diel changes of dissolved oxygen in a hypertrophic prairie lake

Richard D. Robarts, ${ }^{1 *}$ Marley J. Waiser, ${ }^{1}$ Michael T. Arts ${ }^{\mathbf{2}}$ and Marlene S. Evans ${ }^{1}$
${ }^{1}$ National Water Research Institute, Environment Canada, Saskatoon, Saskatchewan, Canada, and ${ }^{2}$ National Water Research
Institute, Environment Canada, Burlington, Ontario, Canada

Abstract

Humboldt Lake, a hypertrophic prairie lake typical of many found on the Great Plains of North America, is usually icecovered from early November to about mid-May. The lake is an important recreational fishery, now mainly stocked with walleye. It has a high potential risk of experiencing fish kills because of the very large cyanobacterial blooms that develop in it, the high rates of algal and bacterial production and the high concentrations of ammonia $\left(\mathrm{NH}_{3} \mathrm{~N}\right)$ and dissolved organic matter. Following the collapse of cyanobacterial blooms, shallow prairie lakes are known to undergo periods of anoxia that can lead to summer fish kills. In some of the lakes, anoxia forms during the long period of ice cover, causing winter fish kills. Two years of seasonal and diel data (total phosphorus, dissolved oxygen (DO), NH_{3}-N and chlorophyl1-a concentrations, and bacterial production) were analysed in this study to assess why significant fish kills did not occur during this period or during the ≈ 30 years of records from Saskatchewan Environment. Humboldt Lake did not become anaerobic, either following the collapse of the cyanobacterial bloom or under ice cover, indicating that the oxygen (O_{2}) influx (strong mixing) and production processes were greater than the microbial and chemical O_{2} demands, both over seasonal and diel time scales. Several published risk threshold criteria to predict the probability of summer and/or winter fish kills were applied in this situdy: The threshold criteria of maximum summer chlorophyll and maximum winter $\mathrm{NH}_{5} \mathrm{~N}$ concentrations indicated that a summer fish kill was unlikely to occur in this hypertrophic prairie lake, provided its water quality remained similar to that during this study. Similarly, the threshold criteria of initial DO storage before ice cover and the rate of O_{2} depletion under ice cover also indicated a winter fish kill was unlikely. However, recent development in the watershed might have resulted in significant water quality deterioration and the winter fish kill that occurred in 2005.

Key words

bacterial production, cyanobacterial blooms, dissolved oxygen, fish kills.

INTRODUCTION

Millions of water bodies of different sizes are scattered across the Canadian prairies, ranging from small farm dugouts, marshes and 'pothole' lakes to large reservoirs, meltwater channel lakes and large lakes ($>30000 \mathrm{~km}$); examples of the latter being lakes Wimnipeg and Manitoba (Barica 1987). These water bodies range from freshwater to hypersaline and cover the trophic spectrum.

Most prairie lakes are naturally eutrophic because of their high nutrient loading, high solar input, shallowness, internal nutrient regeneration and extended freexe-up (Barica 1987). They also exhibit extreme fluctuations in

[^0]dissolved oxjgen (DO) concentrations. Dense blooms of algae, usually cyanobacteria, are often the dominant primary producers (Barica 1987). Thus, the recreational quality of these lakes caṇ be reduced by nuisance algal blooms and the associated risks of summer and winter fish kills. Summer fish kills occur through a variety of mechanisms, including axygen (O_{2}) depletion, toxins released by cyanobacteria and/or ammonia $\left(\mathrm{NH}_{3} \mathrm{~N}\right)$ build-up, while winter fish kills may result from $\mathrm{NH}_{5} \mathrm{~N}$ build-up and/or O_{2} depletion.
Much of the limnological research conducted on Saskatchewan prairie lakes has been conducted by Hammer, who characterized their basic physical and chemical features (Hammer 1978, 1986; Hammer \& Haynes 1978; Hammer et al. 1983). One of the more remarkable lakes in this region is Humboldt Lake $\left(522^{\circ} 0{ }^{\prime} \mathrm{N}, 105^{\circ} 06{ }^{\circ} \mathrm{W}\right)$, located in
south-central Saskatchewan. This lake is hypertrophic, with a surface area of $17.2 \mathrm{~km}^{2}$ and a maximum depth of $\approx 8 \mathrm{~m}$ (mean depth $=4.8 \mathrm{~m}$), and is slightly saline (total dissolved solids $=3.3 \mathrm{~g} \mathrm{~L}{ }^{-1}$; Hammer 1978). It is a long (12.4 km) and narrow ($0.5-2.0 \mathrm{~km}$) lake orientated along an east-west direction and lying in a gently rolling prairie landscape (Evans et al. 1995). This long fetch and low relief, combined with strong prairie winds, promotes vertical mixing of the lake's water column. Sulphate is the dominant anion (72;3\%) and magnesium is the dominant cation (60.7\%), with concentrations of $16084 \mu \mathrm{~mol}$ and $12754 \mu \mathrm{~mol}$, respectively (Arts et al. 1992). With a șalinity of $=3.9 \mathrm{~g} \mathrm{~L}$ (Hammer 1978), its water is denser (1.0032) than more typical freshwater lakes, thereby being somewhat more resilient to vertical mixing. Ice cover typically forms in early November, attaining a maximum thickness of $1.0-1.5 \mathrm{~m}$ by January (Arts et al. 1992). The ice-free period usually starts in early May. The lake's chemistry and ice cover chronology are typical of a large number of eutrophic to hypertrophic, small to medium-sized, lakes on the Great Plains of North America (c. Hammer 1986; Barica 1987). Historically, the common fish species in the lake were walleye (Sander vitrews; formerly Stizostedion vitreum), northern pike (Esox lucius), yellow perch (Perca flavescens) and brook stickleback (Culaea inconstans). However, the lake is now mainly stocked with sport fish, predominantly walleye (Evans et al. 1995). These species are typical for prairie lakes.

Relatively few studies have focused on developing models that can be used to make predictions regarding prerequisite conditions that can lead to fish kills in shallow, prairie lakes. The most detailed work has been conducted by Barica (e.g. 1975, 1984). He reasoned that there was a major increase in bacterial numbers and activity following the collapse of summer cyanobacterial blooms in prairie lakes, which depleted the water column of O_{2}, leading to the build-up of high $\mathrm{NH}_{5} \mathrm{~N}$ concentrations under winter
icecover. He advocated the use of simple risk threshold criteria (Table 1) to predict the risk level of summer fish kills due to water column deoxygenation. Based on the maximum winter $\mathrm{NH}_{3}-\mathrm{N}$ concentrations and maximum summer chiorophyll-a concentrations, Barica (1975, 1984) predicted summer fish kills in 57 prairie lakes with $>90 \%$ accuracy. This approach to predicting fish kills has been süccessfully applied to other lakes outside the prairies, such as Laguna de Bay in the Philippines (J. Barica, pers. comm., 2005).

As noted above, Humboldt Lake is icecovered from November to early May. Prairie lakes can develop mid-winter anoxia resulting in major fish mortalities, which Barica and Mathias (1979) attributed to the microbial decomposition of organic matter (dissolved and particulate) when O_{2} influxies, due to primary production and mixing, are reduced because of snow and ice cover. They developed a nomogram, using initial O_{2} storage and rate of O_{2} depletion, to determine the critical time to reach total anoxia in a lake, thereby predicting the occurrence of a winter fish kill (Table 1).

There are several reasons why eutrophic prairie lakes in general, and Humboldt Lake in particular, might be at high risk for summer and/or winter fish kills. First, Humboldt Lake has a maximum summer chlorophyll-a concentration of $>2000 \mu \mathrm{~g} \mathrm{~L} \mathrm{~L}^{-1}$ (Robarts et al. 1992). According to Barica (1987), this places the lake in a high-to-very-high risk category for summer fish kills (Table 1). Second, primary production and, consequently, bacterial production in Humboldt Lake are in the upper range measured for freshwater systems (Robarts et al. 1994). Third, Humboldt Lake has high $\mathrm{NH}_{5} \mathrm{~N}$ concentrations in summer ($277 \mu \mathrm{~g} \mathrm{~L}^{-1}$) and winter ($518 \mu \mathrm{~g} \mathrm{~L}{ }^{-1}$), which approach Canadian water quality guidelines limits for aquatic life (Canadian Council of Ministers of the Environment 2000). Fourth, the lake has high concentrations of dissolved organic matter (DOM), ranging from $19.9-27.9 \mathrm{mg} \mathrm{L}^{-1}\left(0=22.7 \mathrm{mg} \mathrm{L}^{-1}\right)$ as dissolved

Table 1. The threshold risk criteria developed by Barica $(1975,1987)$ to predict the risk of summer and winter fish kills in prairie lakes

Model use	Parameter	Lower limit for high risk
Summer fish kill	Maximum summer chlorophyllia concentration	$100 \mu \mathrm{~g} \mathrm{L-1}$
Summer fish kill	Maximum summer chlorophyll-a concentration	$100 \mu \mathrm{~g} \mathrm{L-1}$
	Mean summer conductivity	$a 3000 \mu 5 \mathrm{~cm}^{-1}$
Summer fish kill	Maximum summer chlorophyll-a concentration	$100 \mu \mathrm{~g} \mathrm{L-1}$
	Minimum Secchi disc transparency	0.3 m for non-Aphanizomenon blooms
		0.4 m for Aphanizomeron blooms
Summer fish kill	Maximum summer chlorophyll-a concentration	$100 \mu \mathrm{~g} \mathrm{L-1}$
	Minter fish kill	Maximum winter ammonia concentration

organic carbon (Robarts et al. 1994), another typical feature of prairie lakes (Arts et al. 2000). With such high microbial production rates and DOM concentrations, it might be expected that summer and/or winter fish kills, concomitant with periods of anoxia, will occur. Despite the hypertrophic nature of this lake, however, fish kills have been reported only sporadically (J . Merkowsky, pers. comm, 2004).
This article focused on two annual cycles (including total phosphorus (TP) and phytoplankton biomass) and diel changes in $\mathrm{DO}, \mathrm{NH}_{3}-\mathrm{N}$ and chlorophyll- e, and bacterial numbers and production in Humboldt Lake, to explain the absence of fish kills for ≈ 30 years. It had three objectives, the first being to determine whether or not Humboldt Lake experienced sustained periods of anoxia, either following the summer cyanobacterial bloom collapse or under ice cover. The second was to ascertain if the lake might have short periods of anoxia over a diel cycle due to increased bacterial production, which has not been reported in previous studies of fish kill lakes, during or immediately following summer cyanobacterial blooms. The third objective was to apply a suite of risk threshold criteria (Table 1) to determine if they were in agreement with the seasonal and diel biological and chemical data from Humboldt Lake. Although these criterria are still being used by fish-farming and provincial organizations in Manitoba and Saskatchewan, examples highilighting the application of their work remain unpublished (J. Barica, pers. comm., 2005). Conclusions were then drawn about the suitability of the various risk criteria to hypertrophic Humboldt Lake, which is a prairie lake generally at the upper range, in terms of its physical characteristics, compared to the lakes studied by Barica and colleagues, but is still typical of many lakes on the prairies. Although Baitica (1987) noted that his chlorophyll and $\mathrm{NH}_{9} \mathrm{~N}$ threshold criteria (Table 1) were designed for lakes sufficiently shallow to undergo winter anoxia (Le. those with a mean depth $<4 \mathrm{~m}$), it was hypothesized that they could be applied to deeper lakes, such as Humboldt Lake.

MATERIALS AND METHODS

Water sample collection

Water samples were collected with an 8L water sampler (internal diameter: $=7 \mathrm{~cm}$, length $=71.5 \mathrm{~cm}$; General Ocearics, Miami, FI, USA) from a central, deepwater station. The sampler was operated horizontally to avoid sampling bias due to marked variations in phytoplankton biomass with depth. Water was collected from the surface and at $3-\mathrm{m}$ and $6-\mathrm{m}$ (bottom) depths. However, data are presented only for the surface and 6 -m depths as there was usually little variation over the water column for all parameters except chlorophyll (Fig. 1). Temporal sampling intervals for the seasonal study
in 1989-1991 were: (\mathfrak{i}) biweekly during May-June 1989; (ii) weekly during July-September 1989; (iii) biweekly to mid-October 1989; (iv) monthly during ice cover in January, February and March 1990 (water samples were collected from the surface, just beneath the ice, and $6-\mathrm{m}$ depth); (v) monthly during May-October 1990; and (vi) only in January 1991 (bacterial production data was lost because water in the incubation containers froze). Dangerous ice conditions prevented sampling in the intervening months.

In highly productive waters, DO concentrations might show significant diel changes, with the concentrations declining markedly during night-time hours (Wetzel 2001). To investigate this phenomenon, water samples were collected from the surface, $3-\mathrm{m}$ and 6 -m depths, depending upon the parameter measured, in two diel studies in July and August 1990. Sampling began at 10.00 hours, being repeated at 4 h intervals throughout, and including, 10.00 hours the next day.

Physical and chemical parameters

The water temperature was measured with a thermistor (Cole Palmer, Vernon Hills, II, USA). Water samples taken from the surface and $6-\mathrm{m}$ depths were analysed for $\mathrm{NH}_{3}-\mathrm{N}$, TP and chlorophyll-a (Robarts et al. 1992). For O_{2} analyses, water from the sampling bottle was slowly drained into glass bottles and allowed to overflow for several minutes. Winkler reagents were then added, and the bottles were closed with glass stoppers and placed in a cool box for transport to the laboratory for colourimetric analysis using a spectrophotometer (Perkin Elmer, Wellsley, MA, USA).

Biological parameters

Water samples (10 mL) collected for bacterial numbers were placed in sterile glass tubes and preserved with Lugol's iodine solution. Bacteria were counted, using an epifluorescence microscope and DAPI stain, as described by Tumber et al. (1993). Bacterial production was measured as the rate of incorporation of [methyl- ${ }^{3} \mathrm{H}$] thymidine (TdR) into bacterial DNA. Three $10-\mathrm{mL}$ water samples were incubated in sits in sterile glass tubes (two live and one control), after being injected with TdR (Robarts et al. 1994). Humboldt Lake is one of only two prairie lakes in which detailed measuremènts of bacterial production have been made. Although Barica (1987) proposed increased bacterial activity following a cyanobacterial bloom collapse as the mechanism for deoxygenation in prairie lakes, this parameter was not measured.

The phytoplankton biomass (wet weight) was determined from the measured length and width determinations of individual species, which were then converted to volume and wet weight using previously derived formulae (Evans et al. 1995).

The correlations between the chemical and biological parameters were tested using Spearman Rank Correlation Analysis.

RESULTS
 Seasonal cycles

The TP concentration was generally $>250 \mu \mathrm{~g} \mathrm{~L}^{-1}$ for most of the study period, and exceeded $400 \mu \mathrm{~g} \mathrm{~L}^{-1}$ during the summer. The TP concentrations were high even under ice cover, exceeding $150 \mu \mathrm{~g} \mathrm{~L}^{-1}$ and demonstrating the hypertrophic character of this lake (Fig. 1). From June to late August in 1989, cyanobacteria (Aphamizomenon flosaquaie) were the dominant (99\%) phytoplankton species in

Humboldt Lake (Arts et al. 1992). Large centric diatoms, mainly Stephanodiscius niagarae, dominated the biomass in autumn, while the dominant groups under the ice were the species of Chlorophyta, Chrysophyta and Cryptophyta. During the summer of 1990 , A. flos-aquae was replaced as the dominant species by Gleothece rupestris, a non-bloomforming cyanobacterium, although Aphanizomenon was still present in high numbers (Robarts et al. 1992). Thus, although the dominant species were different in the two summers, the phytoplankton dynamics in Humboldt Lake were generally characteristic of eutrophic to hypertrophic lakes, with summer populations dominated by cyanobacteria (Fig. 1). This characteristic dates back to at least 1961 in this lake (Hammer et al. 1983; Arts et al. 1992). The large

Fig. 1. Seasonal dhanges in Humboldt Lake. (a) total phosphorus concentration; (b) phytoplankton biomass; (c) chlorophyll-a, (d) bacterial numbers, (e) oxygen saturation, (f) bacterial production, (g) ammonia $\left(\mathrm{NH}_{3}-\mathrm{N}\right)$, and (h) specific bacterial production. (a), (c)-(h): O, at the suiface; $A, 6$-m depth ($\sigma 0.5 \mathrm{~m}$ above the sampling station bottom). (b): ㅁ, cyanobacterial biomass; E, total biomass. Week zero is May 1989 and week 85 is January 1991.
populations of summer cyanobacteria were accompanied by high levels of chlorophyll-a, which reached a maximum of $839 \mu \mathrm{~g} \mathrm{~L}{ }^{-1}$ in August 1989 (Fig. 1). Although the total phytoplankton chlorophyll-a concentration in 1990 was not as great as in the previous year (i.e. chlorophyll levels $>100 \mu \mathrm{~g} \mathrm{~L} \mathrm{~L}^{-1}$ only occurred between early July and midSeptember), the cyanobacterial biomass was similar in both years (Fig. 1).

According to Barica (1978), a cyanobacterial bloom collapse occurs when the chlorophyll-a concentration in a lake changes by $>70 \mu \mathrm{~g} \mathrm{~L}^{-1}$ week ${ }^{-1}$. In Humboldt Lake, the Aphanizomenon bloom collapsed twice in 1989: by $183 \mu \mathrm{~g} \mathrm{~L}{ }^{-1}$ week ${ }^{-1}$ in late July and by $>700 \mu \mathrm{~g} \mathrm{~L}^{-1}$ week $^{-1}$ (by $\approx 100 \mu \mathrm{~g} \mathrm{~L}{ }^{-1}$ week ${ }^{-1}$ at deeper depths; Robarts et al. 1992) in early August (Fig. 1). However, these were only partial bloom collapses, according to Barica's (1978) definitions, as deoxygenation did not occur (Fig. 1).
Humboldt Lake was generally well-mixed due to the long fetch and almost daily strong winds characteristic of the region (Robarts et al. 1994). The O_{2} concentrations varied between 3.6 and $13.4 \mathrm{mg} \mathrm{L}^{-1}\left(\mathrm{O}_{2}=8.8 \mathrm{mg} \mathrm{L}^{-1} \pm 0.29 \mathrm{mg} \mathrm{L}^{-1}\right.$ $\mathrm{SE})$, the lowest value being recorded at the $6-\mathrm{m}$ depth at the end of March under the ice. At higher depths in the water column, the O_{2} concentrations were close to twice this lowest value. However, there was usually a small difference between the surface and bottom waters during the ice-free season (Fig. 1). The O_{2} saturation averaged 85.5\% (range $=26-156 \%$). The highest saturation occurred with the summer chlorophyll peaks, dropping sharply after the lake froze (Fig. 1). Both the O_{2} concentration ($r=0.70, P<0.001$) and O_{2} saturation ($r=0.81, P<0.001$) were correlated with the chlorophyil-a concentrations. Generally, the $\mathrm{NH}_{3} \mathrm{~N}$ concentration followed a reverse pattern, compared to both the O_{2} concentration $(r=-0.67$, $P<0.001$) and O_{2} saturation $(\mathrm{F}=-0.82, P<0.001)$; with the highest concentrations ($>500 \mu \mathrm{~g} \mathrm{~L}{ }^{-1}$) occurring under the ice and the lowest oncentrations ($\approx 50 \mu \mathrm{~g} \mathrm{~L}^{-1}$) occurring in the summer (Fig. 1).

Although the bacterial numbers were generally highest in summer, there was a large seasonal variation (Fig. 1). The bacterial numbers were only weakly and positively correlated to changes in the chlorophyll-a concentrations ($r=0.34, P=0.02$). Both bacterial production and specific bacterial production were highest in the summer and lowest in the spring, autumn and winter (Fig. 1), being correlated to changes in O_{2} concentration $(r=0.50, P<0.001)$ and O_{2} saturation ($r=0.73, P<0.001$). These positive correlations indicate that the bacterial production was not sufficiently high to exert a major demand on the O_{2} concentration, relative to the O_{2} production and influx processes. If the bacterial production was able to exert
a large, significant demand on the O_{2} concentrations, inverse correlations would have been expected in the lake. Even under the ice, which can attain a thicinness of $1.0-$ 1.5 m (Arts et al. 1992), the bacterial O_{2} consumption was not sufficiently high to produce anoxic conditions. In the autumin of 1989-March 1990 period, the O_{8} concentration decreased at an average of $0.048 \mathrm{mg} \mathrm{I}^{-1}$ day ${ }^{-1}$. This simple calculation suggests that it. would have taken about another 80 days to consume all the $\mathrm{O}_{2}\left(3.6 \mathrm{mg} \mathrm{L}^{-1}\right)$ at the $6-\mathrm{m}$ depth recorded in late March. As the lake became ice-free by mid-May, it is unlikely that Humboldt Lake would have become anaerobic, even in late winter, assuming the O_{2} consumption rate remained constant. Furthermore, as the snow melts in April, the light penetration through the ice would increase, thereby also stimulating an increase in algal production. However, Babin and Prepas (1985) suiggested that O_{2} consumption under ice cover is not constant, being greatest during the first three months of ice cover, which implies that our simple calculation probably overestimated O_{2} consumption (see Discussion). The O_{2} concentration was $6.1 \mathrm{mg} \mathrm{L}^{-1}$ just beneath the ice in March. Thus, the upper water column was even less likely than the deeper depths to become anaerobic. The dominant factor previously shown to be correlated with bacterial production in Humboldt Lake was the water temperature, followed by the chlorophyll-a concentration (Robarts et al. 1994).

July and August diel studies

The impact of wind-mixing on the physicochemical limnology of Humboldt Lake can be seen in the diel study data. The water temperature in July varied between 18.5 and $19.5^{\circ} \mathrm{C}$ over the whole water cohumn, being greatest at 14.00 hoựs (Fig. 2). The chlorophyil-a concentration was greatest in late afternoon, coinciding with the peak in O_{2} saturation. The O_{2} saturation decreased overnight, increasing thereafter at the surface and $3-\mathrm{m}$ depth ($\mathbf{t o}=6.0 \mathrm{mg} \mathrm{L}{ }^{-1}$) as the sun came up. It then continued to decrease at the 6 -m depth to its starting value on the previous day ($5.2 \mathrm{mg} \mathrm{L}^{-1}$). For most of the diel cycle, however, there was little difference between the surface and bottom O_{2} concentrations. The chlorophyll concentration followed a similar diel pattern as the DO concentration, while the bacterial numbers were more or less constant over 24 h . The bacterial production was greatest in the afternoon, lowest in late evening, and then increased in the morning, while the specific bacterial production followed a general pattern of being greatest in the morning and lowest at night (Fig. 2).

The water temperature in August was $\approx 1^{\circ} \mathrm{C}$ warmer than in July (Fig. 3). The temperature at the $6-\mathrm{m}$ depth was lower than at the other depths for only a few hours before the increased wind speed in early evening rendered the
water column isothermal. The DO concentrations also were significantly higher in August, ranging from a low of $8.3 \mathrm{mg} \mathrm{L}^{-1}$ at the $6-\mathrm{m}$ depth to a high of $10.2 \mathrm{mg} \mathrm{L}^{-1}$ at thie surface (data not shown). The per cent O_{2} saturation showed a trend similar to that for the water temperature, again demonstrating the effect of wind-mixing on the lake. Unlike in the July study; however, the O_{2} saturation did not increase in the morning. The morning of the second day in August was overcast and it began to rain, resulting in a cooler, but well-mixed, water column and a 25% decrease in

the O_{2} saturation (Fig. 3). The chlorophyll-a concentrations were essentially the same over this 24 -h period, while the bacterial numbers showed a general decrease. Both the bacterial production and specific bacterial production followed markedly different patterns in August compared to July. They both were greatest during the night in August, decreased by the earty morning; and then began to increase as the day progressed (Fig. 3). In both diel studies, the O_{2} saturation was at, or near, its greatest values when the bacterial production also was high, again suggesting that

Fig. 2. Diel changes in Humboldt Lake in July 1990. (a) water temperature, (b) oxygen saturation, (c) chlorophyll-a concentration (O) and bacterial nümbers (O), (d) bacterial production, and (e) specific bacterial production. (a) and (b): © surface; $0,3 \mathrm{~m} ; \boldsymbol{\nabla}, 6 \mathrm{~m}$.
the bacterial O_{2} consumption was not exceeding the O_{2} production and influx processes in Humboldt Lake.

DISCUSSION

Using measurements of microbial processes, it was shown that Humboldt Lake did not become anoxic following cyanobacterial bloom collapses, nor over diel cycles, because O_{2} consümption processes in the lake did not exceed production and influx processes. This hypertrophic prairie lake case study showed that the risk threshold criteria

previously used to predict fish kills (Table 1) were in agreement with the physicochemical and biological data showing no periods of deoxygenation, and that they can be extended to deeper; larger lakes. This study focused on deoxygenation mainly because low DO is the most common cause of sudden fish kills in prairie lakes (Barica 1987). Other factors, however, including high water temperatures, algal toxins, diseases, pollution and parasites, have been reported as the cause of fish deatiss in lakes from maniy areas of the world (e.g. see Florida Fish and Wildife Commission,

Fig. 3. Diel changes in Humboldt Lake in August 1990. (a) water temperature, (b) oxygen saturation, (c) chlorophyll-a concentration (O) and bacterial numbers (O), (d) bacterial production, and (e) specific bacterial production. (a) and (b): ©, surface; $0,3 \mathrm{~m} ; \boldsymbol{\mathrm { V }}, 6 \mathrm{~m}$.

Fish and Wildlife Research Institute). Nevertheless, these latter factors appear to be of lesser importance within the Canadian prairie region. Indeed, the high summer $\mathrm{NH}_{5} \mathrm{~N}$ concentrations, in combination with a pH of $=9$ and a water temperature of between $20^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$ in Humboldt Lake, approached the Canadian water quality guidelines for the protection of aquatic life (Canadian Council of Ministers of the Enviromment 2000). The cold winter weather characteristic of the Canadian prairies means that lakes that freese to the bottom generally do not have resident fish populations. Furthermore, the salinity has gradually increased in many lakes of this region, gradually eliminating some fish populations. Algal blooms are a common feature of prairie lakes and can cause fish kills indirectly by the consumption of O_{2} when a bloom collapses under the right conditions. This study demonstrated that cyanobacterial blooms can collapse, but that bacterial activity is not always sufficiently large to consume O_{2} concentrations down to lethal levels for fish.

According to this study, Humboldt Lake did not experience deoxygenation either seasonally or during two diel periods when the summer cyanobacterial population was high ($\approx 50 \mu \mathrm{~g} \mathrm{~L} \mathrm{~L}^{-1}$ chlorophyll-a). In 1989, the Aphanizomenon bloom collapsed twice. However, based on Barica's (1978) definition, these were only partial collapses, as there was no deoxygenation of the water column and the chlorophyll-a concentration exceeded $20 \mu \mathrm{~g} \mathrm{~L}{ }^{-1}\left(\approx 100 \mu \mathrm{~g} \mathrm{~L}^{-1}\right.$ in both July and August 1989; Fig. 1). The per cent O_{2} saturation remained near 100\% during this period and wind-mixing usually ensured the transfer of O_{2} to the bottom of the water column, both seasonally and over the diel cycles. In addition, no evidence of increased bacterial production following these collapses was found. In fact, the bacterial production also decreased sharply with the bloom collapses (Fig. 1).

Others have proposed that additional conditions are required to cause water column deoxygenation with a summer cyanobacterial bloom collapse. Barica (1978) noted that changes in weather conditions (heavy overcast sky, increased wind speeds and decreasing air temperature) were associated with lake deoxygenation, in part by triggering an Aphanizomenon bloom collapse. However, Papst et al. (1980) suggested this explanation was not satisfactory as cyanobacterial blooms can collapse several days prior to a change in weather conditions and, as was the case in Humbolat Lake, a bloom can collapse without causing anoxia. According to Papst et al. (1980), deoxygenation would only occur when a bloom collapse was concomitant with, or followed by, a period of thermal instability, which would entrain low $-\mathrm{O}_{2}$ water with a high hypolimnetic O_{2} demand. Such a scenario, however, is not applicable to Humboldt Lake. Papst et al. (1980) did their work at a
small (2.4 ha), shallow lake (maximum depth $=2.9 \mathrm{~m}$, mean depth $=1.9 \mathrm{~m}$) surrounded by trees. Humboldt Lake has little protection from the wind, has a much larger surface area, is deeper and, therefore, does not become thermally stradified, although there can be times when the O_{2} saturation is slightly lower than at the surface in both summer and winter (Robarts et al. 1994; Figs 1-3). Notwithstanding the very large cyanobacterial populations and high rates of bacterial production, the O_{2} influx and production processes always exceeded \hat{O}_{2} consumption processes during the study period in this hypertrophic prairie lake.

Phytoplankton production ranged between 0.9 (under ice) and $503 \mathrm{mg} \mathrm{Cm}{ }^{-2} \mathrm{~h}^{-1}$ (Robarts et al. 1992). The phytoplankton production and bacterial production were correlated in Humboldt Lake and it was estimated that the bacterial production could consume an average of 42-67\% of the annual phytoplankton production (Robarts et al. 1994), which might account for the fact that bacterial decomposition processes do not have a more marked effect on the lake's O_{2} concentrations. The use of the summer max̣imum chlorophyll-a concentration to predict the risk of summer fish kill due to deoxygenation, as proposed by Barica $(1975,1984)$, was not applicable to Humboldt Lake. This conclusion is based on our seasonal and diel data, suggesting it is unlikely that Humboldt Lake would become anaerobic, even under thick ice cover in winter, as long as the physicochemical characteristics of the lake remain similar to those that existed dưring the course of this study (but see below).

Although other risk threshold criteria from Barica (1975, 1987) used maximum chlorophyll-a concentrations and specific conductance to predict summer fish kills (Table 1), these could not be applied to Humboldt Lake. Both Humboldt Lake and Barica's lakes had high conductance and chlorophyll-a values. The chlorophyl a concentrations in the lakes that Barica predicted would experience summer fish kills ranged from 100 to $300 \mu \mathrm{~g} \mathrm{~L}^{-1}$, with a specific conductivity in the range of $300-3000 \mu \mathrm{~S} \mathrm{~cm}^{-1}$ (Barica 1987). The specific conductance of Humboldt Lake, however, was about $3900 \mu \mathrm{~S} \mathrm{~cm}^{-1}$ (Evans et al. 1995), therefore being outside the conductivity range for which Barica reported summer fish kills. More data on prairie lakes with specific conductance $>3000 \mu \mathrm{~S} \mathrm{~cm}^{-1}$ are required to determine if these threshold criteria are applicable to such systems.

Still other risk threshold criteria developed by Barica (1975,1987) predicted summer fish kills due to deoxygenation, based on minimum Secchi disc transparency and maximum chlorophyil-a concentration (Table 1). According to these criteria, a Secchi disc value of 0.4 m and a summer chlorophyil $-\dot{\alpha}$ concentration of $100 \mathrm{I}^{-1}$ represent the lower limits for a high risk of summer fish kill in lakes dominated
by Aphanizomenon (Barica 1975). The minimum Secchi disc value in Humboldt Lake was 0.5 m (R. Robarts, unpubl. data 1990) when the chlorophyll concentration was $234 \mu \mathrm{LI} \mathrm{L}^{-1}$. The greatest observed chlorophyll-a peak was $839 \mu \mathrm{~g} \mathrm{~L}{ }^{-1}$, accompanied by a Secchi depth of 0.2 m . However, this peak was probably overestimated due to the disruption of the phytoplankton canopy (Robarts et al. 1992). Based on these criteria, these data would place Humboldt lake on the borderine of having a high risk for summer fish kill. As a result of the difficulties (bloom canopies are easily disrupted during measurement leading to large overestimates) in obtaining accurate Secchi disc readings under surface cyanobacterial blooms, such as Aphanizomenon, the use of these risk criteria are not recommended.
The $\mathrm{NH}_{5} \mathrm{~N}$ concentrations in Humboldt Lake exceeded $500 \mu \mathrm{~g} \mathrm{~L} \mathrm{~L}^{-1}$ under the ice in March, while the chlorophyll-a concentrations reached $>800 \mu \mathrm{~g} \mathrm{~L}^{-1}$ in the first year of this study and $>100 \mu \mathrm{~g} \mathrm{~L}^{-1}$ in the second year. When used in conjunction with Barica's $(1975,1984)$ summer fish kill risk threshold criteria, these data indicated there was no risk. The O_{2} concentrations were 6.1 and $3.6 \mathrm{mg} \mathrm{L}^{-1}$ just beneath the ice and at the $6-\mathrm{m}$ depth in late March, respectively. Indeed, our simple calculations, using a constant O_{2} consumption rate ($0.048 \mathrm{mg} \mathrm{L}^{-1}$ day ${ }^{-1}$) for late autumn to March, indicated that anoxia would not have occurred until after May, even if the ice cover had remained on the lake (which it did not).
Barica and Mathias (1979) studied O_{2} depletion and fish winter kill risk in small prairie lakes under extended ice cover. They developed risk threshold criteria, based on the initial O_{2} storage in a lake just prior to ice formation and the rate of O_{2} depletion, to determine the time required to reach total anoxia and, hence, the potential for a winter fish kill. The initial O_{2} storage was estimated from the lake volume and surface area. For Humboldt Lake, these values were $81.88 \times 10^{6} \mathrm{~m}^{3}$ and $17.17 \mathrm{~km}^{2}$, respectively (Hammer \& Haynes 1978). The DO concentration in October each year was extrapolated to the time of ice cover in November using the O_{2} consumption rate of $0.048 \mathrm{mg} \mathrm{i}^{-1}$ day ${ }^{-1}$ calculated above. This calculation gave initial O_{2} storage values of $45.8 \mathrm{~m}^{-2}$ and $43.3 \mathrm{~g} \mathrm{~m}^{-2}$ in 1989 and 1990 , respectively. The rate of O_{2} depletion ($\mathrm{g} \mathrm{m}^{-2}$ day ${ }^{-1}$) under the ice cover was calculated, using the equation of Barica and Mathias (1979), which correlates this rate to the mean depth. Although this correlation was derived from small $(\leqslant 20 \mathrm{ha}$) and shallow (mean depth $=4.2 \mathrm{~m}$) pothole lakes, Barica (1984) found it to be applicable to larger lakes in central Canada with mean depths similar to pothole lakes, but not for deeper, stratified lakes. The rate of O_{2} depletion in shallow Humboldt Lake (mean depth $=4.8 \mathrm{~m}$) was only $0.44 \mathrm{~g} \mathrm{~m}^{-2} \mathrm{day}^{-1}$.

Babin and Prepas (1985) also developed an equation to calculate winter O_{2} depletion rates using the mean summer TP concentration of the euphotic zone and mean depth. They suggested that their equation was more broadly applicable as it was derived from a data set that included lakes $\leq 22 \mathrm{~m}$ deep. However, most of the lakes had smaller surface areas and lower TP concentrations than Humboldt Lake. The mean TP = $337 \mathrm{mg} \mathrm{m}^{-3}$ in Humboldt Lake for the two years of this study. Inserting these values into Babin and Prepas' (1985) equation gave a winter O_{2} depletion rate of $0.80 \mathrm{~g} \mathrm{O}_{2} \mathrm{~m}^{-2}$ day ${ }^{-1}$ for Humboldt Lake, a value twice as high as that calculated with Barica and Mathias' (1979) eqüation. Applying both Barica and Mathias' and Babin and Prepas' winter O_{2} consumption rates with the initial O_{2} storage value indicated it would take >200 and 100 days, respectively, for Humboldt Lake to become completely anoxic under ice cover in both years. The O_{2} consumption rate calculated using Barica and Mathias' equation is in agreement with our in situ data, which show no anoxia (Fig. 1), and our calculations indicating that anoxia would not occur before the ice cover left the lake in May. Thus, the risk of winter fish kills in Humboldt Lake is low under conditions (i.e. water levels and quality) similar to those that occurred during our study. However, Babin and Prepas' equation overestimated the winter O_{2} consumption rate and predicted anoxia before the ice cover left, which did not occur before our sampling date in March. Consequently, the model of Babin and Prepas was not applicable to Humboldt Lake.

The Provincial Government (Saskätchewan Environment) has records on fish populations in Humboldt Lake dating back to 1962. Winter fish kills were reported in 1966 (≈ 2000 perch), 1969 (≈ 100000 walleye fry), $1970(\approx 100000$ walleye fry) and 1974 (205 adult pike; J. Merkowsky, unpubl. data, 2004). A summer fish kill occurred on 29 Angust 1972 at the mouth of a small creek flowing into the lake, affecting between 2000 and 3000 perch and walleye. The reason for this fish kill was not established. According to Merkowsky, conditions improved in March 1975 with increasing water levels and a lack of snow cover, with no further fish kills being reported up to, and including, the winter of 2003-2004.

Humboldt lake is located in an area of the Canadian prairies that has experienced precipitation well below normal levels for eight consecutive seasons, from autumn 2000 to summer 2002, after which precipitation levels returned to normal, or above normal, levels (Bonsal \& Wheaton 2005). During the drought period, the possibility existed that another winter fish kill could have occurred if the water levels in Humboldt Lake dropped too low. This is because lower water levels would have decreased the
initial O_{2} storage, although the daily rate of O_{2} depletion also would have decreased due to its relationship with the mean depth (Barica \& Mathias 1979). No fish kills, however, were observed during this period.

Of greater concern to fishery managers, however, should be the increasing development in the Humboldt Lake watershed. Over the past few years, housing (including new holiday resorts built on the lake's shore), agricultural and industrial developments have significantly increased. The impacts of this development on the nutrient loads to Humboldt Lake is currently unknown as routine water quality monitoring has not been conducted in recent years due to the lack of funding. Cyanobacterial blooms, however, remain a regular feature in Humboldt Lake during the summer. For example, in August 2004, there was a bloom collapse and DO measurements were taken. The O_{2} concentrations decreased to $2 \mathrm{mg}^{-1}$ during the collapse, the lowest summer O_{2} concentrations ever measured (Evans, unpubl. data, 2004). These low O_{2} levels suggest that the bloom was larger than previously measured for the lake. Although no summer fish kill was observed, a fish kill did occur during the winter of 2004-2005, affecting pike, perch and walleye. The fish were autopsied, with the cause of death found to be O_{2} deprivation. These new observations suggest that there might have been a significant decline in the water quality characteristics of Humboldt Lake in recent years. Therefore, it is now necessary to collect new data to evaluate the risk of winter fish kills (Table 1; see Barica \& Mathias 1979 for minimal data requirements). Such measurements are necessary to assess whether or not there is a need for some form of intervention to prevent the occurrence of future fish kills.

CONCLUSIONS

Although Humboldt Lake is a hypertrophic prairie lake, it did not experience periods of deoxygenation following summer cyanobacterial bloom collapses during the eariy 1990s, as has been reported for many other prairie lakes (Barica 1987). Furthèrmore, in two summer diel studies, no evidence was found that the water column became anaerobic, nor did the formation of ice cover lead to water column anoxia. For Humboldt Lake, the O_{2} influx (windinduced mixing to the bottom on most days) and production processes were greater than the microbial and chemical O_{2} demands, both over seasonal and diel time scales. Of the various risk threshold criteria used to predict summer fish kill, this study found that the use of maximum summer chlorophyll- a and maximum winter $\mathrm{NH}_{3}-\mathrm{N}$ concentrations (Barica 1975, 1984) were consistent with our limnological data and record of fish kills for Humboldt Lake. Likewise, the winter fish kill risk threshold criteria of Barica and

Mathias (1979) seemed equally applicable for use up to 2003. Recent development in the catchment, however, seems to have created new water quality conditions in Humboldt Lake. This conclusion is supported by evidence of a winter fish kill in 2004-2005 and the extremely low O_{2} concentrations found following a summer cyanobacterial bloom collapse in 2004. These new conditions point to an urgent need to update the data for predicting the risk of future fish kills in Humboldt Lake and in other lakes on the Great Plains.

ACKNOWLEDGEMENTS

We thank Vijay Tumber for field and laboratory assistance and Jennifer Merkowsky, Fisheries Biologist, Saskatchewan Environment, for data on fish kills. This study was made possible by funding from Environment Canada.

REFERENCES

Arts M. T., Evans M. S. \& Robarts R. D. (1992) Seasonal patterns of total and energy reserve lipids of dominant zooplanktonic crustaceans from a hyper-eutrophic lake. Oecologia 90, 560-71.
Arts M. T., Robarts R. D., Kasai F. et al. (2000) The attenuation of ultraviolet radiation in high dissolved organic carbon waters of wetlands and lakes on the northern Great Plains. Liminol. Oceanogr. 45, 292-9.
Babin J. \& Prepas E. E. (1985) Modelling winter oxygen depletion rates in ice-covered temperate zone lakes in Canada. Cann. J. Fish. Aquat. Sci. 42, 239-49.
Barica J. (1975) Summerkill risk in Prairie ponds and possibilities of its prediction. Fish. Res. Board Can. 32, 1283-8.
Barica J. (1978) Collapses of Aphanizomenon flos-aquae blooms resulting in massive fish kills in eutrophic lakes: effects of weather. Verh. Int. Verein. Limnol. 20, 208-13.
Barica J. (1984) Empirical models for prediction of algal blooms and collapses, winter oxygen depletion and a freeze-out effect in lakes: Summary and verification. Verh. Int Verein. Limnol. 22, 309-19.
Barica J. (1987) Water quality problems associated with high productivity of prairie lakes in Canada: a review. Water Qual. Buill. 12, 107-115, 129.
Barica J. \& Mathias J. A. (1979) Oxygen depletion and winterkill risk in small prairie lakes under extended ice cover. Fish. Res. Board Can. 36, 980-6.
Bonsal B. R. \& Wheaton E. E. (2005) Atmospheric circulation comparisons between the 2001 and 2003 and the 1961 and 1988 Canadian prairie droughts. Atmos-Ocean 43, 163-72. Available from URL: http://www.agr.gc.ca/ pfra/drought/archives_e.htm. Accessed 9 June 2005.

Canadian Council of Ministers of the Environment (2000) Canadian Environmental Quality Guidelines. Canadian Council of Ministers of the Environment, Winnipeg, Manitoba, Canada.
Evans M. S., Robarts R. D. \& Arts M. T. (1995) Predicted versus actual determinations of algal production, algal biomass, and zooplankton biomass in a hypereutrophic, hyposaline prairie lake. Can. J. Fish. Aquat. Sci. 52, 1037-49.
Florida Fish and Wildife Commission, Fish and Wildife Research Institute St Petersburg, FL, USA. Available from URL: htp://research.myfwc.com/fishkill/. Accessed 20 May 2005.
Hammer U. T. (1978) The saline lakes of Saskatchewan. III. Chemical characterization. Int. Rev. Ges. Hydrobiol. 63, 311-35.
Hammer U.T. (1986) Saline Lakes Ecossistems of the World. Dr W. Junk, Dordrecht.
Hammer U. T. \& Haynes R. C. (1978) The saline lakes of Saskatchewan. II. Locale, hydrography and other physical aspects. Int. Rev. Ges. Hydrobiol. 63, 179-203.
Hammer U. T., Shamess J. \& Haynes R. C. (1983) The
distribution and abundance of algae in saline lakes of Saskatchewan, Canada. Hydrobiologia 105, 1=26.
Papst M. H., Mathias J. A. \& Barica J. (1980) Relationship between thermal stability and summer oxygen depletion in a prairie pothole lake. Can. J. Fish. Aquat. Sci. 37, 1433-8.
Robarts R. D., Arts M. T., Evans M. S. \& Waiser M. J. (1994) The coupling of heterotrophic bacterial and phytoplankton production in a hypertrophic, shallow Prairie lake. Can.J. Fish. Aquat. Sci. 51, 2219-26.
Robarts R D., Evans M. S. \& Arts M. T. (1992) Light, nutrients and water temperature as determinants of phytoplankton production in two saline, prairie lakes with high sulphate concentrations. Can. J. Fish. Aquat. Sci. 49, 2281-90.
Tumber V. J., Robarts R. D., Arts M. T., Evans M. S. \& Caldwell D. E. (1993) The influence of environmental factors on seasonal changes in bacterial cell volume in two prairie saline lakes. Microbiol. Ecol. 26, 920.

Wetzel R G. (2001) Limnology-Lake and River Ecosystems. Academic Press, San Diego.

[^0]: *Corresponding author. Emiail: richardirobartseecgc.ca Accepted for publication 29 June 2005.

