

# Environment Canada Water Science and Technology Directorate

# Direction générale des sciences et de la technologie, eau Environnement Canada

A Study of Bioavailability of Mercury and the Potential for Biomagnification from Sediment in Jellicoe Cove, Peninsula Harbour

Lee Grapentine, Danielle Milani and Scott Mackay

**NWRI Contribution No. 05-321** 

A Study of the Bioavailability of Mercury and the Potential for Biomagnification from Sediment in Jellicoe Cove, Peninsula Harbour

by

Lee Grapentine<sup>1</sup>, Danielle Milani<sup>1</sup> and

Scott Mackay<sup>2</sup>

<sup>1</sup>Aquatic Ecosystem Impacts Research Branch, National Water Research Institute <sup>2</sup>Environmental Conservation Branch, Environment Canada, Ontario Region

> 867 Lakeshore Road, P.O. Box 5050 Burlington, Ontario L7R 4A6

**NWRI Contribution No. 05-321** 

October 2005

## ABSTRACT

There are elevated concentrations of mercury in sediments of Jellicoe Cove, a section of the Peninsula Harbour Area of Concern in Lake Superior that was exposed in the past to mercurycontaminated industrial effluents. To assess the bioavailability of this mercury and its potential for effects on fish, wildlife and humans through biomagnification, a study was conducted involving (a) comparisons of total and methyl mercury concentration in sediment and benthic invertebrates from Jellicoe Cove to those from reference locations, (b) analyses of the relationships of total and methyl mercury concentrations in invertebrates to those in sediment, and (c) predictions of concentrations of total and methyl mercury in representative consumers of benthic invertebrates and their predators using screening-level trophic transfer models.

In May 2002, sediment, overlying water and two benthic invertebrate taxa (midges and amphipods) were sampled from 25 locations in Jellicoe Cove and 13 reference site locations. Samples were analyzed for total and methyl mercury concentrations and a series of physico-chemical variables in the sediment and overlying water. Mercury concentrations in sediment and invertebrates in Jellicoe Cove were compared to concentrations in reference sites. Relationships between mercury in each invertebrate taxon and mercury in sediment were evaluated by regression analysis. Physico-chemical sediment and water variables were included as additional predictors. Concentrations of total and methyl mercury in the tissues of fish and wildlife receptors (Longnose Sucker, Yellow Perch, Lake Trout, Great Blue Heron, Mink) were predicted by multiplying measured body concentrations in the resident invertebrates by relevant biomagnification factors obtained from a review of pre-existing studies.

Total mercury concentrations in sediment, midges and amphipods at most sites in Jellicoe Cove are significantly elevated above concentrations at reference sites. Methyl mercury concentrations in sediment and amphipods from most Jellicoe Cove sites are also significantly higher than concentrations at reference sites. For midges, methyl mercury levels exceed the maximum for reference sites only at a few Jellicoe Cove sites. Total and methyl mercury concentrations in midges and amphipods from Jellicoe Cove and reference sites are significantly influenced by mercury in sediment ( $r^2 = 0.11$  to 0.85), with the strongest relationships for total mercury and amphipods. In all multiple regression models, sediment mercury concentration is the most significant predictor of invertebrate mercury concentration. Predicted receptor mercury levels in a third (6-9) of the sites in Jellicoe Cove are greater than predicted receptor mercury levels for reference area sites. In almost all Jellicoe Cove sites, mercury concentrations in 1 or 2 of the 3 fish receptors could exceed tissue residue guidelines for the protection fish-consuming wildlife and humans. Among all predictions, [MeHg]<sub>rec</sub> for a group of seven sites in the southeastern section of Jellicoe Cove is consistently indicated to exceed both reference site conditions and tissue residue guidelines. Comparison of the predicted Hg concentration in fish receptors to actual mercury concentrations in fish collected from the AOC show that the model is not overestimating Hg accumulation. Using an "average concentration with area curve" exposure model, it is determined that reducing mercury to background level in the six most contaminated sites would result in mean methyl mercury concentrations in invertebrates for the whole area less than a determined critical value for consumer receptors.

Results of this assessment suggests that mercury is transferred from sediment to benthic invertebrates, and that under generally "intermediate" and "maximum" exposure and trophic transfer scenarios mercury could bioaccumulate in receptors to levels that are not protective of

ii

adverse effects. However, the likelihood of realizing this degree of mercury biomagnification is not clear due to uncertainties associated with predicting receptor mercury concentrations.

# RÉSUMÉ

Les concentrations de mercure sont élevées dans les sédiments de l'anse Jellicoe, une section du secteur préoccupant du havre Peninsula (lac Supérieur) exposée par le passé à des effluents industriels contaminés par le mercure. Pour évaluer la biodisponibilité de ce mercure et ses effets potentiels chez le poisson, les animaux et les êtres humains par bioamplification, les chercheurs ont mené une étude comportant a) des comparaisons de la concentration de mercure total et de méthylmercure dans les sédiments et chez les invertébrés benthiques de l'anse Jellicoe à celles de sites de référence, b) des analyses du rapport des concentrations de mercure total et des concentrations de méthylmercure chez les invertébrés et dans les sédiments et c) des prévisions des concentrations du mercure total et du méthylmercure chez des consommateurs représentatifs d'invertébrés benthiques et de leurs prédateurs à l'aide de modèles du transfert trophique du niveau de l'évaluation préalable.

En mai 2002, les chercheurs ont prélevé des échantillons dans les sédiments, dans la couche d'eau susjacente et chez deux taxons d'invertébrés benthiques (éphémères et amphipodes) à 25 endroits dans l'anse Jellicoe et dans treize (13) sites de référence. Ils ont mesuré la concentration de mercure total et la concentration de méthylmercure dans les échantillons et une série de variables physico-chimiques dans les sédiments et la couche d'eau susjacente. La concentration de mercure dans les sédiments et chez les invertébrés de l'anse Jellicoe a été comparée aux concentrations mesurées dans les sites de référence. Le rapport entre le mercure mesuré dans chaque taxon d'invertébré et le mercure mesuré dans les sédiments a été évalué par une analyse de régression. Les variables physico-chimiques des sédiments et de l'eau ont été incluses comme variables indépendantes supplémentaires. La concentration de mercure total et la concentration de méthylmercure dans les tissus des poissons et chez les récepteurs animaux (meunier rouge, perchaude, touladi, grand héron bleu, vison) avaient été prédites en multipliant les concentrations corporelles chez les invertébrés résidents par des facteurs appropriés de bioamplification obtenus à partir d'un examen des études antérieures.

La concentration de mercure total dans les sédiments, chez les éphémères et chez les amphipodes, mesurée dans la plupart des sites de l'anse Jellicoe est significativement plus élevée que celle relevée dans les sites de référence. La concentration de méthylmercure relevée dans les sédiments et chez les amphipodes dans la plupart des sites de l'anse Jellicoe est également significativement plus élevée que celle mesurée dans les sites de référence. Dans le cas des éphémères, seuls quelques sites dans l'anse présentent un taux de méthylmercure supérieur à la valeur maximale établie pour les sites de référence. Le mercure dans les sédiments ( $r^2 = 0,11$  à 0,85) influe énormément sur la concentration de mercure total et la concentration de méthylmercure chez les éphémères et les amphipodes de l'anse et aux sites de référence, le rapport étant le plus fort pour le mercure total et les amphipodes. Dans tous les modèles de régression multiple, la concentration de mercure dans les sédiments est le prédicteur le plus important de la concentration de mercure chez les invertébrés. Les taux prévus de mercure dans les récepteurs dans un tiers (6 à 9) des sites dans l'anse Jellicoe sont supérieurs aux taux prévus dans les sites des zones de référence. Dans presque tous les sites de l'anse Jellicoe, les concentrations de mercure chez 1 ou 2 des trois récepteurs ichtyens pourraient dépasser les

iii

quantités recommandées de résidus dans les tissus qui visent à protéger les animaux et les êtres humains qui consomment du poisson. Parmi toutes les prévisions, la recommandation à l'égard du [MeHg]<sub>rec</sub> pour un groupe de sept sites dans la partie sud-est de l'anse Jellicoe dépasse régulièrement les conditions du site de référence et les recommandations de résidus dans les tissus. Une comparaison de la concentration de Hg prévue chez les poissons récepteurs par rapport aux concentrations réelles de mercure chez les poissons prélevés dans le secteur préoccupant montre que le modèle ne surestime pas l'accumulation de mercure. À l'aide d'un modèle de l'exposition utilisant la concentration moyenne avec aire sous la courbe, on a établi qu'en réduisant le mercure au niveau de fond dans les six endroits les plus contaminés, on obtiendrait des concentrations moyennes de méthylmercure chez les invertébrés de l'ensemble du secteur qui seraient inférieures à la valeur critique calculée pour les récepteurs consommateurs.

Les résultats de cette évaluation font ressortir que le mercure est transféré des sédiments vers les invertébrés benthiques, et que, dans les scénarios d'exposition et de transfert trophique de niveau globalement « intermédiaire » et « maximal », le mercure pourrait être bioaccumulé dans ces récepteurs à des concentrations qui dépassent le niveau des effets néfastes. Toutefois, la probabilité d'atteindre ce degré de bioamplication du mercure n'est pas établie, étant donné les incertitudes associées à la prévision des concentrations de mercure dans les récepteurs.

iv

# ACKNÓWLEDGEMENTS

This project was sponsored by the Government of Canada's Great Lakes Basin 2020 Action Plan and the Great Lakes Sustainability Fund, a component of the Great Lakes program. The Sustainability Fund provides resources to demonstrate and implement technologies and techniques to assist in the remediation of Areas of Concern and other priority area in the Great Lakes. The report that follows addresses sediment quality issues in the Peninsula Harbour Area of Concern in Marathon, Ontario. Although the report was subject to technical review, it does not necessarily reflect the views of the Sustainability Fund or Environment Canada.

Advice on the study design was received from Roger Santiago (Environmental Conservation Branch – Ontario Region). Technical support for the field sampling was provided by Sherri Thompson, Tim Pascoe, Jennifer Dow, Jennifer Webber, and Mark Pokorski (National Water Research Institute, Environment Canada). Study maps for the report were provided by Tim Pascoe.

Comments on an earlier draft of the report were contributed by Rein Jaagumagi, Lisa Richman, Conrad Debarros, Pat Inch, Anne Borgmann, Don Hart, Jerry Fitchko, Kai Chen and Janette Anderson.

# TABLE OF CONTENTS

| ABSTRACTi                                                                                                                                                                                                                                                             | i                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| résumé                                                                                                                                                                                                                                                                | i                |
| ACKNOWLEDGEMENTS                                                                                                                                                                                                                                                      | 7                |
| TABLE OF CONTENTS v                                                                                                                                                                                                                                                   | i                |
| LIST OF TABLES                                                                                                                                                                                                                                                        | i                |
| LIST OF FIGURES vii                                                                                                                                                                                                                                                   | i                |
| ABBREVIATIONS, ACRONYMS AND SYMBOLS                                                                                                                                                                                                                                   | ٢                |
| 1 INTRODUCTION 1                                                                                                                                                                                                                                                      | l                |
| 1.1 Background and Mandate                                                                                                                                                                                                                                            | l                |
| 1.2 Decision Framework for Sediment Assessment                                                                                                                                                                                                                        | 2                |
| 1.3 The Peninsula Harbour Area of Concern                                                                                                                                                                                                                             | 3                |
| 1.4 Purpose of the Study                                                                                                                                                                                                                                              | 5.               |
| 2 OBJECTIVES AND APPROACH                                                                                                                                                                                                                                             | 5                |
| 2.1 Objectives of Study                                                                                                                                                                                                                                               | 5                |
| 2.2 Identification of Receptors of Concern                                                                                                                                                                                                                            | 7                |
| 2.3 Study Area                                                                                                                                                                                                                                                        | 3                |
| 2.4       Experimental Design         2.4.1       Sampling design         2.4.2       Measurement endpoints         2.4.3       Assumptions                                                                                                                           | )<br>9<br>9<br>0 |
| 3 METHODS                                                                                                                                                                                                                                                             | )                |
| 3.1 Sample Collection and Handling                                                                                                                                                                                                                                    | 0                |
| 3.2       Sample Analyses       1         3.2.1       Total mercury in sediment       1         3.2.2       Total mercury in invertebrates       1         3.2.3       Methyl mercury in sediment       1         3.2.4       Methyl mercury in invertebrates       1 | 1<br>2<br>2<br>3 |
| 3.3 Biota-Sediment Accumulation Factors1                                                                                                                                                                                                                              | 3                |
| 3.4 Data Analyses                                                                                                                                                                                                                                                     | 4<br>1           |
| 3.4.1 Mercury distribution in sediment and invertebrates                                                                                                                                                                                                              | 4<br>5           |
| 3.4.2 Frediction of mercury concentrations in receptors                                                                                                                                                                                                               | 5                |

vi

|         | <u>3.4</u> | 4.2.2 Calculation of receptor tissue mercury concentrations                                   | 17   |
|---------|------------|-----------------------------------------------------------------------------------------------|------|
|         | <u>3.4</u> | 4.2.3 Areal averaging of receptor exposure to mercury                                         |      |
|         | 3.5        | Ouality Assurance/Ouality Control                                                             |      |
|         | 3.5.1      | Field                                                                                         | 20   |
| ۰.<br>۱ | 3.5.2      | Laboratory                                                                                    | 20   |
|         |            |                                                                                               | 0.1  |
| 4       | RES        | ULTS                                                                                          | 21   |
|         |            |                                                                                               |      |
|         | 4.1        | Quality Assurance/Quality Control                                                             |      |
|         | 4.1.1      | Field                                                                                         |      |
|         | 4.1.2      | Laboratory                                                                                    |      |
|         | 4.2        | Mercury Levels                                                                                |      |
|         | 4.2.1      | Sediment                                                                                      | 22   |
|         | 4.2        | 2.1.1 <u>Total mercury</u>                                                                    |      |
|         | 4.2        | 2.1.2 Methyl mercury                                                                          | 23   |
|         | <u>4.</u>  | 2.1.3 Comparison of sediment mercury at reference sites to Jellicoe Cove sites                | 24   |
|         | 4.2.2      | Invertebrates                                                                                 | 24   |
|         | <u>4.</u>  | 2.2.1 <u>Total mercury</u>                                                                    | 24   |
|         | 4.         | 2.2.2 <u>Methyl mercury</u>                                                                   | 24   |
|         | <u>4.</u>  | 2.2.3 <u>Comparison of mercury in invertebrates at reference sites to Jellicoe Cove sites</u> |      |
|         | 4.2.3      | Biota-sediment accumulation factors                                                           |      |
|         | 4.3        | Supplementary Physico-Chemical Conditions of Sediment and Overlying Water                     | 26   |
| •       | 4.3.1      | Sediment nutrients                                                                            | 26   |
|         | 4.3.2      | Sediment particle size                                                                        |      |
|         | 4.3.3      | Iron and manganese                                                                            | 27   |
|         | 4.3.4      | Overlying water chemistry                                                                     | 27   |
|         | 4.3.5      | Site depth/Temperature                                                                        |      |
|         | 4.3.6      | Total PCBs                                                                                    |      |
|         | 4.4        | Relationships between Mercury Concentrations in Invertebrates and Sediment                    |      |
|         | 4.4.1      | Total mercury                                                                                 |      |
|         | 4.4.2      | Methyl mercury                                                                                |      |
|         | 4.5        | Decisions of Mathed Manager Concentrations in Decentors                                       | 20   |
|         | 4.5        | Predictions of Wielnyr Mercury Concentrations in Receptors                                    | 30   |
|         | 4.5.1      | Fresentation of model outcomes                                                                |      |
|         | 4.5.2      | Averall natterns                                                                              |      |
|         | 4.5.4      | Areal averaging of recentor exposure to mercury                                               |      |
|         |            |                                                                                               |      |
| · I     | DISCUS     | SION                                                                                          | 33   |
|         |            |                                                                                               |      |
|         | 5.1        | Mercury Concentrations in Jellicoe Cove Sites relative to Reference Sites                     |      |
|         | 5.1.1      | Sediment                                                                                      |      |
|         | 5.1.2      | Benthic invertebrates                                                                         | 34   |
| •       | 5.2        | Effects of Mercury in Sediment on Mercury in Invertebrates                                    |      |
|         | 5.3        | Predicted Mercury Concentrations in Receptor Species                                          |      |
| •       | 5.3.1      | Integration of prediction outcomes                                                            |      |
|         | 5.3.2      | Uncertainty in the prediction of mercury concentrations in receptors                          |      |
|         | 5.3.3      | Observed mercury levels in receptors from Peninsula Harbour                                   | 40   |
|         | 5.4        | Potential Risk of Adverse Effects of Mercury due to Biomagnification from Sedime              | nt41 |
|         | 5.5        | Risk Reduction                                                                                |      |
| 6       | CON        | NCLUSIONS                                                                                     | 42   |
|         |            |                                                                                               |      |

vii

7 REFERENCES .....

#### LIST OF TABLES

Table 1.Tissue and sediment sampling site co-ordinates and site depths.

Table 2.List of environmental variables measured at each site.

 Table 3.
 Literature derived biomagnification factors for the receptors of concern.

Table 4.Total and methyl mercury concentrations in sediment.

 Table 5.
 Total mercury concentrations in benthic invertebrates.

Table 6.Methyl mercury concentrations in benthic invertebrates.

Table 7.Results of regressions of whole body concentrations of mercury in benthic<br/>invertebrates vs sediment mercury concentration alone ("A" models), and<br/>sediment mercury concentration + other sediment and overlying water physico-<br/>chemical variables ("B" models).

 Table 8.
 Predicted methyl mercury concentrations in receptor species.

Table 9.Exceedences of criteria for predicted methyl mercury concentrations in receptors<br/>based on various models for the Peninsula Harbour study.

# LIST OF FIGURES

Figure 1. Reference invertebrate and sediment sampling locations.

Figure 2. Invertebrate and sediment sampling locations in Jellicoe Cove, Peninsula Harbour.

Figure 3. Total mercury concentration in sediment.

Figure 4. Methyl mercury concentration in sediment.

Figure 5. Log scatter plot of methyl mercury versus total Hg in sediment.

Figure 6. Total mercury concentration in midges.

Figure 7. Methyl mercury concentration in midges.

Figure 8. Total mercury concentration in amphipods.

| Figure 9.  | Methyl mercury concentration in amphipods.                                                                                                           |  |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Figure 10. | Biota-sediment accumulation factors.                                                                                                                 |  |
| Figure 11. | Relationships between total mercury in midges and amphipods and total mercu<br>in sediment.                                                          |  |
| Figure 12. | Relationships between methyl mercury in midges and amphipods and methyl mercury in sediment.                                                         |  |
| Figure 13. | "Minimum" predictions of methyl mercury concentrations in five receptor species.                                                                     |  |
| Figure 14. | "Intermediate" predictions of methyl mercury concentrations in five receptor species.                                                                |  |
| Figure 15. | "Maximum" predictions of methyl mercury concentrations in five receptor species.                                                                     |  |
| Figure 16. | Spatial boundaries of invertebrate and sediment sampling sites as defined by Thiessen polygons with 75-m buffers.                                    |  |
| Figure 17. | "Average concentration with area curve" for Jellicoe Cove sites.                                                                                     |  |
| Figure 18. | Effects on the "average concentration with area curve" of reducing methyl mercury concentrations in the 10 most contaminated sites of Jellicoe Cove. |  |

# LIST OF APPENDICES

- A. Literature review of biomagnification factors for total and methyl mercury
- B. Mercury in sediment and biological effects from 2000 surveys
- C. Conversion of total and methyl mercury concentrations (dry weight) in benthic invertebrates to wet weight concentrations
- D. QA/QC results
- E. Supplementary physico-chemical environmental data

# ABBREVIATIONS, ACRONYMS AND SYMBOLS

| adj                     | adjusted                                              |
|-------------------------|-------------------------------------------------------|
| AOC                     | Area of Concern                                       |
| BEAST                   | BEnthic Assessment of SedimenT                        |
| BMF                     | biomagnification factor                               |
| BSAF                    | biota-sediment accumulation factor                    |
| dw                      | dry weight                                            |
| FCM                     | food chain multiplier                                 |
| GLWQA                   | Great Lakes Water Quality Agreement                   |
| Hg                      | mercury; used where form (MeHg or THg) is unspecified |
| IJĊ                     | International Joint Commission                        |
| inv                     | invertebrate                                          |
| LEL                     | lowest effect level                                   |
| max                     | maximum                                               |
| med                     | medium                                                |
| MeHg                    | methyl mercury                                        |
| min ,                   | minimum                                               |
| PCB                     | polychlorinated biphenyl                              |
| PEL                     | probable effect level                                 |
| QA/QC                   | quality assurance/quality control                     |
| RAP                     | Remedial Action Plan                                  |
| rec                     | receptor                                              |
| ref                     | reference                                             |
| reg                     | regression                                            |
| sed                     | sediment                                              |
| SEL                     | severe effect level                                   |
| THg                     | total mercury                                         |
| TKN                     | total Kjeldahl nitrogen                               |
| TOC                     | total organic carbon                                  |
| TP                      | total phosphorus                                      |
| TRG                     | tissue residue guideline                              |
| wt                      | weight                                                |
| ŴŴ                      | wet weight                                            |
| <b>[x]</b> <sub>i</sub> | concentration of substance $x$ in matrix $i$          |
|                         |                                                       |

1.

х

#### INTRODUCTION

1

# 1.1 Background and Mandate

In the 1970s, 42 locations in the Great Lakes where the aquatic environment was severely degraded were identified as "problem areas" by the International Joint Commission (IJC). Of these, 17 are along Canadian lakeshores or in boundary rivers shared by the US and Canada. The IJC's Great Lakes Water Quality Board recommended in 1985 that a Remedial Action Plan (RAP) be developed and implemented for each problem area. The RAP approach and process is described in the 1987 Protocol to the *Great Lakes Water Quality Agreement* (GLWQA). The goal is to restore the "beneficial uses" of the aquatic ecosystem in each problem area, which were now called "Areas of Concern" (AOCs). Fourteen possible "impairments of beneficial use", which could be caused by alterations of physical, chemical or biological conditions in the area, are defined in Annex 2 of the GLWQA.

The Canadian government's commitment to the GLWQA was renewed in 2000 with the Great Lakes Basin 2020 (GL2020) Action Plan, under which the efforts of eight federal departments to "restore, conserve, and protect the Great Lakes basin" over the next five years were to be coordinated. Environment Canada's contribution included the funding of detailed chemical and biological assessments of sediments in each of the remaining Canadian AOCs. The National Water Research Institute (NWRI) was given the responsibility of conducting and reporting on these assessments.

Under the terms of reference for the NWRI's mandate, the BEnthic Assessment of SedimenT (BEAST) methodology of Reynoldson et al. (1995; 2000) is to be applied to the AOC assessments. To date, the methodology has involved evaluation of sediment contaminant concentration, laboratory toxicity, and benthic invertebrate community structure. Recent reviews of the BEAST framework have recommended the inclusion of an additional line of evidence – information on the bioaccumulation of contaminants liable to biomagnify (Grapentine et al. 2002). To obtain this additional information, support has been received from the Great Lakes Sustainability Fund for work in AOCs, including Peninsula Harbour, Ontario. The study described in this document was conducted to supplement existing data to complete an assessment

of sediments in Jellicoe Cove, Peninsula Harbour, that were historically exposed to industrial effluents.

# 1.2 Decision Framework for Sediment Assessment

The underlying philosophy of the NWRI's approach to sediment assessment is that observations of elevated concentrations of contaminants alone are not indications of ecological degradation. Rather, it is the biological responses to these contaminants that are the concern. A recommendation on remedial activity requires evidence to be provided of an adverse biological effect either on the biota resident in the sediment, or on biota that are affected by contaminants originating from the sediment, either by physical, chemical or biological relocation.

It is recognized that to make decisions on sediment quality and the need to remediate, four components of information (in addition to knowledge on the stability of sediments) are required (Krantzberg et al. 2000):

- Sediment chemistry and grain size Quantifies the degree to which sediments are contaminated. Indicates exposure (or at least potential exposure) of organisms to contaminants (with consideration of exposure pathways). Provides information on physicochemical attributes of the sediment to assist in the interpretation any observed biological effects.
- Benthic invertebrate community structure Used to determine whether natural faunal assemblages in contaminated sediments differ from those in uncontaminated reference locations. Can indicate a biological response to sediment conditions. Organisms which reside in and ingest sediments experience the most ecologically relevant exposures to contaminants present, and represent important food web components.
- Sediment toxicity Differences in resident invertebrate communities between contaminated and uncontaminated sites alone cannot be conclusively attributed to toxic chemicals.

Sediment toxicity data provide supporting evidence that responses observed in the community are associated with sediment contaminants rather than other potential stressors.

Invertebrate body burdens – Measurements of contaminants in tissues of resident benthic fauna provide evidence of bioavailability, and that the contaminants are responsible for observed effects on the organisms (Borgmann et al. 2001). In addition, the information can be used to assess the risk to higher trophic levels due to biomagnification. Some contaminants, although bioavailable, may not accumulate in benthic invertebrates to sufficient concentrations to induce effects. A few of these contaminants (e.g., mercury) have the property of biomagnifying up the food chain to produce adverse responses in higher trophic level organisms.

Overall assessment of a site is achieved by integrating the information obtained both within and among the above four lines of evidence. The decision framework was developed from the Sediment Triad (Long and Chapman 1985; Chapman 1996) and the BEAST (Reynoldson et al. 1995; 2000) frameworks, and is described in detail elsewhere (Grapentine et al. 2002).

# 1.3 The Peninsula Harbour Area of Concern

The Peninsula AOC has been the subject of two major RAP reports – Stage 1: Environmental Conditions and Problem Definition (Peninsula Harbour RAP Team 1991) and Stage 2: Remedial Strategies for Ecosystem Restoration (Peninsula Harbour RAP Team 1998). The environmental issues of concern identified for Peninsula Harbour are:

- Mercury contamination,
- PCB contamination,
- Presence of other contaminants (trace metals, oil and grease),
- Bacterial contamination,
- Aesthetic impairment,
- Habitat destruction and degradation (due to accumulation of wood fibres and bark),

- Exotic species (sea lamprey), and
- Fish health problems related to contaminants.

Of the 14 beneficial uses evaluated for the Peninsula Harbour AOC, 5 were determined as "impaired". All are associated with sediment contaminants:

- Degradation of benthos,
- Restrictions on fish consumption,
- Degradation of fish populations,
- Loss of fish and wildlife habitat, and
- Restrictions on dredging activities

Assessments of sediments and contaminants in depositional areas of the Peninsula Harbour, specifically Jellicoe Cove, were most recently performed in 2000 (Burt and Fitchko 2001, Milani et al. 2002). Key conclusions were from these studies were:

- Total mercury concentrations in Jellicoe Cove are elevated and generally increase with sediment depth.
- A similar pattern is evident with methyl mercury, which is generally higher in the deeper sediments.
- Direct toxicity of sediment-bound contaminants in Jellicoe Cove is not evident based on laboratory toxicity tests and assessment of resident benthic communities in Jellicoe Cove.
- Resident benthic communities show a general trend towards greater diversity and abundance at test sites compared to reference sites.
- Bioavailability of mercury from sediments and the potential for food chain effects are of concern and need to be investigated in Jellicoe Cove.

Discharges of mercury from the former chlor-alkali plant (closed 1977) were released directly into Jellicoe Cove. Currently, the two point sources (pulp and paper mill and the WPCP) discharge into the open lake; however, a mill sump overflow discharges into Jellicoe Cove. The current chief environmental issue of concern is the elevated concentration of mercury in remaining sediment due to past discharges from local sources, and the potential risk to fish, wildlife and humans through biomagnification. The bioaccumulation component of the assessment framework is important to consider where concern exists for contaminants such as mercury and chlorinated organic compounds that can be highly concentrated in the food web

without inducing effects on survival, reproduction or growth at the lower trophic levels (which are typically examined for sediment assessments). Measurement of invertebrate body burdens allows assessment of the potential for effects on higher trophic level organisms (which are more difficult to measure and typically not examined in sediment assessments) resulting from the transfer of contaminants through dietary sources. Measurement of body burdens of benthic organisms was identified as requiring further assessment (Peninsula Harbour RAP Team 1998).

#### 1.4 Purpose of the Study

The purpose of this study is to determine if deleterious amounts of mercury from sediments in Jellicoe Cove could potentially be transferred through benthic invertebrates to fish, wildlife or humans. In other words: Is there evidence that mercury biomagnification is an environmental issue of concern? The results of this study should lead to one of two alternate conclusions: (a) mercury is unlikely to concentrate in the food web at levels that can cause adverse effects, or (b) mercury **could** concentrate in the food web at levels that can cause adverse effects. The determination of whether mercury biomagnification and adverse effects to higher trophic level organisms (fish, wildlife, human) are actually occurring in Jellicoe Cove is beyond the scope of this study, and would need to be addressed by a more comprehensive assessment such as a detailed risk assessment. The latter conclusion (b) is of **potential** biomagnification, but does not determine actual biomagnification.

# 2 OBJECTIVES AND APPROACH

## 2.1 **Objectives of Study**

The purpose of the study was achieved through two objectives:

A. Determining if benthic invertebrates in locations where mercury is elevated are a potential source of mercury to higher trophic levels.

5

B. Determining if the amount of mercury potentially available is of concern.

The first objective was addressed by comparing concentrations of mercury (Hg) in benthic invertebrates from sites in Jellicoe cove to those from reference sites, and by determining whether sediment Hg concentration is related to invertebrate (whole body) Hg concentration. For the second objective, the concentrations of Hg in selected trophically linked receptor species (i.e., consumers of benthic invertebrates and their predators) were predicted based on measured Hg in invertebrates and literature-derived biomagnification factors. (Traas et al. (2002) is an example of an application of this approach.). The predicted Hg concentrations in the selected receptors were compared to appropriate tissue mercury guidelines established for the protection of higher trophic level organisms. Whereas predictions of receptor tissue mercury concentrations focused on methyl mercury (MeHg) because it is the most toxicologically relevant and predominant form of mercury in tissues of fishes and higher trophic level receptors (USEPA 1997b; Environment Canada 2002), determinations of Hg distributions and bioaccumulation in sediment and invertebrates were made on the basis of both total mercury (THg) and MeHg to allow comparisons with results from other studies and guidelines that involve THg.

The biomagnification modelling was broken down into four steps:

• Identification of receptors of potential concern.

Measurement of contaminant concentrations in invertebrates and sediment.

• Selection of biomagnification factors.

• Prediction of possible receptor species tissue concentrations.

Knowledge of the food web structure of a site is needed to determine relevant receptor species (fish, bird, mammal). These are identified in the following subsection. Determinations of concentrations of mercury in sediment ([Hg]<sub>sed</sub>) and invertebrates ([Hg]<sub>inv</sub>) are described in the sampling design and methods sections. The identified receptors determined what biomagnification factors (BMFs) to use for predicting receptor mercury concentrations and what guideline to use (e.g., guidelines for protection of wildlife consumers of aquatic biota; human health guidelines for protection from fish consumption) for comparison. The review and selection of BMFs are discussed in the data analyses (subsection 3.4.2.1.) and Appendix A, and the estimation of [Hg] in the tissues of receptor species is described in subsection 3.4.2.2.

If the predicted contaminant concentration in a receptor for a Jellicoe Cove site exceeded the guideline *and* the maximum predicted concentration for the reference sites, a potential risk of adverse effects due to biomagnification was concluded. Alternatively, if the predicted contaminant concentration in the receptor for a Jellicoe Cove site was less than the guideline *or* the maximum predicted concentration for the reference sites, no potential risk was concluded.

# 2.2 Identification of Receptors of Concern

Based on generic food webs for the Great Lakes (e.g., Diamond et al. 1994), information on fauna resident in the Peninsula Harbour AOC (RAP Team 1991, 1998) and guidelines from Environment Canada (2000), receptors representative of four trophic levels were selected for biomagnification modelling:

- Benthic Invertebrates (trophic level 1): *amphipods* and *midges (chironomids)*.
- Benthivorous fish (trophic level 2): Longnose Sucker. Total mercury concentrations in 45 cm suckers collected from Peninsula Harbour show a decrease from 2020 ng/g to 640 ng/g ww for the period of 1975 to 2002, but on average, concentrations are higher than other areas in Lake Superior, which show a range of concentrations from 80 ng/g ww to 490 ng/g ww over the period of 1985 to 2001 (MOE 2002).
- Small piscivorous fish (trophic level 3): Yellow Perch. The yellow perch have been observed in netting surveys in the Peninsula Harbour AOC (Peninsula Harbour RAP Team 1991). Regular collections for the determination of total mercury concentrations do not take place for this species.
- Large piscivorous fish (trophic level 4): *Lake Trout*. Total mercury concentrations in 50 cm lake trout collected from the Peninsula Harbour AOC show an overall decrease from 1010 ng/g to 220 ng/g ww for the period of 1975 to 2002. Recent data (fish sampled in the 2000 to 2002 period) show that, on average, Hg concentrations in trout collected from Peninsula Harbour are slightly higher than those collected from six other areas in Lake Superior (range 120 to 210 ng/g ww) (MOE 2002).

- Piscivorous bird (trophic level 4): Great Blue Heron. Great blue herons are widespread, and are known to breed along the shores of Lake Superior. Fishes (mostly <25 cm in length) are the preferred prey (CWS 2002).
- Piscivorous mammal (trophic level 4): *mink*. Mink are associated with numerous aquatic habitats and are opportunistic feeders (CWS 2002). Mink inhabit areas throughout central and northern Ontario.

As part of the Sport Fish Contaminant Monitoring Program, regular collections of Lake Trout and Longnose Sucker (as well as other fish species) are collected from the Peninsula Harbour AOC. Sport fish consumption restrictions for total mercury begin at 450 ng/g and total restriction is advised for levels above 1570 ng/g (MOE 2003). Total mercury concentrations are at levels that warrant consumption advisories for both these species. For the sucker, consumption restrictions commence for fish 35-45 cm long, and total restriction imposed for fish 45-55 cm long. For the trout, restrictions commence for fish 45-55 cm long with total restriction for fish 65-75 cm long (MOE 2003).

A model of the feeding relationships linking these receptors with each other and benthic invertebrates and sediment is shown in Figure A1 (Appendix A).

#### 2.3 Study Area

Background information on environmental conditions in the Peninsula Harbour AOC is given in Peninsula Harbour RAP Team (1991). Previous sediment surveys (Burt and Fitchko 2002, Milani et al. 2002; Appendix B: Table B1) performed in Peninsula Harbour, specifically in Jellicoe Cove, reported total mercury concentrations in sediments above the provincial Severe Effect Level (SEL) (Persaud et al. 1993).

Reference areas selected outside Jellicoe Cove but still within the Peninsula Harbour AOC included one site located in Carden Cove (PH15; Figure 1). Remaining reference areas were selected along the northern shore of Lake Superior and south of Marathon in Prospect Cove

(Figure 1). These reference stations provided data on background mercury concentrations in sediment and invertebrates relevant to the AOC.

### 2.4 Experimental Design

#### 2.4.1 Sampling design

Sampling stations were arrayed in a multiple gradient design supplemented with reference sites. Stations in Jellicoe Cove were positioned in seven radial arms, with three to four stations in each arm (Figure 2). In total, 38 stations – 13 reference + 25 test (i.e., potentially exposed to previous effluent loadings) = were sampled for sediment chemistry, overlying water variables and benthic invertebrate tissue 20-31 May 2002. A list of station co-ordinates is provided in Table 1. The locations of stations were selected on the basis of (a) representing the widest range of mercury concentrations in sediment, and encompassing a 'hot spot' identified by Burt and Fitchko (2002), (b) representing least contaminated/reference conditions in the area, and (c) overlapping locations of previous studies.

This mixed (multiple gradient + control/potential impact) sampling design allowed several types of comparisons for assessing the distribution of mercury in sediment and invertebrates. Using all sites, relationships between sediment [Hg] and invertebrate [Hg] concentrations were examined. In addition, Hg concentrations at locations in Jellicoe Cove were compared to Hg concentrations at reference locations. The grid-like array of the Jellicoe Cove sites also allowed a spatial analysis of Hg conditions, in which locations of elevated Hg in sediment, invertebrates and receptors (predicted from models) were identified.

#### 2.4.2 Measurement endpoints

Invertebrates (amphipods and midges) and sediment for mercury analyses were collected from locations of sediment deposits potentially exposed to past discharges of mercury-containing effluent, as well as from unexposed reference locations. Sediment was obtained from the top 0 - 10 cm layer of lake bed. This layer includes the vertical home range of most benthic invertebrates. Two distinct invertebrate taxa were targeted for collection from each location. Midges and amphipods were obtained from all test and reference sites. Analyses of total and

methyl mercury were performed on samples composited from organisms within each of two taxa (i.e., taxa were analyzed separately). Invertebrates were not allowed time to clear sediment from their guts because predators consume whole organisms. Mercury associated with sediment, as well as that incorporated into tissues, is potentially available for transfer through the food chain.

#### 2.4.3 Assumptions

For the prediction of Hg concentrations in the tissues of upper trophic level biota, bioaccumulation is considered to occur predominantly through dietary pathways. This is suggested by several experimental and modelling studies (Bodaly et al. 1997; Downs et al. 1998). In modelling the exposure to and uptake of Hg by receptors, several conservative (i.e., maximum potential exposure to Hg) assumptions have been made. These include:

• For fish receptor

- Fish consume invertebrates only from the site.
- Fish feed on the same invertebrate taxa as those collected in field sampling.
- For wildlife receptor
  - 100% of the diet is fish.
  - Fish are consumed only from the site in question.
  - Fish consume invertebrates only from the site.
  - Fish feed on the same invertebrate taxa as those collected in field sampling.

In addition, the flux of mercury between sediment, water and biota compartments were considered in equilibrium.

#### 3 METHODS

#### 3.1 Sample Collection and Handling

Prior to sediment collections, temperature, conductivity, pH and dissolved oxygen were measured in the water column approximately 0.5 m above the bottom using Hydrolab apparatus. A Ponar sampler was used to collect the sediment. At each site, a sample of the top 10 cm sediment was collected from each Ponar grab and set aside in a glass tray. The remaining top 10

cm of sediment was placed in a 68 L tub. When the tub was full, the sediment set aside in the glass tray was homogenized and distributed to containers for individual analyses. Sediment collected for determination of total and methyl mercury was dispensed in pre-cleaned polyethylene bottles. Variables measured at each tissue collection site are listed in Table 2. All samples were kept at 4°C, with the exception of the sediment mercury and invertebrates samples, which were frozen (-20°C).

Invertebrates were removed from the top 10 cm of sediment (in the 68 L tubs) by wet sieving with lake water using 12" stainless steel sieves (500- $\mu$ m mesh). Biota collected on the sieve were sorted into separate taxa in glass trays using stainless steel instruments, rinsed with deionized water and placed in pre-weighed and pre-cleaned (10 % HCL) 5 mL scintillation vials, weighed, and frozen on site (-20°C). A layer of parafilm was placed between vial and cap. Invertebrate samples were later freeze-dried and reweighed. The wet:dry ratios were used in converting mercury concentrations in invertebrates from a dry weight to wet weight basis (see section 3.4.2.2).

Stainless steel sieves and instruments were detergent washed between stations. If persistent organic matter remained on the sieve after the detergent wash (on visual inspection), a more aggressive cleaning solution was implemented (caustic ethanol). Homogenizing and sorting trays and scoops were detergent washed, rinsed in 20% HCl, and rinsed with lake water.

## 3.2 Sample Analyses

Concentrations of total phosphorus, total nitrogen, total organic carbon, Fe and Mn in sediment were measured by Caduceon Environmental Laboratory (Ottawa, ON) following procedures outlined by USEPA/CE (1981). Particle size analysis (percents clay, silt, sand, gravel) was performed by the Sedimentology Laboratory, NWRI (Burlington, ON) following the procedure of Duncan and LaHaie (1979). Mercury (total and methyl) analyses of sediment and invertebrates were performed by Flett Research Ltd. (Winnipeg, MB). Procedures for mercury analyses, which are based on Bloom and Crecelius (1983), Horvat et al. (1993) and Liang et al. (1994), are summarized below.

#### 3.2.1 Total mercury in sediment

*Flett Research Laboratory*: Between 100 and 1000 mg of thawed sediment sample (or spiked sediment, blanks or reference material) was digested overnight (16-18 hours) in 3 mL of 7:3 nitric/sulfuric acid at 150°C. After cooling, the sample was diluted to 25 mL with low-mercury deionized water, spiked with BrCl and allowed to react. The residual BrCl was then destroyed by addition of hydroxylamine hydrochloride. An aliquot of the sample (100  $\mu$ L – 2 mL) was placed into a sparging vessel, to which was added stannous chloride. The elemental mercury produced was purged onto a gold trap with Hg-free nitrogen. The gold trap was heated with UHP argon carrier gas passing through it, and the mercury released was measured by a Brooks-Rand CVAFS model-2 detector. The detection limit was 1-5 ng/g.

*Caduceon Laboratory*: Total mercury was determined by methods described in USEPA/CE (1981). Freeze dried sediments (0.5 g) were digested with HNO<sub>3</sub>:HCl for two hours. SnCl<sub>2</sub> was added to reduce Hg to volatile metallic form. If there was high organic material, KMnO<sub>4</sub> was added to the digestion solution to destroy organo-mercury bonds. Hydroxyl amine hydrochloride was then added to neutralize KMnO<sub>4</sub> excess so SnCl<sub>2</sub> could react with Hg in solution. Digestion was followed by measurement using a cold vapour atomic absorption spectrometer. The detection limit was 5 ng/g sediment.

#### 3.2.2 Total mercury in invertebrates

The same procedure as described for analysis of total mercury in sediment by Flett Research was used for invertebrates, with the following differences in the sample digestion: up to 100 mg of thawed invertebrate sample (or spikes, blanks or reference material) was digested for 6 hours in 10 mL of 1:2.5 nitric/sulfuric acid at 250°C; after cooling, the sample was diluted to 25 mL with low mercury deionized water, spiked with BrCl and allowed to react.

#### 3.2.3 Methyl mercury in sediment

Sediment was prepared for analysis by distilling 200-300 mg of homogenized sample (or spikes or blanks) in ~45 mL of low-mercury deionized water. Approximately 40 mL of distillate was

collected and acidified with KCl/H<sub>2</sub>SO<sub>4</sub>. (Note: Since methyl mercury results were  $\leq 0.1\%$  of the total mercury results, a methylene chloride extraction was carried out on some of the highest total mercury samples. No significant difference in methyl mercury concentrations was observed between results obtained by either method. Therefore, it is assumed that insignificant methyl mercury production was occurring in the distillation process and thus all samples were processed by distillation.) An aliquot of the prepared sample (1-2 mL, depending on observed interferences from the matrix) was ethylated in solution (final volume ~ 40 mL) using sodium tetraethyl borate. The solution was buffered to pH 5.5. The resulting ethylmethyl mercury was purged onto a Tenax trap with mercury-free nitrogen. The trap was heated, purged with UHP argon onto a GC column (for separation of the ethylmethyl mercury from Hg° and diethyl mercury), run through a pyrolizer (to reduce all mercury to Hg°), and then sent to a cold vapour atomic fluorescence analyser for detection. (GC oven: Perkin Elmer 8410 GC; column: chromasorb WAW-DMSC 60/80 mesh with 15% OV-3; detector: Brooks-Rand CVAFS model-2). The detection limit was 0.25 ng/g dw.

#### 3.2.4 Methyl mercury in invertebrates

Freeze dried invertebrates (5-10 mg of homogenized sample, spike, blank or reference material) were digested overnight with ~500  $\mu$ L of KOH/methanol at 75 °C. Sample aliquots (50-60  $\mu$ L) were then treated and analysed as described above for the ethylation and subsequent steps in the determination of methyl mercury in sediment. The detection limit was 1.2 ng/g dw.

# **3.3 Biota-Sediment Accumulation Factors**

A biota-sediment accumulation factor (BSAF) was calculated for each invertebrate taxa and site combination, for total and methyl mercury. The BSAF equation used was that defined by Thomann et al. (1995), and is the ratio of the metal concentration in the organism to that in the sediment:

$$BSAF = [Hg]_{inv}/[Hg]_{sed}$$

BSAFs assume that the concentration of contaminant in the organism is a linear function of the contaminant concentration in the sediment.

#### 3.4 Data Analyses

#### 3.4.1 Mercury distribution in sediment and invertebrates

Sites in which concentrations of Hg in invertebrates ([Hg]<sub>inv</sub>) were significantly elevated above background levels for the study area were identified by comparing [Hg]<sub>inv</sub> for Jellicoe Cove sites to the upper 99<sup>th</sup> % percentile of the reference sites. (Because there were 13 reference sites, this corresponded to the maximum value.) This was done separately for MeHg and THg and for each invertebrate taxon.

Relationships between concentrations of Hg in sediment and invertebrates were determined using regression analysis, again separately for MeHg and THg and for each invertebrate taxon. The goal was to estimate the degree to which Hg in invertebrates is predictable from Hg in sediment, with and without environmental covariables. Simple linear regression (ordinary least squares) was used for the single predictor ([Hg]sed) model. "Best subset" multiple linear regression (Draper and Smith 1998; Minitab 2000) was used for the fitting of multiple predictor models. The environmental variables expected to potentially influence uptake of Hg from sediment by biota (based on reviews such as Braga et al. 2000; Lawrence and Mason 2001), including sediment concentrations of total organic C, total P, total Kjeldahl N, Fe, and Mn; sediment particle size fractions of sand, silt and clay; overlying water dissolved O<sub>2</sub>, pH, and conductivity; and site depth were included in the models. To increase normality of data distributions and linearity of relations between variables, some data were transformed: log(x) for THg and MeHg in sediment and invertebrates; log(x) for nutrients, Fe and Mn in sediment and site depth; and arcsine-square root(x) for the particle size fractions. Normality and linearity of the water column data were not generally improved by transformations, so these were analyzed untransformed.

All models fitted to the data included  $[Hg]_{sed}$  as a free predictor (i.e., it was not forced to be in the model). The specific null hypothesis of interest was that "the effect of  $[Hg]_{sed}$  on  $[Hg]_{inv} = 0$ , after accounting for effects of other predictors". For the best subset regressions, models were fitted for all combinations of predictors. Determination of the "best" model was based on several criteria (in roughly decreasing order of importance):

- maximum  $R^{2}_{adjusted}$
- significance of partial F-tests (= t-tests) for predictors (especially [Hg]<sub>sed</sub>)
- significance of  $\bar{F}$ -test for regression
- variance inflation factors (VIFs) for predictors < 10
- homoscadastic and normally distributed residuals
- Mallow's C<sub>p</sub> statistic not >> number of predictors

Lack-of-fit tests for curvature in response-predictor relationships and interactions between predictors were performed and examined for nonsignificance. Observations having large standardized residuals or large influence on the regression were also considered in model evaluations. The best model was identified based on the overall meeting of these criteria. Both single and multiple predictor models were then examined for the degree to which  $[Hg]_{sed}$  predicts  $[Hg]_{inv}$ , as indicated by the significance of the *t*-test of the coefficient for  $[Hg]_{sed}$ .

# 3.4.2 Prediction of mercury concentrations in receptors

# 3.4.2.1 Review and selection of biomagnification factors

A review of information on BMFs was conducted using typical methods of electronic database and chain-of-citation searches as well as consultation with leading researchers in the field of mercury ecotoxicology and risk assessment. Details on the methods and the results of the review are described in Appendix A. A summary is provided below.

The search was focused on the period 1996-2002, as a thorough review of the literature was carried out in 1997 by USEPA (1997a,b,c). The information required to estimate mercury concentrations in receptors was obtained by reviewing published literature, unpublished reports, databases, web pages and any other sources of data on BMFs relevant to the benthic invertebrate taxa and receptors; assessing the quality of the BMF data, and; tabulating BMFs and estimates of their variability, together with information on the BMF determinations (e.g., location of study, organisms involved, proportion of receptor's diet that is invertebrates, effects of cofactors (if any), assumed ingestion rates and home ranges). The following criteria were applied to screen

literature to obtain either BMFs or candidate datasets for calculating BMFs, after Suedel et al. (1994) and Gobas and Morrison (2000):

- If organisms that were presented were not from a logical food chain, or no evidence was presented that the feeding relationship between predator and prey was a functional feeding relationship, the data were not used. One exception to this rule was made in selecting a study of mink fed diets of different proportions of contaminated and uncontaminated fish (Halbrook et al. 1997), since there was a reasonable likelihood that these fish species would have been part of their diet.
- Mean concentrations of total Hg or MeHg needed to be presented for both predator and prey, and in comparable units.
- BMFs involving Hg concentrations in feathers or fur of predators were excluded.
- Unless evidence of comparability could be found, studies from non-freshwater systems or with non-comparable species were not used. More information is presented below on the assessment of comparability of different systems and species.

There were few studies that quoted BMF estimates specifically for the receptor species and feeding relationships defined in Figure A1. Of the small number of studies that calculated BMFs which were directly comparable in part to the food chain model, most were from freshwater pelagic food webs. Some were also studies in different ecosystems (marine, temperate montane freshwater, tropic freshwater). Thus, it was necessary to use the most relevant studies to obtain BMFs and document the relative comparability of different species and ecosystems to those presented in the study design for this assessment. Information to support substitutions of receptor with comparable species from the literature (in applying BMF estimates) is presented in Tables A3 – A12. Species were considered the most qualitatively similar when they occupied similar habitats, had similar feeding habits and dietary composition, similar range, similar feeding substrate, and similar food ingestion:body weight ratio. Sources for this information were CCME (1999a), CWS (2002), Sample and Suter (1999), Scott and Crossman (1973), and USEPA (1997c). A breakdown of the number of BMFs obtained/calculated per feeding relationship and the range of corresponding BMF values is presented in Table A1.

#### 3.4.2.2 Calculation of receptor tissue mercury concentrations

It is widely recognized that mercury is transferred through trophic levels primarily in the methyl form (USEPA 1997b). It is also accepted that mercury in the tissues of fishes and higher trophic level organisms is almost entirely in the organic (methyl) form. Environment Canada (2002) states that "total mercury" concentrations in piscivorous fishes are probably ~99% methyl mercury, and note that Bloom (1992) suggests that previous studies reporting methyl mercury fractions in fishes less than 95% were likely in error. Therefore, mercury concentration in receptors were predicted on a MeHg basis, using (a) MeHg measurements in invertebrates and (b) combined THg and MeHg BMF values (assuming that reported THg concentrations largely represent MeHg concentrations).

Concentrations of MeHg ( $\approx$  total Hg) in the tissues of receptors were predicted by multiplying measured body concentrations in the resident invertebrates by the food chain multiplier relevant for the receptor:

 $C_{rec} = FCM \times C_{inv}$ 

where:

 $C_{rec}$  = mean contaminant concentration in the consumer (receptor) species  $C_{inv}$  = mean contaminant concentration in invertebrates

FCM = food chain multiplier

The FCM represents the cumulative biomagnification of a substance from one trophic level to a higher trophic level (USEPA 1997c). Whereas a BMF applies to only one trophic level transfer, a FCM refers to one or more, and may be a multiple of more than one BMF. Thus, FCM =  $BMF_1 \times BMF_2 \times BMF_3 \times ... \times BMF_n$ , where 1, 2, 3,..., n are transfers of one trophic level. The BMFs used to obtain FCMs and calculate  $C_{rec}$  values are in Table A1, which shows the low, medium and high BMFs from the literature review for each transfer between trophic levels as shown in Figure A1. In Table 3, the FCM for transfer from benthic invertebrates to each receptor is estimated by multiplying the BMFs for the serial steps from Table A1. Low, medium and high FCM values are obtained from use of all minimum, all medium or all maximum estimates for each BMF. In instances where only a single BMF value is available for a particular

receptor, the low, medium and high FCM is the same. For the trout, heron and mink, it is recognized that they could be trophic level 3 as well as trophic level 4 predators. Therefore, FCMs were estimated for both food chain pathways.

Invertebrate methyl Hg concentrations used in the predictions of Hg in receptors also included two values, one for each taxon. These were used as minimum and maximum observed [Hg]<sub>inv</sub> for the taxa collected from the site. "Medium" [Hg]<sub>inv</sub> for the site was calculated as the mean of the two values. Since fish contaminant data are reported for the most part on a wet weight basis, and the guidelines used in this study are also based on wet weights, methyl Hg concentrations in invertebrates were converted to a wet weight basis. Midges and amphipods comprised on average 84.8% and 85.9% water, respectively. The ratio of wet to dry weight was determined for each individual sample submitted for analysis (rather than using an overall average ratio for each taxon). [Hg]<sub>inv</sub> on a wet weight basis was determined using the following conversion:

 $[Hg]_{inv}$  (ng/g dry weight) / (ratio of wet: dry weight) =  $[Hg]_{inv}$  (ng/g wet weight)

Total and methyl mercury concentrations in each taxon, converted to wet weights, are shown in Appendix C, Tables C1 and C2.

For each site, minimum, intermediate and maximum concentrations of MeHg for each receptor were predicted by:

 $[Hg]_{rec} = FCM \times [Hg]_{inv}$ 

using corresponding low, medium and high [Hg]<sub>inv</sub> and FCMs. For the lake trout, heron and mink, FCMs for both food chain pathways were combined. From the available values, the lowest and the highest FCMs were used for the minimum and maximum predictions, and the mean of the two medium values was used for the intermediate prediction. The predicted MeHg concentrations in receptors are generic in that they are not specific to particular tissues.

#### 3.4.2.3 Areal averaging of receptor exposure to mercury

Predictions of [Hg] in receptors are made on a per site basis. However, for fish and wildlife receptors, the appropriate spatial and temporal boundaries for assessing potential biomagnification are not the same as those for assessing sediment contaminant concentrations, sediment toxicity and benthic invertebrate communities. Activities of fishes, birds and mammals are not limited to individual sites to the same degree as contaminants and invertebrates. Whereas incorporating invertebrate contaminant bioaccumulation information into the framework works well on a site-by-site basis, fish and wildlife data require some form of spatial averaging or weighting to reflect realistic contaminant exposure conditions. On a per site basis, fish and wildlife biomagnification predictions remain "theoretical" or overly conservative.

One way of addressing the problem is to assess exposure to contaminants across areas of sediment comparable to the foraging areas of the receptors, as suggested by Freshman and Menzie (1996). Their "average concentration with area curve" exposure model involves determining the average concentration of a contaminant for a series of increasing areas of soil, starting with the most contaminated site up to and beyond the foraging area of the receptor of interest. The average contaminant concentration for a section of soil corresponding to the foraging area is then compared to appropriate benchmark adverse effect levels. Exceedence of the benchmark by the average contaminant concentration is considered a potential impact to the receptor individual.

The grid-like array of sampling sites in Jellicoe Cove allows the application of this graphical type of analysis to the study area. Rather than working with soil or sediment concentration, [MeHg] in invertebrates (averaged for midges and amphipods) was used because it is the source of Hg exposure to the receptors. Initially, the spatial boundaries (areas of sediment) represented by each site were defined by Thiessen polygons (Ammon 2000), a commonly used GIS method. Within each polygon, all points are closest to the site enclosed by the boundary. A 75-m "buffer" (radius around sites) was used in the computations to ensure that all space between sites was covered. Sites were then ordered from highest to lowest [MeHg]<sub>inv</sub>, and a graph of mean [MeHg]<sub>inv</sub> vs. cumulative area was plotted. Mean [MeHg]<sub>inv</sub> was weighted by the areas of the site polygons. Receptors were conservatively assumed to feed preferentially in the most

contaminated sites. However, the more contiguous these sites are, the more realistic the assumption. It was also assumed (for simplicity) that the distribution of invertebrates across site areas is homogeneous, and that distributions of [MeHg]<sub>inv</sub> within areas are homogeneous.

Two other types of estimates were made for the analysis: foraging areas of the receptors, and critical (benchmark) concentrations of [MeHg]<sub>inv</sub>. For the former, an allometric model for estimating home ranges of fishes from Minns et al. (1996) was used, where  $\ln(\text{area per fish}) = e^{-10.37} + 2.57 \ln(\text{length})$ . Maximum lengths for Longnose Sucker, Yellow Perch and Lake Trout were obtained from Coker et al. (2001). Based on maximum lengths of 583, 533 and 1310 mm for sucker, perch and trout, respectively, areas of habitat use per individual were estimated as 428, 340 and 3459 m<sup>2</sup>. Critical [MeHg]<sub>inv</sub> was determined as the concentration which would result in the predicted receptor [MeHg] equalling the tissue residue guideline using the calculation in Sec. 3.4.2.2 (i.e., Critical [MeHg]<sub>inv</sub> = TRG / FCM). For the fishes, these values were 26.82, 5.36 and 3.53 ng/g ww for sucker, perch and trout, respectively, with the intermediate exposure and uptake scenario and a TRG = 92 ng/g ww (see Sec. 4.5.1). The value for the sucker is close to the upper range of [MeHg]<sub>inv</sub> for the reference sites: 26.36 ng/g ww. Therefore, 26.82 was selected as a "realistic" critical value.

# 3.5 Quality Assurance/Quality Control

#### 3.5.1 Field

Four randomly chosen sites (JC4C, JC6C, JC5D and PH14) were designated as QA/QC stations. At these stations, triplicate sediment and water samples were collected for determination of within-site and among-sample variability.

#### 3.5.2 Laboratory

Flett Research Ltd. conducted determinations of total and methyl mercury in sediment and benthic invertebrates. QC evaluation for these procedures included analyses of sample duplicates, matrix spikes and certified reference materials, as well as evaluations of sample recoveries. For sediment, sample duplicates were analyzed at least once every 15 samples, and matrix spikes were performed on every tenth sediment sample to determine mercury recoveries. The NRC certified sediment reference material "MESS-2" was concurrently digested and

analysed for total mercury. For biota, duplicate "DORM-2" reference material, "MQAP fish check samples", and spiked matrix duplicates were analyzed for total and methyl mercury with each lot of 10 - 20 samples. Each of the two invertebrate taxa was represented in the analyses of sample duplicates and matrix spikes.

Caduceon Environmental Laboratory analyzed sediment for total mercury (on a subset of 10 sites), total phosphorus, total nitrogen, total organic carbon, Fe, and Mn. QA/QC procedures involved control charting of influences, standards, and blanks. Reference material was used in each analytical run. Calibration standards were run before and after each run. Run blanks and reference standards were run 1 in 20 samples, while duplicates were run 1 in 10 samples.

An interlaboratory comparison of analyses for total Hg was conducted based on results from Flett and Caduceon laboratories for sediment sub-sampled from the same sample (10 sites only). Data for the 10 sites were compared by regression analysis. The slope of the regression line is a measure of the overall agreement in [THg] determinations, whereas the scatter of points about the line should indicate joint laboratory measurement error.

# 4 **RESULTS**

# 4.1 Quality Assurance/Quality Control

#### 4.1.1 Field

Variability among site triplicates in a measured analyte has three sources: natural within-site heterogeneity in the distribution of the analyte in sediment or water, differences in handling among samples, and laboratory measurement error. Among-triplicate variability indicates the overall "error" associated with quantifying conditions at a site based on a single sample. Variability is expressed as the coefficient of variation (CV = standard deviation / mean × 100). Results for particle size, TOC, TN, TP, Fe, Mn and Hg for the field-replicated stations (JC4C, JC6C, JC5D and PH14) are shown in Appendix D, Table D1. Differences in variability are seen among sites and among the parameters from the same site. Overall, variability among sediment samples is low, with CVs ranging from 1 to 29%, and is not highest at any one site. Variability

is highest for total mercury, with CVs ranging from 12 to 29%. The CVs for total Hg in sediment for this study are similar to those reported by Milani et al. (2002) for replicate ponars taken from the Jellicoe Cove in 2000 (CV range of 4 to 45%).

#### 4.1.2 Laboratory

Data for Flett Research laboratory duplicates and repeat analyses for mercury in sediment and invertebrates are shown in Tables 4 to 6. There is good agreement between sample duplicates and repeats. Mean CVs for duplicate analyses are 8, 9, 16, and 9% for [THg]<sub>sed</sub>, [THg]<sub>inv</sub>, [MeHg]<sub>sed</sub> and [MeHg]<sub>inv</sub>, respectively. These are lower than those reported for other studies using gas chromatography and cold-vapour atomic fluorescence spectroscopy (Paterson et al. 1998). Repeat analyses, performed for [MeHg]<sub>inv</sub>, have a mean CV of 5%. Recoveries for analyses of sediment and invertebrates samples, matrix spikes and certified reference materials are shown in Tables D2 and D3. Mean recoveries range from 93.9 to 99.3% for the samples, 95.0 to 99.1% for the matrix spikes, and 93.6 to 100.1% for the reference materials. The overall range of spike recoveries (75.9 to113.3%) is comparable to that obtained by Lawrence and Mason (2001), who used similar analytical methods.

Duplicate measurements of sediment metals and nutrients, and corresponding analyses of reference materials for the Caduceon Laboratory are shown in Table D4. The mean relative percent difference between sample duplicate measurements is 3.1% (range: 0 to 14.2%). Recoveries for reference materials range from 90.0 to 103.3% (mean 97.7%).

The inter-laboratory comparison for analyses of total mercury in sediment is described in Appendix D. Results show a strong agreement between measurements: the slope of Flett  $[Hg]_{sed}$  vs. Caduceon  $[Hg]_{sed}$  is determined to be 1.2. The percent explained variability  $(r^2)$  is 87%.

# 4.2 Mercury Levels

4.2.1 Sediment

4.2.1.1 Total mercury

# Flett laboratory

On a dry weight basis, the lowest THg concentrations are found in the reference sediments (range 8 - 169, median 47 ng/g), followed by sediments collected from Arm 1 (range 138 – 1152, median 791 ng/g) (Table 4, Figure 3). The remaining test sites, with the exception of JC2A and JC3A, contain high concentrations of THg, ranging from 2008 to 32160 ng/g. The highest THg concentrations are found in sediments collected from Arms 6 (median/mean 16757 ng/g) and 7 (median 16604 ng/g). In general, lowest concentrations of THg are present in the "A" series stations, while highest THg concentrations are evident in the "B" and "C" series stations (sites 2B, C - 7B, C), and then decrease further out in the Cove (at "D" series stations).

The LEL for THg (200 ng/g) is not exceeded at any of the reference stations, nor at stations 1B (Arm 1), 2A (Arm 2), and 3A (Arm 3), which are located closest to shore in their respective arms. The SEL (2000 ng/g) is exceeded at all remaining test stations with the exception of 1C and 1D. Highest [THg] is noted at 7B and 4B.

#### Caduceon laboratory

On a dry weight basis, total mercury concentrations in the subset of 10 sites are similar to those reported by Flett (Table 4). Higher Hg values are reported by Caduceon for the reference sites. The greatest difference for exposed sites is noted for 4B, where values are 28094 and 7874 ng/g Hg for Flett and Caduceon laboratory, respectively, a 3.5-fold difference.

#### 4.2.1.2 Methyl mercury

Methyl mercury concentrations (Table 4, Figure 4) are lowest at reference sites, ranging from 0.013 to 0.602 ng/g dry wt (median 0.175 ng/g), followed by sediments collected from Arm 1 (range 0.859 - 4.950 ng/g, median 3.890 ng/g). Methyl mercury at remaining test sites range from 0.281 to 23.700 ng/g (median 9.440 ng/g). The highest concentrations occur at "B" to "D" series stations. The mean fraction of methyl mercury relative to total mercury is 0.29% (95% confidence interval of -0.06 - 0.64%), but at four outlying sites - reference sites PH2, PH11, PH18, and PH21 – the percent methyl mercury is 0.68, 0.71, 1.11, and 1.85%, respectively. Regression analysis on log(x) - transformed data showing the relationship between methyl mercury and total mercury in the sediment is shown in Figure 5. A significant positive

correlation ( $r^2 = 0.89$ , P<0.001) is found between the methyl and total mercury concentrations in the sediment.

#### 4.2.1.3 Comparison of sediment mercury at reference sites to Jellicoe Cove sites

For total mercury (Figure 3), all test sites exceed the maximum reference site concentration, with the exception of 1B and 3A (2A is just slightly above and no data are available for site 6A). Almost all Jellicoe Cove sites are 1-2 orders of magnitude higher in [THg] than the maximum [THg] of the reference sites, with the median of the Jellicoe Cove sites 164× the median of the reference sites.

A similar pattern is observed for methyl mercury (Figure 4). All test sites except two (2A, 3A) exceed the upper maximum of the reference sites. The degree of exceedence is less than that for THg: the median [MeHg] of the Jellicoe Cove sites 52× the median of the reference sites. Site PH22 is markedly high in [MeHg] among the reference sites – almost 3× the next highest [MeHg].

#### 4.2.2 Invertebrates

#### 4.2.2.1 Total mercury

On a whole-body, uncleared-gut basis, midges (chironomids) show a greater range of total Hg concentration (42 - 5172 ng/g, median 1065 ng/g) compared to the amphipods (40 - 2075 ng/g; median 374 ng/g; Table 5). The midges accumulate more total Hg than amphipods at 89% of the sites. Concentrations of THg in amphipods and midges are strongly correlated (r=0.892, P<0.001).

#### 4.2.2.2 Methyl mercury

The midges also show a greater range of methyl Hg concentration (13 - 533 ng/g, median 47 ng/g) compared to the amphipods (20 - 359 ng/g, median 112 ng/g; Table 6). The amphipods, however, accumulate more methyl Hg than midges at 66% of the sites. The correlation between midges and amphipods for [MeHg]<sub>inv</sub> is significant (r=0.688, P<0.001). Relative to other reference sites, markedly high [MeHg]<sub>inv</sub> is observed at PH15. Concentrations in midges (255
ng/g) and amphipods (130 ng/g) at PH15 are  $5.4 \times$  and  $2.3 \times$ , respectively, the next highest reference site [MeHg]<sub>inv</sub>.

4.2.2.3 Comparison of mercury in invertebrates at reference sites to Jellicoe Cove sites Figures 6 – 9 compare the concentrations of total and methyl mercury in midges and amphipods at Jellicoe Cove sites to concentrations at the reference sites. The 99% percentile values (= maximum value in the present case) for the reference sites are indicated.

Midges – Total Hg15 of the 25 test sites exceed the maximum reference site concentration(Figure 6). Overall, the lowest total Hg concentration in midges occurs in Arm 1, while the<br/>greatest concentration occurs in Arms 5, 6 and 7. Total Hg concentrations in midges from<br/>exposed sites range from  $0.2 \times to 4.0 \times the$  reference site maximum.

Midges – Methyl Hg 4 sites (5A, 6A, 7A and 7B) exceed the maximum reference site concentration (Figure 7). Excluding the outlier site PH15 from the reference group, 17 of the Jellicoe Cove sites exceed the reference maximum. In Jellicoe Cove, the lowest methyl mercury concentration in midges occurs in Arm 2, and the greatest concentration is seen in the "A" sites of Arms 3 - 7 as well as 7B. Methyl Hg concentrations in midges from exposed sites range from  $0.08 \times$  to  $2.1 \times$  the reference site maximum.

Amphipods – Total Hg 23 of the 25 test sites exceed the maximum reference site concentration (Figure 8). The lowest total mercury concentration in Jellicoe Cove amphipods occurs in Arm 1, and the greatest concentration is seen in Arms 5, 6 and 7. Total Hg concentrations in amphipods from exposed sites range from  $0.9 \times$  to  $9.7 \times$  the reference site maximum.

Amphipods – Methyl Hg 14 of the 25 test sites exceed the maximum reference site (PH15) concentration; without PH15, 24 Jellicoe Cove sites have higher amphipod [MeHg] than the remaining 12 reference sites (Figure 9). Among test sites, the lowest methyl mercury concentration occurs in Arm 1 and 7C. The greatest concentration is seen in amphipods collected from Arms 5, 6 and 7 (same as for total Hg). Methyl Hg concentrations in amphipods from exposed sites range from 0.2× 2.8× the reference site maximum.

## 4.2.3 Biota-sediment accumulation factors

The BSAFs for total and methyl mercury are shown by area for each taxon in Figure 10. For midges, [THg] at 11 of the 13 reference sites and at 6 test sites, located in Arms 1 (1B, 1D), 2 (2A, 2B), 3 (3A), and 5 (5A), are greater in the tissues than in the sediment. For amphipods, [THg] at 11 reference sites and three test sites, located in Arms 1 (1B), 2 (2A), and 3 (3A), are greater in the tissues than in the sediment. Reference sites have the highest BSAFs for both taxa. In general, the sites that show a BSAF >1 are those with the lowest total mercury concentrations. Methyl mercury accumulates in both taxa to much higher concentrations than that found in sediment at all sites. The greatest accumulation (relative to sediment concentration) occurs at reference sites and at sites in Arms 1 (1B), 2 (2A), and 3 (3A) for both taxa (similar to that observed for total Hg).

#### 4.3 Supplementary Physico-Chemical Conditions of Sediment and Overlying Water

#### 4.3.1 Sediment nutrients

Total phosphorus (TP), total nitrogen (TN), and total organic carbon (TOC) in sediments are shown in Table E1 (Appendix E). Total OC at reference sites range from 0.1 to 2.1% (median 0.7%) and from 0.3 to 10.0% at exposed sites (median 3.8%). Highest TOC is noted at 7C. Total nitrogen ranges from 127 to 2251  $\mu$ g/g at reference sites (median 634  $\mu$ g/g) and from 73 to 1316  $\mu$ g/g at the exposed sites (median 746  $\mu$ g/g), and TP ranges from 330 to 1084  $\mu$ g/g at reference sites (median 652  $\mu$ g/g) and from 283 to 691  $\mu$ g/g at exposed sites (median 521  $\mu$ g/g). Whereas reference and Jellicoe Cove sites show similar distributions in TN and TP concentrations, TOC is generally higher and much more variable in Jellicoe Cove than in reference locations (Appendix E, Figure E1).

#### 4.3.2 Sediment particle size

Particle size data for Jellicoe Cove and reference sediments are shown in Table E1 (Appendix E). Sediment in the study area consists mainly of silt (ranging from 1.2 to 73.3%; median 41.6%) and sand (ranging from 6.9 to 92.5%; median 38.1%). Percent clay at exposed sites ranges from 0 to 74.1%, median 12.8%). At reference sites, the median percentage silt (45.8%) and sand (33.1%), is close to that observed at test sites, and the median percentage clay at reference sites

(19.0%) is slightly higher than at test sites. Six of the 25 exposed stations (4A, 7A, 1B, 1C, 2C and 1D) contain gravel (ranging from 0.1 to 14.5%), and three reference sites (PH13, 15, and 26) contain gravel, ranging from 0.7 to 1.4%. Overall, Jellicoe Cove sites contain lower proportions of clay than the reference sites. Sand and silt fractions range over the same values in both groups of sites (Appendix E, Figure E1).

# 4.3.3 Iron and manganese

Concentrations of iron and manganese and the corresponding provincial LELs and SELs are shown in Table E2 (Appendix E). Iron and Mn are less than LEL at all exposed sites in the study area except for 2A, which is slightly above the LEL for each metal. At the reference sites, the LEL is exceeded at five stations for Fe and four stations for Mn. The SEL is exceeded slightly for Mn at one reference site (PH17). Comparing Fe and Mn concentrations at reference sites and test sites, percent iron is slightly higher at the reference sites, ranging from 0.8 to 3.5% (median 1.4%), and ranging from 1.1 to 2.4% (median 1.3%) at test sites (Appendix E, Figure E1). Manganese concentrations at most reference sites (range 114 to 1160; median 276 µg/g) are higher than that at test sites (range 133 to 488; median 155 µg/g).

# 4.3.4 Overlying water chemistry

Conditions (pH and conductivity) of overlying water 0.5 m above the sediment (Table E2, Figure E1) are similar at reference and test sites, with overlapping ranges and similar medians for each variable. The ranges of dissolved oxygen, pH, and conductivity are fairly low (2 mg/L, 0.8 pH units and 32  $\mu$ S/cm, respectively). Dissolved oxygen is  $\geq$ 12.4 mg/L at all sites.

#### 4.3.5 Site depth/Temperature

The reference sites are deeper than test sites with median depths of 26.9 and 10.8 m, respectively. Depth at exposed sites in Jellicoe Cove range from 4.8 to 16.9 m, and range from 1.2 to 64.8 m at reference sites (Table 1, Figure E1). There is a greater range in temperatures at the reference sites (2.9 to 10°C) compared to test sites (3.4 to 4.2°C), although median temperatures are similar at 3.9 and 3.7°C, respectively.

# 4.3.6 Total PCBs

Levels of total PCBs in longnose suckers, collected historically from Peninsula Harbour, show levels elevated above the consumption restriction guideline of 500  $\mu$ g/kg (MOE 2002). From 1978 to 1990, there was a decrease in PCB levels (from 10902 to 1493  $\mu$ g/kg) in 45 cm longnose suckers collected from Peninsula Harbour. From 1990 to 2002, however, there have been no further reductions, with levels at between 1500-2500  $\mu$ g/kg. Levels of PCBs in longnose suckers collected from other areas in Lake Superior are a magnitude lower than that observed in Peninsula Harbour, with the most recent levels from each area ranging from 44 to 352  $\mu$ g/kg (MOE 2002). As a result of these findings and the possible ongoing sources of PCBs to Peninsula Harbour, PCBs were measured in the sediment samples collected from Jellicoe Cove, with results are shown in Appendix E, Table E3.

Aroclor 1260 is the only aroclor detected with certainty in all samples, with concentrations ranging from 0.055 to 0.62  $\mu$ g/g (median 0.30  $\mu$ g/g, mean 0.33  $\mu$ g/g). Generally, higher levels are seen in "C" and "D" series sites with the highest concentration observed at JC5D. All sites, with the exception of JC2B and JC7B are a magnitude above the LEL (0.07  $\mu$ g/g). The SEL (normalized to % TOC for each site) is not exceeded at any site.

Standard QA/QC procedures included matrix spikes and duplicates (with three aroclors that were also measured in the sediment samples), matrix spikes using surrogate PCBs, and method blanks. Percent recoveries from matrix spikes (performed on samples 4A and 7A) range from 34 to 110 % (mean 75%) (Appendix E. Table E3). Matrix spikes using surrogate compounds (compounds that are similar to the ones that were analyzed) were performed on each sample. Overall percent recoveries range from 43 to 114% (mean 88.6%). Method blanks were all below detection limits.

#### 4.4 Relationships between Mercury Concentrations in Invertebrates and Sediment

#### 4.4.1 Total mercury

Concentrations of total Hg in each invertebrate taxon vs total Hg in sediment are plotted in Figure 11, with fitted regression lines using sediment [THg] alone as the predictor. For both

taxa, the slopes are highly significant ( $P \le 0.001$ ) and the adjusted  $r^2$  values are 0.716 (midges) and 0.858 (amphipods). Prediction of  $[THg]_{inv}$  is moderately improved for both taxa by either Mn and % sand (midges) or TKN and Mn (amphipods) as additional predictors in the model (Table 7). These brought the  $R^2_{adj}$  values up to 0.797 and 0.906 for the midges and amphipods, respectively. For both taxa,  $[THg]_{sed}$  is the strongest predictor ( $P \le 0.001$ ). Coefficients for all predictors are positive except for TKN.

#### 4.4.2 Methyl mercury

The relationships between MeHg in invertebrates and MeHg in sediment (Figure 12, Table 7) are weaker than those for total Hg. With [MeHg]sed alone as the predictor, regressions are significant for both taxa (P=0.026 and P<0.001 for the midges and amphipods, respectively). The  $r_{adi}^2$  values are 0.109 (midges) and 0.526 (amphipods). With additional predictors, the regressions account for more variability in [MeHg]<sub>inv</sub>, with R<sup>2</sup><sub>adj</sub> increasing to 0.342, and 0.713 for the midges and amphipods, respectively. As with [THg]sed, [MeHg]sed is the most important predictor of [MeHg]<sub>inv</sub> in the multiple linear regressions, with P<0.001 for both taxa. For the midges, the significant environmental predictors are % sand and % clay; for the amphipods these are TKN, pH and % clay. Coefficients are positive for % sand and % clay, and negative for TKN and pH. Thus, invertebrate MeHg concentrations are influenced by sediment MeHg concentrations, but to a lower extent than [THg]<sub>inv</sub> is by [THg]<sub>sed</sub>. However, the fact that (a) the models that best predict [MeHg]<sub>inv</sub> include [MeHg]<sub>sed</sub> as the most significant term and that (b) the magnitudes and directions of the regression coefficients are more or less stable across various models, suggest real relationships between [MeHg]inv and [MeHg]sed. Relationships between [MeHg]inv and [THg]sed were also examined and found to be slightly stronger than the [MeHg]inv - [MeHg]<sub>sed</sub> ones. With [THg]<sub>sed</sub> alone as the predictor, regressions are significant for the midges (P=0.013) and amphipods (P<0.001), with  $R^2_{adj}$  values = 0.139 and 0.597, respectively.

# 4.5 Predictions of Methyl Mercury Concentrations in Receptors

## 4.5.1 Presentation of model outcomes

Predicted concentrations of methyl mercury in each receptor species at each sampling site. calculated by multiplying observed methyl mercury concentrations in invertebrates (wet weight values from Appendix C, Tables C1 and C2) by the appropriate FCMs (from Table 3), are shown in Table 8 and Figures 13 to 15. Receptor MeHg concentrations are presented separately for "minimum", "intermediate" and "maximum" levels of mercury exposure and uptake scenarios. In each of three series of subfigures, predicted [Hg]<sub>rec</sub> for five receptors are presented in (a) bar charts to compare reference and Jellicoe Cove sites, and (b) simplified maps to show spatial patterns of [Hg]rec for Jellicoe Cove sites. In the bar charts, which have the same logarithmic scales in all figures and subfigures, two criteria concentrations are marked: (1) the maximum of the predicted [Hg]<sub>rec</sub> for the reference sites, and (2) tissue residue guideline (TRG) for the fishes. Exceedences of criteria are summarized in Table 9. In the maps, the areas of the solid circles denoting Jellicoe Cove site locations are proportional to the predicted [Hg]rec. The legend next to the Lake Trout map scales circle sizes to [Hg]<sub>rec</sub> and applies to all five maps within the series. Scaling in the legends differ among series. Site circles are also coloured to indicate exceedences of criteria: blue = [Hg]<sub>rec</sub> < maximum for ref. sites and [Hg]<sub>rec</sub> < TRG; green = TRG < [Hg]<sub>rec</sub> < maximum for ref. sites; dark yellow = maximum for ref. sites < [Hg]<sub>rec</sub> <TRG; red = maximum for ref. sites < [Hg]<sub>rec</sub> and TRG < [Hg]<sub>rec</sub>. For the heron and mink, only green ([Hg]<sub>rec</sub> < maximum for ref. sites) and red (maximum for ref. sites < [Hg]<sub>rec</sub>) categories are used.

The tissue residue guideline applies only to the fish receptors. It refers to the concentration of MeHg in the diets of wildlife that consume aquatic biota. The TRG used for MeHg is the lowest of the reference concentrations derived by Environment Canada (2002) for the protection of wildlife receptors in the AOC that consume aquatic biota: 92 ng/g www. This pertains to the American mink (table 12 of Environment Canada 2002). The recommended TRG for the protection of *all* wildlife species —33 ng/g ww — is not considered appropriate because it is based on the reference concentration for Wilson's Storm Petrel, which is not native to the Peninsula Harbour area.

#### 4.5.2 Exceedences of criteria

Methyl Hg – minimum The low predictions of  $[MeHg]_{rec}$  in all receptors result in 9 of 25 Jellicoe Cove sites exceeding those for the reference sites (Figure 13). Of the exposed site predictions, the number of sites at which the predicted  $[MeHg]_{rec}$  exceeds the TRG is 4 for the sucker, 20 for the perch, and 4 for the trout. In comparison, only 2 exceedences of the TRG (for perch) are predicted for receptors at reference sites.

Methyl Hg – intermediateThe intermediate predictions of  $[MeHg]_{rec}$  in all receptors result in7 of 25 Jellicoe Cove sites exceeding those for the reference sites (Figure 14). Of the exposedsite predictions, the number of sites at which the predicted  $[MeHg]_{rec}$  exceeds the TRG is 7 forthe sucker, and 25 for both the perch and trout. In comparison, reference site exceedences of theTRG are predicted at 0 sites for the sucker, 3 sites for the perch and 7 sites for the trout.

Methyl Hg – maximum The maximum predictions of  $[MeHg]_{rec}$  in all receptors result in 6 of 25 Jellicoe Cove sites exceeding those for the reference sites (Figure 15). Of the Jellicoe Cove predictions, the number of sites at which the predicted  $[MeHg]_{rec}$  exceeds the TRG is 10 for the sucker and 25 for both the perch and trout. In comparison, reference site exceedences of the TRG are predicted at 1 site for the sucker, 4 sites for the perch and all 13 sites for the trout.

#### 4.5.3 Overall patterns

Beyond the comparisons of predicted [MeHg]<sub>rec</sub> for exposed sites to reference sites and to the TRG, patterns are evident in the differences in predicted [MeHg]<sub>rec</sub> among the five receptors, and among the three exposure and uptake scenarios.

Among receptorsPredicted  $[MeHg]_{rec}$  generally increases with the trophic level of thereceptor, with differences of  $4 - 50 \times$  between sucker and heron or mink predictions (Table 8,Figures 13 - 15).Consequently, the number of sites at which  $[MeHg]_{rec}$  exceeds the TRG, andthe amount by which the TRG is exceeded, increases with the trophic level of the receptor.However, the number of exposed sites at which predicted  $[MeHg]_{rec}$  exceeds the maximum ofreference site concentrations is the same among receptors.This is because within a series (i.e.,any of the minimum/ intermediate/ maximum groups),  $[MeHg]_{rec}$  all derive from the same

[MeHg]<sub>inv</sub> values. Differences among predicted [MeHg]<sub>rec</sub> values reflect differences among uptake pathways in the FCMs from Table 3. The pattern of variability among sites is the same for all receptors within a scenario (i.e., the [MeHg]<sub>rec</sub>) values are fully correlated among receptors).

Among exposure and uptake scenarios Looking at differences between the minimum, intermediate and maximum exposure and effect scenarios for the same receptor, predicted [MeHg]<sub>rec</sub> ranges 2- $67\times$ . The number of Jellicoe Cove sites for which [MeHg]<sub>rec</sub> values exceed the TRG increases from minimum to maximum scenario. In the minimum predictions, only a few Jellicoe Cove and 2 reference site [MeHg]<sub>rec</sub> values exceed the TRG, except for the perch, for which 20 Jellicoe Cove sites exceed the TRG. In the intermediate scenario, 7 sites based on sucker, and 25 of 25 sites based on perch and trout have [MeHg]<sub>rec</sub> greater than the TRG. The reference sites exceedences are 0 for sucker, 3 for perch and 7 sites for the trout. In the maximum scenario, 10 sites based on sucker, and 25 of 25 sites based on perch and trout have [MeHg]<sub>rec</sub> greater than the TRG, while the reference sites exceedences are 1 for sucker, 4 for perch and 13 sites for the trout (Table 8).

# 4.5.4 Areal averaging of receptor exposure to mercury

Boundaries of Jellicoe Cove sites, as defined by Thiessen polygons, are shown in Figure 16. The "average concentration with area" curve in Figure 17 shows how the average invertebrate [MeHg] to which a receptor would be exposed declines as it forages through an increasingly greater number of sites, starting from the most (site 7B) to the least (site 1D) contaminated. Initially, the mean [MeHg]<sub>inv</sub> drops from over ~ 60 ng/g ww for the 3 most contaminated sites, to < 45 ng/g for the 5 most contaminated sites. After that, the decline to ~ 20 ng/g ww is less steep and relatively even as additional sites are included in the averaging. For comparison, the sites with the lowest mean [MeHg]<sub>inv</sub> (1D, 7C, 3D and 2D) ranged from 7.7 to 10.1 ng/g ww (on a per site basis; Table C2).

The estimated areas of habitat use by the three fish receptors are much smaller than the sampling area, and smaller than nearly all sites areas. The maximum individual foraging area of Lake Trout (0.35 ha) was greater than only three Jellicoe Cove sites. If a receptor foraged

preferentially in the most contaminated sites, as is conservatively assumed for the "average concentration with area" curve (Figure 17), it would have to feed over an area greater than 9.2 ha to be exposed to a mean [MeHg]<sub>inv</sub> less than the critical concentration of 26.8 ng/g ww. Because sucker, perch and trout are expected to feed over much smaller areas, "dilution" of MeHg from the most contaminated sites is minimal and the potential exposure to MeHg from invertebrates could be high.

### DISCUSSION

# 5.1 Mercury Concentrations in Jellicoe Cove Sites relative to Reference Sites

#### 5.1.1 Sediment

Concentrations of total Hg in the upper 10 cm layer of sediment sampled in 2002 from all Jellicoe Cove sites are much greater than [THg] in sediment from references sites, with the exception of JC1B, JC2A and JC3A (Figure 3). The maximum [THg]<sub>sed</sub> observed in exposed sites is 32160 ng/g dry weight, and most concentrations are  $\geq$  2000 ng/g (=SEL), compared to 8 -170 ng/g for the reference sites. The reference concentrations compare to background concentrations of 10 - 700 ng/g for the Great Lakes, and Jellicoe Cove concentrations are higher than concentrations of up to 3200, 15000 and 5568 ng/g for contaminated sites in the Niagara River (Ontario), St. Clair River (Ontario), and St. Lawrence River (at Cornwall, Ontario), respectively (Environment Canada 1997; Grapentine et al. 2003). The CCME (1999b) freshwater sediment quality guideline (Probable Effect Level) for THg is 486 ng/g. In the Jellicoe Cove sampling area, contamination is lowest closest to shore (Arm 1 and "A" sites in Arms 2-7, and highest at the "B" and/or "C" sites in Arms 2-7. [THg]<sub>sed</sub> then decreases at the "D" sites farthest from shore (but not to less than that seen closest to shore). At sites 1B, 2A, and 3A, [THg]<sub>sed</sub> is similar to the higher reference site values. For MeHg, the same general pattern is observed (Figure 4) as for THg. [MeHg]<sub>sed</sub> is strongly related to sediment [THg]<sub>sed</sub> (Figure 5), with [MeHg] making up an average of 0.29% of the [THg]. The [THg] in the 0-10cm layer of sediment in Jellicoe Cove sediments from the 2000 surveys (range < 15 to 32000 ng/g dw), are similar to that seen in the present study. The spatial pattern of these results is strong evidence for a local (as opposed to regional) source of Hg to the Cove.

# 5.1.2 Benthic invertebrates

Both THg and MeHg are taken up by the two invertebrate taxa assessed. Biota-sediment accumulation factors (based on whole-body, uncleared-gut concentrations) are >1 for 11 of 13 reference sites and for sites located in Arms 1, 2, 3, and 5 for THg, and for all 38 sites for MeHg. The BSAFs range up to ~ 12 for THg and to ~ 1500 for MeHg (excluding outliers, Figure 10). Midges have slightly higher BSAFs and [Hg] than amphipods. Tremblay et al. (1996b), in a study of two reservoirs and a natural lake in Quebec, reported BSAFs for detritivorous insects to be 1.9 - 2.8 for THg (similar to the current study) and 5.2 - 22.6 for MeHg (much lower than the current study).

Gut contents were included in the mercury analyses of the invertebrates, which could obscure true BSAFs. As the amount of sediment in the gut increases, the measured BSAF will converge to 1. A true BSAF < 1 will be overestimated because the concentration in the sediment is greater than the tissue concentration, whereas a true BSAF > 1 will be underestimated because sediment concentrations are lower than that found in the tissue (Bechtel Jacobs 1998).

In general,  $[Hg]_{inv}$  for the Jellicoe Cove sites are several fold the  $[Hg]_{inv}$  for the reference sites: the Jellicoe Cove-to-reference site ratios of median values are  $9.9 - 16\times$  for THg and  $2.7 - 4.8\times$ for MeHg. Fewer exceedences by individual Jellicoe Cove sites of the maximum (=99<sup>th</sup> percentile) of the reference sites are observed for MeHg (4, 14 sites) than for THg (15, 23 sites) due to an outlier reference site (Section 4.2.2.2, Figures 7 and 9). At this reference site (PH15, in Carden Cove near the town of Marathon), both midges and amphipods accumulate more MeHg than at other reference sites although sediment [MeHg] and [THg] are not unusually high. Among reference sites, PH15 is distinct in several of the physico-chemical conditions measured in sediment and overlying water samples. The site is lowest in TOC, TKN and TP concentrations and second highest in % sand in sediment. In the multiple regression models for predicting [MeHg]<sub>inv</sub>, % sand and TKN are highly significant (P<0.002) predictors: % sand is positively correlated with [MeHg] in midges; [TKN]<sub>sed</sub> is negatively correlated with [MeHg] in amphipods (Table 7). Thus, low nutrient and sandy sediments may account for the unusually high [MeHg]<sub>inv</sub> at PH15, and unless a water-borne source of Hg can be identified in the Carden Cove area the site appears to indicate an upper end of MeHg bioaccumulation under natural

conditions along the north shore of Lake Superior. Evaluation of QA/QC information and the fact that the high [MeHg]<sub>inv</sub> was determined in both taxa suggest that the values are not artefacts. A similar situation was observed in Clear Lake, CA by Suchanek et al. (2000), where [MeHg] was anomalously high in invertebrates at a site distant (~17 km) from the source of inorganic Hg. The authors suggested this was due to either (1) high *in situ* production of MeHg at the site (which was low in inorganic Hg concentrations) or (2) transfer to the site by wind-driven currents of MeHg produced in an area of high inorganic mercury levels.

#### 5.2 Effects of Mercury in Sediment on Mercury in Invertebrates

Mercury concentrations in midges and amphipods from Jellicoe Cove and reference sites are significantly influenced by Hg in sediment (Table 7, Figures 11 and 12). The relationship is stronger for THg than for MeHg. In the single predictor models, [THg]<sub>sed</sub> accounts for 72 and 86% of the variability in [THg]<sub>inv</sub>, whereas [MeHg]<sub>sed</sub> accounts for 11 and 53% of the variability in [MeHg]<sub>inv</sub>. For both forms of Hg, the amphipod regressions are tighter than those for the midges. In the multiple predictor models, the amount of variance explained increases, but in all cases [Hg]<sub>sed</sub> is the most significant predictor of [Hg]<sub>inv</sub>. These results clearly suggest that Hg in sediment is an important source of Hg to the invertebrates.

Concentrations of Hg in the benthic invertebrates were measured without clearing their guts. Thus, a fraction of the observed  $[Hg]_{inv}$  could include sediment-bound Hg in the gut. While this is relevant for assessing uptake of Hg by predators of invertebrates, which consume whole organisms, it also contributes to the strong  $[THg]_{sed}$  to  $[THg]_{inv}$  relationship. Concentrations of THg in sediment are generally 2 – 3 orders of magnitude greater than those for MeHg, and they vary more among sites. Therefore, it is not surprising that the  $[THg]_{sed} - [THg]_{inv}$  relationship is stronger than the  $[MeHg]_{sed} - [MeHg]_{inv}$  relationship.

Several other studies report similarly significant relationships between [Hg] in sediment and [Hg] in benthic invertebrates. Bechtel Jacobs (1998) reviewed data from 15 studies of [Hg] in freshwater benthic invertebrates and sediment. In 13 of these, invertebrate guts were not cleared. Slopes of log[THg]<sub>inv</sub> vs. log[THg]<sub>sed</sub> regressions were  $0.327 \pm 0.246$  (mean  $\pm$  S.E.), and the

mean  $r^2$  was 0.12. Slopes for the Peninsula Harbour sites are 0.431 and 0.376. Tremblay et al. (1996b) found a correlation between [MeHg] in midges and [MeHg]<sub>sed</sub> of r=0.78 (P<0.005, n=18) for a series of Quebec lakes, compared to r=0.11 (P=0.026, n=38) for midges in the present study. Sediments of Tremblay et al. (1996b) and Bechtel Jacobs (1998) were much less contaminated with Hg ( $\leq$  350 ng/g dw THg;  $\leq$  1.6 ng/g dw MeHg) than the Jellicoe Cove sites, however. In an assessment of bioaccumulation by midges and amphipods from Hg-contaminated and reference sediments in the St. Lawrence River (at Cornwall) (Grapentine et al. 2003) using the same methods as the current study, agreement between studies for log[Hg]<sub>inv</sub> vs. log[Hg]<sub>sed</sub> regressions is strong. The corresponding slope coefficients (Cornwall / Peninsula Harbour) are:

- THg in midges = 0.570 / 0.431,
- THg in amphipods = 0.284 / 0.376,
- MeHg in midges = 0.160 / 0.163,
- MeHg in amphipods = 0.334 / 0.300.

In multiple linear regressions, there are also consistencies between studies in the signs of the physico-chemical co-predictors and their relative significance. Overall, the Cornwall models explain less variation in [Hg]<sub>inv</sub> than those for Peninsula Harbour; however, sediments in the latter AOC are higher in [Hg] than the former.

# 5.3 Predicted Mercury Concentrations in Receptor Species

## 5.3.1 Integration of prediction outcomes

Models involving a range of biomagnification conditions were used to predict potential [MeHg] in receptors. Five receptor species were considered to encompass the trophic levels linking sediments to the top predators, where biomagnification is expected to be greatest. Three levels of dietary exposure and trophic transfer of Hg were assumed: minimum and maximum scenarios to bracket the range of potential outcomes and an intermediate scenario to characterize "average" conditions. Conclusions determined from overall evaluations of the model outcomes should consider:

• [MeHg]<sub>rec</sub> for exposed sites compared to [MeHg]<sub>rec</sub> for references sites;

- [MeHg]<sub>rec</sub> relative to the TRG;
- How many receptors are predicted to exceed the criteria at each site;
- How many of the exposure and uptake scenarios result in exceedences.

On the whole, about a third (6-9) of the Jellicoe Cove sites are predicted to have [MeHg]<sub>rec</sub> higher than the maximum reference site [MeHg]<sub>rec</sub> (Figures 13 – 15). However, this proportion would be a majority if the outlyingly high prediction for reference site PH15 was discounted. Exceedences of TRGs are the rule rather than the exception for Jellicoe Cove sites. Whereas minimum predictions are mostly below TRGs (perch being the exception), intermediate and maximum predictions for [MeHg]<sub>rec</sub> are almost all elevated above the TRG. [MeHg] in sucker is predicted as elevated above the TRG for up to 10 sites.

The TRG applies to concentrations of MeHg in fishes, and are for the protection of wildlife consumers of fishes. Some data are available for direct evaluation of the predicted tissue mercury levels for heron and mink. Wolfe et al. (1998) reviewed THg and MeHg toxicity and tissue residue data associated with adverse effects for birds and mammals. (As noted above, nearly all mercury in fishes and higher trophic level animals should be in the methyl form.) For white heron, liver concentrations > ~6000 ng/g ww THg correlated with chronic adverse effects. A conservative residue threshold for major toxic effects in water birds was concluded to be 5000 ng THg/g ww in liver. For mink, a similar criterion of 5000 ng/g ww MeHg in muscle or brain was suggested. This value of 5000 ng/g corresponds to 3.7 on the log-scales in Figures 13 to 15. Based on the maximum exposure and uptake scenario, this benchmark is exceeded at 3 Jellicoe Cove sites in for the great blue heron, and 8 Jellicoe Cove and 1 reference site for the mink (Table 8).

The more critical outcome of the evaluation is whether or not the predicted  $[MeHg]_{rec}$  values for exposed sites exceed the appropriate TRG *and* exceed the reference site maximum  $[MeHg]_{rec}$ . For the sucker, 4 - 7 exposed sites are predicted to result in such "hits", depending on the exposure and uptake scenario. Perch  $[MeHg]_{rec}$  predictions result in 6 - 9 hits, while trout  $[MeHg]_{rec}$  predictions result in 4 - 7 hits. Among all predictions, a group of sites in the southeastern section of Jellicoe Cove is consistently indicated to exceed both reference site

conditions and TRGs (coded as red site symbols in Figures 13-15): the inner "A" sites of Arms 3, 5, 6 and 7; and sites 7B, 6B and 6C. (See Figure 2 for site labels.)

## 5.3.2 Uncertainty in the prediction of mercury concentrations in receptors

The prediction of the potential transfer of mercury from benthic invertebrates to the trophically linked receptor species involves several simplifying assumptions, each of which is associated with some degree of uncertainty in its relevance to conditions in Jellicoe Cove. While it is beyond the scope of this study to quantify these uncertainties, those considered most important are identified here.

Assumptions regarding the modelling of Hg biomagnification include those dealing with the exposure of the receptors to Hg, and those dealing with the effects of Hg on the receptors. Regarding the latter category, some of the sources of uncertainty discussed by USEPA (1997c) could apply to the present study:

- validity of the biomagnification model,
- variability of the calculated BMFs and FCMs,
- selection of the receptors of concern,
- trophic levels at which receptors feed,
- limitations of the toxicity database (with respect to the determination of TRGs), and
- effects of environmental cofactors and multiple stressors.

Among these sources, the greatest contributor to uncertainty in predicting the trophic transfer of mercury could be the large range in the selected BMF and FCM values. These range over 1 - 1.5 orders of magnitude between lowest and highest, and include all BMFs judged to be potentially applicable to the Peninsula Harbour AOC. Further validation of their relevance would require field studies beyond the scope of this assessment. Owing to limitations of the available data and the desire to minimize assumptions about the distributions of the data, a probabilistic approach was not applied to predict receptor mercury concentrations. Rather, low, medium and high FCMs were used to define the range of possible outcomes and intermediate values that "balance" the minimum and maximum rates of biomagnification. Another problem

inherent in the literature-derived BMF data is the difficulty in assigning prey and predator species to discrete trophic levels due to omnivory. When omnivory is integrated with a continuous measurement of trophic position (e.g., using stable isotope methods), estimates of BMFs will generally be higher for each discrete trophic level (Vander Zanden and Rasmussen 1996). Correct determination of trophic levels is also limited by how well the composition of a predator's diet is quantified. Often the information necessary to clearly establish this is not available in the published studies.

Another potentially large source of uncertainty in predictions of [MeHg]rec relates the exposure of receptors to Hg. These assumptions (listed in Section 2.4.3) are recognized as being conservative and limited in their representation of natural conditions. Spatial (and perhaps temporal) heterogeneity in the distribution of THg and MeHg throughout the study area, and aspects of receptor ecology challenge the maximum exposure scenario. A particularly important source of uncertainty could be the assumption of 100% residency of all consumers in the food chain on each site. The degree to which this assumption is unrealistic is proportional to the size of the foraging areas of the receptor species relative to the area of contaminated sediment. Given that the sampling sites could be on the order of  $10 \times 10$  m to  $100 \times 100$  m (= 0.01 to 1.0 ha), the 100% residency assumption is likely unrealistic, at least for the heron and mink. According to data compiled in the Wildlife Exposure Factors Handbook (USEPA 1993), feeding territory sizes for great blue heron range from 0.6 ha to 0.98 km<sup>2</sup>, and distances they travel from heronry to foraging grounds range from 1.8 to 8 km. Home range sizes of mink are reported as 7.8 to1626 ha, and 1.85 to 5.9 km of stream/river. These foraging/home range areas substantially exceed the site boundaries of this study. If areas outside of Jellicoe Cove are not equally Hg-contaminated, the actual [MeHg]<sub>rec</sub> would be lower than those predicted by the models.

The application of tissue Hg residue data that are associated with adverse effects in other studies to evaluate potential risks to the receptors in the present study carries some uncertainty. The data come from different tissues, species, environmental conditions and study types (e.g., field vs. lab). In addition, Hg detoxification and a possible ameliorative effect of dietary selenium may contribute further uncertainty in the extrapolation of results from one set of conditions to another (USEPA 1997c). The TRGs also typically include uncertainty factors. For example, the MeHg

reference concentration (92 ng/g wet wt) incorporates an uncertainty factor of 5 (Environment Canada 2002). Considering these uncertainties and the generally conservative ("worst case") assumption of the trophic transfer model, quantifying the probability that mercury from sediments in Jellicoe Cove could cause adverse effects to specific receptors is difficult. However, even assuming minimum invertebrate Hg burdens and minimum BMFs does not rule out potential risk at some sites.

# 5.3.3 Observed mercury levels in receptors from Peninsula Harbour

Comparisons with observed [Hg] in fishes, heron and mink from the Peninsula Harbour AOC are potential means of validating the predicted [MeHg]<sub>rec</sub>. Although fish and wildlife receptors may not feed as assumed by the prediction model (i.e., focus on single sites), and exposure histories can be difficult to determine, sources of mercury from beyond Jellicoe Cove should be low and contribute little to receptor mercury burdens, because expected foraging areas (at least for the fishes) are substantially smaller than the Jellicoe Cove area (Sec. 4.5.4). Measured [Hg] in recently sampled receptors indicate actual, as opposed to potential, biomagnification.

The most recent surveys of sport fish contaminant levels include collections of Longnose Sucker and Lake Trout from the Peninsula Harbour AOC in 1997 and 2002 (MOE 2002). Concentrations of THg in suckers adjusted for 45 cm length are reported as 630 and 640 ng/g ww for 1997 and 2002, respectively. Concentrations of THg in trout adjusted for 50 cm from the AOC are reported as 140 and 220 ng/g ww for 1997 and 2002, respectively. The measured sucker [THg]s substantially exceed the highest maximum-scenario prediction of 257 ng/g ww (site 6A), while the observed trout values correspond to the higher minimum-scenario and lower intermediate scenario predicted [THg]. Higher Hg levels in sucker than in trout could result from the fact that suckers are more associated with sediments in diet and habit than the trout (Scott and Crossman 1973), and likely have more restricted habitat use areas (Minns et al. 1996).

Observations of [MeHg] in receptor species residing in the Peninsula Harbour AOC suggest that mercury does accumulate in tissues of higher trophic level members of aquatic food webs. It is also evident that the receptor MeHg concentrations predicted from the screening level approach of this assessment are not overshooting actual tissue levels for sucker and trout.

# 5.4 Potential Risk of Adverse Effects of Mercury due to Biomagnification from Sediment

Concluding that mercury originating from contaminated sediment could concentrate in the food web at levels that can cause adverse effects depends on establishing that:

- (1) mercury in invertebrates from sites potentially exposed in the past to industrial effluents is elevated relative to concentrations in invertebrates from reference sites;
- (2) mercury in invertebrates is related to mercury in sediment; and
- (3) predicted levels of mercury in receptors at exposed sites that exceed levels in receptors at reference sites also exceed the TRG.

Results show that at most of the Jellicoe Cove sites THg and, to a lesser degree (especially for the midges), MeHg in both invertebrate taxa are significantly higher than concentrations for the reference sites (Figures 6-9). Measured mercury concentration in invertebrates is related to mercury concentration in sediment for both THg and, importantly, the more biologically available MeHg (Figures 11-12, Table 7). While [MeHg]<sub>sed</sub> is statistically predictive of [MeHg]<sub>inv</sub> for both taxa, the effect is not large for the midges. Alone, [MeHg]<sub>sed</sub> shows a relationship to [MeHg]<sub>inv</sub> for both taxa; however, the addition of other predictors (sediment and overlying water) improves the relationship (Table 7). This it noteworthy because MeHg is the form important to the biomagnification process. Regarding the trophic transfer modelling, *all* Hg-exposure scenarios predict [Hg]<sub>rec</sub> for a group of at least six sites in Jellicoe Cove to exceed TRGs and the maximum [Hg]<sub>rec</sub> for the reference sites. In some of the modelling scenarios, this group involves nine sites (Figures 13-15). These sites can therefore be considered potentially at risk to adverse effects of mercury due to biomagnification from sediment.

#### 5.5 Risk Reduction

The potential for adverse effects to receptors of Hg due to biomagnification from sediment would be eliminated if Hg levels in invertebrates were reduced to concentrations below which feeding fishes do not accumulate Hg to levels greater than the TRG. For an assumed benchmark concentration of MeHg in invertebrates = 26.8 ng/g ww (Sec. 3.4.2.3), six sites (7B, 6A, 5A, 7A,

6C and 3A) have [MeHg]<sub>inv</sub> higher than the benchmark, and are thus candidates for remediation. Because individual receptor fishes are expected to forage within a site, averaging across sites should not give a better estimate of exposure to Hg. However, bird and mammal receptors could be expected to feed on fishes from multiple sites. Therefore, application of the "average concentration with area" analysis is warranted to assess exposure to Hg. Assuming the same critical [MeHg]<sub>inv</sub> (26.8 ng/g ww) for fish-eating birds and mammals, how many sites would need to be Hg-reduced to bring down the average [MeHg]<sub>inv</sub> below the benchmark? If the sediment of a site could be remediated so that the [MeHg]<sub>inv</sub> was lowered to a background level of 10 ng/g ww (which is greater than the all reference site values [except that for PH15] and lower than almost all Jellicoe Cove site values), the effect on the "average concentration with area" curve of serially remediating the 10 most contaminated sites is shown in Figure 18. It is apparent that if the [MeHg]<sub>inv</sub> in the 6 most contaminated sites is reduced to 10 ng/g ww, all areal mean [MeHg]<sub>inv</sub> to which a receptor could be exposed would be less than the critical value of 26.8 ng/g ww.

#### **6** CONCLUSIONS

The purpose of the study was to determine if mercury could potentially be transferred from sediments through benthic invertebrates to fish or wildlife in Jellicoe Cove, Peninsula Harbour. This was addressed by:

- A. Determining if THg and MeHg are bioaccumulated by benthic invertebrates to higher concentrations in Jellicoe Cove sites than in unexposed reference sites;
- B. Testing if concentrations of THg and MeHg in invertebrates are related to concentrations in sediment; and

42

C. Predicting if concentrations of MeHg in consumers of benthic invertebrates and their predators (i.e., trophically linked receptor species) reach levels associated with adverse effects.

The main findings of the study are:

- A. Total and methyl mercury concentrations in sediment at the majority of sites exposed to historical industrial discharges are substantially higher than those at reference sites. The maximum [THg]<sub>sed</sub> observed in Jellicoe Cove sites is 32160 ng/g dw, and most concentrations are ≥ 2000 ng/g, compared to 8 170 ng/g for the reference sites. Methyl mercury levels range up to 21.7 ng/g dw in Jellicoe Cove, and up to 0.60 ng/g dw at reference sites. The spatial pattern of these results is strong evidence for a local (as opposed to regional) source of Hg to the Cove.
- B. Total mercury concentrations in invertebrates (midges, amphipods including gut contents) are higher at the majority (15 23 out of 25) of Jellicoe Cove sites relative to the reference sites. Methyl mercury concentrations in amphipods are higher in 14 Jellicoe Cove sites, whereas midge [MeHg] exceeds the maximum for reference sites at 4 of 25 Jellicoe Cove sites. This indicates that Hg is bioaccumulated by benthic invertebrates in Jellicoe Cove to a greater degree than in uncontaminated reference sites.
- C. Concentrations of total mercury in sediment are strongly predictive of concentrations in amphipods and midges. This suggests that sediment [THg] affects invertebrate [THg]. Methyl mercury in sediment is significantly predictive of methyl mercury in amphipods and midges, but less so than in the total mercury relationship. This suggests that sediment [MeHg] affects invertebrate [MeHg].
- D. In Jellicoe Cove, the proportion of sites predicted to have [MeHg]<sub>rec</sub> higher than the maximum reference site [MeHg]<sub>rec</sub> is about a third (6-9 sites). Almost all sites potentially have receptor [MeHg] elevated above the TRG for the protection fish-consuming wildlife for one or two of the three fish receptors. Among all predictions, [MeHg]<sub>rec</sub> for a group of seven nearly contiguous sites in the southeastern section of Jellicoe Cove is consistently indicated to exceed both reference site conditions and TRGs.

A group of seven sites are potentially at risk of adverse effects of mercury due to biomagnification from sediment. However, the likelihood of realizing the degree of mercury biomagnification predicted for the receptor species is not clear, due to uncertainties associated

with predicting receptor [MeHg] values and conservative assumptions of the assessment. Reducing uncertainty in the predictions of mercury biomagnification in Jellicoe Cove would be best achieved by identifying a more narrow range of appropriate BMFs, and by quantifying the actual exposures of receptors to dietary mercury. Reduction of Hg in invertebrates from the six most contaminated sites to local background concentrations would reduce overall exposure of dietary Hg to receptors from Jellicoe Cove to below levels predicted to result in biomagnification above the TRG.

#### 7 REFERENCES

Ammon, G. 2000. Extension: 'Create Thiessen Polygons', V2.6. For ArcView GIS V3.2, ESRI Inc. Redlands, CA.

Atwell, L., K.A. Hobson, H.E. Welch. 1998. Biomagnification and bioaccumulation of mercury in an arctic marine food web: insights from stable isotope analysis. Can. J. Fish. Aquat. Sci. 55: 1114-1121.

Bechtel Jacobs Company LLC. 1998. Biota sediment accumulation factors for invertebrate review and recommendations for the Oak Ridge Reservation. Prepared for US Department of Energy, Office of Environmental Management, EW 20.

Ben-David, M., L.K. Duffy, G.M. Blundell, and R.T. Bowyer. 2001. Natural exposure of coastal river otters to mercury: Relation to age, diet and survival. Environ. Toxicol. Chem. 20(9): 1986-1992.

Bloom, N.S. 1992. On the chemical form of mercury in edible fish and marine invertebrate tissue. Can. J. Fish. Aquat. Sci. 49: 1010-1017.

Bloom, N.S., and E.A. Crecelius. 1983. Determination of mercury in seawater at sub-nanogram per liter levels. Marine Chemistry 14: 49-59.

Bodaly, R.A., V.L. St. Louis, M.J. Paterson, R.J.P. Fudge, B. D. Hall, D.M. Rosenberg and J.W.M. Rudd. 1997. Bioaccumulation of mercury in the aquatic food chain in newly flooded areas. Pp. 259-287 *in* Sigel, A. and H. Sigel (Eds.), Mercury and its effects on environment and biology. Marcel Dekker, New York.

Borgmann, U., W.P. Norwood, T.B. Reynoldson, and F. Rosa. 2001. Identifying cause in sediment assessments: bioavailability and the Sediment Quality Triad. Can. J. Fish. Aquat. Sci. 58: 950-960.

Bowles, K.C., S.C. Apte, W.A. Maher, M. Kawei, and R. Smith. 2001. Bioaccumulation and biomagnification of mercury in Lake Murray, Papua New Guinea. Can. J. Fish. Aquat. Sci. 58: 888-897.

Braga, M.C.B., D. Shaw, and J.N. Lester. 2000. Mercury modeling to predict contamination and bioaccumulation in aquatic ecosystems. Rev. Environ. Contam. Toxicol. 164: 69-92.

Burt, A. and J. Fitchko. 2001. Jellicoe Cove and Carden Cove sediment quality investigation, 18 p. <u>In</u>: J. Fitchko [Ed.] Peninsula Harbour Feasibility Study Phase II Comprehensive Site Investigation. Interim Report No. 2. Beak International Incorporated Report to the Town of Marathon.

Cantox Environmental Inc. 2001. Human Health Risk Assessment of Emissions from the EPCOR Genesee Power Plant. Appendix E- Literature review on potential for human health effects associated with emissions from coal-fired power plants, with special emphasis on mercury. EPCOR Generation. Edmonton, Alberta. 43 pp.

CCME (Canadian Council of Ministers of the Environment). 1999a. Protocol for the derivation of Canadian tissue residue guidelines for the protection of wildlife that consume aquatic biota. Canadian Council of Ministers of the Environment, Winnipeg [Reprinted in Canadian environmental quality guidelines, Chapter 8, CCME, 1999, Winnipeg.]

CCME (Canadian Council of Ministers of the Environment). 1999b. Canadian sediment quality guidelines for the protection of aquatic life. Mercury. In: Canadian environmental quality guidelines, 1999, Canadian Council of Ministers of the Environment, Winnipeg, MB.

CCME (Canadian Council of Ministers of the Environment). 2000. Canadian tissue residue guidelines for the protection of wildlife consumers of aquatic biota: Methylmercury. In: Canadian environmental quality guidelines, 1999, Canadian Council of Ministers of the Environment, Winnipeg, MB.

Chapman, P.M. 1996. Presentation and interpretation of sediment quality triad data. Ecotoxicology 5: 327-339.

Coker, G.A., C.B. Portt and C.K. Minns. 2001. Morphological and ecological characteristics of Canadian freshwater fishes. Can. MS Rpt. Fish. Aquat. Sci. 2554:iv+86pp.

CWS (Canadian Wildlife Service). 2002. WILDSPACE worldwide web site, species search. <u>http://wildspace.ec.gc.ca</u>.

Des Granges, J.-L., J. Rodrigue, B. Tardif, and M. Laperle. 1998. Mercury accumulation and biomagnification in Ospreys (Pandion haliaetus) in the James Bay and Hudson Bay regions of Québec. Arch. Environ. Contam. Toxicol. 35: 330-341.

Diamond, M.L., D. Mackay, D.J. Poulton, and F.A. Stride. 1994. Development of a mass balance model of the fate of 17 chemicals in the Bay of Quinte. J. Great Lakes Res. 20: 643-666.

Downs, S.G., C.L. MacLeod, and J.N. Lester. 1998. Mercury in precipitation and its relation to bioaccumulation in fish: A literature review. Water, Air, and Soil Pollution 108: 149-187.

Draper, N.R., and H. Smith. 1998. Applied regression analysis, 3<sup>rd</sup> Ed. John Wiley & Sons, Inc., New York, NY.

Duncan, G.A., and G.G. LaHaie. 1979. Size analysis procedures used in the Sedimentology laboratory. Unpublished Report, Hydraulics Division, National Water Research Institute, Burlington, Ontario, Canada, unpublished data.

Environment Canada. 1997. Canadian Sediment Quality Guidelines for Mercury. Guidelines Division, Environment Canada. Hull, Québec. 106 pp. + appendices.

Environment Canada. 2002. Canadian Tissue Residue Guidelines for the Protection of Consumers of Aquatic Life: Methylmercury. Scientific Supporting Document. Ecosystem Health: Science-based Solutions Report No. 1-4. National Guidelines and Standards Office, Environmental Quality Branch, Environment Canada. Ottawa. 188 pp.

Francis, D.R., D.J. Jude, and J.A. Barres. 1998. Mercury Distribution in the biota of a Great Lakes estuary: Old Woman Creek, Ohio. J. Great Lakes Res. 24(3): 595-607.

Freshman, J.S., and C.A. Menzie. 1996. Two wildlife exposure models to assess impacts at the individual and population levels and the efficacy of remedial action. Human and Ecological Risk Assessment 3: 481-498.

Gobas, F., and H.A. Morrison. 2000 Bioconcentration and biomagnification in the aquatic environment. Pages 189-231 in Handbook of Property Estimation Methods for Chemicals. CRC Press LLC.

Grapentine, L., J. Anderson, D. Boyd, G.A. Burton, C. Debarros, G. Johnson, C. Marvin, D. Milani, S. Painter, T. Pascoe, T. Reynoldson, L. Richman, K. Solomon, and P.M. Chapman. 2002. A decision making framework for sediment assessment developed for the Great Lakes. Human and Ecological Risk Assessment 8: 1641-1655.

Grapentine, L., D. Milani, and S. Mackay. 2003. A study of the bioavailability of mercury and the potential for biomagnification from sediment in the St. Lawrence River (Cornwall) area of concern. Draft Report, National Water Research Institute, Environment Canada, Burlington, Ontario. April 2003.

Greenfield, B.K., T.R. Hrabik, C.J. Harvey, and S.R. Carpenter. 2001. Predicting mercury levels in yellow perch: Use of water chemistry, trophic ecology, and spatial traits. Can. J. Fish. Aquat. Sci. 58: 1419-1429.

Halbrook, R.S., L.A. Lewis, R.I. Aulerich, and S.J. Bursian. 1997. Mercury accumulation in mink fed fish collected from streams on the Oak Ridge Reservation. Arch. Environ. Contam. Toxicol. 33: 312-316.

Horvat, M., L. Liang, and N. Bloom. 1993. Comparison of distillation with other current isolation methods for the determination of methyl mercury compounds in low level environmental samples. Part II. Water. Anal. Chim. Acta, 282: 153 - 168.

Hughes, K.D., P.J. Ewins, and K.E. Clark. 1997. A comparison of mercury levels in feathers and eggs of Osprey (Pandion haliaetus) in the North American Great Lakes. Arch. Environ. Contam. Toxicol.33: 441-452.

Krantzberg, G., J.H. Hartig, and M.A. Zarull. 2000. Sediment management: Deciding when to intervene. Environmental Science and Technology / News, 1 January 2000, Pp. 22A-27A.

Lawrence, A.L., and R.P. Mason. 2001. Factors controlling the bioaccumulation of mercury and methylmercury by the estuarine amphipod *Leptocheirus plumulosus*. Environ. Pollut. 111: 217-231.

Legendre, P., and L. Legendre. 1998. Numerical ecology, 2nd Edition. Elsevier, New York, NY.

Liang, L., M. Horvat, and N.S. Bloom. 1994. An improved speciation method for mercury by GC/CVAFS after aqueous phase ethylation and room temperature precollection. Talanta. 41: 371 -379.

Long, E.R., and P.M. Chapman. 1985. A sediment quality triad: measures of sediment contamination, toxicity and infaunal community composition in Puget Sound. Marine Pollution Bulletin 16: 405-415.

Mason, R.P., J.-M. Laporte, and S. Andres. 2000. Factors controlling the bioaccumulation of mercury, methylmercury, arsenic, selenium, and cadmium by freshwater invertebrates and fish. Arch. Environ. Contam. Toxicol. 38: 283-297.

McArdle, B.H. 1988. The structural relationship: regression in biology. Can. J. Zool. 66: 2329-2339.

Meyer, M.W. 1998. Ecological risk of mercury in the environment: The inadequacy of "the best available science". *Editorial*. Environ. Toxicol. Chem. 17: 137-138.

Milani, D., L.C. Grapentine, and T.B. Reynoldson. 2002. BEAST assessment of sediment quality in Peninsula Harbour, Lake Superior. National Water Research Institute report. (draft - March 2002).

Minitab 2000. MINITAB User's guide2: Data analysis and quality tools. Minitab Inc., State College, PA. [ISBN 0-925636-44-4]

Minns, C. K., R. G. Randall, J. E. Moore, and V. W. Cairns. 1996. A model simulating the impact of habitat supply limits on northern pike, *Esox lucius*, in Hamilton Harbour, Lake Ontario. Canadian Journal of Fisheries and Aquatic Sciences 53(Suppl 1):20-34.

MOE (Ministry of the Environment). 2002. Evaluation of Trends in Mercury Concentration in Sport Fish from Peninsula Harbour. Unpublished MOE technical memorandum, November 18, 2002.

MOE (Ministry of the Environment). 2003. The 2003-2004 guide to eating Ontario sport fish. Environmental Monitoring and Reporting Branch, Etobicoke, Ontario. 126 pp.

NCASI (National Council for Air and Stream Improvement). 1999. Guidance on the site-specific evaluation of bioaccumulation factors under the Great Lakes Water Quality Initiative. Technical Bulletin # 777. Research Triangle Park, North Carolina. National Council for Air and Stream Improvement, Inc.

Neumann, R.M., and S.M. Ward. 1999. Bioaccumulation and biomagnification of mercury in two warmwater fish communities. J. Freshwater Ecol. 14(4): 487-497.

Paterson, M.J., J.W.M. Rudd, and V. St. Louis. 1998. Increases in total and methylmercury in zooplankton following flooding of a peatland reservoir. Environ. Sci. Technol. 32: 3868-3874.

Peninsula Harbour RAP Team. 1991. Stage 1:Environmental conditions and problem definition. ISBN: 0-7729-9035-2.

Peninsula Harbour RAP Team. 1998. Stage 2: Remedial strategies for ecosystem restoration (draft). 54 pp. + Appendices.

Persaud, D., R. Jaagumagi, and A. Hayton. 1993. Guidelines for the protection and management of aquatic sediment quality in Ontario. Ontario Ministry of the Environment and Energy. August 1993.

Power, M., G.M. Klein, K. Guiguer, and M. Kwan. 2002. Mercury accumulation in the fish community of a sub-arctic lake in relation to trophic position and carbon sources. Unpublished submission to J. Appl. Ecol. 12 pp.

Reynoldson, T.B., R.C. Bailey, K.E. Day, and R.H. Norris. 1995. Biological guidelines for freshwater sediment based on BEnthic Assessment of SedimenT (the BEAST) using a multivariate approach for predicting biological state. Australian Journal of Ecology 20: 198-219.

Reynoldson, T.B., K.E. Day, and T. Pascoe. 2000. The development of the BEAST: a predictive approach for assessing sediment quality in the North American Great Lakes. In: Assessing the biological quality of fresh waters. RIVPACS and other techniques. J.F. Wright, D.W. Sutcliffe, and M.T. Furse (Eds). Freshwater Biological Association, UK. pp. 165 - 180.

Sample, B.E., and G.W. Suter. 1999. Ecological risk assessment in a large river-reservoir: 4. Piscivorous wildlife. Environ. Toxicol. Chem. 18 (4): 610-620.

Scott, W.B. and E.J. Crossman. 1973. Freshwater Fishes of Canada. Bulletin #184. Fisheries Research Board of Canada. Environment Canada, Ottawa. 966 pp.

Snodgrass, J.W., C.H. Jagoe, A.L. Bryan, H.A. Brant, and J. Burger. 2000. Effects of trophic status and wetland morphology, hydroperiod, and water chemistry on mercury concentrations in fish. Can. J. Fish. Aquat. Sci. 57: 171-180.

Suchanek, T.H., B.A. Lamphere, L.H. Mullen, C.E. Woodmansee, P.J. Richerson, D.G. Slotton, L.A. Woodward and E.J. Harner. 2000. Mercury in lower trophic levels of the Clear Lake aquatic ecosystem, California. Pp. 249-268 in Scow, K.M., G.E. Fogg, D.E. Hinton and M.L. Johnson (eds.), Integrated assessment of ecosystem health. Lewis Publishers, Boca Raton, FL.

Suedel, B.C., J.A. Boraczek, R.K. Peddicord, P.A. Clifford, and T.M. Dillon. 1994. Trophic transfer and biomagnification potential of contaminants in aquatic ecosystems. Rev. Environ. Contam. Toxicol. 136: 21-89.

Thomann, R.V., J.D. Mahony, and R. Mueller. 1995. Steady-state model of biota sediment accumulation factor for metals in two marine bivalves. Environ. Toxicol. Chem. 14: 1989-1998.

Traas, T.P., R. Luttik, and H. Mensink. 2002. Mapping risks of heavy metals to birds and mammals using species sensitivity distributions. Pp. 403-419 *in* Posthuma, L., G.W. Suet and T.P. Traas (eds.), Species sensitivity distributions in ecotoxicology, Lewis Publishers, Boca Raton, FL, USA.

Tremblay, A., M. Lucotte, and I. Rheault. 1996a. Methylmercury in a benthic food web of two hydroelectric reservoirs and a natural lake of northern Quebec (Canada). Wat. Air Soil Pollut. 91: 255-269.

Tremblay, A., M. Lucotte, M. Meili, L. Cloutier, and P. Pichet. 1996b. Total mercury and methylmercury contents of insects from boreal lakes: Ecological, spatial and temporal patterns. Water Qual. Res. J. Canada 31: 851-873.

USEPA/CE (United States Environmental Protection Agency/Corps of Engineers). 1981. Procedures for handling and chemical analysis of sediment and water samples. Environmental laboratory, US Army Engineer Waterways Experiment Station, Vicksburg, Mississippi, pp 3-118. EPA/CE-81-1.

USEPA. 1993. Wildlife exposure factors handbook: Volumes I and II. USEPA Office of Research and Development, Washington, DC, December 1993. EPA/600/R-93/187.

USEPA. 1997a. Mercury Study Report to Congress Vol. 3, Fate and Transport of Mercury in the Environment- December, 1997. EPA-452/R-97-005. USEPA Office of Air Quality Planning and Standards and Office of Research and Development, Washington DC. Appendix D- Aquatic Bioaccumulation Factor Development and Uncertainty Analysis. 34 pp.

USEPA. 1997b. Mercury Study Report to Congress Vol. 6, An Ecological Assessment for Anthropogenic Mercury Emissions in the United States- Dec. 1997. EPA-452/R-97-008. USEPA Office of Air Quality Planning and Standards and Office of Research and Development, Washington DC.

USEPA. 1997c. Mercury Study Report to Congress Vol. 7, Characterization of Human Health and Wildlife Risks from Mercury Exposure in the United States. EPA-452/R-97-009. USEPA Office of Air Quality Planning and Standards and Office of Research and Development, Washington DC.

USEPA. 2000. Bioaccumulation Testing and Interpretation for the Purpose of Sediment Quality Assessment: Status and Trends. EPA-823-R-00-001. USEPA Bioaccumulation Analysis Workgroup, Washington DC.

USEPA. 2001. Water Quality Criterion for the Protection of Human Health. EPA-823-R-01-001. Office of Science and Technology and Office of Water. USEPA, Washington, DC.

Vander Zanden, M.J., and J.B. Rasmussen. 1996. A trophic position model of pelagic food webs: Impact on contaminant bioaccumulation in lake trout. Ecological Monographs 66(4): 451-477.

Watras, C.J., R.C. Back, S. Halvorsen, R. Hudson, K.A. Morrison, and S.P. Wente. 1998. Bioaccumulation of mercury in pelagic freshwater food webs. Sci. Total Environ. 219: 183-208.

Wolfe, M.F., S. Schwarzbach, and R. A. Sulaiman. 1998. Effects of mercury on wildlife: a comprehensive review. Environ. Toxicol. Chem. 17: 146-160.















3. Total mercury concentration in sediment (ng/g dw) collected from Jellicoe Cove and reference sites. The dotted line indicates the 99<sup>th</sup> percentile for reference sites.



Figure 4. N

Methyl mercury concentration in sediment (ng/g dw) collected from Jellicoe Cove and reference sites. The dotted line indicates the  $99^{th}$  percentile for reference sites.





Log scatter plot of methyl mercury versus total mercury in sediment. The 95% confidence interval for the regression equation is shown by the dashed lines.

Midges



Figure 6.Total mercury concentration in midges (ng/g dw) collected from Jellicoe Coveand reference sites. The dotted line indicates the 99<sup>th</sup> percentile for reference sites.

1000 [Methyl Hg] (ng/g dry wt) 100 10 -1 PH1 PH2 PH14 PH14 PH14 PH15 PH16 PH17 PH:18 JC3D JC48 JC48 JC48 JC48 JC58 JC58 JC58 JC6A JC6B JC7B JC7B PH20 JC3C JC2B C2D 020 PH21 C2A Jellicoe Cove Reference Site



Methyl mercury concentration in midges (ng/g dw) collected from Jellicoe Cove and reference sites. The dotted line indicates the 99<sup>th</sup> percentile for reference sites.

# Midges





Figure 8.

Total Hg concentration in amphipods (ng/g dw) collected from Jellicoe Cove and reference sites. The dotted line indicates the 99<sup>th</sup> percentile for reference sites.



Amphipods

Figure 9.

Methyl Hg concentration in amphipods (ng/g dw) collected from Jellicoe Cove and reference sites. The dotted line indicates the 99<sup>th</sup> percentile for reference sites.



**Figure 10.** Biota-sediment accumulation factors for invertebrate taxa from Jellicoe Cove and reference sites. Boxplots of BSAFs (= $[Hg]_{inv} / [Hg]_{sed}$ ) for each taxon within areas show 90<sup>th</sup> and 10<sup>th</sup> percentile (whiskers above and below boxes), inter-quartile ranges (box boundaries closest and farthest from zero), median (solid horizontal line within boxes) and mean (dotted line).






**Figure 12.** Relationships between methyl mercury in midges and amphipods versus methyl mercury in sediment. Separate regression lines are shown for each taxon.



**Figure 14.** "Intermediate" predictions of methyl mercury concentrations (ng/g wet weight) in 5 receptor species for Jellicoe Cove and reference sites. These are from calculations using mean [MeHg]<sub>inv</sub> and medium BMFs. Maps on the left show geophaphic patterns of predicted receptor [MeHg] for Jellicoe Cove sites. Site symbol area is proportional to the for the [MeHg]<sub>rec</sub> site. Symbol colour indicates relation to reference sites predictions and the applicable tissue residue guideline:  $\bullet = [MeHg]_{rec} < \max$ . for ref. sites, < TRG;  $\bullet = [MeHg]_{rec} < \max$ . for ref. sites, > TRG;  $\bullet = [MeHg]_{rec} > \max$ . for ref. sites, < TRG;  $\bullet = [MeHg]_{rec} > \max$ . for ref. sites, > TRG. Charts on the right compare predicted [MeHg] among receptors and between reference (green bars) and Jellicoe Cove (gray bars) sites. Highest predicted [MeHg] for references sites is indicated by green dashed line. The tissue residue guideline (92 ng/g ww, Environment Canada 2002; CCME 2000), where applicable, is shown by a red dotted line.



Figure 13. "Minimum" predictions of methyl mercury concentrations (ng/g wet weight) in 5 receptor species for Jellicoe Cove and reference sites. These are from calculations using minimum [MeHg]<sub>inv</sub> and minimum BMFs. Maps on the left show geophaphic patterns of predicted receptor [MeHg] for Jellicoe Cove sites. Site symbol area is proportional to the [MeHg]<sub>rec</sub> for the site. Symbol colour indicates relation to reference sites predictions and the applicable tissue residue guideline:  $\bullet = [MeHg]_{rec} < \max$ . for ref. sites, < TRG;  $\bullet = [MeHg]_{rec} < \max$ . for ref. sites, < TRG;  $\bullet = [MeHg]_{rec} < \max$ . for ref. sites, < TRG;  $\bullet = [MeHg]_{rec} > \max$ . for ref. sites, < TRG;  $\bullet = [MeHg]_{rec} > \max$ . for ref. sites, < TRG;  $\bullet = [MeHg]_{rec} > \max$ . for ref. sites, < TRG;  $\bullet = [MeHg]_{rec} > \max$ . for ref. sites, < TRG;  $\bullet = [MeHg]_{rec} > \max$ . for ref. sites, < TRG;  $\bullet = [MeHg]_{rec} > \max$ . for ref. sites, < TRG;  $\bullet = [MeHg]_{rec} > \max$ . for ref. sites, < TRG;  $\bullet = [MeHg]_{rec} > \max$ . for ref. sites, < TRG. Charts on the right compare predicted [MeHg] among receptors and between reference (green bars) and Jellicoe Cove (gray bars) sites. Highest predicted [MeHg] for references sites is indicated by green dashed line. The tissue residue guideline (92 ng/g ww, Environment Canada 2002; CCME 2000), where applicable, is shown by a red dotted line.



**Figure 14.** "Intermediate" predictions of methyl mercury concentrations (ng/g wet weight) in 5 receptor species for Jellicoe Cove and reference sites. These are from calculations using mean [MeHg]<sub>inv</sub> and medium BMFs. Maps on the left show geophaphic patterns of predicted receptor [MeHg] for Jellicoe Cove sites. Site symbol area is proportional to the for the [MeHg]<sub>rec</sub> site. Symbol colour indicates relation to reference sites predictions and the applicable tissue residue guideline:  $\bullet = [MeHg]_{rec} < \max$ . for ref. sites, < TRG;  $\bullet = [MeHg]_{rec} < \max$ . for ref. sites, > TRG;  $\bullet = [MeHg]_{rec} > \max$ . for ref. sites, < TRG;  $\bullet = [MeHg]_{rec} > \max$ . for ref. sites, > TRG. Charts on the right compare predicted [MeHg] among receptors and between reference (green bars) and Jellicoe Cove (gray bars) sites. Highest predicted [MeHg] for references sites is indicated by green dashed line. The tissue residue guideline (92 ng/g ww, Environment Canada 2002; CCME 2000), where applicable, is shown by a red dotted line.

![](_page_77_Figure_0.jpeg)

**Figure 15.** "Maximum" predictions of methyl mercury concentrations (ng/g wet weight) in 5 receptor species for Jellicoe Cove and reference sites. These are from calculations using maximum [MeHg]<sub>inv</sub> and maximum BMFs. Maps on the left show geophaphic patterns of predicted receptor [MeHg] for Jellicoe Cove sites. Site symbol area is proportional to the for the [MeHg]<sub>rec</sub> site. Symbol colour indicates relation to reference sites predictions and the applicable tissue residue guideline:  $\bullet = [MeHg]_{rec} < \max$ . for ref. sites, < TRG;  $\bullet = [MeHg]_{rec} < \max$ . for ref. sites, < TRG;  $\bullet = [MeHg]_{rec} < \max$ . for ref. sites, < TRG;  $\bullet = [MeHg]_{rec} > \max$ . for ref. sites, < TRG;  $\bullet = [MeHg]_{rec} > \max$ . for ref. sites, > TRG. Charts on the right compare predicted [MeHg] among receptors and between reference (green bars) and Jellicoe Cove (gray bars) sites. Highest predicted [MeHg] for references sites is indicated by green dashed line. The tissue residue guideline (92 ng/g ww, Environment Canada 2002; CCME 2000), where applicable, is shown by a red dotted line.

![](_page_78_Figure_0.jpeg)

**Figure 16.** Spatial boundaries of invertebrate and sediment sampling sites as defined by Thiessen polygons with 75-m buffers. All points within each polygon are closer to the enclosed site than to any other site.

![](_page_79_Figure_0.jpeg)

**Figure 17.** "Average concentration with area curve" for Jellicoe Cove sites. Points represent the mean [MeHg]<sub>inv</sub> and summed areas of all sites labelled at, and to the left of, the point. Vertical solid lines show estimated foraging areas for 3 fish receptors. (Longnose sucker and yellow perch areas are too similar to be distinctly shown.) The horizonal dashed line is the estimated critical [MeHg]<sub>inv</sub> for sucker bioaccumulation (i.e., the [MeHg]<sub>inv</sub> at which the predicted [MeHg] in sucker would equal the tissue residue guideline).

![](_page_80_Figure_0.jpeg)

**Figure 18.** Effects on the "average concentration with area curve" of reducing methyl mercury concentrations in the 10 most contaminated sites of Jellicoe Cove. Assumed [MeHg]<sub>inv</sub> reductions were to 10 ng/g ww, which is assumed to be the approximate background concentration for the area.

| Site          | Depth (m)                             | Northing  | Easting  |
|---------------|---------------------------------------|-----------|----------|
| Reference     |                                       | · · · · · |          |
| PH1           | 2.7                                   | 5385705   | 548946   |
| PH2           | 1.2                                   | 5385168   | 549731   |
| PH11          | 26.9                                  | 5387649   | 548785   |
| PH13          | 13.2                                  | 5402907   | 526305   |
| PH14          | 43.6                                  | 5403841   | 520730   |
| PH15          | 8.4                                   | 5399005   | 544152   |
| PH16          | 27.4                                  | 5408595   | 461938   |
| PH17          | 41.0                                  | 5410755   | 457816   |
| PH18          | 23.3                                  | 5406082   | 444807   |
| PH20          | 26.2                                  | 5403155   | 498041   |
| PH21          | 29.4                                  | 5401241   | 540354   |
| PH22          | 64.8                                  | 5400026   | 540285   |
| PH26          | 38.4                                  | 5398319   | 534292   |
| Jellicoe Cove | · · · · · · · · · · · · · · · · · · · |           |          |
| JC2A          | 7.5                                   | 5396712.0 | 544366.8 |
| JC3A          | 7.7                                   | 5396701.6 | 544382.0 |
| JC4A          | 10.6                                  | 5396710.1 | 544411.9 |
| JC5A          | 7.5                                   | 5396681.4 | 544431.8 |
| JC6A          | 6.9                                   | 5396656.1 | 544443.0 |
| JC7A          | 6.8                                   | 5396628.3 | 544453.6 |
| JC1B          | 9.0                                   | 5396753.1 | 544291.0 |
| JC2B          | 12.2                                  | 5396786.6 | 544342.9 |
| JC3B          | _b                                    | 5396779.7 | 544389.0 |
| JC4B          | 12.0                                  | 5396767.4 | 544444.8 |
| JC5B          | 11.0                                  | 5396734.4 | 544484.9 |
| JC6B          | 7.5                                   | 5396687.6 | 544515.5 |
| JC7B          | <b>Ä.8</b>                            | 5396639.5 | 544526.5 |
| JC1C          | 10.0                                  | 5396831.5 | 544248.0 |
| JC2C          | 15.0                                  | 5396851.1 | 544325.5 |
| JC3C          | 13.6                                  | 5396855.0 | 544402.5 |
| JC4C          | 12.6                                  | 5396830.4 | 544478.4 |
| JC5C          | 11.2 -                                | 5396780.4 | 544538.6 |
| JC6Ċ          | 8.0                                   | 5396710.5 | 544590.1 |
| JC7C          | 5.3                                   | 5396655.3 | 544603.1 |
| JC1D          | 15.0                                  | 5396883.0 | 544215.9 |
| JC2D          | 16.9                                  | 5396920.8 | 544310.1 |
| JC3D          | 14.6                                  | 5396925.1 | 544414.7 |
| JC4D          | 13.5                                  | 5396892.6 | 544511.1 |
| JC5D          | 11.8                                  | 5396832.8 | 544598 5 |

Table 1.Tissue and sediment sampling site co-ordinates (UTM NAD 83) and site depth forJellicoe Cove and reference sites.

| Geographical | Water            | Sediment                     | Biota          |
|--------------|------------------|------------------------------|----------------|
| Northing     | Temperature      | Total Mercury                | Total Mercury  |
| Easting      | Conductivity     | Methyl Mercury               | Methyl Mercury |
| Site Depth   | pН               | Total Phosphorus             |                |
|              | Dissolved Oxygen | Total Nitrogen               |                |
|              |                  | Total Organic Carbon         |                |
|              |                  | Fe, Mn                       |                |
|              |                  | % Clay, Silt, Sand, & Gravel |                |

Table 2.List of environmental variables measured at each site.

Ĭ

.

ľ

**Table 3.**Literature derived biomagnification factors (BMFs) for the receptors of concern. For each receptor, the number oftrophic levels removed from benthic invertebrates (Level 1) is indicated. For each transfer between trophic levels, the lowest, mediumand highest estimated BMFs (from Table A1) are used in calculating the food chain multipliers (FCMs). Where receptors have onlyone BMF value, the same value is used for the low, medium, and high FCM calculations. See text for further details.

| Receptor         | Predator Type                        | Trophic levels of transfer | BMFs (low   med   high) of transfer | Food chain multipiers (low med   high) |  |  |
|------------------|--------------------------------------|----------------------------|-------------------------------------|----------------------------------------|--|--|
| Longnose Sucker  | benthivorous /<br>planktivorous fish | 1 - 2                      | 3.43                                | 3.43                                   |  |  |
| Yellow Perch     | small piscivorous fish               | 1 - 2 - 3                  | 3.43 x 5                            | 17.15                                  |  |  |
| Adult Lake Trout | large piscivorous fish               | 1 - 2 - 3                  | 3.43 x (1.12   3.20   32.40)        | 3.84   10.98   111.1                   |  |  |
|                  |                                      | 1 - 2 - 3 - 4              | 3.43 x 5 x 2.40                     | 41.16                                  |  |  |
| Great Blue Heron | piscivorous bird                     | 1 - 2 - 3                  | 3.43 x 6.80                         | 23.32                                  |  |  |
| · · ·            |                                      | 1 - 2 - 3 - 4              | 3.43 x 5 x (0.85   2.37   6.80)     | 14.58   40.65   116.6                  |  |  |
| Mink             | piscivorous mammal                   | 1 - 2 - 3                  | 3.43 x (1.70   5.20   22.64)        | 5.83   17.84   77.66                   |  |  |
|                  |                                      | 1 - 2 - 3 - 4              | 3.43 x 5 x (1.70   4.70   10.00)    | 29.16   80.61   171.5                  |  |  |

Table 4.Total and methyl mercury in sediment (ng/g wet and dry weight –recovery corrected)collected from Jellicoe Cove and reference sites. Within-site replicates for the four randomly selectedquality assurance/quality control sites are denoted by a "-" + replicate number. For data analyses, meansof replicates are used. (F) = Flett results, (C) = Caduceon results (subset of sites).

| Area                                  | Site   | Total Hg (F)<br>(ng/g)            | Total Hg (F)<br>(ng/g)<br>dry wt | Total Hg (C)<br>(ng/g)<br>drv wt | Methyl Hg (F)<br>(ng/g)<br>wet wt          | Methyl Hg (F)<br>(ng/g)<br>dry wt |
|---------------------------------------|--------|-----------------------------------|----------------------------------|----------------------------------|--------------------------------------------|-----------------------------------|
|                                       |        | wet me                            | diy in                           | <u> </u>                         |                                            | <u> </u>                          |
| Defenses                              | DUA    | 40                                | 66                               |                                  | 0.093                                      | 0 154                             |
| Reference                             |        | 40                                | 00                               | 54                               | 0.000                                      | 0.134                             |
| · · · · · · · · · · · · · · · · · · · |        |                                   | 10                               |                                  | 0.103                                      | 0.140                             |
|                                       |        | 24                                | 13                               |                                  | 0.110 (0.100)                              | 0.101 (0.241)                     |
| ·                                     |        | 34                                | 47                               |                                  | 0.010                                      | 0.010                             |
| · · · · ·                             |        | 40                                | 63                               |                                  | 0.100                                      | 0.210                             |
| · · · · · · · · · · · · · · · · · · · |        |                                   | 43                               |                                  | 0.091 (0.129) a                            | 0 152 (0 215) a                   |
|                                       |        | 71                                |                                  | <u></u>                          | 0.169                                      | 0.218                             |
|                                       |        | 18 (22) <sup>a</sup>              | 51 (61) <sup>a</sup>             |                                  | 0.070                                      | 0.195                             |
|                                       |        | 10 (22)                           | 40                               | <u> </u>                         | 0.066                                      | 0.175                             |
|                                       |        |                                   |                                  | ·                                | 0.066                                      | 0.192                             |
|                                       |        | 9                                 | 14                               |                                  | 0.008                                      | 0.013                             |
|                                       |        | 10                                | 15                               |                                  | 0.075 (0.060)*                             | 0.113 (0.091) <sup>a</sup>        |
|                                       |        | 82                                | 169                              |                                  | 0.293                                      | 0.602                             |
|                                       |        | 41                                | 70                               |                                  | 0.080                                      | 0.136                             |
|                                       | 1024   | 120 (100)8                        | 191 /174) <sup>a</sup>           | 30                               | 0 172 (0 180) <sup>a</sup>                 | 0.275 (0.287) <sup>a</sup>        |
| Jellicoe Cove                         |        | 76                                | 114                              | 315                              | 0.413 (0.183) <sup>a</sup>                 | 0.618 (0.273) <sup>a</sup>        |
|                                       | JUSA   | /0                                |                                  |                                  | (0.060) <sup>b</sup> (0.148) <sup>bc</sup> | $(0.090)^{b} (0.221)^{bc}$        |
|                                       | JC4A   | 2015                              | 3229                             |                                  | 5.61                                       | 8.99                              |
| · · · · ·                             | JC5A   | 2186                              | 3595                             | 4622                             | 2.77 (3.07) <sup>a</sup>                   | 4.56 (5.04) <sup>a</sup>          |
|                                       | JC6A   | - a                               | _d                               | -                                | _d                                         | _d                                |
|                                       | JC7A   | 3863                              | 5442                             | -                                | 3.06 (2.51) <sup>c</sup>                   | 4.30 (3.53) <sup>c</sup>          |
|                                       | JC1B   | 102                               | 138                              | -                                | 0.179 (0.430) <sup>a</sup>                 | 0.243 (0.584) <sup>a</sup>        |
|                                       |        |                                   | · ·                              |                                  | (1.29) <sup>°</sup>                        | (1.75)                            |
|                                       | JC2B   | 1317                              | 2008                             | 2867                             | 2.18                                       | 3.32                              |
|                                       | JC3B   | 12754 (13460) <sup>a</sup>        | 23118 (24397) <sup>a</sup>       | -                                | 9.76                                       | 17.7                              |
|                                       | JC4B   | 13822                             | 28094                            | 7874                             | 4.60                                       | 9.44                              |
|                                       | JC5B   | 10514                             | 21711                            | -                                | 4.51                                       | 9.32                              |
|                                       | JC6B   | 9599                              | 16647                            |                                  | 4.98 (5.31)                                | 8.63 (9.21)                       |
|                                       | JC7B   | 20998                             | 32160                            |                                  |                                            | 7.07                              |
| 2                                     | JC1C   | /48                               | 1152                             |                                  | 5.22<br>6.57 (6.20) a                      | 115(110) <sup>a</sup>             |
|                                       | JC2C   | /595                              | 13289                            | 14545                            | 6.01                                       | 10.6                              |
|                                       |        | 11299                             | 25120 (22206) <sup>a</sup>       | 20149                            | 11.3                                       | 22.3                              |
| <u></u>                               |        | 12/38 (11307)                     | 25150 (22300)                    | 20140                            | - 10.5                                     | 19.2                              |
|                                       | JC4C-2 | 0192                              | 15661                            |                                  | 12.4                                       | 23.7                              |
|                                       | 1040-3 | 0102<br>0721 (12095) <sup>a</sup> | 17768 (22107) <sup>a</sup>       |                                  | 10.3 (9.86) <sup>a</sup>                   | 18.8 (18.0) <sup>a</sup>          |
|                                       |        | 8738                              | 16498                            |                                  | 4.95 (4.85) <sup>a</sup>                   | 9.35 (9.15) <sup>a</sup>          |
|                                       | 1060-1 | 11287 (11041) <sup>a</sup>        | 20414 (19969)*                   | -                                | 5.33                                       | 9.63                              |
|                                       | 1060-2 | 7482                              | 13909                            |                                  | 5.60 (5.58) <sup>c</sup>                   | 10.4 (10.4) <sup>c</sup>          |
|                                       |        | 8808                              | 16604                            |                                  | 6.47                                       | 12.2                              |
| · · · · · · · · · · · · · · · · · · · |        | 534                               | 791                              |                                  | 2.63                                       | 3.89                              |
|                                       | JC2D   | 3965                              | 6728                             | -                                | 8.50                                       | 14.4                              |
|                                       | JC3D   | 4951                              | 8714                             |                                  | 6.08                                       | 10.7                              |
|                                       | JC4D   | 1295                              | 3255                             | 5733                             | 2.42                                       | 6.08                              |
|                                       | JC5D-1 | 2746                              | 5722                             |                                  | 4.87                                       | 10.2                              |
|                                       | JC5D-2 | 2746                              | 6115                             |                                  | 4.02                                       | 8.96                              |
| · · · · · · · · · · · · · · · · · · · | JC5D-3 | 2178                              | 4810                             | -                                | 5.33                                       | 118                               |

<sup>a</sup> laboratory duplicate, <sup>b</sup> lab triplicate, <sup>c</sup> repeat analysis, <sup>d</sup> data not available

|                                       |      | BIOTA –                        | Total Hg               |  |  |
|---------------------------------------|------|--------------------------------|------------------------|--|--|
| Area                                  | Site | Midge                          | Amphipod               |  |  |
|                                       |      | Solution and the second second |                        |  |  |
| Reference                             | PH1  | 56                             | 43 (36) <sup>a</sup>   |  |  |
|                                       | PH2  | 76                             | 51                     |  |  |
|                                       | PH11 | 66                             | 53                     |  |  |
|                                       | PH13 | 43                             | 53 (57) <sup>a</sup>   |  |  |
|                                       | PH14 | 93                             | 89 (105) <sup>a</sup>  |  |  |
| · ·                                   | PH15 | 350                            | 215                    |  |  |
|                                       | PH16 | 394                            | 59                     |  |  |
|                                       | PH17 | 400                            | 73                     |  |  |
|                                       | PH18 | 42                             | 47                     |  |  |
|                                       | PH20 | 170                            | 54                     |  |  |
|                                       | PH21 | 63                             | 55                     |  |  |
|                                       | PH22 | 1388 (1230) <sup>a</sup>       | 166                    |  |  |
| · · · · · · · · · · · · · · · ·       | PH26 | 875                            | 135                    |  |  |
| Jellicoe Cove                         | JC2A | 279                            | 185                    |  |  |
|                                       | JC3A | 700                            | 211                    |  |  |
|                                       | JC4A | 1218                           | 710                    |  |  |
|                                       | JC5A | 5457 (4887) <sup>a</sup>       | 833                    |  |  |
| · · · · · · · · · · · · · · · · · · · | JC6A | 1251                           | 358                    |  |  |
|                                       | JC7A | 2038                           | 539                    |  |  |
|                                       | JC1B | 379                            | 313                    |  |  |
|                                       | JC2B | 2286                           | 540                    |  |  |
|                                       | JC3B | 1456                           | 661                    |  |  |
|                                       | JC4B | 2558                           | 430                    |  |  |
|                                       | JC5B | 1356                           | 936                    |  |  |
|                                       | JC6B | 4268 (5328) <sup>a</sup>       | 1001                   |  |  |
|                                       | JC7B | - 4193                         | 2075                   |  |  |
|                                       | JC1C | 894                            | 543                    |  |  |
|                                       | JC2C | 1504                           | 692 (640) <sup>a</sup> |  |  |
|                                       | JC3C | 1487                           | 642                    |  |  |
|                                       | JC4C | 1835                           | 637                    |  |  |
|                                       | JC5C | 1003                           | 1074                   |  |  |
| · · · · · · · · · · · · · · · · · · · | JC6C | 1842                           | 806                    |  |  |
|                                       | JC7C | 2852                           | 743 (792) <sup>a</sup> |  |  |
|                                       | JC1D | 1007                           | 330                    |  |  |
|                                       | JC2D | 2157                           | 343                    |  |  |
|                                       | JC3D | 1514                           | 544                    |  |  |
|                                       | JC4D | 1108                           | 395                    |  |  |
|                                       | JC5D | 1080 (962) <sup>a</sup>        | 389                    |  |  |

Table 5.Total mercury (ng/g dry weight) in benthic invertebrates collected from JellicoeCove and reference sites. For data analyses, means of replicates are used.

<sup>a</sup> laboratory duplicate

Table 6.Methyl mercury (ng/g dry weight) in benthic invertebrates collected from JellicoeCove and reference sites.

|                                                                                                                                                                                                                                                                                                                                                                                 |                                                 | BIOTA – Methyl Hg                             |                                       |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------|---------------------------------------|--|--|--|--|--|--|
| Area                                                                                                                                                                                                                                                                                                                                                                            | Site                                            | Midge                                         | Amphipod                              |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                 | 34.2                                            |                                               |                                       |  |  |  |  |  |  |
| Reference                                                                                                                                                                                                                                                                                                                                                                       | PH1                                             | 12.6                                          | 32.2                                  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                 | PH2                                             | 16.0                                          | 23.8                                  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                 | PH11                                            | 27.0 (27.6) <sup>a</sup>                      | 22.9 (20.1) <sup>a</sup>              |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                 | PH13                                            | 19.4                                          | 22.3                                  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                 | PH14                                            | 19.9                                          | 29.9                                  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                 | PH15                                            | 255                                           | 130                                   |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                 | PH16                                            | 30.0 (27.4) <sup>b</sup>                      | 19.0 (20.9) <sup>b</sup>              |  |  |  |  |  |  |
| , , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                         | PH17                                            | 16.7                                          | 35.5                                  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                 | PH18                                            | 31.4                                          | 24.3 (23.3) <sup>b</sup>              |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                 | PH20                                            | 47.5                                          | 33.8 (33.9) <sup>b</sup>              |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                 | PH21                                            | 18.2 (19.7) <sup>b</sup>                      | 22.7 (27.4) <sup>b</sup>              |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                 | PH22                                            | 38.6                                          | 55.4                                  |  |  |  |  |  |  |
| •                                                                                                                                                                                                                                                                                                                                                                               | PH26                                            | 33.4                                          | 50.0                                  |  |  |  |  |  |  |
| Jellicoe Cove                                                                                                                                                                                                                                                                                                                                                                   | JC 2A                                           | 65.7 (66.6) <sup>b</sup>                      | 108                                   |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                 | JC 3A                                           | 212                                           | 115                                   |  |  |  |  |  |  |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                           | JC 4A                                           | 167                                           | 200 (193) <sup>b</sup>                |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                 | JC 5A                                           | 316                                           | 306 (268) <sup>a</sup>                |  |  |  |  |  |  |
| <u></u>                                                                                                                                                                                                                                                                                                                                                                         | JC 6A                                           | 533                                           | 258                                   |  |  |  |  |  |  |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                           | JC 7A                                           | 276                                           | 202                                   |  |  |  |  |  |  |
| ······································                                                                                                                                                                                                                                                                                                                                          | JC 1B                                           | 102 (98.9) <sup>b</sup> (96.1) <sup>a</sup>   | 96.1                                  |  |  |  |  |  |  |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, _,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, , ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, , ,, ,, ,, ,, ,, ,, ,, ,, , ,, , ,, , ,, ,, , ,, , ,, , , , | JC 2B                                           | 100                                           | 157                                   |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                 | JC 3B                                           | 66.8                                          | 143                                   |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                 | JC 4B                                           | 47.2                                          | 194                                   |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                 | JC 5B                                           | 54.4                                          | 228 (198) <sup>a</sup>                |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                 | JC 6B                                           | 155                                           | 186 (231) <sup>a</sup>                |  |  |  |  |  |  |
| -                                                                                                                                                                                                                                                                                                                                                                               | JC 7B                                           | 486                                           | 359                                   |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                 | JC 1C                                           | 171                                           | 105                                   |  |  |  |  |  |  |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                           | JC 2C                                           | 26.9                                          | 119                                   |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                 | JC 3C                                           | 20.2                                          | 162                                   |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                 | JC 4C                                           | 63.8                                          | 131                                   |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                 | JC 5C                                           | 39.0                                          | 124                                   |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                 | JC 6C                                           | 150                                           | 294                                   |  |  |  |  |  |  |
| · · · · ·                                                                                                                                                                                                                                                                                                                                                                       | JC 7C                                           | 93.1                                          | 22.7                                  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                 | JC 1D                                           | 36.5 (44.0) <sup>a</sup> (40.9) <sup>ab</sup> | 79.9                                  |  |  |  |  |  |  |
| **                                                                                                                                                                                                                                                                                                                                                                              | JC 2D                                           | 28.4                                          | 105                                   |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                 | JC 3D                                           | 23.7                                          | 108                                   |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                 | JC 4D                                           | 74.6                                          | 124                                   |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                 | JC 5D                                           | 40.8                                          | 158                                   |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                 | <del>ــــــــــــــــــــــــــــــــــــ</del> |                                               | • • • • • • • • • • • • • • • • • • • |  |  |  |  |  |  |

<sup>a</sup> lab duplicate, <sup>b</sup> repeat analysis

Table 7.Results of regressions of whole body concentrations of mercury in benthicinvertebrates vs sediment mercury concentration alone ("A" models), and sediment mercuryconcentration + other sediment and overlying water physico-chemical variables ("B"models). The groups of multiple predictors listed are from the models that best predicted [Hg]<sub>inv</sub>.All sediment variables in the models were transformed: arcsine-square root (x) for the "%"variables; log(x) for the others. Water variables were not transformed.

| Response<br>([Hg] <sub>inv</sub> ) | Mod<br>el | Predictor<br>([X]) | Coefficie<br>nt | P<br>(predict<br>or) | $R^2_{adj}$ | P<br>(regression<br>)                    |
|------------------------------------|-----------|--------------------|-----------------|----------------------|-------------|------------------------------------------|
| Total Hg                           | Α         | total Hg           | 0.431           | < 0.001              | 0.716       | < 0.001                                  |
| Midges                             | В         | total Hg           | 0.545           | < 0.001              |             |                                          |
|                                    | l.        | % sand             | 0.481           | 0.012                | 0.797       | < 0.001                                  |
|                                    |           | Mn                 | 1.101           | < 0.001              |             |                                          |
| Total Hg                           | Α         | total Hg           | 0.376           | < 0.001              | 0.858       | < 0.001                                  |
| Amphipods                          | ∕ B       | total Hg           | 0.438           | < 0.001              | 0.906       | < 0.001                                  |
|                                    |           | Mn .               | 0.305           | 0.038                | •           | ж. — — — — — — — — — — — — — — — — — — — |
|                                    |           | TKN                | -0.430          | < 0.001              | . <b>.</b>  |                                          |
| Methyl Hg                          | A         | methyl Hg          | 0.163           | 0.026                | 0.109       | 0.026                                    |
| Midges                             | В         | methyl Hg          | 0.256           | < 0.001              |             |                                          |
|                                    |           | % sand             | 1.216           | < 0.001              | 0.342       | 0.001                                    |
|                                    |           | % clay             | 1.392           | 0.007                |             |                                          |
| Methyl Hg                          | Α         | methyl Hg          | 0.300           | < 0.001              | 0.526       | < 0.001                                  |
| Amphipods                          | В         | methyl Hg          | 0.425           | < 0.001              |             |                                          |
|                                    |           | % clay             | 0.412           | 0.045                | 0.713       | < 0.001                                  |
|                                    |           | TKN                | -0.469          | 0.002                |             |                                          |
|                                    | 1         | pH                 | -0.764          | 0.003                |             |                                          |

Table 8.Predicted methyl mercury concentrations (ng/g wet weight) in receptor species for Jellicoe Cove, Peninsula Harbourand reference sites. Highlighted values exceed the Environment Canada (2002) tissue residue guideline (92 ng/g ww) applicable forfishes.

\$

| · .       |      | Longnose Sucker |        |        | Ye     | llow Perch |         | La           | ake Trout | · [     | Grea     | t Blue Herc | on [    | Mink               |         |          |
|-----------|------|-----------------|--------|--------|--------|------------|---------|--------------|-----------|---------|----------|-------------|---------|--------------------|---------|----------|
| Area      | Site | min             | med    | max    | min    | med        | max     | min          | med       | max     | min      | med         | max     | min                | med     | max      |
| Reference | PH1  | 7.89            | 12.18  | 16.46  | 39.45  | 60.88      | 82.32   | 8.83         | 92.55     | 533.28  | 33.53    | 113.56      | 559.68  | 13.41              | 174.77  | 823.20   |
| Reference | PH2  | 9.33            | 12.38  | 15.44  | 46.65  | 61.91      | 77.17   | 10.45        | 94.11     | 499.95  | 39.66    | 115.48      | 524.70  | 15.86              | 177.72  | 771.80   |
| Reference | PH11 | 8.75            | 11,77  | 14.78  | 43.73  | 58.82      | 73.92   | 9.7 <b>9</b> | 89.42     | 478.84  | 37.18    | 109.73      | 502.55  | 14.87              | 168.86  | 739.20   |
| Reference | PH13 | 9.67            | 10,58  | 11.49  | 48.36  | 52.91      | 57.45   | 10.83        | 80.43     | 372.19  | 41.12    | 98:69       | 390.61  | 16.44              | 151.87  | 574.50   |
| Reference | PH14 | 9.95            | 10.75  | 11.56  | 49.74  | 53.77      | 57.80   | 11.14        | 81.73     | 374.41  | 42.28    | 100:29      | 392.94  | 16,91              | 154.34  | 578.00   |
| Reference | PH15 | 54.95           | 90.42  | 125.88 | 274.74 | 452.07     | 629.40  | 61.52        | 687.21    | 4077.37 | 233.57   | 843,26      | 4279,22 | 93.40              | 1297.70 | 6294.10  |
| Reference | PH16 | 9.40            | 11.37  | 13.34  | 46.99  | 56.85      | 66.71   | 10.52        | 86.42     | 432.18  | 39.95    | 106.05      | 453.57  | 15. <del>9</del> 7 | 163,20  | 667.10   |
| Reference | PH17 | 7.99            | 10.51  | 13.03  | 39:96  | 52.56      | 65.17   | 8.95         | 79.90     | 422.18  | 33.97    | 98.05       | 443.08  | 13.58              | 150,89  | 651.70   |
| Reference | PH18 | 11.15           | 13.34  | 15.54  | 55.74  | 66.71      | 77.69   | 12.48        | 101.41    | 503.28  | 47.39    | 124.44      | 528.20  | 18.95              | 191.50  | 776.90   |
| Reference | PH20 | 15.06           | 20.37  | 25.69  | 75.29  | 101.87     | 128.45  | 16.86        | 154.86    | 832.14  | 64.01    | 190.02      | 873.33  | 25.59              | 292,43  | 1284.50  |
| Reference | PH21 | 8.30            | 9.81   | 11.32  | 41.50  | 49.05      | 56.59   | 9.29         | 74.56     | 366.63  | 35.28    | 91.49       | 384.78  | 14.11              | 140.80  | 565.90   |
| Reference | PH22 | 18.56           | 20.34  | 22.12  | 92.78  | 101.70     | 110.62  | 20.77        | 154.60    | 716.60  | 78.88    | 189.70      | 752.07  | 31.54              | 291.93  | 1106.20  |
| Reference | PH26 | 17.18           | 17.87  | 18.56  | 85.92  | 89.35      | 92.78   | 19.24        | 135.82    | 601.05  | 73.05    | 166.67      | 630.81  | 29.21              | 256.49  | 927.80   |
| Arm 1     | JC1B | 51.31           | 51.43  | 51.55  | 256.56 | 257.16     | 257.76  | 57.45        | 390.92    | 1669.83 | 218.12   | 479.69      | 1752.50 | 87.22              | 738.20  | 2577.60  |
| Arm 1     | JC1C | · 52.93         | 65.96  | 78.99  | 264.62 | 329.79     | 394.96  | 59.25        | 501.33    | 2558.63 | 224.97   | 615.17      | 2685.30 | 89.96              | 946.69  | 3949.60  |
| Arm 1     | JC1D | 18.83           | 26.46  | 34.09  | 94.15  | 132.31     | 170.47  | 21.08        | 201.13    | 1104.33 | 80.04    | 246.80      | 1159.00 | 32.01              | 379.81  | 1704.70  |
| Arm 2     | JC2A | 31.83           | 43.90  | 55.98  | 159.15 | 219.52     | 279.89  | 35.64        | 333.70    | 1813.15 | 135.30   | 409.47      | 1902.91 | 54.10              | 630.14  | 2798.90  |
| Arm 2     | JC2B | 56.73           | 65.96  | 75.19  | 283.66 | 329.79     | 375.93  | 63.51        | 501.33    | 2435.31 | 241.15   | 615.17      | 2555:87 | 96:43              | 946.69  | 3759.30  |
| Arm 2     | JC2C | 14.92           | 40.44  | 65.96  | 74.60  | 202.20     | 329.79  | 16.70        | 307.37    | 2136.45 | 63.42    | 377.16      | 2242.22 | 25.36              | 580.42  | 3297.90  |
| Arm 2     | JC2D | 16.36           | 34.75  | 53.13  | 81.81  | 173.73     | 265.65  | 18.32        | 264.09    | 1720.94 | 69.55    | 324.06      | 1806.13 | 27.81              | 498.70  | 2656.50  |
| Arm 3     | JC3A | 67.98           | 97.29  | 126.60 | 339.91 | 486.46     | 633.01  | 76.11        | 739.48    | 4100.70 | 288.98   | 907.40      | 4303.71 | 115.55             | 1396.41 | 6330.10  |
| Arm 3     | JC3B | 33.34           | 50.95  | 68.57  | 166.70 | 254.76     | 342.83  | 37.33        | 387.27    | 2220.89 | 141.72   | 475.21      | 2330.83 | 56:67              | 731.31  | 3428.30  |
| Arm 3     | JC3C | 12.28           | 45.50  | 78.72  | 61.40  | 227.49     | 393.59  | 13.75        | 345.82    | 2549.74 | 52.20    | 424.35      | 2675.97 | 20:87              | 653.04  | 3935.90  |
| Arm 3     | JC3D | 14.03           | 33.03  | 52.03  | 70.14  | 165.15     | 260.17  | 15.71        | 251.05    | 1685.39 | 59.63    | 308.06      | 1768.82 | 23.85              | 474.08  | 2601.70  |
| Arm 4     | JC4A | 72.92           | 84.36  | 95.80  | 364.61 | 421.80     | 479.00  | 81.64        | 641.19    | 3103.02 | 309.97   | 786.79      | 3256.64 | 123.95             | 1210.81 | 4790.00  |
| Arm 4     | JC4B | 27.30           | 65.31  | 103.31 | 136.51 | 326.54     | 516.56  | 30.57        | 496.37    | 3346.33 | 116:06   | 609.09      | 3511.99 | 46.41              | 937.34  | 5165.60  |
| Arm 4     | JC4C | 34.23           | 51.74  | 69.25  | 171.16 | 258.71     | 346.26  | 38,32        | 393.27    | 2243.11 | 145.51   | 482.57      | 2354.15 | 58.18              | 742.63  | 3462.60  |
| Arm 4     | JC4D | 34.13           | 45.38  | 56.63  | 170.64 | 226.89     | 283.15  | 38.21        | 344.91    | 1834.26 | 145.07   | 423.23      | 1925.07 | 58.01              | 651.31  | 2831.50  |
| Arm 5     | JC5A | 162.62          | 165.57 | 168.52 | 813.08 | 827.83     | 842.58  | 182.05       | 1258.40   | 5458.34 | 691.24   | 1544.16     | 5728.56 | 276.40             | 2376.33 | 8425.80  |
| Arm 5     | JC5B | 29.40           | 63.11  | 96.83  | 146.98 | 315:56     | 484.14  | 32.91        | 479.69    | 3136.35 | 124.95   | 588.62      | 3291.62 | 49.96              | 905.83  | 4841.40  |
| Arm 5     | JC5C | 20.96           | 38.21  | 55.46  | 104.79 | 191.05     | 277.32  | 23.46        | 290.42    | 1796.49 | 89.08    | 356.37      | 1885.42 | 35.62              | 548.42  | 2773.20  |
| Arm 5     | JC5D | 24.70           | 51.26  | 77.83  | 123.48 | 256.31     | 389.13  | 27.65        | 389.62    | 2520.86 | . 104.98 | 478.09      | 2645.65 | 41,98              | 735.74  | 3891.30  |
| Arm 6     | JC6A | 145.78          | 201.60 | 257.42 | 728.88 | 1007.99    | 1287.11 | 163.20       | 1532.26   | 8338.05 | 619.65   | 1880.21     | 8750.83 | 247.78             | 2893.49 | 12871.10 |
| Arm 6     | JC6B | 74.98           | 92.95  | 110.93 | 374.90 | 464.76     | 554.63  | 83.94        | 706.50    | 3592.97 | 318.72   | 866.93      | 3770.84 | 127.44             | 1334.13 | 5546.30  |
| Arm 6     | JC6C | 71.48           | 109.19 | 146.91 | 357.41 | 545.97     | 734.53  | 80.03        | 829.94    | 4758.41 | 303.85   | 1018.40     | 4993.98 | 121.50             | 1567.24 | 7345.30  |
| Arm 7     | JC7A | 104.34          | 116.62 | 128.90 | 521.70 | 583.10     | 644.50  | 116.81       | 886.38    | 4175.14 | 443.52   | 1087.66     | 4381.83 | 177.35             | 1673.82 | 6445.00  |
| Arm 7     | JC7B | 186.90          | 220.09 | 253.27 | 934.50 | 1100.43    | 1266.36 | 209.24       | 1672.78   | 8203.62 | 794.46   | 2052.64     | 8609.74 | 317.68             | 3158.84 | 12663.60 |
| Arm 7     | JC7C | 9.64            | 29.40  | 49.15  | 48.19  | 146.98     | 245.76  | 10.79        | 223.42    | 1592.06 | 40.97    | 274.15      | 1670.88 | 16.38              | 421,90  | 2457.60  |

**Table 9.** Exceedences of criteria for predicted methyl mercury concentrations in receptors based on three exposure and uptake scenarios for the Peninsula Harbour study. The tissue residue guideline (TRG) for MeHg is 92 ng/g ww. n = 25 for Jellicoe Cove (J-Cove) sites; n = 13 for reference sites.

| Receptor | Scenario     | # Sites in J-Cove where<br>[Hg] <sub>rec</sub> > maximum<br>[Hg] <sub>rec</sub> for Reference<br>Sites | # Sites in J-Cove<br>where [Hg] <sub>rec</sub> > TRG | # Reference Sites<br>where [Hg] <sub>rec</sub> > TRG |
|----------|--------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| Sucker   | minimum      | 9                                                                                                      | 4                                                    | 0                                                    |
| Perch    | minimum      | 9                                                                                                      | 20                                                   | 2                                                    |
| Trout    | minimum      | 9                                                                                                      | 4                                                    | 0                                                    |
| Heron    | minimum      | 9                                                                                                      |                                                      | -                                                    |
| Mink     | minimum      | 9                                                                                                      |                                                      | · · · · ·                                            |
| Sucker   | intermediate | 7                                                                                                      | 7                                                    | 0                                                    |
| Perch    | intermediate | 7                                                                                                      | 25                                                   | 3                                                    |
| Trout    | intermediate | 7                                                                                                      | 25                                                   | 7                                                    |
| Heron    | intermediate | 7                                                                                                      | -                                                    | -                                                    |
| Mink     | intermediate | 7                                                                                                      | • -                                                  | . <del>-</del>                                       |
| Sucker   | maximum      | 6                                                                                                      | 10                                                   | 1                                                    |
| Perch    | maximum      | 6                                                                                                      | 25                                                   | 4                                                    |
| Trout    | maximum      | 6                                                                                                      | 25                                                   | 13                                                   |
| Heron    | maximum      | 6                                                                                                      | '                                                    | -                                                    |
| Mink     | maximum      | 6                                                                                                      | -                                                    | -                                                    |

# **APPENDIX A.** Literature review of biomagnification factors (BMFs) for total and methyl mercury

#### 1.0 Introduction

This literature review was carried out to provide supporting information for the assessment of risk of biomagnification of mercury from contaminated sediments in Cornwall, Ontario. Biomagnification factors (BMFs), predator-prey factors (PPFs), and trophic transfer coefficients (TTCs) were obtained or derived from the literature for the calculation of total mercury and methylmercury concentrations in different trophic levels of a simple benthic freshwater food chain model (Figure A1).

#### 1.1 Terminology

Biomagnification is the process at by which the chemical concentration in an organism exceeds that in the organism's diet, due to dietary absorption (Gobas and Morrison 2000). The biomagnification factor (BMF) is an empirically-derived measure of the rate of contaminant transfer between the organism's diet and the organism, and is expressed as the ratio of chemical concentration in the organism to the concentration in its diet (Gobas and Morrison 2000). The synonymous terms predator-prey factor (PPF) and trophic transfer coefficient (TTC) are also found in the literature (USEPA 1997a; Suedel et al. 1994). A food chain multiplier (FCM) is used to quantify the increase in contaminant body burden through uptake from the food chain, but is defined as the factor by which a substance at higher trophic levels exceeds the bioconcentration factor (BCF) at trophic level 1 (NCASI 1999; USEPA 1997a). Therefore, it does not necessarily apply to a specific trophic transfer, and may be a multiple of more than one BMF. BMFs, TTCs, and PPFs are unitless, and the concentrations used to derive them are usually (Gobas and Morrison 2000). These concentrations can be expressed on a wet weight or dry weight basis (Gobas and Morrison 2000). BMFs, TTCs, and PPFs can be applied to specific trophic levels, as well as individual species in a food chain (USEPA 1997b). The term BMF will be used in this document in reference to biomagnification factors, predator-prey factors, and trophic transfer coefficients acquired from the literature.

#### 2.0 Methods

#### 2.1 Literature Search

The literature search was done using typical methods of electronic database and chain-of-citation searches as well as consultation with leading researchers in the field of mercury ecotoxicology and risk assessment. The following electronic databases were used to search primary literature, secondary literature, grey literature, and internet resources:

- ISI Current Contents Connect
- CSA Aquatic Sciences and Fisheries Abstracts (ASFA)
- CSA TOXLINE
- MEDLINE
- National Research Council of Canada (NRC) Research Press database
- US Environmental Protection Agency (USEPA)- various databases of government publications

- US Army Corp. of Engineers (USACE)- various databases of government publications
- Integrated Risk Information System (IRIS)
- Environmental Fate Database (EFDB)
- Oak Ridge National Laboratory (ORNL) publications

![](_page_91_Figure_0.jpeg)

![](_page_91_Figure_1.jpeg)

In addition, the following journals were individually searched for recent and upcoming articles:

- Archives of Environmental Contamination and Toxicology
- Archives of Environmental Health
- Bulletin of Environmental Contamination and Toxicology
- Canadian Journal of Fisheries and Aquatic Sciences
- Chemosphere
- Environmental Pollution
- Environmental Research
- Hydrobiologia
- Journal of Great Lakes Research
- Science of the Total Environment
- Water, Air, and Soil Pollution
- Water Research

Several researchers active in mercury bioaccumulation studies were also contacted as part of the literature search.

The search was focused on the period 1996-2002, as a thorough review of the literature was carried out in a 1997 USEPA document entitled "Mercury Study Report to Congress" document (USEPA 1997a,b,c).

#### 2.2 Assigning Trophic Levels to Receptor Species

Discrete trophic levels were applied using the food chain model (Figure A1). This was done to allow comparison of BMFs from different systems/foodwebs, as well as to conceptualize the transfer and magnification of mercury in the Cornwall scenario. However, the use of discrete trophic levels may lead to lower estimates of BMFs. An excellent discussion about the effects of omnivory on trophic position is found in Vander Zanden and Rasmussen (1996). In short, omnivory is common in aquatic communities (for example, up to 50% in pelagic food webs), and the use of discrete variables to represent trophic position will not adequately account for omnivory. When omnivory is integrated with the use of a continuous measurement of trophic position (ie- using stable isotope methods), estimates of BMFs will generally be higher for each discrete trophic level (Vander Zanden and Rasmussen 1996). Unfortunately, this literature survey did not yield any stable isotope studies on benthic freshwater food webs, and therefore system-specific BMFs based on continuous trophic position could not be obtained for lower trophic levels. Two such estimates for trophic levels 3 and 4 respectively, were obtained from pelagic foodweb studies.

## 2.3 Selecting Biomagnification Factor Estimates or Candidate Datasets from the Literature

The following criteria were applied to screen literature to obtain either BMFs or candidate datasets for calculating BMFs, after Suedel et al. (1994) and Gobas and Morrison (2000):

- If organisms that were presented were not from a logical food chain, or no evidence was presented that the feeding relationship between predator and prey was a functional feeding relationship, the paper was not used. One exception to this rule was made in selecting a study of mink fed diets of different proportions of contaminated and uncontaminated fish (Halbrook et al. 1997), since there was a reasonable likelihood that these fish species would have been part of their diet.
- Mean concentrations of total Hg or MeHg needed to be presented for both predator and prey, and in comparable units.
- Unless evidence of comparability could be found, studies from non-freshwater systems or with noncomparable species were not used. More information is presented below on the assessment of comparability of different systems and species.

## 2.4 Calculation of Biomagnification Factors from Candidate Datasets

Biomagnification factors were calculated from mean concentrations of total mercury and/or methylmercury from the literature using the equation (Gobas and Morrison 2000):

where:

 $C_B \succeq$  mean contaminant concentration in the consumer (receptor) species  $C_D =$  mean contaminant concentration in the diet of the organism

In all cases where BMFs were calculated from mean concentrations, the calculation was for the mean concentrations from two trophic levels with a functional feeding relationship, which was defined and demonstrated in the study. Where results were presented for a number of different locations (i.e., several different lakes), BMFs were calculated for each location and then averaged, as opposed to averaging the mean concentrations from all locations to calculate a BMF. In three cases (Hughes et al. 1997; Neumann and Ward 1999; Suedel et al. 1994), a mean BMF was calculated by averaging several reported BMFs. Summaries of these calculations are presented in Tables A3 - A12.

#### 2.5 Comparability of Species and Systems

There were very few studies that quoted BMF estimates for the receptor species and feeding relationships defined in Figure A1. Of the small number of studies which calculated BMFs that were directly comparable in part to the food chain model, most were from freshwater pelagic foodwebs. Some were also studies in quite different ecosystems (marine, temperate montane freshwater, tropic freshwater). Thus, it was important to document the relative comparability of different species and ecosystems to those presented in the study design for this assessment. Information to support substitutions of receptor species for comparable species from the literature (in applying BMF estimates) is presented in Table A13. Species were considered the most qualitatively similar when they occupied similar habitats, had similar feeding habits and dietary composition, similar range, similar feeding substrate, and similar food ingestion body weight ratio. Sources for this information were CCME (1999a,b), CWS (2002), Sample and Suter (1999), Scott and Crossman (1973), and USEPA (1997c).

Applying BMFs calculated from one system to another is controversial, since rates of trophic transfer of mercury are thought to vary due to abiotic and biotic factors (USEPA 2001). The USEPA, in developing national bioaccumulation factors to assess the risk to human health of mercury exposure, indicated that these factors are poorly understood and are likely to be system and site-specific (USEPA 1997b; USEPA 2001). Abiotic factors which may influence the chemistry of mercury include pH, temperature, and dissolved organic carbon in the waterbody, and these are usually determined by watershed characteristics which in turn affect inputs, bioavailability, speciation, and methylation of mercury in the sediments and water column (Downs et al. 1998; Greenfield et al. 2001; Meyer 1998; Mason et al. 2000; USEPA 2001; Watras et al. 1998). Biotic factors include food chain length, horizontal food web structure, feeding mechanisms of organisms at lower trophic levels, and the age/size/weight or metabolic rates of individuals in the sample used to calculate a given BMF (Environment Canada 1997; Power et al. 2002; USEPA 2000). However, no single factor has been correlated with extent of bioaccumulation in all cases examined (USEPA 2001).

It was also suggested (as discussed above) that much of the uncertainty around applying BMFs from different systems may be due to an oversimplification of predator-prey relationships by using discrete trophic levels (Vander Zanden and Rasmussen 1996). One stable isotope study was found from Papua, New Guinea whose results indicated similar magnitude of biomagnification to temperate and arctic foodwebs (Bowles et al. 2001). Another stable isotope study from an arctic foodweb indicated that age did not affect bioaccumulation of mercury in the muscle of ringed seals or clams (Atwell et al. 1998). A third from a subarctic lake found a higher rate of biomagnification (BMF=5.4 versus 3.0) than for a comparable freshwater temperate system (Power et al. 2002).

Unless the relative comparability to temperate freshwater systems was demonstrated, studies from marine, arctic marine, and tropic freshwater were not used to select or derive BMFs.

#### 3.0 Results

A total of 80 references were examined in detail to yield BMFs, datasets to calculate BMFs, or to provide supporting information in applying BMFs. Results are broken down as follows:

- Primary literature- 61 references
- Secondary literature- 5 references
- Grey literature- 14 references

Of those 80, only 11 yielded appropriate BMFs or datasets, following guidelines set out in section 2 above. However, a number of the references (Cantox Environmental Inc. 2001; Suedel et al. 1994; USEPA 1997a) were reviews that synthesized BMFs from several sources. Along with BMF estimates, the following supporting information was gathered:

- Range, standard deviation, or standard error of BMF estimates
- Trophic level of predator/receptor
- Type of study (field, laboratory, modeling, review)
- Prey species
- Predator species
- Mercury parameter (total Hg or MeHg)
- Scope of study (ie- number of lakes sampled)
- Location of study
- Biological medium sampled
- Relative age/size of organisms sampled
- Reference from which BMF or dataset came from
- Comments

These results are reported in Table A2.

A breakdown of the number of BMFs obtained/calculated per feeding relationship, and the range of corresponding BMF values is presented in Table A1.

|                                                         |                            |                   | Total | and Methyl H | g BMFs |                                                                                           |
|---------------------------------------------------------|----------------------------|-------------------|-------|--------------|--------|-------------------------------------------------------------------------------------------|
| Feeding Relationship                                    | Trophic levels of transfer | # of<br>Estimates | Low   | Medium *     | High   | Comments                                                                                  |
| Benthic invertebrates to forage<br>or benthivorous fish | 1 - <u>2</u>               | 1                 | 3.43  | 3.43         | 3.43   | High BMF calculated from benthos [THg] values which are below DL excluded.                |
| Benthivorous or forage fish to small piscivorous fish   | 2 - 3                      | 1                 | 5     | 5            | 5      |                                                                                           |
| Benthivorous or forage fish to large piscivorous fish   | 2 - 3                      | 8                 | 1.12  | 3.20         | 32.4   |                                                                                           |
| Benthivorous or forage fish to piscivorous bird         | 2 - 3                      | . 1               | 6.80  | 6.80         | 6.80   | High THg value from heron with ambiguous feeding relationship dropped.                    |
| Benthivorous or forage fish to<br>piscivorous mammal    | 2 - 3                      | 10                | 1.70  | 5.20         | 22.64  | High THg value from fur/hair excluded. Hg form given as total and methyl for most values. |
| Small piscivorous fish to large<br>piscivorous fish     | 3 - 4                      | 1.                | 2.40  | 2.40         | 2.40   |                                                                                           |
| Small piscivorous fish to<br>piscivorous bird           | 3 - 4                      | 6                 | 0.85  | 2.37         | 6.80   | High THg values from plumage excluded.                                                    |
| Small piscivorous fish to<br>piscivorous mammal         | 3 - 4                      | 9                 | 1.70  | 4.7          | 10.00  | Hg form given as total and methyl for most values:                                        |

## Table A1- Breakdown of results of literature review for each hypothetical feeding relationship

\* "Medium" = datum if n = 1, median if n > 2

#### Table A2- Summary of Literature-Derived Biomagnification Factors:by Trophic Level

| Value                         | Range                                          | Trophic Level | Type of Study                           | Pray Species                                                                                                                                            | Predator Species                                       | Ho Parameter        | Scope                                                                                          | 1Location                                                                                                                 | Sample Medium                                                                        | Ade Size of Semple                                                                     | Retwood                              | Commente                                                                                                                                                                                                                                                      |
|-------------------------------|------------------------------------------------|---------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.14                          | 0.3-                                           | 1             | 2 Review                                | "Primary consumers"<br>(aquatic)                                                                                                                        | "Secondary consumers" - (aquatic)                      | Total Hg            |                                                                                                | :                                                                                                                         |                                                                                      | Ngelonze ur bezinpre                                                                   | Suedel et al., 1994                  | Values reported as TTCs                                                                                                                                                                                                                                       |
| 3.43                          | 0.5-10.                                        | · ·           | 2 Review                                | "Primary consumers"                                                                                                                                     | "Secondary consumers"                                  | MeHg                |                                                                                                |                                                                                                                           |                                                                                      |                                                                                        | Suedel et al., 1994                  | Values reported as TTCs                                                                                                                                                                                                                                       |
| 17.13                         | Not calculated                                 |               | 2 Field                                 | Benthos                                                                                                                                                 | Carp and bullhead                                      | Total Hg            | One estuary                                                                                    | Old Woman Creek, Lake                                                                                                     | Skinless fillets (carp), whole                                                       | >30 cm in length                                                                       | Francis et al., 1998                 | BMFs calculated from mean concentrations and feeding                                                                                                                                                                                                          |
|                               | 1                                              |               |                                         |                                                                                                                                                         |                                                        |                     |                                                                                                |                                                                                                                           | (connead)                                                                            |                                                                                        |                                      | relationships reported in paper.                                                                                                                                                                                                                              |
| 1.12                          | 0.2-1.8                                        |               | 3 Review                                | "Secondary consumers"<br>(aquatic)                                                                                                                      | "Top predators" (aquatic)                              | Total Hg            |                                                                                                |                                                                                                                           |                                                                                      |                                                                                        | Suedel et al., 1994                  | Values reported as TTCs                                                                                                                                                                                                                                       |
| 1.51                          | Not calculated                                 | -             | 3 Field                                 | Lake chubsucker                                                                                                                                         | Redfin pickerel                                        | Total Hg            | Nêne wetlands                                                                                  | Savannah River Site, South<br>Carolina                                                                                    | Whole body                                                                           | Chubsucker mean<br>length/weight=79 mm/4g<br>Pickerel mean length/weight=<br>106 mm/3g | Snodgrass et al., 2000               | Mean BMF calculated from individual wetland BMFs,<br>which were calculated from geometric mean<br>concentrations in each species for each wetland. Reeding<br>relationship implied by results cited from other studies<br>from that see                       |
| 1.55                          | 1.2-1.8                                        |               | 3 Field                                 | Groove-snouted catlish<br>(omnivore) and seven-<br>spotted archerlish<br>(insectivore)                                                                  | Barramundi, giant freshwater<br>anchovy. Sepik garpike | Meilg               | One lake                                                                                       | Papua, New Guinea                                                                                                         | Whole body                                                                           |                                                                                        | Bowles et al., 2001                  | Stable isotope (615N) study. Results suggest that the<br>biomagnification power of the food web is similar to that<br>of temperate-lake and arctic-marine systems. Range of<br>BMFE based on BMFE calculated from +/- 1 SD from<br>magn Methy concentrations. |
| 1.70                          | Nat reported                                   |               | 3 Review                                | Only reported as<br>*concentration of MeHg in<br>diet*                                                                                                  |                                                        | Total Hg and MeHg   | Pooled results of twelve<br>studies.                                                           | Ontario (3 studies), Georgia<br>(3), Louisiana (1), Manitoba<br>(2), Wisconsin (2), Norway<br>(1)                         | , Muscle                                                                             | Not reported                                                                           | Cantox Environmental Inc.,<br>2001   | Sampling details from Wren et al., 1986. BMF calculated<br>by Cantox Environmental Inc.                                                                                                                                                                       |
| 2.40                          | 1-4                                            |               | 3 Field                                 | Bluegill, black crappie,<br>yellow perch                                                                                                                | Chain pickerel, largemouth<br>bass                     | Total Hg            | Two lakes                                                                                      | Connecticut                                                                                                               | Axial muscle (whole fillets)                                                         | Fish aged 2-5 years                                                                    | Neumann and Ward, 1999               | ·                                                                                                                                                                                                                                                             |
| 2.70                          | Not reported                                   |               | 3 Review                                | Fish (species not reported)                                                                                                                             | Otter                                                  | Total Hg and MeHg   | Not reported                                                                                   | Georgia                                                                                                                   | Muscle                                                                               | Not reported                                                                           | Cantox Environmental Inc.,<br>2001   | BMF calculated by Cantox Environmental Inc.                                                                                                                                                                                                                   |
| 3.00                          | Not reported                                   |               | 3 Raview                                | Only reported as                                                                                                                                        | Otter                                                  | Total Hg and MeHg . | One lake, N=20 for fish<br>sample, N=4 for otter sample                                        | Tadenac Lake, Muskoka,<br>Ontario                                                                                         | Muscle                                                                               | Not reported                                                                           | Cantox Environmental Inc., 2001      | Sampling details from Wren et al., 1983. BMF calculated<br>by Cantox Environmental Inc.                                                                                                                                                                       |
| 3.40                          | Not reported                                   |               | 3 Review                                | Fish (species not reported)                                                                                                                             | Otter                                                  | Total Hg and MeHg   | Not reported .                                                                                 | Not reported                                                                                                              | Liver                                                                                | Not reported                                                                           | Cantox Environmental Inc.,           | BMF calculated by Cantox Environmental Inc.                                                                                                                                                                                                                   |
| 4.00                          | <ul> <li>Not reported</li> </ul>               | 5             | 3 Modelling                             | Pelagic forage tish (smelt,<br>ciscoes, coregonids, elewifs,<br>ninespine stickleback)                                                                  | Lake trout                                             | Total Hg            | 96 lakes, >10<br>individuals/species, period<br>1975-84 (source= MOE<br>sportlish contaminants | Canadian Shield lakes,<br>Ontario                                                                                         | Whole skinless fillets<br>(smaller fish), axial muscle<br>(larger fish)              | Pooled results                                                                         | Vander Zanden and<br>Rasmussen, 1996 | BMF corrected by authors for omnivory from original<br>value of 2.0 defined by Cabana et al., 1994. Correction<br>based on results of 515N stable isotope study of trophic                                                                                    |
| 4.70                          | Not reported                                   |               | 3 Review                                | Only reported as                                                                                                                                        | Otter                                                  | Total Ho and MaHo   | monitoring)<br>Project results of twelve                                                       | Ontario (3 studies) Geomia                                                                                                | l ivar                                                                               | Not recorded                                                                           | Cantox Environmental Inc.            | Sampling details from Cabana et al. 1998. But adjudited                                                                                                                                                                                                       |
|                               | Geometric PD-1 47                              |               |                                         | "concentration of MeHg in<br>diet"                                                                                                                      |                                                        |                     | studies.                                                                                       | (3), Louisiana (1), Manitoba<br>(2), Wisconsin (2), Norway<br>(1)                                                         | 1                                                                                    |                                                                                        | 2001                                 | by Cantox Environmental Inc.                                                                                                                                                                                                                                  |
| -                             | Geometre au-1.47                               |               | SHEVIEW                                 | *Forage tish"                                                                                                                                           | "Piecivorous fish"                                     | MeHg                | 14 studies                                                                                     | Michigan (2 studies), Ontario<br>(5), Manitoba (1), Wisconsin<br>(1), New York (1), Norway<br>(1), Sweden (2), Brazil (1) | Various                                                                              | Various .                                                                              | USEPA, 1997                          | BMF is geometric mean of values from literature review.<br>Selected values from the literature used in the calculation<br>of the average BMF are presented in attached "USEPA,<br>1997" worksheet.                                                            |
| 5.40                          | Not reported                                   | . 3           | 3 Field<br>}                            | Forage fish (burbot, cisco,<br>northern take chub, round<br>whitefish, threespine<br>stickleback) and benthivores<br>(longnose sucker, simy<br>soutpin) | Lake trout                                             | Total Hg            | One lake                                                                                       | Stewart Lake, northern<br>Labrador                                                                                        | Dorsal muscle                                                                        | All age classes                                                                        | Power et al., 2002                   | BMF reported in study. Stable isotope study of a<br>subarctic freshwater lacustrine system.                                                                                                                                                                   |
| 5.70                          | Not reported                                   | 3             | Review                                  | Fish (species not reported)                                                                                                                             | Otter                                                  | Total Hg and MeHg   | Not reported                                                                                   | Georgia                                                                                                                   | Liver                                                                                | Not reported                                                                           | Cantox Environmental Inc.,           | BMF calculated by Cantox Environmental Inc.                                                                                                                                                                                                                   |
| 6.80                          | Not reported                                   | 3             | Review                                  | Bluntnose minnow, rainbow<br>smelt                                                                                                                      | Common loon                                            | Total Hg            | One lake, N=20 for fish<br>sample, N=1 for loon sample                                         | Tadenac Lake, Muskoka,<br>Ontario                                                                                         | Whole skinless fillet (fish),<br>breast muscle (birds)                               | Pooled sample of fish from<br>beach seining (fish). Loon= 5                            | Cantox Environmental Inc., 2001      | Sampling details from Wren et al., 1983. BMF calculated<br>by Cantox Environmental Inc.                                                                                                                                                                       |
| 10.00                         | Not reported                                   | 3             | Review                                  | Fish (species not reported)                                                                                                                             | Otter                                                  | Total Hg and MeHg   | Not reported                                                                                   | Not reported                                                                                                              | Not reported                                                                         | Not reported                                                                           | Cantox Environmental Inc.            | BMF calculated by Cantox Environmental Inc.                                                                                                                                                                                                                   |
| 10.00                         | Not reported                                   | 3             | Review                                  | Fish (species not reported)                                                                                                                             | Otter                                                  | Total Hg and MeHg   | Not reported                                                                                   | Not reported                                                                                                              | Liver                                                                                | Not reported                                                                           | Cantox Environmental Inc., 1         | BMF calculated by Cantox Environmental Inc.                                                                                                                                                                                                                   |
| 14.29                         | Not calculated                                 | 3             | Field                                   | Carp, builhead, catfish (<30<br>cm length)                                                                                                              | Bowfin; catfish (>30 cm<br>length)                     | Total Hg            | One estuary                                                                                    | Old Woman Creek, Lake<br>Erie                                                                                             | Skinless fillets (carp, bowlin, catlish), whole body                                 | Piscivores= >30 cm in length,<br>benthivores= <30 cm length                            | Francis et al., 1998                 | BMFs calculated from mean concentrations and feeding<br>relationships reported in paper.                                                                                                                                                                      |
| 32.40                         | 0.1-141                                        | 3             | Review                                  | "Secondary consumers"<br>(aquatic)                                                                                                                      | "Top predators" (aquatic)                              | MeHg                |                                                                                                |                                                                                                                           |                                                                                      |                                                                                        | Suedel et al., 1994                  | Values reported as TTCs                                                                                                                                                                                                                                       |
| 85.56                         | Not calculated                                 | 3             | Field .                                 | Carp, builhead, catlish (<30<br>cm length); gizzard shad,<br>black crapple                                                                              | Great blue heron                                       | Total Hg            | One estuary                                                                                    | Old Woman Creek, Lake<br>Erie                                                                                             | Skinless fillets (carp, catfish,<br>crappie), whole body<br>(bullhead, gizzard shad) | Benthivores= <30 cm length,<br>heron (N=1) size not reported                           | Francis et al., 1998                 | BMFs calculated from mean concentrations and feeding<br>relationships reported in paper.                                                                                                                                                                      |
| 87.81                         | 82-96                                          | 3             | Field                                   | Freshwater and intertidal<br>fishes                                                                                                                     | Otter                                                  | Total Hg            | One coastal creek and<br>estuary (N= 32 ottens)                                                | Prince William Sound,<br>Naska                                                                                            | Fur .                                                                                | Juveniles to old adults (four age<br>categories)                                       | Ben-David et af., 2001               | BMF calculated from mean concentrations and standard<br>errors presented in paper. The feeding relationship with<br>freshwater fishes was supported by stable isotope<br>measurements.                                                                        |
| Kidney- 22.64<br>Hair- 108.23 | Kidney- 12-17<br>Kidney- 20-25<br>Hair- 87-149 | 3             | CONFORMED THEID                         |                                                                                                                                                         | Amencan mink                                           | Total Hg            | 50 temale farmed mink                                                                          | Oak Ridge National<br>Laboratory, Tennessee                                                                               | Liver, kidney, and fur                                                               | Female adults                                                                          | Halbrook et al, 1997                 | BMFs calculated from mean concentrations in different<br>tissues and different specific dietary mixes of<br>contaminated and uncontaminated fish.                                                                                                             |
|                               |                                                |               | 2000-000-000-000-000-000-000-000-000-00 |                                                                                                                                                         | N                                                      |                     | 1.070                                                                                          | Charles and the second state of           |                                                                                      | STATE CONTRACTOR AND CONTRACTOR OF STATE                                               | 5                                    | - 44-1 - 41                                                                                                                                                                                                                                                   |

| BTCL                                                                      |               | Tennihiral and | Curve of Study | Press Species                                          | Pradator Species                   | Ho Parameter                              | Scope                                                                                                           | Location                                                                                          | Sample Mecours                                                    | Age/Size of Semple                                            | ¿Retenerice                         | Comments                                                                                                                                                                                                       |
|---------------------------------------------------------------------------|---------------|----------------|----------------|--------------------------------------------------------|------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.70                                                                      | Not reported  | 4              | Review         | Only reported as                                       | Otter                              | Total Hg and MeHg                         | Pooled results of twelve<br>studies.                                                                            | Ontario (3 studies), Georgia<br>(3), Louisiana (1), Manitoba                                      | Muscle                                                            | Not reported                                                  | Cantox Environmental Inc.,<br>2001  | Sampling details from Wren et al., 1986. BMF calculated<br>by Carnox Environmental Inc.                                                                                                                        |
|                                                                           | ;             |                | •              | diat"                                                  |                                    |                                           |                                                                                                                 | (2), Wisconsin (2), Norway<br>(1)                                                                 |                                                                   |                                                               |                                     |                                                                                                                                                                                                                |
| 1.83                                                                      | 1-4           | 4              | Field          | Yellow perch                                           | Osprey                             | Total Hg (osprey), MeHg<br>(yellow perch) | Five osprey nesting ereas                                                                                       | St. Mary's R., Georgian Bay,<br>Kawartha Lakes, New Jersey                                        | Eggs                                                              | Freshly laid and addled eggs                                  | Hughes, 1997                        | · · · · ·                                                                                                                                                                                                      |
| 2.40                                                                      |               | 3              | Field          | Bluegill, black crapple,<br>velice perch               | Chain pickerel, largemouth<br>bass | Total Hg                                  | Two lakes                                                                                                       | Connecticut                                                                                       | Axial muscle (whole fillets)                                      | Fish aged 2-5 years                                           | Neumann and Ward, 1999              |                                                                                                                                                                                                                |
| 2.70                                                                      | Not reported  | 4              | Review         | Fish (species not reported)                            | Otter                              | Total Hg and MeHg                         | Not reported                                                                                                    | Georgia                                                                                           | Muscle                                                            | Not reported                                                  | Cantox Environmental Inc.,<br>2001  | BMF calculated by Cantox Environmental Inc.                                                                                                                                                                    |
| 3.00                                                                      | Not reported  | 4              | Review         | Only reported as<br>"concentration of MeHg in<br>diet" | Otter                              | Total Hg and MeHg                         | One lake, N=20 for fish<br>sample, N=4 for otter sample                                                         | Tadenac Lake, Muskoka,<br>Ontarlo                                                                 | Muscle                                                            | Not reported                                                  | Cantox Environmental Inc.,<br>2001  | Sampling details from Wren et al., 1963. BMF calculated<br>by Cantox Environmental Inc.                                                                                                                        |
| 3.40                                                                      | Not reported  | 4              | Review         | Fish (species not reported)                            | Otter                              | Total Hg and MeHg                         | Not reported                                                                                                    | Not reported                                                                                      | Liver                                                             | Not reported                                                  | Cantox Environmental Inc.,<br>2001  | BMF calculated by Cantox Environmental Inc.                                                                                                                                                                    |
| 4.70                                                                      | Not reported  | 4              | Review         | Only reported as<br>"concentration of MeHg in<br>diet" | Ötter                              | Total Hg and <del>Mei I</del> g           | Pooled results of twelve<br>studies.                                                                            | Ontario (3 studies), Georgia<br>(3), Louisiana (1), Manitoba<br>(2), Wisconsin (2), Norway<br>(1) | Liver                                                             | Not reported                                                  | Cantox Environmental Inc.,<br>2001  | Sampling details from Wren, et al., 1986. BMF calculated<br>by Cantox Environmental Inc.                                                                                                                       |
| 5.70                                                                      | Not reported  | 4              | Review         | Fish (species not reported)                            | Otter                              | Total Hg and MeHg                         | Not reported                                                                                                    | Georgia                                                                                           | Liver                                                             | Not reported                                                  | Cantox Environmental Inc.,<br>2001  | BMF calculated by Cantox Environmental Inc.                                                                                                                                                                    |
| 6.80                                                                      | Not reported  | 4              | Review         | Smallmouth bass, northern<br>pike, lake trout          | Common loon                        | Total Hg                                  | One lake, N=20 for fish<br>sample, N=1 for loon sample                                                          | Tadenac Lake, Muskoka,<br>Ontario                                                                 | Dorso-lateral muscle (fish),<br>breast muscle (birda)             | Pooled sample of fish from gill<br>netting (fish). Loon= 5 kg | Cantox Environmental Inc.,.<br>2001 | Sampling details from Wren et al., 1983. BMF calculated<br>by Cantox Environmental Inc.                                                                                                                        |
| 10.00                                                                     | Not reported  |                | Review         | Fish (species not reported)                            | Otter                              | Total Hg and MeHg                         | Not reported                                                                                                    | Not reported                                                                                      | Not reported                                                      | Not reported                                                  | Cantox Environmental Inc.,<br>2001  | BMF calculated by Cantox Environmental Inc.                                                                                                                                                                    |
| 10.00                                                                     | Not reported  | 4              | Review         | Fish (species not reported)                            | Otter                              | Total Hg and MeHg                         | Not reported                                                                                                    | Not reported                                                                                      | Liver                                                             | Not reported                                                  | Cantox Environmental Inc.,<br>2001  | BMF calculated by Cantox Environmental Inc.                                                                                                                                                                    |
| 10.00                                                                     |               | 4              | Review         | Predatory lishes                                       | American mink                      | MeHg                                      | Not reported                                                                                                    | Not reported                                                                                      | Not reported                                                      | Not reported                                                  | USEPA, 2000                         |                                                                                                                                                                                                                |
| 14.50                                                                     | 12-10         | 4              | Field          | Yellow perch                                           | Osprey                             | Total Hg (osprey), MeHg<br>(yellow perch) | Five osprey nesting areas                                                                                       | St. Mary's R., Georgian Bay,<br>Kawartha Lakes, New Jersey                                        | Feathers- wing/mantle/tail                                        | Pooled sample from chicks and<br>adults                       | l Hughes, 1997                      |                                                                                                                                                                                                                |
| Liver-2.61<br>Kidney- 3.61<br>Brain- 0.85<br>Muscle 1.40<br>Feathern, 557 | Not calculate |                | Field          | Northern pike, coregonida,<br>walleye, suckers         | Ösprey                             | Total Hg                                  | 130 nests in three malor<br>watersheds in areas<br>impacted and not impacted<br>by hydroelectric<br>development | James Bay/Hudson Bay<br>areas, Quebec                                                             | Liver, kidney, brain, breast<br>muscle, and feathers of<br>osprey | Chicks and adults                                             | Des Granges et al., 1998            | EMFs calculated from mean concentrations in different<br>fiscues and weighted mean concentrations in main fish<br>species consumed in the diet. Evidence for feeding<br>relationship established in the paper. |

Table A2- Summary of Literature-Derived Biomagnification Factors by Trophic Level (continued)

Table A3- Data summary and calculations from Hughes (1997).

| Mean BMF         | 14.50            |                  | 1.93          |              |
|------------------|------------------|------------------|---------------|--------------|
| Kawartha Lakes   | 13.58            | 11.64            | 1.83          | 1.57         |
| Georgian Bay     | 12.00            | 21.71            | 2.05          | 3.71         |
| St. Mary's River | 12.33            | 15.74            | 1.07          | 1.36         |
| Location         | Feather/YP (4-5) | Feathers/YP (20) | Eggs/YP (4-5) | Eggs/YP (20) |

Notes- YP=yellow perch. (4-5)=yellow perch aged 4-5 years, (20)= 20 cm yellow perch.. Data presented are unitless BMFs. Mean BMFs are for mercury in feathers and eggs, averaged for both groups of prey each. Mercury concentrations used to derive BMFs were ug/g dry weight total Hg.

Table A4- Data summary and calculations from Neumann and Ward (1999).

|            |                   |           |     |     | Mean | 2.40             |
|------------|-------------------|-----------|-----|-----|------|------------------|
|            | Bluegill->TP      | 1.9       | 2.3 | 2.7 | 3.2  |                  |
| Lillinonah | Yellow perch->TP  |           | 1.4 | 1.3 | 1.2  | 1,93             |
|            | Bluegill->TP      | 2.4       | 2.6 | 2.9 | 3.4  |                  |
| Pickerel   | Black crappie->TP | 3.7       | 3.1 | 2.7 | 2.2  | 2.88             |
| Lake       | Species           | Age 2     |     | 4   | 5    | Lake Average BMF |
|            |                   | BMF @ age |     |     |      |                  |

Notes- TP=top predators- largemouth bass, smallmouth bass, and chain pickerel. Mercury concentration values used to derive BMFs were expressed in ug/g dry weight total Hg.

Table A5- Data summary and calculations from Suedel et al. (1994).

| Parameter    | Trophic Level 2 | Trophic Level 3 |
|--------------|-----------------|-----------------|
| BMF Total Hg | 0.3             | 0.2             |
|              | 0.3             | 0.4             |
|              | 1.6             | 1               |
|              | 1.7             | 1.4             |
|              | 6.8             | 1.8             |
|              |                 | 1.9             |
| Mean         | 2.14            | 1.12            |
| BMF MeHg     | 0.5             | 0.1             |
|              | 0.7             | 0.2             |
|              | 2               | 0.3             |
|              | 10.5            | 0.7             |
|              |                 | 4.5             |
|              |                 |                 |
|              |                 | 141             |
| Mean         | 3.425           | 32.4            |

Note- data from literature used to derive BMFs (reported as trophic transfer coefficients (TTCs)) were exp comparable units measured in organisms which were part of functional food chains/feeding

Table A6- Data summary and calculations from Bowles et al. (2001).

| Species             | Trophic Level         | Mean [MeHq] | +1SD | -1SD |
|---------------------|-----------------------|-------------|------|------|
| Arius berneyi       | 2                     | 0.18        | 0.33 | 0.03 |
| Toxotes chatareus   | 2                     | 0.29        | 0.44 | 0.14 |
| Mean [MeHg] TL2     |                       | 0.24        | 0.38 | 0.09 |
| 1000                | and the second second |             |      |      |
| Strongylura kreffti | 3                     | 0.38        | 0.63 | 0.14 |
| Thryssa scratchleyi | 3                     | 0.34        | 0.66 | 0.02 |
| Lates calcarifer    |                       | 0.46        | 0.76 | 0.16 |
| Mean [MeHg] TL3     |                       | 0.39        | 0.68 | 0.10 |
| BMFs                | 2> 3                  | 1.67        | 1.78 | 1.20 |
| Mean BMF            |                       | 1.55        |      |      |

Note-A. bernyi=groove-snouted cattish T. chatareus=seven-spotted archerfish S. kreffti=Sepik garpike, T. scratchleyi=giant freshwater anchov L. calcarifer=barramundi. All concentrations used to derive BMFs were expressed as ug/g wet weight MeHg.

#### Table A7- Summary of BMFs used In USEPA's (1997) PPF calculation

| BMF  | Predator           | Prey                 | Location        |
|------|--------------------|----------------------|-----------------|
| 2.75 | lake trout         | bloater              | L. Michigan     |
| 3.5  | northern pike,     | yellow perch, white  | 35 lake         |
|      | largemouth bass    | sucker               | aggregate,      |
|      |                    |                      | upper michigan  |
| 3.6  | northern pike,     | rainbow smelt,       | L. Tyrifjorden, |
|      | largemouth bass    | whitefish            | Norway          |
| 4    | northern pike,     | specific weighted    | L. Simcoe       |
|      | walleye.           | diets                |                 |
| 5    | lake trout (60 cm) | rainbow smelt (15    | 9 lake          |
|      |                    | cm)                  | aggregate,      |
|      |                    |                      | Ontario         |
| 5.06 | northern pike,     | white sucker, cisco  | average of 6    |
|      | walleye            |                      | Canadian        |
|      |                    |                      | Shield lakes    |
| 5.22 | walleye (age 5)    | yellow perch (age 2) | 10 lake         |
|      |                    |                      | aggregate,      |
|      |                    |                      | Wisconsin       |
| 5.63 | smallmouth bass,   | gizzard shad,        | Onandaga        |
|      | walleye            | bluegill             | Lake, New York  |
|      |                    |                      |                 |
| 6.8  | northern pike      | yellow perch         | 43 lake         |
|      | 1 A A 1 A A        |                      | aggregate,      |
|      |                    |                      | Sweden          |
| 7.1  | largemouth bass    | silversides          | Clear L.,       |
|      |                    |                      | California      |
| 7.4  | northern pike      | yellow perch         | 25 lake         |
|      |                    |                      | aggregate,      |
|      |                    |                      | Sweden          |
| 9.8  | northern pike      | spottail shiner,     | 4 lake average, |
|      |                    | vellow perch         | Manitoba        |

Table A8- Data summary and calculations from Ben-David et al. (2001).

| Trophic Transfer         | Mean [total Hg] | +1 SE | -1 SE | Comments                                                         |
|--------------------------|-----------------|-------|-------|------------------------------------------------------------------|
| Jackpot Bay freshwate    | r fishes 0.12   | 0.14  | 0.1   | Dolly Varden, coastrange sculpin, sticklebacks                   |
| Jackpot Bay intertidal f | ishes 0.085     | 0.092 | 0.07  | Rockfish, kelp greenling, crescent gunnels, intertidal sculpins, |
| Mean Jackpot Bay fish    | es 0.1025       | 0.116 | 0.085 |                                                                  |
| Jackpot Bay otters       | 9               | 9.5   | 8.2   | River otter                                                      |
| BMF                      | 87.80           | 81.90 | 96.47 |                                                                  |

Note- all mercury concentrations used to calculate BMFs were expressed as mg/kg dry weight total Hg. Standard errors used were those reported in the study. Both intertidal and freshwater fish Hg concentrations were used due to stable isotope dietary analysis which indicated a significant portion of intertidal fish in diet.

Table A9- Data summary and calculations for Des Granges et al. (1998).

|                 |             |              | The second state of the second | Imone (Proje) | moon Bhieclal | mean (Feathers) |
|-----------------|-------------|--------------|--------------------------------|---------------|---------------|-----------------|
| Type of Habitat | mean [FISN] | mean [Liver] | Inean [Noney]                  | Inean Draing  | 1.200         | 000 93          |
| Developed       | 1.420       | 3.610        | 5.280                          | 1.010         | 1.790         | 36.030          |
| Natural         | 0.234       | 0.720        | 0.910                          | 0.230         | 0.360         | 16.470          |
|                 |             |              |                                |               |               |                 |
| BMF per Habitat | Liver       | Kidney       | Brain                          | Muscle        | Feathers      |                 |
| BMF Developed   | 2.542       | 3.718        | 0.711                          | 1.261         | 40.908        |                 |
| BMF Natural     | 3.080       | 3.893        | 0.984                          | 1.540         | 70.460        |                 |
| Mean BMF        | 2.811       | 3.806        | 0.848                          | 1.400         | 55.684        |                 |

Note- concentrations are expressed in mg/kg dry weight total Hg. "Developed" areas are nesting sites on hydroelectric reservoirs.

Table A10- Data summary and calculations from Halbrook et al. (1997).

| Diet     | mean [Diet] | mean [Liver] | mean [Kidney] | mean [Hair] |
|----------|-------------|--------------|---------------|-------------|
| B        | 0.05        | 0.61         | 1.25          | 7.43        |
| D        | 0.15        | 1.93         | 3.47          | 13.44       |
| E        | 0.22        | 3.67         | 4.35          | 19.03       |
| <u> </u> |             |              |               |             |

| Diet     | BMFLiver | BMF Kidney | BMF Hair |
|----------|----------|------------|----------|
| В        | 12.20    | 25.00      | 148.60   |
| D        | 12.87    | · 23.13    | 89.60    |
| E        | 16.68    | 19.77      | 86:50    |
| Mean BMF | 13.92    | 22.64      | 108:23   |
| Range    | 12-17    | 20-25      | 87-149   |

#### Table A11- Data summary and calculations for Snodgrass et al. (2000).

| Wetland | Gmean[total Hg] | Gmean[total Hg] |
|---------|-----------------|-----------------|
|         | benthivore      | top predator    |
| 40      | 0.18            | 0.26            |
| 41      | 0.32            | 0.49            |
| 42      | 0.19            | 0.32            |
| • 77    | 0.63            | 1.05            |
| 97      | 0:27            | 0.24            |
| 136     | 0.33            | 0.68            |
| 139     | 0.28            | 0.35            |
| 142     | 0.2             | 0.31            |
| Mean    |                 |                 |

Note- benthivore= lake chubsucker, top predator= redfin pickerel, Gmean=geometric mean. All concentrations are expressed in ug/g dry weight total Hg.

Table A12- Data summary and calculations from Francis et al. (1998).

| Receptor         | Mean [Total Hg] | Mean [MeHg] | Cutoff |
|------------------|-----------------|-------------|--------|
| Benthos          | 0.003           |             |        |
| Carp Sm          | 0.019           | 0.015       | <30 cm |
| Carp Lg.         | 0.100           | 0.101       | >30 cm |
| Catfish Sm.      | 0.066           | 0.064       | <30 cm |
| Catfish Lg.      | 0.199           | 0.199       | >30 cm |
| Bullhead         | 0.003           | 0.003       |        |
| Bowfin           | 0.636           | 0.613       |        |
| Great Blue Heron | 1.620           |             |        |
| Crappie          | 0.003           | 0.001       |        |
| Gizzard Shad     | 0.004           | 0.002       |        |

| Trophic Transfer    | Trophic Level | BMF    | Details                                                              |
|---------------------|---------------|--------|----------------------------------------------------------------------|
| Benthos-Benthivores | 2             | 17.128 | mean[large.carp+bullhead]/[benthos]                                  |
| Benthivores-Large   |               |        |                                                                      |
| Piscivores          | 3             | 14.294 | mean(bowfin+large_catfish)/mean(small_carp+bullhead+small_catfish)   |
| Benthivores-        |               |        |                                                                      |
| Piscivorous Birds   | 4             | 85.563 | [heron]/mean[small.carp+bullhead+small catfish+crappie+gizzard shad] |

Note- Benthos= oligochaetes, larval Chironomids, Ceratopogonidae, Chaoboridae. Carp and catfish were grouped into small and large size classes to reflect their variable trophic level with size. Functional feeding relationships were defined in the study. BMFs were only derived for total Hg. Mercury concentrations were expressed as ug/g wet weight of total Hg and MeHg.

| Section of the sectin of the section of the section of th                                                                                                                                                                                                                                                                                                                        | Trophic Level | Latin Name                    | Common Name         | Receptor Species               | Hebitet                                                                                                                                                         | Range Include Cornwall?                                             | Food Type                | Food Substrate                    | Feeding Technique                           | Food Ingestion: Body | Food Size Class    | Source                                               | Other                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------|---------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------|-----------------------------------|---------------------------------------------|----------------------|--------------------|------------------------------------------------------|----------------------------------------|
| Name and sectorsNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormaliesNormal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5             | Bucophala clangeda            | Common onkienave    | Comparison<br>Common coldenave | Lakes/ponds/rivers                                                                                                                                              | Yes                                                                 | Omnivore                 | Freshwater benthic                | Bottom lorager                              | 0.3                  |                    | CCME, 1999; CWS,                                     |                                        |
| NormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNorm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>د</u>      | bucephala ciangua             |                     | connor godeneje                |                                                                                                                                                                 | No. but in Court Labor                                              | Omeniuses                | Exerchanter benthic               | Gleaner                                     | 0.36                 |                    | 2002                                                 | · · · · · · · · · · · · · · · · · · ·  |
| Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2             | Bucephala albeola             | Bulliehead          | Common goldeneye               | Lakes/ponds/rivers                                                                                                                                              | NO, DUT IN GREAT LAKES                                              | Omnivore                 | Freshwater bentric                | Gleaner                                     | <i>v.</i> 30         |                    | 2002                                                 | 1                                      |
| Note: Note: Wire warder with the second s                                                                                                                                                                                                                                                                                                                 | 2             | Aythya valisineria            | Canvasback          | Common goldeneye               | Marshes                                                                                                                                                         | Yes                                                                 | Omnivore                 | Freshwater benthic                | Bottom forager                              | 1                    |                    | CWS, 2002                                            | Regionally very rare.                  |
| May also         Markade         Markade<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2             | Melanitta fusca               | White winged scoter | Common goldeneye               | Lakes/ponds/rivers                                                                                                                                              | No, but in Great Lakes                                              | Molluscovore/            | Freshwater benthic                | Gleaner                                     |                      |                    | CWS, 2002                                            | Regionally rare.                       |
| Constraint         Normal Alleration         Name Alleration and many of the second sec                                                                                                                                                                                                                                                                                                                                         | 2             | Avthva affinis                | Lesser scaup        | Common goldeneye               | Lakes/ponds/rivers                                                                                                                                              | Yes                                                                 | Omnivore                 | Freshwater benthic                | Bottom forager                              | 0.31                 |                    | CCME, 1999; CWS,                                     |                                        |
| Ander solution         Ander s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -<br>-        | Catactomore commerciant       | White curker        | White surker                   | Warmer, shallow lakes or warm.                                                                                                                                  | Yea                                                                 | Insectivore/moliuscovore | Freshwater benthic                |                                             |                      |                    | 2002<br>Scott and Crossman,                          |                                        |
| 2         Argen method         also Absolved         Wind and Absolved<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               | Calasionidas commersora       |                     | The Suara                      | shallow bays, and tributary rivers of<br>larger takes. Generally found at depths                                                                                |                                                                     |                          |                                   |                                             |                      |                    | 1973                                                 |                                        |
| 10SystemNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-LadNon-Lad <td>2</td> <td>Erimyzon sucetta</td> <td>Lake chubsucker</td> <td>White sucker</td> <td>Small, shallow, warm, weedy ponds.</td> <td>No, northern extreme of<br/>range is Lake Erie and Lake<br/>St. Clair</td> <td>Insectivore</td> <td>Freshwater benthic</td> <td></td> <td></td> <td></td> <td>Scott and Crossman,<br/>1973</td> <td>÷</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2             | Erimyzon sucetta              | Lake chubsucker     | White sucker                   | Small, shallow, warm, weedy ponds.                                                                                                                              | No, northern extreme of<br>range is Lake Erie and Lake<br>St. Clair | Insectivore              | Freshwater benthic                |                                             |                      |                    | Scott and Crossman,<br>1973                          | ÷                                      |
| Singer wilds         Singer wilds<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2             | Cyprinus carpio               | Common carp         | White sucker                   | Warm; turbid waters.                                                                                                                                            | Yes .                                                               | Herbivore/Insectivore/   | Freshwater benthic                |                                             |                      |                    | Scott and Crossman,                                  |                                        |
| Source Assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3             | Coregonus artedil             | Cisco               | Forage lish                    | Deeper waters of lakes.                                                                                                                                         | Yes                                                                 | Omnivore                 | Freshwater pelagic                |                                             |                      |                    | Scott and Crossman,                                  |                                        |
| Set Add         Mather         Marker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3             | Couesius plumbeus             | Northern lake chub  | Forage lish                    | Deeper waters of takes and large                                                                                                                                | Yes                                                                 | Ömnivore                 | Freshwater pelagic                |                                             |                      |                    | Scott and Crossman,                                  |                                        |
| Control         Control <t< td=""><td>3</td><td>Amia calva</td><td>Bowfin</td><td>Walleye</td><td>rivers.<br/>Swampy, vegetated bays of warm lakes</td><td>Yes</td><td>Piscivore</td><td>Freshwater benthic</td><td></td><td></td><td></td><td>Scott and Crossman,</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3             | Amia calva                    | Bowfin              | Walleye                        | rivers.<br>Swampy, vegetated bays of warm lakes                                                                                                                 | Yes                                                                 | Piscivore                | Freshwater benthic                |                                             |                      |                    | Scott and Crossman,                                  |                                        |
| J. Alternative Lateralization of planets and planets an                                                                                                                                                                                                                                                                                                                       | · · · ·       |                               | Leagnage out or     | Nibite such ar                 | and rivers.                                                                                                                                                     | Yes                                                                 | invertebrates            | Freshwater benthic                | ·                                           | ·                    | ·-···              | 1973<br>Scott and Crossman.                          |                                        |
| 1         Chica copura         Sim Addit         Wire and the additional Mark and copurational distant and copuratinal distant and copuratinal distantant and copuratinal d                                                                                                                                                                                                                                                                                                                                                  | 3             | Catastomous catastomous       | Longrase socker     | FYTRIC SUCKET                  | in clear, cold water)                                                                                                                                           |                                                                     |                          | Freedow to a baselble             | · · · · · · · · · · · · · · · · · · ·       |                      |                    | 1973                                                 |                                        |
| 1         Model and eleficities         Notes address         Notes addres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3             | Cattus cognatus               | Slimy sculpin       | White sucker                   | Deeper waters of takes and cooler<br>streams on rocky or gravely substrate                                                                                      | Yes                                                                 | Insectivore              | Freshwater benulic                |                                             |                      |                    | 1973                                                 |                                        |
| Zarudi         Appendix meteorement         Bauggit         Frange film         Balance, meteorement         Franker         Presidence function         Presidence function         Solid and Constraint,<br>film         Solid and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3             | Prosopium cylindraceum        | Round whitefish     | White sucker                   | Lakes at depths less than 150 leet                                                                                                                              | Yes                                                                 | Omnivore                 | Freshwater benthic                |                                             |                      |                    | Scott and Crossman,<br>1973                          | ,                                      |
| Carry C                                                                                                                                                                                                                                                                                                                       | 2 and 3       | Lepomis macrochirus           | Bluegill            | Forage fish                    | Shallow, weedy, warm water of large<br>and small lakes, ponds, and heavily<br>vegetated, slowly flowing areas of smal<br>rivers and large creeks. Shallow water | Yes                                                                 | Insectivore/omnivore     | Freshwater benthic                |                                             |                      |                    | Scott and Crossman,<br>1973                          |                                        |
| 2 bd J     Cargona capatitistic     Cargona capatitistic     Cargona capatitistic     Provide     Provide    <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                               |                     | Course fab                     | < 20 feet deep.                                                                                                                                                 | Vat                                                                 | Omphore                  | Freeburgter benthic               | ·                                           |                      | ·                  | Scott and Crossman                                   | · · · · · · · · · · · · · · · · · · ·  |
| 2 https:// particular         Control cells         Website particle         Control cells         Devel appendix         Devel appendix <thdevel appendix<="" th="">         Devel appendix         D</thdevel>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 and 3       | Coregonus clupeaformis        | Lake whitelish      | Forage tish,                   | shallower water. Depth range of 60 to<br>174 feet.                                                                                                              | ies                                                                 |                          | Figsingler ventric                |                                             |                      |                    | 1973                                                 |                                        |
| S and 3       Avec & Arrescores       Velow perch       Velow perch       Wes       Omivore       Preduction of the perch and the perch of the percent of the perce                                                                                                                                                                                                                                                                                                                                                                                     | 2 and 3       | ktalurus punctatus            | Channel catfish     | Walleye/white sucke            | r Cool, clear, deeper waters of large lakes and rivers                                                                                                          | Yes                                                                 | Omnivore                 | Freshwater benthic                |                                             |                      |                    | Scott and Crossman,<br>1973                          |                                        |
| Zand 3         America regression         Back or capie         Velow perch.<br>(equal, terms and or back<br>marked back<br>(equal, terms and or back<br>marked back)         Marked back<br>(equal, terms and or back<br>marked back)         Marked back<br>(equal, terms and or back<br>marked back)         Marked back<br>(equal, terms and or back<br>(equal)         Marked back (equal)         Marked back (equal) <t< td=""><td>2 and 3</td><td>Perca flavescens</td><td>Yellow perch</td><td>Yellow perch</td><td>Warm to cool water habitats of all</td><td>Yes</td><td>Omnivore</td><td>Freshwater pelagic</td><td></td><td></td><td></td><td>Scott and Crossman,</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                               | 2 and 3       | Perca flavescens              | Yellow perch        | Yellow perch                   | Warm to cool water habitats of all                                                                                                                              | Yes                                                                 | Omnivore                 | Freshwater pelagic                |                                             |                      |                    | Scott and Crossman,                                  |                                        |
| 2 and 3       Annohis regreneracional       Black cappe       Velow perch<br>was at lager table to mile<br>as at lager table to mile<br>was at lager table to mile<br>as at lager table to mile<br>was at lager table to<br>mas at lager table.       Velow perch<br>mas at lager table<br>table to<br>mas at lager table<br>table to<br>mas at lager table.       Velow perch<br>mas at lager table<br>table to<br>mas at lager table.       Solid at Costman,<br>197       Solid at Costman,<br>197         2 and 4       Lanz canademus       River other       Annotical mile.       Lanz canademus       River other       Solid at Costman,<br>197       Solid at Costman,<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ľ             |                               |                     |                                | vegetation. Shallow water <30 feet                                                                                                                              |                                                                     | F                        | and benuite                       | 1                                           |                      |                    |                                                      |                                        |
| 2 and 3       ktakers nebulses       Seven bulked       Veloc period Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 and 3       | Pomoxis nigromaculatus        | Black crappie       | Yellow perch                   | Clear, quiet, warm water of large<br>ponds, small lakes, bays and shallower<br>areas of larger lakes, and areas of low<br>flow of larger rises                  | Yes                                                                 | Omnivore                 | Freshwater benthic                |                                             |                      |                    | Scott and Crossman,<br>1973                          |                                        |
| 3 and 4       Cara canademids       River otter       American mink       Adeeployndhrivers       Yes       Projection       Find-huter petagic<br>and benchic       0.10.0.17       >58 cm       Samuel and form       100% of detts flah         3 and 4       Advarial vision       American mink       American mink       American mink       Lakes/pondu/tivers       Yes       Om/some       Freqhendic petagic<br>and benchic       0.10.0.17       >58 cm       Samuel and form,<br>100% of detts flah         3 and 4       American mink       American mink       Lakes/pondu/tivers (intrary habitat)       Yes       Providen       Freqhendic petagic       0.10.0.17       >50 cm       Samuel and form,<br>100% of detts flah         3 and 4       Cavide immer       Common bood       Great blue heron       Lakes/pondu/tivers (intrary habitat)       Yes       Pisotree       Freahmater petagic       Ford funger       0.10       0.10       0.05% cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 and 3       | ktalurus nebulosus            | Brown builhead      | Yellow perch/white<br>sucker   | Shallow, warm-water areas of<br>ponds/lakes/rivers. Depths of <40 feet                                                                                          | Yes                                                                 | Omnivore                 | Freshwater benthic                |                                             | -                    |                    | Scott and Crossman,<br>1973                          |                                        |
| 3 and 4       Azercla mink       American mink       Labespondshivers       Yes       Drinkhore       Preshwater pelagic<br>and bertilike       0.14-0.24       0.20 cm       Stamps CAME_<br>109       Common Loon         3 and 4       Grivé immeré       Grivé immeré       Grivé immeré       Grivé immeré       Distribution pelagic       0.14-0.24       0.20 cm       Stamps CAME_<br>109       USERA_<br>100       Stamps CAME_<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 and 4       | Lura canadensis               | River otter         | American mink                  | Lakes/ponds/rivers                                                                                                                                              | Yes                                                                 | Piscivore                | Freshwater pelagic<br>and benthic |                                             | 0.10-0.17            | >30 cm             | Sample and Suter,<br>1999; COME, 1999;<br>USEDA 1007 | 100% of diet is fish                   |
| Image: Second                                                                                                                                                                                                                                                                                                                 | 3 and 4       | Mustela vison                 | American mink       | American mink                  | Lakes/ponds/rivers                                                                                                                                              | Yes                                                                 | Ornnivore                | Freshwater pelagic                |                                             | 0.14-0.24            | 0-20 cm            | Sample and Suter,                                    | 33-96% of diet is fish or aquatic prey |
| 3 and 4     Gave Example     Common Long     Great blue heron     Lakespondstrivers gemany habital     Yes     Prestwater pelagic     Foot pringe     0.18     Common Loose       3 and 4     Pandon habitarus     Openey     Great blue heron     Lakespondstrivers (tertary habital)     Yes     Pisolvore     Prestwater pelagic     Foot pringe     0.2     0.40 cm     Cm99. 002: COME, 1999. 2002: COME, 1999. 2000: and Cossman, 1973. 2000: and Cossman, 2000: and Cossman, 1973. 2000: a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                               |                     |                                |                                                                                                                                                                 |                                                                     |                          | ano bennic                        | Bhas                                        |                      |                    | USEPA, 1997                                          | (near)-35%)                            |
| 3 and 4     Pandion halisatus     Ogney     Great blue heron     Lakes/ponds/ivers (lettary habital)     Yes     Piscivore     Prestwater pelagic     rot pelagic <throt pelagic<="" th="">     rot pelagic     rot pela</throt>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 and 4       | Gavia immer                   | Common loon         | Great blue heron               | Lakes/ponds/rivers (primary habitat)                                                                                                                            | Yes                                                                 | Piscivore                | Freshwater pelagit                | : Diver                                     | 0.18                 |                    | 1999                                                 | ·                                      |
| 3 and 4       Ardea heroodies       Great blue heron       Certa blue heron       Lakes/pondbrivers (leritary habital)       Yes       Plscivore       Freshwater pelagic<br>and bentilic       Ambusher       0.21       0.30 cm       CWS, 2002: CCME,<br>1999. Sample and<br>State, 1999.         3 and 4       States foodier vineum       Walleye       Shallow, tabid takes, large stream or<br>rivers       Yes       Plscivore       Freshwater pelagic<br>and bentilic       Ambusher       0.21       0.30 cm       CWS, 2002: CCME,<br>1999. Sample and<br>State, 1999.         3 and 4       Esce Acides       Northern jake       Walleye       Heavily vegetiated dow-moving rivers<br>or weedy basy of large takes, more<br>rarely large, som-moving rivers.       Yes       Plscivore/Omnivore<br>and bentilic       Freshwater pelagic<br>and bentilic       Socit and Crossman,<br>1973         3 and 4       Atterprenzus samoldes       Largemouth bass       Walleye       Shallow bays of large takes, more<br>rarely large, som-moving rivers.       Yes       Omnivore       Freshwater pelagic<br>and bentilic       Socit and Crossman,<br>1973       Socit and Crossman,<br>1973         3 and 4       Esce mericanus<br>amarkanus       Redlin pickerel       Walleye       Stagalah streams and ponds, weter < 10<br>(Stagalah base and ponds),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3 and 4       | Pandion haliaetus             | Osprey              | Great blue heron               | Lakes/ponds/rivers (teritary habitat)                                                                                                                           | Yes                                                                 | Piscivore                | Freshwater pelagic                | : Hoot plunger                              | 0.2                  | u-4u cm            | 1999; Sample and<br>Suter, 1999                      |                                        |
| 3 and 4       Statistication vitnaum       Walleye       Walleye       Station, turbid lakes; large streams or<br>rivers       Yes       Placivore       Freshwater pelagic<br>and berthic       Scott and Crossman,<br>1973         3 and 4       Escar Acitizs       Northern pike       Walleye       Hamily vegetated dow-moving rivers<br>or weedy bays of lakes       Yes       Placivore/Omrivare<br>and benthic       Freshwater pelagic<br>and benthic       Scott and Crossman,<br>1973         3 and 4       Attropprerus satimoldes       Largemouth bass       Walleye       Station bays of large lakes, more<br>rarely large, slow-moving rivers;       Yes       Omnivore       Freshwater pelagic<br>and benthic       Scott and Crossman,<br>1973         3 and 4       Escar riger       Chain pickerel       Walleye       Staggish iterams and heavity<br>vegetated dakes and profix water < 10<br>tere deep:       Yes       Omnivore       Freshwater pelagic<br>and benthic         3 and 4       Escar and rearrans<br>americanus       Redlin pickerel       Walleye       Stuggish iterams and heavity<br>vegetated dakes and profix water < 10<br>tere deep:       Yes       Placivore       Freshwater pelagic<br>and benthic       Scott and Crossman,<br>1973         3 and 4       Escar andrearus       Redlin pickerel       Walleye       Stuggish iterams (are soft and Crossman,<br>terems; teres (takes and thore; terems)       Yes       Omnivore       Freshwater pelagic<br>and benthic       Scott and Crossman,<br>1973                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 and 4       | Ardea herodias                | Great blue heron    | Great blue heron               | Lakes/ponds/rivers (teritary habitat)                                                                                                                           | Yes                                                                 | Piscivore                | Freshwater pelagio                | Ambusher                                    | 0.21                 | 0-30 cm            | CWS, 2002; CCME,<br>1999; Sample and<br>Suter, 1999  | •                                      |
| 3 and 4       Exar Auctors       Northern pike       Walleye       Heavily vegetated dow-moving rivers<br>or weeky basys of latase<br>or week or week<br>or week<br>or week or week<br>or week<br>or week or week<br>or week<br>or week or week<br>or week | 3 and 4       | Stizostedion vitreum          | Walleye             | Walleye                        | Shallow, turbid lakes; large streams or rivers                                                                                                                  | Yes                                                                 | Piscivore                | Freshwater pelagio<br>and benthic |                                             |                      |                    | Scott and Crossman,<br>1973                          | :                                      |
| 3 and 4       Attemptorus salmoldes       Largemouth bass       Walleye       Shaftow bays of targe takes, more rarely large, Sourmouting treas, largemouth bass       Yes       Omnivore       Freshwater pelagic and benthic       1973       Add.tt diet is 50-90% small fishes:         3 and 4       Escar inger       Chain pickerel       Walleye       Suggish intervity regulated calles and ponds; water < 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3 and 4       | Esox lucius                   | Northern pike       | Walleye                        | Heavily vegetated slow-moving rivers<br>or weedy bays of lakes                                                                                                  | Yes                                                                 | Piscivore/Omnivore       | Freshwater pelagic<br>and benthic |                                             |                      |                    | Scott and Crossman,<br>1973                          |                                        |
| 3 and 4       Escar infjer       Chain pickerel       Walleye       Stoggish streams and heavity<br>vegetated takes and poncy<br>inter deep       Piscivore       Freshwater pelagic<br>and benthic       Freshwater pelagic<br>and benthic       Scott and Crossman,<br>1973         3 and 4       Escar americanus<br>americanus       Redlin pickerel       Walleye       Stuggish istemay and heavity<br>vegetated takes and poncy<br>istemay. Isses requestly in ponds and<br>weedy backwater/grief takes in and on a diverse<br>istemay. Isses requestly in northern<br>weedy backwater/grief takes in and on a diverse<br>weedy backwater/grief takes in and on a diverse<br>istemay. Isses requestly in northern<br>in central/southern Canada, the deep<br>waters of takes and incert.       Yes       Piscivore       Freshwater pelagic<br>and benthic       Scott and Crossman,<br>1973         3 and 4       Lota kua (Linnaeus)       Burbot       Walleye       Deep lakes; ites requestly in northern<br>in central/southern Canada, the deep<br>waters of takes and inters.       Yes       Omnivore       Freshwater pelagic<br>and benthic       Scott and Crossman,<br>1973         3 and 4       Lota kua (Linnaeus)       Burbot       Walleye       Walleye       Yes       Omnivore       Freshwater pelagic<br>and benthic       Scott and Crossman,<br>1973                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3 and 4       | Micropterus salmoides         | Largemouth bass     | Walleye                        | Shallow bays of larger lakes, more<br>rarely large; slow-moving rivers:                                                                                         | Yes                                                                 | Omnivore                 | Freshwater pelage<br>and benthic  |                                             |                      |                    | Scott and Crossman,<br>1973                          | Adult diet is 50-90% small fishes      |
| 3 and 4       Escar americanus<br>americanus       Redlin pickerei       Waleye       Sluggish, heavity vegetated acidic<br>streams; tess frequently in norther and<br>integrative streams; tess frequently in northern<br>integrative streams; tess frequently in northern<br>integrative streams; tess frequently in northern<br>integrative streams; tess frequently in northern<br>half of range in shallow lakes and in and<br>the streams; tess frequently in northern<br>half of range in shallow lakes and in and<br>the streams; tess frequently in northern<br>half of range in shallow lakes and in and<br>the streams; tess frequently in northern<br>half of range in shallow lakes and in and<br>the streams; tess frequently in northern<br>half of range in shallow lakes and in and<br>the streams; tess frequently in northern<br>waters of lakes and integrative<br>waters of lakes and integrative<br>in been transitioned       Yes       Ornivore       Freshwater pelagic<br>and benthic       Scott and Crossman,<br>1973         3 and 4       Lota lota (Linnaeus)       Burbot       Walleye       Walleye<br>waters of lakes and integrate<br>waters of lakes and integrate       Yes       Ornivore       Freshwater pelagic<br>and benthic       Scott and Crossman,<br>1973                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3 and 4       | Esax niger                    | Chain pickerel      | Walleye                        | Sluggish streams and heavily<br>vegetated lakes and ponds; water < 10                                                                                           | Yes                                                                 | Piscivore                | Freshwater pelagi<br>and benthic  |                                             |                      | 1                  | Scott and Crossman,<br>1973                          |                                        |
| 3 and 4     Lota lota (Linnaeus)     Burbot     Walleye<br>In central/southen Canada, the deep<br>waters of lakes and innorms, marrier     Yes     Omnivore     Freshwater pelagic<br>and benthic     Scott and Crossman,<br>1973       3 and 4     Lota lota (Linnaeus)     Burbot     Walleye<br>(Linnaeus)     National Southen Canada, the deep<br>waters of lakes and innorms, marrier     Yes     Omnivore     Freshwater pelagic<br>and benthic     Scott and Crossman,<br>1973                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3 and 4       | Esox americanus<br>americanus | Redlin pickerel     | Walleye                        | Sluggish, heavily vegetated acidic<br>streams; less frequently in ponds and<br>weedy backwaters/quiet bays of larger                                            | Yes                                                                 | Piscivore                | Freshwater pelagi<br>and benthic  |                                             |                      |                    | Scott and Crossman,<br>1973                          | •••••••••••••••••••••••••••••••••••••• |
| 3 and 4     Lota lota (Linnaeus)     Burbot     Walleye in central/southern Canada, the deep waters of lakes and innorm is summer.     Yes     Omnivore     Freshwater pelagic and bentive     Scott and Crossman, 1973                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3 and 4       | Salvolinus namavcush          | Lake trout          | Walleve                        | lakes/rivers<br>Deep lakes; less frequently in northern                                                                                                         | Yes                                                                 | Omnivore                 | Freshwater pelagi                 |                                             |                      | <u>↓</u> · · · · · | Scott and Crossman,                                  |                                        |
| 3 and 4     Lota lota (Linnaeus)     Burbot     Walleye     In contraissochem canado, indiceto pressochem canado, ind                                                                                                                                                                                                                                                                                                                                                     | 5 and 4       | Sarreannes nama jeusii        |                     |                                | half of range in shallow lakes and in<br>rivers                                                                                                                 |                                                                     | ,<br>Omphore             | Freeburter and                    | <u> </u>                                    | ļ                    |                    | 1973                                                 |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3 and 4       | Lota lota (Linnaeus)          | Burbot              | Walleye                        | In central/southern Canada, the deep<br>waters of lakes and rivers. Restricted<br>to below hypotimnion in summer.                                               |                                                                     | Can nvore                | and benthic                       | <u>ــــــــــــــــــــــــــــــــــــ</u> |                      |                    | 1973                                                 |                                        |

Table A13- Summary information to compare alternate species to receptor species

## APPENDIX B. Mercury in sediment and biological effects from 2000 surveys

|               |       | Total Hg in Sediment<br>(ug/g) |                   | Methyl Hg         | (in Sediment      | Biological Effects <sup>a</sup> |           |  |
|---------------|-------|--------------------------------|-------------------|-------------------|-------------------|---------------------------------|-----------|--|
| Location/Site |       | 2000ª                          | 2000 <sup>b</sup> | 2000 <sup>a</sup> | 2000 <sup>b</sup> | Community                       | Toxicity  |  |
| Al            |       | 0.04                           | < 0.015           | 0.00              | -                 | Different                       | Toxic     |  |
| A2            | ×.    | 0.24                           | < 0.015           | 2.45              | . <del>.</del>    | Very Different                  | Non-toxic |  |
| A5            |       | 2.26                           | 5.0               | 9.53              | -                 | Poss. Different                 | Non-toxic |  |
| B5            |       | 5.46                           | 6.7               | 9.38              | -                 | Different                       | Non-toxic |  |
| C3            |       | 0.65                           | 6.1               | 9.64              | -                 | Very Different                  | Non-toxic |  |
| 6958/C5       |       | 10.10                          | 4.0               | 7.16              | -                 | Poss. Different                 | Non-toxic |  |
| C6            |       | 0.40                           | 4.8               | 2.28              | -                 | Very Different                  | Non-toxic |  |
| D1            |       | 1.90                           | 0.36              | 10.0              | ÷                 | Very Different                  | Non-toxic |  |
| D4            |       | 5.06                           | 5.9               | 17.8              | -                 | Different                       | Non-toxic |  |
| D5            | . · · | 8.13                           | 13,8              | 15.2              | -                 | Very Different                  | Non-toxic |  |
| E3            | •     | 1.33                           | 1.3               | 19.4              | <del>.</del>      | Very Different                  | Non-toxic |  |
| E5            |       | 12.50                          | 24.0              | 16.5              | 15.7              | Very Different                  | Non-toxic |  |
| F2 _          | . '   | 0.83                           | 0.40              | 10.9              | -                 | Very Different                  | Non-toxic |  |
| F4            |       | 11.10                          | 7.4               | 20.4              | -                 | Different                       | Non-toxic |  |
| G3            |       | 3.46                           | -                 | 20.5              | -                 | Different                       | Non-toxic |  |
| G5            |       | 7.59                           | 31.0              | 18.3              | -                 | Very Different                  | Non-toxic |  |
| G6            |       | 4.13                           | 17.0              | 12.9              | -                 | Very Different                  | Non-toxic |  |
| H3            | · · · | 3.93                           | 3.8               | 14.3              | -                 | Different                       | Non-toxic |  |
| H5            |       | 19.50                          | 32.0              | 22.6              |                   | Very Different                  | Non-toxic |  |
| 15            |       | 2.30                           | 4.6               | 8.76              | -                 | Very Different                  | Non-toxic |  |
| 6957/J5       |       | 0.94                           | 0.55              | 2.50              | <b>-</b> ·        | Very Different                  | Non-toxic |  |

Table B1. Mean total and methyl mercury levels in sediments from Jellicoe Cove 2000 surveys (concomitant sites). Biological effects from BEAST analysis.

<sup>a</sup> Milani et al. 2002.

<sup>b</sup> Burt and Fitchko 2002. Value represents the average Hg concentration of 0-5 cm and 5-10 cm core samples.

# **APPENDIX C.** Conversion of total and methyl mercury concentration (dry weight) in benthic invertebrates to wet weight concentrations

Table C1.Total mercury in biota (converted to ng/g wet weight), collected from JellicoeCove, Peninsula Harbour, and from reference sites.

| <u></u>                               |       | BIOTA – Total | Hg (ng/g ww) |
|---------------------------------------|-------|---------------|--------------|
| Area                                  | Site  | Midge         | Amphipod     |
|                                       |       |               |              |
| Reference                             | PH1   | 10.20         | 5.88         |
|                                       | PH2_  | 12.92         | 9.65         |
|                                       | PH11  | 10.41         | 6.29.        |
|                                       | PH13  | 6.25          | 8.25         |
| -                                     | PH14  | 13.57         | 10.92        |
|                                       | PH15  | 50.38         | 26.49        |
|                                       | PH16  | 53.46         | 8.11         |
|                                       | PH17  | 55.85         | 7.82         |
|                                       | PH18  | 6.06          | 6.29         |
|                                       | PH20  | 26.80         | 7.01         |
|                                       | PH21  | 8.06          | 7.24         |
|                                       | PH22  | 218.86        | 16.20        |
| · · · · · · · · · · · · · · · · · · · | PH26  | 131.23        | 14.61        |
| Jellicoe Cove                         | JC 2A | 39.43         | 27.95        |
|                                       | JC 3A | 121.88        | 36.37        |
|                                       | JC 4A | 155.09        | 100.92       |
| · · · · · · · · · · · · · · · · · · · | JC 5A | 804.15        | 137.62       |
|                                       | JC 6A | 176.16        | 58.98        |
|                                       | JC 7A | 277.51        | 81.17        |
|                                       | JC 1B | 57.25         | 48.95        |
|                                       | JC 2B | 378.21        | 75.38        |
|                                       | JC 3B | 211.93        | 92.40        |
|                                       | JC 4B | 431.60        | 66.76        |
|                                       | JC 5B | 213.64        | 124.07       |
| <u>.</u>                              | JC 6B | 676.79        | 155.26       |
|                                       | JC 7B | 637.07        | 314.97       |
| · · · · · · · · · · · · · · · · · · · | JC 1C | 120.42        | 79.81        |
|                                       | JC 2C | 243.47        | 107.62       |
|                                       | JC 3C | 263.71        | 90.93        |
|                                       | JC 4C | 287.18        | 98.19        |
|                                       | JC 5C | 157.13        | 140.06       |
| · · · · · · · · · · · · · · · · · · · | JC 6C | 255.93        | 117,41       |
|                                       | JC 7C | 439.13        | / 95.01      |
|                                       | JC 1D | 136.55        | 41.04        |
| <u> </u>                              | JC 2D | 362.47        | 50.60        |
|                                       | JC 3D | 261.42        | 76.42        |
|                                       | JC 4D | 147.77        | 52.60        |
|                                       | IC 5D | 180.11        | 55.87        |

a lab duplicate, b lab replicate

Table C2.Methyl mercury in biota (converted to ng/g wet weight), collected from JellicoeCove, Peninsula Harbour, and from reference sites.

| ······································ |       | BIOTA – Methy | l Hg (ng/g ww) |
|----------------------------------------|-------|---------------|----------------|
| Area                                   | Site  | Midge         | Amphipod       |
|                                        | A     |               |                |
| Reference                              | PH1   | 2.30          | 4.80           |
|                                        | PH2   | 2.72          | 4.50           |
|                                        | PH11  | 4.31          | 2.55           |
|                                        | PH13  | 2,82          | 3.35           |
|                                        | PH14  | 2.90          | 3.37           |
|                                        | PH15  | 36.70         | 16.02          |
|                                        | PH16  | 3.89          | 2.74           |
|                                        | PH17  | 2.33          | 3.80           |
|                                        | PH18  | 4.53          | 3.25           |
|                                        | PH20  | 7.49          | 4.39           |
|                                        | PH21  | 2.42          | 3.30           |
|                                        | PH22  | 6.45          | 5.41           |
|                                        | PH26  | 5.01          | 5.41           |
| Jellicoe Cove                          | JC 2A | 9.28          | 16.32          |
|                                        | JC 3A | 36.91         | 19.82          |
|                                        | JC 4A | 21.26         | 27.93          |
|                                        | JC 5A | 49.13         | 47.41          |
|                                        | JC 6A | 75.05         | 42.50          |
| · · · · · · · · · · · · · · · · · · ·  | JC 7Å | 37.58         | 30.42          |
|                                        | JC 1B | 14.96         | 15.03          |
|                                        | JC 2B | 16.54         | 21.92          |
|                                        | JC 3B | 9.72          | 19.99          |
|                                        | JC 4B | 7.96          | 30.12          |
|                                        | JC 5B | 8.57          | 28.23          |
| · · ·                                  | JC 6B | 21.86         | 32.34          |
|                                        | JC 7B | 73.84         | 54.49          |
| · · · · · · · · · · · · · · · · · · ·  | JC 1C | 23.03         | 15.43          |
|                                        | JC 2C | 4.35          | 19.23          |
|                                        | JC 3C | 3.58          | 22.95          |
|                                        | JC 4C | 9.98          | 20.19          |
|                                        | JC 5C | 6.11          | 16.17          |
|                                        | JC 6C | 20.84         | 42.83          |
|                                        | JC 7C | 14.33         | 2.81           |
|                                        | JC 1D | 5.49          | 9.94           |
|                                        | JC 2D | 4.77          | 15.49          |
|                                        | JC 3D | 4.09          | 15.17          |
| ·                                      | JC 4D | 9.95          | 16.51          |
|                                        | JC 5D | 7.20          | 22.69          |

a lab duplicate, b lab replicate

## APPENDIX D. QA/QC results

| Table D | 1. Se | diment nu | trient con  | centration | s, metals | , and parti | cle size fr | actions f | or field re | plicate sam  | ples.        |
|---------|-------|-----------|-------------|------------|-----------|-------------|-------------|-----------|-------------|--------------|--------------|
| Site    |       | TOC       | TKN         | TP         | % silt    | % sand      | % clay      | Fe        | Mn          | Total Hg     | Methyl<br>Hg |
| PH14    | Mean  | 1.20      | 773.67      | 603.00     | 19.93     | 57.71       | 22.36       | 1.31      | 276.00      | 58.33        | 0.21         |
|         | SD    | 0.12      | 49.60       | 16.46      | 1.83      | 2.53        | 2.69        | 0.14      | 18.25       | 13.61        | 0.02         |
|         | CV    | 9.61      | 6.41        | 2.73       | 9.17      | 4.38        | 12.03       | 10.34     | 6.61        | 23.34        | 9.43         |
| JC4C    | Mean  | 4.08      | 837.33      | 574.67     | 31.40     | 56,03       | 12.57       | 1.27      | 143.33      | 17795.3      | 21.73        |
| ×       |       |           |             |            | · .       |             |             |           |             | 3            |              |
|         | SD    | 0.13      | 70.19       | 62.17      | 0.86      | 1.47        | 2.26        | 0.04      | 5.86        | 5195.42      | 2.30         |
|         | CV    | 3.26      | 8.38        | 10.82      | 2.74      | 2.62        | 17.98       | 3.17      | 4.09        | 29.20        | 10.60        |
| JC6C    | Mean  | 5.36      | 956.67      | 535.33     | 23.67     | 63.82       | 12.51       | 1.30      | 143.33      | 16866.1<br>7 | 9.76         |
| •       | SD    | 0.37      | 138.78      | 16.17      | 2.12      | 1.38        | 2.03        | 0.02      | 1.53        | 3157.39      | 0.59         |
|         | CV    | 6.90      | 14.51       | 3.02       | 8.97      | 2.17        | 16.24       | 1.54      | 1.07        | 18.72        | 6.00         |
| JC5D    | Mean  | 5.46      | 1096.6<br>7 | 509.00     | 15.02     | 70.93       | 14.05       | 1.24      | 153.33      | 5549.00      | 10.32        |
|         | SD .  | 0.36      | 200.40      | 21.66      | 2.82      | 1.65        | 1.18        | 0.02      | 1.53        | 669.48       | 1.42         |
|         | CV    | 6.68      | 18.27       | 4.25       | 18.75     | 2.33        | 8.41        | 1.23      | 1.00        | 12.06        | 13.80        |

|                  |        |              |                                        | SEDIMENT.: T                          | OTAL MERCU       | RY                                    |             |        |              |               | SEDIM       | ENT: ME | THYL MERC     | ÜRY                            |
|------------------|--------|--------------|----------------------------------------|---------------------------------------|------------------|---------------------------------------|-------------|--------|--------------|---------------|-------------|---------|---------------|--------------------------------|
| ľ                | S      | ample Recove | ıy                                     | Matri                                 | x Spike recovery |                                       |             | ; S    | ample Recove | y             | İ           | Matr    | ix Spike Reco | /ery                           |
|                  | Site   | Commente     | 4 HolDecovery                          | Site                                  | & Perovery       |                                       |             | Site   | Comments     | %:Recovery    |             | Site    | Comments      | % Recovery                     |
|                  | PH1    | communa      | 98.7                                   | JC3B                                  | 103.7            | •                                     |             | PH1    | connorm      | 87.4          |             | JC3D    |               | 99.0                           |
|                  | PH2    |              | 103.0                                  | JC5C                                  | 86:6             |                                       |             | PH2    |              | 98.6          |             | JC7A    |               | ~ 113.3                        |
|                  | PH11   |              | 103.0                                  | . PH16                                | 103.3            |                                       | <b>,</b>    | PH11   |              | 99.2          |             | PH21    |               | 75.9                           |
|                  | PH13   |              | 96.7                                   | JC6C                                  | 103.0            |                                       |             | PH11   | duplicate    | 99.2          |             | PH1     |               | 69.6                           |
|                  | PH1400 |              | 103:0                                  | JC2A                                  | 98.7             |                                       |             | PH13   |              | 87.4          |             | PH13    |               | ·B5.1                          |
|                  | PH1401 |              | 103.0                                  |                                       |                  |                                       |             | PH14-1 |              | 99.2          |             | JC1D    |               | 89.4                           |
|                  | PH1402 |              | 103.0                                  | Mean                                  | 99.06            |                                       |             | PH14-2 |              | 87.4          | · · · · · · | JC4B    |               | 104.0                          |
| ·····            | PH15   |              | 98.7                                   | Kange                                 | 86.6 - 103.7     |                                       |             | PH14-3 | d            | 87.4          | i           | 10001   |               | 94,3                           |
|                  | PHID   |              | U:EUI                                  |                                       |                  |                                       |             | PH14-3 | duplicate    | 07.4          |             | JC2D    |               | 107.1                          |
| ·····            | PHID   | duplicate    | 103:0                                  |                                       |                  |                                       |             | PH15   |              | 87.4          |             | JU4U-2  |               | 103:3                          |
|                  | 0010   |              | 103.0                                  |                                       | 1                |                                       |             | . PO10 |              | 90.0<br>87 A  | ·····       |         |               |                                |
|                  | 0420   |              | 0.00 ו<br>ת כתו                        |                                       | Dofer            | inco Cailmont                         |             | 0418   |              | 87 /          |             | 11122   |               | 99.1                           |
|                  | - H2U  |              | 103.0                                  | Madna co                              | neien            | MESS 2.02                             | a/a)        | PH10   |              | 07.4          |             |         | renost        | 104 7                          |
| ····· }          | PH22   |              | 103.0                                  | 14 di 110 50                          | ument stanuaru   | WIL33 - 2. 32 1                       | 8,81        | PH21   |              | 75 9          |             | JCIB    | repeat        | 98.9                           |
|                  | PH26   |              | 103.0                                  | Rin                                   | THa              | Mean &Recov                           |             | PH21   | reneat       | 75.9          |             | JC5D-1  | iopout        | 94.3                           |
| - F              | JC2A   |              | 98.7                                   |                                       | 88.4             |                                       |             | PH22   | , iopool     | 99.2          |             | JC3B    |               | 94,4                           |
|                  | JC2A   | duplicate    | 98.7                                   | 2                                     | 96.6             | 100.6                                 |             | PH26   |              | 99.2          |             |         |               |                                |
|                  | JC3A   |              | 95.1                                   |                                       |                  |                                       |             | JC2A   |              | 96.7          | 1           |         | Mean          | 96.F                           |
|                  | JC4A   |              | 95.1                                   | 3                                     | 88.9             |                                       |             | JC2A   | duplicate    | 96.7          |             |         | Range         | 75.9 - 113.3                   |
| 6                | JC5A   |              | 103.0                                  | 4                                     | 88.9             | 96.7                                  |             | JC3A   | ·            | 98.6          | ľ .         |         |               |                                |
| - 7              | JC6A   |              | •                                      |                                       |                  |                                       |             | JC3A   | duplicate    | 96.7          | 1           |         |               |                                |
|                  | JC7A   |              | 98.7                                   | 5                                     | · 95.6           |                                       |             | JC3A   | triplicate   | · 105.2       | 1           |         |               |                                |
| 5                | JC1B   |              | 95.1                                   | 6                                     | . 93.8           | 103.0                                 | •           | JC3A   | trip-repeat  | 106.2         |             |         |               |                                |
|                  | JC2B   | ·            | 95.1                                   |                                       |                  |                                       | 1           | JC4A   | <b>.</b>     | 94.4          |             |         |               |                                |
|                  | JC3B   |              | 95.1                                   | Mean                                  | 92.03            | 100.10                                |             | JC5A   | ,            | 100.8         |             |         |               |                                |
|                  | JC3B   | duplicate    | 95.1                                   | · · · · · · · · · · · · · · · · · · · |                  |                                       |             | JC5A   | duplicate    | 100.8         |             |         |               |                                |
|                  | JC4B   |              | 95.1                                   |                                       |                  |                                       |             | JC6A   |              |               |             |         |               |                                |
|                  | JC58   |              | 95.1                                   |                                       |                  |                                       |             | JC7A   | <u>,</u>     | . 106.2       |             | ·       |               |                                |
|                  | JC68   |              | 95.1                                   |                                       |                  |                                       |             | JC7A   | repeat       | 106.2         |             |         |               |                                |
|                  | JC78   |              | 103.0                                  |                                       |                  |                                       |             | JC1E   |              | 99.2          |             |         |               |                                |
|                  | JC1C   |              | -98.7                                  |                                       |                  |                                       | · · · · · · | JC1E   | duplicate    | 96.7          | ·           |         |               |                                |
| - [ <sup>1</sup> | JC2C   |              | . 95.1                                 |                                       |                  |                                       |             | JCTE   | triplicate   | 106.2         |             |         |               |                                |
|                  | JEJE   |              | 95,1                                   |                                       |                  |                                       |             | 3028   |              | 90.0          |             |         |               | providen and the second second |
|                  | JC4C-1 |              | 98.3<br>OF 1                           |                                       |                  | · · · · · · · · · · · · · · · · · · · |             | 3630   |              | 94.4<br>OG 7  |             |         |               |                                |
|                  | JC4C-2 |              | 50. I<br>100 0                         |                                       |                  |                                       |             | 3040   |              | 90.7<br>Q4 4  |             |         |               |                                |
|                  | 1040-5 |              | 95.0                                   |                                       |                  |                                       |             | ICEE   |              | . 98 6        |             |         |               |                                |
|                  | 1050   | dunlicate    | 95.1                                   |                                       |                  |                                       |             |        | dunlicate    | 98.E          |             | 1       |               |                                |
|                  | JC6C-1 | Sopheare     | 95.1                                   |                                       |                  | • •                                   |             | JC7E   |              | 100.8         |             |         |               |                                |
|                  | JC6C-2 |              | 103.0                                  |                                       |                  |                                       |             | JC1C   |              | 96.7          |             |         |               |                                |
|                  | JC6C-2 | duplicate    | 103.0                                  |                                       |                  |                                       |             | JC2C   | ,            | 106.2         |             |         |               |                                |
|                  | JC6C-3 |              | 103.0                                  |                                       |                  | ¢                                     |             | JC2C   | duplicate    | 106.2         |             | Ì       |               |                                |
|                  | JC7C   |              | 103.0                                  |                                       |                  |                                       |             | JC3C   |              | 94.4          | 1           | ]       |               |                                |
|                  | JC1D   |              | 98.7                                   |                                       |                  |                                       |             | JC4C-1 | Į.           | 98.8          |             | 1       |               |                                |
|                  | JC2D   |              | 103.0                                  |                                       |                  | ļ                                     |             | JC4C-2 |              | . 98.8        |             |         |               |                                |
|                  | JC3D   |              | 95.1                                   |                                       |                  |                                       |             | JC4C-3 | 1            | 100.8         |             |         |               |                                |
|                  | JC4D   |              | 109.0                                  |                                       | <u>`</u>         | ·                                     |             | JC50   |              | 94.4          |             |         |               |                                |
|                  | JC6D-1 |              | 95.1                                   |                                       |                  | ļ                                     |             | JC5C   | duplicate    | 94.4          | J           |         |               |                                |
|                  | JC5D-2 |              | 98.7                                   |                                       |                  | · · · · · · · · · · · · · · · · · · · |             | JC6C-1 |              | 106.2         |             |         |               |                                |
|                  | JC5D-3 |              | 95.1                                   |                                       |                  |                                       |             | JC6C-1 | duplicate    | 106.2         |             |         |               |                                |
|                  |        | Mean         | 99,29                                  |                                       |                  | [                                     |             | JC6C-2 |              | 101.8         |             |         |               |                                |
| ••••             |        | Kange        | 93.1 - <b>1</b> 03.0                   |                                       |                  |                                       |             | JC6C-3 |              | 100.6         |             |         |               |                                |
|                  |        |              |                                        |                                       | •                |                                       |             | JU00-3 | tebeat       | 100.0         | 1           |         |               |                                |
|                  | ·····  |              | ······                                 |                                       |                  | <u> </u>                              |             | JC/C   |              | 100.6         | 1           |         |               |                                |
|                  |        |              |                                        |                                       |                  |                                       |             |        |              | 90.7<br>100 c |             |         |               | · · ·                          |
|                  |        |              | ······                                 |                                       | •                |                                       | ·           | 3020   |              | 100.0         |             |         | ·····         |                                |
|                  |        |              |                                        |                                       |                  |                                       |             |        |              | 100:2         | il          |         | ·····         |                                |
| ÷                |        |              |                                        |                                       |                  |                                       |             | JC5D-1 |              |               |             |         |               |                                |
|                  |        |              |                                        |                                       |                  | [                                     |             | JC5D-7 |              | 96:7          | 1           |         |               |                                |
|                  |        |              | ······································ |                                       |                  |                                       |             | JC5D-3 | 1            | 94.4          | 1 ·         |         |               |                                |
|                  |        |              |                                        |                                       |                  |                                       |             |        |              |               |             |         |               |                                |
| -1               |        |              |                                        |                                       | •                | 1                                     | · · ·       |        | Mean         | 97.3          |             |         |               |                                |
| 1                |        |              |                                        |                                       |                  | 1                                     |             |        | Range        | 75.9 - 106.2  |             |         |               |                                |
| T                | . 1    |              |                                        |                                       |                  |                                       |             |        |              |               | ]           |         |               |                                |
|                  |        |              |                                        | 1                                     |                  |                                       |             |        |              |               |             |         |               | 1                              |

 Table D2.
 Laboratory QA/QC data for sediment total and methyl mercury from Flett Research Ltd.

|         |        |                |            |               |                                       | BIOTA: T     | OTAL MERCURY                          | ,<br>            | •                                             |             |                                       | BIOTA - MET  | HYL MERCUR | Ŷ            |                    | <u> </u> |
|---------|--------|----------------|------------|---------------|---------------------------------------|--------------|---------------------------------------|------------------|-----------------------------------------------|-------------|---------------------------------------|--------------|------------|--------------|--------------------|----------|
| ;       |        | Defet          | ence Mat   | erial         | <u> </u>                              |              | ·                                     | ample Decou      | 201                                           |             | Sample Perman                         |              |            | Deferences   | (aterial           | ļ        |
|         |        |                | MOADE      | CHICAMDIEC    | 2                                     |              |                                       | ample Recov      | <u>, , , , , , , , , , , , , , , , , , , </u> |             | Sample Recovery                       |              |            | CODM 2.4     | 20 · ( 240 ····(·) |          |
|         | •••••• | (DONNE, DIO    | H 4647 T 1 | STI SPOIL LES |                                       |              | Site                                  | Chironomid       | Amphipod                                      | Site        | Chiropomid                            | Amnhinod     |            | (UURIA-2: 44 | //u +/- 340 ng/gj  |          |
| ·       | Run    | Standard       | THg        | Expected THg  | % Recovery                            | / Mean       | PH1                                   | 99.3             | 100.3 (98.3)a                                 | PH1         | 93.9                                  | 93.8         | Run        | MeHo         | Mean % Recovery    |          |
|         | 1      | DFO Bag 296    | 476        | 449           | 106                                   | i . 100      | PH                                    | 2 99.3           | 100.3                                         | PH2         | 93.9                                  | 96.0         | 1          | 4348         | 93.9               |          |
|         |        | DFO Bag 296    | 420        | 449           | 94                                    | ų            | PH1                                   | 1 91:6           | 97.3                                          | PH11        | 94.6 (95.7)a                          | 66.0 (96.9)a |            | 4051         |                    |          |
|         |        |                |            |               |                                       |              | PH13                                  | 3 91.6           | 98.3 (98.3)a                                  | : PH13      | 94.6                                  | 91.6         |            | 4260         | 91.6               |          |
|         |        | DFO Bag 297    | 212        | 205           | - 104                                 | 106          | PH14                                  | 4 91.6           | 98.3 (98.3)a                                  | PH14        | . 94.6                                | 91.6         |            | 3932         |                    |          |
|         |        | DFO Hag 29/    | 224        | 205           | 109                                   |              | PH16                                  | 91.6             | 97.3                                          | PH15        | 95.7                                  | 96.9         | 3          | 4406         | 95.7               | İ        |
|         |        | N.B.C. (Dam?)  | 1770       | 10.10         |                                       |              | PHIL                                  | 5 91.b           | 100,3                                         | PH16-       | 94.6 (94.6)b                          | 91.6 (68.0)  |            | 4146         |                    |          |
| ······  |        | N.P.C (Dorm2)  | 42/0       | 4640          |                                       |              | 9419                                  | 3 09 1           | 97.3<br>1973                                  | PH18        | 94.0                                  | 00.U         |            | 41/5         | 94;b               | ·        |
|         |        | (Conne)        |            |               |                                       | · .          | PH2                                   |                  | - 97.3                                        | PH20        | 03.9<br>Q3.0                          | 91 6.68 016  |            | 4200         | 03.6               |          |
|         | 2      | DFO Bag 296    | 461        | 449           | 103                                   | .100         | PH2                                   | 1 91/6           | 97.3                                          | PH21        | 94.6 (94.6)b                          | 88.0 188.014 |            | 4299         | -50.0              | ·        |
|         |        | DFO Bag 296    | 442        | 449           | 98                                    | 3            | . PH2                                 | 2 91.6 (91:6)a   | 97.3                                          | PH22        | 94.6                                  | 88.0         | · 6        | 4206         | 96.0               |          |
|         |        |                |            |               |                                       |              | PH2                                   | 6 <b>91.</b> 6   | 97.3                                          | PH26        | 94.6                                  | 88.0         |            | 4380         | )                  | l        |
|         |        | DFO 8ag 297    | 204        | 205           | 99                                    | 101          | JC2/                                  | N. 91.E          | 97.3                                          | JC2A        | 95.7 (95.7)b                          | 96.9         | 7          | 4367         | . 96.9             |          |
| [       |        | DFO Bag 297    | 211        | 205           | 103                                   | )            | JC3/                                  | N 91.6           | 97.3                                          | AEDL        | 95.7                                  | 96.9         |            | 4295         | (                  |          |
|         |        | ND0 00 0       | 1007       |               |                                       |              | JC4/                                  | 91.6             | 97.3                                          | JC4A        | 95:7                                  | 96.9 (96.9)b | 8          | 3927         | -68.0              | į        |
| ·       |        | N.R.C. (Dorm2) | 432/       | 464           | 93                                    | 94           | JC5/                                  | 91.6 (91.6)      | 97.3                                          | JC5A        | 95.7                                  | 96.9 (96.0)a |            | 3943         |                    |          |
|         |        | N.R.C. (Dorm2) | 4300       | • 404         | 50                                    | )<br>        | JUD/                                  | 91.6             | 97.3                                          | JUBA        | 95.7                                  | 96.9         | У          | 4094         | 91.6               | <b>.</b> |
|         | Э      | DEO Bag 296    | 366        | AAC           | 81                                    | 89           |                                       | - 57.0<br>- 91.6 | 97.3                                          | JC/A        | /01 F)a /05 71h                       | 90.9         | Maan       | 4196         | 036                |          |
| ·       |        | DFO Bag 296    | 425        | 449           | 95                                    | 5            | JC2                                   | 91 F             | 97.3                                          | JC2B        | 957                                   | 96.9         | No Su      | 161          |                    |          |
| 1       |        |                |            |               |                                       | 1            | JC3E                                  | 3 99.3           | 100.3                                         | JC3B        | 94.6                                  | 96.9         |            |              | <u>.</u>           | h        |
|         |        | OFO Bag 297    | 199        | 205           | 97                                    | 98           | JC4E                                  | 3 99.3           | 98.3                                          | JC4B        | 91.6                                  | 96.0         | ······     | -            |                    | ·        |
|         |        | DFO Bag 297    | 204        | 205           | 100                                   | <b>)</b> {   | JC58                                  | 3 99.3           | 100.3                                         | JCSB        | 91:6                                  | 96.0 (93.8)a |            |              | 1                  | ſ        |
|         |        |                |            |               |                                       | ]            | JC68                                  | 3 99.3 (99.3)    | 100.3                                         | JC6B        | 93.9                                  | 93.8 (94.6)a | Matı       | ix Spike rec | overy              | l i      |
|         |        | N.R.C. (Dorm2) | 4029       | 4640          | 1 87                                  | 69           | JC78                                  | 3 98.3           | 100.3                                         | JC7B        | 91:6                                  | 96.0         |            | 1            |                    |          |
|         |        | N.R.C. (Dorm2) | 4275       | 4640          | 92                                    | 2            | JC10                                  | <b>99</b> .3     | 100.3                                         | JC1C        | 91:6                                  | 96.0         | Sample     | Taxa         | % Recovery         |          |
| ļ       |        |                |            |               |                                       | 1            | JC20                                  | 98.3             | 3 100.3 (100.3)a                              | JC2C        | 91.6                                  | 96.0         | PH2        | chironomid   | 100.7              |          |
|         |        | DFO Bag 296    | 4/3        | 44            | 105                                   | or 103       | JC30                                  | 99.3             | 100.3                                         | JC3C        | 91.6                                  | 96.0         | JC78       | chironomid   | 90.2               |          |
| }       |        | UPU Dag 290    | 451        | 44:           |                                       | J            | JC40                                  | 90.3             | 100.3                                         |             | 91.6                                  | 90.U         | JUBA       | chironomid   | 87.1               |          |
| ·       |        | DEO Bag 297    | 211        | 202           | 103                                   | 105          |                                       |                  | 100.3                                         | 1060        | 0.10                                  | 90.0         | 1010       | chironomia   | 01.1               |          |
| ******* |        | DFO Bag 297    | 221        | 20            | 5 106                                 |              | JC70                                  | C 99.3           | 98.3 (98.3)a                                  | JC7C        | 91.6                                  | 93.8         | :1048      | amphipod     | 96.0               |          |
|         |        |                |            |               | 1                                     | 1            | JC10                                  | D. 99.3          | 100.3                                         | JC1D        | 91.6 (93.9)a (93.9)b                  | 93.8         | JC3B       | amphipod     | 101.8              |          |
|         |        | N.R.C. (Dorm2) | 4348       | 4640          | 94                                    | 4 93         | JC20                                  | D 99.3           | 100.3                                         | JC2D        | 93.9                                  | 93.8         | PH17       | amphipod     | 103.8              |          |
|         |        | N.R.C. (Dorm2) | 4260       | 4640          | ) 92                                  | 2]           | JC30                                  | D 99.3           | 98.3                                          | JC3D        | 93.9                                  | 93.8         | PH14       | amphipod     | 101.0              |          |
|         |        |                |            |               | ļ                                     |              | JC40                                  | D 99.3           | 100.3                                         | JC4D        | 93.9                                  | 93.8         |            |              |                    |          |
|         |        | DFO Bag 296    | 442        | 44            | 96                                    | 3 100        | JC51                                  | D 99.3 (99.3):   | 100.3                                         | JC5D        | 93.9                                  | 93.8         |            | Mean         | 97.7               |          |
|         | ·····  | UFU Bag 296    | 453        | 44            | 101                                   | <u> </u>     | · · · · · · · · · · · · · · · · · · · |                  | -                                             |             |                                       |              |            | Range        | 87.1 107.2         |          |
| ļ       | ·····  | DEO Bas 207    | 204        | . 20          | 100                                   | ;<br>10. 102 | a = oupik                             | Cate 05 5        | 09.7                                          | a = duplica | te; b=repeat analysis                 | 04/17        |            |              | ·                  |          |
| }       |        | DFO Bag 297    | 204        | 20            | 5 IU.<br>5 10/                        | 102          | - Mea<br>Dana                         | a 016 003        | 073 1003                                      | Renco       | 93.9 .                                | 94.0         | ••••••     | <b>{</b>     | ·                  |          |
| 1       |        |                | <u>داع</u> | 20            |                                       | 1            |                                       |                  |                                               | Louge       | 5 I I U - 2011                        |              |            |              | •                  | 2        |
| 1       |        | N.R.C. (Dorm2) | 4219       | 464           | ) 91                                  | 1. 90        |                                       |                  |                                               |             |                                       |              |            |              |                    |          |
|         |        | N.R.C. (Derm2) | 4178       | 464           | 90                                    | ]            | Matrix                                | Spike Recov      | /erv                                          |             |                                       |              |            | ·····        |                    |          |
|         |        |                |            |               |                                       | -            |                                       |                  |                                               |             |                                       |              |            |              |                    |          |
| 1       |        |                |            |               | Overall Mean                          | n 97.4       | Sample                                | Таха             | % Recovery                                    |             | ······                                |              |            |              |                    | (        |
|         |        |                |            |               |                                       | }            | JC6B                                  | chironomid       | 98.2                                          |             |                                       |              |            |              |                    |          |
|         |        |                | ,          |               | _                                     |              | JC5D                                  | chironomid       | 95.3                                          |             |                                       |              | 1          |              |                    | 1        |
| ļ       |        |                |            |               |                                       |              | , PH14                                | amphipod         | 97.8                                          |             |                                       |              |            |              |                    |          |
|         | ļ      |                |            |               |                                       |              | PH13                                  | amphipod         | 97.5                                          |             |                                       |              |            |              |                    | Į        |
|         |        |                |            | ·             |                                       |              |                                       | amphipod         | 92.1                                          |             | -                                     |              |            | [            |                    | į        |
| ļ       |        |                |            |               |                                       |              | 10EA                                  | chironomia       | 94.2                                          | ······      |                                       |              |            |              |                    |          |
|         |        |                |            | -             |                                       |              | 1020                                  | amphinod         | 94.1                                          |             |                                       |              |            | ļ            |                    | ļ        |
|         |        |                |            |               |                                       |              |                                       | amprapuu         |                                               |             | · · · · ·                             |              |            | <u> </u>     | 1                  | ļ        |
| ļ       | 1      |                |            |               | · · · · · · · · · · · · · · · · · · · | 1            |                                       | Mear             | 1 95.0                                        |             |                                       |              |            | İ            |                    | <u> </u> |
|         |        |                |            |               | 1                                     |              |                                       | Range            | 90.5 98.2                                     |             |                                       |              |            |              |                    | 1        |
| -       |        | · ·            |            |               |                                       | ī            |                                       |                  |                                               |             |                                       |              |            |              |                    |          |
| Į       |        |                |            |               | 1                                     | · ·          | I                                     |                  |                                               |             | · · · · · · · · · · · · · · · · · · · |              |            |              | 1                  | 1        |

# Table D3.Laboratory QA/QC data for total and methyl mercury from Flett Research Ltd. (cont.)

|            |            |            | 1.0                                | éarataru D | unlinatà                              | )<br>Deletive 9/ | Difference |      |         | Dofor  | onico Mótor | ial % Disc   |       |
|------------|------------|------------|------------------------------------|------------|---------------------------------------|------------------|------------|------|---------|--------|-------------|--------------|-------|
|            |            |            | Lai                                | poratory D | uplicate -                            | Relative %       | Difference | ;    |         | Relei  | ence mater  | iai - 70 Reu | overy |
| Analyte    | Units      | Det limit  | JC2A                               | PH26       | JC4A                                  | JC6C-3           | JC1D       | PH20 | Blank   | STSD-4 | QC-1        | QC-2         | QC-3  |
| Fe         | pct        | 0.01       | 4.41                               | 4.28       |                                       | · 0              |            |      | < 0.01  | 90     |             |              |       |
| Mn         | µg/g       | 1, ·       | 0,21                               | 8.25       |                                       | 0                |            |      | < 1     | 96     |             | •            |       |
| Mercury    | µg/g       | 0.005      | 14.2                               |            | · · · · · · · · · · · · · · · · · · · |                  |            |      | < 0.001 |        | 93.5        | 103.3        | ~     |
| тос        | pct        | 0.02       |                                    |            | 0.33                                  |                  | 1.26       |      | < 0.002 |        | 100.2       | 97.9         | 99.3  |
| TKN        | µg/g       | 12.5       |                                    |            |                                       |                  |            | 0.5  | < 12.5  |        | 99          |              |       |
| TP         | µğ/g       | 2.5        |                                    | ·          | ·                                     |                  |            | 0.4  | < 2.5   |        | 100         |              |       |
|            |            |            |                                    |            |                                       |                  | Mean       | 3.1% | ·       |        |             | Mean .       | 97.7% |
| Relative F | Percent Di | fference = | (x <sub>1</sub> - x <sub>2</sub> ) | x 100      |                                       |                  |            |      | ·       |        |             |              |       |
|            | ·          |            | $(x_1 + X_2/2)$                    |            |                                       |                  |            |      |         |        |             |              |       |
|            |            |            |                                    |            |                                       |                  |            |      |         | 1      |             |              |       |

| Table D4. | Laboratory QA | QC data fr | om Caduceon | Environmental I | _aboratory. |
|-----------|---------------|------------|-------------|-----------------|-------------|
|-----------|---------------|------------|-------------|-----------------|-------------|
#### Inter-Laboratory Comparison of Analyses of Total Hg in Sediment from Jellicoe Cove, Peninsula Harbour

Analyses for concentrations of total mercury (THg) in sediment were performed by 2 laboratories: Flett research Ltd., which was selected to measure THg and methyl mercury in sediment and biological samples, and Caduceon Environmental Laboratory, which conducted THg analyses on a subset of sites (10). Each lab received a sediment subsample from the same homogenized sample collected at each site. Those submitted to Flett were sent frozen, and those submitted to Caduceon were first freeze-dried. Figure E1 shows how the site measurements compare graphically.

Overall agreement between labs for the determinations of THg in sediment is indicated by the slope of a regression involving the two variables. As recommended by McArdle (1988) and Draper and Smith (1998), the regression was estimated by the geometric mean (GM, aka reduced major axis) method instead of the ordinary least squares (OLS) method. The OLS method assumes negligible error in the Xvariable, and can result in biased slope estimates when applied to data in which both X and Y variables are subject to errors of the same magnitude, a situation which clearly applies here. Rather than minimizing the sum of the squares of the deviations of observed Y values from the regression line, as in the OLS method, the GM method minimizes the sum of the areas of the triangles formed by the data point, the point on the line corresponding to the X value, and the point on the line corresponding to the Y value. Geometric Mean slope,  $b_{GM}$ , was estimated by



#### $b_{GM} = s_v / s_x$ (Legendre and Legendre 1998)

where  $s_y =$  standard deviation of Y - values, and  $s_x =$  standard deviation of X - values. The  $b_{GM}$  estimate is also the geometric mean of the OLS slope of Y on X and the reciprocal of the slope of X on Y. (Note that when the purpose of the analysis is not to estimate functional parameters such as the slope, but only to predict values of Y for given X's, OLS regression is suitable (Legendre and Legendre 1998). For this reason, the GM method was not used for the invertebrate Hg – sediment Hg regressions.)

Geometric mean regression slope for log[THg]<sub>Flett</sub> vs log[THg]<sub>Caduc</sub>:

Standard deviation of log[THg]<sub>Flett</sub> =  $1.2827 = s_y$ Standard deviation of log[THg]<sub>Caduc</sub> =  $1.0461 = s_x$ 

 $b_{\rm GM} = s_{\rm x} / s_{\rm x} = 1.5992/1.5737 = 1.2262$ 

OLS regression of Y vs X:  $log[THg]_{Flett} = -0.5640 + 1.1436 log[THg]_{Caduc}$ OLS regression of X vs Y:  $log[THg]_{Caduc} = 0.8332 + 0.7606 log[THg]_{Flett}$ 

For both regressions P<0.001 and  $r^2 = 87.0\%$ .

As a check, using the alternate slope estimation method:  $b_{GM} = (1.1436 \times [1 / 0.7606])^{\frac{1}{2}} = 1.2262$ 

The overall agreement in measurements of THg in sediment is fairly good because the slope estimate is close to 1. This suggests that either (a) the analyses of the labs are accurate or (b) analyses are biased in identical ways. The unexplained 13.0% of the variation of the regression should be attributed to laboratory measurement error.

## **APPENDIX E.** Supplementary physico-chemical environmental data

Table E1.Grain size and nutrient concentrations in sediment collected from Jellicoe Cove,Peninsula Harbour and reference sites.

| Site              | Sand  | Silt  | Clay  | Gravel | тос            | Total N | Total P |  |
|-------------------|-------|-------|-------|--------|----------------|---------|---------|--|
|                   | %     | %     | %     | %      | %              | μg/g    | μg/g    |  |
| PH1               | 35.74 | 49.80 | 14.46 | Ō      | 1.42           | 921     | 377     |  |
| PH2               | 56.31 | 34.22 | 9.46  | 0      | 0.58           | 551     | 407     |  |
| PH11              | 14.86 | 70.03 | 15.11 | 0      | 0.65           | 634     | 517     |  |
| PH13              | 90.44 | 4.99  | 3.17  | 1.4    | 0.13           | 17.3    | 934     |  |
| PH14 <sup>a</sup> | 19.93 | 57.71 | 22.36 | 0      | 1.20           | 773.7   | 603     |  |
| PH15              | 66.87 | 13.36 | 19.03 | 0.74   | 0.10           | 127     | 330     |  |
| PH16              | 11.42 | 52.26 | 36.32 | 0 .    | 2.13           | 2251    | 706     |  |
| PH17              | 5.27  | 45.80 | 48.93 | 0      | 1.54           | 1723    | 1007    |  |
| PH18              | 7.58  | 52.94 | 39.48 | . 0    | 1.51           | 1626    | 652     |  |
| PH20              | 33.05 | 14.00 | 52.95 | Ō      | 0.37           | 411     | 1084    |  |
| PH21              | 39.31 | 45.00 | 15.69 | 0      | 0.40           | 310     | 412     |  |
| PH22              | 6.88  | 67.33 | 25.79 | 0      | 0.94           | 951     | 906     |  |
| PH26              | 52.67 | 30.59 | 16.07 | 0.67   | 0.67           | 605     | 918     |  |
| JC2A              | 6.90  | 19.03 | 74.07 | . 0    | 0.27           | 474     | 603     |  |
| JC3A              | 18.38 | 35.06 | 46.55 | 0      | 0.35           | 250     | 417     |  |
| JC4A              | 61.70 | 26.45 | 11.75 | 0.11   | 6.10           | 739     | 398     |  |
| JC5A              | 54.20 | 32.84 | 12.96 | 0      | 2.09           | 564     | 475     |  |
| JC6A              | _b    | _b    | _b    | _b     | _ <sup>b</sup> | b       | _b      |  |
| JC7A              | 92.50 | 5.91  | 0     | 1.59   | 2.46           | 476     | 470     |  |
| JC1B              | 84.36 | 1.16  | 0     | 14.48  | 1.35           | 73      | 283     |  |
| JC2B              | 63.42 | 24.75 | 11.83 | 0      | 1.83           | 501     | 431     |  |
| JC3B              | 55.09 | 31.40 | 13.51 | 0      | 3.16           | 645     | 466     |  |
| JC4B              | 37.12 | 52.40 | 10.48 | 0      | 5.11           | 1058    | 554     |  |
| JC5B              | 26.44 | 59.64 | 13.92 | 0      | 7.35           | 1316    | 567     |  |
| JC6B              | 39.06 | 46.66 | 14.28 | 0      | 5.14           | 953     | 588     |  |
| JC7B              | 74.60 | 17.36 | 8.04  | 0      | 3.65           | 414     | 660     |  |
| JC1C              | 92.36 | 3.54  | 0     | 4.10   | 0.38           | 436     | 536     |  |
| JC2C              | 44.10 | 41.60 | 13.99 | 0.30   | 3.96           | 752     | 475     |  |
| JC3C              | 35.32 | 52.42 | 12.26 | 0      | 3.94           | 727     | 492     |  |
| JC4C <sup>a</sup> | 31.40 | 56.03 | 12.57 | · 0    | 4.08           | 837     | 575     |  |
| JC5C              | 21.59 | 65.37 | 13.03 | 0      | 4.30           | 779     | 649     |  |
| JC6C <sup>a</sup> | 23.67 | 63.82 | 12.51 | 0      | 5.36           | 956.7   | 535     |  |
| JC7C              | 35.80 | 49.20 | 15.00 | 0      | 10.00          | 1065    | 532     |  |
| JC1D              | 89.87 | 4.63  | 0     | 5.50   | 3.19           | 832     | 436     |  |
| JC2D              | 46.11 | 41.67 | 12.23 | 0      | 2.07           | 594     | 588     |  |
| JC3D              | 27.73 | 58.71 | 13.56 | 0      | 3.11           | 765     | 691     |  |
| JC4D              | 12.39 | 73.32 | 14.29 | 0      | 6.63           | 1000    | 429     |  |
| JC5D <sup>a</sup> | 15.02 | 70.93 | 14.05 | 0      | 5.46           | 1097    | 509     |  |

<sup>a</sup> QA/QC site. Values represent the mean of three field replicates, <sup>b</sup> data not available

Table E2.Physico-chemical conditions of overlying water and iron and manganeseconcentrations in sediment collected from Jellicoe Cove, Peninsula Harbour and reference sites.

| Site              | pН     | Conductivity | Temp | DO    | Fe             | Mn   |
|-------------------|--------|--------------|------|-------|----------------|------|
| Units             |        | μS/cm        | °C   | mg/L  | pct            | ug/g |
| PH1               | 7.63   | 104          | 4.0  | 13.68 | 0.78           | 114  |
| PH2               | 7.95 · | 102          | 10.0 | 13.18 | 1.36           | 205  |
| PH11              | 7.88   | 112          | 3.8  | 12.61 | 0.90           | 226  |
| PH13              | 7.74   | 112          | 3.1  | 12.87 | 0.93           | 137  |
| PH14 <sup>a</sup> | 7.83   | 111          | 3.0  | 12.98 | 1.31           | 276  |
| PH15              | 7.69   | 111          | 3.9  | 12.47 | 1.09           | 170  |
| PH16              | 7.84   | 116          | 4.5  | 12.82 | 2.43           | 338  |
| PH17              | 7.46   | 111          | 4.6  | 12.54 | 3.49           | 1160 |
| PH18              | _b     | 134          | 4.6  | 13.31 | 3.20           | 571  |
| PH20              | 7:85   | 111          | 2.9  | 12.79 | 2.36           | 379  |
| PH21              | 7.86   | 113          | 4.2  | 12.42 | 0.90           | 209  |
| PH22              | 7.75   | 124          | 3.2  | 13.58 | 2.07           | 897  |
| PH26              | 7.65   | 111          | 3.6  | 12.97 | 1.83           | 488  |
| JC2A              | 7.73   | 105          | 3.7  | 13.81 | 2.38           | 488  |
| JC3A              | 7.63   | 104          | 3.7  | 13.81 | 1.42           | 329  |
| JC4A              | 7.65   | 104          | 3.7  | 13.67 | 1.26           | 158  |
| JC5A              | 7.67   | 104          | 3.6  | 13.35 | 1.14           | 157  |
| JC6A              | 7.80   | 112          | 3.8  | 13.52 | - <sup>b</sup> | b    |
| JC7A              | -p     | _b           | 3.7  | 13.30 | 1.30           | 157  |
| JC1B              | 7.65   | 109          | 3.6  | 12.91 | 1.50           | 166  |
| JC2B              | 7.82   | 105          | 3.4  | 13.55 | 1.29           | 167  |
| JC3B              | 7.84   | 106          | 3.5  | 13.29 | 1.27           | 159  |
| JC4B              | 7.76   | 106          | 3.7  | 13.52 | 1.42           | 153  |
| JC5B              | 7.73   | 108          | 3.5  | 13.45 | 1.37           | 158  |
| JC6B              | 7.83   | 113          | 3.5  | 13.71 | 1.33           | 144  |
| JC7B              | 7.83   | 113          | 4.1  | 13.68 | 1.29           | 133  |
| JC1C              | 7.78   | 104          | 3.6  | 14.35 | 1.28           | 147  |
| JC2C              | 7.81   | 107          | 4.0  | 13.37 | 1.40           | 173  |
| JC3C              | 7.83   | 113          | 3.6  | 13.26 | 1.35           | 156  |
| JC4C <sup>a</sup> | 8.03   | 104          | 3.6  | 12.89 | 1.27           | 143  |
| JC5C              | 8.03   | 106          | 3.8  | 13.77 | 1.21           | 133  |
| JC6C <sup>a</sup> | 7.99   | 109          | 3.8  | 13.61 | 1.3            | 143  |
| JC7C              | 8.09   | 108          | 4.1  | 13.56 | 1.28           | 146  |
| JC1D              | 8.02   | 105          | 4.0  | 13.57 | 1.22           | 161  |
| JC2D              | 8.00   | 104          | 4.2  | 13.56 | 1.28           | 148  |
| JC3D              | 8.27   | 105          | 4.0  | 13.54 | 1.28           | 142  |
| JC4D              | 7.77   | 107          | 4.0  | 12.37 | 1.15           | 145  |
| JC5D <sup>a</sup> | 7.76   | 103          | 4.0  | 13.33 | 1.24           | 153  |
| LEL               | -      | -            | -    | -     | 2%             | 460  |
| SEL               | -      | -            | -    | -     | 4%             | 1100 |

\*QA/QC site. Values represent the mean of three field replicates for Fe and Mn, <sup>b</sup> data not available.



Figure E1. Comparison of sediment and overlying water physico-chemical conditions and site depths between reference and Jellicoe Cove sites of the Peninsula Harbour 2002 assessment. Inner boxes indicate 1<sup>st</sup>, 2<sup>nd</sup> (median) and 3<sup>rd</sup> quartiles; outer boxes enclose ranges of data. Individual data are shown by solid gray circles. See Tables E1 and E2 for units.

Table E3.

## Total PCBs (sum of 9 aroclors) in Jellicoe Cove sediments. QA/QC data is included

|                                |           | T           | Method                                                                                                                                   |                                         |                | •        |            |                                       |                |              |                                         |
|--------------------------------|-----------|-------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------|----------|------------|---------------------------------------|----------------|--------------|-----------------------------------------|
| S                              | ite ID:   |             | Blank                                                                                                                                    | JC1B                                    | JC1C           | JC1D     | JC2A       | JC2B                                  | JC2C           | JC2D         | JC3A                                    |
| Component                      | MDL       | Units       |                                                                                                                                          |                                         |                |          |            |                                       |                |              |                                         |
| • •                            |           |             |                                                                                                                                          |                                         |                |          |            |                                       |                |              | .:                                      |
| Aroclor-1016                   | 0.038     | ug/gm       | <                                                                                                                                        | <                                       | <              | <        | <          | · <                                   | · <            | <0.039       | <                                       |
| Aroclor-1221                   | 0.015     | ti,         | <                                                                                                                                        | <                                       | <              | <        | <          | < َ                                   | <              | <            | <                                       |
| Aroclor-1232                   | 0.038     | u           | <                                                                                                                                        | <                                       | ' < .          | <        | <          | <                                     | <              | <0.039       | <                                       |
| Aroclor-1242                   | 0.038     | <b>н</b>    | <                                                                                                                                        | <                                       | <              | <        | <          | .<                                    | <              | <0.039       | <                                       |
| Aroclor-1248                   | 0.021     | Ħ           | <                                                                                                                                        | <                                       | <              | <        | < .        | . <                                   | <              | <            | <                                       |
| Aroclor-1254                   | 0.059     | u           | . <                                                                                                                                      | <                                       | <              | <        | <          | _ <                                   | <              | <0.060       | <                                       |
| Aroclor-1260                   | 0.031     | 4           | <                                                                                                                                        | . <                                     | <              | · <      | <          | 0:055                                 | 0.43           | 0.32         | <                                       |
| Aroclor-1262                   | 0.031     | n           | <                                                                                                                                        | <                                       | <              | <        | · <        | < 🖓 🗸                                 | <              | <            | <                                       |
| Aroclor-1268                   | 0.031     | 8           | <                                                                                                                                        | <                                       | < .            | <        | <          | <                                     | <              | <            | <                                       |
| Total PCB                      | 0.059     | . 17        | . <                                                                                                                                      | <                                       | < 1            | <        | <          | 0.055                                 | 0.43           | 0.32         | <                                       |
| Surrogate Recoveries           |           | %           |                                                                                                                                          |                                         |                |          |            |                                       |                |              |                                         |
| 4,4'-Dibromooctaflourobiphenyl |           |             | 78                                                                                                                                       | 99                                      | 80             | 84       | 85         | 105                                   | 96             | 84           | 92                                      |
| Decachlorobiphenyl             |           |             | 91                                                                                                                                       | 98                                      | 83             | 88       | 90         | 106                                   | 105            | 98           | 91.                                     |
|                                |           |             |                                                                                                                                          |                                         |                |          |            | · · · · · · · · · · · · · · · · · · · | •              |              |                                         |
|                                |           |             | TOTATO                                                                                                                                   | TCIACI                                  | 701973         | TCIAA    | TCLA       | TCIAA                                 | TCLAN          | тсча         |                                         |
| 2                              | site ID:  | <b>TT</b> . | JUSB                                                                                                                                     | JCSC                                    | עניונ          | JU4A     | JC4A       | JC4A                                  | JU4A<br>MC Due |              |                                         |
| Component                      |           | Units       |                                                                                                                                          |                                         |                |          | IVI. Spike | 1819 70 Kec.                          | TATO Dub       | MISD 76 Ket. |                                         |
| A                              | 0 020     |             | <0.041                                                                                                                                   | c0.041                                  | <0.053         | ~        | _          | _                                     | _              | _            |                                         |
| Arocior-1010                   | 0.015     | n fa fau    | ~0.041                                                                                                                                   | <0.041<br>. <0.016                      | <0.000         | ~        | -          | 21                                    | -<br>∩ 17      | 30           | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
| Arocior-1221                   | 0.015     |             | ~0.010                                                                                                                                   | ~0.010                                  | ~0.021         |          | 0.14       |                                       | -              |              |                                         |
| Arocior 1242                   | 0.000     | . 11        | ~0.041                                                                                                                                   | -0.041                                  | <0.055         | ~ ·      |            |                                       |                | _            |                                         |
| Arotlor-1242                   | 0.000     | ť           | ~0.071                                                                                                                                   | <0.041<br>c0.022                        | <0.000         | ż        | <u> </u>   | 83                                    | n 36           | 85           |                                         |
| Aroclar 1254                   | 0.021     | a           | ~0.025                                                                                                                                   | <0.022<br><0.063                        | <0.022         | ~        | -          |                                       | -              |              |                                         |
| Arodor 1260                    | 0.033     |             | ~0.00 <del>4</del><br>0.26                                                                                                               | 0.005                                   | -0.002<br>0 30 | n 28     |            |                                       |                | -            |                                         |
| Aroclor-1200                   | 0.001     | B           | <n 0.20<="" td=""><td>&lt;0.00<br/>&lt;0.033</td><td>&lt;0.00</td><td>&lt; 0.20</td><td></td><td></td><td>_</td><td>_</td><td>•</td></n> | <0.00<br><0.033                         | <0.00          | < 0.20   |            |                                       | _              | _            | •                                       |
| Aroclor-1202                   | 0.001     | 1           | ~0.023                                                                                                                                   | 20 033                                  | <0.043         | -<br>-   | 0.33       | 70                                    | 0.36           |              |                                         |
|                                | 0.051     |             | 0.055                                                                                                                                    | n 20                                    | -0.04J         | n 29     | 0.95       | 65                                    | n 88           | 70           |                                         |
| Sumoote Recovering             | 0.009     | 06          | V.2V                                                                                                                                     | ¥                                       | ¥¥             | ¥.84     | ¥.¥¥       | · · · ·                               | ****           |              |                                         |
| A A' Dibromonotoflourok        | vinhant-1 | /0          | 114                                                                                                                                      | 85                                      | ٩A             | 94       | 80         | 80                                    | 107            | 107          |                                         |
| Teaschlarshinhani              | лрпенуі   |             | 101                                                                                                                                      | 00                                      | 25             | 27<br>Q1 | 98         | 98                                    | 114            | 114          |                                         |
| Denannorooibnenyi              |           | · · ·       | 101                                                                                                                                      | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 20             | 21       |            | , , , , , , , , , , , , , , , , , , , | A A T          |              |                                         |

### Table E3

Continued.

|                                         | Site D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 | JC'4R   | JC4CD1  | JC4C02   | JC4D      | .TC'5 A | ICSB       | JCSC    | TCSD01  | TC'STIO2 | IC'SP   |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------|---------|----------|-----------|---------|------------|---------|---------|----------|---------|
| Component                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TTauta                                                                                                          | UC4D    | JC4C01  | 004002   | -JC417    | JUJA    | 10.20      | JUSU    | JC3D01  | JC3D02   | עמיונ   |
| Component                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Omis                                                                                                            |         |         |          |           |         |            |         |         |          |         |
| Aroclor-1016                            | 0.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ue/em                                                                                                           | <0.046  | <0.044  | <0.045   | <0.060    | <0.046  | <0.043     | <0.045  | <0.051  | <0.048   | <0.043  |
| Aroclor-1221                            | 0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | "                                                                                                               | < 0.018 | < 0.017 | < 0.018  | <0.024    | < 0.018 | <0.017     | <0.018  | <0 020  | < 0.019  | <0.017  |
| Aroclor-1232                            | 0:038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                                                                               | <0:046  | < 0.044 | <0.045   | <0.060    | < 0.046 | <0.043     | <0.045  | <0.051  | <0.048   | < 0.043 |
| Aroclor-1242                            | 0.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 | <0:046  | <0.044  | <0.045   | <0:060    | <0.046  | <0.043     | < 0.045 | <0.051  | < 0.048  | < 0.043 |
| Aroclor-1248                            | 0.021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P                                                                                                               | <0:025  | <0.024  | <0.025   | <0:033    | <0.026  | <0.024     | <0.025  | <0.028  | <0.026   | <0.024  |
| Aroclor-1254                            | 0:059                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | u                                                                                                               | <0.071  | <0.069  | <0.070   | <0:093    | <0.072  | <0.066     | <0.070  | <0.079  | <0.074   | <0.067  |
| Aroclor-1260                            | 0.031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a                                                                                                               | 0.18    | 0.38    | 0.55     | 0.55      | 0.27    | 0.18       | 0.57    | 0.35    | 0.57     | 0.19    |
| Aroclor-1262                            | 0.031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a                                                                                                               | <0.037  | <0.036  | <0.037   | < 0.049   | <0.038  | <0.035     | <0.037  | <0.042  | <0.039   | <0.035  |
| Aroclor-1268                            | 0.031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ŧ                                                                                                               | <0.037  | < 0.036 | <0.037   | < 0.049   | <0.038  | < 0.035    | <0.037  | <0.042  | < 0.039  | <0.035  |
| Total PCB                               | 0.059                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | **                                                                                                              | 0.18    | 0.38    | 0.55     | 0.55      | 0.27    | 0.18       | 0.57    | 0.35    | 0.57     | 0.19    |
| Surrogate Recoveries                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | %                                                                                                               |         |         |          |           | ,       |            | ······  | ,       |          |         |
| 4,4'-Dibromooctaflourobipheny           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 | 76      | 106     | 117      | 103       | 82      | 93         | 104     | 63      | 86       | 99      |
| Decachlorobiphenyl                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 | 82      | 89      | 93       | 105       | 88      | . 97       | . 88    | 68      | 87       | 99      |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |         |         |          |           |         |            |         |         |          |         |
|                                         | Site ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 | JC6C01  | JC7A    | JC7A     | JC7A      | JC7A    | JC7A       | JC7B    | JC7C    | .IC4C03  | JC5D03  |
| Component                               | MDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Units                                                                                                           |         |         | M. Snike | MS % Rec. | MS Dun  | MSD % Rec. |         | 00.0    |          | 000000  |
| ••••••••••••••••••••••••••••••••••••••• |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ·                                                                                                               |         |         |          |           | F.      |            |         |         |          |         |
| Aroclor-1016                            | 0.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ug/gm                                                                                                           | <0.043  | < 0.041 | -        | -         | -       | _          | <       | <0.042  | <0.045   | <0.058  |
| Aroclor-1221                            | 0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | "                                                                                                               | <0.017  | < 0.016 | 0.29     | 67        | 0.21    | · 47       | · <     | < 0.017 | <0.018   | <0.023  |
| Aroclor-1232                            | 0.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ħ                                                                                                               | <0.043  | < 0.041 | -        | -         | -       | - ·        | <       | <0.042  | <0.045   | <0.058  |
| Aroclor-1242                            | 0.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . 4                                                                                                             | <0.043  | <0.041  | -        | _         | _       | -          | < .     | <0.042  | <0.045   | <0.058  |
| Aroclor-1248                            | 0.021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | u                                                                                                               | <0.024  | <0.022  | 0.38     | 88        | 0.42    | · 95       | <       | <0.023  | <0.025   | <0.032  |
| Aroclor-1254                            | 0.059                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 | <0.067  | < 0.063 | -        | -         | _       |            | <       | <0.065  | <0.069   | <0.090  |
| Aroclor-1260                            | 0.031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 | 0.19    | 0.089   | -        | -         | -       | -          | 0.057   | 0.51    | 0.40     | 0.62    |
| Aroclor-1262                            | 0.031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                                                                               | <0.035  | <0.033  | -        | -         | -       | -          | <       | < 0.034 | <0.036   | < 0.047 |
| Aroclor-1268                            | 0.031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ."                                                                                                              | <0.035  | <0.033  | 0:46     | 110       | 0.41    | .94        | <       | < 0.034 | < 0.036  | <0.047  |
| Total PCB                               | 0.059                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | **                                                                                                              | 0.19    | 0.089   | 1.1      | 87        | 1.0     | 79         | 0.057   | 0.51    | 0.40     | 0,62    |
| Surrogate Recoveries                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | %                                                                                                               |         |         | · .      |           | 9999 (  |            |         |         |          |         |
| 4,4'-Dibromooctaflourobiphenyl 55       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 75                                                                                                              | 95      | 95      | 95       | 95        | 62      | 64         | 43      | 76      |          |         |
|                                         | energy and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se | the second second second second second second second second second second second second second second second se |         |         |          |           |         |            |         |         |          |         |



Canada

Environment Environnement Canada

# Canadä

**Canada Centre for Inland Waters** P.O. Box 5050 867 Lakeshore Road Burlington, Ontario L7R 4A6 Canada

**National Hydrology Research Centre** 11 Innovation Boulevard Saskatoon, Saskatchewan S7N 3H5 Canada

St. Lawrence Centre 105 McGill Street Montreal, Quebec H2Y 2E7 Canada

**Place Vincent Massey** 351 St. Joseph Boulevard Gatineau, Quebec K1A 0H3 Canada

Centre canadien des eaux intérieures

Case postale 5050 867, chemin Lakeshore Burlington (Ontario) L7R 4A6 Canada

Centre national de recherche en hydrologie - 11, boul. Innovation Saskatoon (Saskatchewan) S7N 3H5 Canada

> **Centre Saint-Laurent** 105, rue McGill Montréal (Québec) 12Y 2E7 Canada

Place Vincent-Massey 351 boul. St-Joseph Gatineau (Québec) K1A OHS Canada



14.4

e Ng Pr

Ś.

ente se se

•

, ۱

National Water Research Institute Environment Canada **Canada Centre for Inland Waters** P.O. Box 5050 867 Lakeshore Road Burlington, Ontario L7R 4A6 Canada

**National Hydrology Research Centre** 11 Innovation Boulevard Saskatoon, Saskatchewan S7N 3H5 Canada

Canada



IMPRIMECAL

NATIONAL WATER **RESEARCH INSTITUTE** INSTITUT NATIONAL DE **RECHERCHE SUR LES EAUX**  Institut national de recherche sur les eaux **Environnement Canada** Centre canadien des eaux intérieures Case postale 5050 867, chemin Lakeshore Burlington, Ontario L7R 4A6 Canada

Centre national de recherche en hydrologie 11, boul. Innovation Saskatoon, Saskatchewan S7N 3H5 Canada





Environment Environnement Canada