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ABSTRACT 

This report summarizes the results of applying time series 

methods for developing stochastic models for various chemical data 

which were collected from Turkey Lakes Watershed in Ontario, Canada 

and the experimental watersheds used in the RAW (Reversing 

Acidification in Norway) project in Norway, Univariate and transfer 

function models were fitted to the pH, 804*‘ and M’* data from Turkey 

Lakes Stations 1 and 2 and the Norwegian stations EGIL, KIM and ROLF. 

In addition, HCO,' data from the two Turkey Lake stations were also 

modelled. The results show that the univariate models explain about 

80% of the total variability. The runoff contributes significantly as 

an explanatory variable for all the Turkey Lakes time series data and 

only for the pH at station KIM and SO,’ and M=+ at station EGIL.
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RESUME 

Le présent rapport résume les résultats de 1'app11cationr de 

méthodes des séries chronologiques A 1'é1aboration de modéles 

stochastiques pour diverses données chimiques recueillies dans 1e 

bassin hydrographiques des lacs Turkey en Ontario, Canada et dans les 

bassins hydrographiques expérimentaux utilisés dans 1e projet 

norvégien RAIN (Lutte contre 1'acidi£ication en Norvége). Des modéles 

h_ variable unique et A fonction de transfert ont été adaptés aux 

données sur 1e pH, le SO,*' et les M‘* provenant des stations 1 et 2 

des lacs Turkey et des stations norvégiennes EGIL, KIM-et ROLF. De 

plus, les données sur 1e HCO,’ provenant des stations du lac Turkey 

ont également été modélisées. Les résultats indiquent que les modéles 

A variable unique expliquent environ 802 de la variabilité totale. Le 

ruissellement contribue sensiblement comme variable explicatoire pour 

toutes les données des séries chronologiques des lacs Turkey, 

seulement pour 1e pH a la station KIM, et pour SO,’ et les M‘* B la 

station EGIL.
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HANAGEMNT PERSPECTIVE 

The acid rain problem is of significant concern in Europe and in 

North America. Substantial government support has led to massive 

research with this field. The idea of cost-"sharing and effective 

information exchange among research program in different countries is 

foremost in the minds of scientists and policymakers. This paper 

presents the scientific results, of two ‘experiments conducted under 

such a concept. The first one is the RAIN (Reversing Acidification In 

Norway) Project -which is financially supported by governments of 

Norway, Sweden, Canada and U.K,. and is conducted at the southern part 

of Norway. The acid. deposition is artificial-ly controlled (reduced 

and also increased) and the chemistry of the manipulated watersheds is 

measured. Since the cost and the technology required are beyond the 

budget of any one of the “participating countries, the concept of 

sharing and collaboration evolved. The second experiment is the 

Turkey Lakes Watershed study in Canada, in which several federal 

agencies and departments have participated, including Environment 

Canada, Canadian Forestry Service and Fisheries and Oceans. Again, 

sharing equipment and facilities is primary in the agenda. 

Th-is paper presents a new statistical method to examine the 

relationship of hydrology to the chemical responses in these 

watersheds. The results in Canada are compared to those in Norway, 

i.e. results for natural acidification are compared to those for 

artificial acidification. The tatistical analyses areiimportant for 
‘
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evaluating the sampling strategies used in these experiment. -
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PERSPECTIVE — GESTION 

Le probleme des pluies -acides constitue une importante 

preoccupation en Europe et en Amérique du Nerd,‘ Un appui considérable 

»de la part des gouvernements a entrainé des recherches massives dans 

ce domaine. L'idée de partage des coflts et d'échange d'information 

entre les divers programmes de recherche de pays différents est au 

premier plan chez les scientifiques et les décisionnaires. Le présent 

document présente les résultats scientifiques de deux expériences 

faites d'aprés ce concept. La premiere est le projet RAIN (Lutte 

contre l'acidification en Norvége)-qui est appuyé financiérement par 

les governements de la Norvége, de la Suede, du Canada et du R.—U., et 

qui se déroule dans la partie méridionale de la Norvége, Les dép6ts 

acides sont contr6lés artificiellement (réduits mais également 

augmentés) et la chimie des bassins hydrographiques manipulés est 

mesurée. Etant données que le coflt et la technologie nécessaires 

dépassent les possibilitést budgétaires at techniques de l'un ou 

1'autre des pays participants, le concept du partage et de la 

collaboration a donc progressé.- La deuxiéme expérience est l'étude du 

bassin hydrographique des lacs Turkey au Canada A laquelle plusieurs 

organismes et ministéres fédéraux ont participé, notamment 

Environnement Canada, le Service canadien des foréts eta Péches et 
~ \ 

Océans. Ici aussi, il est primordial de partager l'équipement et les 

installations. 

Ce document présente une nouvelle méthode statistique pour 

étudier le rapport entre l!hydrologie et les réactions chimiques de 

ces bassins hydrographiques. Les résultats obtenus au Canada sont



comparés avec ceux de 1;’ Norvége, c.—h—d. que les résultats de 

1'acidification naturelle sont comparés A ceux de 1'acid1ficat1on 

artifiéielle. Les analyses statistiques sont importéntes pour évalier 

les 'stratégies d'échanti11onage utilisées dans 1e cadre de ces 

axpériences.
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INTRODUCTION 

During the last l0-l5 years the environmental problems related to 

the effects of acid rain have become more and more evident in most 

industrialized areas around the world. This, combined with an 

increaased public awareness of the problems and substantial 

governmental support has led to massive research within this field, 

worldwide. . 

Watershed acidification is a complex process, due to the many 

interacting chemical reactions and» processes involved. Several 

scientists have spent considerable effort on developing physically- 

based, deterministic hydrochemical models to incoroporate these 

reactions and processes into large acidification models (Chen et al. 

1982, Christophersen et al. 1982, Cosby et al. 1984, Lam and Bobba 

1984). Parallel to this work, which has been performed mostly by 

chemists and/or physicists, statisticians have spent a lot of effort 

on stochastic models of watershed hydrology and chemistry. Hipel and 

McLeod (1987) give an excellent summary of the state of the art in 

this field. Whitehead et al. (1984) present one attempt to combine 

the two schools, and Damsleth (1986) provides an application to a set 

of Norwegian data. ‘ 

The scope of the present study was to develop stochastic time 

series models, on a daily basis, for various chemical time series 

observed in the Turkey Lakes watershed in Ontario, Canada and in the
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experimental watersheds used in the RAIN (Reversing Acidification in 

Norway) project in Norway. The purpose of the study was to see how 

well these models fitted the observed data, how similar (or different) 

the models were between watersheds and countries as well as from one 

chemical variable to another; 
"

\ 

The outline of the report is as follows: Section 2 gives a 

description of the watersheds involved in the study and the various 

chemical variables subject to analysis. Section 3 presents a brief 

summary of time-series analysis theory, without going into any 

details. Section 4 describes the sampling frequency of the various 

series in the study, which varies a lot. The main results from the 
analysis are presented in Section 5, while Section 6 gives a summary 

of our findings. The report is ended with an appendix which extends 
the application of the Kalman filter technique to non-stationary 

ARIMA-models with missing observations. This extension may be of 

interest in other applications as well. 

2. THE UATERSHEDS AND THEIR CHEMISTRY 

The Turkey Lakes Wateshed is an undisturbed, forested basin 

located on the Brecambrian Shield approximately 50 km north of Sault 
Ste. Marie, Ontario, Canada. The watershed contains a series of five 

lakes over a total area of 10.5 km‘. A series of sampling stations 

(TURKEYI-TURKEY5) are located along the main stream. ‘~The lowest 

elevation is 245 m and the highest, 645 m. The soil is composed of
'

1
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loam and sandy loam at higher elevations (depth - 0.2 to 1-m) and of 

gravelled till and fine-grained till at lower locations (depth - 1 to 

10 m). Atmospheric deposition of acid is moderate in this region, 

with an average pH of 4.5 and an annual sulphate load of about 20 kg 

SO, ha", Ionic budget (Jeffries gt 51. 1986) showed that atmospheric 

deposition directly to the lakes’ surfaces was the principal input 

pathway for H‘ and NH,*, whereas S0," and NO,“ were derived mainly 

from the surrounding terrestrial basin and upstream lakes. Strong 

spatial gradients of increasing Ca**, Hg** and" alkalinity were 

observed in the downstream direction, i.e. from TURKEY1 to TURKEY5. 

These gradients were related to the increase in groundwater flow to 

the stream at lower locations (Lam gt 51. 1986). Thus, the mean pH 

for" TURKEY1 and TURKEY2 are 6.14 and 6.48, as compared to values 

between 6.8 and 7.2 in the lower stations, "To simplify the 

comparison, however, we use the data from TURKEY1 and TURKEY2 only in 

the time series analysis. In general, the water chemistry is strongly 

affected by the watershed hydrology find meteorological episodes. Of 

the four years (1981-1984) of time series data, 1981 had a snowmelt 

episode in April followed by several heavy rains in June and a long 

dry summer and autumn. In 1982, snowmelt occurred late in May, 

followed by a dry summer and a very wet autumn. In 1983, a warm 

winter led to several melting and thawing sequences, a dry summer and 

a wet autumn. The weather of 1984 was quite similar to 1982.. 

_ 
The RAIN experiment comprises two parallel manipulations in which 

acid deposition is experimentally changed at whole catchments (Wright 

gt 5;. 1986). At Sogndal in western Norway, a pristine headwater
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catchment is artificially acidified. At Risdalsheia in southernmost 

Norway, ambient acid precipitation is excluded by a roof at the KIM 

catchment (area-860 m‘). The precipitation is collected and cleaned 

by ion—exchange and applied beneath the roof. Natural levels of 

sewater salts are ‘re-added to the lpplied water. Two‘ nearby 

catchments, EGIL (area = 400 m’, also with a roof but the applied 

precipitation is not cleaned) and ROLF (area = 200 m’, with no roof), 

serve as control; At this stage, we concentrate on the time series 

data of Risdalsheia, as those of Sogndal need further compilation. 

The Risdalsheia catchments are sparsely forested and 

“characterized by thin (average depth - 15 cm) and patchy podzodic 

soils on siliceus gneissic-granitic bedrock. The rain pH is 4.2 and 

the_ stream pH is about 4.0 to 4.4, accompanied by elevated 

concentrations of labile inorganic aluminium. Acid exclusion began in 

June 1984, with a dry summer followed by a wet autumn, quite typical 

of the area. By November 1985, a total of 1100 mm of precipitation 

had been cleaned at the KIM catchment. In fact, by December 1984 at 

the onset of winter sulphate concentrations at KIM were about 80 peq/L 

as compared to 100 to 120 ueq/L at EGIL and ROLF, while the pH levels 

were about 0.2 units higher. The Ca** + Mg** (or M'*) concentration 

from the three catchments is generally about one fifth of those at the 

Turkey Lakes headwater catchements. ~ 

- Thus, while the Turkey Lakes Watershed is subjected to moderate 

acid load and protected by relatively thicker soil, the Risdalsheia
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Watershed receives stronger acid input with less soil buffering. _The 

weather pattern and hydrology in both cases, however, influence the 

water chemistry significantly. Since both watersheds have three to 

four years of data, a statistical investigation of the relationships 

between hydrology and chemistry is possible.‘ To simplify the 

comparison, we examine the four chemical variables, pfi, S0,‘, M** 

and RCO,‘ only. 

3. TIME SERIES MODELS 

Suppose that we have observed a time series at equidistant points 

in time, so that yt denotes the observed value at time t. As an 

example, yt may be daily measurements of a chemical variable, say 

pH, in a river. It is common in environmental series not to have 

equidistant sampling intervals. This generates additional problems in 

the analysis, which will be considered later on. For the time being, 

assume that the series is completely observed. 

3.1 Univariate Models 

1 
The first step in a time series analysis is to build a univariate 

model for the series. The purpose of these models is to separate the 

series in two components: one which can be predicted from the series 

own_past, and one unpredictable, random component. Thus, we seek a 

representation as



- 5 - * 

3. nun smurs nouns _ 

Suppose that we have observed a time series at equidistant points 

in time, so that yt denotes the observed value at time t. As an 

example, yt may be daily meapsujrements of a chemical variable, say 

pH, in a river. It is common in environmental series not to have 

equidistant sampling intervals. This generates additional problems in 

the analysis, which will be considered later on. For the time being, 

assume that.the series is completely observed. 

3.1 Univariate Models 

The first step in a time series analysis is to build a univariate 

model for the series. The purpose of these models is to separate the 

series in two components: one which can be predicted from the series
1 

own past, and one unpredictable, random component. Thus, we seek a 

representation as " 

yt .- f (yt_1,yt_2,...; at_1,at_2,...) +pat 

where at is the random, unpredictable part of yt while f denotes 

the part which can be predicted from the past values of y and a. The 

sequence {at} is supposed to be white noise, that is a series of 

independent, identically distributed random (normal) variables with 

IIIBBII ZGIO. “
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Within the class of ARMA (Auto Regressive Moving Average) models, 

the function f is assumed to be linear in the y's and a's, so that an 

ARMA(p,q) model is given by _ 

yt = u + ¢1 (yt_, — u) + ¢= (yt_2 - v) + --- + ¢p (yt_p — 9) 

’ 91":-1.’ "' ' eq gt-q + at (3.1) 

Here p represents the mean of the series, ¢,,...,¢p are the 

autoregressive (AR) parameters and 6,,...,0q are the moving average 

(MA) parameters. The model (3.1) can be rewritten as 

(1 - ¢,n s-. - ¢pnP)(yt- u) - (1 - e,n - - eqnq) at (3.2). 

where B is the backwards shift operator which operates on the time 

index so that Bkyt - yt_k. 
‘

_ 

In this model, the yt series is assumed to be stationary, that 

is: the statistical properties of the series do not change with time. 

More specific, the series is assumed to vary around a constant mean, 

with a constant variance. Series with changes in levels, local or 

global trends, etc. are frequently encountered, resulting in a 

non—stationary series. Since most of the theory behind time series 

analysis is developed for stationary series, this may constitute a 

problem. However, many non—stationary series can be transformed to a 

stationary series by differencing.-

U



Thus, if yt is the observed series, we look at the series given 

B7 Yrit-1'(1'3)7t 91’ (Yr-Yr-1)'(71;-1‘Yt-2)'(1'3)'Yt- 

The general ARIMA model of orders (p,d,q) can then be written 

(1 - ¢,n_- - ¢pnP)(1 - B)d 9t .. (1 -e, n - - eqnq) at (3.3) 

p, d and q are the order of the AR-term, the number of differences 
v required to obtain stationarity and the order of the MA-term, 

respectively. 5, denotes the actually observed value ‘of yt if 

d>0, if d-0 §t I yt - u, the deviation from the mean level. The 

outline of a univariate analysis is as follows: . 

1. Identify a tentative model using plots of series, and the 

autocorrelation and partial autocorrelation functions.
I 

Estimate the parameters in the model using maximum likelihood 2. 

techniques, and calculate the resultant noise .series (the 

residuals). *‘ 

3. Perform some diagnostic checks on the residuals, to make sure 

that they are white noise. If they are, then the model is okay, 

otherwise the diagnostic checking will suggest an improved model, 

with which to return to step 2. 

It is beyond the scope of this report to describe the details in 

the model building and estimation procedures which can be found in Box 

and Jenkins (1974).
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3.2 Transfer Function Models. - 

In many situations the time series under study is known or 

assumed to be influenced by one or several other variables. There 

is, for example, evidence in the literature that the runoff affects
I 

the pH (Damsleth 1986). When this relationship is one sided, so that 

there is no feed—back in the system, such effects may be modelled 

within the of single-input or multiple—input transfer 

function models. The runoff to pH relationship is a clearecut case; 

it is hard to argue that the pH affects the runoff! 

A single-input transfer function model can be written 

= (v, + v,B + v,B' + ...) xt + nt (3.4) 

where yt is the output series (e.g. pH), xt is the input series 

(e.g. runoff) and nt-is a noise term which is assumed to follow an 

ARIMA model as in (3.3). 

The weights v,,v,,... in (3.4) are the impulse response weights 

of the model, and describe how a change in the input is transferred to 

the output. Some of the first v—values may be 0, implying a delayed 

response from input to output. Usually the vk-values will tend to 

die out as k increases, and be effectively zero from a certain k on. 

Sometimes a fairly large number of v's is required to give an adequate 

representation of the transfer function.- If this is the case, it may 
frequently prove useful to reduce the number of parameters by writing
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9° '- — coo _ 
'

_ 

v, + v,B + ... = - 

8 (3¥5) 
1 - s,a- - ass 

where the high (or infinite) order polynomial v, + v,B + ... is 

replaced by the ratio of two low order polynomials, which may lead to 

a. considerable reduction in the number of parameters. A complete 

single input transfer function model may then be written as 

yt 
',- QLQI, xt + _____gL§l__E at , (3_6) 

5(3) A ¢(B)(1 - B) 

where 0(3), 8(3), 9(3) and ¢(B) are polynomials in the backwards shift 

operator B, of order r, s, q and p, respectively. 

The generalization of (3.6) to the case with several input series 

is straightforward. In that case 

m 01(3) 6(3) 
B . + _ y 2 x a (3 7) " 1-1 81(2) “ ¢<B><1-B)“ t

. 

where m is the number of input series, and 01(3)/81(3) is the 

transfer function for the ith input series {xit}, i=1, ..., m. 

As in the unvariate case, there are certain techniques (Box and 

Jenkins 1974) to identify, estimate and diagnose transfer function 

models, where the cross-correlation function between the output and 

the input(s) plays an important role.
\
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3.3 Missing Observations 

Environmental data are only rarely observed at equidistant time 

intervals. 'In the present applications, the sampling interval varies 

from l to more than 30 days. This makes the ordinary techniques, as 

given in Box & Jenkins (1974), inapplicable. Difficulties occur in 

the univariate as well as the transfer function situation, both when 

it comes to identifying the structure of the model and in the 

estimation stage. Our approach has been to regard the data as daily 

time series with a large number (801) of missing data. In this way we 

utilize all the information, without throwing any data out. 

3.3.1 Univariate Model Building 
'

/ 

, The identification of the univariate model was performed in the 

usual way, where the autocorrelation functioné were computed as in 

Barham & Dunstan (l982).v Then the parameters of the identified model 

are estimated by the technique of Jones (1980) which is outlined in 

Appendix A. The technique reformulates the ARMA model in a Kalman 

filter framework, and utilizes the ability of the Kalman filter to 

handle missing observations in an automatic way. In the appendix 

Jones’ technique is generalized from the ARMA to the ARIMA-models.
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As a result of the missing observations, the residuals are not 

identically distributed and the ordinary diagnostic 1tests are 

difficult to perform. Instead the method of overfitting was used in a 

stepwise manner to determine an adequate model for fitting the data, 

where the fit was measured by the Akaike information criterion (AIC), 

see e.g. Shibata (1985) or Akaike (1912, 1973, 197k). The same 

criterion was used to differentiate between stationary (without 

differencing) and non—stationary (with differencing) models. 

3.3.2 Transfer Function Models 

It is difficult to fit a general transfer function model in the 

presence of lots of missing data. The technique consists of two 

steps: (1) a (non—white) noise series fnt} is calculated from 

nt - yt - E%§% xt .(3.8)
8 U! 

and, (2) a univariate model is fitted to the [at] series. The 8(B) 

and 0(3) generate problems when there are lots of missing values in 

the output and the input series, respectively. . 

In the present study, fortunately, the input series (mostly 

runoff) contains only a few missing observations, while the output 

series includes a massive amount of missing data. We therefore 

restricted ourselves to transfer fucntions with 8(B)E1, so that there 
~ \ 

is no denominator polynomial in the transfer function. From (3.8) 

nt can be computed by '
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nt - yt - u,xt — o,xt_1 - ... — urxt_r _ 

-1 (3-F) 

when yt, xt, xt_1, ..., and xt_r- are observed. Otherwise nt 

is considered to be missing in_the subsequent univariate analysis. 
A 

The order of the transfer function is determined by increasing r 

in (3.9) until no improvement of fit has occurred, taking some 

knowledge of the physical processes involved into account. 

4 SAMPLING FREQUENCY 

In the present study, runoff is measured almost daily, with much 

fewer missing observations than the chemical measurements. Generally, 

more observations are taken during "periods of interest”, where 

"periods of interest" are not well defined, but tends to.include the 

snowmelt period. 4 

4.1 Sampling at Turkey Lakes 

Turkey Lakes data were collected from 1981 to 1984. Runoff 

measurements started on February 26, 1981, for Station 1. There are 

48 runoff observations missing at Station 1, all during July, August 

and September, while all runoff data are available for Station 2. 

‘The observation pattern of the chemistry, given as number of 

observations per month, is shown in Figure 4.1 for Stations 1 and 2. 

The chemical variables are normally sampled simultaneously, and the
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figures show the pattern for all four chemical variables. Except for 

pH, the unit used for the concentration is p nmle/L. On the few 

months where the number of observations differed between the 

variables, the mean is plotted in the figures. The sampling patterns 

are very similar for the two stations, and show a significant increase 

in the intensity from 1981 to 1982, and a clear seasonal pattern with 

much more frequent sampling during the snowmelt period. 

Except for the intense study periods during the spring, the basic 

sampling interval is weekly. There are, however, large variations in 

the time between successive observations, which can be seen from the 

histograms in Figure 4.2, which show a peak at 1 day and a not very 

distinct bump around 7 days. The average sampling interval was 5.5 

days for Turkey l and 5.6 days for Turkey 2. ' 

4.2 Sampling in the RAIN Project 

The observations started on 840318, 840320 and 840415 for EGIL, 

KIM and ROLF, respectively. For ROLF, however, runoff data were not 

available before 841101. The last observations were taken on 861220 

.for all three stations. The runoff was observed daily, and there were 

five missing observations in each runoff-series, not including the 

ones missing for the first 6-1/2 months at ROLF. 

A 

_There ispa small problem with the runoff measurements in the RAIN 
project. The runoff is measured in units of one tank, where one tank 
represents 0.930 mm/day at EGIL, 0.713 mm/day at KIM and 1.62 m/day 
at ROLF. The observations are converted to mm/day in this analysis,
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but the resulting observations will thus no longer be measured at a 

continuous scale-“ Further, during dry periods, the runoff will 

frequently not exceed one tank, resulting in zero runoff, which is not 

consistent with the fact that the chemistry in the runoff has been 

analysed on such days. We do not expect this to constitute any major 

problem, but it may, to a certain extent, weaken the potential 

relationship between the runoff and the chemical variables. To 

facilitate the comparison, the runoff and chemical variables are 

expressed in the same units as those of Turkey Lakes. 

The sampling patterns for the three RAIN stations are shown in 

Figure 4.3, and they are even more erratic than those for Turkey 

Lakes. In March 1984, there were 29 and 30 observation days at EGIL 

and ROLF, while there are several months without observations at all 

three stations. In fact, the »range is even larger, as there are 

several days with more than one observation. In some cases, the 

chemistry was measured hourly for almost 24 hours. However, analysing 

hourly data was beyond the ‘scope of this work, so we picked one 

observation at random in the cases where several observations were 

made on the same day. The pattern at ROLF differs somewhat from EGIL 

and KIM, as the high frequency sampling in 1984 did not occur. 

The histograms of the time intervals between observations are 

shown in Figure 4.b, and confihm the conclusions above. There are 

peaks at 1 day for EGIL and KIM, and to a smaller extent for ROLF. 

Otherwise the distributions of sampling intervals are fairly flat, 

showing great variations in the assumed weekly sampling scheme. There 

is also a larger proportion of intervals >15 days when the RAIN-data
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are comapred to Turkey Lakes. This is due to the long noaesampling 

periods during mid-winter in the RAIN project. The average sampling 

interval is 5.4,‘ 5.2 and a.a days for 2011., KIM and Rom", 

respectively. 

5. RESULTS FROM THE ANALYSIS 

Univariate time series and transfer function models were fitted 

for the chemical variables pH, SO," and M** using the data from 

Turkey Lake Stations 1 and 2, and the Norwegian stations EGIL, KIM and 

ROLF. we have also analysed the H60,“ from the two Turkey' Lake 

stations. This chapter summarizes the findings. 

5.1 Main Results 

- Stationary models fit the series better than non-stationary 

models for all series, but the difference is not substantial. 

- IA univariate ARMA(1,1)-model with AR-parameter fairly close to 1 

fits most of the series under study satisfactorily, though-we 

found it necessary to include MA-terms of order 2 and 3 in some 

cases. The univariate model "explains* about 802 of the variance 

in most of the series. ‘ 

The runoff contributes significantly as an explanatory variable 

- for all the Turkey Lakes series. For the RAIN series the runoff 

played a significant role only for the pH at station KIM and the 

SO,’ and M'* at Station EGIL. In all cases the contribution is
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’ small, increasing the percent of variation explained by~l—3Z. 

- The variability, measured as a coefficient of variation, is'much 

larger in the Norwegian data, as far as SO,“ and M'* are 

concerned. The pH level is much lower in the Norwegian data, and 

thus also the coefficient of variation. 

- For the Turkey Lake series, rainfall and snowmelt does not 

contribute any additional information when the runoff is known. 

For the RAIN data these data were not available. ‘ 

5.2 iModels for the Runoff 

The runoff consitutes the explanatory variable for all the 

chemical series under study. Table 5.1 gives some basic statistics 

for the runoff at the five stations, and the univariate models are 

summarized in Table 5.2. The models are all ARMA(l,2), given by 

,(1 ' ¢13)(Xt ' N) I (1 " 913 ' 9:33) at 
5 

(5-1) 

or simplications thereof. In (5.1), xt denotes the observed runoff 

on day t, p is the' mean runoff and {at}b denotes a sequence‘ of 

independent, identical normally distributed random variables, with 

variance oz, i.e. a white noise series. The operator B is the 

backwards shift operator, so that Bkxt 4* xtak. _¢, is the 

autoregressive parameter and 9, and 6, are the moving average 
' 

_ ~ 

parameters. In Table 5.2, R‘ denotes the proportion of the variance 

"explained" by the- model, R‘ = 1-0:/0;, where 0; is the variance of 

the observed series.
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Table 5.1 -Basic statistics for the runoff (mm/d) at the five stations 

Station No. of Observations Mean Variance Coefficient 
' of Variation 

Turkey 1 1357 
/ 

.252 .249 1.98 

Turkey 2 " 1461 .206 .127 1.73 

EGiL ' 996 .189 .169 2.18 

KIM 996 .253 .276 2.08 

R01: 115 .645 .616 2.36 

Table 5.2 4 

Parameters in the univariate model (5.1) for the runoff 
' - means that the parameter was not significantly 

‘ different from 0 and was excluded from the estimation 

Station u ¢, 91 9, ‘cg R‘ 

Turkey 1 1 .246 .910 .36 .16 
‘ 

.136 .45 

Turkey 2 .205 .891 —.O7 .20 .031 -76 

EGIL .189 .955 .64 
l * .134 .21 

xxu 
_ .260 .656 .50 - .164 .33 

ROLF .344 .849 .53 .14 .344 . .49
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There are several interesting features in Tables 5.1 and 5.2: 

The variance for Turkey 2 is less than that for Turkey 1, and 

this becomes even more pronounced when the residual variances, 

0;, are compared. This implies that the runoff at Turkey 2 is 

much more predictable than at Turkey 1. This makes sense 
‘

. 

considering that Turkey 1 is a headwater station and thus 

subjected to direct influence of the variation of the 

precipitation episodes. '
e 

The three RAIN runoff series differ substantially, both with 

respect to mean, variance and residual variance. This is 

probably due to the differences in watershed areas. T 

The univariate models give, in general, a better fit for the 

Turkey Lakes series than for the RAIN series. This is mostly due 
to the size of the watersheds, but some of the reason may be 

found in the better precision in the Turkey Lakes measurements. 

Models for pH 

Some basic statistics on the pH-measurements at the five stations 

are given in Table 5.3.
.
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Table 5.3 Basic statistics for pH at the five stations ~. 

Station . No. of Observations Mean . Variance Coefficient 
. of Variation 

Turkey 1 268 6.14 .063 .04 

Turkey 2 ' 270 6.48 .054 .04 

zszr 101 4.0a .020 - .04 

KIM 193 4.11 .015 .03 

ROLF' 112 4.01 .024 .04 

5.3.1 Univariate Hodels' 

- All the pH series are well fitted by qnivariate ARMA-models. An 

ARMA(1,1) fits well for all the‘ stations except EGIL, where an 

ARMA(l,3) was necessary. Thus, all the series can be modelled by 

(1 - ¢13)(Yt - H) = (1 - 913 - 9:3’ - 903') at (5-2) 

or simplifications thereof. In (5.2) yt denotes the observed pH On 

day t. Table 5.4 shows the estimated parameter valnes for the five 

stations. ' 

- The most striking features in Tables 5.3 and 5.4 are the large 

difference in the means. between the Canadian "and the Norwegian 
» ~ 

stations, _the almost identical models for" the two Turkey’ Lakes 

stations, and the peculiar, large valde of 0, for EGIL. It is also of 

interest to notice that the AR parameter in general is lower for the
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Table 5.4 Parameters in the univariate model (5.2) for pH - means 
that the parameter was not significantly different from 
0 and was excluded fro the estimation ' 

$t8t1°fl P 91 91 9: 9: 9; R: 

Turkey 1 6.19 .971 -50 — 4 .014 .78 

Turkey 2 - 6.48 .970 .54 - - .0l2 .79 

EGIL 4.07 .963 -.25 .38 .60 .0082 .71 

KIM 4.11 .934 .35 - — .0032 .79 

ROLF 4.01 .920 - * - .0040‘ .83 

-RAIN series, so the "memory" of the Norwegian series is shorter. This 

can also be explained by the size and nature of the watersheds. 

5.3.2 Transfer Function Model 

Hydrological theory predicts that the runoff should affect the 

pH. There may be a diluting effect, so that increased runoff leads to 

an increase in pH, or increased runoff may lead to a decrease in the 

pH if the runoff is due to a very acid rainfall or melting of snow 

with low pH.
' 

_ For all the series we fitted a transfer function model of the 

form - 

yt -» a + (v, + v,B 4 v,B' + ... + vrBr) xt + at (5.3)

\ .
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In (-5.3), yt is the observed pH on day t and xt the__observed 

runoff. o is an intercept constant, and the parameters v,, _'v,_, 

are the impulse respond weights, which describe how a change in runoff 

at day t affects the pl-I at the same day, the day after, two days 

after, etc. In (5.3), at denotes a noise term, which (as opposed to 

a traditional regression model) is not white, but follows an 

AIARMA-model similar to the one given in (5.2). Table‘ 5.5 gives a 

summary of the transfer function parameters for the five stations. 

The noise models were only marginally different from those given in 

Table 5.4, and are not shown. '

- 

Table 5.5 Transfer function parameters in model (5.3) between 
runoff and pl-1. - denotes a parameter which was not 
significantly different from 0, and thus was excluded 
from the estimation. A parameter marked with a- it is 
less than two times its standard "deviation, and thus 
not significant at a level about 51. V 

Station a v, v, v, v, 0; R‘ 

Turkey 1 
V 6,23 -.130 - - - .011 .83 

-.057- .007* -.031* —.O96 
4 

.011 .79 Turkey 2 6 .52 

EGIL 4.-07 — - - A — .0082 .71 

KIM 4.10 -.014 -.00l+* .017 - .0029 .81 

ROLF 3.99 — .015 - - .0037 . .85
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The most iinteresting feature of Table S.5_ is its-_lack of 

consistency. 'The only station where the runoff gives a noticeable 

contribution is Turkey l, where the introduction of the runoff 

increases the R‘ from .78 to .83. Otherwise the improvement is just 

marginal, and the structure of the models as well as the sign of the 

parameters differs wildly, and does not lend themselves to any easy 

interpretation. It is worth noticing that for Turkey l, where the 

impact of the runoff was the most significant, the effect is 

instantaneous and negative. Thus, an increase in the runoff leads to 

a drop in pH, in favour of the snowmelt concept. 

From Turkey Lakes, we have access to data on the rainfall and 

snowmelt as well. when these series were used as the only input to 

the transfer function model, we found significant effects for most of 

the series. However, the significance disappeared completely when the 

rainfall and snowmelt was introduced in addition to the runoff, 

showing that the rainfall and snowmelt data contain no additional 

information, considered within a transfer function framework. 

5.3 Models for SO|" 

Summary statistics for the SO," measurements are presented in 

Table 5.6. 

The level of SO," is somewhat lower in the Norwegian watersheds, 
but the difference in variances and coefficient of variationp is 

striking. As expected, since the precipitation is cleaned at KIM, a 

lower S04 concentration is expected. The result also confirmed that 

SO,” is adsorbed more in Risdalsheia than in Turkey Lakes. "
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Table 5.6 
y 

Summary statistics for SO," (p mole/L) 

Station No. of Observations Mean Variance
O 

Coefficient 
of Variation 

Turkey 1 

Turkei 2 

EGIL ‘ 

KIM 

ROLF 

251 

254 

187 

193 

112 

62.9 

62.5 

58.7 

k5.7 

54.4 

68.8 

65.7 

1094. 

658. 

1021. 

.13 

.13 

.56 

.56 

.59 

5.3.1 Univariate Models 

The five SO, series can all be modelled within the framework of 

an ARMA(1,1) model, given by (5.1), where yt now denotes the 

observed S04 

given in Table 

Table 5.7 

concentration on day t. The estimates parameters are 

5.7. ‘ 

Estimated parameters in the univariate model (5.1) for 
S0," at the five stations. - denotes a parameter which 
was not significantly different from 0, and was 
excluded from the estimation 

Station V ‘I 91 91 03a 
RI 

Turkey 1 

Turkey 2 

62.9 .971 

62.6, .971 

EGIL 

KIM 

ROLF 

69.9 .932 

43.3 .947 

59.5 .899 

O37 

I23 

—.3 

8.17 

4.86

4 

U30 

115. 

105- 

212. 

O88 

» .93

~ .90 

O84 

.79
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The models for the two Turkey Lakes stations are very similar for 

SO,", as they were for pH. The residual variance is smaller for 

Turkey 2, and R‘ is larger, so that the SO," in Turkey 2 is more 

predictable compared to Turkey l. There is less agreement between the 

models for the three RAIN series. The Akeparameters are. fairly 

similar, but the MA parameters differ wildly. The differences in 

residual variance and R‘ are also substantial, though all three series 

have fairly high R‘ values. 5 

5.3.2 Transfer Function Models 

We also fitted transfer function models to the five 804" series, 
using runoff as input. The model was of the form (5.3), where yt 

now denotes ‘the observed SO," concentration, and the results are 

presented in Table 5.8. 

Transfer function parameters in model (5.3) between 
runoff and 804'". - denotes a parameter which was not 
significantly different from 0, and thus was excluded 
from the estimation. A parameter marked with a * is 
less than two times its standard deviation, and thus 
not significant at about 51 level. 

Table 5.8 

Station a v, v, v, v, 0: R’ 

Turkey 1 64.2 -1.50 .01* —.65 
, 

- 6.43 .91 

Turkey 2 63.0 -1.68 -1.07 — - 4.31 .93 

EGIL 75.9 *4.12 -5.42. ¥6.02 -6.72 105. .90 

KIM 43.3 - - - - 105. .84 

ROLF 59.5 — — - — 212. .79
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" The univariate models for the noise are again almost identical to 

those given in Table 5.7, and are not shown. 
'

* 

From the knowledge of the physical and chemical_ processes 

involved, one would expect the relationship between runoff and SO,", 

if any, to be instataneous and negative, It is thus surprising to 

find substantial delayed effects as well, especially for EGIL. It is 

also worth noticing that we found no significant effect of the runoff 

on the SO47“ for KIM and ROLF. 

5.4 Models for 14"" 

The basic statistic on the M'* measurements at the five stations 

are given in Table 5.9. ' 

Table 5.9 Summary statistics for H'* (p mole/L) 

Station No. of Observations Mean Variance Coefficient 
of Variation 

Turkey 1 
‘ 

256 94.7 150. .13 

Turkey 2 261 115.6 136. .10 

EGIL 155 22.9 221. .65 

KIM 189 19.7 118. .55 

ROLE 111 22.7 
, 134. .51



The Turkey Lakes and the RAIN series differ significantly; 

be seen from the table. The RAIN concentration is only about 

Turkey Lakes, while the variances are of the same magnitude, 

the RAIN series a much larger coefficient of variation. This 
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IS C811 

1/5 of 

giving 

result 

is attributable to the thicker soil layer and more CaCO, input from 

the soil to the streams at Turkey Lakes. 

5.4.1 Univariate Models 

All five series can be fitted by the ARMA(1,2) model (5.1) or 

simplifications thereof, where yt now represents the observed M 2+ 

concentration at day t. The estimated parameters are shown in Table 

5.10. 

Table 5.10 Estimated parameters in the univariate model (5.1) for 
M‘+ at the five stations. — denotes a parameter which 
was not significantly different from 0, and was 
excluded from the estimation 

Station u ¢. 6. 6. 0' R’
a 

Turkey 1 96.5 

Turkey 2 . 116.5 

EGIL 25.8 

x1u' 20.9 

ROLF 24.4 

5 .33 

.953 ‘ .55 — 

.888 -.61 —.37 

.892 P — 

25.0 

50.7 

17.8 

12.2 

30.9 

.83 

.63 

.92 

.90 

.77
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1 In Table 5.10, note that the residual variance for Turkey 1 is 

twice that of Turkey 1, and that R"is accordingly less. Thus, while 

Turkey 2 is the smoothest and most predictable when pH or SO," is 

concerned, the situation is the opposite with regards to M'*. The 

RAIN series again differ substantially, both among themselves and from 

the Turkey Lakes series. By and large, however, the RAIN series are 

the more predictable. 

5.4.2 Tranfer Function Models 

As the h'* is released from the soil, one would expect a certain 

delayed .effect of runoff on M'*. This is to a certain extent 

supported by Table 5.11, which shows the estimated parameter values in 
imodel (5.3) for the transfer function between runoff and M'*. 

Table 5.11 Transfer function parameters in model (5.3) between 
runoff and M?* — denotes a nonesignificant parameter 
which has been excluded from the estimation. 

Station a v, v, 
' 

v, v, 0; R’ 

Turkey 1 98.6 4 —2.98 -1.53 -1.58 -1.66 20.1 .87 

Turkey 2 119.6 -5.49 -6.03 ~ - 44.4 .67 

EGIL- 27.8' -2.59 -2.69 -2.18 - 16.4 .93 

Km 20.9 "- - - - 12.2 :90 

ROLF 26.1, — " - — — 30.9 .77



1 
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As was the case for the pH and SO,", the noise models changed 

only marginally from those given in Table 5.10. .

' 

The effect of the runoff on the M'* is well pronounced in the two 

Turkey Lakes series, and the delayed effect is clear, particularly at 

Turkey 1. A small, but significant, improvment was found at EGIL as 

well, while we found no significant effect of the runoff on the M'* at 

KIM or ROLF. _ 

5.5 Models for H60,“ 

we have not had access vto HCO,' measurements ‘from the _RAIN- 

project, so the analysis in this case is limited to the two Turkey 

Lakes stations. 'Table 5.12 gives the basic statistics for the two 

HCO,’ series. ' 

Table 5.12 
D 

Summary statistics for HCO,' (p mole/L) 

_Station No. of Observations Mean Variance Coefficient 
of Variation 

Turkey 1 256 40.0 416. .51 

Turkey 2 258 88.3 838. .33 

_ 
The HCO,' concentration at TURKEY2 is higher than TURKEY1 and is 

part of the spatial gradient of increasing HCO,"from headwater to 

downstream lakes at Turkey Lakes.
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5.5.1 Univarlate Models 

Both series can be well fitted by ARMA(1,1) models, given by 

(1 * ¢13)(Yt ' U) F (1 - 913) it (5-4) 

where yt is the observed H60,’ concentration on day t, and the rest 

of the equation is defined as before. Table 5.13 gives the estimated 

parameters.
5 

Table 5.13 Univariate model parameters for HCO,'. 

Station 1 p ¢, 0, 0: 11'
‘ 

Turkey 1 46.3 .966 .54 122. .71 

Turkey 2 > 96.8 .973 .59 229. .73 

, -The correlation parameters and the R’ values are very similar for 

the two series, while the difference in level and variance remains. 

5.5.3 _ 

‘Transfer Function Model 

As for M'*, we expect a certain delayed effect on the HCO,' from 

the runoff. The parameters in the transfer function model (5.3); 

which are shown in Table 5.lb, confirms this.
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Table 5.14 Parameters in the transfer function between runoff and L 

I-ICO,". The parameter marked * does not exceed ztvo‘ 
times its standard deviation, and is thus not 
significant about the 52 level. 

Station a v, v, V, v, '0: R’ 

Turkey 1 V 4§.3 -5.12 I-3.79 . -1-64 -3.93 115. .72 

Turkey 2 103.5 -8.44 -10.3 .03*. —11.2 202. .76 

‘ Except for the somewhat peculiar estimate of v, for Turkey 2, the 

values agree with the a priori expectations, and the introduction of 

runoff to the model leads to a significant, though not substantial, 

improvement in the fit. The models for the noise remains practically 

unchanged from those given in Table 5.13. 

6. CONCLUSIONS 

The application of Kalman filter technique in the time series 

analysis of two different sets of watershed data helps in relating the 

hydrological runoff to the water chemistry.‘ This statistical approach 

works better in the case of the Turkey Lakes data because the sampling 

frequencies are relative1y‘higher and the hydrological influences are 

more significant. In the case of the Risdalsheia data, the sampling 

is more irregular and the missing gaps are larger. Improvement on the 
'

~ 

time series simulation of the chemistry data by incorporating the 

hydrological runoff data is therefore more significant for »Turkey 

Lakes than for Risdalsheia.’ Thus, for the Turkey Lakes, this
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statistica-l technique can be used for estimating the enemiehl fluxes 

from the runoff and concentration data. For' Risdalsheia, the 

technique can also be applicable with more frequently sampled data. 
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AIPENDIX A.- Kalman filter representation of non-stationary ARIMA- 

models for time series with missing observations. 2 

A.1 INTRODUCTION 

It has long been recognized that the best (only?) way to solve 

the problem of estimating the parameters in an ARMA—model for a time 

series with missing observations is to formulate the model as "a 

Dynamic Linear Model (DLM) and apply the Xalman filter, which handles 

the missing observations automatically, and in an optimal way. Jones 

(1980) gives an excellent- presentation. Jones approach, however, 

handles only the stationary situation. Harvey & Pierse (1984) give 

one generalization to non—stationary models, but their approach 

requires the first, or last, d+1 observations in the series to be 

observed, where d is the number of differences required to obtain 

stationarity. Kohn & Ansley (1986) give a general solution, by 

introducing an extended version of the Kalman filter, so that standard 

algorithms and programs for Kalman filtering are not applicable. In 

this appendix we generalize the approach of Jones (1980) to the 

non-stationary case, without any requirements on the number of 

observations in the beginning or end of the series. 

4.2 MODEL i’0R1_4ULA'l‘ION AND THE STATIONARY ALGORIT!-m 

. ~ 
“ We assume that the time series [xt] follows an ARIMA (p, d, q) 

model given by
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HMU-Bf(§-u)-Nflat .<mn
~ 

where B is the backwards shift operator so that Bkxt -_;t_k, 

¢<n> - 1 - ¢,B — --- — ¢pn’ 

e(n) - 1 - e,n - - eqnq' 

are polynomials in B with all their roots outside the unit circle, d 

is the number of differences necessary to make (1-B)dxt 

stationary, and p is the level of the series if d=0. If d>0, p10. 

Except for a few changes in notation, the following is based on Jones 

(1980). As shown by Akake (1973, 1974, 1975), the ARIMA model (A—l) 

above can be given a Markovian representation as follows: 

The state of the process is a vector of dimension m B max (p+d, q+1) 
given by 

z(t) - (x(t|t), x(t.+~1|t), , x(t+m-1|t))' (A.2) 

where x(t+j|t) denotes the projection of xtij on the values of the 
time series up to and including t. x(t+j|t)‘ is thus the j—step 
prediction from time t, and x(t|t) = xt; the value of the process at
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Let the matrix F and vector G be-given by 

... 0' 1 

... o 
A 

w;
y 

F -= 

' 

I G - I (4.3) 
' 

0 0 1 , @ 1 

OO On- 
I-‘O O 

QO QO 

m m#1... u,o, 
m- 

where the oi are given by 

(1 - q,n.» ... - ap+d nP*d) - (1 - B)d ¢(a) (A.4) 

oi - 0, p+d < i $ m 

and the ¢1 are the coefficients in the polynomial ¢(B) given by 

»1»<n> - <1 - sf‘ ¢'*<n>e(B> (A-s> 

Then we have 

z(z + 1) = Fz(t) + Gat+1 (A.6) 

In the framework of dynamic linean models (DLM) and Ka1man—fi1tering, 

(A.6) is known as the equation of state. The associated observational 

equation is given by 

x(t) = Hz(t) + v(t) (A.7)
~
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with H - (1, O, ... , O) and where v(t) denotes (possible) observation 

errors which are uncorrelated at different -times and which -are 

uncorrelated with the noise series. We assume Ev(t)-0, Var"v(t)iR, 

where R-O if there are no observation errors, When the model is 

formulated in this way, it is straightforward to calculate the 

innovations and their variance recursively, using the Kalman filter. 

The procedure is outlined in detail in Jones (1980), and works just as 

well when there are missing observations in the series. From the 

innovations and their variances, the exact likelihood can be 

calculated for any stationary ARMA-model with any pattern of missing 

observations. The algorithm can briefly be summarized as follows: 

Define z(t+j|t) as the projection of z(t+j) on the observations 

up to and including “time t, so that z(t|t) - z(t). »Further define 

P(t+j|t) as the covariance matrix of z(t+j|t). The algorithm consists 

of four steps: 

V - 

_ min(i,j)-1 
1. =i<<>|<>> w- v. rij<o|<>> - 

v|1_J| 
- 

gE=o¢kywk+|i_j| 

where the yi denotes the covariances of the process, yi = 

cov(xt, xt_i) 

Repeat steps 2 and 3 for t - 1, ... , nL
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2. z(t+1|t) é F z(t|t) 

3(c+1|c) p F r(u|c) r' + 60' 

s. ¢(@+1) - r(¢+1|@) n-[n r(¢+1|t) n' 4 R1" 
§(t+1) "'x(t+1) - x(t+1|t) 

z(t+1|t+1) ' z(t+1|t) + A(t+1) x(t+t) 
" r(z+1|z+1) - r(:+1|:) - A(t+1) n r(z+1|:)

3 

Calculate the.-2En likelihood t by 

n - 
4. 9 " 

t§1 
[tn 0’ vt + xz/0' vt] 

In the ease of missing observations step 3_in the algorithm is 

replaced by ' 

3b. z(t+1|t+1) ' z(t+1|t) 1 

*r(u+1|t+1) = r(t+1|n) 

and the corresponding terms are skipped in step 4. 

A.3 NONr$TATIONARY CASE 

_ 
The formulation of the model and the algorithm from the previous 

section can be applied in the non-stationary ease as well, except that 

Step 1 in the algorithm breaks down, since the convariances yi of
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the process do not exist when the process is non-stationary. when 
. \

- 

there are no missing observations the straightforward solution is to 

difference the series d times, and apply' the scheme above to the 

differenced, stationary series. 

However, when there are missing observations in the series, this 

method does not work, since taking differences over varying time spans 

will introduce a covariance structure which will depend on time. 

Alternatively, we could define wt=(l—B)dxt as missing if at 

least one of xt, xt_1, 3t_d were missing. This will work 

satisfactorily if there are only a few missing values, but when there 

is a substantial number of observations missing this will result in a 

serious loss of information. Ihe beauty of the Kalman filter approach 

is, "among others, its ability to handle missing observations 

effectively, and we would like to utilize this ability in the 

non—stationary case as well. 

In the non—stationary case, the state vector z(t|t) will be 

non—stationary until at least d observations are actually observed. 

Let k,, k,, ..., kd be the times of the first d actually observed 

values of the series, k1 Z i. The first stationary state vector is 

then 

z(kd|kd) - (x(kd|kd), x(kd+l|kd), ,4 
x(kd+m-1|kd))' 

If we can find an expression for z(kd|kd), and the corresponding _ _ 

P(kd|kd), we can use these as starting values, and run the Kalman 

algorithm from tnkd+l on. ’



\ 

A3.1 -

‘ The State Vector 

Let wt I (1-B)dxt, t- ..., -1,0,1,... be the stationary 

series which generates xt by summation d times. Consider the jth 

element in z(kd|kd),-x(kd+j-llkd), which is the projection of 1 

3kd+j-1 on the observations up to and including kd. We then 

have, for j>1, 

_ _ 
d -

‘ 

wkd+j_1 = (1-B) Xkd+ja1 "
l 

1 

‘ 

- (A.8) k ek +j-1 .k -k +j-L 
<1—§{) Bj'1-$1)» d "1 - --- - §fl)B d 1 1

> 
_ 

_ . . . .._.. _ . _. _ 

(1-§{§ - ... - §i:_k1+j_1_d 
nka‘k1*5'1'd) *a*351 

The B's and 8's can be found by solving the linear equation system 

obtained by equating coefficients in 

(1 — B)d §j)(B) = §j)(B) (A-9) 

(J) (j) where 8 (B) and B (B) are respectively the denominator and numerator 

in they right hand side of (A.8). Multiplying both sides of (A.8) and 

rearranging, we obtain 

a 1 1-1 
_ J) _ .1) 

*xd+j-1 1%; 
$1 xkd-i+1 * §kd+j-1 1E1 

£1 'kd+5-1-1 

- _ _ (A.10) 
kd k1+j d 

(j) 4 

. 
— Z 5 w -_ _ _ 

~ - 

1_j 1 kd+j¢1 1



A.8 

Projecting both sides of (A.lO) on all available information up to and 

including time kd, we obtain t 

|Ax(kd|kd) - xkd A 

(A.11)a 
i‘ 9 j) *(kd*j'1|kq) ' 

igl 
81 *kd+1-1 

where we have set the unobserved values of wt to their mean, O, for 

t ('kd, and where we have utilized w(kd+j-llkd)-0. 

- From (A.1l) we obtain 

=<1< |1<> = B (x . . -. . 
>' (A42) a a kd *kd_1 xx, H 

where 

1 O O ... O 
sz> sz> s§> 

B H . 

(m) (m) ' (m) 
.81 B2 "' 

(A.13) 

From (A.lO) we can write 

P(kd|kd) - cov(z(kd|kd)) - cov (D;v(kd|kd) + D, wkd) » (A.14) 

where D, is the mxm matrix given by_



. 

‘ 0 0 

D13‘ 

(2) 5.1 
(3) (3) 
s, -s, 

(m) (m) 

... 0 ‘ 

... 0-

0 

(m) 
6 - - J 

D, is the mx(kd—k1—d) matrix given by 

-0 

0 . . o
‘ 

(2) (2) 
_ 

"83 one "8 _ _ “ kd kl d+1 

(3) (3) 
-8, Io -8 

D3- u 

end wkd—(wkd§1, wkd_2,..., wk1+d)!. Then from (A.14), ' 

_
I 

P(kd|kd) - n, rw(0|o) n; + n, n n; + n,n D, + n, r n; 

Where Pw(O|O) is the mxm initial covariance matrix of the state 

L"£:.:) ~ ..»-9“) 
kd-k1—d+m~1 

Az9 

(A.1S) 

(A.16) 

(A!17) 

~ . 

vector for the stationary part of the model, U is the m x(kd—k1—d) 

matrix E(w(k Ik )-w I) with elements given by U - ¢i+j_1 end‘? is d d kd ij » 

the (kd-R1-¢)8(kd—k1-d) covariance matrix of the stationary 

part of the process, with elements Tij = y|1_j|.
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§§£EBl2__F 

Suppose d=2, and assume 3;-1 without loss of generality. Let 

k,-k to simplify notation. Then, from (A¢9) . 

(1-zn+3=)(1-§{)n -...- §i:4+jnk'k+j)-1-§{)nj_1-éi) nk'2+j,j-2, ... ,m 

which, after some calculations, gives 
H’ - 1 + <1-1.)/<1=-1). $1) - -<1-1><1<-1> 

£1’ - -<1+1>. 1:1“-2. - -<1-nu - %1>. 1-1-1. 1<-4+: 

Thns x(k+j|k) - xk + (xk-x,)(j-1)/(k-1), 1-1, ..., m 

Let us further assume that m-3. Then 

0 ~ O 0 0 0 . . 0 
' R-2 R-3 k*4 1 
D1 5 ‘i 1 0 9 D3 = ‘i ‘i -'.- ‘Z7 

k—1 k—1 k—1 k-1 
2(k-2) 

2 1 
2(k—3) 2(k—4) 2 

k-1 “ k-1 ‘k-1 
"‘ 

k-1 

- If the model, for example, is an ARIMA (O,2,1) then 

H 
' 1+6’ -0 Q - ‘ 

2 (olo) - -e e= 0 n -
_ 

. 0 o o 0 ... 04 COO 
OO CO 

' ’1+e= -e 0 ... 0 
T = -6 1+9’ -B ... O - 

L O .. O -9 1+9’



A.11 

which, using ($.17) and simplifying, gives 

k_2 _ o o ‘ o 
_P(k|k) - [e= + -é—(—k—_-1-5 (2:-3 - we + (21;-3) e=)] 

8 é 2 

Thus, in this case, the initial convariance matrix is singular, and 

the variances increase approximately linearly in k.
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