UPPER GREAT LAKES CONNECTING CHANNELS INTERLABORATORY PERFORMANCE EVALUATION STUDY QM-7: CHLORINATED HYDROCARBONS AND PCBS
 in ampules and water - final report
 by

R. Szawiola, W. Horn and H.B. Lee

Research and Applications Branch National Water Research Institute Canada Centre for Inland Waters
Burlington, Ontario L7R 4A6
and the Quality Management Work Group October 1987
UPPER GREAT LAKES CONNECTING CHANNELS INTERLABORATORY PERFORMANCE EVALUATION STUDY QM-7: CHLORINATED HYDROCARBONS AND PCBs IN AMPULES AND WATER - FINAL REPORT by

R. Szawiola, W. Horn and H.B. Lee

Research and Applications Branch
National Water Research Institute Canada Centre for Inland Waters Burlington, Ontario L7R 4A6 October 1987
and
The Quality Management Work Group

[^0]Les canaux reliant les Grands Lacs d'amont ont eté désignés "zone probleme" par la Commission mixte internationale. Une Etude binationale canado américaine, comportant la détermination et l'évaluation des impacts environnementaux des substances toxiques dans cette zone, a ete entreprise en 1984. Afin d'aider les laboratoires d'analyse qui fournissent des données pour I'Étude à produire des donnés fiables et exactes, un groupe de travail sur la gestion de la qualité eté crée et 13 etudes interlaboratoires d'évaluation de rendement ont ete mises sur pied.

Ce rapport rêsume et évalue les rêsultats de la septiéme évaluation de performance interlaboratoires, $Q M-7$, qui consistait en l^{\prime} analyse des PCB totaux et de 13 hydrocarbures chlores en anpoules et dans l'eau. Sept laboratoires canadiens et cinq americains sur 16 laboratoires participants ont envoye des résultats. A l'exception d'un ou deux laboratoires, les résultats en ampoule Etaient satisfaisants et comparables. Les données pour les echantillons d'eau n^{\prime} étaient pas aussi prêcises et exactes que les données recueillies dans les ampoules et révélaient une difficulté dans la récupération des composés.

The Upper Great Lakes Connecting Channels (UGLCC) study recognizes Quality Assurance/Quality Control (QA/QC) aspects as crucial elements to the overall utility of study results. As part of the QA/QC program, thirteen interlaboratory performance evaluation studies were designed and conducted by the Quality Management Work Group.

This report describes the results from the seventh interlaboratory performance evaluation study, $Q M-7$, which consisted of the analysis of chlorinated hydrocarbons and total PCBs in ampules and water. Results were received from 12 out of 16 participating laboratories (seven Canadian, five U.S.).

Generally, the results for the standard solutions were accurate and precise. Precision for the water samples was not as good and accuracy was much worse. The interlaboratory median ranged from 82-108\% of the design values for the ampules versus $46-154 \%$ for the water samples.

Except for total PCBs most laboratories had difficulties recovering chlorinated hydrocarbons from water samples. Only one laboratory provided satisfactory data for all the parameters requested and a few laboratories reported detection limits that were above the design values.

L'etude sur les canaux reliant les Grands lacs d'amont considere les aspects assurance de qualite/controle de qualite come des elements cruciaux pour I'utilitéglobale des résultats. Dans le cadre du programe assurance de qualite controle de qualite, 13 etudes interlaboratoires d'evaluation de rendement ont eté mises sur pied par le groupe de travail sur la gestion de la qualite.

Ce rapport donne les resultats de la septieme etude, QM-7, qui consistait en $1^{\prime \prime}$ analyse des hydrocarbures chlores et des PCB totaux en ampoules et dans 1^{\prime} eau. Douze des seize laboratoires participants ont envoye des résultats (7 laboratoires canadiens et 5 américainṣ).

En général, les rêsultats obtenus dans les solutions normalisees etaient exacts et précis. La précision des résultats obtenus sur les echantillons d'eau n'etait pas aussi satisfaisante et encore moins précises. La médiane interlaboratoires s'écartait de 82 a 108% des valeurs nominales pour les ampoules, comparativement a 46-154 \% pour les échantillons d'eau.

La plupart des laboratoires ont eu de la difficulte à récupérer les hydrocarbures chlorês sauf les PCB totaux, dans les echantillons d'eau. Seul un laboratoire a obtenu des données satisfaisantes pour tous les paramètres exigés et quelques-uns ont signale des limites de détection qui étaient en-deçà des valeurs nominales.

INTRODUCTION

Abstract

The Upper Great Lakes Connecting Channels (UGLCC) have been designated as "Areas of Concern" by the International Joint Commission (IJC). To identify and deal with the environmental problems, a three year binational study was initiated in 1984, involving Canadian and U.S. envirommental and resource agencies, to study the St. Marys, St. Clair and Detroit Rivers, and Lake St. Clair. The study involves identifying, quantifying and determining the environmental impacts of conventional and toxic substances from various sources.

The UGLCC study recognizes Quality Assurance/Quality Control (QA/QC) aspects as crucial elements to the overall utility of study results. As part of the QA/QC program, 13 interlaboratory performance evaluation (QC) studies were designed and conducted by the Quality Management Work Group. The goal of these QC studies is to assist analytical laboratories, which are producing data for the UGLCC study, to generate reliable, accurate data and to assess their overall performance during the study. A total of some 100 parameters (organic, inorganic and physical properties) in three types of matrices (water, sediment and biota) will be assessed.

This seventh interlaboratory study, $Q M-7$, was initiated on February 28, 1986. It involved the analysis of chlorinated hydrocarbons and total PCBs in ampules and water. The original deadine for reporting results was set for May 15, 1986. However, since several laboratories were late in reporting, the study was not closed until September 30, 1986.

STUDY PROFILE

From the returned questionnaires, the following 16 laboratories affirmed their participation in this study: $0001,0013,0014, \mathrm{U} 063$, U072, U075, U077, U079, U086, U091, U092, U093, U049, U057, U078 and U090. By the time the study was closed (September 30,1986), the last four laboratories had not submitted any results. See the list of participants at the end of this report.

Since erratic in-house standards have been shown to be major sources of error in organic analysis, this study was designed to evaluate the accuracy of the participants' calibration standards for total PCBs and chlorinated hydrocarbons.

In order to evaluate the overall laboratory performance for the analysis of PCBs and chlorinated hydrocarbons in water, this study also included the analysis of four water samples (two supplied by NWRI and two from the laboratory's own organic-free supply) for the same parameters.

Each laboratory was provided with eight ampules and two one-1itre samples of naturally occurring surface water. Four of the ampules (701-704) were to be analyzed by direct injection, two of the ampules (705, 706) were to be used to spike the two water samples provided and the remaining two ampules $(707,708)$ were to be used to spike two samples of the laboratory's own organic-free water. The four spiked water samples were to be extracted and along with the four ampules, analyzed for PCBs and 13 chlorinated hydrocarbons according to each laboratory's in-house procedures.

The 13 chlorinated hydrocarbons were:
1,4-dichlorobenzene (1,4-DCB), 1,3-dichlorobenzene (1,3-DCB), 1,2dichlorobenzene $(1,2-D C B), 1,3,5-t r i c h l o r o b e n z e n e(1,3,5-T C B), 1,2,4-$ trichlorobenzene $(1,2,4-T C B), 1,2,3$, -trichlorobenzene ($1,2,3-T C B)$, 1,2,4,5-tetrachlorobenzene (1,2,4,5-TeCB), 1,2,3,4-tetrachlorobenzene ($1,2,3,4-\mathrm{TeCB}$), pentachlorobenzene (PeCB), hexachlorobenzene (HCB), hexachloroethane (HCE), hexachlorobutadiene (HCBD) and octachlorostyrene (OCS).

A11 standard solutions and test samples were prepared by the Quality Assurance Project Team, Research and Applications Branch of the National Water Research Institute (NWRI). Stock solutions of individual Aroclors were obtained from US EPA and those for the individual chlorinated hydrocarbons were prepared gravimetrically from primary grade standards of purity greater than 98\%. Working solutions were prepared by combining dilutions of the individual stock solutions or by making straight dilutions. The design values of the working solutions as well as the interlaboratory medians for each parameter are presented in Table 2. The design values were checked against in-house quality control samples from other QC studies by two analysts on different dates. Ampules 701, 702, 703 and 704 were identical to those used in study QM-1 (ampules 102 , 104,110 and 111 , respective1y). The interlaboratory medians of all the parameters for these samples from both studies were within 20% and confirmed the design vialues.

In order to provide some indication of analytical precision, the samples were sent out in blind duplicate pairs as shown in Table 1.

RESULTS AND DISCUSSION

Analytical Methodology

In this study, all standard solutions in ampules 701-704 were analyzed by direct injection into a gas chromatograph using an electron-capture detector and a suitable column. Water samples prepared from ampules 705-708. were analyzed similarly after appropriate extraction, cleanup and solvent replacement. Of the 11 laboratories submitting results for water samples (one laboratory did not analyze the water samples), nine used dichloromethane and two used hexane extraction procedures. Six of the participants used Snyder columns and Kuderna-Danish evaporators for evaporative concentration of the extract while five used rotary evaporators. Six laboratories used Florisil cleanup and fractionation, two used silica gel, one used alumina, one used gel permeation chromatography and one injected their extract without any cleanup. Five laboratories used single column systems for analysis, six used dual columns and one used triple columns. Only two laboratories analyzed total PCBs and the chlorinated hydrocarbons on different columns. Four laboratories of twelve used only packed column systems while the rest used fused silica capillary colums or a combination of both. All. 12 laboratories used electron capture for detection. See Table 3 for details of methodologies.

Data Evaluation

Abstract

All raw data submitted by the participants are listed by parameter in the data summary (Appendix II).

In order to evaluate the precision and accuracy of the PCB and chlorinated hydrocarbon results in this study, the percent recoveries (reported vs design values and reported vs interlaboratory medians) were calculated (Table 4).

To provide a semi-quantitative evaluation of the results; the recoveries were designated as very low, low, satisfactory, high or very high as follows:

\% Recovery	Designation
≥ 150	very high
$149-125$	high
$124-76$	satisfactory
$75-51$	low
≤ 50	very low

See Table 5 for a sumary of each laboratory's results.

General Comments

Only one of the 12 reporting laboratories submitted their data by the originally set deadline (U014). Computer printouts of the raw
data were sent out to all reporting laboratories for verification in October 1986. All laboratories returned their results verified. A final data summary was sent out to the participating laboratories, the Quality Management Work Group, the work group chairmen and the MC and AIC chairmen on November 20, 1986.

The number of laboratories reporting data for each parameter varied from three for $1,2,4,5-T e C B$ to twelve for $P C B$ (average was circa 6). Only two laboratories reported data for all 14 parameters (U086 and U072), but about half the data submitted by laboratory 0072 were "less thans". One laboratory reported PCB data only (UO79) and another analyzed ampules 701-704 only for three parameters (U091). Laboratory U063 could not resolve the TeCB isomers, otherwise it analyzed all the parameters requested. The remaining seven laboratories reported results for three to 12 parameters.

The interlaboratory medians for ampules 701-704 were in good agrement with the design value (within $\pm 10 \%$) except for $1,3,5-\mathrm{TCB}$ and $1,2,4,5-\mathrm{TeCB}(82 \%$ and 84% recovery, respectively). The means were also within $\pm 10 \%$ of the design value except for $1,3,5-\mathrm{TCB}$ (73% recovery), $1,2,4,5-\mathrm{TeCB}$ (84%), HCE (88%), 1,2 -DCB (357%), HCE (271%) and HCBD (180\%). In comparison with QM-1 (ampules $102,104,110,111$) the results from this study show a minor improvement in recovery for the interlaboratory means and marked improvement for the interlaboratory medians in relation to the design value. In the earlier study, both the interlaboratory medians and means for only

PCBs, $H C E, H C B D$ and the three $D C B$ isomers were within $\pm 10 \%$ of the design values. The remaining eight parameters fell between 88% (HCB) and $58 \%(1,2,4,5-T e C B)$ recovery of the design value. Because of the small number of participants, deletion of data sets can significantly change the means and even the medians. After rejection of obvious outlying data, there is an improvement in the variation of the data. Both the medians and the means were within $\pm 10 \%$ of the design value and the relative standard deviations were better than 20% in most cases indicating that both the comparability and accuracy of these interlab data were satisfactory.

The PCB results in the fortified water samples were satisfactory except for those indicated in the lab-specific comments following section). The interlab median recoveries for $P C B$ in all water samples ranged from 75% to 90% of the design values. The chlorinated hydrocarbon results for the spiked water samples were worse. The interlab median recoveries ranged from circa 50% for the $D C B ' s, H C E$ and HCBD to circa 90% for OCS. Less than quantitative recoveries of the chlorinated hydrocarbons from the fortified water samples were not unexpected because of the volatility of most chlorinated hydrocarbons, resulting in evaporative losses. The high water solubilities of some chlorinated hydrocarbons also caused poor extraction recoveries. To minimize evaporative losses, EPA Method 612 recommends the use of a Kuderna-Danish evaporator equipped with a three stage Snyder column for the evaporative concentration of organic solutions containing chlorinated hydrocarbons. However, some participants concentratad
their sample extracts by using a rotary evaporator under reduced pressure which further aggravates evaporative losses. By rejecting outlying data, the means fell within $\pm 10 \%$ of the interlaboratory medians.

There is a large difference in ECD sensitivities for chlorinated hydrocarbons which is dependent, to a certain extent, on the number of chlorine atoms present. The detection limits reported for the water samples vary from approximately 600 to $5 \mathrm{ng} / \mathrm{L}$ (average $140 \mathrm{ng} / \mathrm{L}$) for $D C B$ to 10 to $0.2 \mathrm{ng} / \mathrm{L}$ (average $2 \mathrm{ng} / \mathrm{L}$) for OCS. Lab U072 had detection limits higher than the design values for the water samples for many parameters. As it is, their methodology for chlorinated hydrocarbons is considered unsuitable for the monitoring of such compounds in natural water samples. Laboratory 0013 did not report any detection limits.

LAB SPECIFIC COMMENTS

U001. This laboratory reported results for all parameters except 1,2,4,5-TeCB and HCE. Precision for duplicate pairs of the ampules (701-704) was better than $\pm 10 \%$ while for duplicate pairs of the spiked water samples (705-708) precision was erratic, ranging from $\pm 1 \%$ for $1,2-D C B$ to $\pm 49 \%$ for $1,3-D C B$. Based on $\%$ recovery of the design value, accuracy for ampules 701-704 was average (range 62-111\%). Eight recoveries out of 24 were low while 16 were designated as satisfactory. Accuracy for the
spiked waters was worse (recovery ranging from 26.5-188\%). Out of 48 results only seven were satisfactory while 20 were very low, 17 were low and four were very high.

U013 Partial results were reported for PCBs, PeCB, HCB and OCS. Samples 707 and 708 were not analyzed at all. Precision for ampules 701-704 was better than $\pm 10 \%$ and for spiked waters 705 and 706 , precision was within $\pm 12 \%$. Of the 14 results reported, only five recoveries were satisfactory. Four recoveries were low, four were very low (all four for OCS) and one was high. Recovery ranged from 21% to 133\%. No detection limits were reported.

U014 Results were reported for all parameters except 1,3,5- and $1,2,3-\mathrm{TCB}, 1,2,4,5$ - and $1,2,3,4-\mathrm{TeCB}, \mathrm{PeCB}$ and OCS which were not available. Precision for ampules 701-704 was very good ($\pm 4 \%$) and for spiked waters 705-708, it was better than $\pm 10 \%$ except for 1,2,4-TCB and HCBD for 707 and 708 ($\pm 13 \%$ and $\pm 19 \%$; respective1y). Of 16 results reported far the ampules, 14 recoveries were satisfactory. Two were very high. Recoveries ranged from 90-154\%. Accuracy for the spiked waters was much worse. Out of 32 results, only four recoveries were satisfactory. Two were low and ten were very low. Range of recoveries was $17-96 \%$. The 16 results which were reported as "less than" were based on detection limits which were above this study's design values.

U063 This laboratory had difficulties in both precision and accuracy.

U072 Although this laboratory submitted results for all the parameters requested, most of the results for the spiked waters (705-708) were "less thans". Originally the "less thans" had been left blank. It was only after telephone contact that the laboratory stated that the blanks were equivalent to "less thans". Precision for the ampules was within $\pm 16 \%$ except for $\operatorname{HCBD}(\pm 28 \%)$, while for the spiked waters it was erratic even though comparisons between the data were limited. Accuracy for the ampules was excellent as all 28 recoveries were designated satisfactory (range 79-113\%). For the spiked waters, only four recoveries were satisfactory out of 56 results reported. Eight were very low, four were low and 40 were "less thans" (range < 5 108\%). Four of the "less thans" (PCBs, HCE and HCBD) were below this study's design values and were designated as false negatives. Two of the "less thans" were based on detection limits that were within range of the design values ($1 ; 2,3,4-T e C B$ and PeCB). The other 34 "less thans" were based on detection limits that were much higher than the design values of this study.

This laboratory reported results for PCBs and partial results for HCB and OCS. For the 14 results submitted, precision was $\pm 7 \%$ but accuracy was very poor (recovery ranged from (20-366\%). Only two recoveries were satisfactory while eight were very high. Four results were reported as "less than". Two of the "less thans" which were based on the laboratory's detection limits were in
the range of this study's design values. The other two "less thans" (707, 708) were below the design values (actually < 20% recovery) and were designated as false negatives.

U077 This laboratory reported results only for $\mathrm{PCBs}, \mathrm{HCB}$ and OCS. All the other parameters were not routinely analyzed. Precision for ampules 701-704 was excellent ($\pm 1 \%$) and for spiked waters 705-708 it was very good (better than $\pm 11 \%$) except PCBs for 705-706 ($\pm 26 \%$). For the 1 imited amount of data reported (18 results) accuracy was satisfactory for the ampules but average for the spiked water (range was $78-135 \%$ recovery). Eight recoveries were satisfactory, one was low and three were high.

U079 PCB was the only parameter reported for this study. All the other parameters were not routinely analyzed. Precision for the six values reported was within $\pm 18 \%$ and accurcy was average (range was 85-162\% recovery). Three recoveries were satisfactory, two high and one very high.

U086 This laboratory submitted results for all the parameters requested. Precision for ampules $701-704$ was excellent ($\langle \pm 2 \%$) except for PCB ($\pm 11 \%$). The spiked waters (705-708) also had good precision ($\pm 10 \%$) with the exception of 1,4 -DCB ($\pm 31 \%$). Accuracy for the ampules was very good with a range of $88-156 \%$ recovery.

Out of 28 results, 26 recoveries were satisfactory, one $P C B$ result was high and the other $P C B$ result was very high. Accuracy for the spiked waters was not as good (range 53-123\% recovery). Only 29 out of 56 results were designated satisfactory while 27 recoveries were low.

U091 This laboratory analyzed ampules 701-704 only for PCBs, HCB and OCS. All six results reported had a precision of better than $\pm 4 \%$ and accuracy that was very good ($\pm 10 \%$ of the design value). None of the water samples provided were analyzed.

U092 Results for all the parameters were reported by this laboratory except for the three DCB isomers which are not routinely analyzed. Precision for ampules 701-704 was within $\pm 6 \%$ while for the spiked waters (705-708) it was more variable, ranging from 0\% for a number of parameters to $\pm 27 \%$ for HCBD. Accuracy was better than average for the ampules (range $34-116 \%$ recovery). Out of 22 results reported, 16 recoveries were satisfactory, four were designated low and two were very low. Accuracy for the spiked waters was not as good (range 32-269\% recovery). Nineteen out of 44 results were satisfactory, 13 recoveries were low, five were very low, one was high, four were very high and two were reported as "less thans". The "less thans" were within range of the design value of this study.

U093 This laboratory reported partial results for PCBs and complete results for all the other parameters except the three DCB isomers which are not routinely analyzed. Precision was $\pm 6 \%$ for ampules 701-704 except PCBs ($\pm 20 \%$). Fंor the spiked waters, precision was erratic with a range of 0% for a number of results to $\pm 67 \%$ for OCS. There may have been a problem with the OCS result for sample 706. Accuracy was satisfactory for the ampules (range 64-111\% recovery) except $1,3,5-\mathrm{TCB}$ (38% recovery). Only four out of 22 results were not satisfactory. Two recoveries were low and two were very low. Out of 40 results reported for the spiked waters, only nine recoveries were satisfactory, while 18 were very low, nine were 10 w and one very high (range 21-107\%). Three recoveries were reported as "ND" parameters whose design values were above this laboratory's detection limits. These three results were therefore designated as false negatives.

ACKNOWLEDGEMENTS

The authors sincerely thank all participants for their cooperation and Dallas Takeuchi, Pat Leishman, Charline Surette, Jackie Abbott and Ellie Kokotich of the National Water Research Institute for their assistance.

LIST OF PARTICIPANTS

```
Detroit Wastewater Treatment Plant, Detroit, Michigan
EPS, Wastewater Technology Centre, Burlington, Ontario
Michigan Department of Natural Resources, Lansing, Michigan
Michigan Department of Public Health, Lansing, Michigan
NWRI/Environmental Contaminants Division, Burlington, Ontario
Ontario Ministry of the Environment (DW section), Rexdale, Ontario
Ontario Ministry of the Environment (TO section), Rexdale, Ontario
Ontario Ministry of the Environment, Thunder Bay, Ontario
US ERA, Large Lakes Research Station, Grosse Ile, Michigan
US Geological Survey, Arvada, Colorado
Water Quality National Laboratory, Burlington, Ontario
Zenon Environmental, Burlington, Ontario
The following laboratories requested and received samples, but did not submit any results:
Barringer Magenta, Rexdale, Ontario
IEC Beak Consultants, Mississauga, Ontario (Volunteer lab)
Mann Testing Laboratories, Mississauga, Ontario
US Army Corps of Engineers, Detroit, Michigan
```


REFERENCES

1 Horn, W.A., Szawiola, R., Lee, H.B. and the Quality Management Work Group. 1986. Upper Great Lakes Connecting Channels Interlaboratory Performance Evaluation Study $Q M-1$: PCBs, OCs and CHs in Ampules. Final Report. NWRI Contribution No. 86-166.

TABLE 1. Samples distributed for study $Q M-7$.

Sample	Description
701	$2: 1$ Mixture of Aroclors $1254 / 1260$ in isooctane
702	Same as 701
703	Mixture of 13 chlorinated hydrocarbons in isooctane
705	Same as 703
706	Mixture of Aroclors 1254/1260 and 13 chlorinated hydrocarbons in acetone (Level 1)
707	Same as 705 Mixture of Aroclors 1254/1260 and 13 chlorinated hydrocarbons in acetone (Level 2)
Same as 707	

TABLE 2. Design values and interlaboratory medians for PCB and chlorinated hydrociarbons.

Parameter	Design Value	Interlab	$\mathrm{pg} / \mu \mathrm{L}$ Median	Design Value	Interlab	Median
		701	702		703	704
PCB	180	192	198	-	-	
1,4-DCB	-	-	1	152	160	160
1,3-DCB	-	-	_	143	130	140
1,2-DCB	-	-	-	158	170	140
1,3,5-TCB	-	-	-	32.0	25.6	170 27.0
1,2,4-TCB	-	-	-	30.0	27.0	27.0
1,2,3-TCB	-	-	-	31.2	28.5	28.0 29.0
1,2,4,5-TeCB	-	-	-	15.2	12.5	29.0 13.0
1,2,3,4-TeCB	-	-	_	14.7	12.5 14.0	13.0
PeCB	-	-	-	14.8	14.	15.0 14.0
HCB	-	-	-	7.77	14.0	14.0
HCE	-	-	-	6.02	6.0	7.32
HCBD	-	-	-	7.42	6.00 8.00	6.00 8.00
OCS	-	-	-	15.6	8.00 14.0	$\begin{gathered} 8.00 \\ 14.0 \end{gathered}$
Parameter	Design Value	ng/L		Design Value		
		Interlab	Median		Interlab	Median
		705	706		707	708
PCB	60.0	53.4	56.1	300	232	229
1,4-DCB	40.5	32.0	50.0	203	130	101
1,3-DCB	19.0	10.1	13.4	95.2	40.2	47.5
1,2-DCB	21.0	31.5	31.8	105	40.2 78.0	47.5
1,3,5-TCB	10.7	7.58	8.40	53.5	17.3	14.0
1,2,4-TCB	20.0	15.0	14.2	100	17.3	19.3 55.0
1,2,3-TCB	10.4	8.00	7.90	51.7	54.7 36.0	55.0 38.5
1,2,4,5-TeCB	10.1	16.6	14.5	50.3	34.0	38.5 36.0
1,2,3,4-TeCB	9.8	5.98	6.70	48.9	30.0	26.6
PeCB	4.9	3.75	3.80	24.7	19.0	21.5
HCB	5.2	4.80	4.60	25.9	20.0	19.8
HCE	22.0	12.5	14.0	110	66.0	60.0
HCBD	21.8	11.0	9.0	109	52.0	48.0
OCS	5.2	5.00	5.10	26.0	25.0	21.5

TABLE 3. Analytical methodology for PCB and chlorinated hydrocarbons.
Lab Sample Preparation Separation Detection
No

U063 DCM extraction, rotavapour concentration, silica gel cleanup, fractionation, (Ahexane, B-benzene), manual injection

U072 DCM extraction, Snyder column concentration, Florisil fractionation ($A-6 \%$ diethyl ether in pet. ether, B-15\% diethyl ether in pet. ether), auto data collection

U075 Hexane extraction, rotavapor concentration, silica gel cleanup and fractionation, auto-injection and auto data collection

U077 Hexane extraction, Snyder column concentration, alumina cleanup, silica gel cleanup and fractionation (A-hexane, B-benzene), manual injection

U079 DCM extraction, Snyder column concentration, Florisil cleanup and fractionation ($A-6 \%$ ethyl ether in hexane, $B-15 \%$ ethyl ether in hexane, C-50\% ethyl ether in hexane)

PCB-3\% OV101
(PCB 1248:1254: 1260-1:1:1)
OC-30m SPB-5 FSCC
60m DB-5 FSCC
(PCB-mixed congener stds)
dual:25m $\times 0.2 \mathrm{~mm}$
5\% phenyl methyl
silicone FSCC
: $25 \mathrm{~m} \times 0.22 \mathrm{~mm}$
EC

SIL 19 CB FSCC
(PCB-1242:1254:1260
$-1: 1: 1$
DB-5 FSCC
(PCB-no details given)
triple: 3\% SE30 on
Gas Chrom Q,
EC :1.5\% 0V17 + 1.95% QF1
on Gas Chrom Q
EC
:4\% SE30 + 6\% OV210
on Gas Chrom Q
EC
(PCB-peak matching)
DB-5 FSCC
EC
(PCB-no detail given)
dual $1.8 \mathrm{~m} \times 4 \mathrm{~mm}$ 3% SP-2100 on Supelcoport : 1.5\% SP-2250+1.95\% SP-2401 on Supelcoport (PCB-peak matching)
dual $1.8 \mathrm{~m} \times 4 \mathrm{~mm}$: $1.5 \% \mathrm{SP}-2250+1.95 \%$ SP-2401 on Supelcoport EC : 3\% OV-1 on Supelcoport EC (PCB - peak matching)

EC

EC

EC ECEC

TABLE 3. Analytical methodology for PCB and chlorinated hydrocarbons. continued

Lab No	Separation Detection
U086 DCM extraction, Snyder column concentration, Florisil cleanup, autoinjection and auto data collection	dual $25 \mathrm{~m} \times 0.2 \mathrm{~mm}$:OV-1 FSCC :SE-54 FSCC (PCB- individual congeners)
U091 Water samples not analyzed	$4 \mathrm{mx} 2 \mathrm{~mm} \mathrm{3} \mathrm{\%}$ Dexsil 300 on Chromosorb W, HP EC (PCB-no detail given)
U092 DCM extraction, rotary flash concentration, Florisil cleanup, auto-injection and auto data system	```dual 30 m x 0.2.5 mm :SPB-1 FSCC :DB-1701 FSCC (PCB - total PCB)```
U093' DCM extraction, rotary flash concentration, Florisil cleanup and fractionation	$\begin{aligned} & \text { PCB-1.5\% OV17+1.95\% QF-1 } \\ & \text { on Gas Chrom } Q \\ & (1254: 1260-4: 1) \\ & \text { OC-dual } 30 \mathrm{~m} \times 0.25 \mathrm{~mm} \\ & \text { :DB-1 FSCC } \\ & : D B-1701 \text { FSCC } \end{aligned}$

TABLE 4. F Recovery of the design value and the interlaboratory median.
Lab U001 $\quad \frac{\text { Reported.Value }}{\text { Design/Median }} \times 100$

Parameter	\% Recovery of Design Value				\% Recovery of Interlaboratory Median			
	701	702	703	704	701	702	703	704
PCB	111	108	-	-	104	98.7	-	-
1,4-DCB	-	-	79.6	82.9	-	-	75.6	78.8
1,3-DCB	-	-	90.2	93.0	-	-	99.2	95.0
1,2-DCB	-	-	80.4	82.9	-	-	74.7	77.1
1,3,5-TCB	-	-	66.6	73.1	-	-	83.0	86.8
1,2,4-TCB	-	-	62.3	69.7	-	-	69.3	74.6
1,2,3-TCB	-	-	65.4	72.4	-	-	71.6	77.9
1,2,4,5-TeCB	-	-	NA	NA	_	-	NA	NA
1,2,3,4-TeCB	-	-	69.4	72.1	-	-	72.9	70.7
PeCB	-	-	76.4	79.7	-	-	80.7	84.3
HCB	-	-	87.0	90.6	-	-	96.6	96.2
HCE	-	-	NA	NA	-	-	NA	NA
HCBD	-	-	79.5	83.0	-	-	73.8	77.0
OCS	-	-	84.6	87.2	-	-	94.3	97.1

Parameter	\% Recovery of Design Value				\% Recovery of Interlaboratory Median			
	705	706	707	708	705	706	707	708
PCB	76.5	93.7	74.3	94.3	85.9	100	96.3	124
1,4-DCB	45.7	83.2	36.5	35.4	57.8	67.4	56.9	124.2
1,3-DCB	32.4	66.8	42.2	36.8	61.0	95.1	100	73.7
1,2-DCB	150	151	34.4	26.5	. 100	100	46.3	37.6
1,3,5-TCB	154	188	32.3	40.4	218	239	100	112
1,2,4-TCB	59.0	71.0	37.2	44.0	78.7	100	68.0	80.0
1,2,3-TCB	49.4	64.1	45.8	54.0	64.2	84.4	65.8	72.5
1,2,4,5-TeCB	NA							
1,2,3,4-TeCB	44.6	60.5	44.6	51.7	73.0	88.5	72.7	94.9
PeCB	36.1	51.0	56.3	61.9	47.2	65.8	73.2	71.2
HCB	84.6	110	66.4	71.4	91.6	125	86.0	93.7
HCE	NA							
HCBD	39.4	56.4	28.4	39.9	78.2	137	59.6	${ }_{90.6}^{\text {NA }}$
OCS	64.6	93.5	52.3	61.2	67.2	95.3	54.4	74.0

See Appendix 1 for explanation of codes.
tABLE 4. \# Recovery of the design value and the interlaboratory median.

Lab U013	Reported Value							
	Design/Median							
Parameter	\% Recovery of Design Value				\% Recovery of Interlaboratory Median			
	701	702	703	704	701	702	703	704
PCB	117	133	-	-	109	122	-	-
1,4-DCB	-	-	NA	NA	-	12	NA	NA
1,3-DCB	-	-	NA	NA	-	-	NA	NA
1,2-DCB	-	-	NA	NA	-	-	NA	NA
1,3,5-TCB	-	-	NA	NA	-	_	NA	NA
1,2,4-TCB	-	-	NA	NA	-	-	NA	NA
1,2,3-TCB	-	-	NA	NA	-	-	NA	NA
1,2,4,5-TeCB	-	-	NA	NA	-	-	NA	NA
1,2,3,4-TeCB	-	-	NA	NA	-	-	NA	NA
PeCB	-	-	108	101	-	-	114	107
HCB	-	-	92.7	97.8	-	-	103	104
HCE	-	-	NA	NA	-	-	NA	NA
HCBD	-	-	NA	NA	-	-	NA	NA
OCS	-	-	33.3	35.9	-	-	37.1	40.0
Parameter	2 Recovery of Design Value				\% Recovery of Interlaboratory Median			
	705	706	707	708	705	706	707	708
PCB	NA							
1,4-DCB	NA							
1,3-DCB	NA							
1,2-DCB	NA							
1,3,5-TCB	NA							
1,2,4-TCB	NA							
1,2,3-TCB	NA							
1,2,4,5-TeCB	NA							
1,2,3,4-TeСB	NA							
PeCB	71.4	69.4	NA	NA	93.3	89.5	NA	NA
HCB	63.5	53.8	NA	NA	68.8	60.9	NA	NA
HCE	NA							
HCBD	NA							
OCS	25.0	21.2	NA	NA	26.0	21.6	NA	NA

See Appendix 1 for explanation of codes.

TABLE 4. \& Recovery of the design value and the interlaboratory median.

Lab 0014	Reported Value							
	Design/Median							
Parameter	\% Recovery of Design Value				\% Recovery of Interlaboratory Median			
	701	702	703	704	701	702	703	704
PCB	106	101	-	-	99.5	91.6	-	-
1,4-DCB	-	-	118	118	-	-	112	112
1,3-DCB	-	-	154	154	-	-	169	157
1,2-DCB	-	-	120	121	-	$-$	112	112
1,3,5-TCB	-	-	NAV	NAV	-	-	NAV	NAV
1,2,4-TCB	-	-	90.0	93.3	-	-	100	100
1,2,3-TCB	-	-	NAV	NAV	-	-	NAV	NAV
1,2,4,5-TeCB	-	-	NAV	NAV	-	-	Nav	nav
1,2,3,4-TeCB	-	-	NAV	NAV	-	-	NAV	NAV
PeCB	-	-	NAV	NAV	-	-	NAV	NAV
HCB	-	-	103	103	-	-	114	109
HCE	-	-	99.7	99.7	-	-	100	100
HCBD	-	-	108	108	-	-	100	100
OCS	-	-	NAV	NAV	-	-	NAV	NAV

\% Recovery of Design Value

Parameter					Interlaboratory Median			
	705	706	707	708	705	706	707	708
PCB	LT	LT	50.0	56.7	LT	LT	64.8	74.2
1,4-DCB	LT							
1,3-DCB	LT							
1,2-DCB	LT							
1,3,5-TCB	NAV							
1,2,4-TCB	LT	LT	48.0	52.0	LT	LT	87.7	94.6
1,2,3-TСВ	nav							
1,2,4,5-TeCB	NAV							
1,2,3,4-ТеСВ	NAV	NAV	NaV	NAV	NRA	NaV	NAV	NAV
PeCB	NAV							
HCB	96.2	96.2	81.1	81.1	104	109	105	106
HCE	40.9	36.4	19.1	20.9	72.0	57.1	31.8	38.3
HCBD	36.7	32.1	17.4	22.9	72.7	77.8	36.5	52.1
OCS	NAV							

See Appendix 1 for explanation of codes.

TABLE 4. \% Recovery of the design value and the interlaboratory median.

Lab U063	Reported Value							
	Design/Median							
Parameter	\% Recovery of Design Value				\% Recovery of Interlaboratory Median			
	701	702	703	704	701	702	703	704
PCB	109	115	-	-	102	105	-	-
1,4-DCB	-	-	118	108	-	-	112	102
1,3-DCB	-	-	54.5	51.7	-	$-$	60.0	52.9
1,2-DCB	-	-	1842	924	-	-	1712	859
1,3,5-TCB	-	-	98.8	95.3	-	-	123	113
1,2,4-TCB	-	-	102	98.7	-	-	113	106
1,2,3-TCB	-	-	65.4	62.8	-	-	71.6	67.6
1,2,4,5-TeCB	-	-	NR	NR	-	-	NR	NR
1,2,3,4-TeCB	-	-	NR	NR	-	-	NR	NR
PeCB	-	-	65.9	64.6	-	-	69.7	68.3
HCB	-	-	41.7	50.1	-	-	46.3	53.1
HCE	-	-	1148	1105	-	-	1152	1108
HCBD	-	-	678	643	-	-	629	596
OCS	-	-	206	213	-	-	230	238
Parameter	\% Recovery of Design Value				\% Recovery of Interlaboratory Median			
	705	706	707	708	705	706	707	708
PCB	101	167	83.0	79.3	114	178	108	104
1,4-DCB	304	264	90.6	(<2)	384	214	142	(<5)
1,3-DCB	LT	LT	14.5	(<26)	LT	LT	34.3	(<53)
1,2-DCB	1000	2219	218	205	667	1465	294	291
1,3,5-TCB	63.3	(<9)	54.6	(<2)	89.3	(<12)	169	(<6)
1,2,4-TCB	105	34.6	51.4	4.39	140	48.7	94.0	7.98
1,2,3-TCB	17.7	(<10)	37.5	(<2)	23.0	(<13)	53.9	(<3)
1,2,4,5-TeCB	NR							
1,2,3,4-TeCB	NR							
PeCB	22.4	(<10)	43.7	(<2)	29.3	(<13)	56.8	(<2)
HCB	14.4	15.4	51.7	(<2)	15.6	17.4	67.0	(<3)
HCE	138	(<2)	148	(<1)	242	(<4)	247	(<1)
HCBD	90.4	1.93	137	(<1)	179	4.67	287	(<1)
OCS	87.7	162	388	27.4	91.2	165	404	33.1

See Appendix 1 for explanation of codes.

TABLE 4. F Recovery of the design value and the interlaboratory median.

Lab U072
$\frac{\text { Reported Value }}{\text { Design/Median }} \times 100$

Parameter	\% Recovery of Design Value				\% Recovery of Interlaboratory Median			
	701	702	703	704	701	702	703	704
PCB	106	103	-	-	99.0	93.7	-	-
1,4-DCB	-	-	92.1	98.7	-	-	87.5	93.8
1,3-DCB	-	-	90.9	97.9	-	-	100	100
1,2-DCB	-	-	94.9	101	-	-	88.2	94.1
1,3,5-TCB	-	-	93.8	106	-	-	117	126
1,2,4-TCB	-	-	90.0	110	-	-	100	118
1,2,3-TCB	-	-	96.2	106	-	-	105	114
1,2,4,5-TеСВ	-	-	78.9	98.7	-	-	96.0	115
1,2,3,4-TeСB	-	-	88.4	109	-	-	92.9	107
PeCB	-	-	94.6	101	-	-	100	107
HCB	-	-	113	102	-	-	126	108
HCE	-	-	93	94.7	-	-	93.3	95.0
HCBD	-	-	95.7	101	-	-	88.8	93.8
OCS	-	-	103	103	-	-	114	114

Parameter	\% Recovery of Design Value				\% Recovery of Interlaboratory Median			
	705	706	707	708	705	706	707	708
PCB	(<17)	(<17)	15.0	14.3	(<19)	(<18)	19.4	18.8
1,4-DCB	LT							
1,3-DCB	LT	LT	LT	LT	LT	LTT	LT	LT
1,2-DCB	LT							
1,3,5-TCB	LT							
1,2,4-TCB	LT							
1, 2, 3-TCB	LT							
1,2,4,5-TeCB	LT							
1,2,3,4-TeCB	LT	LT	65.4	LT	LT	LT	107	LT
PeCB	LT	LT	72.9	LT	LT	LT	94.7	LT
HCB	LT	LT	77.2	35.5	LT	LT	100	46.6
HCE	50.0	39.1	39.1	(55)	88.0	61.4	65.2	(<8)
OCS	108	98.1	88.5	69.2	112	100	92.0	(<13) 83.7

See Appendix 1 for explanation of codes.

TABLE 4. \% Recovery of the design value and the interlaboratory median.

Lab U075	Reported Value					$\times 100$		
	Design/Median							
Parameter	\% Recovery of Design Value				\% Recovery of Interlaboratory Median			
	701	702	703	704	701	702	703	704
PCB	107	98.9	-	-	101	90.1	-	-
1,4-DCB	-	-	NRA	NRA	-	9	NRA	NRA
1,3-DCB	-	-	NRA	NRA	-	-	NRA	NRA
1, 2-DCB	-	-	NRA	NRA	-	-	NRA	NRA
1,3,5-TCB	-	-	NRA	NRA	-	-	NRA	NRA
1,2,4-TCB	-	-	NRA	NRA	-	-	NRA	NRA
1,2,3-TCB	-	-	NRA	NRA	$-$	-	NRA	NRA
1,2,4,5-TeCB	-	-	NRA	NRA	_	-	NRA	NRA
1,2,3,4-TeCB	-	-	NRA	NRA	-	-	NRA	NRA
PeCB	-	-	NRA	NRA	-	_	NRA	NRA
HCB	-	-	NRA	NRA	-	-	NRA	NRA
HCE	-	-	NRA	NRA	-	-	NRA	NRA
HCBD	-	-	NRA	NRA	-	-	NRA	NRA
OCS	-	-	NRA	NRA	-	-	NRA	NRA

Parameter	\% Recovery of Design Value				\% Recovery of Interlaboratory Median			
	705	706	707	708	705	706	707	708
PCB	LT	LT	LT(<20)	LT(<20)	LT	LT	LT(<26)	
1,4-DCB	NRA	NRA	NRA	NRA	NRA	NRA	LT ${ }_{\text {NRA }}$	LT(226)
1,3-DCB	NRA							
1,2-DCB	NRA							
1,3,5-TCB	NRA							
1,2,4-TCB	NRA							
1, 2, 3-TCB	NRA							
1,2,4,5-TeCB	NRA							
1,2,3,4-TeCB	NRA							
PeCB	NRA							
HCB	223	203	250	227	241	229	324	297
HCE	NRA							
HCBD	NRA							
OCS	366	366	335	320	380	373	349	387

See Appendix 1 for explanation of codes.

TABLE 4. D Recovery of the design value and the interlaboratory median.

See Appendix 1 for explanation of codes.

TABLE 4. F Recovery of the design value and the interlaboratory median.

Lab U079								
	Design/Median							
Parameter	\% Recovery of Design Value				\% Recovery of Interlaboratory Median			
	701	702	703	704	701	702	703	704
PCB	100.	129	-	-	93.8	117	-	-
1,4-DCB	-	-	NRA	NRA	-	-	NRA	NRA
1,3-DCB	-	-	NRA	NRA	-	-	NRA	NRA
1,2-DCB	-	-	NRA	NRA	-	-	NRA	NRA
1,3,5-TCB	-	-	NRA	NRA	-	-	NRA	NRA
1,2,4-TCB	-	-	NRA	NRA	-	-	NRA	NRA
1,2,3-TCB	-	-	NRA	NRA	-	-	NRA	NRA
1,2,4,5-TеСВ	-	-	NRA	NRA	-	-	NRA	NRA
1,2,3,4-TeCB	-	-	NRA	NRA	-	-	NRA	NRA
PeCB	-	-	NRA	NRA	-	-	NRA	NRA
HCB	-	-	NRA	NRA	-	-	NRA	NRA
HCE	-	-	NRA	NRA	-	-	NRA	NRA
HCBD	-	-	NRA	NRA	-	-	NRA	NRA
OCS	-	-	NRA	NRA	-	-	NRA	NRA
Parameter	\% Recovery of Design Value				\% Recovery of Interlaboratory Median			
	705	706	707	708	705	706	707	708
PCB	162	127	89.0	84.7	182	135	115	111
1,4-DCB	NRA							
1,3-DCB	NRA							
1,2-DCB	NRA							
1,3,5-TCB	NRA							
1,2,4-TCB	NRA							
1,2,3-TCB	NRA							
1,2,4,5-TeCB	NRA							
1,2,3,4-TeCB	NRA							
PeCB	NRA							
HCB	NRA							
HCE	NRA							
HCBD	NRA							
OCS	NRA							

See Appendix 1 for explanation of codes.

TABLE 4. \% Recovery of the design value and the interlaboratory median.

Lab U086	Reported Value							
	Design/Median							
Parameter	\% Recovery of Design Value				\% Recovery of Interlaboratory Median			
	701	702	703	704	701	702	703	704
PCB	133	156	-	-	125	142	-	\div
1,4-DCB	-	-	105	105	-	-	100	100
1,3-DCB	-	-	97.9	97.9	-	-	108	100
1, 2-DCB	-	-	108	108	-	-	100	100
1,3,5-TCB	-	-	100	96.9	-	-	125	115
1,2,4-TCB	-	-	93.3	93.3	-	-	104	100
1,2,3-TCB	-	-	89.7	87.8	-	-	98.2	96.6
1,2,4,5-TeCB	-	-	92.1	92.1	-	-	112	108
1,2,3,4-TeCB	-	-	95.2	95.2	-	-	100	93.3
PeCB	-	-	87.8	87.8	-	-	92.9	92.9
HCB	-	-	87.5	87.5	-	-	97.1	92.9
HCE	-	-	89.7	89.7	-	-	90.0	90.0
HCBD	-	-	95.7	94.3	-	-	88.8	87.5
OCS	-	-	89.7	89.7	-	-	100	100

Parameter	\% Recovery of Design Value				\% Recovery of Interlaboratory Median			
	705	706	707	708	705	706	707	708
PCB	76.7	73.3	86.7	86.7	86.1	78.4	112	114
1,4-DCB	79.0	123	64.0	64.0	100	100	100	129
1,3-DCB	73.7	73.7	65.1	63.0	139	105	154	126
1,2-DCB	81.0	81.0	74.3	70.5	54.0	53.5	100	100
1,3,5-TCB	78.5	78.5	67.3	67.3	111	100	208	187
1,2,4-TCB	75.0	65.0	70.0	70.0	100	91.6	128	127
1,2,3-TCB	80.8	84.6	73.5	77.4	105	111	106	104
1,2,4,5-TeСВ	81.2	79.2	75.5	71.6	49.4	55.2	112	100
1,2,3,4-TeCB	77.6	75.5	73.6	73.6	127	110	120	135
ReCB	85.7	85.7	81.0	81.0	112	111	105	93.0
HCB	92.3	88.5	77.2	84.9	100	100	100	111
HCE	63.6	63.6	65.5	61.8	112	100	109	113
HCBD	68.8	73.4	55.0	53.2	136	178	115	120
OCS	84.6	84.6	84.6	84.6	88.0	86.3	88.0	102

See Appendix 1 for explanation of codes.

TABLE 4. \mathcal{Z} Recovery of the design value and the interlaboratory median.

Lab U091	Reported Value							
	Design/Median							
Parameter	\% Recovery of Design Value				\% Recovery of Interlaboratory Median			
	701	702	703	704	701	702	703	704
PCB	106	111	-	-	109	122	-	-
1,4-DCB	-	-	NA	NA	109	122	NA	NA
1,3-DCB	-	-	NA	NA	-	-	NA	NA
1,2-DCB	-	-	NA	NA	-	-	NA	NA
1,3,5-TCB	-	-	NA	NA	-	-	NA	NA
1,2,4-TCB	-	-	NA	NA	_	-	NA	NA
1,2,3-TCB	-	-	NA	NA	-	-	NA	NA
1,2,4,5-TeCB	-	-	NA	NA	-	-	NA	NA
1,2,3,4-TеСВ	-	-	NA	NA	-	-	NA	NA
PeCb	-	-	NA	NA	-	-	NA	NA
HCB	-	-	103	103	-	-	114	NA
HCE	-	-	NA	NA	-	-	NA	NA
HCBD	-	-	NA	NA	-	-	NA	NA
OCS	-	-	103	103	_	-	114	114
Parameter	\% Recovery of Design Value				\% Recovery of Interlaboratory Median			
	705	706	707	708	705	706	707	708
PCB	NA							
1,4-DCB	NA							
1,3-DCB	NA							
1,2-DCB	NA							
1,3,5-TCB	NA							
1,2,4-TCB	NA							
1,2,3-TCB	NA							
1,2,4,5-TeСB	NA							
1,2,3,4-TeCB	NA							
PeCB	NA							
HCB	NA							
HCE	NA							
HCBD	NA							
OCS	NA							

See Appendix 1 for explanation of codes.

TABLE 4. Z Recovery of the design value and the interlaboratory median.
Lab U092 $\quad \frac{\text { Reported Value }}{\text { Design/Median }} 100$

Parameter	\% Recovery of Design Value				\% Recovery of Interlaboratory Median			
	701	702	703	704	701	702	703	704
PCB	111	103	-	-	104	93.7	-	-
1,4-DCB	-	-	NRA	NRA	-	-	NRA	NRA
1,3-DCB	-	-	NRA	NRA	-	-	NRA	NRA
1,2-DCB	-	-	NRA	NRA	-	-	NRA	NRA
1,3,5-TCB	-	-	37.5	34.4	-	-	46.8	40.8
1,2,4-TCB	-	-	100	100	-	-	111	107
1,2,3-TCB	$-$	-	1.12	103	-	-	123	110
1,2,4,5-TeCB	-	-	72.4	72.4	-	-	88.0	84.6
1,2,3,4-TeCB	-	-	95.2	102	-	-	100	100
PeCB	-	-	94.6	94.6	-	-	100	100
HCB	-	-	64.4	64.4	-	-	71.4	68.3
HCE	-	-	116	116	-	-	117	117
HCBD	-	-	108	108	-	-	100	100
OCS	-	-	83.3	83.3	-	-	92.9	92.9

> \% Recovery of Design Value

Parameter					Interlaboratory Median			
	705	706	707	708	705	706	707	708
PCB	50.0	58.3	66.7	61.7	56.2	62.4	86.4	80.8
1,4-DCB	NRA							
1,3-DCB	NRA							
1, 2-DCB	NRA							
1,3,5-TCB	(<47)	(447)	31.8	31.8	(<66)	(60)	98.3	88.1
1,2,4-TCB	125	100	68.0	70.0	167	141	124	127
1,2,3-TCB	269	240	89.0	92.8	350	316	128	125
1,2,4,5-TeCB	248	208	67.6	71.6	151	145	100	100
1,2,3,4-TeCB	81.6	81.6	47.0	47.0	134	119	76.7	86.3
PeCB	102	102	97.2	97.2	133	132	126	112
HCB	96.2	76.9	54.1	50.2	104	87.0	70.0	65.8
HCE	95.5	72.7	82.7	100	168	114	138	183
HCBD	87.2	59.6	59.6	67.0	173	144	125	152
OCS	115	96.2	80.8	80.8	120	98.0	84.0	97.7

See Appendix 1 for explanation of codes.

TABLE 4. \% Recovery of the design value and the interlaboratory median.

Lab U093				Reported Value				
	Design/Median							
Parameter	\% Recovery of Design Value				\% Recovery of Interlaboratory Median			
	701	702	703	704	701	702	703	704
PCB	83.3	111	-	-	78.1	101	-	-
1,4-DCB	-	-	NRA	NRA	-	-	NRA	NRA
1,3-DCB	-	-	NRA	NRA	-	-	NRA	NRA
1,2-DCB	-	-	NRA	NRA	-	-	NRA	NRA
1,3,5-TCB	-	-	37.5	37.5	-	-	46.8	44.5
1,2,4-TCB	-	-	83.3	83.3	-	-	92.6	89.3
1,2,3-TCB	-	-	92.9	96.2	-	-	102	103
1,2,4,5-TeCB	-	-	85.5	78.9	-	-	104	92.3
1,2,3,4-TeCB	-	-	102	102	-	-	107	100
PeCb	-	-	101	101	-	-	107	107
HCB	-	-	64.4	64.4	-	-	71.4	68.3
HCE	-	-	99.7	99.7	-	-	100	100
HCBD	-	-	108	108	-	-	100	100
OCS	-	-	83.3	76.9	-	-	92.9	85.7

Parameter	\% Recovery of Design Value				\% Recovery of Interlaboratory Median			
	705	706	707	708	705	706	707	708
PCB	NRA							
1,4-DCB	NRA							
1,3-DCB	NRA							
1,2-DCB	NRA							
1,3,5-TCB	37.4	28.0	22.4	20.6	52.7	35.7	69.4	57.0
1,2,4-TCB	45.0	105	58.0	58.0	60.0	148	106	105
1,2,3-TCB	- 76.9	67.3	69.6	71.6	100	88.6	100	96.1
1,2,4,5-TeCB	ND	ND	49.7	45.7	ND	ND	73.5	63.9
1,2,3,4-TeCB	40.8	61.2	61.4	57.3	66.8	89.6	100	105
PeCB	81.6	ND	101	93.1	107	ND	132	107
HCB	19.2	38.5	30.9	30.9	20.8	43.5	40.0	40.5
HCE	45.5	90.9	54.5	47.3	80.0	143	90.9	86.7
HCBD	45.9	41.3	47.7	44.0	90.9	100	100	100
OCS	96.2	269	107	88.5	100	275	112	107

See Appendix 1 for explanation of codes.

TABLE 5. Summary of laboratory results based on the $\%$ recovery of the design value. (See page 5.)

Lab	Parameter	Comments on Sample Results
U001	PCB	707 - 10w
	1,4-DCB	705, 707, 708-v. low
	1,3-DCB	705, 707, 708 - v. low; 706-10w
	1,2-DCB	705, 706 - v. high; 707, 708-v. low
	1,3,5-TCB	$\begin{aligned} & 703,704-\text { low; } 705,706-v . \text { high; } 707, \\ & 708-v . \text { low } \end{aligned}$
	1,2,4-TCB	$\text { 703, 704, 705, } 706 \text { - low; 707, } 708 \text { - v. low }$
	1,2,3-TCB	$703,704,706,708 \text { - low; 705, } 707 \text { - v. low }$
	1,2,3,4-TeCB	
	Pecb	705 - v. low; 706, 707, 708-10w
	HCB	707, 708-10w
	HCBD	705, 707, 708-v. low; 706-10w
	OCS	705, 707, 708-10w
v013	PCB	702 - high
	PeCB	705, 706- low
	HCB	
	OCS	703, 704, 705, 706-v. low
U014	PCB	707 - v. low; 708-1ow; 705, 706-1ess
	$1,2,4-T C B$	than
	1,4-DCB	705, 706, 707, 708- less than
	1,2-DCB	
	1,3-DCB	703, 704 - v. high; 705, 706, 707, 708less than
		$\text { 705, 706, 707, } 708-\text { v. low }$
	HCBD	,
U063	PCB	706 - v. high
	$1,4-\mathrm{DCB}$	705, 706 - v. high; 708-less than
	1,3-DCB	$\begin{aligned} & \text { 703, } 704 \text { - low; } 707 \text { - v. low; } 705,706,708 \\ & \text { - less than } \end{aligned}$
	1,2-DCB	703, 704, 705, 706, 707, 708-v. high
	1,3,5-TCB	705, 707-10w; 706, 708-less than
	1,2,4-TCB	706, 708 - v. low; 707-10w.
	1,2,3-TCB	703, 704-Low; 705, 707-v. low; 706, 708
	PeCB	- less than
	HCB	$\begin{aligned} & \text { 703, } 705,706-\text { v. 1ow; } 704,707 \text { - low; } 708 \\ & \text { - less than } \end{aligned}$
	HCE	703, 704 - v. high; 705, 707-high; 706, 708 - less than
	HCBD	703, 704 - v. high; 706 - v. low; 707 high; 708 - less than
	OCS	703, 704, 706, 707-v. high; 708 - v. low

Lab	Parameter	Comments on Sample Results
บ072	PCB	707, 708 - v. low; 705, 706 - less than
	1,4-DCB	
	1,3-DCB	
	1,2-DCB	
	1,3,5-TСВ	705, 706, 707; 708-1ess than
	1,2,4-TCB	
	1,2,3-TCB	
	1,2,4,5-TeСВ	
	1,2,3,4-TeCB	707-10w; 705, 706, 708 - less than
	PeCB	
	HCB	708 - v. low; 705, 706 - less than
	HCE	705, 706, 707 - v. 10w; 708-1ess than
	HCBD	705 - low; 706, 707 - v. low; 708 - less than
	Ocs	708-10w
U075	PCB	705, 706, 707, 708- less than
	HCB	705, 706, 707, 708 - v. high
U077	PCB	705 - high; 708 - 10 w
	HCB	705 - high
	OCS	
บ079	PCB	702, 706 high; 705 - v. high
U086	PCB	701 - high; 702 - v. high; 706 - low
	1,4-DCB	
	1,2-DCB	707, 708 - 10w
	1,3,5-TCB	
	1,2,3,4-TeCB	
	1,3-DCB	
	1,2,4-TCB	705, 706, 707, 708 - 10w
	HCE	
	HCBD	
	1,2,3-TCB	707-10w
	1,2,4,5-TeCB	708-10w

TABLE 5. Sumary of 2 recovery of the design value. continued

Lab	Parameter	Comments on Sample Results
U091		(only three parameters analyzed)
0092	PCB	705 - v. low; 706, 707, 708-10w
	1,3,5-TCB	$703,704,707,708-\text { v. low; } 705,706-$
	1,2,4-TCB	$705-\mathrm{high}$; 707, 708-10w
	1,2,3-TCB	705, 706 - v. high
	1,2,4,5-TeCB	705, 706 - v. high; 703, 704, 707, 708 -
		low
	1,2,3,4-TeCB	707, 708 - v. low
	HCB	703, 704, 707, 708-10w
	HCE	706 - low
	HCBD	706, 707, 708 - low
0093	1,3,5-TCB	703, 704, 705, 706, 707, 708-v. low
	1,2,4-TCB	705 - v. low; 707, 708-10w
	1,2,3-TCB	706, 707, 708 - low
	1,2,4,5-TeCB	707, 708 - v. low; 705, 706 - ND
	1,2,3,4-TeCB	$705-\mathrm{v}$. low; 706, 707, 708 - low
	PeCB	706 - ND
	HCB	703, 704 - low; 705, 706, 707, 708-v. low
	HCBD	705, 706, 707, 708-v. 10w
	HCE	705, 708 - v. low; 707-1ow
	OCS	706 - v. high

APPENDIX I

GLOSSARY OF TERMS

APPENDIX I

Codes

```
    NAV: not available
    NA: not analyzed
    NRA: not routinely analyzed
    N or ND: not detected
    NR: not resolved
    LT: value reported as "less than"
False Negative: a result which is reported as "less
than" or "not detected" when the
design value is more than three times
the laboratory's stated detection
limit
```


QAT CHS AND PCBS IN AMPUES AND WATER
PRINTOUT PREPARED: 86/12P01.
PARAMETER: 1,2-DICHLOR OBENZENE PGNL
SAMPLE RESULTS803704
LAB
U001
0014
U0E
U072
U086 190°
910°
150°
170° $131{ }^{\circ}$
190°
1460 160°
170°
TOTAL LABS REPORTING 5 5
JOTAL LABS USED 5 5
hean 709.40000 422.20000
STO DEV 1230.39498580 .53785
MEDIAN 170.00000 170.00000
design value 158 158

QAT CHS AND PCBS IN AMPULES AND HATER
PRINTOUT PREPARED: 86/12/0i.
PARAMETER8 1,3,5-TRICHLOROBENZENE
PG/UL
SAmple results
703
704
LAB

| TOTAL LABS REPORTING | 6 | 6 |
| :--- | ---: | ---: | ---: |
| TOTAL LABS USED | 6 | 6 |
| MEAN | 23.15000 | 23.65000 |
| STD DEV | 9.47328 | 10.03868 |
| MEDIAN | 25.65000 | 26.95000 |
| DESIGN VALUE | 32.0 | 32.0 |

QAT CHS AND PCES IM AMPUES ANO MATER PRINTOUT PREPARED: 86/12701. PARAMETER: 1,2,3-TRICHLOROBENZENE PG/UL

SAApLE RESULTS
703704
LAB
$U 001$
0063 4072
4086
4093

| TOTAL LABS REPORTING | 6 | 6 |
| :--- | ---: | ---: | ---: |
| TOTAL LASS USED | 6 | 6 |
| MEAN | 27.13333 | 27.53333 |
| STD DEV | 5.74479 | 5.35562 |
| MEOIAN | 26.50000 | 29.00000 |
| DESIGN VALUE | 31.2 | 31.2 |

QM7 CHS AND PCBS IN AHPULES AND MATER PRINTOUT PREPARED\& $86 / 12 / 01$. PARAMETER: $1,2,3,4-T E T R A C I L O R O B E N Z E M E$ PG NUL SAMPLE RESULTS

703
704

10.2
13.0
140°
1500
10.6
16.0
140
150
15.0

| TOTAL LABS REPORTING | 5 | 5 |
| :--- | ---: | ---: | ---: |
| TOTAL LABS USED | 5 | 5 |
| MEAN | 13.24000 | 14.12000 |
| STO DEY | 1.84065 | 2.09093 |
| MEOTAN | 14.00000 | 15.00000 |
| DESIGN VALUE | 14.7 | 14.7 |

QA7 CHS AND PCBS IN AMPUES AND GATER
PRINTOUT PREPARED: 86/12701.
PARAMETERE HEXACHL OROBENZENE PGNL
SAMPLE RESULTS
703704

| TOTAL LABS REPORTING | 10 | 10 |
| :--- | ---: | ---: | ---: |
| TOTAL LABS USED | 10 | 10 |
| MEAN | 6.78000 | 6.82300 |
| STD DEV | 1.85686 | 1.65228 |
| MEDIAN | 7.00000 | 7.32000 |
| I IN VALUE | 7.77 | 7.77 |

QM7 CHS AND PCBS IG AMPUES AND MATERPRINTOUT PREPARED $86 / 12 / 01$ 。
PARAMETER: HEXACHL OROBUTAJ IENE
PG/UL
SAmple RESULTS
$703 \quad 704$
L18

| TOTAL LABS REPORTING | 7 | 7 |
| :--- | ---: | ---: | ---: |
| TOTAL LABS USED | 7 | 7 |
| MEAN | 13.48571 | 13.19429 |
| STD DEV | 16.25151 | 15.23079 |
| REOIAN | 8.00000 | 8.00000 |
| DESIGN VALUE | 7.42 | 7.42 |

QH7 CHS AND PCBS IN AMPULES AND MATER PRINTOUT PREPARED8 86/12/01. PARANETERE OCTACHL OROSTYRENE PG/UL
SAmple Results
703
704

LaB

yoit 4063 U072 0077 U091 U092
4093

| TOTAL LABS REPORTING | 9 | 9 |
| :--- | ---: | ---: | ---: |
| TOTAL LABS USED | 9 | 9 |
| MEAN | 15.28889 | 15.38889 |
| STD DEY | 7.11836 | 7.41492 |
| MEDIAN. | 14.00000 | 14.00000 |
| I \quad IN VALUE | 15.6 | 15.6 |

QAT CHS AMD PCBS I* AFULES AND WATER
PRINTOUT PREPARED: 86/12/01. PARAMETER: 19AODICHLOROBERZENE NG n

SAMPLE RESULTS

705
706
707
708

C月安

33.7
1000
1070
800.
50.
780°
$<1840^{\circ}$
$<800^{\circ}$
130.

| TOTAL LABS REPORTING | 5 | 5 | 5 | 5 | |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| TOTAL LABS USED | 3 | 3 | 3 | 2 | |
| MEAN | | 57.83333 | 63.56667 | 129.33333 | 100.95000 |
| STD OEY | | 56.83822 | 38.48718 | 55.00303 | 41.08290 |
| MEOIAN | 32.00000 | 50.00000 | 130.00000 | 100.95000 | |
| DESIGN VALUB | 40.5 | 40.5 | 203 | 203 | |

QM7 CHS AND PCBS IR AMPUES AND HATER

PRINTOUT PREPARED: 86/12/01。

PARAFETER: 1,3,50TRICHLOROBENZENE
MG /L
SAAPLE RESULTS
705706708

Las

U001
U065
4072
U086
4092
4093

$<$

TOTAL LABS REPORTING
TOTAL LABS USED
MEAN
STD DEV
MEDIAN
design value
8. 91750
5. 37140
7.58500
10.7

6
4
10.50000
8.74128
22.30000
21.40000
8.40000
10.7

6
3
9.93076
10.65708
17.30000
53.3
19.30000
53.3

Qh7 ChS AND PCBS IN AMFUES AND MATER
PRINTOUT PREPARED: 8612701. PARAMETER\& 1,2,3-TRICHLORJBENZENE NG几

SAMPLE RESULTS

| TOTAL LABS REPORTING | 6 | 6 | 6 | 6 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| TOTAL LABS USED | 5 | 4 | 5 | 4 |
| REAN | 10.27600 | 11.86750 | 32.62000 | 38.22500 |
| STO DEV | 10.25164 | 8.80490 | 10.88265 | 8.30276 |
| MEDIAN | 8.00000 | 7.90000 | 36.00000 | 38.50000 |
| DESIGN VALUE | 10.4 | 10.4 | 51.7 | 51.7 |

QMP CHS AND PCBS IA AMPLRES AND WATER
PRINTOUT PREPARED: 86/12/01。
PARAMETERE $1,2,4,5$-TETRAGHLOROBENZENE NG几
SAMPLE RESULTS

| - 705 | 706 | 707 |
| :---: | :---: | :---: | :---: |

LAB.

| TOTAL LABS REPORTING | 4 | 4 | 4 | 4 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| TOTAL LABS USED | 2 | 2 | 3 | 3 |
| MEAN | 16.60000 | 14.50000 | 32.33333 | 31.66667 |
| STO DEV | 11.87939 | 9.19239 | 6.65833 | 7.50555 |
| MEDIAN | 16.60000 | 14.50000 | 34.00000 | 36.00000 |
| DESIGN VALUE | 10.1 | 10.1 | 50.3 | 50.3 |

QA7 CHS AND PCBS IA AMPUESS AND GATER

PRINTOUT PREPARED: 86/12801:
PARAMETER: 1,2,3,4-TETRACHLOROBENZENE MGR
sAaple Results

| TOTAL LABS REPORTING | 5 | 5 | 5 | 5 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| POTAL LABS USED | 4 | 4 | 5 | 4 |
| MEAN | 5.99250 | 6.83250 | 25.56000 | 28.07500 |
| STD DEV | 2.09894 | 1.03161 | 6.03887 | 5.66473 |
| MEOIAN | 5.98500 | 6.70000 | 30.00000 | 26.65000 |
| DESIGN VALUE | 9.8 | 9.8 | 48.9 | 48.9 |

QAT CHE MO PCBS IA AMPLLES AND MATER

PRINTOUT PREPARED: $86 / 12 / 01$. PARAMETER: HEXACHL OROBENZENE

MG Ω

SAMPLE RESULTS

-	705	706	707

C8:
U001
4013
4016
4063
4072
4075
4077
4086
4092
0093

TOTAL LABS REPORTING 10
TOTAL LABS USED
9

HEAN
STD DEV
mentan
GN VALUE
4. 75889
3. 24279
4.80000
5.2

10
9
4.61000
2.82004
4.60000
5.2

$<$
18.5
 9.5 58.7 26.
22.
130
0.0

QM7 CHS AND PCBS IA AMPUES AND MATER

 PRINTOUT PREPAREDE 86/12/01. PARAMETER\& HEXACHLCROETHANE WG Ω SAMPLE RESULTS

| TOTAL LABS REPORTING | 6 | 6 | 6 | 6 |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| TOTAL LABS USEO | 6 | 5 | 6 | 6 |
| MEAN | 15.88333 | 13.32000 | 75.00000 | 63.25000 |
| STD DEV | 8.28744 | 5.07070 | 49.34369 | 36.30771 |
| MEDIAN | 12.50000 | 14.00000 | 65.00000 | 60.00000 |
| DESIGN VALUE | 22.0 | 22.0 | 110 | 110 |

QM7 CHS AND PCBS IA AMPUES AND MATER

 PRINTOUT PREPARED: 86/12/01。 PARAMETER: HEXACHL OROBUTAOIENENG Ω

SAMPLE RESULTS
705706
707
708
LAB

TOTAL LABS REPORTING 7
TOTAL LABS USED 7
MEAN
STD DEV
median
design value

13.04286
4. 86890
11.00000
21.8

$<$

7
5
49.50000
17.76936
48.00000

109

QMT CHE AND PCBS IM AMPURES AND MATER
PRIMTOUT PREPARED: 86/12701. PARAMETERZ OCTACHLOROSTYRENE NGA

SAMPLE RESULTS

705
108
4001
4015
4063
4072
0075
4077
4086
4092
4093

TOTAL LABS REPORTING	9
TOTAL LABS USED	9
MEAN	6.24778
STO DEV	5.05669
MEDIAN	5.00000
D	5.2

POE
707

9
9
7.54889
40. 34875
5.56870
33.65982
25.00000
26.0

708

[^0]: Dr. J. Lawrence
 Director
 Research and Applications Branch

