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MANAGEMENT PERSPECTIVE 

_ This paper addresses one of the complex interactions of wind 

and waves: the effect of the wind on the stability of small, secondary 

waves, referred to as side bands. 
I 

The ‘theory developed gives some 

insight into the controlling mechanisms, and provides insight into the 

growth of ‘wave energy due to winds. Its importance is in the 

improvement of wave prediction models and in models of near surface 

velocity distributions; controlling parameters in turbulence and mixing 

processes in the upper layers of lakes and oceans. 

Dr. J. Lawrence 
Director, Research and Applications Branch - 

National water Research Institute 
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PERSPECTIVE-GBSTIOR 

Ce rapport porte sur 1'une des interactions complexes entre 1e vent et les 
vagues, 5 savoir 1'effet du vent sur la stabilité de petites,vagues secondaires 
appelées bandes latérales. La théorie élaborée donne un apercu des mécanismes 
de commande et de 1'accroissanent de 1'énergie des vagues sous 1'action du 
vent. Elle tire.son importance du fait qu'e11e pernet d'aé1iorer les modeles 
de prévision de 1'état des vagues et de 1a distribution des vitesses pres de la 
surface, parametres qui influent sur les processus de turbulence et de mélange 
dans les couches supérieures des lacs et des océans.
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Dr J. Lawrence 
Directeur, Recherches et applications 
Institut national de recherche sur les eaux
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On étudie 1'1nstab111té des,bandes latérales d'un grain d'ondes de Stokes 

en présence d'une vitesse de cisaillement uniforme. La théorie énonce gn 

particulier que plus cette vitesse est faible, plus 1'1nstabi11té est gtande et 

que plus elle est élevée, plus 1'1nstab111té est faible. On a également 

effectué des expériences en laboratoire en présence de vagues firoduites 

mécaniquement et de vent. L'accto1ssement observé de 1'1nstab111té des bandes 
latérales concorde du point de vue qualitatif, mais non du point de vue 

quantitatif, avec le modéle théorique en ce que les vents faibles — done une 

faible vitesse de cisaillement * out tendance 5 accroitre cette instabilité et 
que les venss forts - donc une vitesse de cisaillement élevée — la supptiment.



From Proceedings of IUIAM "Sy1aPos1um on Nonlinear Water Waves", 
’l'okyo,.Japan, August 2,5, - Z3» 1937- PEPE!‘ #31- 

‘EFFEICTS OFMVELOCITY on STABILITY 
OF 

, 
SURFACE DEEP WATER WAVE TRAINS 

_ J. C. Li
_ Chinese Academy of Science, Beijing, China 

o W. Hui ' 

University of Waterloo, Ontario, Canada 
' ‘M. A. Donelan ‘ 

National Water Research Institute, Burlington, Canada 
SUh4l\/IARY 

The side“-band instability of a Stokes wave train in uniform velocity shear is studied. In particular, theory predicts that small velocity shear tends to enhance instability whereas large velocity shear surpress it. Laboratory experi- ments have also been conducted on mechanically generated waves with wind blowing over them. The observed side-band growths are in qualitative, but not quantitative, agreement with the theoretical model in that gentle wind (hence smaller velocity shear generated) tends to enhance growth whereas strong wind (hence llfger velocity shear) surpressit. c
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§1._ Introduction
_ 

_ 
It is well-known that the Stokes wave train on deep water is subject to Benjamin-Feir side-band" instability. Recently, however, experiments by Bliven, Huang and Long (Ref 1) at NASA Goddard Space Flight Center, and by Donelan at Canada Centre for Inland Waters (CCIW) both show that the effi- ciency of the. Benjamin-Feir instability mechanism is reduced by wind blowing over waves. This is a very interesting and fa_r~reaching finding, and the purpose of this paper is to propose a simple mathematical model to explain the effects of wind blowing over waves on the stability of finite amplitude wave trains. 
Wind blowing over surface water waves is known to produce a phase-shifted 

pressure force, causing the waves to grow. At the same time it imposes a 
tangential force, resulting in velocity shear in the water. As a simple model to study the effects of wind on the stability of water waves, the action of the wind 
is represented solely by a velocity shear distributed in the water. That is to say, that we assume the action of the wind to alter the surface pressure is not impor- tant in the growth of side-band instabilities. The problem is then to investigate. the effects of velocity shear on the stability of a Stokes wave train. For simpli- city in the mathematical analysis, a uniform velocity shear Q is assumed... 

This model, although obviously ovensimplifies the effects of wind, is shown to be capable of predicting the qualitative effects of wind on the stability of a uniform wave train. ‘
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§2. Stokes Wave Trains in Uniform Velocity Shear 
' . 

2.1 Mathematical Formulation '

p 

As mentioned in the Introduction, we consider the motion of wave on water 
of infinite depth in the presence of uniform velocity shear; the wave motion 
being otherwise irrotational. Thus the velocity is of the form 

V 
~ 

Y V = flyi + V¢(z,!ht) 4 (2.1) 
where D is constant, 2 and y are, respectively, horizontal an_d upward vertical 
cartesian coordinates, with unit vectors 2' and j. The governing equations arei V-V -= 0 ' 

(2.2) 

if -1 -' 2 = e 
=1‘

2 

- 

at + VVV + P -9; - (2.3) 

Substitution of Eq. (2.1) into (2,2) yields the usual Laplace equation for the 
potential ¢ " 

v=¢ - o ‘ 

(2.4) 
Although the flow under study is unsteady and rotational, with velocity given by Eq. (2.1), a first integral of Eq. (2.3) still exits. Indeed, substituting (2.1) into 
(2.3) and integrating with respect to 2 and y yields the Bernoulli integral as fol- 
lows Q 1'1 Le _.LM_ , at+2V+pw+gy zfly fl:/1 const. (2.5) 

where 1/Jis related to ¢ by the Cauchy@Riem‘ann conditions
l 

.a¢__a¢ .a¢_ agp 
831 3:: ' 

3.1: fay u 

» 

(26) 
The mathematical problem for calculating water wave motion of the type 
is thus to solve Eq. (2.4) subject to the following boundary conditions 

'5;-O _ atg=>-=00 (2.7) 

91 Q fi1_!;<£- .. M at +[az+fln]az av . 
0 aw n(=¢) (2-8) 

2 2
_ 

+ }+flng—:+gn—fl¢- const. at y I7(::,t) (2.9) 

where Eq. (2.8) expresses the kinematic boundary condition that ‘a fluid particle once on the free surface remains there for all time, whereas Eq. (2.9) is the 
dynamic boundary condition that the surface pressure is constant.
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2.2 Stokes Wave'Trains in Uniform Velocity Shear 
We now look for wave motion of Stokes type, i.e. periodic waves of per- manent form Propagating at constant velocity in the _a:-axis direction. Such waves are steady waves when viewed from a su_itab.le frame of reference Xy where 

0 being an apparent phase velocity of the wave. These steady waves are 
represented by '

_ 

¢ '=== —C'X + ‘I>(X,y) 
_ 

(2.11) 

. 
n-=n(X) (2-12) 

It is noted that for steady motion the free sur[ace is a streamline 
corresponding to the constancy of the stream function %Qy2+¢] 

A 

.' Thus 
substituting Eq. (2.11) and (2.12) into Eq. (2.4), (2.7) to (2.9), we get P” 
a2§ 32¢ . 

8X2 -+ 2 

avg 
0 » (2.13) 

8<I> '7I=0 y—>-co (2.14) 

84> -n_.€i_ _ [aX+Qr)-C] ax any o v 'l(X) (2.15) 

_ 
Solutions to Eqs. (2.13) to (2.16) are sought in the form of a power series in a small parameter e cha.racterisi__ng the steepness'of the waves. 

<I> = ¢<I>, + 84>, + e°<I>, + - - - ~ 

(2.11) 

0 - ¢m + 3'22 -11- ¢’ns+ ' ' ' (2-18) 

By use of standard singular perturbation technique for calculating Stokes wave 
trains, the terms in the series (2.17) - (2.19) can be calculated successively. The 
results are l A 

<I>1 -= e""sink;X 

"1 3 Cfizx 
e, -v fmfi + 3)e2"”sin2k::X (2.20)
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,2 .. -71-n(n+2) + -4-(li’+4n+2)m21==» 
and

A 

1+2fi + 35’-lfi‘ c co 1 + 8 2:5 
8 

(2-.21) 

_where 

- 

l 

Q B 3 (2.22) 
I: being the wave number, w I I:C, and

. 

> 

A 

- co = ’\ / k (11 m ‘ 

(2.23) 

§3. Evolution of Stokes Wave Trains in Uniform Velocity Shear 
The slow modulation of the Stokes wave train obtained in §2 can be studied by the usual method of multiple scales (Refs 2 8: 3) applied to Eq. (2.4), (2.7) -i (2.9). In particular, let ‘ 

r) eA(E,r)e"(""'“') + complex conjugate (3.1) 
together with a compatible expression for ¢, where 

f = e(a:—.c,t) 
(3.2) 

1' -=‘ eat 
(3.3) 

cg being the linear group velocity. Then the evolution of A is governed by the following equation 
. ‘2 

¢§—f+;»-‘2$=q|Al’.-4 (3-4) 

where _ 2 _ 

, w 0+9) r>
' 

” “ W (1 + 5/2)’ (35) 

1+2fi+ifi’-lfi‘ 
s VI e 

g 

q===— so 

236 -c wk? (as) 
The Stokes wave solution of §2 corresponds to the special solution of Eq. 

(3.4) with 
' 

'

_ 

A .= a°e'““' (3-7) 

§4. Stability of Stokes Wave Trains in Uni-form Velocity Shear 
A standard linear stability analysis (e.g. Ref 4) shows that the stability of the Stokes wave train depends solely on the sign of pg: it is stable when pq > 0 and unstable when pg < O. The maximum growth rate of the side-band, when
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normalized by éwaglcg, is equal to 

1+2fi+3§’-1-ii‘ 
4 8

_ ._ (3.8) 1+9/2 
This is plotted in Fig 1, which shows that small velocity shear O/w tends to enhance side-band instability, whereas large velocity shear tends to surpress ins- 
tability. 

,
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§5.‘ Comparisons with Experiments 
A series of experiments on mechanically generated water waves with wind blowing over them have been conducted in the wind-wave flume of Canada Cen- tre for Inland Waters, Burlington, Ontario. Fig 2 shows the frequency spectra at fetches of 12-.0, 24.1 and 34.2 m for wind speeds of 1.4 m/s and 10.5 m/s. It 

is clear that gentle wind at 1.4 m/s (hence smaller velocity shear generated in the wave field) tends to enhance side-band instability whereas stronger wind at 10.5 m/s (hence larger velocity shear) tends to surpress side-band instability. These, and the similar experimental results of Ref 1, are in qualitative agree- ment with our theoretical predictions. ‘ 

Attempts to give aquantitative comparison between experiments and our simplistic theoretical model are, however, met with the difficulty of assigning an appropriate linearized velocity shear to the experimental, results. The wind- induced velocity shear is highly nonlinear and the best one can.do is estimate lower and upper bounds for the equivalent linear shear. An estimate of the upper bound may be deduced from Kjinsman’s formula (Ref 5) for the ‘surface shear. This yields a range of Q/w from -0.1 to 18.3 for our experiments. An estimate of the lower bound may be based on a linear gradient from the drift 
velocity of the surface, approximately 3%of the wind speed, to the point of zero velocity in the tank (about 20% of the depth from the surface). This yields a range of -O/w from 0.02 to 0.17. Thus, appropriate linear velocity shear may be in the range of 0 to 4.0 in which the theoretical calculations yield first an 
increase of side-band growth rates and then a decrease. It is encou_r.agi;ng that 
this is the behavior observed, but quantitatively the prediction and experimental 
results (Fig 3) differ by a factor ‘of 3. It is clear that a more realistic velocity 
shear, e.g. an exponential one, will have to be incorporated in the theory before more precise agreement with observati_ons- is to be expected. ' 
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' Fig 1. Maximum side-band growth rate vs vorticity. 
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Fig 2. Frequency spectra at fetches of 12--.0-, 24.1, 34.2 m. The logarithmic ordi- nate corresponds to the bottom spectrum (at 12.0 m fetch); the others are offset 
in increments of 5 decades. Resolution bandwidth = 0.0186 Hz, Nyquist fre- < 

quency =. 10 Hz, 32 degrees of freedom. 
_
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(a) Low wind speed, 1.4 m/s at 535cm height, t ' 

A," 

(b) High wind speed, 10.5 m/s.
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Fig 3. The observed growth rate for the fastest growing side-bands for various wind speeds. The open circles correspond to the low frequency side-band; the closed circles to the high frequency side‘-band.‘


