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EXECUTIVE SUMMARY 

A literature review is given of the persistence and fate of 

several pesticides which are heavily used in Western Canada: 2,4—D, 

2,4—D butyric acid, MCPA, Dic1ofop—methyl, Dimethoate, Malathion, 

Trifluralin, Diallate, Triallate, Dicamba and Bromoxynil. Knowledge 

gaps are identified and research recommendations are made. 

MANAGEMENT PERSPECTIVE 

This review was prepared for the Water Quality Branch, Western 
and Northern Region.
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Une étude documentaire porte sur la persistence et 1e devenir de 
plusieuts pesticides largement utilisés dans 1'Ouest du Canada : 1e 

2,4-D, 1'acide 2,4—D butyrique, 1e MCPA, 1e diclofop-méthyl, 1e 

dihéthoate, 1e malathion, la trifluraline, 1e diallate, 1e triallate, le 

dicamba et 1e bromoxynil. »Des lacunes ont été identifiées au niveau des 

connaissances et des tecomandations ont été formulées en matiére de 
recherches. ‘ 

PERSPECTIVE-GESTION 

La présente Etude a été préparée 3 1'intention de la Direction de 

la qualité des eaux, région de 1'ouest et du nord.
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ABSTRACT 

A literature review was prepared for the Water Quality Branch, 

Western and Northern Region, on the persistence and fate of several 

pesticides which are heavily used in Western Canada: 2,4,—D, 2,4—D 

butyric acid, MCPA, Diclofopemethyl, Dimethoate, Malathion, 

Trifluralin, Diallate, Triallate, Dicamba and Bromoxynil. Knowledge 

gaps are identified and research recommendations are made.



RESUM 

Une étude documentaire a été préparée 5 1'inténtion de la Direction 

dc la qualité des eaux, région de 1Youest et du nord, sur la persigtance 

et 1e devenir de plusieurs pesticides largement utilisés dans l'0uest du 

Canada : 1e 2,4—D, 1'acide 2,4—D butyrique, 1e MCPA, 1e diclofop-méthyl, 

1e diméthoate, 1e malathion, 1a trifluraline, 1e diallate, le triallate, 

1e dicamba et 1e bromoxynila Des lacunes ont été identifiées au niveau 

des connaissances et des recommendations ont été formulées en matiére de 

recherches.
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INTRODUCTION 

Man's use of pesticides has been instrumental in increasing food 

production on a global scale, and in the control of some diseases. 

Through these applications, however, some pesticides have become 

nearly ubiquitous in the environment and some have caused significant 

damage to the environment. The effects of pesticides on public health 
wand the survival of fish and wildlife species are areas of concern. 

Sound management of water is intimately linked to a knowledge of the 
aquatic dissipation and degradation of pesticides and other 
contaminants. The overall transport process determines in large 
measure the effects of waterborne substances on quality throughout a 

water course, and a clear understanding of physical, chemical and 
biological degradation and dissipation processes is particularily 
important. :

V 

Pesticides are used extensively in agriculture in Western 
Canada. This report reviews, to January 1986, the aquatic 
environmental fate and persistence of several pesticides of concern 
and their degradation products, for the Water Qua1ity_Branch, Western 
and Northern Region. The structures of the parent compounds are shown 
in Figures i and 2. 

2,4~Dichlorophenoxyacetic acid is a widely used herbicide for the 
control of terrestrial and aquatic weeds. Produced by the reaction of
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2,4—dichlorophenol (2,4~DCP) and sodium monochloroacetate, the 

commercial product may contain as much as 5% 2,4-DCP. The herbicide 

is formulated in many ways such as the sodium salt, amine salts and 

esters. The acute oral LD5o of 2,4—D for rats is 375-800 mg/kg (l). 

The initial breakdown product of 2,4-D in water is believed to be 
2,4—DCP (2). However, it is not a major metabolite in many crops 

since the residue level of 2,4—DCP is less than 10% of the parent 
compound (3). Major amino acid conjugates in soybeans are 

2,4-D—glutamic acid and 2,4-D—aspartic acid (1). Ring hydroxylation 
of 2,4-D in beans to yield 2,5—dichloro—4-hydroxy—phenoxyacetic acid 
and 2,3-dichloro-4-hydroxy—phenoxyacetic acid has been documented, as 

well as side—chain lengthening to yield 2,4:D+butyric acid (1,4,5). 
In soils, the rate of degradation of 2,4-D depends upon soil 

characteristics such as pH, organic matter content, moisture content, 
chemical composition and climatic conditions, as well as the amount 
applied. In Finnish soil, 2,4—D applied at the 10 ppm level was 
completely degraded after 24 w, and at the 1000 ppm level it took 
>72 w (6). In Saskatchewan soil (pH o.2-7.8), complete degradation 
took 14 d (unknown application rate) (7). In a. Northern Ontario 
forest (application rate 2.24 kg/ha), the dissipation half-lives were 
7 d in clay soil and 23 d in the top 10 cm of sandy soil (7). In a 

pond treated with 2,4-D-dimethylamino salt, the half-life of 2,4—D was 
determined to be 35 d. An identical half-life was found for 2,4—D in 
a pond treated with 2,4—D-butoxyethyl ester (8).
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2 , 4-n_-Burp-‘1'¢c Acid ( 2 , 4-ms 1 

Relatively little information is available on the persistence and 
degradation of 2,4—DB in aquatic environments. 2,4-DB was first used 

to control weeds in legumes. The herbicidal properties of 2,4—DB arise 

from B—oxidation of the aliphatic side chain to give 2,4—D (9-ll). 

MCPA (4-chloro¢2fmethylpheno2Yacetic acid} 

MCBA is used to control annual and perennial weeds in cereal 

crops, grassland and rice fields, and is used against scrub in 

forestry, Since 1979, MCPA has been applied as the dimethylamino 
salt (12). In this formulation, about 1% by weight of 

2—methylphenoxyacetic acid is present. in the past, 4=chloro—o—cresol 
comprised as much as 4% of the sodium salt formulation. 

The two major metabolites of MCPA in soils and vegetation are 
kechloro-o-cresol and 5—chloro+3emethylcatechol (13-17). 

Various degradation rates have been reported for MCPA in soils. 

Key factors affecting the rate are soil organic content, pH, moisture 
content and climatic conditions as well as amount applied. MCPA 
persisted in some Saskatchewan soils (pH 6.2+7.8) for as long as 
70 d. Halfelives for a Finnish sandy clay soil and a Bangladesh sandy 
loam soil (both at 23-25°C) were 50 and 23 d, respectively (6, 14-16). 

In a dilute (1.0 ppm) aqueous solution at pH 8.3, MCPA was 
photochemically degraded with a half-life of 18 d. Sunlight
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irradiation of a MCPA-dimethylamino spray formulation (14.7 g/L) and 

the semisolid residue remaining after its evaporation on a glass 

surface resulted in >802 loss of MCPA within 6 d and formation of 

4-chloro—o—cresol and many other products. An MCPA spray solution 
(14.7 g/L) irradiated in a photoreactor with no evaporation showed a 

half-life of 8 d (18). 

Diclofop—methyl 

(Methyl 2-[4-(2f,4l—dichlorophenoxglphenoxyj propionatel 

Diclofop—methyl or Hoe 23408 OHT is used mainly " as a 

post—emergence herbicide although it also has some pre-emergence 
activity. It selectively controls the growth of a few annual grass 
weeds in cereal crops (19). 

Diclofop—methyl initially degrades to diclofop in soils as well 
as in plants, apparently as the result of esterase activity. The 
esterase may be excreted by plant roots or be of microbial origin in 
soil degradation, In soils, diclofop has been reported as the major 
metabolite and only trace amounts of phenolic derivatives have been 
detected. The initial hydrolysis of diclofop—methyl in soil was very 
rapid; 40-85% of the ester had undergone hydrolysis in three different 
soils after a 24-h incubation period at 20°C. After 24 h, ’the 

hydrolysis rate slowed, and traces of ’diclofop—methyl could be 
detected after 10 w. The product diclofop was strongly bound to soils 
and was only extractable by hot alkali treatment (20).
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The major metabolite of diclofop—methyl in wheat is an acidic 

aryl—0-glucoside of ring—hydroxylated diclcfop while the“ major 
metabolite in wild oat is the neutral glucose ester of diclofop which 

easily reverts to diclofop (cf. Fig. 3) (19, 21, 22). 

Dimethoate 

10,0-dimethyl S—(N—methylcarbamoylmethyl) phosphorothioate) 

Dimethoate is registered in Canada for systemic insect control in 

cereals, oil seeds, commercial and home gardens, forage crops, trees 
and shrubs. In Saskatchewan, one of the main uses of dimethoate is 

for grasshopper control in wheat. The production of dimethoxon 
(replace P=S with P=O in Fig. 1) is responsible for the toxicity of 

dimethoate to susceptible insects. There is no evidence for the 
carcinogenicity of dimethoate (23). 

It must be borne in mind that many studies of the persistence of 
dimethoate were only concerned with the ability to detect the parent 
compound, as opposed to detecting products of reaction. It is 

possible that physical loss through a variety of mechanisms is 

responsible for the imputed "degradation". 

The aqueous solubility of dimethoate at 20°C is greater than 
5 g/L (24), and its log Kow is 0.77 (25). 

Dimethoate is stable in distilled water at pH 7 for at least 
40 d, with no volatilization (26). Experiments on stability up to 
160 d which showed greater than 50% loss of dimethoate may have been
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complicated by bacterial contamination (26). No products were 

identified, There is no information on sunlight photolysis of 

dimethoate in water. 

A 

Eichelberger and Lichtenberg (27) found that the disappearance 

halfelife of dimethoate in river water at room temperature was 8 w 

(cf. 1 w for malathion), but identified no products. 
'In soil, 772 of applied dimethoate was unaccounted for after 

2 w, but products or unextractable residues were not determined (28). 

In plants, the half-life of extractable dimethoate is generally 
less than 3 w (29-34). Dimethoxon, which is perhaps the only 
metabolite with appreciable toxicity, was frequently detected, albeit 
at low concentrations. Lucier and Menzer (29) isolated 18 metabolites 
from bean leaves, but only identified seven. No metabolite accounted 
for more than 4% of the initially applied radiolabel. 

Dimethylthiophosphate, a hydrolysis product of both dimethoxon 
and mala0ROn, is only 3% as effective at inhibiting human plasma 
acetylcholinesterase as are the parent compounds, hence it is not a 

toxicologically significant degradation product (35). 

Malathion 

(0,0edimethyl S-(1,2—di(ethoxycarbonyl)ethyl) phosphorodithioate) 

Malathion was introduced by the American Cyanamid Company in 
1950. This insecticide is considered much safer than parathion to 

mammals and birds. Its safety to higher vertebrates is attributed to
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the action of carboxyesterase enzymes which degrade it to relatively 

nontoxic compounds faster than it is oxidi2ed to the more potent 

acetylcholinesterase inhibitor malaoxon (replace P=S with P=O in 

Fig. 1). The production of malaoxon is responsible for its selective 

toxicity to susceptible insects, which have little, if any, 

carboxyesterase enzymes. The high margin of safety of malathion to 

mammals and birds, and its selectivity against target insects, coupled 
with its amenability to ultra-low volume applications, make it a good 
general purpose contact insecticide for household, garden, greenhouse, 
agriculture, forestry and public health applications. 

Isomalathion in malathion spray formulations was deemed to be 

responsible for the poisoning of spray crews in the 1976 Pakistan 
Malaria Control Program (36)._ The structure of isomalathion is shown 
in Fig. 4. This isomer' was present at 0.3-3.1% by weight. »The 

mammalian toxicity of isomalathion is about three times that of 
malathion (23). 

A number of early studies on the persistence of malathion in 

various environmental "compartments" were only concerned with ability 
to detect the parent malathion. It is possible that malathion had 
become conjugated with the host matrix, ‘or that it was lost 
physically. ' 

Malathion appears not to persist in the environment. Estimates 
of its persistence in natural water range from 1 d to 2 w (36). Its 
persistence in soil has been estimated to be 1 w (36). Algal and 
bacterial cultures apparently degrade it with half-lives of 1 w (36).
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In none of these studies, however, were degradation products 

identified. ‘ 

In a study of the chemical degradation of malathion in water, 

Wolfe gt gl. (37) showed that the hydrolysis rate was at a minimum at 
pH 4 and increased with both increasing and decreasing pH. At 20°C, 

the half-life of malathion in water ranged from 40 d at pH 6 to 1'd at 
pH 8. The mechanism of hydrolytic degradation is shown in Fig. 5. 

The rate of production of the diacid was about 18 times slower than 
the rate of production of the monoacids. No malaoxon formation was 

\I 

observed in oxygen-saturated water at pH 6 over a period of 2 w. 

Wolfe gt 51. (37) also examined the photolysis of malathion using 
wavelengths >290 nm, and determined the half-life in distilled water 
at pH 6 to be 40 d. In natural water in sunlight, malathion was 50% 
dissipated in 16 h, but no degradation products were determined. 

Bender (38) has shown that one of ‘the hydrolysis products, 
diethyl fumarate, is about twice as toxic as malathion to the fathead 
minnow (Pimephales promelas, Rafinesque), but no information is 

available on the toxicity of the monoacids. 

Trifluralin (2,6-dinitroeN,Nedi-n—propy1—4ftrifluoromethylanilinel 

Trifluralin is a herbicide used for selective pre-emergence 
control of a wide variety of grasses and broadleaf weeds. It was 
introduced by Eli Lilly and Company in 1960. It has low mammalian 
toxicity, but moderate to high fish toxicity (for rainbow trout, 24 hr

4
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LC—50 values are 100-400 pg/L at 2-13°C (39)). -An early report by the 

U.S. National Cancer Institute (40) that trifluralin was a liver 

carcinogen in female mice was disputed by the U.S. EPA (41), which 

claimed that the trifluralin used by NCI contained about 85 ppm 

nitrosamdnes, were responsible for the observed 

carcinogenicity. Eli Lilly and Company has since reduced the 

nitrosamine content of its trifluralin preparation to less than 4 ppm 
(41). 

Trifluralin can persist from year to year in soil (42-44), both 

controlling weeds and damaging sensitive crops (45). Volatilization 
can be a significant pathway of disappearance (46-49), and for this 

reason trifluralin is usually incorporated into the soil. 
In soil, trifluralin is subject to microbial degradation, and 

slowly becomes converted to unextractable (and unidentified) residues 
(43,44,47,50-53). Aerobic degradation in soil proceeds by 
N-dealkylation followed by progressive reduction, whereas anaerobic 
degradation occurs with a preliminary reduction prior to 

dealkylation. Twenty—eight degradation products have been identified 
(44). None exceeded 32 of the initially applied trifluralin. After 
3 years, less than 1.5% of the applied trifluralin could be detected 
in soil, 4% was distributed among numerous transformation products, 
and 382 remained as (unidentified) soil-bound residues. 

Trifluralin on soil, in water or in air decomposes fairly readily 
in sunlight (54-56), through mechanisms of dealkylation and reduction, 
to a largely unresolvable mixture of numerous trace products. Leitis
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and Crosby (54) speculated that 2—ethyl-7—nitro+5*trifluoromethyl— 

benzimidazole (cf. Fig. 6), which is the most stable of the 

photoproducts, might persist in the environment long enough to be 

detectable. 

It is reasonable to assume that most of the trifluralin which may 
reach aquatic ecosystems will do so absorbed to soil particles. Such 

adsorption to soil, of course, greatly reduces the toxicity of 

trifluralin to vfish (57). In an atypical situation, that of 

trifluralin entering a river in the effluent of A

a 

trifluralin—manufacturing plant, Spacie and Hamelink (58) observed 
bioconcentration in various species of fish by factors up to 6000. 

Depuration half-lives were less than 2 months. 

Diallate (S-2,3-dichloro-Zepropenyl)-bis(1—methylethyl)carbamothioate) 
and Triallate 

jS—2,3,3—trich1oro+2-propenyl)—bis(1-methylethylz-carbamothioate) 

Diallate is marketed by the Monsanto Company under the trade name 
"Avadex" as a pre- or posteemergent herbicide for controlling such 
weeds as wild oat, windgrass and slender foxtail in crops of beet, 
potato, beans, pea, and winter Canola. The acute oral LD50 of 
diallate is 395 mg/kg in rats and 510 mg/kg in dogs. It is an oily 
liquid, with a b.p. of 150°C at 9 mm. It is soluble in most organic 
solvents such as acetone, benzene, toluene and alcohols, and its water 
solubility is 14 mg/L at 2S'C. Diallate is a carcinogen in mice (59).
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Triallate is also marketed by Monsanto under the trademarks 

"Avadex BW" and "Fargo". It is used as a pre- and post—emergent 

herbicide primarily for control of wild oats in cereals, beets and 

peas. The acute oral LD50 of triallate to rats is 1500-2000 mg/kg. 

It is also an oily liquid with a boiling point of 148—9°C at 9 mm. It 

is also soluble in most organic solvents and has a water solubility of 

4 mg/L at 25°C. ’ 

Both herbicides are relatively nonpersistent in soils with the 

major loss routes being degradation, bound residue formation and 

volatilization in decreasing order of importance (60,61). The 

ha1f—life of diallate in a variety of soils was 20 w or less (62). 

Half—lives of triallate were three.to four times longer that diallate 
for the same soils. Measurable amounts of undegraded triallate could 
be detected after 52 w (61). 

Both diallate and triallate are promutagens, exhibiting mutagenic 
activity in bacterial systems after microsomal oxidation. The initial 

step appears to involve the formation of unstable sulfoxides that 
undergo rearrangement followed by a l,2—elimination reaction to give 
2-chloroacrolein from diallate and 2-chloroacrylyl chloride from 
triallate. In addition, both diallate and triallate sulfoxides react 
to produce carbamoylsulfenyl chloride. The cis—diallate sulfoxide 
reacts ten-fold faster than the trans-diallate or triallate 
sulfoxides. The 2—haloacrylic acids have been proposed as indicators 
of 2—haloacrolein intermediate production in vivo in rats (63-65).
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Diallate and triallate photodecompose in oxygenated water to 

products that are mutagenic in the Ames assay. The route of this 

reaction appears to be photochemical sulfoxide production followed by 
2-chloroacrolein production via decomposition of the sulfoxide (66). 

Dicamba (3,6—dichloro—2-methoxybenzoic acid) 

Dicamba is a postemergence herbicide used to control broadleaf 
and grassy weeds in cereals, pasture and turf. It is formulated as 

the alkali or amine salt, or as the free acid. 

It is metaboliied in soil to 3,6—dich1orosa1icylic acid (I), 

and by plants and animals to 5-hydroxydicamba (II) (cf. Fig. 7) 

(S3, 66-76). 

Breakdown is rapid in warm soil with a half life of l—4 w. 

3,6-Dichlorosalicylic breaks down more slowly, and accumulates in the 
soil for a few weeks or more. Dicamba is mobile in soil whereas 
3,6-dichlorosalicylic acid is strongly adsorbed. In spite of its high 
water solubility and soil mobility, dicamba appears to be metabolized 
in soil before it can enter the aquatic environment. Metabolite 
monitoring in the aquatic environment could be done for 
3,6—dichlorosalicylic acid on suspended sediment rather "than for 
dicamba in water. Note that analytical methods employing methylation 
do not distinguish between the salicylic acid and dicamba (77-80).
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Dicamba is not likely to persist in the aquatic environment nor 
to bioaccumulate. It disappears quickly in pond water in the presence 
of sediment. It does not bioaccumulate in model ecosystems (81-88). 

_ 
Normal uses of dicamba are unlikely to lead to concentrations in 

the aquatic environment that approach the level of concern. Acute 
toxicities to aquatic species are 10-100 mg L'1 (89-94). The 

genotoxicity of dicamba is low, being negative in most tests and 

positive only for DNA damage in prokaryotes and mutagenic in a plant 
bioassay (95-98). 

In summary, dicamba has low toxicity, breaks down readily in soil 
and aquatic environments, and does not bioaccumulate, The literature 
on dicamba is quite complete with no major gaps. No high priority 
research needs could be identified, although more information would be 
useful on volatilization and the potential. for groundwater 
contamination in porous soils. 

Bromogynil (3,Sedibromo-4—hydroxybenzonitrile1 

Bromoxynil is a postemergence herbicide used for control of 
broad-leaved weeds. It is formulated as the alkali or amine salt, or 
the octanoate. The octanoate is metabolized by cereals (winter wheat) 
and soil microorganisms to bromoxynil which is further metabolized to 
the amide, acid and other products (99-103). 

Breakdown occurs quite rapidly in warm, soil (half—life of 
2-3 w or less) but more slowly at lower temperature (104+1l0). The

0
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most likely time for it to appear in surface water would be in the 

fall if it were applied to winter wheat grown under reduced tillage 

farming, or perhaps in a pulse during spring runoff. Due to its 

relatively high water solubility, it should appear in the dissolved 

phase rather than suspended solids or sediment. No information was 

found on soil mobility or bioaccumulation. 

There is very little information on toxicity to aquatic species. 
Existing data indicate that ppm levels are required for acutely toxic 
effects (111-114). 

Analytical methods based on both gas chromatography and high 
performance liquid chromatography have been developed for bromoxynil 

(78, 79, 115, 116). If residue analysis is to be done then a method 
should be used which includes the amide and acid metaboites as well. 

In summary, there is insufficient information in the literature 
to adequately assess the fate and effects of bromoxynil in the aquatic 
environment. The most important gaps in available information are: 

1. the seasonal pattern of persistence due to lower rate of 

degradation at lower temperatures; 

2. the mobility of bromoxynil and metabolites in the soil; 
3. persistence of metabolites and their toxicity to aquatic and 

terrestrial organisms. 

There is a need for gas chromatography—mass spectrometry studies to 

identify metabolites produced in soil and water, and by 
photodegradation on plant surfaces.
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1. Structures of 2,4—D, 2,4-DB, MCPA, Diclofop—methy1, 

Dimethoate and Malathion. 

2. Structures of Irifluralin, Diallate, Triallate, Dicamba and 

Bromoxynil. 

3. Transformations of diclofop—methy1. 

4. Structure of isomalathion. 

5. Hydrolysis of malathion. 

6. Structure of a trifluralin photolysis product, 2—ethy1-7- 

nitro-5-trifluoromethylbenzimidazole. 

7. Dicamba degradation products.
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