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SBDMARY

The characterization of chinge in & multivariate response
vith naturally ordered units {s considered. The methods coamonly
used, such as clustering or plotting in a reduced dimension, eifther
ignore the nitutal order or assume step chapgeo or both. The pro-
posed method consists of grouping those response variables which
have similar forms of change over the sequence of 6bservation. 'i'wQ
procedures, one using least ,sqluares cubic aplinga and the other,
using & similarity measure based on common runs up or down of
smoothed values, are .con'sidered. The final characterization con=

sists of sets of response variasbles and the form of change for each

set.

KEY WORDS: Multiveriate response; ordered observations; 1least

squares cubic eplines; cluster snglysis. ' '
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RESUME

On étudie 1la éaractérisation du changement détermins
par la réponse multivariable naturellement ordonnée. Les
méthodes habituellement utilisées, par exemple 1'application

de la théorie des grappes ou le tragage des courbes dans

sont insuffisantes soit parce qu'elles
ignorent 1l'ordre naturel oy parce qu'elles supposent des

changements par étape, ou pour ces deux raisons. La méthode.

proposée est basée sur le regroupement des variables de 1la
réponse qui présentent des profils semblables de changement

pour une séquence donnée d'observations. Deux méthodes, 1'une

basée sur l'utilisation de la fonction spiine (méthodes des

moindres carrés) et 1'autre, utilisant une mesure de la ressemblance

basée sur des essais communs effectués avec des valeurs

normalisées, sont &tudides. ‘La caractérisation finale est

constituée d'ensembles ge variables de réponses et du type de

changement pour chaque ensemble.



1. INTRODUCTION

?onsidet a situation vhere a sequence of measurements on three or
more response variables havé been made anfi the objective is to charac~-
terize the change in these variables over the sequence. Many such
multivariate data sets occur in the environmental sciences. The
methods of data analysis usually include either a variable reduction
technique or a unit grouping technique or both. Thus, for example,
the scores on the first few principal components could be examined in
the order of the sequence, or the sequence could be divided into
groups using a method of cluster analysis. The var:lable_ reduction
techniques such as principal components analysis and no;tv cluster
analysis methods do not take the order of observation iato account
explicitly. Constrained clustering methods (Gordon, 1980) do account
for this natural order but characterize the change as that of a change
from one constant level to another. Situations atis’e. where the form
of change 1is ‘betﬁer characterized by a smooth or pilecewise smooth
curve. This paper c,ogiuaeu ways of characterizing such data sets by
grouping response variables which have similar curves. |

The response variables could be different physical var:lib,les or
the same physical variable with some other characteristic distinguish-
ing the different response variables. Herein, the result of applying
a smoothing procedure to the data will be called a curve, and the

similarity of curves that will be considered 1s that the curves



increase and decrease together. This can be examined visually for

variables which have different units or different scales by plotting

each variable on axes of 'the same size and fixing minimum and maximum
values of each response variable at the same point on thé ordinate in
each plot. The plots can be overlaid to see which are approximately
the same. To mimic this in a mathematical procedure, the response
variables may need to be rescaled so that each has minimum and maximum
values of -C and C, where C=1 is a convenient choice. In cases where
it is important to know 1f the magnitudes are the same for variables
in the same units, variables would not be rescaled.

Suppose (x;,¥;), (%5,¥,), <eo; (in,zﬂ) are the n observations

on the p response variables, which have been rescaled if appropriate,

.where the subscript i gives the position in the sequence, and x

denotes either the index i or the value of a variable such as time,
which determines the order. Then the change in the jth response

variable over the sequence is given by

yij - fj (x‘j) + CIj (for i=]1 ,2,.",11) ' (l)

where f is some smooth or piece-wise smooth function and ¢ 18 the
error random variable. The problem is to determine which of the fj
are the same. The general approach will be to estimate ?j for j=1,2,

cesy P and then either use a step-wise approach to determine which

‘variables can be fitted by the same function or a hierarchical



clustering method in which similarities between all possible combina-

tions are calculated.

2. REGRESSION

To put the present case in a framework analogous to partial
F-tests in regression (Draper and Smith, 1981, section 2.9), the form
of f is fixed and one function, say fy, is fitted to response
variables j and jJ', as well as fitting f5 and fyr, The the extra
variation, due to fitting ﬁewer parameters in the single function
fx, 1s assessed. It ﬁill be assumed that the observations are inde-

pendent but the response variables are not necessarily independent,

The well known results for univariate (e.g., Draper and Smith, 1981)

and multivariate (e.g., Kendall, Stuart and Ord, 1983) linear models

will be used,

Polynomials

If the function can be modelled as a polynomial in x of degree q,
(1) is given by

|



Yj,J s BjQ + le xi + sz xiz + eeoe ¥+ qu X1q + eij

(for 1=1,2,...,n) (2)

where j=1,2,...,p. To deteriiine if the response of variables j and j'

can be characterized by the same polynomial,
Yk = B0 * By Xy + By X324 cee + Byg xyT + ey (3

for k=j or jJ' and i=1,2,...,n, is also fitted. Under the asat;nptions
that the €44 are normally distributed with E(egj) = O and that the
response variables are independent, the increase in residual sums of
squares from model (3) with (q+l) parameters relative to model (2)-
with 2(q+l) parameters is tested using an F statistic. If the
response variables are dependent, the 1ikelihood ratio test for the

two models is used.

Cubic splines

For envirommental data, single polynomials are often not ade-A
quate. Further, the number of response variables may be large and the
forms of the curves quite different. To develop a procedure that will

providé reasonable results without user interaction at the fitting



stage, a more general smoothing procedure is needed. Least vaqu-ates
cubic splines with fixed knots 18 ome such piocedure and has the
advantage that it is equivalent to restricted least squares (Buse and
Lim, 1977).

Using cubic splines, (1) takes the form

Y13 = Bjog * Bjlg Xg + Byzy x42 + B3 xq3 + €1j -
for dg-1 £ x4 < d; and 1=1,2,...,n

where the (mtl) knots dg,d),s..,dn divide the domain of x into m
intervals. In addition, the continuity restrictions on- the cubic
polynomials v’ahd their first and second derivatives at the iaterior
knots provide the full set of equations and a parameter space of
dimension m+3 for each j. The estimation could be performed by
restricted least squares, or upon imposition of two additional
restrictions, by' least squares cubic splines (see Buse and Lin, 1977,
for details). Analogous to the case of sing'le polynomials, the model

for variables j and j' together is

Yik = Bkog *+ Biig X1 + Byog x5 + By3y xy3 + gy
| (5)
for k=j or §', dy-1 =< x4 < dg and 1=1,2,...,n

subject to the restrictions given above. Assuming normality, the

tests based on the change in the residual sum of squares or the
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likelihood ratio are used for independent or dependent response vari-
ables, respectively. In general, to test that a set of q variables,
with values of j given by the set Jq» can be fitted by the same
éunction, (5) 1s defined for k given by Jqe.

This can be programmed easily using a least squares cubic spline
procedure siuch as the IMSL subroutine ICSFKU (IMSL, 1982), which was
used for ﬁhe examples here. Let ;ij be the value of the cubic spline
for variable J calcul ated at x4 and Eij = Yij';ij be the corresponding
residual. If Jq gives the varisbles to be combined, the matrix of
residuals is R-(Eij), of dimension nxq. Let Ry denote the matrix cal-
culated under (4) and R; that under (5), where both matrices are of
dimension nxq. Thus to test if the variables Mentified in Jg can
be fitted by the same spline, the hypothesis is that £y=fx for 3

an element of Jq, and the test statistic is
F = (qn-q(atl)) (RSS.-RSSy)/(q=1)(m+l) RSS,

where RSS, is obtained from R, and RSS, from R, as

n .
b I €1 2,
jeJq i=]

The statistic follows an F distribution with (q~1)(m+l) and qo-q(mtl)
degrees of freedonm. ‘l'l_xe statistic in the case of dependent variasbles

is



A = -nlog, ' fu | / | ic |
vhere £, = (1/n) R R, and £, = (1/n) R'R¢, both of dimension qxq.

The distribution of A can be approximated by the chi-square distribu-

tion with q(mtl) degrees of freedom (Kendall, Stuart and Ord, 1983).

Au§e1ection procedure

To avoid calculating the splines for all possible combinations of
two or more variables some procedure is needed for détetmining the
order in which combinations are to be fitted by one spline. The
method used in this paper is as follows:

1. Fit splines to all p variables and caiculate the fitted

values ;11. | |

2. Calculate the correlation coefficient between vectors of

fitted values for all possible pairs of variables, and
exclude any pairs with correlation less than some arbitrary
L value, Tey, where re30. |

3. Order the remaining pairs of wvariables to correspond to

decreasing value of the correlation coefficieht. Choose the

pair with the largest correlation coefficient.
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4. Test vhether this pair of variables can v_b'e, fitted by the same
spline. If not, go to step 8. If so, go to step 5.

5. Calculate‘_“ the correlation coefficient between the fitted |
values ¥k, obtained from the spline of the combined vari-
ables, and all variables not appearing in this combination or
a previous combination found to be fitted adequately by one
spline. Choose the variable with the largest cotfelation
coefficient.

6. Calculate the spline for the enlarged combination. Test
whether this combii_mtion can be fitted by the same spline.

7. 1If so, and all columns have not been tested, go to 5. If not
an(i all the colummns have not been test_ed, gé to step 8.
Othervise, stop.

8. From the remaining pairs; for which neither member has
appeared in a previous combination found to be fitted ade-
quately by a single spline, choose the pair with the next
highest correlation. If such a pair is found, go to step 4.
Othervise stop.

For the examples, r.=0 was used at step 2. This prevented the

value of ro from controlling which variables would be tested, except

to exclude those which were negatively correlated.
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Choosing the fora of &

Like all methods of data analysis, some preliminary examination
ofn the data and subsequent assessment of the analyses are required.
The critical initial question is the choicé of the form of fy so
that it will be adequate for all variables. If cubic splines are
used, the location and number of knots need to be specified. Bow this
is done will depend upon the situation, since there may be information
available about how much variation to smooth out and where knots
should be placed. In the absence of such information, plots of the
variables versus x will help in the choice. If some of continuity
assumptions are inappropriate, the esti@atioi can 'be done by

restricted least squares.

3. CLUSTERING

As in the previous section, the idea of snoothing out the excess
variation and measuring the similarity between the uoothéd curves is
applied. Measures of association between 'var;abl,es, commonly used for
clustering, ;ucﬁ as a correlation coefficient, are not suitable for
Fhe present purpose since they cannot distinguish between runs of
similarity in curves and disjoint points of similarity. The measure

of similarity defined here uses runs of points where both smoothed
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curves increase, decrease or remain constant, and weights the contri-
bution of a rum 36 that runs corresponding to large peaks or troughs
contribute more to the similarity coefficient than do runs of small
peaks or troughs.

Let ;ﬁ denote the value of the running mean of length L calcu-
lated for variable j at index i of the sequence. To obtain the simi-
larity between the running means of variables } aﬁ;l £, the vector, B,
of matches between the first differences within the two columns is

given by m = (m),...,mn~])"' where

1 41f sgn (yi+1,§ = v1,§) = sgn (yi+1,2 = ¥1,2)

my = .
0 otherwise
and
-1 2<0
sgn(z) = {0 2z=0
1 =0

The ith element of 1 is based on the ith and (i+l)st elements of

Yy and y9. Thus to define the weighting factor, let

¥13°1/2 (3441,3 + 74,3)

for i=1,2,...,n~1 and j=1,2,...,ps Then the ith element of the vector

of weights, w, 1s given by

\'vi s ,riji-rul
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where ri4 = signed rank of ;13 relative to the median rank for v;ti—
able j, and rjy 1s similarly defined. Thus, for (n-1)=l1l, rij and
rig will range from -5 to +5 with median rank of O,

Runs of 1's in the vector m, hereafter referred to only as rums,
indicate regions of agreement between variables j and &. For the kth

run, the contribution to the measure of similarity is

s * 111 miwy

_ ny n-1 .
for 1 a member of the kth run. Thus ktl sk = izl mywy where ny = num—

ber of runs. Two measures of similarity which can be defined from

this are

S, = I & s

1 k=1 k Sk
where

1 4f the kth run i{s of length 2 LR
6y =
' 0 otherwise
and
S = S8pax

vhere spgy = s; for k corresponding to the longest run of length 2 LR,

LR exceeds 2 but is arbitrary.
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A clustering wmethod that uses means of columns found to be
similar at the previous step is the following: _
l. Calculate the similarity, S (either §; or S,), between all
pairs of variables and denote this by sjl for varisgbles 3
and 2.,

2. The pair(s) with max value of Syy are combined and a new
'tunning mean calculated from means of the original data.

3. The similarity matrix (S§2) is now calculated between the

reduced number of vectors of running means.

4. Steps 2 and 3 are repeated until all variables are in one

group.

The above method, although hierarchical, since once a variable is
entered into a cluster it does not move from that cluster, does not
have the usual property that the qimilarity measure decreases monoton-
ically as the number of clusters decreases. An alternative, which
permits a conventional dendrogram to be constructed, is to perform a
single or comglete linkage algorithm on the original similarity
matrix.

The nature of the data set and the objectives of the analysis

will determine the values of L and LR. The length of the running

mean, L, should be large enough to remove variability that is not part

of the function being characterized by the curve. Por a given level

of scatter, broad peaks will require larger L than narrow peaks. The
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value of LR, typically small, will depend upon the length of the

sequence and the level of variability.

EXAMPLES

Sediment cores are taken from lake bottoms and sampled at various
intervals, with the samples then being .subjected to biological or
chemical analysis, in order to draw inferences sbout past environmeg-
tal conditions. The resulting data sets‘are multivariate but have a
natural order since increasing depth in the core corresponds to more
distant times in the past. Further, the number of variables for each

sample 1s usually large but the aumber of samples small to moderate.

.The following examples are from sﬁch data sgets.

Example 1

The abundances of eight pollen types in & sediment core were
studied for évidence of changes in land vegetation in the past
(Delorme et al., 1984). This set has previously been examined indi-
vidually and by multivariate methods (Esterby et al., 1986). FPor all
eight profiles the form of change is curvilinear with abrupt changes

occurring low in the core for four types and nearer the surface for
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the remaining four. Segmented polynomials were fitted in the proéess
of estimating the point of discontinuity using the method of Esterby
and El-Shaarawi (1981) and from inspection of the plots it was noted
that, of the 4 profiles with the discontinuity low in the core, the

memberﬁ within each of the two pairs, Artemisia-Betula and Pinus-

Tsuga, are most similar. Of the other 4, only the pair Ambrosia-Acer

have similarly shaped curves. H_g:eg and Eﬂ’i were not similar to any
others. |

Using these two points of discontinuity for the interior knots,
the. cubic spline selection procedure described above was used on the
eight pollen typep, after scaling all types to be in the interval =1
to 1. Based on the F-test and a 5 percent significance level, the
groups of similar curves were: 1) the four pollen types with a
discontinuity low in the core plus Picea and 2) Ambrosia and Acer,
with Fagus not similar to any. When the likelihood ratio test, with

the same level of significance, was used, only the pairs Ambrosia-Acer

and Artemisia-Betula were found similar. The splines based on the

first grouping, with the corresponding data points, are shown in
Figures la and b, In Pigures lc and d, the splines obtained for the

individual columns are also shown for the Artemisia-Betula combination

and in PFigure le that of Fagus, to illustrate how different it is.
See Figure 2 for the correspondence between data matrix column

numbers and pollen names.
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The {terative clustering method, using similarity neasure‘ 1,
L=7 and LR=3, produced results in agreement with Esterby et al.
(1986) as can be seen from the dendrogran and plots of running means
(FPigure 2). In‘th:ls case S; did decrease monotonically.

As will be seen, the value of L here is higher than used for the
other examples. Initially L=3 and L=5 were tried; but unreasonable
combinations were .obtained, and this was not remedied by increasing
LR. By superimposing plots of the running means, each scaled to be in
the interval [-i,l], unreasonable coﬂb‘inatiohs " are immediately
obvious. The higher value of L produced curves more in agreement with

the generally broad peaks fitted by segmented polynomials.

Example 2

The 14 most abundant diatom species, from the same core as the
pollen data used in Example 1, have also bé,en analyzed previously
(Esterby et al., 1986). Here, the spline grouping method, with
interior knots and significance level the same as in Example 1, and
the iterative clustering method, the same except for L=5, were applied
to the data. The three sets of results (Table 1) are in good agree-
ment in the early stages of grouping, those which are of most
intereat; except for the inclusion of variable 9 with variables 11 and |

10 by the clustering method. Variable 9 has considerably more scatter |



16

vhich has less effect.l in this latter method. A combination of running
mean plots and cubic spline plots, which characterize the major shapes
of the curves, for this data set, are given in Figure 3. The results
are in general agreeinent with the subjective ‘inspgction of segmented
or single polynomials (Esterby et al., 1986), but this has ﬁot’ been
discussed here because the present procedures have produced simpler

summaries.

Ezawple 3

From the complete enumeration of fossil pollen in a sediment core
(HcAndrgys, 1966), a reduced set of 20 relatively abundant types,
based on the reduced set of Gordon (1982), have been analyzed by the
present methods, as described in the previous two examples (L=S
here). McAndrews prepared a pollen diagram and, from inspection of
this diagram, divided the core into regions characteristic of high
pollen abundance for one or more particular pollen types. The present
methods look for siﬁlarity ovef the entire length of the core and
thus provide an analysies complementary to the gonation of the core.

The {terative clustering method divided the 20 profiles inmto
three groups, with only the early clusters in each group, i.e., those
clustered at (max §,-S;) < 263 (see lower horizontal line in Figure 4)

being similar over the entire profile (Pigures 4 and 5)., Rote that
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the similarity 1s not strictly decreasing in this case, with variable
9 .entering the existing group which consists of variables 15 and 20,
with similarity greater than that for 15 and 20 alone, as indicated by
the arrow in the dendrogram. The spline grouping procedure yielded
only four pairs of similar variables with overlap between the F and
likelihood ratio tests for three of the four pairs and the differences
being due to the general tendency of the liﬁelihood ratio version to
produce higher significance probabilities and to the fact that it is a
stepwise procedure. ‘

The divergence of the results from the clustering and the spline
grouping methods comes from the greater smoothing and thg dependence
on the variability as welllas curve shape, for the latter method. It
is mch noré pronounced for this example than the previous two, and
would require the analyst to decide which level of smoothing is
portraying the important features of the curves. Inspection of the
running mean plots, with the boundaries of the pollen zones as given
by McAndrews delimited, suggests that the pollen analyst would need to
retain as much variability as retained by the running means to be able

to define the pollen zones.
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DISCUSSION

- The methods of smoothing and of comparing smoothed curves used
here .were developed for data such as used in the examples, ‘but
should be applicable to many types of data. Within the general idea
of smoothing and comparing smoothed curves, many variations are
possible. The metho& could also be used for pairs of variables

(51, ;1). (52. h). o0y (}n, zn), vhere now both x and y are

vectors, for a suitable standardization of x's. For example, to know

if the response curve takes the same form for fixed increments in dose
starting at different base levels fof each x4, the base level would
be subtracted. The spline procedure can handle vectors of ‘different
lengths and the clustering procedure, since it compares curves, could
also be used if some sensible common values of x could be found at
which to estimate the curves. Fixed knots have been uséd so that the
results of linear least squares are available. Further, because the
rigour of the methods is that of clustering, it seems unwarranted to
introduce the complexity of estimating knots. In the event of a pooi'
first set of knots, the procedure can be repeated with another set.

It 1s essential that the curves are plotted since both procedures
require specifications from the user, the values of which determine

how well the procedures perform. However, this 1s not a disadvantage

since the procedures group curves and in general our objectives will

include knowledge of the shapes of the curves. To determine the
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extent of agglomeration that can be used and still retain only similar
curves within a cluster, clusters prior to a relatively large drop in
similarity can be chosen and the corresponding plots examined. This

was illustrated in Example 3.
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FIGURE CAPTIOHS

Graphical summary from the spline grouping procedure for

Example 1.

Dendrogram and plots of data and running means for

Examplg 1.

Data and splines based on the columns of data shown on the
plot (a,b,c and d) and data and running means (e,f,g and h)

for Example 2.
Dendrogram for Example 3.

Plots of running means only for three major clusters shown
in Figure 4 (plotg on the left), and plots of running means
and data for corresponding subsets with high similarity

(plots on the right) for Example 3.
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