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SIHHAIY 

The characterisation of change in a mltivariate; response 
with naturally ordered units is considered. The methods commonly 
used, such as clustering or plotting in a reduced disension, eit-her 

ignore the natural order or assume step changes or both. The pro; 
posed net-hod consists of grouping those response variables which 
have siailar form of change over the sequence of observation. Tue 
procedures, one using least squares cubic splines and the other, 
using a similarity measure based "on connon runs up or down of 
smoothed values, are considered. The final characterization con= 
sists of sets of response variables and the fora of change for each 
set. t

t 

KEY IDRDS: fiultivariate response; ordered observations; least 
squares cubic splines; cluster analysis.
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RESUME 

On étudie la caractérisation du changement déterminé 
par la réponse multivariable naturellement ordonnée. Les 
"méthodes habituellement utilisées, par exemple 1'application 
de la théorie des grappes ou leAtra¢age des ceurbes dans 
des dimensions réduites, sont insuffisantes soit parce qu'elles 
ignorent l'0rdre naturel ou parce qu'elles supposent des V 

changements par étape, ou pour ces deux raisons. La méth0de~ 
proposée est basée sur le regroupement des variables de la 
réponse qui présentent des profils semblables de changement 
pour une séquence donnée d'observations. Deux méthodes, 1'une 
basée sur l'utilisation de la fonction spiine (méthodes des 
moindres carrés) et l'autre, utilisant une mesure de la ressembl 
basée sur des essais communs effectués avec des valeurs 
normalisées, sont étudiées. ’La caractérisation finale est 
constituée d'efiSemble5 de variables.de réponses et du type de 
changement pour chaque ensemble. 

ance
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Qonsider a situation where a sequence of measurements on three or 

more response variables have been nade and the objective is to charac- 

terize the change in these variables over the sequence. Many such 

multivariate data sets occur in the environmental sciences. The 

methods of data analysis usually include either a variable" reduction 

technique or a unit grouping technique or both. Thus, for example, 

the scores on the first few principal ¢0I_l!P0n1¢nta could be examined in 

the order of the sequence, or the sequence could be divided into 

groups using a method of cluster analysis. The variable reduction 

techniques such as principal components analysis and most cluster 

analysis methods do not take the order of observation into account 

explicitly. Constrained clustering methods (Gordon, 1980) do account 

for- this natural order but characterize the change as that of a change 

from one constant level to another. Situations arise where the form 

of change is better characterized by la smooth or piecewise snooth 

curve. This paper considers ways of characterizing such data sets by 
grouping response variables which have similar curves. 

The response variables could be different physical variables or 

the same physical variable with some other characteristic distinguish- 
ing the different response variables. Herein, the result of applying 

a smoothing procedure to the data will be called a curve, and the 

similarity of curves that viii be considered is that the curves
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increase and decrease together. This can be e_1_:am_ined visually for 

variables which have different units or different scales by plotting 

each variable on axes of the same size and fixing minimum and 
values of each response variable at the same point on the ordinate in 
each plot. The plots can be overlaid to see which are approximately 
the same. To mimic this in a mathematical procedure, the response 

variables may need to be rescaled so that each has minimum and maximum 
values of -C and C, where C-=1 is a convenient choice. In cases where 

it is important to know if the magnitudes are the same for variables 
in the same units, variables would not be rescaled. 

$\lPP08e (81.11). (82.12). ..., (xn,_yn_) are the n observations 
on the p response variables, which have been rescaled if appropriate, 

where the subscript i gives the position in the sequence, and x 
denotes either the index i or the value of a variable such as time, 
which determines the order. Then the change in the jt-h response 

variable over the sequence is given by 
l 

V

- 

yu i f_1(xi) + cu (for i-»l,2,...,n) V 

(1) 

where f is some smooth or piece-wise smooth function and e is the 
error random variable. The problem is to determine which of the fj 

are the same. 'l'he general approach will be to estimate fl for _1=l,2, 
..., p and then either use s step-vise approach to determine which 
variables can be fitted by the same function or a hierarchical
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clustering method in which similarities between all possible combina- 

tions are calculated. A 

S

, 

2. QIQBSSIQ 

To put the present case in a framework analogous to partial 

F-tests in regression (Dr-aper and Smith, 1981, section 2.9), the form 

of f is fixed and one function, say fk, is fitted to response 

variables j and J‘, as well as fitting fj and, fjv. The the extra 

variation, due to fitting fewer parameters in the single function 

fk, is assessed. It will be assumed that the observations are inde- 

pendent but the response variables are not necessarily independent. 

The well known results for univariste (e.g., Draper and Smith, 1981) 

and multivariate (e.g., Kendall, Stuart and Ord, 1983) linear models 

will be used. 
_

‘ 

If the function. can be modelled as a polynomial in x of degree q, 
(1) is siven by '
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.. (for 1-l,Z,...,'n) (2) 

where j=1,2,.,.,p. ‘Io deteriiine if the response of variables J and 1' 

can be characterized by the same polynomial, 

yik = Bko + Bu X-1 4* Bk: Z12 + also + Bkq xi‘! + git (3) 

for k=j or _1' and i—l,2,...,n, is also fitted. Under the assumptions 

that the :13 are nomalli distributed with E~(e;|__-I) = 0 and that the 

response variables are independent, the increase in residual sums of 

squares from model (3) with (q+l) parameters relative to model (2) 

with 2(q+l) parameters is tested using an F statistic. If the 

response variables are dependent, the likelihood ratio test for the 

two models is used. ' 

_sp1ine8. 

For environmental data, single, polynoinisls are often not ade- 
quate. Further, the nunber of response variables nsy be large and the 

forms of the curves quite different. To develop a procedure that will 
provide reasonable results without user interaction at the fitting
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stage, a more general smoothing procedure is needed. Least squares 

cubic splines with fixed knots is one such procedure and has the 

advantage that it is equivalent to restricted least squares (Buse and
» 

Lim, 1917). ' 

Using cubic splines, (1) takes the form 

Y1; " B101 * B11: 81 + B121 K12 * B331 H3 * =11 
i 

(4) 
for dlfil 5- X1 $ d], and 1-=‘sz0'°'sn 

where the (m+1) knots d0,d;,.~..,d‘ divide the domain of x into m 
intervals. In addition, the continuity restrictions on the cubic 

polynomials and their first and second derivatives at the interior 

knots provide the full set of equations and a parameter space of 

dimension mi-3 for each j. The estimation could be performed by 
restricted least squares, or upon imposition of two additional 

restrictlions, by least squares cubic splines (see Buse and Lin, 19.77, 

for details). Analogous to the case of single polynomials, the model 
for variables j and _1' together is

- 

.711; '*' B201. * Btu, *i * 91:21 =12 " B33: =13 * =13
u 

(5) 
for k=j or 1', dl-15 :1 5 4; and i—l,2,...,n 

subject to the restrictions given above. Assuming normality, the 
tests based on the charge in the residual sum of squares or the
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‘ables, respectively. In seneral. to test that a set of q variables, 

likelihood ratio are used for independent or dependent response vari- 

with values of j given by the set Jq, can be fitted by the sang 
I function, (5) is defined for k given by Jq. 

I This can be programmed easily using a least squares cubic spline 
T 

procedure such as the subroutine ICSFKII (IMSL, 1982), which was 

I used for the examples here. Let ;,j be the value of the cubic spline 

i 
for variable j calculated at xi and E11 = yu-;1, be the corresponding 
1'¢.B1d.\'l.8l- If Jq gives the variables to be combined, the matrix of 

I residuals i_s R‘-(E13), of dimension nxq. Letgku denote the matrix cal- 

culated under (4) and 11¢ that under (5), where both matrices are of 

I dimension nxq. Thus to test if the variables identified in Jq can 

I 
be fitted by the same spline, the hYP°thes,i-s is that f_1=f|; for j 

I 
where RSSC is obtained from R¢ and RS8“ from Ru as 

an element of Jq, and the test statistic is 

F = (qn-q(irl-1)) (RSS¢-RS8“)/(q‘-l)(m+1) RS8“ ‘ 

ll . 
2 I :13 2- | j€Jq 1'1 u 

I The statistic follows an I distribution with (q-1)(_a-I-1) and qn-q('mi'-1) 

I 
degrees of freedom. The statistic in the case of dependent variables

I

I 

is '
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A - -n log: 
| 
in 

| 
/ 

l 
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where f“ = (1/n) R'uRu and fc = (1[n) R'¢Rc, both of dimension qxq. 

The distribution of A can be approximated by the chi-square distribu- 

tion with q(m+l) degrees of freedom (Kendall, Stuart and Ord, 1983), 

A selection procedure 

To avoid calculating the splines for all possible combinations of 
two or more variables sone procedure is needed for determining the 

order in which cmbinations are to be fitted by one spline. The 
method used in this paper is as follows: 

1. Fit splines to all p variables and calculate the fitted 

values §1j. 

2. Calculate the correlation coefficient between vectors of 

fitted values for all possible pairs of variables, and 

exclude any pairs with correlation less than sane arbitrary 

value» rgg V1181‘; {Q01 
3. Order the remaining pairs of variables to correspond to 

decreasing value of the correlation coefficient. Choose the 

pair with the largest correlation COQff1¢1QflCc
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lo. Test whether this pair of variables can be fitted by the same 

spline. If not, go to step 8. If so, go to step S.
' 

5. Calculate the correlation coefficient between the fitted 
. Q _ 

' values yik, obtained from the spline of the combined vari- 

a__bl-es, and all variables not appearing in this combination or 

a previous combination found to be fitted adequately by one 

spline. Choose the v‘a_ria,ble with the largest correlation 

coefficient.
\ 

6. Calculate the spline for the enlarged combination. Test 

whether this combination can be fitted by the same spline. 

_ 

7. If so, and all columns have not been tested, go to 5. If not 

and all the columns have not been tested, go to step 8. 

Otheriise, stop. 

8. Prom the remaining pairs, for which neither member has 

appeared in a- previous combination found to be fitted ade- 

quately by a single spline, choose the pair with the next- 

highest correlation. If such ea pair is found, go to step 4. 

Otherwise stop. ' 

For the examples, r¢=0 was used at step 2. 1'h_i_s prevented the 

value of re from controlling which variables would be tested, except 

to exclude those which were negatively correlated.
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Qqoos-ing the fora of £1 

_ 

Like all methods of data analysis, some preliminary examination 

of the data and subsequent assessment of the analyses are required. 

The critical initial question is the choice of the form oi fj so 

that it will he adequate for all variables. If cubic splines are 

used, the location and number of knots need to be specified. How this 

is done will depend upon the situation, since there‘ may be information 

ava:_llable about how much variation to smooth out and where knots 

should be placed. In the absence of such information, plots of_ the 

variables versus x will help in the choice. if some of continuity 

assumptions are inappropriate, the estimation can be done by 

restricted least squares. 

3 . CLUSTIIIE 

As in the previous section, the idea of smoothing out the excess 

variation and measuring the similarity between the smoothed curves is 

applied. bbasures of association between ‘variables, commonly used for 
clustering, such as a correlation coe_£f-icient, are not suitable for 

the present purpose since they cannot distinguish between runs of 

similarity in curves and disjoint points of similarity. The measure 

of similarity defined here uses runs of points where both smoothed
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curves increase, decrease or remain constant, and weights the contri- 

bution of a run so that runs corresponding ‘to large peaks or troughs 

contribute more to the similarity coefficient than do runs of small 

peaks or troughs. - 

Let hi denote the value of the running mean of length L, calcu- 

lated for variable j at index i of the sequence. To obtain the simi- 

laritybetween the running means of variables _1 and 1., the vector, E, 
of matches between the first differences within the two columns is 

8.1-\7¢.l"’l . (mlgooogmfl-'1). wh€rQ l 

{ 

lvif Ban (§1+1,3 - §1,3) - ass (§1.+1,z ' §1,g.) 
mi -

_ 

_ 

O othervise 

and 

- z<0 
sgn(z) Q z-0 

v0 
IQ-\ 

v-O0- 

The ith element of m is based on the ith and (i+l)at elements of 
and 1;. Thus to define the weighting factor, let 

;1_~|‘=1/Z (;1+1,_1 "' ;i,j) 

for .i=l,2,...,n-l and _j=l,2,...,p.- Then the ith element of the vector 

of weights, _\_I_, is given by 

'1 9
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where r11 I signed rank of 711 relative to the median rank for vari- 

able J, and r;|'_g_ is similarly defined. Thus, for (n-1)=1l, r1_-| and 

r1_;_ will range from -5 to +5 with median rank of 0. 

Runs of 1's in the vector m, hereafter referred to only as runs, 

indicate regions of agreement between variables j and 1. For the kth 

run, the contribution to the measure of similarity is ’

I 

°k ' 
Ii I\]1"1 

n n—l
_ 

for i a member of the kth run. Thus kt: sk 
= 

181 niwfwhere n, - num- 

ber of runs. Two measures of similarity which can be defined from 

this are 

s '1?’ c 1 W 1; k 

where ' 

1 if the kth run is of length Z LR 
5k - 

{ a 

0 otherwise 

and 

S2 '9max 

where sun = sk for k corresponding to the longest run of length; LR. 
LR exceeds 2 but is arbitrary.
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‘A clustering method that uses means of columns found to be 

similar at the previous step is the following:
_ 

1. ‘Calculate the similarity, S (either Se, or S2), between all 

pairs of variables and denote this by S“ for variables _1 

QM lo
_ 

2.~ The pair(s) with max value of SJ; are combined and a new 

running mean calculated from means of the original data. 

3. The similarity matrix (Sn) is now calculated between the 

reduced number of vectors of running means. ' 

lo. Steps _2 and 3 are repeated until all variables are in one 

8'l'O\lP o
p 

The above method, although hierarchical, since once a variable is 
entered into a cluster it does not move from that cluster, does not 

have the usual property that the similarity measure decreases monoton- 

ically as the number of clusters decreases. An alternative, which 
permits a conventional dendrogram to be constructed, is to perform a 

single or complete linkage algorithm on the original similarity 
matrix. . 

The nature of the data set and the objectives of the analysis 
will determine the values of L and LR. The length of the running 
mean, L, should be large enough to remove variability that is not part 
of the function being characterized by the curve. For a given level 
of scatter, broad peaks will require larger L than narrow peaks". The
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value of LR, typically small, will depend upon the length of the 

s'equenc'e and the level of variability. 

EXAMPLES 

Sediment cores are taken from lake bottoms and sampled at various 

intervals, with the samples then being subjected to biological or 
chemical analysis, in order to draw inferences about past environmen- 

tal conditions. The resulting data sets are multivariate but have a 

natural order since increasing depth in the core corresponds to more 

distant times in the past. Further, the number of variables for each 

sample is usually large but the number of _samples small to moderate. 

The following examples are from such data sets. » 

The abundances of eight pollen "till?! in a sediment core were 

studied for evidence of changes in land vegetation in the past 
'(De_lorme 3; 55,, 1984). This set has Previously been exanined indi- 

vidually and by nultiva'rist,e methods“ (Esterby gt _al._., 1986). For all 

eight profiles the form of change is curvilinear with abrupt changes 
occurring low in the core for four types and nearer the surface for
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the remaining four. Segmented polynomials were fitted in the process 

of estimating the point of discontinuity using the method of Esterby 

and El—Shaarawi (1981) and from inspection of theplots it was noted 
that, of the lo profiles with the discontinuity low 1.11 the core, the 

members within each of the two pairs, Ar.temis_ia-Betula and Pious- 

Tsuga, are most simiflar. Of the other 6,» only the pair Ambrosia-Acer 

have similarly shaped curves. Picea and F_ag1i£ were not similar to any 

others. - 

Using these two points of discontinuity for the interior knots, 

the cubic spline selection procedure described above was used on the 

eight pollen types, after scaling all types to be in the interval *1 

to 1. Based on the F-test and a S percent significance level, the 

groups of ‘similar curves were: 1) the four pollen types with a 

d_iscontinuity low in the core plus Z_:Lce_a_ and 2) Ambrosia and 551;, 
with !3_gy_s_ not siinilar to any. when the likelihood ratio test, with 

the same level of significance, was used, only the pairs Ajmbrosia-,__A_c£r_ 
and £u_l_a_ were found similar. The splines based on the Artemisia-

n 

first grouping, with the corresponding data points, are shown in 

Figures la and b. In Figures lc and d, the splines obtained for the 

individual columns are also shown for the Artemisis-Betula combination 

and in Figure le that of Fags, to illustrate how different it is. 

See Figure 2 for the correspondence between data nat~riz column 

numbers and pollen names. '

-
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The iterative clustering method, using similarity measure S1, 

Li7 and L813, produced results in agreement with Esterby _e__5 £.
1 

(1986) as can be seen from the dendrogram and plots of running means 

(Figure 2). In this case S1 did decrease monotonically. 

As will be seen, the value of L here is higher than used for the 

other examples. Initially L=3 and IFS were tried, but unreasonable 

combinations were obtained, and this was not remedied by increasing 

LR. By superimposing plots of the running means, each scaled to be in 

the interval [-1,1], imreasonable combinations ' are immediately 

obvious. The higher value of L produced curves more in agreement with 

the generally broad peaks fitted by segmented polynomials. 

angle 2 ’ 

The 16 most abundant diatom species, from the same core as the 

pollen data used in Eirample 1, have also been analyied previously 

(Esterby it £_J_._., 1986). Bere, the spline grouping method, with 

interior knots and significance level the sajme as in Example 1, and 

the iterative clustering method, the same except for 1P5, were applied 

to the data. The three sets of results (Table 1) are in good agree- 

ent in the early stages of grouping, those which are of nost 

interest, except for the inclusion of variable 9 with variables ll and 

10 by the clustering method, Variable 9 has considerably more scatter
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which has less effect in this latter method. A combination of running 
mean plots and cubic spline plots, which characterize the major shapes 

of the curves, for_this data set, are given in Figure 3. The results 

are in general agreement with the subjective inspection of segmented 

or single polynomials (Esterby Ge; _al_., 1986), but this has not been 

discussed here because the present procedures have produced simpler 

summaries. 

gg ‘le '3“ 

From the complete enumeration of fossil pollen in a sediment core 

(McAndre\vs, 1966), a reduced set of 20 relatively abundant types, 

based on the reduced set of Gordon (1982), have been analyzed by the 

present methods, as described in the 
' 

previous two exa_mple_s (L-S 

here). HcA_ndrews prepared a pollen diagram and, from inspection of 

this diagram, divided the core into regions characteristic oi high 
pollen abundance for one or. more particular pollen types. The present 

methods look for similarity over the entire length of the core and 

thus provide an analysis complementary to the zonation of the core. 

The iterative clustering -uaethod divided the 20 profiles into 

three groups, with only the early clusters in each group, i.e., those 

clustered at (max S1-81) § 263 (see lower horizontal line in Figure 4) 
being similar over the entire profile (Figures lo and S). Rots that
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the similarity is not strictly decreasing in this case, with variable 

9 entering the existing group which consists of variables 15 and 20, 

with similarity greater than that for 15 and 20 alone, as indicated by 
the arrow in the dendrogram. The spline grouping procedure yielded 

only four pairs of similar variables with overlap between the F and 

likelihood ratio tests for three of the four pairs and the differences 

being due to the general tedency of the likelihood ratio version to 
produce higher significance probabilities and to the fact that it is a 

stepwise-procedure. 

The divergence of the results from the clustering and the spline 

groupin methods comes from the greater smoothing and the dependence 

on the variability as well as curve shape, for the latter method. It 

is much more pronounced for this example than the previous two, and 

would require the analyst to decide- which level of smoothing is 

portraying the important features of the curves. Inspection of the 

running mean plots, with the boundaries of the pollen zones as given 

by HcAndrews delimited, suggests that the pollen analyst would need to 
retain as much variability as retained by the running means to be able 

to define the pollen zones. ‘



I 
I M ,

I

I 

‘g
I

I

I 

I

I 

I 

I

I

I

I

I

I

I 

DISCUSSIOI 

, The methods of smoothing and of comparing smoothed curves used 

here were developed for data such as ' used in the examples, but 
should be applicable to mall! types of data. Within the general idea 

of smoothing and comparing smoothed curves, many variations are 

possible. The method could also be used for pairs of variables 

(£1, ll), (£2, 3), ..., (3,, In), where ‘now both 1 and 7 are 

vectors, for a suitable standardizat-ion of x's. For example, to know 

if the response curve takes the same form for fixed in.c;re1me,ut§s in dose 

starting at different base levels for each 5, the base level would 

be subtracted. The spline procedure can handle vectors of different 

lengths and the clustering procedure, since it compares curves, could 

also be used if some sensible common values of x could be found at 

which to estimate the curves. Fixed knots have been used so that the 

results of linear least squares are available. Further, because the 

rigou-r of the methods is that of clustering, it seems unwarranted to 

introduce the complenitiy of estimating knots. In the event of a poor 

first set of knots, the procedure can be repeated with another set. 
It is essential that the curves are plotted Since both procedures 

require specifications from the user, the values of which determine 

how sell the procedures perform. However, this is not a disadvantage 

since the procedures group curves and in Senetal our objectives will 
include knowledge of the shapes of the curves. To determine the
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extent of agglomeration that can be used and still retain only similar 

curves within a cluster, clusters prior to a relatively large drop in 

similarity can be chosen and the corresponding plots examined. This 

was illustrated -in Example 3. 

The plotting programs for the cubic splines and running means 

were prepared by Joanne liodson. ' 
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Figure 1 

Figure 2 

Figure 3 

Figure 4 

Figure 5 
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rims carrlous 

Graphical summary from the spline groupin procedure for 

Example 1. 

Dendrogram and plots of data and running means for 

Example 1. 

Data and splines based on the columns of data shown on the 

plot (a,b,c and d) and data and running means (e,£,g and h) 

for Example 2. 

Dendrogrm for Example 3. 

Plots of runing means only for three major clusters shown 
in Figure 6 (plots on the left), and plots of running eans 

and data for corresponding subsets with high similarity 

(plots on the right) for Example 3.
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