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MANAGEMENT PERSPECTIVE 

This paper integratesstatistical and system methods to reduce the 

computational requirements to validate a simulation model. The 

bootstrap is a statistical method that analyzes probabilistic 

events. A common way to validate ecological models is to run Monte 

Carlo simulations, that is, the model is run 100 to S00 times to 

study its probabilistic properties. By analyzing the simulation 

model with the bootstrap, the simulation model needs to be run only 

once; '
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ABSTRACT 

A recently developed statistical method, the bootstrap, is used to 

compare data and model simulations. As .21 test case, I analyzed the 

validity of the relation, hypothesized by Neely, between thewater 

solubility of‘ an organic chemical and the ratio R of the acute 

lethal concentration to fish (LC50), at two different exposure 

times. The results of the analysis show that 'Neely's simulation 

model is likely (with an 88% probability) correct but it might have 

a systematic bias which makes the theoretical ratio (R) slight-ly 

higher than the observed "ratio (R0). The bootstrap is an 

interesting statistical method which could be commonly used in 

model validation using a probabilistic approach. When computing 

resources are limited, the boot-strap validation might substitute 

error analysis by Monte Carlo methods, commonly used in ecological 
' r 

modelling, as the mathematzical model is run only once. 
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PERSPECTIVE—GESTIOR 

Le présent article comprend des méthodes statistiques et 

systématiques visant a réduire 1e matériel informatique 

nécessaire pour valider un modéle de simulation. La méthode 

dite "bootstrap" est une méthode statistique servant 5 ' 

-analyser la probabilité que certains événements se réalisent. 

On applique couramment les simulations de Monte Carlo pour 

valider lés modéles écologiques et, pour ce faire, on 

applique 1e modéle de 100 5 500 fois pour étudier sa . 

probabilité de réalisation. Lorsqu'on analyse up modéle qe 

simulation a 1'aide de la méthode "bootstrap", 1e_modé1e.de 

simulation n'a qu'a étre appliqué une seule fois. 
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RESUME 

On utilise une méthode statistique récement mise au point, 

1a méthode dite "bootstrap", pour comparer des données et des 

modéles de simulation. A titre ae test, ya; analysé 1; 

validité de 1a relation, suggérée par Neely, entre 1a 

solubilité d'upe substancg organique dans 1'eau et 1e ratio R 

de 1a concentration létale aigué pour un poisson (CL50), iv 

déhx durées d’expoSition. Les résultats de 1'ana1yse 

montrent que 1e modéle de simulation de Neely est 

probablement correct (probabilité de 88%), mais qu'il risque 

do présenter on biais Systématique augmentant légéremént la 

valeur du ratio théorique (B) Par rapport au ratio observé A 

(R0). La méthode "bootstrap" est une méthode statistique - 

intéressante qui pourrait étre couramment utilisée pour 

valider des modéles par une approche statistique. Lorsque ~ 

les ressources informatiquesosont limitées, la méthode de 

validation "bootstrap" pent remplacer 1'ana1yse des erreursj 

par Les méthodes de Monte Carlo qui sont"commflnément- 

utilisées dans les modéles écologiquesi ¢arI1é;mode1e 

mathématique_n'est appliqué qu'une foisgfl “""‘=
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m'mom'JcT'Ion 

The validation of simulation models (here defined as systems of 

ordinary or partial differential equations) can be done by 

comparing the simulations with data using an appropriate framework 

(e.g. Mankin g£_gl., 1977; Halfon and Reggiani, 1978). Validation 

may be considered successful if the model can predict reasonably 

well data not used in the model formulation or calibration. The 

wording "reasonably well" should take into account that the model 

is uncertain, due to inaccurate assumptions or missing information 

(O'Neill et a1., 1980; Halfon, l983a,b; Halfon, 1985), and that the 

data set used for comparison, may be incomplete and not sufficient 

to disqualify a hypothesis (Halfon, 1979, 1984). 

‘ » 

In this paper, I suggest fihe performance of'a probablistic analysis 
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to help the validation of“ an ecotoxiocological model; for this 

purpose I use the bootstrap (Efron, 1981a, b) with a test case: a 

model developed by Neely (1984). The advantage of using the 

bootstrap over standard error analysis Monte Carlo methods, 
-Ir‘- 

commonly used in ecological modelling (O'Neill gt al., 1981), is 

that with the bootstrap the mathematical model is run only once, a 

time saving procedure when working with large complex simulation 

models. The disadvantage is that the bootstrap provides less 

information on the adequacy of the model structure than what is 

usually available from error analysis.
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The application of the bootstrap to the validation of mathematical 

models is advisable given the uncertainty in the data and, for 

example in ecotoxicological models, uncertainty about causal links 

between chemical properties and observed environmental behaviour of 

some pollutants. A data set, even if comprehens-ive, is never 

complete since thousands of chemical compounds presently pollute 

the environment and are taken up by living organisms. ' 

The bootstrap allows modelers to analyze a data set and provides 

a theoretical framework on which to base generalizations; indeed 

when we couple, as I have done in this paper, a statistical 

method, the‘ bootstrap, and a system method, a simulation model, 

we can analyze the validity of the assumptions included in the 

simulation model and provide» a probabilistic answer to the 

question of model validation. With the bootstrap we take into 

consideration that not all possible data were available for mode-l 

development and that ‘those available have some uncertainty 

associated with them given the variety of sources used to 

assemble the data set. -5» 

THE TEST MODEL ' 

Neely (1984) compared measured 96h and 24h acute LCSO fish data 

with aquatic toxicity data estimated by a theoretical‘ model based 

on water solubility of 24 chemicals. His results seem to prove
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the validity of the hypothesis that prediction of acute LC50 fish 

data is possible using his theoretical model. ' 

The Mathematical Model 

Neely established a theoretical relation between the water solu— 

bility of an organic chemical and the ratio R of the acute fish 

LC50 at two different time periods. The acute fish LCSO is the 

water concentration of a containant lethal to 50% of the fish in 

the experimental set up during a given time t, e.g., 24 hours. To 

prove this theoretical relation, Neely first analyzed a model of 

contaminant uptake and release in fish. If uptake and release are 

treated as first order processes, then the model is 
." 

' 

A-1 
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dCf/dt = kl Cw - kQCf (1) 
» ¢ 

where kl is the rate constant for upake [litres of water flowing 

through the fish (kg fish hout)'*], kl is the rate constant for 

clearance [hour'1], Cf I? the concentration of the contaminant in 

the fish [ng gill and éw is the concentration of the contaminant 

in water [ng L'1]. 

Neely (1979) showed that’ 

1Og10 k2 = 0.4 1Og1o S - 2119 (2)
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where S is the solubility of the contaminant in mg L". 

The analytical solution of the fish model (Eq; 1) is 

If the water‘ has a critical concentration, Cw*, of the 

contaminant capable of causing death in 50% of the fish in the 

experimental aquarium, then Cwk is the fish LC50 within a 

specified time interval, e.g. 24 or 96 hours. .The lethal 

concentration in fish is 05* at time ta. In mathematical terms 

I-C50 “ (kn/1(1) CVf*/(1 " exp ("k.2t.'-a)- (4) 

The ratio R of the LC5Qf.at two different times tan and tbv is 

therefore 
:

' 

LCSO (t ) (1 — exp (-1’<,t )) a b R ” LC50 (thy 
’ 

(1 - egp (-1<,ta)) (5) 

Note that for large values of k2’ or high fish clearance rates, the 

exponents approach zero'and R (Eq. 5) approaches 1; in this case 

the-lethal concentrations are similar at times ta and tb. For 

small values of k,, R approaches tb/ta since 

Lim (1 — exp (-x)) * x as x * O.
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Neely (1984) showed that the ratio (Eq. 5) could be predicted by 

knowing the solubility of different contaminants and inserting,Eq. 

2 in Eq. 5. The correlation between predicted R and observed 

ratios R0 has a value of 0.8h7. 

MODEL VALIDATION 

One of the methods to compare predicted and observed data is to 

compute a goodness of fit index, another comparison method is to 

use a statistical linear regression model to predict the observed 

data using the predicted ones. If the predicted values agree with 

the observed values exactly, then a one to one correspondence would 

yield a slope of 1.0 and an intercept of zero between the two 

ratios, i.e. - 

'

a 
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no = 0.0 +1.0 R (6) 
. I 

Neely (1984) also used regression analysis to compare the observed 

(96h LCSO/24h ALCSO) ratio (R0) with a theoretical ratio (R), 
. ;,.._

' 

which was predicted by a mathematical model of contaminant dynamics
v 

in fish (Eq. 5). 

The slope computed from Nee1y's published data 'using standard 

regression analysis is 0.845 with an intercept of 0.033; the
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correlation factor is 0.847, Since the slope is different from 

1.0, is.Nee1y‘s hypothesis wrong or is there a bias in the model? 

Linear regression with errors in both variables‘ 

A fact that Neely did not take into consideration while 

computing the coefficients of the linear regression model (Eq. 6) 

is that both sets of data contained errors. The observed values 

have errors of observations and natural variability, the 

theoretical values are also uncertain since they were derived from 

a mathematical model, uncertain by definition, One procedure to 

compare_ uncertain variables, and Ito compute the parameters of a 

linear regression model is ‘the geometric mean (GM) linear 

regression method (Teisser, 1948; Quenouille, 1949; Halfon, 1985b); 
' 1 

the method takes into acibunt that both the X's and the Y's are 
I ,

_ measured or estimated with error. The slope b is computed from the 

formula, ‘ 

where 

and
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sy= - Y‘ - (Z Y)‘/N, (9) 

and sign (r) is the sign, + or -, of the correlation coefficient 

r. N is the number of paired observations.
p 

The intercept a is estimated as usual as 

a-:Y$-bAX, -(10) 

where Y and X\are the averages of the Y's and X's, respectively. 

Using the GM linear regression model with the data published by 

Neely produces a slope of 0.997 with an intercept of -0.092; the 

computed slope is very close to the one to one correspondence 

hypothesized by Neely, or 

‘P 
fir ' 

. p, 

no = -0.092 + 0.99? R r = 0.841, n = 24. (11) 

while a negative intercept indicates that the theoretical values 

are slightly higher than the data.
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THE BOOTSTRAP AND MODEL VALIDATION 

The fact that the GM model has a slope very similar to the 

theoretical 1.0 does not imply that the model is generally valid 

for all chemical classes represented by the 24 chemicals used by 

Neely. The question is what is the probability of NeelyYs model 

being correct. The bootstrap can be used to seek this 

generalization, which is very useful since chemicals with different 

structures and chemical properties are used in Neely's model. “With 

the bootstrap, we can infer from the observed data the validity of 

Neely's hypothesis for all other chemicals with similar properties 

without having to perform more experiments on fish toxicity. 

To perform‘ the bootstrap test,. each of" the 24 data points is 

sampled with replacement 1000 times, the bootstrap samples; from a 
r 

‘

. 

practical point of view a random number generator is used. The 

statistics of interest, in this case the standard errors and the 

confidence limits of the slope» of the intercept and of the 

‘correlation coefficient, are computed for each such bootstrap 
. y-L 

sample. Given the fact that the assumption of normality has been 

abandoned, the confidence limits may not be symmetrical around the 

mean, if the probability density function is skewed; Y
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Results from the bootstrap calculations are shown in Table 1. The 

bootstrap average estimate of the correlation coefficient is 0.835; 

the one standard deviation (341) confidence limits of the 

correlation are 0.76 and 0.90 while the 951 confidence limits are 

skewed to the right and the limits are not symmetrical. For the GM 

linear model 34% confidence limits for the slope are 0.99 and 1.15 

with a bootstrap average of 1.018, and for the intercept -0.170, 

-0.039 and -0.112, respectively (Table 1). 

DISCUSSION 

The validity of the relation, hypothesized by Neely (1984), between 

the water solubility of an organic chemical and the ratio of the 

acute fish L050 at two different time periods has been tested using 
. 

’ . 

the bootstrap method. fThe results show‘ that the correlation 
-

I between predicted and observed data is statistically significant 

within one standard deviation,, but sometimes it may not be 

significant at the 95%_ confidence limit. However, since the 

observed distribution f is skewed to the right with an average 
-in 

correlation of 0.835 and an upper limit of 0.98, the theory is 

probably correct but for a few chemicals (the lower 951 confidence 

interval is 0.48). For all chemicals the predicted average ratio 

is' 1.018 with the hypothesized 1.0 falling within one standard 

deviation; however, the average intercept is +0.ll2 and the
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probability of the intercept being 0.0 or positive is only about 

121, Therefore the model is probably correct but it might have a 

systematic bias which makes the theoretical ratio somewhat higher 

than the observed ratio. 

The GM functional regression method (Eq. 7) should be “used to 

compute the coefficients of a linear model when measurement errors 

or natural uncertainty is expected in both variables X and Y. The 

theoretical ratios that Neely used as independent variables in the 

linear model were clearly uncertain; the standard linear regression 

method that he used produced a large underestimate of the slope, 

thus' undermining his hypothesis whereas the correct statistical 

procedure showed his hypothesis right, even if the linear model 

might have a positive systematic bias. "

' 

' a 

. i H
. 

The bootstrap is a computer _intensive lstatistical method; the 
- 1 

present analysis was performed on a CDC Cyber 171 computer and it 

took 27 CPU seconds for 1000 replications or bootstrap samples; 

Efron (l98la, 1982) suggests 128 "to 512 replications since the 
. 5,. 

method converges asymptotically. The method is simple enough 

numerically' that it can be programmed on a desk tnicrocomputer. 

The application to modeling problems is intriguing given the fact 

that large scale ecological data sets are notoriously incomplete 

and validation of ecological models can not be easily defended
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given the above mentioned uncertainty in the assumptions, model 

structure and data. The bootstrap is an interesting statistical 

method that could be coupled with system methods to establish the 

uncertainty of a hypothesis and to quantify a model validity in 

probabilistic terms. 
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