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ABSTRACT 

Maximum iikeiihood equations for a muitipiy censored normal sample are 

modified so that expiicit estimates for the mean and standard 

deviation can be obtained. The estimate of the mean of a muitiply 

censored sampie is then obtained by normaiizing the data using the Box 

and Cox transformation. An approximate confidence intervai for the 

mean is aiso obtained and the probabiiity of coverage for the 

iognormal mean is discussed in detail. Simuiation resuits and 

appiications are provided.



RESUME 

Les équations de nnximum de vraisemblance pour un échantillon 

normal 'multicensuré sont modifiées pour obtenir des estimations 

explicites de la moyenne et de l'écart-type. L'estimation de la 

moyenne d'un échantillon multicensuré est alors obtenue en normalisant 

les données 5 l'aide de la transformation de Box et Cox. Un intervalle 

de confiance approché est aussi obtenu pour la moyenne, et le domaine 

de probabilité pour la moyenne lognormale est analysé en détail. Des 

résultats de simulation et des applications sont présentés.



MANAGEMENT PERSPECTIVE 

It frequently happens that a certain portion of the contaminants 

in water quality monitoring data sets have concentrations that cannot 

be measured. ‘It is possible, however, to determine that those 

concentrations fall within certain intervals whose end points, called 

detection limits, are detenmined by analytical methods. This report 

examines the statistical analysis of a general set of data in the 

presence of several detection limits. The report gives an explicit 

formula for the estimation of the mean from a multiply censored sample 

and also provides an approximate confidence interval for the mean. 

Simulation results are also provided and the probability coverage for 

the confidence interval of the lognormal mean is discussed in detail. 

The -report concludes with an application using concentrations 

(nanograms per litre) of Fluoranthene in water samplesl from the 

Niagara River.



PERSPECTIVE DE GESTION 

Il arrive souvent qu'une partie des contaminants dans des 

ensembles de données sur la surveillance de la qualité des eaux ont 

des concentrations impossibles 5 mesurer. Il est toutefois possible 

d'établir que ces concentrations se situent dans des intervalles dont 

les extrémités, appelées limites de détection, sont déterminés par des 

méthodes analytiques. Le présent rapport traite de l'analyse 

statistique d'un ensemble général de données sujettes 5 plusieurs 

limites de detection. Il renferme une formule explicite d'estimation 

de la nwyenne d'un échantillon multicensuré avec un intervalle de 

confiance approché. Des résultats de simulation sont aussi fournis, et 

le domaine de probabilité pour l'intervalle de confiance de la moyenne 

lognormale est analysé en détail. Le rapport conclut par une applica- 

tion portant sur des concentrations (nanogrammes par litre) de 

Fluoranthéne dans des échantillons d'eau de la riviére Niagara.



INTRODUCTION 

In routine water and air quality monitoring of toxic contaminants 

and trace metals, it frequently happens that a certain portion of the 

observations examined, have concentrations that cannot be measured. It 

is only possible to determine that the concentrations for those 

observations fall within certain intervals. The endpoints of these 

intervals are detection limits determined by analytical methods. If 

D1<...<Dk_1<Dk are such detection limits, then a censored 

observation occurs when its value falls below Dk. Approaches 

adopted by environmental scientists for_ estimating the mean and 

standard deviation in the presence of a single censoring limit D1, 

ranges from assigning a value to an observation reported as less than 

D1, to the use of the log regression method (Gilliom and Helsel, 

1986). Assuming the normal or lognormal distribution for the 

observations, El-Shaarawi (1989) and El-Shaarawi and Dolan (1989) 

discussed the use of the method of maximum likelihood for estimating 
the mean and standard deviation when k = 1. In addition, Shumway 
et al. (1989) considered the possibility of using the Box and Cox 

(1964) transfonmation to nonmalize the data. The general problem of 
maximum likelihood estimation of the parameters of a censored normal 

sample has been considered by many authors. Cohen (1950) used the 

maximum likelihood method to estimate the parameters of type I singly 
and doubly censored normal samples. Gupta (1952) found maximum 
likelihood equations to estimate the parameters of type II censored 

normal samples. Cohen (1950) and Gupta (1952) also formulated the
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asymptotic variances and covariances. Harter and Moore (1966) and 

Harter (1970) considered the maximum likelihood for type II censoring 

and performed a simulation study which showed that maximum likelihood 

estimators had mean square errors smaller than the variances of the 

best linear unbiased estimators for n 3 10. Tiku (1967) modified the 

maximum likelihood equations from a type II censored normal sample so 

that an explicit formula for the estimators could be obtained. The 

general results concerning censored nonmal samples have been 

summarized and extensively studied by Schneider (1986). Progressively 

censored samples from normal, exponential, weibull and lognormal 

distributions have also received previous attention from Herd, Robert, 

Cohen and Ringer and Sprinkle, (Cohen, 1976). 

The present paper first examines the estimation of the mean and 

standard deviation from a multiply censored (k>1) normal sample. The 

estimates are obtained by the modified maximum likelihood equations 

and converge to the exact maximum likelihood solutions. The paper 

then studies the estimation of the mean from a multiply censored 

sample by normalizing the data using Athe Box and Cox (1964) 

transformation. An approximate confidence interval for the mean is 

also obtained and the probability of coverage for the lognormal mean 

is discussed in detail. The simulation results are provided and an 

application using the concentrations (nanograms per litre) of 

Fluoranthene in water samples from the Niagara River is presented.
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ESTIMATION OF THE MEAN AND STANDARD DEVIATION 

FROM TYPE I MULTIPLY CENSORED NORMAL SAMPLES 

Let D0 = - -, and consider k detection limits D1,..., Dk. Let 

the random variable N1 (i = 0,1,..., k-1) denote the number of 

observations that fall in the interval (D1, DH1]. Furthermore, 

let the random variables X1,...,Xn represent the n uncensored 

observations (X1 > Dk, i ~= 1,...,n). The observed values of X1 

and N1 are denoted respectively, by xi and n1. Under the 

assumption that X1's are independent and normally distributed with 

mean u and variance 02, the likelihood function is: 

-n k-1 n1 n X1-p 
|- = C0 ° II (Nil )-‘(fl H 11 N-i) , 

' i=O 1+1 . i i=1 0 

where C0 is a constant, n1 = (D1-u)/ob (i=1,...,k), 

¢(x)= _1_ exp (fig), and o(x) = Ix ¢(t)dt. 
J2? —$ 

By the mean value theorem, L can be written as: 

k-1 
_(niZ1 ni) 

n k 1 Q‘ = - l-A ll‘ ll X - 
Le= Co <1 (@(n1)) 

0 
II {¢(—p>(v - D >1‘ H ¢(-ll) .<1> 
i=1 ° i+1 i i=1 °
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where £1 (i=1,..., k-1) is between D1 and Di+1 . Let 

k-1 _ n
4 

N = n + X n1, x = Z xi/n, 
1&0 i=1 

and défi HE 

k—1 
M = (Z n Q + nx)/(N—ng) , 

i=1 1 l 

n 2 k-1 2 
' 

. 

II S2 {Z Xi +_~Zn1 Q1 - (N-flolllz}/(N-no), 
l=1 l=1 

and g(x) = ¢(x)/§(x), where x is a real number. From (1) it follows 

that the maximum likelihood estimates of p and o satisfy the following 

equations: ’ 

u = M - 0 _nn s(n1) . (Z) 
N—flQ

2 
02 = s + (M-p)(M-D1). (3) 

Replacing g(n1) by Tiku's (1967) linear approximation a+Bn1, where 

B = [ 9(tz) - 9(t1)}/(tz-t1). Q = 9(t1)-t1B, 

t1 = §'1{q-J q(1-q)/N}. t2 = °'1{q + J q(1-q)/N], q = no/N. 

(2) becomes 

u = {M(N—"o) - no<w-"oBD1]/{N-no(1+B)}- <4) I
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For small values of A1 = Di+1 - Di (i=1,...,k-1), £1 can be approxi- 

mated by the midpoint xmi = (Q + Di+1)/2. Setting Q = xmi, equa- 

tions (3) and (4) provide approximate expiicit solutions p and o for 

u and o. As the totai number of observations tends to infinity, and 

as A1 (i=1,...,k—1) approaches zero, these estimates approach the 

maximumlikeiihood estimates for p and o. 
I\ A 

The asymptotic variance - covariance matrix of u and o is denoted 

by the matrix [xii xii] and is obtained by noting that: 

a2 1 L 
E ( -5§;- ) = - 

gz { 1 - (1+B)@(n1)} , 

a2 1nL a2 1nL 
E ( *ea§z' > = E < '§2sa' > = 

‘i‘.l'2 
I7 (I-I + °9(-Y1k))@(TIk) + 

{(Bn1 + %)v—u}¢(n1) - (°9(*flk) + A >1 , 

k-1 
where A 

=1E1 xm1(§(ni+1)-0(ni)) , 

and 

82 inL 
E < -53z- > = u c 3 {¢2<1 + flk9(*nk)) - v2} @<hk> + 

04 

{3N2+°2(2flfl1 + aahf -1)}@<h1>-e2<2+:hke<-hk>>-3<B—2uA>1 . 

k-1 
where B 

=i§1 x%i(D(ni+1) e o(n1)).
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I

I 

{(i1,°)= - 2 R(l1,<’1) S. ba} = [(ih°)= R (I130) .>. 
- 3% 1, - I

I

I

I 

it A I

I

I 

Let I be obtained by substituting i and 3 directiy into L and let 

R(u,o)=1nL-inf. Then, by noting that -2R(p,o) is approximateiy x2(2), 

an approximate a% confidence region for p and 0 may be obtained as 

where ba is determined from P(x2(2) 5 ba) = a. 
We now proceed to obtain the conditional bias in the estimators. 

Consider the Tayior expansion:

2 
81nL aim. ,_ a int HA = E-—-1 + (u — I1) [7] . Hp p 8p 

U 
Hp a 

where p_is between u and p. We have 

. 2. 
A a1nL a 1nL 

E(i1|°).- I1 = - E(Tp|°)u/E(ai‘fl|°); - 

A ' 
Hence, the conditional bias for p is 

~ -(<>Q(-nk)+i1)@(nk)+{I1—<I(<1+Bn1)Wm) + A + <1 9(.-nk) 
E""°’ ' " “ 1-(1+B)¢(n1) ' (5)
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Similarly, the conditional bias for 0 is obtained by 

A . 

E(vlu)-v= 

pi-o2(1+qkg(-nk))}@(nk)-[v2+¢2(un1+Bn§-1)]@(n1)+¢2nk9(- nk) 
Elpl-oZ(1+nkg(—nk)l}@(nk)—{3u2+v2(2¢n1+3Bnf ~1)}@(n1)+3(B-2uA) 

+(B—2],1A)] 

ll +0 ( 
2 2+3nk9(-nk)) ' 

For the special case of single censoring (k=1), (5) and (6) become 

' »~ -o{(<1+Bn1+9(-n1_))@(n1)-9(-n1)] 
E‘"'°"" ‘ 1-(1+B)@(n1) ' 

and 

A 
~ vn1[(d+Bn1+9(—n1))@(n1)~9(-n1)] 

E‘°'""° ' n1<2a+asn1>w<n1>-<2+an1g<+n1)i@<-n1)' 

li But 

(Q+3fl1*9('fi1))9(fl1)-9('fl1)=(fl+Bfl1)§(fl1)'9(-n1)(1-9(fl1)) 

_ _V 
' 9(-fl1)(1'@(fl1)) 

= n + n — ------- = n ¢+ n -9 n = - @< 1>{@ e 1 ,(n1, } @< 1>< s 1 < 1)) 0 

Hence, E(;|o)-p50 and E(o|u)-o=0. 

I 
A A 

Thus the estimators p and 0 are nearly unbiased. In this case, the 

consistency of the estimators follows from the fact that V(;) = V11=0 

and V(o) = V22=0.
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2. ESTIMATION UNDER TRANSFORMATIONS 

< when the normality assumption of the X1‘s cannot be justified, 

it is appropriate to find a suitable transformation so that the 

transformed data satisfy the normality assumption. Box and Cox (1964) 

suggested the use of the transformation,

A 
gA(x) = (x - 1)/A A ¢ 0 (7) 

= ln x ‘A = 0 

with A chosen so that the distribution of gA(X1) is normal with mean 

u; and variance 0A2. 

Given detection limits D1,...Dk and observations x1,...,xn, 

(x1>Dk,i=1,...,n), we may obtain the estimates HA and SA by the 

methods of the previous section. The transfonmation parameter A is 

th8fl CHOSEN 35 thfi VHIUE A that MEXTMTZBSZ 

AA A 
h(A,uA,oA) = -n ln 0‘ +

A 
“'1 " 

1 
" 9231), ' 

"A§ I 120 
ni ln (F(D1+1) - F(D1)) + Aiglln (xi) - 5 1§1('--2;--' 

where 

1 y '(gA(x)'PA)2 
F(y) = -3 I 

x"'1i EXP[iT""'_ 1 dX- U 
. /Znoh ° 2oA2
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Let 

~ 
A A “ -(X-u“)2 

Aii= -1-A xi(1+Ax)1/A exp {-5335-}dx, 1 = 0,1,2. (8) 
-

A >*>,h-%

A 
The" Y = E(X1) = A0. The estimate Y of Y may be obtained by 

substituting pi and 0; directly into Y above. Note that using the 

Taylor expansion, Y may be approximated by, 

Y = Y + (uA- uA)v + (vA- vA)v . 

A A v A A ° 

A 

I 1, A 

where Y“ = ;:2(A1 - v3Ao). and
A 

v = ‘—3{Az + mi - 02> A0 - 2u.A1}- ° °x A A A 

Let $11, Q22, and V12 be the asymptotic variances of pi and 3;, and 

A A A 
the covariance of pi and 0;, respectively. Then, Y is approximately 

normal with mean Y and variance V5 = Y5 $11 + 2Yu veil; + Y§ Y2; 

where VZY may be approximated by VZY obtained by substituting fig and 

gi directly into v5. 

An approximate (1-a)% confidence interval for Y may then be ob- 

tained by (Y - ca vv, Y + cavv), where Cais determined from 0(-ca)=%
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3. THE LOGNORMAL CASE 

The special case of A = 0 in transformation (7) leads to the 

assumption that X1,...,Xn have lognormal distributions. Since the 

lognormal distribution is frequently used as a model for the 

environmental data, and since the numerical integrations (8) can be 

avoided for this case, this section is devoted to the lognormal case.
A 

Note that the estimation results for A close to zero can be approxim- 

ated by the methods of this section.
4 

Let the mean and variance of go (X1) be u. and 0.2, respectively. 

Then the mean v. of X1 is given by, 

Y. = exp (u. + 0,2/2). 

In order to estimate the mean of a multiply censored lognormal sample, 
A A 

one may obtain the estimates u. and 0. of the mean and the standard 

deviation of the corresponding normal sample and then substitute these 

estimates directly into the expression for v. to obtain the estimator
A 
v.. This estimator, however, is biased as the following argument 

shows: 

Let 0,1, \'/22, and T712 be the asymptotic variances of and 3, and the 

covariance of p, and 0., respectively. Then, since au. + bog is 

approximately normal with mean au. + bu? and variance a2T11 + 4abo.§12 

+ 4b2o@§g2, 

E(exp(ap,+ bo§)) = exp[(au.+ bog) + % (a2V11 + 4abo,V12 + 4b2o.2V22)] 

= exp(ap,+bo?) h(a,b).
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In particular, 

. A 
HG» = uexpnl + §g>> = v.h<1.%> = v.1 -

A 
As a result the estimator Y, can be modified to yield approximately 

an unbiased estimator for Y. as follows: 

~ A av 

Yo = Yo/To. 

nu A 
where t is obtained by replacing the parameters u. and 0. in t by u,

A 
and o.respectively. 

An approximate confidence interval for Y. may be obtained based 

f\7l—l O eh) on the fact that u. + %S? is approximately normal with mean u. +» 

and variance Vv.2= 911 + 20.§12 + @2922. By a similar argument used 

in Land (1972) for complete samples, an approximate (1-a)% confidence 

interval for v. is directly obtained by ' 

(Y. exp (-ca VYQ). Y. exp (¢a VY°)). 

where QY is the value of VY evaluated at ul and 5:, and ca is as 

defined earlier.
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4. SIMULATION RESULTS AND APPLICATIONS 

Simulation experiments were conducted to evaluate the performance 

of the methods of this paper and their sensitivity to small-sample 

effects. For a given sample size N and two detection limits D1 and 

D3, samples from the standard normal distribution and from- the 

lognormal distribution with mean 7.389 and standard deviation 54.096 

were generated-using the International Mathematical and Statistical 

Libraries (IMSL, 1987). The values of the detection limits reflect 

both low and high levels of censoring. The results summarized in 

Tables 1a and 1b are the averages over 1000 repetitions. The 

estimates of the mean and the ‘standard deviation for the normal 

samples along with their biases and asymptotic variance-covariance are 

listed in Table 1a. These estimates, as is expected, appear to be 

uncorrelated for low levels of censoring. Table 1a shows that the 

elements of the asymptotic variance-covariance matrix decline with the 

increase in sample sizes. Table 2 gives the estimates of the 

lognormal means along with their 95% confidence interval as well as 

the probabilities of coverage for both low and high levels of 

censoring. It can be seen that the width of the confidence intervals 

decreases as the number of observations increases. Figure 1 also 

presents the probabilities of coverage for both low and high levels of 

censoring using both direct and Taylor expansion methods. This figure 

also reflects the dependency of both methods on the standard 

deviations of the corresponding normal distributions. The results 

indicate that both methods provide good probabilities of coverage for
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small values of the standard deviations. For moderate and large 

values of the standard deviations, however, the Taylor' expansion 

method is less satisfactory and the direct method performs noticeably 

better. The results for both methods become more satisfactory as the 

number of observations increases, and confirm the earlier results 

obtained by Land (1972) for complete samples. The methods of this 

paper were also applied to the concentrations (nanograms per litre) of 

Fluoranthene in water samples from the Niagara River collected by 

Environment Canada at the Niagara-on-the-Lake station (Data 

Interpretation Group, 1989). The values for the number of 

observations and detection limits as well as the estimation results 

are presented in Table 2.
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TABLE 16 

N I1 K 3 v<§> cov<§.'3> v<3> E<§|<=>-u 2(3):»-<1 (D1. D3) 

30 27 

120 111 

240 223 

120 55 

240 110 

-.004 .98 .033 -.001 .018 .0006 

60 55 —.01 .994 .017 -.0004 .009 -.0004 

.001 .997 .008 -.0002 .004 .0009 

.0003 .999 .004 -.00008 .002 .0004 

30 13 -.022 .989 .057 -.025 .046 -.005 

60 27 -.016 .996 .027 -.011 .022 -.003 

-.003 .999 .013 -.005 .011 -.002 

-.002 1.0003 .006 -.002 .005 -.001 

-.007 

--.003 

-.002 

-.001 

.00001 

-.0003 

-.0001 

-.0001 

(0 

(0

o 

(0., . 

(0., . 

(-1.6,-1 5) 

(-1.6,-1.5) 

(-1.6,-1.5) I 
1.6, -1 

1) 

1) 

1) 

1) 

Tabie 1a. Simufation resuits for the standard normal distribution.



I N n u. 
1 v. Y. Y. 
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TABLE lb 

A A A 
“PP

C 
roximate 95% 
onfidenc 

interval fo
B 
F Y, 

Probability 
of 

Coverage 
(D10 D2) 

30 28 — 

60 56 - 

120 112 

240 225 

30 14 

60 28 

120 57 

115 

.008 

.020 

.002 

.0007 

-.044 

-.033 

-.006 

-.004 

1.960 

1.989 8 

1.994 7 

1.998 7 

1.978 11 

1.992 8. 

1.998 7. 

2.0007 7. 

8.746 

.016 

788 

.612 

523 

549 

996 

719 

6.631 

7.109 

7.364 

7.409 

6.021 

7.021 

7.369 

7.436 

(2. 

(3. 

(4. 

(4. 

(1. 

(2. 

(3. 

(4. 

Z11, 39. 

135, 21. 

070, 15. 

837,11.9 

804, 444 

737, 30. 

723, 17. 

554, 13. 

939) 

012) 

ooo) 

99) 

.237 

722) 

s61) 

161)

) 

91.7 

93.6 

95.2 

93.6 

89.2 

92.5 

94.9 

93.8 

(.o4o7s, .o4sos) 

(.o4o7s, .o4sos) 

(.o4o7s, .o4sos) 

(.o4o7s, .o4sos) 

(1., 1.10517) 

(1., 1.10517) 

(1., 1.10517) 

(1., 1.10517) 

Table lb. Simulation results for the lognormal distribution with mean 7.389 and standard deviation 
54.096. The mean and the standard deviation for the corresponding normal distribution 
are 0 and 2 respectively.



TABLE 2 

Data 
’ 

N n * * “ “ Confidence 
A IL. 0/. Y 

A A 

F1uoranthene 44 27 .16 -.660 .662 .618 (.480,.755) (.35,.4) 

Tab1e 2. The resu1ts for the Fluoranthene data. 

Il1t6FVi'| (D1, D2) 
for Y
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Figre 1. Probability of coverage of the 95% confidence interval for the iogwcrmai mean . 

(B) low—ievei censoring - direct method (b) Iow—ievei censoring — Taylor expansion method 
(c) high-ievei censoring — direct method (d) high-ievei censoring - Taylor expansion method


