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ABSTRACT
‘ 

Negative binomial and mixed Poisson regression analyses are 

presented for modelling the association between a quantal response, 

which is assumed to follow either a negative binomial distribution 

with a given dispersion parameter, or its limited form (i.e. the 

Poisson distribution), and a set of explanatory variables. The 

procedure used for estimating the unknown parameters of the model and 

performing- various statistical tests is given. The method is 

illustrated by an example about the determination of thresholds in 

quantal toxicity experiments.
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Résuné 

Cet ouvrage présente des analyses binomiales negatives et des 

analyses mixtes de régression de Poisson pour la modélisation de 

l'association entre une réponse binaire, qui, croit-on, suit une 

distribution binomiale négative avec un paramétre de dispersion donné, 

ou sa forme limitée (c.-a~d. la distribution de 'Poisson), et un 

ensemble de variables explicatives. On y présente le procédé utilisé 

pour évaluer les paramétres inconnus du modéle et effectuer divers 

essais statistiques. La méthode est illustrée 5 l'aide dlun exemple 

portant sur l'établissement des seuils dans le cadre d'expériences de 

toxicité binaire. '
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MANAGEMENT PERSPECTIVE 

The problem of developing an approach for modelling the response 
of an organism to chronic toxicity is discussed in this paper and 

illustrated by studying the toxic effect of NaBr on ‘the reproduction 

process of a population of Daghnia Magna. A general model is given 
which includes both the negative binomial and poi.sson distributions as 
special cases depending on the values of a single parameter. The 
steps involved in estimating the parameters of the model and testing 
the goodness of fit are presented. In particular the iterative 
solution of the estimating equations are described in detail along 
with the problem of setting confidence limits for model Parameters. 
This approach is very useful in the analysis of quantal bioassays



PERSPECTIVE - 
H 
GESTION 

Le probiéme de 1a mise au point d'une méthode de modélisation de 

la réaction dd‘-un organisme 5 une toxicité chronique est traité dans 

Cet ouvrage et illustré par 1'étude de 1'effet toxique du NaBr sur 1e 

processus de reproduction d'une pop'u"1a"tion de D_a_o,hr_l mggg. On y 
présente un modéle général qui comprend 5 1a fois les distributions 

binomiales négatives et 1a distribution de Poisson étant donné que 

eertains cas spéciaux dépendent des vaieurs d'u'n seuls paramétre. On _y 

décrit les étapes 5 suivre pour évaluer les paramétres du modéie et 

viérifier la vaiidité de 1'ajustement. On yfait en partic-ulier la 

description détaiilée de la soiution itérative des équations 

estimatives, et on y présente le probléme de Pétablissement des 

Hmites de confiance des pararnétres du modéie. Cette approche est 

trés utile dans '1'ana1yse des données binaires desbio-essais.
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INTRODUCTION 

The negative binomial and the Poisson distributions are 

frequently used to model count data in many areas of biostatistics 

(Anscombe 1949; Bliss and Fisher 1953; El-Shaarawi Qt Q1. 1981; Maul 

Q1_ Q1. 1985). Regression analysis of count data following such 

distributions can be performed after transfonming the crude data in 

order to approximately satisfy the requirements for the application of 

the standard regression methods. Several transformations which are 

based on the variance-mean relationship, have thus been suggested to 

achieve normality and homogeneity of the variances (Anscombe 1948). 

However, the previous approach for performing regression analysis is 

not always desirable; (El-Shaarawi Q1_ Q1. 1987) since there ism no 

evidence that a single transformation is sufficient to achieve all of 

the conditions needed for using regression . Therefore, it is 

preferable to perform regression analysis directly on the basis of the 
exact 'assumed probability distribution of the crude data. 

Consequently, Poisson and negative binomial regression models have 

been used by various authors (El-Shaarawi Q1 Q1. 1987; Frome Q1 Q1. 
1973; Frome 1983; Engel 1984; Lawless 1987) for the analysis of count 
data. i 

The objectives of the paper are two—fold. The first is to give a 

clear and easily applicable description of the negative binomial and 

mixed Poisson regression analyses. Special attention is given to the 

discrimination between both models with emphasis on the fact that the
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latter is a special case of the former. Moreover, the maximum likeli- 

hood procedure is developed for, estimating the unknown regression 

parameters, using a nonlinear (i.e. the log-linear) regression model. 

The second objective is to suggest the use of negative binomial and 

mixed Poisson regression models for analyzing quantal bioassays data, 

namely for detenmining a threshold dose level in chronic toxicity 

studies. The example used to illustrate the method is concerned with 

studying the toxic effect of NaBr on the reproduction process of a 

population of Daphnia magna. In particular, the aim of the assay is 

to estimate the dose level capable of inducing a prespecified relative 

inhibition on the reproduction of Daphnia magna when the animals are 

exposed to increasing concentrations of the substance considered under 

controlled experimental conditions. i 

STATISTICAL METHODS 

Negative Binomial and Mixed Poisson Regression Models 

Let R1,R2,...,Rn be a setl of n independent~ random variables 

where R1 follows a negative binomial distribution with mean mi and 

dispersion parameter k, denoted by Ri '-' NB(m1, k). 

we have ’ 

I‘ 

I 
(k +_r - 1)! kk m 1 

1 1
) Pw1=W)=‘ A k+r (R 

q1u4n(k+%) * 
for i = 1,2,...,n.
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As k approaches ‘infinity, the negative binomial converges in 

distribution to the Poisson which is: 

-"i
1 P (R1 = F1) = e - F;T- (lb) 

Consider the model, 

n mi = B1 xii + B2 x12 + ... +‘Bp xip (2) 

where xi1,...,x1p are the values of p explanatory variables 

x1,...,xp which are associated with the random variable R1 and 

B1,...,Bp are p unknown parameters. _\ 

Estimation Of the Parameters Of the Model 

If the response variable is a negative binomial then the likeli- 
hood function for B1, B2,...,Bp is: 

‘

n 
I-(B1s'='sBpsk) = = r1) 

H 
(k+r1-1)! kk ;1(51"11*"'*Bp"1p) 

" 81X +...+B X 
_ 

(k + e i1 p ip)
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The maximum likelihood estimates B1,...,Bp, k of §1;...,Bp and k 

satisfy the equations. 
4

I 

1>_31 
(k + =-1) =i§1r1><,J <1 = 1,...,p> <4.-=1)

r n ,1 1 n mi n r1- mi 

It should be noted that this system reduces to 

_ =1 ‘I: 

when the response variable R1 ~ P (mi) (i = 1,..., 

Equations (4a and 5) or (Ab) are nonlinear and their solution can 

' 

to maximize the likelihood function with respect to the 6j's 

(J = 1,...,p) for selected values of k (Lawless 1987). 

This approach is similar to that suggested by Breslow (1984) 

Whéffilfl IIlOlIlEflt estimation 15 USEdV f0!‘ K 1flSt8ad Of [fldXlI|'lUm 

a likelihood. Lawless (1987) studied both _the efficiency and the 
gfml 

robustness of moment estimation for k relative to maximum likelihood; 

the former being more robust but less efficient than the latter when 

model (la) is correct. 

n Xm n u 

22?—=Z1n<1+—>+Z—— <5) 
|] i1t‘1""1"t 11 " 11"*'"1 

n n
_ 

if xumi = X1 rixij (j = 1,...,p) (4b) 

n). 

be obtained by iteration." The simplest way to obtain (§1,...,§p,k) is 1

1
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Equations (4a) or (4b) can be solved by using the Newton-Raphson 

method which requires the evaluation of the observed information 

matrix I. The p x p portion of I corresponding to B1...,Bp has 

i 

" *(k*'i)*i1*1sm1 
(Ga) ils = 151 (k + mi): 

respectively, as the element in the ltg (r=1,2,...,p) row and sth 

(s=1,2,...,p) column when the negative binomial is assumed. This 

reduces to ~ 

n , 

‘is %g*§1 *11*1sm1 (Sb) 

when model (lb) is used. 

Inferences about the 51's (i=1,2,..¢.D) can be made by noting 

that Q = (B1L;..,Bp) has approximately for large n, 6 multivariate 

normal distribution with mean Q and variance-covariance matrix 1'1. 

In some applications, confidence limits are required for the marginal 
mean m, of the response variable, given a set of values of the 
explanatory variables x1,...,xp. It is easy to show that the 
confidence limits for m are:



1| 
_

'

U 
X e 1-<1/2 ~/var [ln m], 5) 

where U1_a/2 is an appropriate normal quantile and - 

var[ln in = § x§ 1-1(j,_1) +‘2 1 xixj I'1(i,_i) 
J 1 i<j 

where I'1(i,J) is the i,j element of the inverse of the matrix I. 

A special case of interest arises when model (2) is expressed as 

in m = f(x) as a polynomial of a single variable x, and it is required 
to estimate the value xq which-may induce a prespecified relative 

xq = ?-1 (in ans) <1)
V 

variation (say a decrease by a rate“ 1-q) in‘ the mean of the response 

variable, ms of x. 
- An estimate of xq is easily obtained as: 

Further, confidence limits for xq at level 1-<1 are given as: 

I ¥-1 (ln q $5 1 u(1_d/2) J Var [ln msj) (a)
r 

A ._ 

where ms is the estimate of the marginal mean given xs. 

Significance Test for a_P_oisson As_sumption 

' when presenting the iterative procedure, emphasis was laid on the 

necesisity to have a» test which will enable us to discriminate between
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model (Ia) and model (lb). One convenient method for doing this is to 

use the standardized dispersion statistic developed by Dean ‘and 

Lawless (1987), which is given as: 

fl 
" A _ 

2 rm - m >2 - R1 
1-1 1 1 

S = 
-I 

A ' 

<2 2 mi)‘ 
i=1 

Under ‘the hypothesis that the R1's are independent Poisson random 
variables (i.e. R1 ~. P(m1)). S has 'an asymptotic standard normal 

distribution. A departure from a Poisson regression model (the null 

hypothesis) can be shown by large positive values of S and will, 

subsequently. lead to a negative binomial assumption. In addition to 

this test, other possible ways for testing the Poisson hypothesis are 
given by Lawless (1987). However, these tests, (e.g. the likelihood 
ratio statistic for testing k = +-) (Chernoff 1954), appear more like 

Q posteriori ways of testing the adequacy of the Poisson model since 
» A 

they require the maximum likelihood estimate, k, for k. 

EXAMPLE AND DISCUSSION 

_ 

The negative binomial regression method is illustrated hereafter 

by a numerical example referring to a chronic aquatic toxicity test.

,4



The aim of the study is to determine the concentration of NaBr which 

will inhibit the reproductive capacity of a population of Ephrl 
magna by 25 percent. The response variable R1 is the number of 

young. animals produced per adult over a period of’ 23 days, and the 

explanatory variable is the dose level of NaBr to which the organisms 

were exposed. Ten independent observations were made at each of five 

(i.e. 0, 3.0, 7.5, 19.0, and 47.0 mg/L) concentrations of" NaBr. 

Figure 2 shows the data for the control and the test solutions. 
’ A log-linear regression model, 

ln mi = so + pl xi + pi; x§ (10) 

was employed to describe the dependence of ln.m1, the mean number of 

young on the concentration x of NaBr. Model (_10) has been fitted to 
the data under each ofthe following three assumptions: 

b) R1; P("Ii) . 

C) Ric " NB (mi. K) 

whereboth of the parameters om and k are assumed to be unknown. 

The situations corresponding to a), b) and c) will be referred to 

as: standard log‘-linear,“ Poisson and negative binomial regression 

a) ln Ri ~ N (ln mi, om) 

models, respectively. .
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Table 1 presents the maximum likelihood estimates for the regres- 

sion parameters as given in model (10), and their standard errors 

which have been obtained under the three distributional assumptions 

a), b) and c). Estimates and confidence limits for the concentration 

corresponding to a 25% reduction in reproductivity are also given in 

the table. The three assumptions resulted in similar estimates for 

the regression parameters and the xg_75 threshold. 0n the other 

hand, substantial discrepancies appear between the standard errors of 

the estimates for ‘the regression parameters: _the lowest (resp. 

highest) values corresponding to the Poisson, and the highest 

corresponding to the standard log-linear model. c 

Furthermore, Bartlett's test was used for testing the assumption 
of hom098neity of variances among the‘ concentration levels. The 
observed variances among the five concentration levels were 
statistically significantly different (PV< 0.01). This indicates that 
analysis a) is inappropriate in making inferences about the parameters 
of the model. A similar outcome was obtained for analysis b) since 

observed value for S, as given by formula (9), was 4.79 (P < 

0.01), which also provides strong evidence against the Poisson 
assumption. In the opposite case, the likelihood ratio test, which 
was performed to test the equality of k's yielded a non-significant 
value (P > 0.10). ' 

Consequently, inferences about the parameters of the model or the 

mean can easily be perfonmed under the less stringent assumption of
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analysis c). The estimated variance-covariance matrix of Bo, B1, B3 

is, 
. m 

76888.2 10-8 -8267.91 -=a_ 146.709 - 10-3 
1771.25 1-8 -35.7584 10-8 ~ 

I 0.792986 10-8 
l—ll—l 

QC) 

which could be usedfor making inferences about the parameters._- For- 
‘

l 

instance, "testing the hypothesis H°:B1 > 0 is of special interest 

with B1 representing a non-monotonic concentration trend in the 

concentratio_n-response relationship. Ifn certain cases, the test 

substance may slightly stimulate reproduction at very low concentra- 

tions before causing toxicity at "higher levels (Capizzi e_t 51., 

1985). In the assay in question, such a phenomenon could not be 

confidence interval at level 0.95 for xo_75 are also indicated in 

discarded (P > 0.01). Further, ln m is plotted in‘ Figure 1 as a func 
. A, 

tion of the concentration "x. ‘ The estimated threshold, xo 75, which 

was in fact the major objective of the example examined, and a 

Figure 1.
’

w
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Table 1. Estimates of lthe regression parameters and' the 75% threshold dose 
level in the concentration-response model. 1 

Approach ' 

A . 

Dispersion 01" = 0.1503* k = - - k = 130.05 
parameter 

Regression parameters 
Estimates (standard errors) 

Bo 
B1 
F2 

Xo.75 17.43 17.53 17.50 Confidence 
interval at (14.30; 20.21) (16.08; 18.90)‘ (15.21; 19.61) level 0.95 ~ 

5.249706 (0.037489) 5.255168 (0.017816) 5.255337 (0.027729) 
-0.007982 (0.005438) -0.008050 (0.002852) -0.008106 (0.004209) -0.000489 (0.000109) -0.000477 (0.000064) -0.000476 (0.000089) 

*The value corresponds to a coefficient of variation of 15%.



FIGURES. | 

Figure 1. Observed (points) and fitted (line) ln mean number of young U 
produced. Est'lm_ated value, "xo 75, and confidence -interval U 
at level 0.95 for xQ_75.
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