- aay Gy I G EF A N B - @ EE .

A COMPUTER PROGRAM TO DISPLAY ANIMATIONS
WITHIN THE COMPUTER GRAPHICS HALO ENVIRONMENT

Efraim Halfon and David De Jong
NWRI Contribution No. 89-20
Lakes Research Branch
National Water Research Institute

Canada Centre for Inland Waters

Burlington, Ontario
Canada L7R 4A6

May 1989

MANAGEMENT PERSPECTIVE

This report describes a numerically efficient program to display
computer graphics animations on IBM compatible microcomputers. This report is
distributed with a floppy disk containing the appropriate software with a

demanstration of the movement of a toxic contaminant plume in Lake St. Clair.

. ~

PERSPECTIVE-GESTION

Le présent rappopt décrit un programme de numérisation
efficace qui affiche des images graphiques animées sur un
microordinateur compatible IBM. Le rapport est fourni avec
une disquette renfermant le logiciel approprié et une
démonstration du mouvement d’un panache de contaminant

toxique dans le lac St. Clair.

ABSTRACT
This subroutine is designed to bhe used in any case where the user is
working with a digitized image and is modifying the image, but not according

to any kind of recognizable pattern. The subroutine was originally designed

to be used with an image block which represents the concentrations af

chemicals throughout a large body of water,

In this paper we explain how HALO stores a graphic screen and therefore
how any screen can be created from any matrix, One additioﬁal gption is that
a zoom factor is included so that any part of the matrix can be displayed

enlarged.

RESUME

Ce sous-programme peut étre utilisé lorsque
1’utilisateur trévaille avec une image numérisée et qufil
veut modifier 1’image selon un schéma non reconnaissable. Ce
sous-programme.deﬁait a 1’origine é&tre utilisé avec une
image représentant les concentrations de produits chimiques
dans une grande étendue d’eau.

Dans cet article, nous expliquons comment le programme
HALO stocke une image graphique et comment on peut créer une
image a partir de n'importe laquelle matrice. On peut
choisir un zoom pour‘grossir'n’importe laquelle partie de la

matrice.

INTRODUCTION

Animation is a wuseful tool to display the dynamical behaviour of
computer simulations, - Animation 1is relatively easy to program on
microcomputers given appropriate software. One software program quite suited
to this purpose is HALO (1986). Nevertheless, even in its sophistication,
HALO lacks a subroutine, crucial fqr the successful display af compufer
simulations through animatian, This paper presents an analysis» of the
procedure HALD employs to store screen images in memory and it shows the
development and application of the missing routine which we call CONVRT. This
routine transforms the numbers produced by a mathematical model to colour

display on the graphics screen within the HALD environment.

THE HALO LIERARY

The HALD library is a collection of high serformance subroutines which
allow a programmer to implement sophisticated computer gensrated graphics.
The library consists of over 170 graphic functions written in assembler and
supplied to the user in object code form, ready to be linked with a high level
language. The HALOD library is a very useful tool since the IBM personal
camputers, modeis XT and AT, are not very well adasted to display animated
computer graphics. Furthermore, animation has two important requirements,
speed of computation and imége resolutian. The greater the resolution
required, the higher the amount of computation needed to draw an image.

HALO can be used with a variety of prograsmming languages, FORTRAN,
BASIC, C, etc. Although the routines offered are fairly fast (being written

mastly in assembly language), if the generation of an image reguires many

calculations, the computer animations might execute slowly. A solution is to
calculate the entire image first, store it in memory and then display it on

the graphics screen all at once.

GRAPHICS BOARDS

IBM microcomputers rely on graphic boards to create a graphic screen.
Every graphic board displays only a finite set of colours, This finite set of
colours is referred to as a “palette.” Snme boards tontain multiple palettes
and have predefined sets of colours that cannot be changed. The IBM Color
Braphic Adapter, CBA for short, has twe palettes, each with a preset group of
four celors. More advanced boards, such as the E€GA and VGA allow the display
of 16 out af 44 colours and 256 colours, res;ectively. |

In éhis paper we describe a subroutine that is applicable to CGA boards
but easily expaﬁdable to EGA and VGA hboards, once the oprinciples are
understocd. The IBM CGA has two palettes, palette O has the four colors,
black (with index or number value 0), green (with index or number value 1),
red (with index 2) and brﬁwn (with index 3), Palette !, which will be used in
the following examples, has'black {index Q), cyanide or light blue (index 1),
magenta or purple (index 2) and white {(index 3).

On a CGA screen each pixel can have one of four colors, In the decimal
system the indices vary between 0 and 3, In the binary system, used by
computers, the four colors can he represented by any one of two bits
combinations,‘ for example zera 0,91 ig black, ane (0,11 is light blue, two

(1,01 is magenta and three [1,1] is white.

PRINCIPLES OF COMPUTER ANIMATION

Animation requires a fast refreshment of the computer screen, to show
the changes that take place in time, For example the display of the movement
6f a contaminant plume in a lake implies several steps:

a) Numerical sofutiqn-af the mathematical model.

b) Storage of the simulation results in a matrix, MATR. Each element of
MATR contains the concentrations of a contaminant at a grid point, spaced, for
exémp}e, two kilometres apart.

) Classification of the matrix values intoc ranges. This step inpliés
the convefsion of the raw simulation data in matrix‘ MATR to data in
classified form in matrix INP azcording to the indices of colours. The matrix
INP 15 a two-dimensional array which represents an image by storing the colou;
of each pixel accaording to an X-Y coordinate system in which X-positive is to
the right and Y-positive is dawn, Since only a fived number of colours aré
allowable on the screen (in case of a CGEA board only four colors can displayed
at the same time), each colour must repreéent a range of concentrations, Far
examplé {Table 1) if a simulation shows that a contaminant has concentratiaons

of less than 3 ng/L in water, then the screen colour is black (identified by

- the number 0), If concentrations are between S and 10 ng/L the colour is

white (identified by theinumber 3y i céncentraticns are tetween 19 and 59
ng/L' the «colour is light blue (identified by the numbar)}, and if
concentrations are higher than §0 ng/L the coiour is magenta f{identified by
the number 2). Each element of the array INP now contains values between zero

and three,

d) The contents of the matrix INP are transforded into a vector IMB that
tcan be understood by HALO subroutines, specifically subroutine MOVETO, to
display the col&ur image to the screen.

e) Call to subroutine MOVETO to display colour pixels on the screen.

) Steps a-e must be repeated for each time step so that the animation
can take place. At each time step a new matrix INP is created, In this
example the contaminant plume moves acrossvthe screen.

It is clear that many computations must take place at esach time step.
This paper fdcuses on the step (d). The HALU manual pravides no clues on the
structure of the array IMG and the user assistance office provided no help.
Since other HALO users might be interested in showing computer animatiaons,

procedure (d) is explained here,

THE MISSING SUBROUTINE: CONVRT

HALQ oprovides a number of commands for moving portigns of the screen as
well as storing these images in memory of in an array. The staring of these
images 1s done efficiently by using the minimum number of bits necessary to
represent the number of colours available at any one time (i.e. four célours
are represented by two bits)., Even if HALO tontains many graphics subroutines
useful to the graphics programmer, the subroutine CONVRT identified in (d)
above 135 missing. Among its 170 subroutine HALO offers two routines, MOVEFROM
and MOVETO, that are closely related to the‘problem at hand. FRoutine MOVEFROM
copies a portion of the screen to a vector IMG. The assumption is that the
graphic screen was created by any aof the other 168 routines. HALO develapers

therefore incorrectly assumed that the contents of the vector ING are of no

interest to the user. This information is not provided in the HALO manual and
was found by extensive investigation of computer images,

Animation requires a subroutine that shows in colour on the computer

screen a digitized picture stored in computer memory as a matrix, or as a two-

dimensional array. Thié two-dimensional array, INP, stores the colour of each
pixel of the digitized image. Routine MOVETO restores a partion of the screen
from the array IMG. By an appropriate use of subroutine MOVEFROM and MOVETO,
a HALO user can move portions of the screen to a different location or copy
parts of the screen. With these routines a user can not modify the contents
of the array IMG as required in an animation procedure, To modify the array

IMG we must first understand the meaning of =2ach element of IMG.

STRUCTURE OF THE ARRAY IMG IN ROUTINES MOVEFROM, MOVETO AND CONVRT

The simplest representation of a digitized image i5 a two dimensional
array wﬁere each arvay element represents a pixel according to its colaur.
Since the IBM XT and AT are 16 bits machines, HALO compacts 2ight pixels inte
a two-byte vector as is explained in more detail later. Unfortunately, the
value of the two-bytes vector, which in té~bits machines is a number bhHetween
-43%35 and 65335, does not have a cne to one carre%pondence with the two-bytszs
vector of pixels on the screen. Thus, one of the purtoses of this work is tao
investigate haow HALQO stores all the pixels of a opicture in memory {vectar
IMB), and therefore how we can use this informaticn to display animation on an
IBM FC computer screen,

A careful analysis of computer énd screen memory produced the following

structure for the vector IMG, The fifst two bytes of IMG contain the integer

i

width of the image in pixels or the number of columns of the array INP, The
second two bytes in IMG contain the integer height of the image in pixels, or
the number of rows in INP. The fifth and sixth bytes are always zero. The
seventh and eight bytes contain the first eight pixgls of the image to be
displayed, left to right, starting at the top of the image., This means that
the bytes following the first six contain the pixels of the picture in a
packed form using units aof two-bytes, or 14 nits.

The next problem is the understanding of the way HALO stores a two byte
integer and its relation to the image on the screen, A careful investigation
showed a complex pattern that can only be explained with an example: Assume
that on the screen we want to show eight haorizontally contiguous pixels of the
celours black (¢,0), blue (0,1), magenta (i,O), white (1,1), white (1,1),
magentafi,0), blue (0,1) and black (0,0), The two-bytes vector on the screen
is therefore |

high byte low byte
foo, 01, t0, 1 ¢t ¢ 1, 10,01, 005 (1}
To display this series of eight pixels HALO uses a number between -65535 and
83535, In HALDS memory the high and low bytes are switched, thus the vector

(1) now becomes

former low byte former high byte
11, 1 0,01t,00 ¢ 00,01, 10,117, (2)
This 16 bits vector is converfed to a decimal number. In this particular
example the first digit is a {, thus the decimal number is negative, In
microcomputer arithmetic a negative number is its 2's complement, The

complement of (2) is

{00, 01, t o, t,{ ¢+ ¢, 10, 01,001, {3)
The numerical value of the integer represenfed in this byte (3) is
- (Q*32768 + 0%16384 + 0%#8192 + 4094 + 2048 + %1024 + 512 + 256 + 128 + 64 +
J2 + 0x16 + 0%¥8 + 4 + 0%2 + 0%1) = -7140,
This integer 1is now stored inta an element cf IMG, Each element of IMG
describes a series of eight pixels on the screen fronm 1é¥t to right and then
down the rows.

One further complication arises if the image is not an integral nultiple
number of four. pixels wide. In this case the image nust be padded with blank
pixels (zefros) at the end of each row. These extra zeros shall he referred o
as the "fill column.,” A two-byte intéger can be split across raws but a
single byte may‘ not be split. When the Emage is finally put on the scresen
these extra zeros of the "fill column" do not affect the shape of the image
since the first element, IMG(!1), of the vactor specifies the real width of the

image.

FEATURES OF THE SUBROUTINE CONVRT

Jur subroutine CDNVRT coemputes the numerical value aof each element of
the vector IMG given a matrix INP, whose contents are explainedbabove. The
subroutine also takes into account the position of the fill column so that the
display on the screen agrees exactly with the contaents of the matrix INP.

One last problem arises for a faithful representation of the matrix of
the screen, the problem of scale. A C8A screen in four colours has 320 pixels
harizontally and 200 vertically. EGA and VBA screens have even a higher

resoglutian, Each pixel is therefore very small and even a large INP array,

far example 92 columnsby 20 rows would occupy a small portion of thé screen,
the rest being lett black. The solution is to have a zoom factor, so that for
example a 92 % 20 matrix can be displayed as a 184 x 40 picture (zcom factor
of 2) or as a 276 x 60 picture {(zoom factor of 3). In this case a zoom facter
of four would be impossible since it would produce a séreen picture of 368 x

B0 pixels, larger than the CGA screen of 320 x 200,

DISCUSSION

Animation has two important rgquirements, speed of computatiaon and image
feésalution. In this paper we focused on improving the speed of computation in
building an image to-displayed on a CSA screen. Bivén the assupptiaon that a
mathematical model is efficient in praduciné the matrix. INP in real time, or
that the matrix INP is read in +from a hard disk at each time step, the
limiting factor become; the conversion of the image computed from the
simulation to a format that can be shown on the screen, Furthermore, the
larger the image, the highér the amount of computation needed to draw an

image. A computer user is usually willing to wait for one tg three seconds

f+ar a picture to bhe updated on the screen before becoming restless. The

subroutine CONVRT - is optimized for =speed and even with the zooming factor
taken into consideration, speed is maintained. Alsac, programmers designed the
HALD routine MOQVETO, written in assembly language, for speed. The graphics
screen is therefore refreshed reguiarly and promptly and smooth animation of
computer simulations is possible.

The software presented with this paper shows a conputer simulation of

the flow of toxic contaminants in Lake St. Clair following a hypothetical

spill in the 8t. Clair River. The size of the array INP ig 23 x 23

zoomed with a factaor af § to 115 x 115,

pixels,

REFERENCES

HALO, 1986, Graphics Kernel and Device Drivers.

Descripgtion Manual., Media Cyhernetics Inc., 8484 feorgia

§ilver Spring, MD 20910, U.S.A.

Version 2.26a.

Functional -

Avenue, % 200,

I TE B G AN Gn Enr G G B wm = G oam aw o

Table {: Relation among concentrations, contents of the matrix

representation of each pixel in the matrix IMG and screen colours.

Contaminant

Cdncentratinn' INP pirel screen colour
[ng/L13 valde value
(decimal) {binary)
{3 ! 0 ! {0,017 ! black
{ { i
3 -~ 10 ! 3 { {1,113 B white
i [} I
11 - 50 i { ! {0,113 ! light blue
] i i
> 50 P 2 ! {ty01y magenta
i3

INP,

T (W}
O 0
0O 0

(¥}
)
0

[y (Y)
. O'l!;-

H
O

H
O

XY LA WAL WY S W B W W |
£ G P

Y RY]

a.
0

S

.'ﬁijE;“‘J .“,.,

s
9]

o
0

g ;"Qf"‘f .

lllltttttttl!!ltl!!tttt!itllltttltltt‘l!ttt!t!ﬁtt!t!tt!tiﬁ!ﬂﬂl!lltttttt

SUBROUTINE CONVRT

PURPOSE

This subroutine creates a vector, IMG, which can be passed directly
to the MOVETO Subroutine provided by HALO (Version 3.26). The input
is the two dimensional array INP (NCOLS X NROWS) which represents an
image by storing the colour of each pixel according to an X-Y
coordinate system in which X-positive is to the right and Y-positive
is down, A zoom factor can also be supplied to scale the image.

USAGE

CALL CONVRT(INP,IMG,NCOLS,NROWS, IFAC, IER)

DESCRIPTION OF PARAMETERS

INP - TWO DIMENSIONAL ARRAY OF NCOLS COLUMNS AND NROWS ROWS
' THE ARRAY CONTAINS THE COLOUR VALUES (between O and 3)
IMG - THE OUTPUT VECTOR (EIGHT PIXELS PER ARRAY ELEMENT)

(DIMENSION CALCULATED - MUST BE SET TO AT LEAST
(NPIXTOT/8+3) IN MAIN PROGRAM)

IMG(1) = NCOLSXIFAC

IMG(2) = NROWS®IFAC - /

IMG(3) = O

IMG(4,...,(NPIXTOT/B+3)) = A SIGNED INTEGER REPRESENTING

EIGHT PIXELS

NCOLS = NUMBER OF COLUMNS IN INP
NROWS - NUMBER OF. ROWS IN INP
IFAC -~ Z00M FACTOR (>= 1)
IER - O NORMAL TERMINATION
1 IF IFAC IS LESS THAN 1
2 IF NCOLS%IFAC IS GREATER THAN 320 OR NROWSRIFAC IS
GREATER THAN 200 (I1.E. GREATER THAN CGA ALLOWS)
I IF A COLOUR IS GREATER THAN 3 OR LESS THAN ZERO

REMARKS

NO ACTION IF IER EGUAL TO 1 OR 2.

IF COLOUR IS OUT OF RANGE COLOUR VALUE IS SET TO ZERO.
NBYTES IS THE IMAGE WIDTH IN SEGMENTS FOUR PIXELS WIDE.
NPIXTOT 1S THE TOTAL NUMBER OF PIXELS IN THE IMAGE INCLUDING
THE FILL COLUMN., .

THIS SUBROUTINE IS GENERALLY USED DIRECTLY BEFORE CALLING
SUBROUTINE MOVETO.

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED

NONE

METHOD

THE VECTOR INPV IS THE ONE DIMENSIONAL EQUIVALENT OF THE TWO DIMENSION-

AL ARRAY INP,

ALL ELEMENTS ARE INITIALIZED TO ZERO, SINCE EACH ROW MAY

NEED TO BE PADDED WITH ZEROS IF NCOLS#IFAC IS NOT AN INTEGRAL MULTIPLE
OF FOUR. THE VECTOR, IMG, IS THEN GENERATED BY COMBINING EIGHT ARRAY
ELEMENTS OF INPV FOR EACH ELEMENT IN IMG USING SIGNED, 2 BYTE BINARY

c

000

o000

-
0

[Y] L4 L
ol =m s

ARITHMETIC. THE FIRST TWO ELEMENTS OF THE VECTOR IMG CONTAIN
THE DIMENSIONS OF THE IMAGE AND THE THIRD ELEMENT MUST BE ZERO,
AS REQUIRED BY SUBROUTINE MOVETO.

3!#3!!ltltttltt#tilt3!!!!#!!!!!!333!33!!3!!tl!t!‘!#!tttltllttlltttl!!!‘

SUBROUT INE CONVRT(INP,IMG,NCOLS,NROWS,IFAC,IER)

INTEGER%*4 IA,I,ITMP, INDEX
INTEGER NCOLS,NROWS

DIMENSION INP(NCOLS,NROWS),IMG(%)
DIMENSION INPV(65000)

DATA INPV/65000%0/

IF(IFAC.LT.1) THEN
IER = |}
RETURN

ENDIF

CALCULATION OF DIMENSIONS OF IMAGE
IMG(1) = (NCOLSXIFAC)

IMG(2) = (NROWSZIFAC)

IMG(3) = 0 '

IF(IMG(1).6T.320 .OR. IMG(2).GT.200) THEN °
IER = 2
RETURN

ENDIF

GENERATION OF INPV | ~ _
INDEX GIVES THE ARRAY ELEMENT FOR THE VECTOR INPV WHICH CORRESPONDS
TO THE ELEMENT (II,JJ) IN THE ARRAY INP.

NBYTES 1S THE IMAGE WIDTH IN SEGMENTS WHCIH ARE FOUR PIXELS WIDE.
NBYTES = INT(FLOAT(NCOLS!IFAC)/4.OV+ 0.9999)
DO 11 JJ=0,NROWS-1 A)
DO 11 II=0,NCOLS-1
DO 11 K=1,IFAC
DO 11 L=1,IFAC .
INDEX = (IIBIFAC + K) + (JISIFAC + L-1)2NBYTES%4
IF(INP(II+1.JJ+1).GT.3 +OR. INP(II+1,JJ+1.LT.0)
INP(II1+1,33+1)=0
IER = 3
ENDIF
INPV(INDEX) = INP(I1+1,J0+1)
CONTINUE

NPIXTOT IS THE TOTAL NUMBER OF PIXELS IN THE IMAGE INCLUDING THE

FILL COLUMN

NPIXTOT = NBYTES!A#NROWS!IFAC

ccC

c
ccc

B UWUNM

GENERATION OF IMG ’ ’
IA 1S THE REFERENCE ELEMENT FOR EACH BLOCK OF EIGHT VALUES IN INPV.
THE EIGHT VALUES FROM INPV REPRESENT THE 1& BITS WHICH ARE USED TO
CALCULATE A VALUE FOR IMAGE. SIGNED INTEGER ARITHMETIC 1S USED.

DO 12 I = 1,NPIXTOT,S
IA = 1+7/8 + 3

POSITIVE OF NEGATIVE INTEGER?
IF (INPV(I+4).GE.2) THEN

ISGN = -1

ICL =3
ELSE

ISGN = 1 . :

ICL =0 . ,
ENDIF |
EIGHT VALUES FROM INPV COMBINED INTO ONE VALUE
IMG(IA)= (IABS(INPV(I+4)-ICL)%16384 + IABS(INPV(I+5)-ICL)%4096

+ IABS(INPV(I+6)=-ICL)%1024 + IABS(INPV(I+7)-ICL)%256
+ IABS(INPV(I)-ICL)%b64 + IABS(INPV(I+1)-ICL)%16
+ IABS(INPV(I+2)-ICL)%4 + IABS(INPV(I+3)~-ICL)
+ ICL/3)®ISGN

CONTINUE

RETURN

END

