
A CDHTUTER PROGRAM TO DISPLAY ANIHAIIONS
WITHIN TH COMPUTER GRAPHICS EALO ENVIRONMENT

Efraim Halfon and David be Jong

NWRI Contribution No. 89-20‘

Lakes Research Branch
National Water Research Institute
Canada Centre for Inland Waters

Burlington, Ontario
Canada L7R 4A6 ’

May 1989

MANAGEMENT PERSPECTIVE

This report describes a numerically ef§icient program to display

computer graphics animations on IBM compatible microcomputers. This report is

distributed with a floppy disk containing the appropriate software with a

demonstration of the movement of a toxic contaminant plume in Lake St. Clair.

\

PERSPECTIVE—GESTION

Le présent rappopt décrit un programme de numérisation

efficace qui affiche des images graphiques animées sur un

microordinateur compatible IBM. Le rapport est fourni avec

une disquette renfermant le logiciel approprié et une

démonstration du mouvement d’un panache de contaminant

toxique dans le lac St. Clair.

ABSTRGCT
-

This subroutine is designed to be used in any case where the user is

working with a digitized image and is modiiying the image, but not according

to any kind of recognizable pattern. The subroutine was originally designed

to be used with an image block which represents the concentrations of

chemicals throughout a large body 0+ water. t

In this paper we explain how HALO stores a graphic screen and therefore

how any screen can be created from any matrix. One additional option is that

a zoom factor is included so that any part of the matrix can be displayed

enlarged.

6

I

I

I

I

I

RESUME

Ce sous-programme peut étre utilisé lorsque

l’utilisateur travaille avec une image numérisée et qu’il

veut modifier l’image selon un schéma non reconnaissable. Ce

sous—programme»deVait 5 l’origine étre utilisé avec une

image représentant les concentrations de produits chimiques

dams une grande étendue d’eau.

Dans cet article, nous expliquons comment le programme

HALO stocke une image graphique et comment on peut créer une

image A partir de n’importe laquelle matrice. On peut

choisir un zoom pour grossirnn’importe laquelle partie de la

matrice.

INTRODUCTION .

Animation is a useful tool to display the dynamical behaviour of

computer simulations. - Animation is relatively easy to program on

microcomputers given appropriate software. One software program quite suited

to this purpose is HALO (1986). Nevertheless, even in its sophistication,

HALO lacks a subroutine, crucial for the successful display of computer

simulations through animation. This paper presents an analysis of the

procedure HALO employs to store screen images in memory and it shows the

development and application of the missing routine which we call CONVRT. This

routine transforms the numbers produced by a mathematical model to colour

display on the graphics screen within the HALO environment.

THE HALO LIBRARY

The HALO library is a collection of high performance subroutines which

allow a programmer to implement sophisticated computer generated graphics.

The library consists of over 170 graphic functions written in assembler and

supplied to the user in object code form, ready to be linked with a high level

language. The HALO library is a very useful tool since the IBM personal

computers, models XT and AT, are not very well adapted to display animated

computer graphics. Furthermore, animation has two important requirements,

speed of computation and image resolution. The greater the resolution

required, the higher the amount of computation needed to draw an image.

HALO can be used with a variety of programming languages, FORTRAN,

BASIC, C, etc. Although the routines offered are fairly fast (being written

mostly in assembly language), if the generation of an image requires many

1

1

calculations, the computer animations might execute slowly. A solution is to

calculate the entire image first, store it in memory and then display it on

the graphics screen all at once.

GRAPHICS BOARDS

IBM microcomputers rely on graphic boards to create a graphic screen.

Every graphic board displays only a finite set of colours. This finite set of

colours is referred to as a "palette." Some boards contain multiple palettes

and have predefined sets of colours that cannot be changed. The IBM Color

Graphic Adapter, CGA for short, has two palettes,_ each with a preset group of

four colors. More advanced boards, such as the EGA and VGA allow the display

of 16 out of 64 colours and 256 colours, respectively. .'

In this paper we describe a subroutine that is applicable to CGA boards

but easily expandable to EGA and VGA boards, once the principles are

understood. The IBM CGA has two palettes, palette O has the four colors,

black (with index or number value 0), green (with index or number value 1),

red (with index 2) and brown (with index 3). Palette 1, which will be used in

the ¥ollowing.examples, has black (index 0), cyanide or light blue (index 1),

magenta or purple (index 2) and white (index 3).

On a CBA screen each pixel can have one of four colors. In the decimal

In the binary’ system, used by £14 system the indices vary between O and

computers, the four colors can be represented. by 'any one of two bits

combinations, for example zero C0,01 is black, one [0,ll is light blue, two

[1,0] is magenta and three [1,1] is white.

E‘

I

PRINCIPLES OF COMPUTER ANLHQTIDN

Animation requires a fast refreshment of the computer screen, to show

the changes that take place in time. For example the display of the movement

a+ a contaminant plume in a lake implies several steps:

a) Numerical solution-of the mathematical model.

b) Storage oi the simulation results in a matrix, HATR. Each element of

MATR contains the concentrations of a contaminant at a grid point, spaced, for

example, two kilometres apart.

c) Classiiication of the matrix values into ranges. This step implies

the conversion of the raw simulation data in matrix MATR to data in

classified form in matrix lNP according to the indices oi colours. The matrix

INF is a two-dimensional array which represents an image by storing the colour

of each pixel according to an X-Y coordinate system in which X—positive is to

the right and Y*positive is down. Since only a fixed number of colours are

allowable on the screen (in case of a BSA board only four colors can displayed

at the same time), each colour must represent a range of concentrations. For

example (Table 1) if a simulation shows that a contaminant has concentrations

of less than 5 ng/L in water, ithen the screen colour is black (identified by

the number 0). If concentrations are between 5 and 10 ng/L the colour is

white (identified by the number 3); if concentrations are between 10 and 50

ng/L the colour is light blue fiidentiiied by the number l), and if

concentrations are higher than 50 ng/L the colour is magenta iidentified by

the number 2). Each element of the array INP now contains values between zero

and three.
I

D

d) The contents of the matrix INP are transformed into a vector IMG that

can be understood by HALO subroutines, specifically subroutine HOVETO, to

display the colour image to the screen.
g

el Call to subroutine HOVETO to display colour pixels on the screen.

fl Steps a-e must be repeated for each time step so that the animation

can take place. 'At each time step a new matrix INP is created. In this

example the contaminant plume moves across the screen.

It is clear that many computations must take place at each time step.

This paper focuses on the step id). The HALO manual provides no clues on the

structure of the array IMO and the user assistance ofiice provided no help.

Since other HALO users might be interested _in showing computer animations,

procedure (d) is explained here.

THE MISSING SUBROUTINE: CONVRT

HALO provides a number of commands for moving portions oi the screen as

well as storing these images in memory or in an array. The storing of these

images is done efficiently by using the minimum number oi bits necessary to

represent the number of colours available at any one time (i.e. tour colours

are represented by two bits). Even if HALO contains many graphics subroutines

useful to the graphics programmer, the subroutine CONVRT identified in (d)

above is missing. Among its l7O subroutine HALO offers two routines, MOVEFROM

and NOVETO, that are closely related to the problem at hand. Routine MDVEFROM

copies a portion of the screen to a vector IMO. The assumption is that the

graphic screen was created by any of the other 1&8 routines. HALO developers

thereiore incorrectly assumed that the contents oi the vector IMO are of no

I

interest to the user. This information is not provided in the HALO manual and

was found by extensive investigation of computer images.

Animation requires a subroutine that shows in colour on the computer

screen a digitized picture stored in computer memory as a matrix, or as a two-

dimensional array. This two—dimensional array, INP, stores the colour of each

pixel of the digitized image. Routine MOVETO restores a portion of the screen

from the array IMG. By an appropriate use of subroutine MOVEFROM and HOVETO,

a HALO user can move portions of the screen to a different location or copy

parts of the screen. with these routines a user can not modify the contents

of the array IMG as required in an animation procedure. To modify the array

n-1 Ii CD IMO we must first understand the meaning of each element of

STRUCTURE OF THE ARRAY IHG IN ROUTINES MOVEFROM, MOVETO AND EONVRT

The simplest representation of a digitized image is a two dimensional

array where each array element represents a pixel according to its colour.

Since the IBM XT and AT are lb bits machines, HALO compacts eight pixels into

a two-byte vector as is explained in more detail later. Unfortunately, the

value of the two-bytes vector, which in lb-bits machines is a number between

—d5335 and 65535, does not have a one to one correspondence with the two-bytes

vector of pixels on the screen. Thus, one of the purposes of this work is to

investigate how HALO stores all the pixels of a picture in memory (vector

IMO), and therefore how we can use this information to display animation on an

IBM PC computer screen.

A careful analysis of computer and screen memory produced the following

structure for the vector IMO. The first two bytes of IMO contain the integer

width of the image in pixels or the number of columns of the array INP. The

second two bytes in INS contain the integer height of the image in pixels, or

the number of rows in INP. The fifth and sixth bytes are always zero. The

seventh and eight bytes contain the first eight pixels of the image to be

displayed, left to right, starting at the top of the image. This means that

the bytes following the first six contain the pixels of the picture in a

packed form using units of two~bytes, or lb bits.

The next problem is the understanding of the way HALO stores a two byte

integer and its relation to the image on the screen, A careful investigation

showed a complex pattern that can only be explained with an example: Assume

that on the screen we want to show eight horizontally contiguous pixels of the

colours black (0,0), blue (0,1), magenta (1,0), white (1,1), white (1,1),

magenta(l,0), blue (0,1) and black (0,0). The two-bytes vector on the screen

is therefore

high byte low byte

[O0,0l,10,ii!ll,l0,0i,OOl. <1)

To display this series of eight pixels HALO uses a number between —65535 and

65535. In HALO memory the high and low bytes are switched, thus the vector

(1) now becomes

former low byte former high byte

£1 l. l O. 0 1, O O ! 0 0, 0 l, i O, 1 ll. (2)

This lb bits vector is converted to a decimal number. In this particular

example the first digit is a 1, thus the decimal number is negative. In

microcomputer arithmetic a negative number‘ is its 2's complement. The

complement of (2) is

7

E00,01,10,1,i 2 11,'1o,o1,oo1. <3)

The numerical value of the integer represented in this byte (3) is

- (O*32768 + 0*l6384 + 0*8192 + 4096 + 2048 + 0*l024 + 512 + 256 + 128 + S4 +

32 + Q*1b + 0*8 + 4 + 0*2 + 0x1) = -7140.

0-0
-1 CD This integer is now stored into an element of . Each element or IMG

describes a series of eight pixels on the screen from leit to right and then

down the rows. .

One further complication arises if the image is not an integral multiple

number of four pixels wide. In this case the image must be padded with blank

pixels (zeros) at the end of each row. These extra zeros shall be referred to

as the “fill column.“’ A two-byte integer can be split across rows but a

single byte may not be split. when the image is finally put on the screen

these extra zeros of the "fill column" do not affect the shape of the image

since the +irst element, l»-4 I! El »-. >- ~.»

- of the vector specifies the real width of the

image.

FEATURES BF THE SUBRDUTINE CONVRT

Our subroutine CDNVRT computes the numerical value of each element o+

the vector {HG given a matrix INF, whose contents are explained above. The

subroutine also takes into account the position of the +111 column so that the

display on the screen agrees exactly with the contents of the matrix INF.

One last problem arises for a faithful representation of the matrix of

ID (‘TI ('1 ID the screen. the problem of scale. - screen in tour colours has 32$ pixels

horizontally and 200 vertically. EBA and VGA screens have even a higher

resolution. Each pixel is therefore very small and even a large [NP array,

J-

for example 92 columnsby 20 rows would occupy a small portion of the screen,

the rest being left black. The solution is to have a zoom factor, so that for

example a 92 x 20 matrix can be displayed as a 184 x 40 picture (zoom factor

of 2) or as a 276 x 60 picture (zoom factor of 3). In this case a zoom factor

of four would be impossible since it would produce a screen picture of 368 x

80 pixels, larger than the CGA screen of 320 x 200.

DISCUSSION

Animation has two important requirements, speed of computation and image

resolution. In this paper we focused on improving the speed of computation in

building an image to displayed on a CGA screen. Given the assumption that a

mathematical model is efficient in producing the matrix INP in real time, or

that the matrix INP is read in from a hard disk at each time step, the

limiting factor becomes the conversion of the image computed from the

simulation to a format that can be shown on the screen. Furthermore, the

larger the image, the higher the amount of computation needed to draw an

image. A computer user is usually willing to wait for one to three seconds

for a picture to be updated on the screen before becoming restless. The

subroutine CUNVRT" is optimized for speed and even with the zooming factor

taken into consideration, speed is maintained. Also, programmers designed the

HALO routine MOVETU, written in assembly language, for speed. The graphics

screen is therefore refreshed regularly and promptly and smooth animation of

computer simulations is possible.

The software presented with this paper shows a computer simulation of

the flow of toxic contaminants in Lake St. Clair following a hypothetical

1 4 ..

spill in the St. Clair River. The size 0+ the array [NP is 23 W pixels,

zaomed with a factor 0+ 5 to 115 x 115.

1
1. ;.

X hJ O1

REFERENCES

HALO, 1986. Graphics Kernel and Device Drivers. Version 2.26a. Functional

Description Manual. Media Cybernetics Inc., 8484 Georgia Avenue, # 200,

Silver Spring, MD 20910, U.S.A.

\

I (decimal) (binary)

ll
11 — SO

ll > 50

' Table 1: Relation among concentrations, contents of
,

Contaminant

Eng/L] value value

'

< 5

5 - 10

co,o1

c1,11

£O,1J

11,01

1

'
representation of each pixel in the matrix IMG and screen colours

I Concentration‘ INP pixel, screen colour

black

white

light blue

magenta

\I

Ll

O

O
AHA

"I

zcc

;!E

ii;
ztc

PFC

IE

\l

Q

\l

..giifis2!..g..H..gdiii§iig..L.U....“Séfiii§.i..a.

IIIIll!IIIIIIill!lliifiliifillllllllllililflitlfllifltfiill$$$$$¥$1I$l$¥$l¥$I
SUBROUTINE CDNVRT
PURPOSE

_ This subroutine creates a vector, IMG, which can be passed directly
to the MOVETO Subroutine provided by HALO (Version 3.26). The input
is the two dimensional array INP (NCOLS X NROWS) which represents an
image by storing the colour of each pixel according to an X—Y
coordinate system in which X—positive is to the right and Y-pO5itive
is down. A goom factor can also be supplied to scale the image.

USAGE
A d

-
-

CALL CONVRT(INP,IMG,NCOLS,NROWS,IFAC,IER)
:

DESCRIPTION OF PARAMETERS
INF - Two DIMENSIONAL ARRAY OF NCOLS COLUMNS AND ~Rows Rows

THE ARRAY CONTAINS THE COLOUR VALUES (betweefi 0 and 3)
THE OUTPUT vEcToR (EIGHT PIXELS PER ARRAY ELEMENT)
(DIMENSION CALCULATED - MUST BE SET To AT LEAST
(NPIXTOT/8+3) IN MAIN PROGRAM)
IMG(1) = NCOLSIIFAC
rnszz) = ~R0wsx1FAc - L
1n6(3) = 0
IM6(4,...,(NPIXTOT/8+3)) = A SIGNED INTEGER REPRESENTING

EIGHT PIXELS
NUMBER OF COLUMNS IN INP
NUMBER OF.ROWS IN INF
zoom FACTOR (># 1 >

o NORMAL TERMINATION
_

1 IF IFAC IS LESS THAN 1
2 IF NcoLsu1FAc IS GREATER THAN 320 0R NROwsa1FAc IS

GREATER THAN 200 (I.E. GREATER THAN CGA ALLOWS)
3 IF A COLOUR IS GREATER THAN 3 OR LESS THAN ZERO

IMG —

NCOLS -
NROws -
IFAC -
IER -

REMARKS ~; ._y .
~ ~

.

A

* NO ACTION IF IER EOUAL TO 1 OR 2.
IF COLOUR IS OUT OF RANGE COLOUR VALUE IS SET TO ZERO. NBYTES IS THE IMAGE WIDTH IN SEGMENTS FOUR PIXELS WIDE. NPIXTOT IS THE TOTAL NUMBER OF PIXELS IN THE IMAGE INCLUDING
THE FILL COLUMN. 4

A

THIS SUBROUTINE IS GENERALLY USED DIRECTLY BEFORE CALLING SUBROUTINE MOVETO.
SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED

NONE '

METHOD
THE VECTOR INPV IS THE ONE DIMENSIONAL EQUIVALENT OF THE TWO DIMENSION-
AL ARRAY INP. ALL ELEMENTS ARE INITIALIZED TO ZERO, SINCE EACH ROW MAY NEED TO BE PADDED WITH ZEROS IF NCOLSiIFAC IS NOT AN INTEGRAL MULTIPLE
OF FOUR. >THE VECTOR, IMG, IS THEN GENERATED BY COMBINING EIGHT ARRAY ELEMENTS-OF INPV FOR EACH ELEMENT IN IMG USING SIGNED, 2 BYTE BINARY

—8v£H3FEi

II

Ofiflflnflfl

1lC

Sec

ARITHMETIC. THE FIRST TWO ELEMENTS OF THE VECTOR IMG CONTAIN THE DIMENSIONS OF THE IMAGE AND THE THIRD ELEMENT MUST BE ZERO, AS REQUIRED BY SUBROUTINE MOVETO.

$143!!IIII8!I18$!$1$$I¥$l¥iI!IlI¥$$!$$$$$$$IIlilililfilIllllllllllllllll
SUBROUTINE CONVRT(INP,IMG,NCOLS,NROWS,IFAC,IER)
INTEGERK4 IA,I,ITMP,INDEX
INTEGER ~coLs,~Rows
ornsnsrou INP(NCDLS,NRDWS),IHG(¥) ornzusxou INPV(b5000)
DATA INPV/65000lO/

_

IF(IFAC.LT.1) THEN
IER = 1
RETURN

ENDIF
CALCULATION OF DIMENSIONS OF IMAGE IMG(1) = (NCOLSIIFAC)
IMG(2) = (NROWSIIFACJ
IMG(3) = O '

IF(IMG(1)-GT.32O .OR. IMG(2)-GT.200) THEN *

IER = 2
RETURN

ENDIF
GENERATION OF INPV
INDEX GIVES THE ARRAY ELEMENT FOR THE VECTOR INPV WHICH CORRESPONDS TO THE ELEMENT (II,JJ) IN THE ARRAY INP-
NBYTES IS THE znnse WIDTH IN sesmsurs WHCIH ARE FOUR PIXELS WIDE. NBYTES = INT(FLOAT(NCOL$$IFAC)/4.0‘+ 0.9999)

_

I no 11 JJ=0,NROwS-1 ‘- ‘

_-
.

*

no 11 I1=o,NcoLs—1
no 11 K=1,IFAC
no 14¢L=1,IFAC A

INDEX = (IIIIFAC + K) + (JJIIFAC + L—1)$NBYTES!4 IF(INP(II+1,JJ+1).GT.3 .0R. INP(II+1,JJ+1.LT.O) INP(II+1,JJ+1)=O
IER = 3

ENDIF
INPV(INDEX) = 1~P(11+1,JJ+1y courxnue ’

NPIXTOT IS THE TOTAL NUMBER OF PIXELS IN THE IMAGE INCLUDING THE FILL COLUMN
NPIXTOT = ~avTEsa4;~R0wsx1FAc

CCC
*iiiT?§i§__””

flfl

CC

GENERATION OF IMG A

IA IS THE REFERENCE ELEMENT FOR EACH BLOCK OF EIGHT VALUES IN INPV
THE EIGHT VALUES FRO" INPV REPRESENT THE 16 BITS WHICH ARE USED TO
CALCULATE A VALUE FOR IMAGE. SIGNED INTEGER ARITHMETIC IS USED
DO 12 I = 1,NPIXTOT,B
IA = I+7/8 + 3

S POSITIVE OF NEGATIVE INTEGER?
3

;

xssmT
1

' ICL
El s|_se

I xssu
ICL

m ENDIF
~C EIGHT

, IMG(IA)= (IABS(INPV(I+4)-ICL)¥16384 + IAES(INPV(I+5)*ICL)¥4Q96
III

btlhlw

3‘

1

= IF (INPV(I+4)-GE.2) THEN

O - ,

VALUES FROM INPV COMBINED INTO ONE VALUE

W CONTINUE
RETURN

Ii
sun

'+

+
+
+

IABS(INPV(I+b)*ICL)$1024
IABS(INPV(I)-ICL)$64
IABS(INPV(I+2)-ICL)¥4
ICL/3)$ISGN

IABS(INPV(I+7)'ICL§$256
IABS(INPV(I+1)-ICL)I1b
IABS(INPV(I+3)-ICL)

