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RESUME 

On a évalué par surveillance la conformité aux critéres 

limitant le déversement de polluants ou aux normes de qualité 

de l’eau dane le milieu récepteur. Afin d’établir des 

limites ou des normes, il faut déterminer les 

caractéristiques du déversement ou du plan d’eau 5 

surveiller. Cette démarche comporte généralement 

1’ajustement d’une distribution des probabilités aux données 

chronologiques on 5 celles relevées lors d’un échantillonnage 

préliminaire, ainsi que la sélection d’une valeur 

statistique pour la limite ou la norme. On suppose que la 

distribution des données de surveillance recueillies pour 

-évaluer la conformité est semblable 5 celle des
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données chronologiques ou préliminaires. ‘Une caractérisation 

correcte de ces derniéres contribuera A assurer que 

1’hypothése est confirmée. Les méthodes statistiques qui 

supposent une distribution pour la variable de qualité, ou 

comportent l’emp1oi, aprés transformation, d’une variable 

binaire, sont comparées. On examine la validité des 

hypotheses sous-jacentes dans l’app1ication des méthodes aux 

données sur la qualité de 1’eau ou des effluents.
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SOME STATISTICAL CONSIDERATIONS IN THE ASSESSMENT OF COMPLIANCE 

S.R. Esterby 

Lakes Research Branch 

National Water Research 

Burlington, Ontario, Canada 

ABSTRACT 

Compliance with criteria limiting the discharge of pollutants 
or standards of water quality in the receiving water body are 

assessed by monitoring. In order to set limits or standards, the 

features of the discharge or the water body to be monitored must be 
characterized. This generally involves the fitting of a proba- 
bility distribution to historical data or‘ data from preliminary 
sampling and the choice of a statistic for the limit or standard. 
Monitoring data collected to assess compliance are assumed to 

follow the same distribution as that of the historical or prelimi- 

nary data. Proper characterization of this latter data will help 
to ensure that the assumption is met. Statistical methods which 
either assume a distribution for the quality variable or involve a 

transformation to a binary variable are compared. The validity of 
the underlying assumptions in the application of the methods to 

water or effluent quality data is discussed.

\



INTRODUCTION 

Consider the situation where samples are taken to assess 

whether an acceptable level of quality is being maintained. This 

involves the setting of a standard or a limit against which the 

results of the sampling are compared. when the samples do not 

provide evidence that the source being sampled is at variance with 

the standard, the source is considered to be in compliance. There 

are a number of ways in which the standard or limit may be defined 

and these include external considerations, such as the level which 

makes the water acceptable for a specific use, and values deter- 

mined from either prior sampling of the source to be assessed or 

another source, for example, one considered to provide background 

levels. It is clear that the definition of the standard or limit 

involves a measure of location. Due to the inherent variability of 
effluent or water quality parameters, a measure of the variability 
must also be incorporated into the method of assessment. A single 

probability distribution may adequately characterize this 

variability. However, there will often be structure within a data 
set or a concomitant variable that will account for some of the 

variability, and then a _model involving both deterministic and 

random components will be needed. 

Methods based on the number~ of times a quality parameter 
exceeds a limit and methods which use the distribution of a measure 

of location of the quality parameter directly have been applied in



the assessments of compliance. These will be discussed using 

examples from the literature. For the methods using the quality 

parameter distribution directly, one example takes the standard as 

given, while the other accounts for the variability in both back- 

ground data and samples taken for the assessment of compliance. 

The assumptions underlying the methods of analysis will be 

discussed. 

BINOMIAL VARIABLES 

An application of the theory of hypothesis testing and confi- 

dence limits, known as sampling inspection or acceptance sampling 

(e.g., Brownlee, 1965 or Mandel, 1967), has become standard 

methodology in the control of the quality of manufactured items. 

This is based on the binomial distribution. The number of times a 

limit is exceeded in water or effluent quality assessment has also 
been treated as, a binomial random variable (Warn and Matthews, 

1984; Ellis, 1985; Crabtree gt 31., 1987). The use of the binomial 

distribution in sampling inspection is briefly reviewed and then 

the applicability of these methods ‘to the assessment of the 

compliance of effluent or water quality parameters is considered. 

This comparison permits clarification of a difficulty expressed by 
the above mentioned authors. The role of the distribution of the 

quality variable is shown and Vestimation of a percentile is 

considered.
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Simple Sampling Inspection for Attributes 

These methods have been applied in industry, where items in a 

manufacturing process can be sampled and classified as defective or 

nondefective. A random sample of‘n items is inspected and X, the 

number of defective items, is compared with a specified standard 

xo (e.g,, Brownlee, 1965). If the sample size, n, is small 

relative to the total number of items, then X follows a binomial 

distribution with parameters n and p, where p is the fraction of 

defective items in the batch from which the sample was drawn. The 

probability that the process is found to be in compliance is 

X0 " x n-x P(X 5 X0) = 
xgo 

M p <1-p) s (1) 

By specifying the acceptable fraction defective, pg, and a 

fraction defective, p1, which is considered to be relatively bad, a 

sampling plan determining n and xq in (1), can be found for given 

type 1 error, a, and type 2 error, B. lhat is, n and xo are chosen 

so that the probabilities a, the probability of finding the process 
out of compliance when the fraction defective is acceptable, i.e., 

p = pg, and B, the probability of finding the process in compliance 

when too many items are defective, i.e., p = p1, are as specified. 

Alternatively, the operating characteristic curve, a plot of A(p) 
versus p, where
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* Mp) = P (X 3 xo; n. n) (Z) 

can be used to determine how a specific combination of n and xg 

perform for different values of p. 

Binomial Methods for Quality Variables 

Let Y be the concentration of the quality parameter in a 

particular effluent or water body, and L, the upper limit for 

acceptable concentrations. For example, L might be the 95th 

percentile determined from a large number of prior samples from the 
source being assessed. In general, for L defined so that p in the 
expression * 

P(Y>l-)=P (3) 

is known, the continuous variable Y,~can be transformed to a binary 
variable, Z, where 

P (Z = 1) = P (Y >~L) = p . 

and (4) 

P (Z = 0) = P (Y 3 L) = 1 - p 

Thus the probability, that x out of n samples exceed L, is given by 
the binomial distribution
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P (X = x) = <9) 
px (1- p>""‘ <5) 

provided that the assumptions of independence and constant p are 

met. 

Regardless of the distribution of Y, the distribution of X is 

binomial under the assumptions given above. However, the distribu= 
tion of Y determines the value of L. If L is taken to be the 95th 
percentile of the distribution of Y, then L is determined from (3) 

with in = 0.05." _For p fixed and small, differences between the 
values of L for different distributions depends on the characteris- 
tics of the distributions in the right tail. The symmetric normal 
and asymmetric lognormal distributions are compared for several 
values of the means and variances in Table 1. Let LN be the 95th 
percentile if Y is normally distributed with mean u and variance 02 
and Lg, the 95th percentile if Y is lognormally distributed with 
mean pa and variance og. The relationship between u, 03 and pg, 0% 
is given, for example, by Aitchison and Brown (1981). The lognor- 
mal distributions, with means and variances as given in rows two 
and three of Table 1, are highly skewed and that, in row one, 
nearly symmetric, yet the 95th percentiles differ by at most two. 

The value of L differs by 6.5 between a lognormal distribution with 

pg = 10, 0; = 15 and a normal distribution with u = 10 and 
0 = 18. This latter case shows how the estimate of L is affected 
by assuming a normal distribution when a lognormal distribution is 

appropriate. To use a higher variance for the normal distribution
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is a realistic case and the value cg = 18 used here equals the 

sample variance of a random sample from a lognormal distribution 

with "pg. = 10 and Og = 15. AS another example, the effect of 

the assumed form of the distribution on the probability of 

compliance with bacterial water quality guidelines has been shown 

by Esterby (1982). 

The binomial distribution with L defined as the 95th percen- 

tile has been used by some Mater Authorities in the United Kingdom 

to assess the compliance of effluents (warn and Matthews, 1984 and 

Ellis, 1985). warn and Matthews cited practical problems with this 

method, including published yearly failure rates (i.e., the 

fraction of samples in a year which exceed L) which are higher than 

the actual 5 percent rate, p, and opted for a method which uses the 

quality variable directly. Ellis discussed the balance between 

type 1 and type 2 errors and proposed lowering the type 1 error to 

keep the failure-rate down. The inconsistency between these rates 

was shown numerically by both Warn and Matthews (1984) and Ellis 

(1985), and stems from trying to equate the probability of an 

individual sample exceeding L, 

p = P (1 > L) = 0.05 (6) 

to the probability of more than 0.05 n of the samples exceeding L,



n , 

P (x > o.os n) = Z (Q) (0.os)* (o.9s)"'* (1) 
x=xO 

where xo is the smallest integer greater than 0.05 n. This results 

in P(X > 0.05 n) = 0.05, which is satisfied when n = 1, that is, 

only one sample is collected during the year. Ellis notes this in 

stating that the (legal definition of compliance relates to an 

individual sample. 

The difficulty arises from taking the objective, that fewer 
than 5 percent of the samples exceed the limit L, to mean that L 

should be the 95th percentile of the distribution of the quality 
variable Y. If the objective is to have the probability, of more 
than 0.05 n samples exceeding L, equal to 0.05, then instead of 
taking L to be the 95th percentile, the value of L which satisfies 

0.05 = P (X > 0.05 n) (8) 

should be determined. writing equation (7) in terms of p gives 

P(X > 0.05 n) = _§ (Q) 
px (1-p)"‘X (9) x=xo 

From equation (9) and, for given n, the value of p satisfying (8) 

can be determined, and, using this value of p in (3), the value of
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L, the (1-p)th percentile of the distribution of Y, can be 

obtained. For example, if n = 26, equation (8) becomes 

0.05 = P[X > 1.3] = P{X Z 2}
1 

which is satisfied if‘ p = 0.0138. Assuming Y is distributed 

N(10,102), the 1-p = 0.9862 percentile is 32. Compare this with 

the 0.95 percentile of 26.45. 

In the preceeding paragraphs of this section, the probability 
of events and the values of percentiles have been calculated 

assuming the probability distribution is known. This is useful in 

designing a program but once data is collected, quantities must be 

estimated. Estimation of the 95th percentile from water quality 
data sets was considered by Crabtree gt Q1. (1987) and the discus- 
sion applies equally to other percentiles. The authors compared 

estimates obtained using parametric and nonparametric estimates on 

water quality data sets. The nonparametric estimates consist of 

sample quantiles but the convention used for their detenmination 
was not stated. Freund and Perles (1987) give three alternatives 
that can be used for determining the position of quantiles by 
interpolation and these are applicable for any quantile including 
percentiles. Their second alternative would determine the position 
of the 95th percentile at 0.5 + 0.95 n and thus would be the 48th 
observation, for observations in ascending order, in a sample of 

size n = 50. ~
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METHODS FOR CONTINUOUS VARIABLES 

Confidence Interval for the 95th Percentile' 

T Warn and Matthews (1984) use confidence limits for the 95th 

percentile determined from the samples taken for the assessment of 

compliance and compare these limits with a predetermined limit L. 

The discharge is considered out of compliance if L is less than the 

lower confidence limit, in compliance if L is greater than the 
upper confidence limit, and unresolved if the confidence interval 

includes L. The water or effluent quality variable Y, as observed 

or_ suitably transformed, is assumed to be noflnally' distributed. 

Let y and s; be the mean and variance calculated from the sample of 
size n, taken to assess compliance. The confidence interval for, 

L, the (1-p)th percentile of the distribution of Y, is obtained by 
noting that Jhk, where 

k = (L - y)/sy (10) 

follows the non-central t distribution, denoted by t', with degrees 
of freedmn v = n - 1 and non-centrality parameter A = J3 K, for K 

given by the (1-p)th percentile of the N(0,1) distribution (Pearson 
and Hartley, 1976).
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Comparison with the Binomial Method 

~ Consider the case where it is of interest to know only whether 

the sample provides evidence that the source is out of compliance. 

The test is then one of the null hypothesis HQ, that the true 95th 

percentile equals Lg against the alternative, H, that it equals L1 

where L1 > Lg. The performance of the two methods can be compared 

by calculating the power of the test, that is, the probability of 

finding the source out of compliance when in fact its true 95th 

percentile is larger than the limit Lg.‘ The distribution of Y is 

assumed to be N(u0, 092) and N(u1, 012) under HQ and H1, 

respectively. 

For significance level u, the test of the null hypothesis 

based on Y provides t'Q such that 

P (t' < t'Q; vg, AQ) = d (11) 

where t‘ = /nk has vg = n-1 and A0 = JFK. The significance level, 

a, is an area in the left tail of the distribution because values 

of k, smaller than expected assuming the limit equals Lg, provide 

evidence against Hg, Under H1, it can be shown that 

/nk = {- J5 (¥—§IBl) + /5 (K + (Lo - L1)/01)} + sy/01 (12) 

and thus Jfik follows a non—central t distribution with v1 = n-1 and 

A1 = J5 (K + (L0 - L1)/01). The power of the test is given by
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H = P (t' < t'g; V1, A1) (13) 

Tables for the non-central t are available (Pearson and Hartley, 

1976, Table 26) for 8 levels of the tail probability. An analyti- 
cal solution of a quantity 1, required for use of these tables, can 

be obtained by solving a quartic equation. For values of power 
calculated here a very simple computer search calculating t‘ as a 

function of 2 was used instead. 

The test of the null hypothesis, based on the binomial 

variable X, provides xg such that 

P (X > X9; h, pg) = d (14) 

where pg = P (Y > Lg). Since X is discrete, there is generally no 
xg satisfying (13) for a specified a. It will often be appropriate 
to use the inequality 

P (X > xg; n, pg) 5 a (15) 

instead since this reduces that the risk of finding a source out of 
compliance. Thus xg will be one less than the smallest x for which 

(14) exceeds a, if an exact solution of (14) is unavailable. 

Having determined Xg, the power is
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n = P (X > xo; n. P1) ~ (16) 

where p1 = P (Y > Lg) for Y assumed N(u1, 012). 

A loss of power would be expected in the transformation from a 

continuous to binary variable in view of results known for other 

tests. For example, 50 pairs of observations are required for the 

sign test to have the same power as the paired t=test with 32 

pairs, assuming normality (Snedecor and Cochran, 1980, p. 140). 

The power of the tests as described above have been calculated for 

three examples (Table 2), chosen to be reasonable for the assess- 

ment of compliance in effluents. The values of the means and 

variances are consistent with those of effluent BOD reported by 
Adams and Gemmell (1973) and the number of samples n = 26 and 91 

correspond to samples taken every two weeks and every fourth day 
over one year, intervals long enough to expect no serial correla- 

tion (Berthouex and Hunter, 1975). Power calculated, using the 

binomial distribution and the X2 approximation (Brownlee, 1965) are 
in reasonable agreement. The results using the non-central t are 

approximate because linear interpolation within the table for one 

particular tail probability and graphical interpolation between 
these tables were used. Considerable loss in power occurs by 
transforming to a binary variable. However, in any application 
this must be assessed _against the suitability of a _normal 

assumption. -
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Prediction Intervals . 

In the previous‘ section, a confidence interval for a 

percentile was obtained from a sample collected to assess 

compliance and this interval was compared with a preassigned value 

L. In practice, L is an estimate of the percentile obtained from 

prior sampling when the sample size is considered large enough to 

treat L as known. If the limit was determined from sampling the 

same source as that being monitored for compliance, then the change 

to be detected is a shift in level. Further, all samples collected 

over a year were used for a single test of compliance. 

In the case of a prediction interval, the background data is 

used to form an interval which will be compared with future samples 

collected to assess compliance. Davis and McNichols (1987) des- 

cribe a situation in the monitoring of groundwater in the vicinity 
of hazardous waste management facilities and describe a method for 

constructing an interval (-=, Y + KSy), which will contain at least 

q of,m observations on each of r future occasions with probability 

(1 - a). The mean, Y, and standard deviation, Sy are calculated 

from the background sample of size n. The variance of an indivi- 

dual sample is assumed to be the same for both background and 

future samples. The purpose of the monitoring is to detect a shift 
in level, or equivalently, the condition that the source is out of 

compliance relative to the background level. Their procedure has 

the feature that compliance can "be assessed at each sampling
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occasion, where there are r sampling occasions and m samples on 

each occasion for a total of rxm samples, and the overall risk of a 

type I error for all these tests is controlled at the a level. 

There is a correspondence between methods based on percentiles and 

based on at least q of m observations, since the qth order 

statistic y(q) is the 100 q/m percentile, for q/m an integer. 

Davis and McNichols give limited tables of the value of K and 

outline the algorithm for the computation Of K for specified G, n, 

r, q and m. The sample sizes are small compared with those used in 

effluent monitoring with n = 10, 15, 20, m 5 6 and r = 1,2,4,8,16. 
Under semiannual sampling, as used in the groundwater monitoring 
situation which motivated their paper, r <=~ 16 covers 8 years. 
However, the procedure could be applied with the total number of 

samples in a year being divided into r sets of m samples, and this 
would allow for the detection of non-compliance within the year. 

ADEQUACY OF A SINGLE PROBABILITY DISTRIBUTION 

The methods discussed above are based on the assumption that 
‘the observations made on a quality variable, while the process is 

in control or the water body is receiving 8 constant load of pollu- 
tant, can be characterized as a sample of independent observations 
from a single probability distribution. Further some methods also 

required the assumption that the quality variable follows a normal 

distribution.
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The. assumption of normality can often be satisfied by ‘an 

appropriate transformation such as the logarithmic transformation. 

It may be more appropriate, however,to model the quality variable, 

Y, as the sum of a structural component, which would account for 

variability due, for example, to seasonality, and an error 

component which might then be adequately described by a normal 

distribution, although a transformation will sometimes still be 

required. That is
Q 

Yi = u + f(ti) + ei (17) 

where f(t1) is an appropriate function of time. 

Berthouex and Hunter (1975), in discussing treatment plant 

monitoring programs, note that lack of normality may be the result 

of including observations from periods when the plant was out of 

control. If a normal distribution is appropriate when the plant is 

in control, then it can still be used for control charts since the 

latter are not used when the plant is out of control. A transfor- 
mation or alternate distributional assumption will be necessary if 

nonnormality is present while the plant is in control. The point 

made here is that a statistical distribution is being 'used to 

characterize the data when the plant is operating under a particu- 

lar set of conditions. If data is included from a period when the 

plant is operating under another set of conditions, then the
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combined data does not represent the first condition only. A 

similar argument could be applied to water quality data. Berthouex 

and Hunter make the further point that because of the central limit 

theorem, statistics such as the mean tend to satisfy the normality 

assumption when the individual observations do not. 

Equally as important as the adequacy of the assumptions about 
the probability distribution, is the elimination of effects which 
obscure the difference that the procedure is trying to detect. 

Davis and McNichols (1987) give’ careful consideration to the 

assumptions underlying the method of analysis and not only trans- 

fonn the original data, but also use differences between approxi- 

mately simultaneous upgradient and downgradient samples to elimi- 
nate effects of seasonality, temperature and sample-handling 
methods. Examples from water quality studies are the fitting of a 
seasonal cycle (El»Shaarawi gt g1., 1983), the pairing of stations 
to eliminate seasonal and other time-varying effects 
(El-Shaarawi gt g1., 1985) and the spatial zonation of a lake to 
account for heterogeneity (Esterby and El-Shaarawi, 1984). 

Crabtree gt gl. (1987) found that only half of the 334 sets of 
water quality data analyzed, where each set consisted of’ either 
daily or monthly samples for an entire year for periods up to 3 

years, could be fitted by one of three distributions (normal, 
lognormal or Pearson type 3). Although the authors did not comment 
on structural features which may have made distribution fitting 

difficult, this is a possibility. i
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One practical approach to the lack of independence is to avoid 

it by spacing observations far enough apart. Berthouex and Hunter 

(1975) suggest that sampling wastewater treatment plants every 

third or fourth day should avoid the problem and every fourth day 
(Berthouex gt 51., 1981) has other advantages. Similarly, Davis 
and McNichols (1987) use adequate spacing asya method of avoiding 

serial correlation of observations. Aggregation is an alternative 

and van Belle and Hughes (1984) discuss the use of means or medians 
in the analysis of water quality data. As noted in an earlier 
section, the assumption of independence is made when the binomial 

distribution is used. when closely spaced observations are 
required,- models may have to be modified to include serial 

correlation. 
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Tabie 1. Comparison of the 95th percentile for some normai and 
Iognormai distributions. 

Normal Lognormai 

p 0 . LN pg 09' Ll 

V35 10 51.5 35 10 53.4 

10 10 26.5 10 10 27.8 

10 15 34.7 10 15 33.1 

10 18 39.6



Table 2. Comparison of the power of the test of the hypothesis that the 
- "95th percentile is Lg against the alternative that it is L1 using 

Y and the binomial variable X. ‘ 

H1 Non-central t ' Binomial 

Exact 
A 

X2 

n p1 021 Ag A1 a n pg p1 Xg a n n 

26 12.5 102 8.39 7.11 0.05 0.23 0.05 0.082 3 0.039 0.16 0.17 

91 12.5 102 15.69 13.31 0.05 0.51 0.05 0.082 8 0.038 0.32 0.33 

91 15.0 102 15.69 10.92 0.05 0.96 0.05 0.126 8 0.038 0.83 0.80 

Under the null hypothesis Y ~ N(10, 102) and Lg = 26.45. 
L1 = 28.95 and 31.45 for pl = 12.5 and 15.0, respectively.


