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Abstract
A 

paper presents a review of recent (1978-1988) water quality models which have been 

developed for predicting the impacts; pathways, fate and efects of nutrient and toxic 

chemicals in freshwater systems. The principal characteristics and applications of 38 

nutrient and 35 toxic chemical models are summarized in tabular form. These tables 

should be particularly useful for directing research and management model users towards 

suitable models and model components which can be used to solve water quality problems. 

Detailed reviews of model structures, process representations and applications are presented 

for 2 nutrient models and 3 toxic chemical models,



Resume 

Ce document passe en revue les modéles récents (1978-1988) de 

qualité de 1'eau qui ont été mis au point afin de prévoir les impacts, 

les voies, 1e sort et~ les effets de substances nutrit1ves et de 

produits chimiques toxiques sdans les réseaux d'eau douce. Les 

principales caractéristiques et_app11cat1ons de 38 modé1es de matiéres 

nutritives et de 35 modéles de produits chimiques toxiques sont 

présentées sous forme de tableaux. Ces tableaux pourraient se révéler 

particuliérement utiles pour orienter les utilisateurs de modéles de 

gestion et de recherche vers des modéles et é1éments de modéles mieux 

appropriés et qu1 peuvent servir 5 régler des problémes de qualité de 

1'eau. Des revues détaillées des structures de modéles, des 

representations des processus et des appiications de deux modéles de 

matiéres nutritives et de trois modéles de produits chimiques toxiques 

sont présentées. '



Management Perspective
, 

Ecosystem management requires predictions to be made about the pathways, fate and effect 

of contaminants. In a management mode, the models can be used to optimize proposed 

control measures which are proposed to meet water quality standards. This chapter 

presents a review of the recent (1978-1988) state-of-the-art models which have been 

developed for predicting the impacts, pathways, fate and effects of nutrient and toxic 

chemicals in ‘freshwater systems. The authors were asked to write this chapter as a 

contribution to a CRC Press book entitled "Focus on Modelling Marine Systems, Volume 
H., in recognition of their significant contributions to water quality modelling and because 

of the modelling concepts which have been developed for. freshwater systems which are 

incorporated into marine water quality models. The principal characteristics and 

applications of 38 nutrient and 35 toxic chemical models are summarized in two tables. 

These tables should be particularly useful for directing both -research and management 

model users towards suitable models or model components which can be used to solve 

water quality problems. 
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PERSPECTIVE—GESTION 

La gestion des écosystémes nécessite la formulation de prévisions 

ou il est question des voies, du sort et des effets de contaminants. 

Dans un mode de gestion, les modéles peuvent servir 3 optimiser les 

mesures proposées de dépollution pour l'atteinte de normes de qualité 

de l'eau. Ce chapitre fait la revue qes modeles récents et raffinés 

(1978-1988) qui ont été mis au point pour prévoir les impacts, les 

voies, le sort et les effets de substances nutritives et de produits 

chimiques toxiques dans les réseaux d'eau douce. Les auteurs ont été 

priés de rédiger ee chapitre qui doit étre incorporé dans un ouvrage 

de la CRC Press et qui sera intitulé “Focus on Modelling Marine 

Systems, Volume II"; ces auteurs ont été pressentis 5 cause de leur 

importante contribution a la modélisation de la qualité de l'eau et 

parce qu'ils ont trouvé des concepts de modélisation des réseaux dleau 
douce qui ont été incorporés dans des modéles de la qualité de 

secteurs marins. Les principales caractéristiques et applications de 
38 lnodéles de substances nutritives 'et de 35 modéles de produits 
chimiques toxiques sont présentées en résumé dans deux tableaux. Ges 
tableaux pourraient se révéler particuliérement utiles pour orienter 
les utilisateurs de modéles de gestion et de recherche vers les 

modéles et éléments de modéles mieux appropriés qui peuvent servir 5
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régler des problémes de qualité.de l'eau. ,
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l. INTRODUCTION 
Matliematical modelling of ecological systems is a multidisciplinary field of research. The models 

are based upon fundamentals of climatology, meteorology, chemistry, biology, geology, hydrology 

and .phys_ics. All models are developed with the goal of being able to simulate real-world 

behaviour under varying conditions. The complexity of the model and its input and output data 

depend on the spatial and temporal scales of interest. The main thrust behind the development of 

water quality models has been the need to predict the results of man-made influences on our water 

resources, ranging from rainwater to seawater. Umil recently, the oceans have been treated as a 

system that, because of its enormous size, could continue togdilute any contaminants that were 

introduced into it. However, freshwater-systems, such as rivers, lakes and groundwaters, have had 

more rapid and more visible impacts on their water quality by both natural and man-made 

processes. For this reason, much more effort has been directed over the past several decades 

toward the development of water quality models and the associated data collection activities for 

freshwater systems. Consequently, any book which deals with the development of models for the 

oceans should also include a review of freshwater models. Such a review could benefit ocean 

modelling since many of the underlying concepts are applicable in both. systems. Indeed-, for 

estuary models it is necessary to combine the two systems. 

There have been a number of excellent reviews of the developments in environmental modelling 

of freshwater systems.” In this chapter a review of more recent (1978-198,8) state-of-the-art 

freshwater modelling is presented. Due to the extremely diverse range of freshwater models, this 
chapter is restricted to a discussion of nutrient and toxic chemical water quality models only. 

2. MODEL nnsrcn 
AH environmental models are designed as a compromise representation of a natural system. 

Some models are- designed to be applied to a specific type of site and problem while others are
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designed as general, multimedia models, which have a flexible "number of compartments and 

processes which can be selected by the model user. However, it is well accepted that there will 

never be a single environmental contaminant model that can be developed which will be suitable 

for all applications. It is apparent that classes of models with specific applications will continue to 

be "developed. One way to efficiently utilize these models is to incorporate them into an expert 

system‘ framework that would allow the user to pick and choose the best model or model 

components for the particular application. Once the conceptualization of a modelling problem has 

been made, the model developer or user must detennine the relevant variables that are required for 

describing the desired water quality characteristics of the system and the appropriate nratlternatical 

expressions. Without the help of an expert system, the choice of the model's spatial, temporal and 

ecological aggregation must be made on the modeller’s or model user's personal experience. There 

is no guarantee that these initial choices will turn out to be the best choices in the later stages of 

the modelling Procedure. Any model should be designed to be flexible enough in design to allow 

subsequent modifications to be made without major changes being required in the model's 

programming structure. The nature of the model will be determined by the end use; as a research 

model or as a rnanagement model. . 

Empirical and statistically-based models are normally based on data collected from a specific site 

or ensemble of sites and employ mathematical estimation teclmiques to determine model functions. 

In many cases these models are not transferable to other areas and the spatial and temporal detail 
used in the models leads to less exact results than could be obtained using a physically-based 

model. 
' 

- 

i

~ 

Deterministic models are based on physical and chemical processes which are derived from theory 

rather than from mathematical analysis of data which is used for statistical models. Deterministic 
\ . 

models can be based on the assumption of steady-state or they can employ a dynamic approach 

which allows the consideration of the variable time. The main problem with steady state models is 

that, in most cases, they can not be used for management as they do not generate temporal
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response predictions», Time variable deterrninistic models are particularly useful in Water quality 

modelling where input loads can vary over short time periods. Deterministic models are also 

assumed to have greater applicability for establishing cause-effect relationships among the processes 

modelled. However, all models rely to some extent on empiricism and require field data for model 

calibration and verification. 

The more complex models will require more extensive field data for model calibration and 

verification than the other models. This data is usually only available for a small number of sites, 

which limit the utility of" the more complex models. Also, data collection is rarely carried out 

which considers the basic needs of modelling. -In the case of complex detemrinistic models, the 

verification step ‘can be a very difficult task since model verification can only be perfonned with a 

data set independent from that used during model calibration. In both the model calibration and 

verification steps, the "goodness" of fit must be adequately addressed. There are a number of 

quantitative methods that can be used to examine the fit between the predicted and observed data. 

Reasonable verification statistics however do not guarantee that any model will accurately predict 

future water quality.’ Some uncertainty will always be present which results from the model 

coefficients, variables, and from the model structure itself.” The uncertainty of the values used in a 

model are normally reflected in the model results. Techniques such as first-order error analysis and 

Monte Carlo analysis can be used to calculate these values, as outlined in Reckhow and Chapra“ 

and Chapra and Reckhow.“ ' 

3. WATER QUALITY MODELS 
Tables l and 2 list some of the more recent nutrient and toxic chemical water quality models 

along with summaries of their principal characteristics and applications. As in a" previous 

compilation‘ of existing models, these tables are not exhaustive in their scope but are presented as a 

starting point from which the reader can proceed in his/her search for a model or model 

components which can be used to solve a particular problem-.. In the first column of the tables the 

model name and its developer(s) are listed along with the associated model literature reference
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number (#).. In the time domain column the deterministic models are characterized as being either 

steady-state (S-S) or dynamic (Dyn). The time step is further defined as being variable (var), daily 

or annual. The empirical models are specified as having long term average (LTA), annual average 

(AA) or summer average (SA) data. As can be seen from the third column of the tables, the 

models represent a wide range of possible spatial domains. The models can simulate a system in 

one dimension (1-D), such as a whole lake (WL); in two dimensions (2-D) or .in three dimensions 

(3-D). One dimensional models are capable of simulating either the vertical or longitudinal 

behaviour of water bodies. These models are used when simplifying assumptions can be justified 

to allow the other dimensions to be ignored-. However, this ne_cessita'tes a limit in the generality of 

the model. For a Water body such as a lake, one dimensional models cannot predict the horizontal 

differences in water quality due to physical processes such as wind driven currents, the influences 

of nearshofe processes, and variable bed sediments. The patterns of distribution or circulation that 

cover large space time scales are nonnally determined by the shape of the lake or by short- 

term factors‘ such as point source loadings that are characterized by much shorter space and time 

scales, These different scenarios would require the use of two and three-dimensional models that 

would be capable of simulating the processes over a wide range of scales. 

The chemicals which are simulated in the models are presented in column 4. Some of the 
models were designed for specific chemicals while others were designed to simulate many different 

types of chemicals, such as metals or organics. The number of chemical. state» variables required in 

a model is basically determined by the nature and the number of significant interactions that occur 

with the key chemical or chemicals of interest. Some models"'°"‘”" include generalized 

thermodynamic sub-models -which allow an extensive number of interactions to be evaluated. 

However, proper application of some of these models requires specialized expertise because kinetic 

limitations may prevent many thermodynamically possible reactions. 

In column 5 of the tables the input data necessary torun the models are listed. For some of the 

empirical models, input data for only one or two variables are required (i.e. Smith Blue‘-Green
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Algal Model”) whereas some of the more complex detenninistic models (i-e- WASP4 ~“) may 

require input data for hundreds of model variables and parameters. Some of the models have been 
4

\ 

developed as theoretical exercises and have never been applied to natural systems. Other models 

have been calibrated and verified by application to a number ofindependent system data sets. The 

natural -systems the models have been applied to and the associated time periods are presented in 

column 7. In the last column some of the key assumptions and features of the models are 

presented. The model user must be aware of the assumptions and limitations of the models used. 

Failure to take these factors into account before applying a model to a new system will inevitably 

result in inaccurate model output. For any new application, a recalibration of the model is 

necessary and in some cases a change in model structure is required. The models which are 

designed for managers and othe_r such users, are now being designed with features to make them 
more user-friendly. models are typically designed to be able to be run on personal computers 

and have menu driven software}. For a model to be useful to persons other than the developer, it 

must also be well documented. For many of the existing models, such docu/rne,ntat:_l_o_n is not 
' 

‘Wt 

available or it is not written in a “manner to make it useful for the wide range of potential model 

users. For the users with little or no modelling experience, the documentation should point out 

those areas the model pwglfflm that can be modified and those that should not be altered, A 
model may also be designed that operates in an interactive mode so thatthe documentation and 
operation are combined. It is also common practice to include benchmark example input and 

output files with the model documentation to ensure that the model is operating properly on the 

usefr’s computer system, v"vhich may not be fully compatible with the design of the model computer 
coding. In order for a model t_o’m_aintai_n its utility, it must continuously be revised. This includes 

niodi_ficati_ons~ -of mathematical representations of physical-chemical processes as well as 

modificaIi0nS to incorporate the ever changing state-of-the-an in computer technology. For 

example, model set-up can be improved by new sophisticated input techniques. Output can now be 
displayed more efficiently using computer graphics. The process of linking different models
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together for application to a problem is becoming more widely used. For example, a hydrodynamic 

model might be linked with a chemical model, which might in tum be linked with a biological 

model to assess the effect of a chemical spill.“ 

4. MODEL CASE STUDIES A
" 

The bulk of the water quality models which have been developed over the past few decades have 

been directed toward the problem of eutrophication which has been caused by the significant 

increase in the loadings of nutrients, particularly phosphorus, to both large and small lakes. 

Eutrophication of rivers has not been as serious a problem due to the short residence time of the 

water. In iivers, one of the major problems has been the concentration of dissolved oxygen, which 

is controlled by the rate of production of oxygen by algae, the nitrogen cycle, and other 

biochemical processes. Also, the direct relationship between eutrophication and algal concentrations 

allowed the development of empirical models to proceed more rapidly. Consequently. these 

empirical models have found a much wider use in lake management than they have in river 

management. In this chapter, it .is impossible to describe all of the models in detail. The major 

characteristics of some of the recent water quality models have been presented in Table 1. A 
number of models have been selected from Table 1, which represent a reasonably "wide range of 

water quality models, for more in-depth review. A similar approach has been followed for toxic 
models. 

4.1 Nutrient Models 

4.1.1 Introduction
S 

Numerous studies have detennined that the concentration of total phosphorus in lakes can be used 

as -an indicator of lake trophic status (Vollenweider", Dillon”), algal population densities as 

measured by chlorophyll a ‘concentrations (Dillon and Rigler“, Jones and Bachman”) and water 

clarity (Dillon and Rigler“). Simple empirical models have been developed to predict total lake 

phosphorus concentrations using data such as illlllual phosphorus inputs, lake morphornetry,
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hydraulic flushing rates and temperature (Ch_apra"', Vollenweider”, Kirchner and Dillon”, Jones and 

Bachmann”, Larsen and Mercier‘°°, Reckow-‘-°“°'). These empirical models are based on data from 

numerous field studies and requi_re only a limited amount of input data which makes them 

particularly useful for lake managers. 

An example of an empirical model that has been developed .to predict total phosphorus 

concentrations, chlorophyll a, and Secchi depths is that of Canfield and Bachmann.” Although the
1 

model coefficients are based on data collected from a wide variety and number of lakes, the model 

is based upon the general model proposed by Vol1enweider“”: 

TP = L/D.(o + h) (1) 

where 

TP = total phosphorus concentration in lake water (mg/m’) 

L =’ annual phosphorus loading per lake area (mg/rn’/y) 

D, = mean lake depth (m) 

0 =' phosphorus sedirnentation coefficient (l/y) 
h = hydraulic flushing rate ( 1/y)

" 

The successful application of such a model is greatly dependent on how well the loss of 

phosphorus to the sediments is estimated. Dillon and Rigler‘°‘ chose to rewrite the Vollenweider 

equation and work with the phosphorus retention coefficient of a lake rather than the phosphorus 

sedimentation coefficient; 

'rr> -= L(1 -R,)/w, - (2) 

where w, = annual areal water loading (m/y), and R, = phosphorus retention coefficient (difference 

between annual phosphorus inputs and phosphorus outputs divided by the annual phosphorus input). 

Chapra” used a different parameter, the a arent settlin veloci_ (v), which is pal to the PP 2 W Bqll 

product of the mean depth and the sedimentation coefficient: 

R. = v/(v +iw.) 
_ 

, (3) 

where v is assumed to be a constant. Reckow‘°’ later proposed that v varied with w,:

I O
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v = 11.6 + O.2w, ' 

(4) 

Larsen and Mercier‘°° and Vo1lenweider‘°’ independently determined that phosphorus retention 

coefficients could be better estimated by the reciprocal of 1 plus the square root of the hydraulic 

flushing rate. Canfield and Bachrnann” have evaluated the general applicability of these 

relationships to both natural and artificial lakes by applying them to a large data base for 704 

natural and artificial lakes (Jones and Bachtnam.1.”; Larsen and Mere-ier,‘°°; U.-S. EPA National 
Eutrophication Survey (EPA-NES).‘°‘ Phosphorus sedimentation coefficients were estimated from 

the data by assuming steady state and by rearranging the terms of Equation 1 (Jones and 

Bachmann. ") i 

6 = ((L/D.)/TP) -h - 

_ 

(5) 

The authors attempted to avoid the problems associated with developing and testing a model with 

the same data by randomly sorting the lakes into two data sets, One data set (model development) 

which included "151 natural and 210 artificial lakes was used to determine the limnological factors 

that influence phosphorus sedimentation rates. The other data set (model verification), which 

included 139 natural lakes and 233 artificial lakes, was used to evaluate the accuracy of the model 

predictions. » 

A statistical analysis showed that the best estimate for the sedimentation coeffieient (s) in the 

Vollenweider equation was i 

0 =- 0.162(L/D_')°""‘ for natural lakes (6) 

0 = 0.ll4(L/D_)°“’ for artificial lakes (7) 

Two other models were developed to reflect the rapid sedimentation of particulate phosphorus 

canied into a lake) by inflowing streams. The first assumes that a constant fraction (fa) of the 

inflowing total phosphorus will flow into the open waters to be acted on by a constant 

sedimentation coefficient, following a rapid, initial sedimentation of particulate phosphorus near the 

tributary inlets. The model is represented by the equation ~ 

TP = f,L/D,(o + h) (3)
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A second similar model combines the initial rapid sedimentation with -a sedimentation coefficient 

that varies with the volumetric loading 

TP = f,L/D,(a(L/D,)"~ + h) 
_ 

(9) 

For natural lakes, a = 0.0942, b = 0.422, and f, = 0.8 and for artificial lakes, a = 0.0569, b = 

0.639, and f, = 0.8. However, the model results gave no indication about the -relative importance 

of immediate sedimentation of particulate phosphorus versus sedimentation in open waters because 

both equations gave similar results. I

y 

Canfield and Bachmarm” also examined the 'phjosph_orus-chlorophyll a and chlorophyll a=Secchi 

relationships for the natural and artificial, lake data. Their results indicate that the relationships are 

stronger for the natural lakes than for the artificial lakes. Factors other than phosphorus were 

suggested to be limiting algal levels in many artificial lakes and the results also support the 

common observation that nonalgal turbidities are important as factors of water clarity in artificial 

lakes. '

. 

To improve the accuracy of the predictions; the empirical models must be modified so as to 

reduce the number of simplifying assumptions that do not always hold. However, increasing the 

complexity of the models must be carried out so that the new variables that are added are effective 

in reducing the errors while maintaining the generality of the models. A determination of model 
complexity enters the modelling process at two stages. The first is during the initial stage when the 

modeller must chose a certain level of complexity before attempting to verify model against 

measured data and the second is during the final phases when the modeller must decide whether the 

model been verified and has sufficient complexity for its intended application Simple models, 

such as the empirical model, can be used as a. first approximation analysis upon which to build a 

more complex model that can take advantage of more detailed field data. 

4.1.2 Steady-State Eutrophication Model - 

Schnoor and O'Connor” developed a steady-state model which ‘built upon the previous empirical 

models, but because it was not developed empirically, it has the advantage of being applicable to
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lakes and reservoirs of varying morphology and locality. This type of model also allows the 

analyst to quantitatively relate nutrient concentrations to phytoplankton concentrations. The 

principal disadvantage of this type of‘ model is that various rate constants required in the model 

must be estimated. 

An initial simplification is made by assuming that the lake or reservoir can be considered as 

being completely mixed. Figure 1 is a schematic of the kinetics and transport of the 

nutrient-phytoplankton system simulated in the model. Inorganic nutrient input (W,) is derived from 

natural and manmade sources, andris formed by the mineralization of organic nitrogen, Km. It is 

lost through washout, 1/t,,, and by phytoplankton uptake, K, via a Lotka-Vo1terra‘°‘ ‘kinetics. 

Phytoplankton are lost due to washout and by the conversion to organic nutrient via K, 
Phytoplankton is also lost from the water column by settling, at a rate, K,. It is assumed that total 

organic nutrient .is mineralized at a constant rate, In this model, inorganic nutrient recycling 

from the sediments must be included in the external input term W, The mass-balance equations for 

the system are:
' 

dN/at = - K¢NsNp - N/to + W/v <10) 

dN,/dt = K,N,_1~1_, -1<,N_, -N,/r, -1<,nP (11). 

=' KeNp ' KmNo ' KIND ' Nfio 
where 

N, = inorganic nutrient concentration, ML" 
N, = phytoplankton nutrient concentration, ML" 

. N, = organic nutrient concentration, ML" u 

t, = mean hydraulic detention time, T 
W, = input rate of i_r_1_organic nutrient, MT‘ 

' 

W, = input rate of organic nutrient, MT‘ 
“V = lake volume, L’

V 

Summing equations (10) - (12) results in the equation:
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t 4N1/dl = -NT/I. -KN. + W10)/V - K,NP (13) 

where 

NT = N, + Np + N, 

dNT/dt = dN/dt + dNP/dt + dN,,/dt 

W'l'=wi+wo - 
* 

.. 

At steady-state, the non-linear, ordinary differential equations (10)-(12) are reduced to the following 

set of algebraic equations: V 

N, = (K, +- (1/tn) + K,_)/K, (14) 

N, = <<==<N., - N» + (N.K../K9)/I.(<1K.N. - K...) us) 

N. = (N, + (N./l.K.))/on <16) 

Where 

<1‘=(K...+I.<.+(1/IQ)/K. _ 

N, = W,,t,/V = average inflow organic nutrient concentration 

N, = W,t,/V = average inflow inorganic nutrient concentration 

Assuming that measurements for N,, P, and N, are available and that K, can be calculated from 

productivity measurements, equations (10)-(12) can be solved for K,, K,,
A 

K.¢'= K,~Nr - 1/I. - K. (17) 

K. = (WT/V -i NT/to) (1/(N, + N,» (18) 

K. = 1/N..(I<,N.I*I, + N/r. 4 w/v> <19) 

From equation (17) it can be seen that at steady state, the overall growth rate the outflow 

and settling rate is equal to the total loss of phytoplankton, K, Equation (18) shows that the mass 

rate of sedimentation K,(N,, + NP), is equal to the mass rate of total nutrient minus outflow. The 

mass rate of nutrient recycled, K, N,,, increases with primary production (K,N,N,) and decreases 

with the inorganic input minus the outflow of inorganic nutrient, according to equation (19). The 

model was applied to Lake Lyndon B. Johnson, which is the third of a series of seven
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impoundments in the Highland Lakes chain of Central Texas. It was calibrated using 1972 data 

and verified using 1973 data. The model was also applied to Lake Ontario data for the period 

1967 - 1973. V 

A general observation that can be made from examining the model equations is. that the 

sedimentation coefficient, K,, and the nutrient loading determine the total phosphorus in a lake or 

reservoir. The kinetic coefficients Ki, Kc, and K, determine the nutrient partitioning among the 

various organic, inorganic, and phytoplankton fractions. 

4.1.2 Lake Erie Model (Lam et al. ">") ' 

Lake Erie has been the focus of several water quality modelling studies for the last two decades 

(Vollenweider,”", DiToro and Connolly,‘°‘; Lam et al."; Snodgm_ss‘°’). Major pollution abatement on 

phosphorus loading was implemented in Lake Erie in the early seventies, but anoxia still occurs 

intermittently in the central basin hypolimnion. Several modelling approaches were proposed to 

explain why phosphorus removal alone cannot. eliminate anoxic occurrences totally. Some, e.g. 

Burn_s“°, attributed the occurrences to the physical conditions in the lake. He used three thermal 

layers (epilimnion, mesolimnion and hypolimnion) to calculate oxygen exchanges across layers. 

While he showed that the physical effects were important, the data he mused were too crude to 

accurately pinpoint the water oxygen demand (WOD) and sediment oxygen demand (SOD)> Others, 

e.g. DiToro and Connolly“ elaborated on the biological and chemical processes (using 15 variables) 

to define these rates but parameterized the stratification with a simple diffusivity». While they 

derived interesting theoretical values for WOD and SOD, they found it necessary to revise the 

hypolimnion depth which was assumed constant in order to fit the observed oxygen data for 1975. 

The shortcomings in these models indicated that physical, chemical and biological processes all 

play a role in the oxygen depletion problem in Lake Erie. The question is which processes should 

be included in the model and which should not. Lam et al." proposed the use of ‘a hierarchy of 
models to deal with this situation. For the case of Lake Erie, a model consisting of nine boxes

- ~
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representing the three basins and the three thermal layers which change their depths in time were 

found to be adequate in terms of the spatial resolution. An oitygen-phosphorus model with three 
variables is incorporated in these boxes and comparison to 16 years of data was reported in Lam et 
a1.‘“. The following is a summary of the model components and their interactions.- 

Niite-Box Model Structure
p 

A detailed discussion of the mathematical equations for thenine-box model is given in Lam et 
al.“ Briefly, Table 3 summarizes the three basic mass balance equations, Equations (20) to (22), for 

the three variables, soluble reactive phosphorus (SRP), organic phosphorus (OP), and dissolved 

oxygen (DO), respectively. For each of the "three layers, namely epilimnion, (i=1), tnesolimnion 

(i=2), and hypolimnion (i=3), in each of the three basins, appropriate areas (AB,) and volumes (V,) 

must be used in these equations (Table 3). Note that AB, and V, are assumed to vary with time. 

The source term, F",, used in these _equatio"ns refers to the loading as well as the inputs and outputs 

of the variable into and out of the ith layer as a result ‘of five major physical processes.. Again, 

briefly, Figure 2 shows a schematic description of the five physical processes considered. 
' The 

hydraulic flow represents the inflow at the Detroit River and the outflow at the Niagara River, 

resulting in a general ‘west-to-east flow in the lake. The water transport across the boundary 

between the westem basin and the central basin as well as that across the boundary between the 

western basin and the eastern basinis conservative. Thus, depending on the crojss-sectional areas of 

these boundaries in each layer, the velocities due to the hydraulic flow .are adjusted to obey mass 
conservation within each box.

. 

For simplicity, it is assumed that the interface between epilimnion and mesolimnion and the 

interface between mesolimnion and hypolirnnion are at the same depths in all three basins. This 

assumption facilitates the calculation of vertical entrainment and avoids the complication of further 

adjusting the hydraulic flows to mis-matched interfaces in different basins. Under this assumption, 

when one of the interfaces moves up, that part of the water in the uppe__r’l_ayer traversed by the 

ililéffflfifi is IIiiX¢d iI1I0 the IOWCI layer. In this Way the concentrations in the new upper layer
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remain undisturbed. This entrainment mechanismu‘ differs from the so-called diffusion process in 

which the concentrations in both layers are mutually disturbed due to an exchange mechanism. 

Indeed, the incorporafion of the vertical entrainment sets the model apart from other models using 

fixed thermal interfaces (e.g. DiToro and Connol1y‘°‘) in which only the diffusion process can occur. 

In the model, both entrainment and diffusion processes are possible. Due to the fact that the 

nine-box model uses the lake bottom as the reference point, changes in water level must be taken 

into account to transfer these processes properly. The water level can affect the heat storage in the 

lake and hence the thermal layer structure. As the water level rises, so do the thermal interfaces 

with respect to the lake bottom, and vice versa.‘“ 

Wind driven circulation can cause interbasin transports (Figure 2) in- addition to the hydraulic 

flow. For simpli'ci_ty, two vertical gyres are assumed in the nine-box model. The first gyre 

connects the epilimnion and mesolimnion in the central and eastem basins and the second connects 

the mesolimnion and hypolimnion (Figure 2). Of particular interest is the possibility that under 

certain wind conditions, there could be interbasin transport from the eastem basin hypolimnion to 

the central basin hypolimnion, bringing oxygen-rich water from the former to replenish the oxygen 

depleted in the latter. 

Phosphorus Oxygen Submodel ~ 

The nine-box model structure provides the dynamic framework for defining the boundaries of the 

boxes as well as the movement of substances among the boxes. Within each box. a set of 

biological and chemical processes also takes place. The Simons and Lam model" has been refined 
by the addition of an oxygen compartment for this purpose, i.e., a three-variable model of soluble 

reactive phosphorus (SRP), organic phosphorus (OP), and dissolved oxygen (DO). Figure 3 shows 

the scher_n_atic for the biochemical kinetics of the three variables for a typical basin with a 

three-layered structure. Table 3 summarizes the goveming equations (Equations 20-22). In the 

epilimnion, the oxygen is produced by phytoplankton photosynthesis in the photic zones and by 

reaeration at the air-water surface. Most of the time, oxygen is, saturated or even super-saturated in
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layer, with the saturation being a function of the water temperature calculated using the 

thermocline model?" In the mesolimnion and hypolimnion, oxygen can be produced by 

photosynthesis, since these layers may still be within the photic zone, particularly during the early 

part of the stratification period. However, as in the case of Lake Ontario,‘-° plankton respiration 

activity is reduced and hence less oxygen is consumed in the hypolimnion because of lower 

temperature and smaller cell size. 
'

- 

The sediment oxygen demand (SOD) is one of the major factors responsible for removing oxygen 

from the overlying waters in the central basin hypolirnnion. The values of SOD measured by, e._g., 

Lucas and Thomas,“’ Snodgrass,‘°’ Charlton“ and Herdendorf” in this basin range from 0.18 g 

O,/m’d to 0.88 g 0,/mid, depending on the instrument design and sampling method, Snodgrass‘°-’ 

examined three SOD subrnodels with varying degrees of complexity and concluded that the simplest 
one produced essentially the same results as the most complex. This model uses the Monod kinetic 

I. = s. <1>o>/(Do + to 
n <22) 

where J, is the oxygen flux into the sediment (g O,/t_n’d), s is the sediment oxygen demand rate (g 

O,/m’d), DO is the oxygen concentration of the overlying water (mg/L), and k, is the Michaelis 

constant (mg/L) for oxygen. The Monod kinetic has been found“ to simulate successfully the 

biological sediment oxygen demand as well as the water oxygen demand. The chemical sediment 

oxygen demand is found” to be relatively small and can be sufficiently described by first order 

kinetics. Snodgrassm’ reported k, = 1.2 mg/L for biological sediment oxygen demand. In the case 

of" equation (23), with the two Monod expressions combined into one, the Michaelis coefficient k, 
is found to be 1,4 mg/L. Lam et al.»‘»‘-‘ examined the SOD submodel and found that, as a first 

order approximation, s, could be written as 

8.. = L(TP) x 10"’ (24) 

whejre L(TP) is the lakewide total phosphorus load in MT. 

4.2 Toxic Chemical Models
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4.2.1 Introduction _

V 

'I'he presence of -a wide range of toxic chemicals in the waters, sediments and biota of lakes has 

become increasingly evident. These toxics represent uncertain human and aquatic health effects. 

Effective remedial action and management of these contaminants requires careful examination of the 

complex cause and effect mechanisms that ultirnatjely determine chemical fate, longevity, and 

toxicity. The behaviour of the contaminant can be simulated by the use of models which 

incorporate processes which describe its partitioning characteristics and the rate at which it may be 

transported. between compartments and broken down by various chemical and biochemical reactions. 

Deterministic computer models which are developed to predict the distribution of toxic ch_err_ric‘a1s 

(heavy metals, organic chemicals and radionuclides) in the aquatic enviromnent are based on the use 

of mass balance equations which describe a toxic subtance’s physical transport, adsorption, 

volatilization and decay in the system. In the most simple case, the lake or reservoir is assumed to 

be spatially uniform (completely mixed system), in which the transport, transfer, and kinetic 

components are described in terms of bulk coeffic_ient_s,. The equations which follow have been 

examined and developed by O‘Connor."‘-“" They define the steady-state distribution of toxic 

substances in a freshwater system which is shown in Figure 4. In this model, it is assumed that 

the mass of toxicant in the food chain is not significant. It is also assumed that the rates of 

adsorption and desorption between the dissolved and particulate components are much faster than 

the other kinetic processes, i.e. decay, volatilization, settling, and exchange with the "bed. 

Partition C06fi7cierrt 

A partition coefficient is typically used to describe the equilibrium distribution of the toxic 

chemical between the dissolved and solid phase; distribution describes the reversible reaction 

winch includes the composite effect of specific adsorption, ion exchange, and complexation. The 

partition coefficient is the ratioyof the solid and dissolved phases:
' 

P =r/C 
, 

_ 
(25) 

where r is the solid phase concentration and C is the dissolved phase concentration. The total
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concentration C, in the system may be defined as the sum of the dissolved C and particulate 

component p: 

2 c.=c+p _p <26) 

The latter is the product of the solid phase concentration and that of the adsorbing solids m: 

p .= rm (27) 

The dissolved concentration C includes both the free and bound fractions. The bound fraction is 

defined as the nonparticulate concentration, which in equilibrium with flue solid phase is the basis of 

the operational definition of the partition coefficient. Substitution of equations 25 and 27 into 

equation 26 results in the expressions for the dissolved f,-, and particulate f, fractions: __ 

1:. = c/c, = 1/<1 + Pm) - <28) 

r.. 
= r>/C. = Pm/<1 + Pm) <29) 

The. partition coefficient P is usually expressed as ug‘ per kg r per ug per litre C or litres per 

kilogram, L/kg. The product Pm is thus a dimensionless parameter. The partition coefficient varies 

from approximately 500 - 500,000 L/kg and the concentration range of particulate solids also varies 

over many orders of magnitude (<10 mg/L of suspended solids to > 100,000 mg/L in bed 

sediments). Considering the high concentration of solids in the bed, the component fractions may 
be approximated as ' 

fp, = 1 (30) 

fa, = 1/P,m, (31) 

where the subscript s denotes the sediment. 

Many factors are responsible for influencing the magnitude of the partition coefficient. In the 

case of heavy metals flI.1d'i_norganic chemicals, factors such as pH, redox conditions, ionic strength, 

and complexing capacity are significant. For organic chemicals. solubility and molecular structure 

are important The influence of solids concentration on the partition coefficient has also been 

observed (0’Conno_r and Connolly,"‘; Hasset and Anderson,“’). It is consequently recommended that 

partition coefficient of a given chemical be determined over a range of concentrations of solids
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and organic matter that exist for 8 Spficific water body. 

Kinetic Equations
_ 

The rate of adsorption between the dissolved and particulate components of a substance is - a 

function of both the concentration in the dissolved phase and the number of available sites on the 

adsorbing solids. The latter is proportional to the adsorption capacity of the solid r, 

minus the atnount of the solute adsorbed r. The rate of desorption is proportional to the amount of 

solute adsorbed, If we assume that the sjolid phase concentration r is significantly ‘less than the 

adsorptive capacity of the solids, then the rate equation is 

dC/dt = -K,C + K,p » 
~ (32) 

and K, = I_§,r,rn; K, = adsorption coefficient; r, = adsorptive capacity; m = concentration of solids; 
and K, = desorption coefficient. At steady-state, equation 32 becomes ' 

r/C = Kor,/K, = P 
' 

(33) 

and K,/K, = Pm » (34) 

If we consider a system where only the dissolved and particulate components are present and 

where the dissolved component is subject to volatilization, the kinetic equations are 

ac/at = -(Kt + I.<.>c + lop <35) 

dp/dt = +K;C - K,p (36) 

in which K, = Kl/D, = volumetric volatilization coefficient; K,_ = surface volatilization coefficient 

and D, = average depth. Addition of 35 and 36 yields - 

dC,/dt = l-K,,C - 

- (37) 

For the solutions of equations 35 and 36 to be valid at steady-state equilibrium, it is apparent that 

the rates of adsorption must be much greater than the rate of volatilization. Substitution of 

equation 28 into equation 3'7 gives the dissolved concentration as a function of C1,: 

dCt/dt = —KvC»/(1 + Pm) = -f.,K.C't 
_ 

(as) 

.For a nonvolatile chemical whose dissolved and particulate components decay at different rates, 

K4 and KP, respectively, the rate equation for the total concentration is
A
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dCr/dt = -(f,K,, + dC,~/dt = -(fd4Kd + fPKP)C, (39) 

Again, for the solution to be valid at equilibrium. the adsorptiomdesorption rate must be much 

greater than the rate of decay. The error introduced by this assumption has been studied by 

O’Connor‘~‘-‘g and can be determined by the dimensionless number KQK,/KT’, in which KT» = K, + K, 

+ K,,, O'Connor“ has shown that equation 38 is valid for (K,K,/KT’ ) <0,00_5 (error < 1 %). This 

would suggest that the above approach would not be valid for toxic chemicals whose rate of decay 

is very rapid. Such as Short-lived radionuelides. 

Suspended _and Bred Solids 

If nearshore conditions are neglected then O'Connor“-‘ has shown that a mass balance of the 

solids can be represented by: ' 

Vdm/dt = -vl,A,m - Qm + W (40) 

where: 

W = total mass input of solids to the lake 
A, = sediment area 

v, =~ solids settling velocity 

m = solids concentration in the water column 
V = volume of water ‘ 

Q = outflow rate 
Dividing by the volume reduces equation 40 to: 

dm/dt = m/t, - m(l/ta + K) (41) 

wheref ’

- 

m», = average concentration of total inflow i W/Q 
t, = detention time = V/Q

h 

K, = settling "coefficient = v/D, 

D, = mean depth = V,/A 

At steady’ state, the solution is
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mt./mi = 1/(1 + KJ.) ' 

A 

(42) 

where in, = equilibrium suspended solids concentration. 
‘ 

If bed scour is significant, the solids 

equation is
i 

den)/dt = r__n/t, - !_n_(1/to + K,) + K,,m, , 

' 

(43) 

where Kn is the scour coefficient and m, is the bed solids concentration. At steady state, equation 

(43) reduces to 

111./Mi = 1/(1 + KII.) ' 

- (44) 

where K", = K_(1 -¢‘), (pg = (K,m,IK_m_) = (j,/v,rn,). The term j, is the entrainment flux and is = 

v,,m, where Kn = v,/D,, which is the entrainment coefficient. The term v, is the scour coefficient of 

the bed solids. - 

If it is assumed that on a seasonal or annual basis there is a net sedimentation in a then in 

= m, , and bed thickness (D,) is described by 

(D;m,)/(v.’m.) ‘--' 1-41. (45) 

For ¢, 5 1, the rate of change of bed elevation is +ve. 

For ¢, = 0, scour is negligible.
' 

For o, = 1, scour balances settling and there is no net sedimentation. 

Chemical Equations 

The total concentration in the water column for a lake in which scour is a significant process“ is 

given by: 
' 

dCr/dl = W/V -Q/I. - fd(t)KvCl‘ - f,(I)K.€r + Kr[fa Cr: - fa(t)Cr]‘ + K..Cr. (46) 

The term K, is the transfer coefficient of the dissolved component. If biodegradation or chemical 

reaction occurs, then the equation becomes 

dC;/dt = W/V - C4-/I, - f,,(t)(Kd + K,,)C[ A-r fP(t)(KP -|_- K,)C, + K,[f¢,C,, - .f4(t)C,] + K,C,, (47) 

The total concentration in a fixed bed, where diffitsion down to deeper sediment is negligible, is 

given by - - 

' 

’

'

,



. Booty and Lam 22 

= fp(t)vrA|C'l‘ ' vufpA|Cl‘u -' vfA|[fMCl'l - 

4.2.2 Physical-Chemical Model of Toxic Substances in Lakes 

The model must represent the following processes: 

1) particulate sorption-desorption 

2) sediment-water interactions 

3) altrnosphere-water interactions 

4) transport of toxicant by advection, dispersion and mixing 

5) biochemical decay and photolysis 

Suspended Solids Model 

In the Thomann and DiToro"" suspended solids model, only a single class of solids is considered 

(ire. lurnps togethor the inorganic and organic particulates). This is a problem when considering the 

sorption of hydrophobic compounds such as PCB '8, Since they sorb differently to organic particles 

than they do to inorganic particles. c 

Water Column 

In the water column, the mass balance equation for suspended solids is 

Vdm/dt = Wm - Qm - v,Am + v,,Am, (49) 

where: 

V = volume of the water column (LP) 

in = solids concentration in the water column (M/L’) 

m, = solids concentration in sediment layer (M/L’) 

W, = mass input of solids (AM/I‘) 

Q = advective flow transport (Li/I‘) 

v, = particulate settling velocity 
_ 

(L/l‘) 

A = interfacial area (U)
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v,_, = particulate resuspension velocity (L/1‘) 

Sediment Layer 

In the sed_it_nent layer, the mass balance equation is 
' 

V,d,,/dt = v,Am -v,,Atn, - v,Am, (50) 

where: 

V,= bulk volume of the sediment (L’) 

v-,i, 
= net sedimentation velocity of the sediment (L/I‘) 

If it is assumed that the solids are at steady state, then dm/dt = d,,,,/dt = 0. The net sediment 

velocity‘ (v,) can be defined as: 
' V A 

v, = w,,m/q(l-8,) (51) 

where: 

W, = net loss of sediments from the water column (i.e. w,, = v,v,/v,, + v,,) 

q = solids density 

9, = sediment porosity i 

‘ 
4

' 

For a toxic chemical model, it is necessary to separate the solids concentration from the net 

sedimentation flux. The solids concentration in the sediment represents the bulk density and 

consequently, the concentration is given by:
T 

ml = 

Toxic Substances Model 

In this model, it is assumed that the sotption-desorption kinetics are faster than the time step so 

that the dissolved and particulate toxicant are "considered to be in a "local equilibrium“ with each 

other. The dissolved form, C, is the mass of toxicant per volume of" water and the total toxicant 

concentration, Q, is the mass of tozgicant pejr volume of water plus solids, (Cl), The porosity -of 

the volume must be multiplied by Cd to obtain the porosity-corrected dissolved form of the toxicant,



, 

~ Booty and Lam 24 

C,'. The porosity-corrected partition coefficient p’ can be defined as:
A 

where r is the concentration of the chemical on a per unit solids basis. The fraction of the toxicant 

that is dissolved. fd, is 

fa = (1 + rim)" (54) 

and the particulate fracti,on,fl,, is 

f, = p'm/(1 +- p'm) T 

Y (S5) 

For a continuously stirred tank reactor (CSTR), the mass balance equation for the total toxicant is 

expressed by: 

Vdcr/dl = W - Qcr - V.Af,,Cr + Vr;-Af;=-Cr.- + Kn-‘\(f¢.Cr/¢- ' facr/¢) - K‘/Cr + KtA(C./H.‘ - faCr/¢) 

. 

i 

‘ 

(56) 

where: 

W = mass loading rate of toxicant (M,/If) 

Q = total toxicant concentration (M,/L’) 

C,, = sediment total toxicant concentration (MT/I‘) 

K, = sediment water diffusive transfer coefficient (L/'1‘) 

lg = volatilization transfer rate coefficient (L/I‘) 

K = overall loss rate of toxicant (1/I‘) 

C, = atmospheric toxicant concentration (M,/Pg) 

H. = Henry’s constant T ((Mr/ifs)/(MT/I-’W)) 

whe'r‘e:tK =i Kdfd +
V 

K, = loss rate of the di_sso1ved forms 

K, = loss rate of the particulate forms -

_ 

The mass balance equation for the toxicant in the sediment segment is represented by the 

equation: V 

- ~ 

V419:/dl= WAf,Cr - V.Af¢.Cr. + K»A(f¢Ct¥¢ - f.r.Cr/¢.) - V..Af,.Cr. - K¢V.Cr. (57)
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where: K, = Kd,Fd, + Kpfp, '

_ 

The above model was applied by Thomann and DiToro"° to the prediction of ”’Pu and PCB 
levels in the Great Lakes. The model was first applied to the plutonium data so that the effects of 

sediment resuspension and interaction with the water column could be calibrated. The settling and 

resuspension parameter values were then used in the application of the model to PCB 's. The model 

predictions of PCB in the water column and sediment were found to b6. at b¢SI, an order of 

magnitude calculation. was due to the following: 

I) uncertainty in input loads
_ 

2) uncertainty volatilization rates * 

3) wide range of reported water column and surface sediment concentrations ' 

4) variability in the estimates of the coefficients. 

4,2,-3 Mas-s Balance Model of Metals in Lakes 

Dolan and Biennanm used a three-stage approach in the development of a metals mass balance 

model for Saginaw Bay, Lake Huron. In the stage; the advection and dispersion components 

of the model were calibrated using conservative tracers. In the second stage, the output from the 

first stage was used to obtain a dynamic mass balance for suspended solids in both the water 

column and sediment. In the final stage an equilibrium partition coefficient was used to couple the 

metals mass balance to the suspended solids mass balance. A schematic diagram of this coupled 
model is shown in Figure 5. ‘ 

Advection and Dispersion
n 

In the model the effects of advection and dispersion are described using the equation:

N 
Vdm/dt = 2 F(Qi.E;.mt) + Wm ' 

(58)
1 i=_

‘ 

where: ’

» 

Q = the advective flow across the ith interface of a segment (m‘/sec)
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E‘ = the dispersion at the ith interface of a segment (m’/sec) 

tn, = the neighbouring segment co‘nc,e'ntratio'n (ug/L) ' 

i W, = loading of suspended solids (MT/day) 
V 4-; volume of water in a segment (m") 

N = total number of neighbouring segments 
The function, F,which represents the net effect of advection and dispersion in the water column, is 

the same as that used by Richardsonm. The model was calibrated by adjusting flow rates and 
dispersions among model segments until calculated concentrations of tracer matched the observed 

values. e 

Suspended Solids Mass Balance 
4 

"

. 

The approach used by Lorenzen et al.‘” for total phosphorus was modified for the suspended 

solids and metals mass balance. The modifications include: 

1. Loading rates were considered time-variable. ~ 

2. Particulate sedimentation was considered to depend on a power function, not a f'n'st-order 

function. 
" 

-

. 

3. The resuspension tenn was considered to be a function of wind speed. 

The mass balance equation for each water column segment is represented by»: 

N
. 

»Vd.m/dt = Z F(Qi!EiImi) + W... - (V In V.)/D + (V.m..V._;)/D._ (59) 
a=-1 

where: 

m = suspended solids concentration in the water column, kg/L 
v, = settling velocity in m/sec 

= segment depth in meters ' 

V, -.= volume of sediment in a segment in in’ 

m, = concentration of" solids in the sediment in kg/L 

v,,= sediment resuspension velocity in m/sec
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D, =- depth of sediment in a segment in meters‘ 

For each sediment. compartment, the solids concentration in the sediment was determined using an 

equation of the form: ~ 

V, dmjdt = V m V,/D - (V,/D,)m,(v,, + kb) (60) 

where kb is the sediment burial rate in meters/sec.~ Equations (59) and (60) were coupled through 

the two variables for suspended solids concentrations, m m,. 

The variable settling velocity, v,, is used to account for differences in settling velocities among 

the various size fractions of suspended solids in the water column. In the model, the settling 

velocity at any time is represented by: - 

v, = ks m° 
_ 

D 

(61) 

where ks is the normalized settling velocity in m/sec and G is an empirical constant (unitless). 
A threshold mechanism was used to determine the time-‘variable sediment resuspension rate. If the 

average daily wind speed was below a specified threshold value, the apparent net resuspension 

velocity of the sediments was assumed to be zero. If the wind speed exceeded this threshold, the 

value of the apparent net resuspension velocity was determined by the use of a calibration curve, 

As shown in Figure 5.. the sediment was divided into two layers. The upper layer is the "active" 

layer which is subject to potential resuspension. In the model, the depth of this layer was assumed 

to be a constant 10 cm, based on the depth of benthic activity. 

Equilibfium Partitioning
' 

In natural systems, the adsorptive capacity of the solids is almost invariably an order of 

magnitude greater than the solid phase concentration Also, the suspended. solids concentration is at 

least an order of magnitude greater than any of the metals. The equilibrium equation of Wolfe et 
a1."":

' 

Cd =»Cr/(P * C +1) ' 

. (52) 

has been used in the model, where P is the partition coefficient, in L/kg. Under the above‘ 

conditions, negligible competition between different ‘trace metals can be assumed and the equation

if
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becomes identical to a linear adsorption equation (Oakley et al."‘). 

Metals Mass Balance i 

In the model, a mass balance equation for total metal in the watercolumn is defined as: 

N ' 
"

- 

V dCr/dt = Z F(Q..Et-Con + W -(V(Cr - Ct)‘/.)/D + (V.\../.,Cr.)/D. (63) 
i=1 - 

where W .is the loading of total metal (mg/day), C, is the concentration’ of total metal in the water 
column (ug/L), C, is the concentration of dissolved metal in the water column (ug/L), and Cr, is 

the concentration of total metal in the sediment in ug/L, The mass balance equation for total metal 

in the sediment is : 

V, dCr./dt = (l/(Cr - ¢.)V.)/D (V.Cr.(V,. + kb))/D. (64) 

The mass balance for dissolved metals follows from the differentiation of equation 62: 

V dC,/dt = V_dC,/dt (1/(P C 1~|-1)) - V dC/dt (P (1,)/(P C+1)’) . . (65) 

In the model, particulate metal was assumed to traclg with suspended solids in the water column. 

‘It was also assumed that all metal in the sediments was associated with solids and consequently no 

explicit consideration was made of the dissolved metal concentrations in the sediments. As a result, 

identical settling velocities, resuspension and sediment burial rates were used for rnetals and for 

suspended solids. ' 

~ 

‘

A 

Sensitivity analyses performed on the model indicate that suspended solids exert significant 

control on metal concentrations. Total metals concentrations in the water were found to be 

most sensitive to settling rates of suspended solids. Dissolved metals concentrations were found to 

be most sensitive to the value of the partition coefficient. Metals concentrations were found to be 

least sensitive to the long-term burial rate of the surficial sediment layer. In order to obtain a 

reasonable degree of success in predicting metals concentrations as a function of external loadings, 

it was found that it is not sufficient to know only the partition coefficient and the water circulation 
regime. In addition, suspended solids loading, wind regime, system morphometry, depositional 

zones, and sediment concentrations need to be detennined.
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4.2.4 Fugacity Concept 

The fugacity concept is an approach which is inherent to many models which employ partition 

coefficients to predict the fate of nonionic, organic hydrophobic compounds, whose distribution in 

the enviromnent is controlled by the equilibrium between the substances’s vapour pressure and 

solubility. The main advantage of the fugacity concept is standardization of concentration units 

between the different phases which allows a user to obtain a comprehensive picture of the state of 

equilibrium between all compartments of a system. Recently, Mackay et al.““” have developed 

and appliedthis concept to toxic chemicals in lakes. 

Atmosphere
. 

For real, nonideal gases and gas mixtures, partial pressure is replaced by an idealized pressure, 

called fugacity f by G.N. Lewis. The fugacity approaches the partial pressure of the component as 

the mixture becomes infinitely dilute. Fugacity is related to partial pre'ssure,P,, by the expression 

f = x, P, 
' 

i (66) 

where x, is the fugacity coefficient. Only for high pressures is the value of X; significantly different 

from l. Fugacity can be regarded as the "escaping tendency" that a substance exerts from any 

given phase, with units of pressure ( i.e. Pa or atm).- Concentration C, (mol/mi), in the vapour 

phase, is related to partial pressure through the gas law:
' 

C,=n/V,=P,/RT=f/RT=rfZ 
_ 

. (67) 

where n is the number of moles of substance and Z, is called the fugacity capacity. and has units 

of (mol/m’atm). The fugacity capacity quantifies the capacity of the phase for fugacity.- Since Z, 

is simply 1/RT, where R is the ideal gas constant, Z, is independent of the nature of the solute or 
the composition of the vapour (for nonassociating solutes and low or atmospheric pressure 

conditions). 

Water -

- 

V‘ In aqueous solutions, the relationship between f" and C for infinite dilution, conditions are
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represented by the equations: 

~ Z, = C/f = C/PP =- 1/H 
t (68) 

where H is Henry's Law constant. H describes the linear proportionality between partial pressure 
and liquid concentration and has units of atm m’/mol. _Hemy’s Constant is usually quite constant at 

low concentrations and, for 1_'ow solubility substances it can be estimated from the ratio of the 

substance’s vapour pressure and solubility. It must be pointed out that the above relationships are 

only valid if the solute is in completely dissolved forms less than or equal to saturation. 

The air-water equilibrium concentrafion ratio is expressed as: 

C,/C = H/RT 
i 

(69) 

Since RT is a constant for a given temperature, it can be seen that it is H which detennines the 
partition equilibrium. Compounds of high H partition preferentially into the atrnosphere while those 
of low H partition preferentially ‘into the water. 

q

, 

Sorbed Phases » 

Mackay and Patersonu‘ have shown that the sorbed-phase fugacity capacity, Z, is equal to Spq/H, 

where S, is a sorption coefficient and q is the sorbent’s density. This is derived by assuming that 

for hydrophobic compounds at concentrations well below their solubilities, the linear sorption 

equilibrium equation (Karickhoff et alf”) 

X ~= SPC . 
_ (70) 

is applicable. X is the sorbed concentration (mol solute/10‘ g sorbent) and C is in units of g/m’. 
The concentration of sorbed material (C,), expressed as mol/misorbent, is thujs Xq rnol/In’. At 

equilibrium. the fugacities of the sorbed and dissolved material must be equal and hence if Z, is the 

sorbed-phase fugacity- capacity: 

f = HC = C,/Z, (7-1) 

then Z, = C,/HC = Xq/H(X/SP) = Spq/H.
_ 

S, is strongly correlated to th_e organic carbon content of a soil or sediment. If S1, is normalized on 

an organic carbon basis, a new partition coefficient, K“ can‘ be defined:
q

‘
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K“ = S,/foc . 
. (72) 

where i'foc"- is the fractional mass of organic carbon in the soil or sediment, Karickhoff et alf” 

found the following relationship between the K“ of hydrophobic compounds and octanol-water 

coefficients (KW): '

. 

. 

log‘ K“ r= 1.00 logK,w-0.21 - (73) 

This is the correlation used to estimate K, and hence S, iwhen experimental values are not 

available.
. 

Biota 

A bioconcentration factor, KB, is used instead of the partition coefficient for biota. However, if it 

is expressed as a ratio of the concentration in the biota on a wet weight basis, it is identical to Sp-. 

If it is expressed on a wet volume basis, it is analogous to S,,q. Consequently, the fugacity 

capacity for the biota, Zn, is defined as: - 

Z» = Kaqa/H 
. 

(74) 

The above relationships for fugacity capacities can be used in mass balance equations to 

determine the amount of a compound in each model compartment. The same results would be 

obtained if partition coefficients‘ were used in the mass balance equations for steady-state 

equilibrium models. The advantage of the fugacity approach is that the behaviour of each phase is 

treated separately but in the same units so pseudopartition coefficients between phases which 

are not in contact do not need to be developed. simplicity results in identical mathematical 

expressions of mass balance which becomes most advantageous for more complex systems where a 

large set of equations need to be solved. However, the fugacity approach is not applicable when 

pollutant transport occurs by processes which are not dominated by. equilibrium driving forces.~ The 

fugacity approach also becomes inappropriate when spatial transport equations are needed.
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S. Conclusions - 

Nutrient water quality models are, in general, more advanced than toxic chemical models. This is 

due largely to the limited amount of a posteriori testing of these models. This is a consequence of 

the much greater amount of high quality, long-term field data which has been and continues to be 

available for nutrients than for toxic chemicals. As the spectrum of toxic chemicals being produced 

continues to expand, this lack of field data for testing toxic chemical models continue to 

hamper their developrnent, calibration and verification 

Many of_ the concepts presented in this chapter are equally applicable to marine models. For 

example, the partition eoefficient concept can be used equally well in marine models for the 

distribution of metals or for slowly decaying radionuclides. Asiin freshwaters, if the decay process 

is greater than the adsorption-desorption rates, then a kinetic approach will be required rather than 

assurning pseudo-equilibrium. The fact that some models use different mathematical expressions to 

describe similar ecological processes is due mainly to the model developer’s attempt to match the 

complexity‘ of a particular application scenario." Ideally. a posreriori sensitivity analyses should 

reveal which model processes and parameters are essential and which can be ignored. 

Although a general water quality model cannot be developed for all contaminants, the increasing 

use of hierarchical models and expert systems will probably expand the capabilities of modelling a 

wide range of ecosystems and contaminants by allowing a model user to chose appropriate sub- 

models from a computer library of compatible programs. However, simultaneous efforts must 

continue to be made into theresearch of" the individual processes. 

An area of water quality modelling that needs to be developed is at the land-water interf_a_ce._ 

This includes such processes as fine-particle transport, parricularly at the land-river‘-’° or land-ocean 

interface. Nonpoint source models or submodels are needed to increase the accuracy of loading 

predictions to be used in the current nutrient and toxic chemical models which typically use forcing 

functions to simulate linkages to terrestrial processes.
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Booty and Lam 

TABLE 3 Equations for the nine-box three-variable model, 

A) Mass Balance Equations 

d/dt = Fi(SRPl) ’ Us + + r§(ABi-1 ' (20) 

a/at (v,o1>,) 
'= 

,1=,(o'1>g + U, -R, + r,,,(AB..1) -AB,) - <:,,_A ,,(_,0P,-0.005) + 
51-1ABs-1 (OP:-1'0-.005) (.21.) 

<1/at <v.1>0.> = (1=.<1>0.> + tf..v. - r,.1n - k.(AB... -Ana] no/<1>0. + K..>> + 
fx.ABi.1(D0. - D09 (22) 

B) Rate Formulations and Calibrated Constants
g 

U, = B,p,(1.07)“(_OP,>-0.005) V,(SRP/(SRP, + 0.0005) where B, =0.43, B2. =0.60, B, = 0.60 
.(day‘) and p, = light factor ' 

R, = Y, (1.07)“ (OP,-0.005)V, where Y, = 0.02, Y, = 0,00 , Y, = 0.001 (day") 

0 (selfliflg velocities i_n m/day); 0, = 0, 0, = 02, 0-, 0.4, 0, = 0.4
_ 

F, (source term due to loading advection, diffusion, ent ainment, and mixing; see Figure 3). 

f,, (phosphorus to oxygen ratio in photosynthetic product on of chlorophyll):'f,,' = 140.0 
rw (phosphorus resuspended by wind waves, in g/m’day) = .001 w/W, where w is Wind 

speed in In/day and w, = 500,000 m/day 

rl, (phosphorus return per area, in g/m’day): r, = 0.0001 or r, = L(TP x 3x10_‘7 if D0, < 

1.5 mg/L - 

R6, (rearation coefficient, in in/day): rm = 2, r_, = 0, r, = 0 

DO, (saturated oxygen concentration, in mg/L) 

K, (half-saturated coefficient for oxygen):K_ =. 1.4 mg/L. 

k, (sediment oxygen demand, in g0,/m’d: k, = L(TP) x 10", L(TP) = lakewide total 
phosphorus load in MT



Booty and Lam _ 

'Note_:'l'he su_bc_ript "ii" denotes the location pf the parameter value, with i = 0 denoting the surface value and i-=1,2,3 

denoting the value in the first,second, and third lake model layefs. SRP, OP, and DO are (mg,/L) of 

soluble reactive phosphorus, organic phosphorus, and oxygen, respectively. AB and V are area (m’) and 

volt_m_z_e(111’), U and R are the algal uptake and release rates (glday). T ‘is temperature (°C)..



5°00’ and 

l) Kinetics and transport of nutxient-phytoplankton system 

2) Schematic of physical processes incorporated in the nine-box model 

3) Schematic of biologiwl and chemical processes incorporated for a water column in the niiie-box 

model. 'l‘he subscripts 1,2,3 denote first-, second, and third layers (SRP = soluble reactive 
phosphorus, OP = organic phosphorus. DO = dissolved oxygen). ' 

4) Schematic of a freshwater system . 

5) Schematic diagram of a coupled metals mass balance model
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Appendix, Notation 

The following symbols are used in this chapter: 

3 = empirical coefficient; 

A = interfacial area (L’);~ 
A, = area of the sediment (L’); 

AB, = lake layer areas (U);

b

B 

= empirical coefificient; 

, 
= algal uptake rate coefficients (T");- 

C = dissolved concentration of chemical (M/L’); 
C. 

Ca 

C, = concentration of chemical in particulate phase (TM/L’) 

= concentration of chemical in atmosphere (M/L’); 

C, "== conentration of chemical in the sediment (M/L’); 

C, = total concentration of chemical (M]L’); 

C s = total concentration of chemical in the sediment(M/L’) 
D = depth of water segment (L); 
D, = mean lake depth (L); 

D, = depth of sedirnent segment (L); 

DO = dissolved oxygen concentration (M/L’);
D 
El

f 

f. 

fa

Q 

O, = saturated dissolved oxygen concentration 

= dispersion at the ith interface (L‘/1‘); 
= fllsacity (arm);

\ 

= fraction of incoming‘ phosphorus going to open lake 
= dissolved fraction in water, 
= particulate fraction in water;

D 

Booty and Lam 

= concentration of chemical in dissolved phase (M/L’)



fa, = dissolved fraction in sediments:
4 

fr, = phosphorus to oxygen ratio in photosynthetic chlorophyll production; 

fl,-, 
= particulate fraction in sediments; 

F; = source term due to loading advection, diffusion, entrainment, and mixing (Mfr) 
(3 = empirical unitless constant; 

h = hydraulic flushing rate (1'/1‘); 

H_ = Henry's Law constant (atm in’/mol); 

j,, 
= scour flux of sediments (M/L”i‘); 

J, = oxygen flux into the sediment (M O,/UT’); 

kb = sediment burial rate (L/I’); 

lq = volatilization transfer rate (L/I‘); 

k, = Miychaelis constant for oxygen (M/L’); 

ks = normalized settling velocity (L/I‘); 

K = overall loss rate of toxicant (lff); 
K, = sediment-water diffusion coefficient (L/1‘); 

K_,- = decay rate of dissolved fraction (1/I‘); 

K, -= transfer coefficient of dissolved component (1/T); 

KL = surface volatilization coefficient (1_/1‘); 

K, = decay rate of particulate fraction (1/I‘); 

K, = organic carbon nonnalized partition coefficient (L/kg); 
Kw, = octanol-water partition coefficient (L/kg); 

K, = adsorption coefficient (1/1’); 

K, = adsorption coefficient (1/1‘); 

K, = desorption coefficient (1/I‘); 

K, = settling coefficient (1/1"); 
K,’ = porosity corrected settling coefficient (1/I‘); 

Booty and Lam

P
I



I N, = inorganic nutrient concentration (M/L‘); 

a BOOIY and Lam 
KT = sum of adsorption, desorption and volatilization rates (1/l‘); 

lg = scour coefficient (l,fI‘);' 
'

- 

K, = volumetric volatilization coefficient (1/1‘); 

L = annual phosphorus loading per lake area (M/L”I‘)1-,1 
L('I‘P) = lakewide total phosphorus load (M); 

m = concentration of solids in water (M/L’); 
m, = concentration of solids in sediment (M/L’); 

in, = concentration of solids in layer i (M/L’); 

m, = equilibrium concentration of susupended solids 

n = number of moles of gas; 

N = number of lake segments; 

N, = organic nutrient concentration (M/L’)-; 

N, = phytoplankton nutrient concentration (M/L’); 

OP = organic phosphorus ‘concentration (M/L’); 
P = partition coefficient (L/kg); t 

P, = partial pressure (atm); 

P, = sediment partition coefficient (L/kg); 

p = particulate component concentration (M/L‘); 

Pt = light factor. 
p' = porosity corrected partition coefficient (L/M); 

q = density of sorbent (M/L’); 

q, = density of biota (M/L‘); 

Q = advective flow (_L‘/T); 
Q = advective flow across the ith int_erfa_<>e (I-J’/I‘); 

r = concentration of toxicant per unit solids (M/MT);



Ir, = "maximum adsorption capacity of solid (M/M); 

I I‘, = phosphorus return per area (M/L”I‘); 

r,, = resuspended phosphorus (M/L,T); 

R = Ideal Gas Law constant (arm m‘/mol "K)'; 
RA, = rearation coefficient, (L/I‘); 

IL = algal release rate (M/T); 

R, = phosphorus retention coefficient; 

s, = sediment oxygen demand coefficient (M 0,/UT); 

S, = sorption coefficient (M3 water/l0‘g sorbent); 

SRP = soluble reactive phosphorus concentration (M/L‘); 
t=time(T); 

t, = detention time (T); 

T = temperature; 
TP = total phosphorus concentration (M/L’); A 

Ui = algal uptake rates (M/I‘);
s 

v = 8PParent settling velocity (L/I‘); 

vs =\ variable settling velocity (L/I‘); 

v, = net sedimentation velocity (Lfl‘); 

v, = settling velocity (L/I‘); 

v,, = resuspension velocity (L/I‘); 

v, = scour coefficient of sediment solids (L/1‘); 

V = volume of water (L‘); 
V, = volume of gas (13); 

V, = bulk volume of sediment layer (L ); 

w, = net loss of sediments from water column 

w = wind speed (m/day); 

Booty and Lam



Booty and Lam 

W, = areal water loading (LIP); 

W = loading rate of chemical (M/I’); 
W‘ = input rate of inorganic nutrient (Mfr); 

W, = input rate of organic nutrient (M/I‘); 

W, = loading rate of suspended solids (M/T); 
x, = fugacity coefficient (rnol/m’ atm); 

X = sorbed chemical concentration (M/M); 
Y; = algal release coefficients (.1/ll‘); 

Z = fugaoity capacity ,(mo1m’/aim); 

Z, = fugacity capacity of biota (moi NP/atm); 

Z, '= sojrbed phase fugacityscapacity (mol m"/atni)‘; 

Z, = fugacity capacity in water (mol In’/atm); 

8 = sediment porosity (L?/L’); 
4>, = dimensionless entrainnient coefficient; 

6, = settling velocities (m/day).


