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Abstract
This paper presents a review of recent (1978-1988) water quality models which have been

developed for prediéting the impacts, pathways, fate and efects of nutrient and toxic

-chcmical_s in freshwater systems. The principal characteri’étics and applications of 38

nutrient and 35 toxic chemical models are summarized in tabular form. These tables
should be particularly useful for directing research and management model users towards
suitable models and model components which can be used to solve water quality problems.
Detailed reviews of model structures, process representations and applications are presented

for 2 nutrient models and 3 toxic chemical models.



RESUME

Ce document passe en revue les modéles récents (1978-1988) de
qualité de 1'eau qui ont été mis au point afin de prévoir les 1mpac£s;
les voies, le sort et les effets de substances nutritives et de
produits chimiques toxiques dans les réseaux d'eau douce. | Les
principales caractéristiques et applications de 38 modéles de matiéres
nutritives et de 35 modéles de produits chimiques toxiques sont
présentées sous forme de tableaux. Ces tableaux pourraient se révéler
particuliérement utiles pour orientef les utilisateurs de modéles de

gestion et de recherche vers des modéles et &l1éments de modéles mieux

appropriés et qui peuvent servir & régler des problémes de qualité de

1'eau. Des revues détaillées des structures de modéles, des
représentations des processus et des applications de deux modéles de
matiéres nutr1t1ves'et de trois modéles de produits chimiques toxiques

sont présentées.




Management Perspective

Ecosystem management requires predictions to be made about the pathways, fate and effect
of contaminants. In a management mode, the models can be used to 0ptimize_ proposed
control measures which are proposed :,d meet water quality standards. This chapter
presents a review of the recent (1978-1988) state-of-the-art models which have been
developed for predicting the impacts, pathways, fate and effects of nutr_ien,t" and toxic
chemicals in freshwater systems. The authors were asked to write this chapter as a
contribution to a CRC Press book entitled "Focus on Modelling Marine Systems, Volume
IL, in recognition of their significant contributions to water quality mbdellin‘g and because
of the modelling concepts which have been developed for. freshwater systems which are
incorporated into marine water quality models. The principal characteristics and
applications of 38 nutrien‘t and 35 toxic chemical models are summarized in tWo tables.
These tables should be paftieularly useful for directing both research and manager'nent‘
model users towards suitable models or model components which can be used to solve

water quality problems.
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PERSPECTIVE-GESTION

La gestion des écosystémes nécessite 1a formulation de prévisions
od i1 est question des voies, du sort et des effets de contaminants.
Dans un mode de gestion, les modédles peuvent servir d optimiser les
mesures proposées de dépollution pour 1'atteinte de normes de qualité
de 1'eau. Ce chapitre fait la revue des modéles récents et raffinés
(1978-1988) qui ont été mis au point pour prévoir les impacts, les
voies, le sort et les effets de substances nutritives et de produits’
chimiques toxiques dans les.réseaux d'eau douce. Les auteurs ont été
priés de rédiger ce chapitre qui doit €tre incorporé dans un ouvrage
de l1a CRC Press et qui sera intitulé "Focus on Modelling Marine
Systems, Volume II"; ces auteurs ont été pressentis d cause de Teur
importante contribution & 1a modélisation de la qualité de 1'eau et
parce qu'ils ont trouvé des concepts de modélisation des réseaux d'eau
douce qui ont &té incorporés dans des modéies de la qualité de
secteurs marins. Les principales caractéristiques et applications de
38 modéles de substances nutritives et de 35 moddles de produits
chimiques toxiques sont présentées en résumé dans deux tableaux. Ces
tableaux pourraient se révéler particuliérement utiles pour orienter
les utilisateurs de modéles de gestion et de recherche vers les
modéles et &léments de modéles mieux appropriés qui peuvent servir &
régler des problémes de qualité de 1'eau.
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1. INTRODUCTION

Mathematical modelling of ecological systems is é multidisciplinary field of research. The models
are based upon fundamentals of climatology, meteorology, chemistry, biology, geology, hydrology
and physics. All models are developed with ihe goal of being able to simulate real-world
behaviour under varying conditions. The complexity of the model and its input and output data
depend on the spatial and temporal scales of interest. The main thrust behind the development of
water quality models has been the need to predict the results of man-made influences on our water
resources, ranging from rainwater to seawater. Until recently, the oceans have been treated as a
system that, because of its enormous size, could continue to -dilute any contaminants that were

introduced into it. However, freshwater systems, such as rivers, lakes and groundwaters, have had

- more rapid and more visible impacts on their water quality by both natural and man-made -

processes. For this reason, much more effort has been directed over the past severﬂ decades
toward the development of water quality models and the associated data collection activities for
freshwater systems, Conséquent_ly, any book which deals with the development of models for the
oceans should also include a review of freshwater models. Such a review could benefit ocean
modelling since many of the underlying concepts are applicable in both systems. Indeed, for
estuary models it is necessary to combine the two systems.

There have been a number of excellent reviews of the deve_lopment.s'in environmental modelling
of freshwater systems.'” In this chapter a review of more recent (1978-1988) state-of-the-art
freshwater modelling is presented. Due to the extremely diverse range of freshwater models, this

chapter is restricted to a discussion of nutrient and toxic chemical water quality models only.

2. MODEL DESIGN
All environmental models are designed as a compromise repiesentation of a natural system.

Some models are designed to be applied to a specific type of site and problem while others are
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designed as 'g‘eneral, mulimedia models, which have a ﬁcxible number of compartments and
processes which ,can. be selected by the model user. However, it is well accepted that theére will
never be a single environmental contaminant model that can be developed which will be suitable
for all applications. It is apparent that classes of models with specific applications will continue to
be ‘developed. One way to efﬁciéntly utilize these models is to incorporate them into an expert
system® framework thaf would allow the user to pick and choose the best model or model
components fdr the particular application. Once the conceptualization of a modelling problem has
been made, the model developer or user must determine the relevant variables that are required for
describing the desired water quality characteristics of thé system and the appropriate mathematical
expressions. Without the help of an expert system, the choice of the model’s spatial, temporal and |
ecological aggregation must be made on the modeller’s or model user’s personal experience. There
is no guarantee that these initial choices will turn out to be the best choices in the later stages of
the modelling procedure. Any model should be designed to be flexible enough in design to allow
subsequent modifications tob be made without major changes being required in the model’s
programming structure. The nature of the model will be determined by the end usé; as a research
model or as a management model.

Empirical and statistically-based models are normally based on data collected from a specific site
or ensemble of sites and employ mathematical estimation techniques to de;em‘xi‘ne model functions.

In many cases these models are not transferable to other areas and the spatial and temporal detail

used in the models leads to less exact results than could be obtained using a physically-based'

model.

Deterministic models are based on physical and chemical processes which are derived from theory
rather than from mathematical analysis of data which is used for statistical models. Deterministic
models can be based on the assumption of steady-state or they can employ a dynamic approach
which allows the consideration of the variable time. The main problem with steady state models is

that, in most cases, they can not be used for management as they do not generate temporal
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response predictions. Time variable deterministic models are particularly useful in water quality
modelling where input loads can vary over short time periods. Deterministic models are also
assumed 1o have greéter applicability for estabiishing cause-cffect relationships among ttvle‘pmccsses
modelled. However, all models rely to some extent on empiricism and require field data for model
calibration and verification.

The more complex models will require mofe extensive field data for model calibration and
verification than the other models. This data is usually only available for a small number of sites,
which will limit the utility of the more complex models. Also, data collection is rarely carried out
which considers the basic needs of modelling. -In the case of complex deterministic models, the
verification step can be a very difficult task since model verification can oniy be performed with a
data set independent from that used during model calibration. In both the model calibration and
verification steps, the "'goodnesé" of fit must be adequately addressed. There are a number of
quantitative methods that can be used to examine the fit between the predicted and observed data. -
Reasonable verification statistics however do not guarantee that any model will accurately predict
future water quality.” Some uncertainty will always be present which results from the model
coefficients, variables, and from the model structure itsel % The uncertainty of the values used in a
model are normally reflected in the model results. Techniques such as first-order error analysis and
Monte Carlo analysis can be used to calculate these values, as outlined in Reckhow and Chapra'
and Chapra and Reckhow.'

3. WATER QUALITY MODELS

Tables 1 and 2 list some of the more recent nutrient and toxic chemical water: quality models
along with summaries of their principal characteristics and applications. As in a pmvidﬁs
compilation® of existing models, these tables are not exhaustive in their scope but aré prescnied as a
starting point from which the reader can proceed in hissher search for a model or model

components which can be used to solve a particular problem. In the first column of the tables the

model name and its developer(s) are listed along with the associated model literature reference
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number (#). In the time domain column the deterministic models are characterized as being e;ithér
steady-state (S-S) or dynamic (Dyn). The time step is funher defined as being variable (var), daily |
or annual. The empirical models are specified as' having long term average (LTA), annual average
(AA) or summer average (SA) data. As can be seen from the third column of the tables, the
models represent a wide range of possible spatiai domains. The models can simulate a system in
one dimension (1-D), such as a whole lake (WL); in two dimensions (2-D) or in three dimensions
(3-D). One dimensional models are capable of simulating either the vertical or longitudinal
behaviour of water bodies. These models are used when simplifying assumptions can be justified
to allow me other dimensions to be ignoréd-. However, this necessitates a limit in the generality of
the model. For a water body such as a hke, one dimensional models cannot predict the horizontal
differences in water quality due to physical processes such as wind driven currents, the influences
of nearshore processes, and variable bed sediments. The patterns of distribution or circulation that
cover l_argé space and time scales are normally determined by the shape of the lake or by short-
term factors such as point source loadings that are characterized by much shorter space and time
scales. These different scenarios would require the use of two and three-dimensional models that
would be capable of simulating the processes over a wide range of scales.

The chemicals which are simulated in the models are presented in column 4. Some of the
models were designed for specific chemicals while others were designed to simulate many different
types of chemicals, such as metals or orgaf)icé,. The number of chemical state variables required in
a model is basically determined by the nature and the number of significant interactions .that occur
with the key chemical ~or chemicals of interest. Some models” S5 include' generalized
thermodynamic sub-models - which allgw an extensive number of interactions to be evaluated.
However, proper application of some of these'mo,dels requires specialized expenise ‘because kinetic
limitations may prevent many thermodynamically possible reactions,

I column 5 of the tables the input data necessary to.run the models are listed. Fb‘r someé ‘of' the

empirical models, input data for only one or two variables are required (ie. Smith Blue-Green
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Algal Model®) whereas some of the more complex deterministic models (i.e. WASP4 *) may
require input data for hundreds of model variables and parameters. Some of the models have been
developed as theoretical exercises and have never been applied to natural systems. Other models
have been calibrated and verified by application to a number of independent syStefn data sets. The
natural systems the models have been applied to and the z,issoc‘i,atcd time periods are presented in
column 7. In the last column some of the key as‘sumﬁtions and features of the niodels are

presented. The model user must be aware of the assumptions and limitations of the models used.

Failure to take these factors into account before applying a model to a new system will inevitably

result in inaccurate model output. For any new application, a recalibration of the model is
necessary and in some cases a change in model structure is required. The models which are
designed for managers and other such users are now being designed with features to make them
more user-friendly. Theése models are typically designed to be able to be run on personal computers
and have menu driven software. For a model to be useful to persons other than the developef, it
must also be well documented. For many of the existing models, such documentation is not
available or it is not written in a ‘ménner to make it useful for the wide range of potenti;l model
users. For the users with litle or no modelling experience, the documentation should point out
those areas in the model program that can be modified and those that should not be altered. A
model may also be designed that operates in an interactive mode so that the documentation and
operation are combined. It is also common practice t0 include benchmark example input and
output files with the model documentation to ensure that the model is operating properly on the

user’s computer system, which may not be fully compatible with the design of the model computer

-coding. In order for a model to maintain its utility, it must continuously be revised. This includes

modifications of mathematical representations of physica_l-chemical prbces_ses as well as
modifications to incorporate the ever changing state-of-the-art in computer technology. For
example, model set-up can be improved by new sophisticated input technique_s. Output can now be

displayed more efficiently using computer graphics. The process of linking different models
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together for application to a problem is becoming more widely used. For example, a hydrodynamic

‘model might be linked with a chemical model, which might in tum be linked with a biological

model to assess the effect of a chemical spill.”

4. MODEL CASE STUDIES

The bulk of the water quality models which have been developed over the past few decades have

' been directed toward the problem of eutrophication which has been caused by the significant

increase in the loadings of nutrients, particularly phosphorus, to both large and small lakes.
Eutrophication of rivers has not been as serious a problem due to the short residence time of the
water. In rivers, one of the major problems has been the concentration of dissolved oxygen, which
is controlled by the rate of production of oxygen by algae, the nitrogen lcycle, and other
biochemical processes. Also, the direct relationship between eutrophication and algal concentrations
has allowed the development of empirical models to proceed more rapidly. Consequently, these
empirical models have found a much wider use in lake management than they have in river
management. In this chapter, it is ixripossible to describe all of the models in detail. The major
characteristics of some of the recent water quality models have been presented in Table 1. A
number of models have been selected from Table 1, which represent a reasonably wide range of
water quality models, for more in-depth review; A similar approach ﬁa,s been followed for toxic
models.
4.1 Nutrient Models
4.1.1 Introduction

Numerous studies have determined that the concentration of total phosphorus in lakes can be used

as an indicator of lake trophic status (Vollenweider”, Dillon™), algal population densities as

 measured by chlorophyll a concentrations (Dillon and Rigler*, Jones and Bachman®) and water

_ clarity (Dillon and Rigler). Simple empirical models have been developed to predict total lake

phosphorus concentrations using data such as annual phosphorus inputs, lake morphometry,
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hyd‘r"auli_c flushing rates and temperature (Chapra”, Vollenweider®, Kirchner and Dillon®, Jones and
Bachmann®, Larsen and Mercier'™, Reckow'®'®). These empirical models are based on data from
numerous field studies and require only a limited amount of input data which makes' thém
particularly useful for lake managers.

An ‘example of an empirical model that has been developed .to predict total phosphorus
concentrations, chlorophyll a, and Secchi depths is that of Canfield and Bachmann.”” Although the
model coefficients are based on data cz)llected from a wide variety and number of lakes, the model
is based upon the general model pmposed by Vollenweider'®:

TP = L/D(c + h) 6

where

TP = total phosphorus concentration in lake water (mg/m®)

L = annual phosphorus loading per lake area (mg/m?/y)

D, = mean lake depth (m)

o = phosphorus sedimentation coefficient (1/y)

h = hydraulic flushing rate ( 1/y)
The suécessful application of such a model is greatly dependent on how well the loss- of
phosphorus to the sediments is estimated. Dillon and Rigler'™ chose to rewrite the Vollenweider

equation and work with the phosphorus retention coefficient of a lake rather than the phosphorus

. sedimentation coefficient;

TP = L(1 -R)/w, - | ¥)
where w, = annual areal water loading (m/y), and R, = phosphorus retention coefficient (difference
between annual phosphorus inputs and phosphorus outputs divided by the annual phosphorus input).

Chapra” used a different parameter, the apparent settling velocity (v), which is equal to the
product of the mean depth and the sedimentation coefficient: |

R, = V/(V + W) | , 3

where v is assumed to be a constant. Reckow'® later proposed that v varied with w,:
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v =116 + 02w, | ' @
Larsen and Mercier'® and Vollenweider'® independently determined that phosphorus retention
coefficients could be better estimated by the reciprocal of 1 plus the square root of the hydraulic
flushing rate.  Canfield and Bachmann®” have evaluated the general applicability of these
relationships to both natural and artificial lakes by applying them to a large data base for 704
natural ah,d artificial lakes (Jones and Bachmann,’®; Larsen and Mercier,'”; U.S. EPA National
Eutrophication Survey (EPA-NES).'® Phosphorus sedimentation coefficients were estimated from
the data by assuming steady state and by rearranging the terms of Equation 1 (Jones and
Bachmann, *)
¢ = ((L/DY/TP) -h ' . &)
The authors attempted to avoid the problems associated with developing and testing a model with
the same data by randomly sorting the lakes into two data sets. One data set (model development)
which included 151 natural and 210 artificial lakes was used to determine the limnological factors
that influence phosphorus sedimentation rates. The other data set (model verification), which
included 139 natural lakes and 233 anificial lakes, was used to evaluate the accuracy of the model
predictions.
A statistical analysis showed that the best estimate for ﬁle sedimentation coefficient (s) in the
Vollenweider equation was |
o = 0.162(L/D)***® for natural lakes ©)
¢ = 0.114(L/D)** for artificial lakes @)
Two other models were developed to. reflect the rapid sedimentation of particulate phosphorus
carried into a Iake‘ by inflowing streams. The first assumes that a constant fraction (f) of the
inflowing total phosphorus will flow into the open waters to be acted on by a constant
sedimentation coefficient, following a rapid, initial sedimentation of particulate phosphorus fiear the
tributary inlets. The model is represented by the equation

TP = fL/D(c + h) ®)
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A second similar model combines the initial rapid sedimentation with -a sedimentation coefficient
that varies with the volumetric loading |

TP = fL/D,(aL/D," + h) | ©)

For natural lakes, a = 0.0942, b = 0422, and f, = 0.8 and for artificial lakes, a = 0.0569, b =

0.639, and f, = 0.8. However, the model results gave no indication about the -relative importance

of immediate sedimentation of particulate phosphorus versus sedimentation in open waters because

both equations gave similar results.
Canfield and Bachmann® also examined the phosphorus-chlorophyll a and chlorophyll asS_ecchi'
xelaﬁonslﬁps for the natural and artificial lake data. Their results indicate that the relationships are

stronger for the natural lakes than for the artificial lakes. Factors other than phosphorus were

‘suggested to be limiting algal levels in many artificial lakes and the results also support the

common observation that nonalgal turbidities are important as factors of water clarity in artificial
lakes. |

To improve the accuracy of the predictions, the empirical models must be modified so as to
reduce the number of simplifying assumptions that do not always hold. However, increasing the
complexity of the models must be carried out so that the new variables that are added are effective
in reducing the errors while maintaining the generality of the models. A determination of model
complexity enters the modelling process at two stages. The first is during the initial stage when the
modeller must chose a certain level of complexity before attempting to verify the model against
measured data and the second is during the final phases when the modeller must decide wheéther the
model has been verified and has sufficient complexity for its intended application. Simple models,
such as the empirical model, can be used as a first approximation analysis upon which to build a
more complex model that can take advantage of more detailed field data.
4.1.2 Steady-State Eutrophication Model |

Schnoor and O’Connor® developed a steady-state model which built upon the previous empirical

models, but because it was not developed empirically, it has the advantage of being applicable to
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lakes and reservoirs of varying morphology and locality. This type of model also allows the

analyst to quantitatively relate nutrient concentrations to phytoplankton concentrations. The

~ principal disadvantage of this type of model is that various rate constants required in the model

must be estimated.
An initial simplification is made by assuming that the lake or reservoir can be considered as
being completely mixed. Figure 1 is a schematic of the kinetics and transport of the

nutrient-phytoplankton system simulated in the model. Inorganic nutrient input (W) is derived from

"natural and manmade sources, and-is formed by the mineralization of organic nitrogen, K_. It is

lost through washout, 1/, and by phytoplankton uptake, K, via a Lotka-Volterra'® Kinetics.
Phytoplankton are lost due to washout and by the conversion to organic nutrient via K.
Phytoplankton is also lost from the water column by sertling, at a rate, K,. It is assunied that total

organic nutrient is mineralized at a constant rate, K,. In this model, inorganic nutrient recycling

from the sediments must be included in the external input term W, The mass-balance equations for

the system are:

aNJdt = KN, - KNN, - Njt, + W)V - o
aNydt = KNN, KN, N, -Kn, an

dNJdt = KN, - KN, - KN, - Nft, + WV (12)

where |

N, = inorganic nutrient concentration, ML

N, = phytoplankton nutrient concentration, ML

N, = organic nutrient concentration, ML

. = mean hydraulic detention time, T

W, = input rate of inorganic nutrient, MT*

W, = input rate of organic nutrient, MT"

'V = lake volume, L*

Summing equations (10) - (12) results in the equation:
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~dNydt = -NAt, -KN, + W (D/V - K'N.P (13)

. where

N:=N+ N, +N,
dNy/dt = dNy/dt + dN/dt + dN/dt
We= W, + W,
At steady-state, the non-linear, ordinary differential equations (10)-(12) are reduced to the following

set of algebraic equations:

N, = K, + (1) + KK, (14)
N, = (aN, - N) + WK /KN (KN, - K) ‘ (15)

N, = (N, + (N/K))/o : (16)
where |
a =K, + K, + (1)K
N, = W t/V = average inflow organic nutrient concentration
N, = Wit/V = average inflow inorganic nutrient concentration

Assuming that measurements for N;, P, and N, are available and that K, can be calculated from

~ productivity measurements, equations (10)-(12) can be solved for K. K,, K.

K, = KN, - 1, - K, - oan
K, = (Wo/V - Noft) (1N, + N) (18)
K, = INKNN, + N/, - WyV) | (19)

From equation (17) it can be seen that at steady state, the overall growth rate minus the outflow
and settling rate is equal to the total loss of phytoplankton, K. Equation (18) shows that the mass
rate of sedimentation K,(N, + N), is equal to the mass rate of tofal nutrienit minus outflow. The
mass rate of nutrient recycled, K, N,, increases with primary production (K,N,NP) and decreases
with the inorganic input minus the outflow of inorganic nutrient, according to equation (19). The

model was applied to Lake Lyndon B. Johnson, which is the third of a series of seven
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impoundments in the Highland Lakes chain of Central Texas. It was calibrated using 1972 data
and verified using 1973 data. The model was also applied to Lake Ontaﬁo data for the period
1967 - 1973, |

A general observation that cari be made from examining the model equations is that the
sedimentation coefficient, K,, and the nutrient loading determine the total phOs‘phOrué in a lake or
reservoir. The kinetic coefficients K,, K, and K, determine the nutrient partitioning among the

various organic, inorganic, and phytoplankton fractions.

4.1.2 Lake Erie Model (Lam et al. **)

Lake Eﬁe has been the focus of several water quality modelling studies for the last two decades
(Vollenweider,”%; DiToro and Connolly,'®; Lam et al.'; Snodgrass'®). Major pollution abatement on
phosphorus loading was implemented in Lake Erie in the early seventies, but anoxia still occurs
intermittently in the central basin hypolimnion. Several modelling approaches were proposed to
explain why phosphdrus removal alone cannot. eliminate anoxic occurrences tota]ly. Sbme. e.g
Burns', attributed the occurrences to the physical conditions in the lake. He used three thermal
layers (epilimnion, mesolimnion and hypolimnion) to calculate ~oxygen exchanges across layers.
While he showed that the physical effects were important, the data he used were too crude to
accurately pinpoint the water oxygen demand (WOD) and sediment oxygén demand (SOD)> Others,
e.g. DiToro and Connolly'® elaborated on the biological and chemical processes (using 15 variables)
to define these rates but parameterized the stratiﬁca;ién with a simple diffusivity. While they
derived interesting theoretical .v'alues for WOD and SOD, they found it necessary to revise the
hypolimnion depth which was assumed constant in order to fit the observed oxygen data for 1975.

The shortcomings in these models indicated that physical, chemical and biological procesées all
play a role in the oxygen depletion problem in Lake Erie. The question is which processes should
be included in the model and which should not. Lam et al.” proposed.the_ use of a hierarchy of

models to deal with this situation. For the case of Lake Erie, a model consisting of nine boxes
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representing the three basins and the three thermal layers which change their depths in time were
found to be adequaté in terms of the spatial resolution. An oxygen-phosphorus model with three
variables is incorporated in these boxes and comparison to 16 years of data was reported in Lam et
al.'™. The following is a summary of the model components and their interactions.

Nine-Box Model Structure

A detailed discussion of the mathematical equations for the nine-box model is given in Lam et
al.'® Briefly, Table 3 summarizes the three basic mass balance equations, Equations (20) to (22), for
the three variables, soluble reactive phosphorusl (SRP), organic phosphorus (OP), and dissolved
oxygen (DO), fespectively. For each of the three layers, namely lepilimnion, (i=1), mesolimnion
(i=2), and hypolimnion (i=3), in each of the three basins, appropriate areas (ABQ and volumes (V)
must be used in these equations (Table 3). Note that AB; and V, are assumed tb vary with time.
The source term, F, used in these equations refers to the loading as well as the inputs and outputs
of the variable into and out of the ith layef as a result of five majgr physical processes. Again,
briefly, Figuré 2 shows a schematic description of the five physical processes considered. The
hydraulic flow represents the inflow at the Detroit River and the outflow at the Niagara River,
resulting in a general west-to-east flow in the lake. The water transport across the boundary
between the western basin and the central basin as well as that across the boundary between the
western basin and the eastem basin is conservative. Thus, depending on the cross-éectional areas of
these boundaries in each layer, the velocities due to the hydraulic flow are adjusted to obey mass
conservation within each box.

For simplicity, it is assumed that the interface between epilimnion and mesolimnion and the
interface between mesolimnion and hypolininion are at the same depths in all three basins. This
assumption facilitates the calculation of vertical entraimneﬁt and avoids the complication of further
adjusting the hydraulic flows to mis-matched interfaces in different basins. Under this assumption,
when one of the interfaces moves up, that part of the water in the upper layer traversed bS/ the

interface is mixed into the lower layer. In this way the concentrations in the new upper layer




Booty and Lam 15

-remain undisturbed. This entrainment mechanism' differs from the so-called diffusion process in

which the concentrations in both layers are mufua]ly disturbed due to an exchange mechanism.
Indeed, the incorporation of the vertical entrainment sets the model apart from other models using
fixed thermal interfaces (e.g. DiToro and Connolly'®) in which only the diffusion process can occur.
In the model, both entrainment and diffusion processes are possible. Due to the fact that the
nine-box model uses the lake bottom as the reference point, changes in water level must be taken
into account to transfer these processes properly. The water level can affect the heat storage in the
lake and hence the thermal layer structure. As the water level rises, so do the thermal interfaces
with respect to the lake bottom, and vice versa. ™ |

Wind driven circulation can cause interbasin transports (Figure 2) in- addition to the hydrauiic
flow. For simplicity, two vertical gyres are assumed in the nine-box model. The first gyre
connects the epilimnion and mesolimnion in' thé central and eastern basins and the second connects
certain wind conditions, there could be interbasin transport from the eastem basin hypolimnion to
the cenfral basin hypolimnion, bringing oxygen-rich water from the former to replenish the oxygen
depleted in the latter.
Phosphorus Oxygen Submodel

The nine-box mbd’ei structure provides the dynamic framework for defining the boundaries of the
boxes as well as the movement of substances among the boxes. Within each box, a set of
biological and chemical processes also takes place. The Simons and Lam model'® has been refined
by the addition of an oxygen compartment for this purpose, i.e., a three-variable model of soluble
reactive phosphorus (SRP), organic phosphorus (OP), and dissolved oxygen (DO). Figure 3 shows

the schematic for the biochemical kinetics of the three variables for a typical basin with a

- three-layered structure. Table 3 summarizes the goveming equations (Equations 20-22). In the

epilimnion, the oxygen is produced by phytoplankton photosynthesis in the photic zones and by

reacration at the air-water surface. Most of the time, oxygen is saturated or even super-saturated in
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this layer. with the saturation being a function of the water temperature calculated using the
thermocline model.™ In the mesolimnion and hypolimnion, oxygen can be produced by
photosynthesis, since these layers may still be within the photic zone, particularly dun'ng the early
part of the stratification period. However, as in the case of Lake Ontario,’ plankton respiration
activity is reduced and henice less oxygen is consumed in the hypolimnion because of lower

The sediment oxygen demand (SOD) is one of the major factors responsible for removing oxygen
from the overlying waters in the central basin hypolimnion. The values of SOD measured by, e.g.,
Lucas and 'I‘homas,"13 Snodgrass,'® Charlton' and Herdendorf'® in this basin range from 0.18 g
0,/m*d to 0.88 g 0,/m2-d,_ depending on the instrument design and sampling method. Snodgrass'®
examined three SOD submodels with varying degrees of complexity and concluded that the simplest
one produced essentially the same results as the most complex. This model uses the Monod kinetic

1, = s, (DOY(DO + k) - @3) -
where J, is the oxygen flux into the sediment (g O/m’d), s is the sediment oxygen demand rate (g
0,/m’d), DO is the oxygen concentration of the overlying water (mg/L), and k, is thé Michaelis
constant (mg/L) for oxygen. The Monod kinetic has been found'® to simulate successfully the
biological sediment oxygen demand as well as the water oxygen demand. The chemical sedirhent
oxygen demand is found'® to be relatively small and can be sufficiently described by first order
kinetics. VSnodgrass“” reported k, = 1.2 mg/L for biological sediment oxygen demand. In the case .
of equation (23), with the two Monod expressions combined into one, the Michaelis coefficient k,
is found to be 14 mg/. Lam ei al* examined the SOD submodel and found that, as a first
order approximation, s, could be written as |

s, = L(TP) x 10° | | '. (24)
where L(TP) is the lakewide total pho\sphor_us load in MT.

4.2 Toxic Chemical Models
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4.2.1 Introduction
The presence of a wide range of toxic chemicals in the waters, sediments and biota of lakes has
become increasingly evident. These toxics represent uncertain human and aquatic health effects.
Effective remedial action and management of these contaminants requires careful examination of the
complex cause and effect mechanisms that ultimately determine chemical fate, longevity, and
toxicity. The behaviour of the contaminant can be simulated by the use of models which

incorporate processes which describe its partitioning characteristics and the rate at which it may be

_transported between compartments and broken down by various chemical and biochemical reactions.

Deterministic computer models which are developed to predict the distribution of toxic chemicals
(heavy metals, organic chemicals and radionuclides) in the aquatic environment are based on the use
of mass balance equations which describe a toxic subtance’s physical transport, adsorption,
volatilization and decay in the system. In the most simple case, the lake or reservoir is assumed to
be spatially uniform (completely miked system), in which the transport, transfer, and kinetic
components are described in terms of bulk coefficients. The equations which follow have been
examined and developed by O'Connor.*'” They define the steady-state distribution of toxic
substances in a freshwater sysiem which is shown in Figure 4. In this model, it is assumed that
the mass of toxicant in the food chain is not signiﬁ?:ant. It is also assumed that the rates of

adsorption and desorption between the dissolved and particulate components are much faster than

‘the other kinetic processes, i.e. decay, volatilization, settling, and exchange with the bed.

Partition Coefficient
A partition coefficient is typically used to describe the equilibrium distﬁbutibn of the toxic
chemical between the dissolved and solid phase. This distribution describes the feversible reaction
which includes the composite effect of specific adsorption, ion exchange, and complexation. Thé
partition coefficient is the ratio of the solid and dissolved phases:
P =1/C _ (25)

where r is the solid phase concentration and C is the dissolved phase concehtration. The total
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concentration C; in the system may be defined as the sum of the dissolQe‘d C and particulate
component p:

CG=C+p ' o (26)
The latter is the product of the solid phase concentration and that of the adsorbing solids m:

p=rm N @7
The dissolved concentration C includes both the free and ‘bo'und fractions. The bound fraction is
defined -as the nonparticulate concentration, which in equilibrium with the solid phase is the basis of -
the operational definition of the partition coefficient. Substitut;ion of equations 25 and 27 into
equation 26 results in the expressions for the dissolved f; and particulate f, fractions: |

f, = C/C; = 1/(1 + Pm) . (28)

f, = p/C; = Pm/(1 + Pm) | 29)
The partition coefficient P is usually expressed as ug per kg r per ug per litre C dr litres per
kilogram, L/kg. The product Pm is thus a dimensionless parameter. The partition coefficient varies
from approximately 500 - 500,000 L/kg and the concentration range of particulate solids also varies
over many orders of magnitude (<10 mg/L of suspended solids to > 100,000 mg/L in bed

sediments). Considering the high concentration of solids in the bed, the coirnpone‘nt fractions may

be approximated as

£, =1 , (30)
f, = 1/Pm, 31
where the subscript s denotes the sediment.

Many factors are résponsible for influencing the magnitude of the partition coefficient. In the
case of heavy metals and'inorgarﬁc chemicals, factors such as pH, redox conditions, ionic strength,
and complexing capacity are significant. For organic chemicals, solubility and molecular structure
are important. The influence of solids concentration on the partition coefficient has also been
observed (O’annor and Connolly,"®; Hasset and Anderson,™). It is consequentiy recommended that

the partition coefficient of a given chemical be determined over a range of concentrations of solids
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and organic matter that exist for a specific water body.
Kinetic Equations
The rate of adsorption between the dissolved and particulate components of a substance is a

function of both the concentration in the dissolved phase and the number of available sites on the

adsorbing solids. The latter is proportional to the maximum adsorption capacity of the solid r,

minus the amourit of the solute adsorbed . The rate of desoxlpti'on is proportional to the amount of
solute adsorbed. If we assume that the solid phase concentration r is significantly less than the
adsorptive capacity of the solids, then the rate equation is

dC/dt = -K,C + K;p ’ o (32)
and K, = Kr.m; K, = adsorption coefficient; r. = adsorptive capacity; m = concentration of solids;
and K, = desorption coefficient. At steady-state, equation 32 becomes

/IC=Kg/K,=P | (33)
and K/K, = Pm - (34)

If we consider a system where only the dissolved and particulate components are present énd

where the dissolved component is subject to volatilization, the kinetic equations are |

dcC/ar = -(K, + K)C + K)p _ | | (35)

dp/dt = +K;C - K;p | (36)
in which K, = K;/D, = volumetric volatilization coefﬁcient; K, = surface volatilization coefficient
and D, = average depth. Addition of 35 and 36 yields

dCdt = K.C - | - an
For the solutions of equations 35 and 36 to be valid at steady-state equilibrium, it is apparent that
the rates of adsorption must be much greater than the rate of volatilization. 'Substi,tution of
equation 28 into equation 37 gives the dissolved concentration as a function of C;:

dCy/dt = -K,.Ci/(1 + Pm) = £K.C; 5 (38)
‘For a nonvolatile chemical whose dissolved and particulate components decay at different rates,

K, and K, respectively, the rate equation for the total concentration is
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dCy/dt = -(fK, + dCydt = -(fK,; + £K)C; (39)
Again, for the solution to be valid at equilibrium, the adsorption-desorption rate must be much
greater than the rate of decay. The error introduced by this assumption has bcén studied by
O’Connor'*, and can be determined by the dimensionless number K,K /K7, in which K; = K, + K,
+ K,. O’Connor*® has shown ihat equation 38 is valid for (K,K/K;* ) <0.005 (error < 1 %). This
would suggest that the above approach would nbt be valid for toxic chemicals whose rate of decay
is very rapid, such as short-lived radionuclides.
Suspended and Bed Solids |
If nearshore conditions are neglected théen O’Connor'™® has shown that a mass balance of the
solids can be represented by:
| Vdm/dt = -v,Am - Qm + W ﬂ ' 40)
where: |
W = total mass input of solids to the lake
A, = sediment area
v, = solids settling velocity
m = solids concentration in the water column
V = volume of water
Q = outflow rate
Dividing by the volume reduces equation 40 to:
dm/dt = mf, - m(14, + K)) S | -_ @1)
where:
rﬁ; = average concentration of total inflow = W/Q
t, = detention time = V/Q
K, = settling coefficient = ‘v/D,
D, = mean depth = V/A

At steady state, the solution is
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m/m; = 1/(1 + K1) - B - @)
where m, = equilibrium suspended solids concentration. If bed scour is significant, the solids
equation is

dm/dt = m/t, - m(14, + K) + Kjm, : - 43)
where K, is the scour coefficient and m, is thé bed solids concentration. At steady state, equation
(43) reduces to '

m/M, = 1/ + K't) : 44)
where K, = K(1 -9, ¢, = ‘(K..m,lK.m,) = (j,,/v.ﬁg. The term j; is the entrainment flux and is =
v,m, where K, = v,/D,, which is the entrainment coefﬁcicht; The ten,nl v, is the scour coefficient of
the bed solids.

If it is assumed that on a seasénal or annual basis there is a net sedimentation in a lake, then m
=m, , and bed thickness (D,) is described by

(Dmy/(vm,) = 1-¢, @s)
For ¢, < 1, the rate of change of bed elevation is +ve.

For ¢, = 0, scour is negligible.

For ¢, = 1, scour balances settling and there is no net sedimentation.

Chemical Equations
The total concentratién in the water column for a lake in which scour is a significant process™ is
given by: |
dCy/dt = W/V -Cift, - LOK.C; - LOK,Cr + Kif, Cy, - £,(0C;) + K,Cyy (46)
The term K, is the transfer coefficient of the dissolved component. If biodegradation or chemical
reaction occurs, then the equation becomes
dCi/dt = WV - Coft, - £, + KIC; - £OK, + KIC; + KILCy, - L0OC + K G, (47)
The total concentration in a fixed bed, where diffusion down to deeper sediment is n,egligiblc; is

given by
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d(V-Gr.)/ dt = fp(t)vrAlc'l' - VufplAscl'u - val[fdlcl'l - fd(t)cl‘] (48)

4.2.2 Physical-Chemical Model of Toxic Substances in Lakes
The model must represent the following processes:
1) particulate sorption-desorption
2) sediment-water interactions
3) atmosphere-water interactions
4) transport of toxicant by advection, dispersion and mixing
S5) biochemical decay and photolysis
Suspended Solids Model
In the Thomann and DiToro™ suspended solids model, only a single class of solids is considered
(i.e. lumps together the inorganic and organic particulates). This is a problem when considering the
sorption of hydrophobic compounds such as PCB’s, since they sorb differently to organic particles
than they do to inorganic particles.
Water Column |

In the water column, the mass balance equation for suspended solids is

Vdm/dt = W, - Qm - v,Am + v,Am, @9)
where:
V = volume of the water column : (59
m = solids concentration in the water columﬂ M/L3
m, = solids concentration in sediment layer ' (M/L3)
W, = mass input of solids ‘ M/T)
Q = advective flow transport (974
v, = particulate settling velocity @M
A = interfacial area (§ By]
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v, = particulate resuspension velocity W/

Sediment Layer
In the sediment layer, the mass balance equation is

'V, d./dt = v Am -v Am, - v,Am, : : (50)

where:
V,= bulk volume of the sediment ¢ B9
v, = net sedimentation velocity of the sediment @)

CIf it is assumed that the solids are at steady state, then dm/dt = d_/dt = 0. The net sediment

velocity (v,) can be defined as:

v, = wm/q(1-8) _ (63))
where: | |
w, = net loss of sediments from the water column (i.e. w, = v,v /v, + V)
q = solids density
©, = sediment porosity
For a toxic chemical model, it is necessary to separate the solids concentration from the net
sedimentation flux. The solids concentration in the sediment represents the bulk density and
consequently, the concentration is given by: |

m, = q(1-6) (52)

Toxic Substances Model

In this model, it is assumed that th_é sorption-desorption kinetics are faster than the time step so
that the dissolved and particulate toxicant are considered to be in a "local equilibrium" with each
other. The dissolved form, C, is the rhass of toxicant pef volume of water and thé total toxicant
concentration, C, is the mass of toxicant per volume of water plus solids, (C). "’,I‘he porosity -of

the volume must be multiplied by C, to obtain ;h,ei porosity-corrected dissolved form of the toxicant,
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C,. The porosity-corrected partition coefficient p° can be defined as:

p = 1/C, ' : (53)
where r is the cbncentration of the chemical on a per unit solids basis. The fraction of the toxicant
that is dissolved, f,, is

fi=Q0 + pm)?* (54)
and the particulate fraction,f,, is _ |

f = ‘p'm/(l + pm) | ‘ v (55)

For a continuously stirred tank reactor (CSTR), the mass balance equation for the total toxicant is

expressed by:

VdCi/dt = W - QC; - VARC: + VLALC,, + KpA(fLCr/d, - £.C/0) - KVCr + KA(C/H, - £,Ci/0)
(56)

where:

W = mass loading rate of toxicant MyT)

C: = total toxicant concentration ’ ML)

.C,, = sediment total toxicant concentration (My/T)

K, = sediment water diffusive transfer coefficient LT

k; = volatilization transfer rate coefficient am)

K = overall loss rate of toxicant (17

C, = atmospheric toxicanf concentration (M,/L’g)

H, = Henry’s constant | - (My/LP)/My/L*w))
where: K = Kf, + Kf, |

- K, = loss rate of the dissolved forms

K, = loss rate of the particulate forms
The mass balance equation for the toxicant in the sediment segment is represented by the
equation:

V.ACi/dt = WALC; - V,Af,Cy, + KARCHO - £.,Cr/0) - V,ALC, - KV.Cy, G7
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where: K, = K, F,, + K.f,

The above model was applied by Thomann and DiToro'™ to the prediction of **Pu and PCB
levels in the Great Lakes. The model was first applied to the plutonium data so that the effects of
sediment resuspension and interaction with the water column could be calibrated. The settling and
resuspension parameter values were ﬂ{en used in the application of the modei to PCB’s. The model
predictions of PCB in the water column and sediment were found to be, at best, an order of
magnitude calculation. This was due to the following:

1) uncertainty in input loads
2) uncertainty 1n volatilization rates
3) wide range of reported water column and surface sediment concentrations

4) variability in the estimates of the coefficients.

4.2.3 Mass Balance Model of Metals in Lakes
Dolan and Bierman'® used a 'th,reeas,tage. appr‘oéch in the development of a metals mass balance
model for Saginaw Bay, Lake Huron. In the first stage, the advéction and dispersion components
of the model were calibrated using conservative tracers. In the second si_age, the output from the
first stage was used to obtain a dynamic mass balance for SUSpended solids in both the water
column and sediment. In the final stage an equilibrium partition coefﬁcient was used to couple the
metals mass balance to the suspended solids mass balance. A schematic diagram of this coupled
model is shown in Figure 5.
Advection and Dispersion
In the model the effects of advection and dispersion are described using the equation:
N
Vdm/dt = ¥ FQ,E.m) + W ' (58)
i=1 .
where:

Q, = the advective flow across the ith interface of a segment (m%/sec)
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E, = the dispersion at the ith interface of a segment (m*/sec) |
m; = the neighbouring segment concentration (ug/L) -
W, = loading of suspended solids (MT/day)
V = volume of water in a segment (mn®)
N = total ﬁumber of neighbouring segments
The function, F,which represents the net effect 6f advection and dispersion in the water column, is

the same as that used by Richardson'. The model was calibrated by adjusting flow rates and

dispersions among model segments until calculated concentrations of tracer matched the observed

~ values.

Suspended Solids Mass Balance

The approach used by Lorenzen et al.”®® for total phosphorus was modified for the suspended
solids and metals mass balance. The modifications include: |

1. Loading rates were considered time-variable.

2. Particulate sedimentatipn was considered to depend on a power function, not a first-order

function.

3. The resuspension term was considered to be a function of wind s_peéd.

The mass balance equation_ for each water column segment is represented by:

. | |
Vdm/dt = ¥ FQE,m) + W, - (V m v)/D + (V,my,)/D, | (59)

i=]

. where;

m = suspended solids concentration in thé water column, kg/L
v, = settling velocity in m/sec

D = segment depth in meters

V, = volume of sediment in a segment in m®

m, = concentration of solids in the sediment in kg/L

v,= sediment resuspension velocity in m/sec
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D, = depth of sediment in a ségment in meters’
For each sediment compartment, the solids concentration in the sediment was determined using an
equation of the form: |
V, dm/dt = V m v,/D - (V/Dym,(v, + kb) | (60)
wh‘,ére kb is the sediment burial rate in meters/sec.. Equations (59) and (60) were coupled thmugh-
the two variables for suspended solids concentrations, m and m,

The variable settling velocity, v,, is used to account for differences in settling velocities among
the various size fractions of suspended solids in the Watef column. In the model, the settling
velocity at any time is represented by:

v, = ks m® . (6D
where ks is the normalized settling velocity in m/sec and G is an empirical constant (unitless).
A threshold mechanism was used to determine the time-variable sediment resuspension rate. If the
average daily wind speed was below a specified threshold value, the apparent net resuspension
velocity of the sediments was assumed to be zero. If the wind speed exceeded this threshold, the
value of the apparent net resuspension velocity was deteriiined by the use of a calibration curve.
As shown in Figure 5., the sediment was divided into two layers. The upper layer is the "active"
layer which is subject to potential resuspensio’n. In the model, the depth of this layer was assumed
to be a constant 10 c¢m, based on the depth of benthic activity.
Equilibiium Partitioning

In natural systems, | the adsorptive capacity of the solids is almost invariably an order of
magnitude greater than the solid phase concentration. Also, the suspended. solids concentration is at
least an order of magnitude greater than any of the metals. The equilibrium equation of Wolfe et
al.'®:

Co=Ci@ * C+ 1) | | @
has been used in the model, whe_re P is the partition coefficient, in L/kg. Under the above

conditions, negligible competition between different trace metals can be assumed and the equation
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becomes identical to a linear adsorption equation (Oakley et al.'®), |
Metals Mass Balance
In the model, a mass balance equation for total metal in the water column is defined as:
N ) - :
V dCy/dt = T FQE,Cyy + W -(V(C; - CYv)/D + (Vv,Cr)/D, (63)
i=1 -
where W is the loading of total metal (mg/day), C; is the concentration of total metal in the water
column (ug/L), C; is the concentration of dissolved metal in the water column (ug/L), and C,, is
the concentration of total metal in the sediment in ug/L. The mass balance equation fdr total metal
in the sediment is : | |
V. dCr/dt = (V(Cr - Cv)/D = (V,Ci(v,, + kb))/D, (64)
The mass balance for dissolved metals follows from the differentiation of equation 62:
| V dCy/dt = V dCy/dt (1/(P C +1)) - V dC/dt (P C/P C+1)) : . (65)
In the model, particulate metal was assumed to track with suspended solids in the water column.
It was also assumed that all 'n.'xe_t'al in the sediments was associated with solids and wn$equenﬂy no
explicit consideration was made of the dissolved metal concentrations in the sediments. As a result,

identical settling velocities, resuspension and sediment burial rates were used for metals 'and for

| suspended solids.

Sensitivity analyses performed on the modél‘ indicate that suspended solids exert signiﬁ,c‘ant
control on metal concentrations. Total metals concentrations in the water coluin were fouhd to be
most sensitive to settling rates of suspended solids. Dissolved metals concentrations were found to
be most sensitive to the value of the partition coefficient. Metals concentrations were found to be

least sensitive to the long-term burial rate of the surficial sediment layer. In order to obtain a

" reasonable degree of success in predicting metals concentrations as a function of extemal loadings,

it was found that it is not sufficient to know only the partition coefficient and the water circulation
regime. In addition, suspended solids loading, wind regime, system. morphometry, depositional

zones, and sediment concentrations need to be determined.
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4.2.4 Fugacity Concept
The fugacity concept is an approach which is inherent to many models which. employ partition
coefficients to predict the fate of nonionic, organic hydrophobic compoundﬁ, whose distribution in
the environment is controlled by the equilibrium between the substances’s vapour pressure and
solubility. The main advantage of the fugacity concept is standardization of concentration units
between the different phases which allows a user to obtain a comprehensive vp'icture of the state of
eqﬁilibﬁum between all compartments of a system. Recently, Mackay et al.***® have developed
and applied this concept to toxic chemicals m lakes.
Atmosphere
For real, nonideal gases and gas mi*tures, partial pressure is replaced by an idealized pressure,
called fugacity f by G.N. Lewis. The fugacity approaches the partial pressure of the componcm as
the mixture becomes infinitely dilute. Fugacity is related to partial pressure,P, by the ex’pmssion
f=xP, ' , | (66)
where x, is the fugacity coefficient. Only for high pressures is the value of x, sighificantly different
from 1. Fugacity can be regarded as the "éscaping tendency” that a substance exerts from any
given phase, with units of pressure ( i.e. Pa or atm). Concentration C, (inol/m®), in the vapour
phase, is related to partial pressure through the gas law: |
C.=n/V, = PJRT =fRT=f2Z _ . (67)

where n is the number of moles of substance and Z, is called the fugacity capacity, and" has units

~ of (mol/m’atm). The fugacity capacity quantifies the capacity of the phase for fugacity. Since Z,

is simply 1/RT, where R is the ideal gas constant, Z, is independent of the nawre of the solute or
the composition of the vapour (for nonassociating solutes and low or atmospheric pressure
conditions).

Water

~'In aqueous solutions, the relationship between f and C for infinite dilution conditions are
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represented by the equations: _ v
Z,=Cf=CP,=1H , (68)
where H is Henry’s Law constant. H describes the liﬁear proportionality between partial pressure
and liquid concentration and has units of atm m*/mol. Hénry’s Consté_m is usually quite constant at
low concentrations and, for low solubility substances it can be estimated from the fatio of the
substance’s vapour pressure and solubility. It must be pointed out that the above relationships are
only valid if the solute is in completely dissolved forms less than or equal to saturation.
The air-water equilibrium concentration ratio is expressed as:

C/C = HRT | (69)

-Since RT is a constant for a given temperature, it can be seen that it is H which determines the

partition equilibrium. Compounds of high H partition preferentially into the atmosphere while those
of low H partition preferentially into the water.
Sorbed Phases

Mackay and Paterson'* have shown that the sorbed-phase fugacity capacity, Z, is equal to S,a/H,

- where S, is a sorption coefficient and q is the sorbent’s density. This is derived by assuming that

for hydrophobic compounds at concentrations well below their solubilities, the linear sorption
equilibrium equation (Karickhoff et al.’®%)

X =S§,C v , (70)
is applicable. X is the sorbed concentration (_molb solute/10° g sorbent) and C is in umts of g/m®.
The concentration of sorbed material (C,), expressed as mol/m® sorbent, is thus Xq mol/m®. At
equilibrium, the fugacities of the sorbed and dissolved material must be equal and hence if Z, is the
sorbed-phase fugacity: capacity:

f = HC = C/Z, | (1)
then Z, = C/HC = Xq/H(X/S)) = S,¢/H.

S, is strongly correlated to the organic carbon content of a soxl or sediment. If S, is normalized on

an organic carbon basis, a new partition coefficient, K., can be defined:
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K, = S/foc o (72)
where "foc” is the fractional mass of organic carbon in the soil or sediment. Karickhoff et al.'’®
found the following relationship between the K, of hydrophobic compounds and octanol-water
coefficients (K,,):

log K, = 1.00 logK,,-0.21 : (73)
This is the correlation used to estimate K, and hence S, when experimental values are not
availablé.
Biota
A bioconc_:entfation factor, Kg, is used instead of the partition coefficient for biota. However, if it
is expressed as a ratio of the concentration in the biota on a wet weight basis, it is identical to S,
If it is expressed on a wet volume basis, it is analogous to S,g. Consequently, the fugacity
capacity for the biota, Z;, i defined as:

Zy = KyqyH | (74)

The above relationships for fugacity capacities can be used in mass balance equations to

determine the amount of a compound in each model compartment. The same results would be

obtainéd if partition coefficients were used in the mass balance equations for steady-state
equilibrium models. The advantage of the fugacity approach is that the behaviour of each phase is
treated separately but in the same units so that pseudopartition coefﬁcients bétWeen phases which
are not in contact do not need to be developed. This simplicity results in identical mathematical
large set of equations need to be solved. However, the fugacity approach is not appIicable when
pollutant transport occurs by processes which are not dominated by. equilibrium dn'viné forces. The

fugacity approach also becomes inappropriate when spatial transport equations are needed.
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5. Conclusions
Nutrient water quality models are, in general, more advanced than toxic chemical models. This is
due largely to the limited amount of a posteriori testing of these models. This is a consequence of
the much greater amount of high quality, long-terin field data which has been and continues to be
available for nutrients than for toxic chemicals. As the spectrum of toxic chemicals being produced
continues to expand, this lack of field data for testing toxic chemfcal models ‘will continue to
hamper their development, calibration and verification.

Many of the concepts presented in this chapter are equally applicable to marine models. 'For.
example, the parition coefficient concept can be used equally well in marine models for the
distribution of metals or for slowly decaying radionuclides. As.in freshwaters, if the decay proccss
is greater than the adsorption-desorption rétes. then a kinetic approach will be required rather than
assuming pseudo-equilibrium. The fact that some models use different mathematical expressions to
describe similar ecological processes is due mainly to the model developer’s attempt to match the
complexity of a particular application scenario.’ 'Ideall_y. a posteriori sensitivity analyses should
reveal which model processes and parameters are essential and which can be ignored.

Although a general water quality model cannot be developed for all contaminants, the increasing
use of hierarchical models and expert systems will probably expand the capabilities of modelling 2 |
wide range of ecosystems and contaminants by allowing a model user to chose appropriate sub-
models from a computer library of compatible programs. However, simultaneous efforts must
continue to be made irito the research of the individual processes.

An area of water quality modelling that needs to be developed is at the land-water interface.
This includes such processes as fine-particle transport, particularly at the land-river™ or land-ocean
interface. Nonpoint source models or submodels are needed to increése the accuracy of loading
predictions to be used in the current nutrient and toxic chemical models which typically use forcing

functions to simulate linkages to terrestrial processes.
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Booty and Lam

TABLE 3 Equations for the nine-box three-variable model.

A) Mass Balance Equations

d/dt (VSRP) = F(SRP) - U, + R, + L,(AB,, - AB) 20)
d/dt (VOP) = F(OP) + U, -R, + 1,(AB,,) -AB) - G,,A ,,(OP-0.005) + |

C.,AB,, (OP,,-0.005) 21)
d/dt (VDO) = F(DO) + [£U; - £.R; - k(AB,, -AB)] DO/(DO, + K)) +

1,AB,(DO, - DO) 22)

B) Rate Formulations and Calibrated Constants

U, = Bp(1.07)"(OP:-0.005) V(SRP/(SRP; + 0.0005) where B, =0.43, B, =0.60, B, = 0.60
.(day") and p, = light factor
R =Y, (1.07)" (OP-0.005)V, where Y, = 0.02, Y, = 0.00 , Y; = 0.001 (day™)
o (settding velocities in m/day); 6, =0, 0, = 02, 6, 04, 6, = 04
'F; (source term due 1o loading advection, diffusion, ent ainment, and mixing; see Figure 3).
f.  (phosphorus to oxygen ratio in photosynthetic product on of chlorophyll):f,, = 140.0
r, (phosphorus resuspended by wind waves, in g/m’day) = .001 w/w, where w is wind
speed in m/day and w, = 500,000 m/day
r, (phosphorus return per area, in g/m’day): r, = 0.0001 or r, = L(TP x 3x107 if bo, <
1.5 mg/L
R,  (rearation coefficient, in m/aay): [L=2,1,=0,,=0
DO, (saturated oxygen concenration, in mg/L)
K, (half-saurated coefficient for oxygen):K, = 1.4 mg/L
k, (sediment oxygen demand, in gO,/m%d: k, = L(TP) x 10°%, L(TP) = lakewide total

phosphorus load in MT




Booty and Lam |

“Note:The subcript "i" denotes the location of the parameter value, with i = 0 denoting the surface value and i =1,2,3
denoting the value in the first,second, and third lake model layers. SRP, OP, and DO are concentrations (mg/L) of
soluble reactive phosphorus, organic phosphorus, and oxygen, respectively. AB and V bare area (m®) and
volume(m®), U and R are the algal uptake and release rates (g/day). T is temperature (°C).
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Booty and Lam

Figure Captions

1) Kinetics and transport of nutrient-phytoplankion system
2) Schematic of physical processes incorporated in the nine-box model

model. The subscripts 12,3 denote first, second, and third layers (SRP = soluble reactive
phosphorus, OP = organic phosphorus, DO = dissolved oxygen).

4) Schematic of a freshwater system

- 5) Schematic diagram of a coupled metals mass balance model
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Appendix. Notation

The following symbols are used in this chapter: |

a = empirical coefficient;

A = interfacial area (L2);

A, = area of the sediment (L?);

AB; = lake layer areas (L%);

b = empirical coefficient;

B, = algal -uptake rate coefficients (T);

C = dissolved concentration of chemical (M/L?);

C, = concentration of chemical in ammosphere (M/L?);
Ci= concéntration of chemical in dissolved phase (M/L);
C, = concentration of chemical in particulate phase (M/L%);
C. = conentration of chemical in the sediment (M/L?);

C; = total concentration of chemical (M/L3);

Cs = total concentration of chemical in the sediment(M/L?);
D = depth of water segment (L);

D, = mean lake depth (L);

D, = depth of sediment segment (L);

DO = dissolved oxyg‘én concentration (M/L*);

DO, = saturated dissolved oxygen concentration ‘(M/L’);
E, = dispersion at 'the ith interface (L*/T);

f = fugacity (atm);

f, = fraction of incoming phosphorus going to open lake;
f, = dissolved fraction in water;

f, = particulate fraction in water;
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f,, = dissolved fraction in sediments;
£, = phosphorus to oxygen ratio in photosynthektic chlorophyll production;
f, = particulate ﬁacﬁon in sediments;
F, = source term due to loading advection, diffusion, entrainment, and mixing (M/T);
G = empirical unitless constant;
h = hydraulic flushing rate (1/T);
H = Henry’s Law constant (atm m*/mol);
j» = scour flux of sediments (M/L?T);
J, = oxygen flux into the sediment (M O,/L?T);
kb = sediment burial rate (L/T);
k; = volatilization transfer rate (L/T);
k, = Michaelis constant for bxygen ML),
ks = normalized settling velocity (L/T); |
K = overall loss rate of toxicant (1/T);
K, = sediment-water diffusion coefficient (L/T);
K, = decay rate of dissolved fraction (1/T);
K, = transfer coefficient of dissolved component (1/T);
K, = surface volatilization coefficient (1/T);
K, = decay rate of particulate fraction (1/T);
K,. = organic carbon nomnalized partition coefficient (L/kg);
K, = octanol-water partition coefficient L/kg); |
K, = adsorption coefficient (1/T);
K, = adsorption coefficient (1/T);
- K; = desorption coefficient (1/T);
K, = settling coefficient (1/T);

K, = porosity corrected settling coefficient (1/T);



K; = sum of adsorption, desorption and volatilization rates (1/T);
K, = scour coefficient (1/T);

K, = volumetric volatilization coefficient (1/T);

L = annual phosphorus loading per lake area (M/LT);
L(TP) = lakewide total phosphorus load (M);

m = concentration of solids in water (M/L?);

m, = concentration of solids in sediment (M/L?);

m, = concentraﬁon of solids in layer i (M/L%);

m, = equilibrium concentration of susupended solids (M/L,);
n = number of moles of gas;

N = number of lake segments;

N, = inorganic nutrient concentration (M/L?);

N, = organic nutrient concentration (M/L%);

N, = phytoplanldon nutrient concentration (M/L?);

OP = organic phosphorus concentration ML,

P= partiiion coefficient (L/kg);

P, = partial pressure (atm);

P, = sediment partition coefficient (L/kg);

p = particulate component concentration (M/L?); |

p; = light factor;

p = porosity corrected partition coefficient (L/M);

q = density of sorbent (M/L?);

g, = density of biota (M/L®);

Q = advective flow (L*/T);

Q. = advective flow across the ith interface (L¥T);

r = concentration of toxicant per unit solids (M/M,);
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T, = maximum adsorption capacity of solid (M/M);
r, = phosphorus return per area (M/L’T);

1, = resuspended phosphorus (M/L,T);

R = Ideal Gas Law constant (atm m*mol °K);

R, = rearation coefficient, (L/T);

R; = algal release rate (M/T);

‘R, = phosphorus retention coefficient;

s, = sediment oxygen demand coefficient (M O,/LT);
S, = sorption coefficient (M® water/10°g sOrbent);-

SRP = soluble reactive phosphorus concentration (M/L3);

- t = time (T);

t, = detention time (T);

T = temperature;

TP = total phosphorus concentration (M/L?);
U; = algal uptake rates (M/T);

v = apparent settling velocity (L/T);

vs = variable settling velocity (L/T);

v, = net sedimentation velocity (L/T);

Vv, = setding velocity (L/T);

v, = resuspension velocity (L/T);

v, = scour coefﬁciént of sediment solids (L/T);
V = volume of water (L%);

V, = volume of gas (L%);

V, = bulk volume of sediment layer (L );

w, = net loss of sediments from water column (L/I‘)

w = wind speed (m/day);
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w, = areal watef loading (L/T);

W = loading rate of chemical (M/T);

W, = input rate of inorganic nutrient (Mfl')
W, = input rate of organic nutrient (M/T);
W, = loading rate of suspended solids (M/T);
X, = fugacity éoefﬁcient (mol/m* atm);

X = sorbed chemical concentration (M/M);

Y; = algal release coefficients (1/T);

Z = fugacity capacity (mol m*atm);

Z, = fugacity capacity of biota (mol M?*/atm);
Z, = sorbed phase fugacity. capacity (mol m®/atm);
Z, = fugacity capacity in water (mol m*/atm);

© = sediment porosity (L*/L>);

¢. = dimensionless entrainment coefficient;

o, = settling velocities (m/day).
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