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ABSTRACT

A predictive or model based approach to making inferences about
the loading of a contaminant from a point source'%s presented and
111u$trated by estimating the total phosphorus, TP, loading from the
Niagara River to Lake Ontario for the years 1967 to 1982. Information
about explanatory variables ‘and/or autodependence among successive
observations can be easily included in the model and this allows more
accurate fnferences to be made. The resuits of the application to the
Niagara River show a major decrease in TP loadings has occurred during

the study period.



RESUME

Un modéle permettant de prédire la charge d'un polluant &mis a
partir d'une source ponctuelle est présenté et illustré 4 1'aide d'une
estimation de 1'accumulation du phosphore total, TP, de la riviére
Niagara jusqu'au lac Ontario entre 1967 et 1982. Des informations
relatives aux variables indépendantes ou a 1'autodépendance existant
entre les observations successives peuvent €tre facilement incluses
dans 1le modéle, ce qui permet de réaliser des prédictions plus
précises. L'application de notre méthode dans la riviére Niagara a

montré une diminution importante des charges polluantes du TP au cours

de la période durant laquelle nous avons réalisé notre étude.



MANAGEMENT PERSPECTIVE

External information and autodependence are used to develop an
empirical approach for load estimation. The approach 1is applied

successively to model total phosphorus loading from the Niagara River

" to Lake Ontario. The results show a major decrease in TP has occurred

during the period 1967 to 1982.



PERSPECTIVE-GESTION

Une méthode empirique d'estimation de la charge polluante a été
mise au point par 1'utilisation d'informations externes et 'de
1'autodépendance. Cette méthode est appliquée de fagon successive
pour modéliser 1‘'accumulaton du phosphore total de la riviére Niagara
jusqu'au lac Ontario. Les résultats hontrent qu'il y a eu une

diminution importante du PT de 1967 & 1982.



INTRODUCTION

Water quality of many lakes and rivers are managed by controlling
the inputs (loads) of nutrients and toxic substances in both point
(municipal and industrial) and nonpoint (agricultural, urban and
rural) sources of pollution. For example, the 1978 Agreement between
Canada and the United States has the target that the waters of the
Great Lakes be "free from nutrients directly or indirgctly enterihg
waters as a result of human activity in amounts that create growth of
aquatic 1ife that interfere with beneficial uses". The achievement of
the objectives of the control require a sound monitoring strategy and
a. reliable method of load estimation.

This paper presents a statistical approach for modelling and
estimating the load from a point source. As an illustration, the
technique is used to estimate the phosphorus load frbm Niagara River
to Lake Ontario. The basic statistical issue arises from the fact
that although the daily flows of the river are usually available, the
concentfétions of pollutants are only available on a small number of

days each year.

An éstimate the mean daily load, L, of a chemical past a certain

" lTocation in-a river over a period T is formally expressed as

I
| cQdt,
0
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where Q and C are the i{nstantaneous water flow and concentration
respectively. This is usually approximated by
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where N is the number of days in T and Q; and C; are the flow and
the concentration in day 1 respectively. Typically the Qi's are

known, but the Ci's are known for a sample s of N days.

The ratio estimator (Cochran, 1977), corrected for sampling bias,
is currently used by the International Joinf Commission (IJC) to
estimate L. However, from recent advances in sampling theory this
choice can be criticized. First of all, the sample of days for which
concentrations would be available is not necessarily random. Second,
there are estimators besides the ratio estimator which would use the
flow data fully in estimating L. The choice among these ought ideally
to depend on a model for the daily concentration. The ratio estimator
is optimal if the variance of the concentration varies as 1/flow
(Royall, 1971). From the Niagara River 1975 to 1982 data, this

inverse relationship does not appear to be attained, although in the

winter months flow decreases and concentration fluctuates a ]itt]e'

more widely. Thus the most widely accepted justification for the

ratio estimates does not apply in this case.

Since the sample is not random and some serial autocorrelation
seems likely, a predictive or model based approach to the estimation
of loading 1is suggested 1in this paper.‘ In this approach,

C1,C2,...,CN are jointly distributed random quantities and the
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sampled Cibare used to "predict" the unsampled ci and hence L. It is
also hoped the model will yield suitable estimates of uncertainty in
the prediction of L. Note fhat it is assumed that the sampled Cj
are determined without error, and that therefore the uncertainty

arises only from the fact that some data are missing.
THE MODELLING APPROACH
Suppose that a transformation Z; = h(Ci) exists such that the

distribution of Zj is approximately normal with a constant variance

02 and a mean

. aij ej | (2)

neM o

E(Z;) = M = j

where the ajj's represent measurements made on a set of p explana-
tory variables associated with Zy and the ej's represent a set of

p unknown parameters. In most water quality applications

" h(C4) = 1nCy, that is, the concentrations follows a log normal

distribution. It is more appropriate to use matrix notation and to
partition the vector Z of variables Z1,000,Iy into Zg and Zp
which classifies the Z's into those included in the sample and the
remainder. Let n be the sample size and without loss of generality,
Z15.++sZn be the elements of Zg, and the remaining Zp,1,...,Zy

be the N-n elements of Z.. In matrix notation we have



: AS
E(Z) = AB = [Ar]e

where A is the matrix of order Nxp with elements ajj's while Ag
and Ar represent the matrices corresponding to the vectors Zg and
Zp respectively. Furthermore, let the variance-covariance matrix of

Z be V which also is partitioned as

V = [vSS vsr]
VFS rr

Given V it can be shown that the best linear predictor of Zr is

given by:

Zr = ArB + V. .V (Zs A

rs ss Se) ' (3)

where

a - -1 5 y-1 -1 5
8= (Ay' Vool Al A vilz

and Ag' refers to the transpose of As. The matrix of the mean

square error (MSE) of the prediction is given by

= - -1 - -1 v y-1 -1
SSS (vrr vrs vSS VSF) + (Ar vrs VSS AS)(AS vSS AS)

- -1y |
(Ar VFS VSS AS) (4)
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Since for thé Niagara River data the Ianritmn iof the
concentration appears to be the appropriate transformation, then Zr is

an unbiased estimate for Z,. and has a Gaussian distribution with
variance-covariance matrix &gg. From the work of Thompson and
Bischoping (1986), nearly unbiased estimates Er and var (Er) for the
mean and variance of cr are easily obtairned. .This legds to estimating

the mean daily load by

A

L= (Cs'Q, + E;gr)/N (5)

where Qg is the vector of the flow values that corresponds to the
days where the concentrations were measured and Qr is the vector of

the remainder flow values.

A

The variance of L is given by

var () = ' Var(C_)Q /N2 (6)
The above expressions can.be easily derived by noting that if
Zy and 1j are normally distributed with means y; and uj and
variances o2; and o025, then Ci = Exp Zj and Cj = Exp Zj
are log normally distributed with means ng = Exp (uy + 021/2)
and nj = Exp (4j + o025/2), and variances n2; (Exp o2; - 1)
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and f2; (Exp 625 - 1) respectively. The covariance between c;

7

and Cj is

p; 0.0
nyny e W e (021 + dzj +2py5 0405) - 1)
where pij is the correlation between Zj and Zj.
APPLICATION

The data used to illustrate the methods of this paper consist of
the daily flow and total phosphorus (TP) concentrations for the period
from June 1975 to December 1982. The flow values are available for
each day while the TP concentrations were not measured for some days.
Figure 1 displays the monthly means for the flow and TP series. The

plot shows a clear seasonal pattern and a slight downward trend in

TP. Also the fluctuations in TP appear to increase with the increase

in the Tlevel of TP. As a result, it was decided to perform the

statistical analysis after transforming TP values to logs. Examina-

" tion of the plots (not given in this paper) of the deviations of the

daily flow within a month from its monthly mean and the corresponding

plots for 1og TP showed that:

1) within months, both series appeared roughly stationary;
i1) varfability was somewhat higher for some months than others,
but there appeared to be no clear seasonal pattern in

variability;
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iii) there were several ‘outliers' in TP concentration; the
lowest value of -1.94 for log TP was eliminated from the
latter and considered as m1ssin§.

The autocorretation and partial autoéorrelation functions for
sample‘three months periods for the phosphorus series were computed
using SAS. Table 1 gives an example of these functidns. In each
case, the output was compatible with a stationary AR(1) or a white
noise model. The estimated lag 1 autocofrelations are given in
Table 2. These three month periods were chosen because of the
presence of long stretches in which no TP values were missing.

Finally, for a sample of months, an AR(l).model was assumed and
the lag 1 autocorrelation was estimated for the log phosphorus series

by the method of maximum marginal 1ikelihood (Ramakrishnan, 1985).

'For these vcomputations only, the six: highest log TP values were

dgsignated ‘outliers' and removed. The results are given in Table 3.
From the.Table it may be noted that the autocorrelation appears to be’
somewhat stronger for the winter months.  Although some of the
autocorrelation values are suspiciously high, no association was found
between estimated lag 1 autocorrelation and number of missing dayS.
Assuming the AR(1) model for the log TP Values, the estimates of
the monthly and yearly mean daily phosphorus loadings are given in
Table 4 along with their estimated standard errors. It is clear from
the Table that a major reduction in the total TP load to Lake Ontario

has occurred between 1976 and 1982. A1l the standard error are
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comparable from year to year with the exception of 1978 where the

highest load has occurred along with the largest standard error.
CONCLUSION

This paper describes a method for estimating the input load from
a source of pollution aﬁd illustrated its use for estimating the total
phosphorus load from the Niagara River to Lake Ontario between 1976 to
1982. One major advantage of the method is it allows the utilization
of any relevant available information which can lead to a more precise
load estimate. Most available methods assume that the concentrations
are a realization of a sequence of independent random variables and
hence they do not account for the presence of serial correlation which
is 1ikely to be present since the data represent a time series. The
method given here' is well*adapted to the nature of data by not only
including the dependence among successive concentrations, but also
allowing the utilization of any quantitative information in the esti-

mation process, and this was clearly shown in the Niagara River

example.
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Table 1. Autocorrelation and partial autocorrelation functions and
their standard errors (June-August 1975)

Lag Autocrreldtioﬁ St} Error Partial Autocorrelation St. Error

Kk r o(r ) ] of a(¢ )

k k k k
1 0.57 0.10 0.57 0.10
2 0.47 0.13 0.21 0.10
3 0.32 0.15 . =0.02 0.10
4 0.19 0.16 -0.06 0.10
5 0.04 0.16 -0.15 0.10
6 -0.06 0.16 -0.08 0.10
7 -0.12 0.16 -0.04 0.10
8 -0025 0.16 '0017‘ 0010
9 -0.25 0.17 -0.01 0.10
10 -0.24 0.17 -0.01 0.10
11 -0924 0-17 -0.05 0-10
12 -0.16 0.18 0.07 0.10
13 -0.07 0-18 0007 0010
15 0.14 0.18 0.04 0.10
16 0.27 0.18 0.11 0.10
17 0.31 0.18 0.06 0.10
18 0.21 - 0.19 -0.18 0.10
19 0.22 0.19 0.00 0.10
20 0.16 0.20 0.00 0.10
21 0.11 0.20 -0.02 0.10
22 0.05 0.20 -0.12 0.10
23 -0.13 0.20 -0.11 0.10
0.20 0.05 0.10

24 <0.17




Table 2. Lag 1 autocorrelations for the three month periods

Period Autocorrelation
June to August 1975 0.57
September to November 1975 0.49
April to June 1977 0.33
July to September 1982 0.25
June to August 1983 0.20*

September to November 1983 0.35

*not significant
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