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MANAGEMENT PERSPECTIVE ' 

One of the most difficult problems in hydrogeology has to do with 

predicting the nature of the dispersion and dilution of contaminants 

being transported by groundwater from a waste site. The most common 

method by which to determine the necessary parameters for making a 

prediction is the advective tracer experiment conducted in a radial 

flow field. This is the first of a two-part paper series in which the 

boundary conditions for the analytical models used to interpret tracer 

experiments are evaluated. In this paper it is determined that there 

is considerable difference in the results obtained depending on the 

choice of boundary condition. The differences can not be resolved 

using traditional mass balance means and thus physical modelling is 

required to complete the evaluation. The results of the physical 

modelling are presented in the second paper.



PERSPECTIVE GESTION 

L'un des problémes les plus difficiles en hydrogéologie tient 5 

la prévision de la dispersion et de la dilution des polluants emportés 

dans les eaux souterraines depuis un lieu ofi sont déposés des 

déchets. A L'expérience d'advection au traceur dans un champ 
I 
I ' I '

M d ecoulementi circulaire est ‘la methode la plus touramment utilisée 

pour déterminer les paramétres de prévision nécessaires. L'article 

présenté ici est le premier de deux exposés dans lesquels on évalue 

les conditions en zone limitrophe applicables aux modéles d'analyse 

employés pour interpréter les expériences au traceur. On constate que 

les résultats different considérablement selon les conditions en zone 

limitrophe retenues. Les différences n'étant pas réductibles au moyen 
des bilans massiques habituels, il faut un modéle physique pour 
compléter l'évaluation. Les résultats de la modélisation physique 
sont présentés dans le second article.



ABSTRACT 
4 The Laplace transform method is employed to obtain the 

solution to several boundary value problems in which mixing occurs 
in reservoirs attached to a porous medium. Flow is assumed to be 
uniformly one-dimensional through the porous medium. Solutions are 
obtained for both continuous and discontinuous concentrations at 
the reservoir—medium boundary and for resident and flux averaged 
concentrations. A mass balance conducted on each solution shows 
that neither continuity condition can be proved generally superior. 
An evaluation of the parametric sensitivity of the solutions is 
also conducted and .show$ that the distinction between the 
continuity conditions and the flux and resident concentrations is 
only important at small Peclet numbers. The only exception to 
this, is the distinction between flux averaged versus resident 
continuous concentrations in a finite solution domain. In this 
case, the flux concentrations were found to be insensitive to the 
volume of the downstream reservoir and consequently, the flux and 
resident concentrations can differ substantially for larger 
reservoirs. In consideration of the general "behavior of the 
solutions, three conceptual problems were identified which must be 
investigated by physical' modeling: 1) determination~ of the 
appropriate solution at small Peclet number, 2) the possibility 
that dispersive mass flux occurs from the upstream reservoir under 
conditions of continuous concentration and, 3) the use of the flux 
transformation for continuous concentration in a finite solution 
domain. The physical modeling is discussed~ in a‘ following 
companion paper. ~

‘



'REsuME 

On utilise la transformation de Laplace pour résoudre divers 

problémes concernant les valeurs de la zone limitrophe ou se fait le 

mélange dans des réservoirs reliés a un milieu poreux. On suppose que 

l'écoulement dans le milieu poreux est uniformément unidimensionnel. 

On a formulé des solutions s'appliquant 5 des concentrations_continues 

et discontinues dans la zone limitrophe réservoir+milieu ainsi qula la 
'1 concentration de séjour et 3 la concentration moyenne d ecoulémént. 

Le bilan massique établi pour chaque solution ne fait ressortir aucune 

condition continue qui soit généralement supérieure. Par ailleurs, 

l'évaluation de la sensibilité paramétrique des solutions a révélé que 

la difference entre les conditions continues et la concentration de 

séjour et moyenne d'écoulement n'ont d'importance qu'aux petits 

nombres de Péclet. Il n'y a qu'un exception : la distinction entre la 
concentration moyenne d'écoulement et la concentration Yde séjour 

continue dans un domaine de solution fini. En l'occurrence, la 

concentration d'écoulement s'est révélé insensiblei au volume ’du 

réservoir diaval, de sorte qu'elle peut considérablement différer de 

la concentration de séjour avec les réservoirs de grande capacité. 

Compte tenu du comportement général. des solutions, on a. déterminé 

trois problémes de conception 5 étudier par modélisation physique : 

1) détermination de la solution appropriée aux petits nombres de 

Péclet, 2) possibilité d'un.écoulement de masse dispersif depuis le 

réservoir d'amont en conditions de concentrations continues, 

3) application de la transformation de l'écoulement a.la concentration 

continue dans un domaine de solution fini. On traite de la 

modélisation physique dans un article 5 suivre.



INTRODUCTION .

‘ 

The transport of solutes in porous media is largely dependent 
on the velocity of groundwater and the degree of_heterogeneity of 
the media. It is well known that the parameter used to define the 
dispersion of solutes at a representative scale, the dispersivity, 
is a lumped coefficient which accounts for the variation of 
pore-scale velocities that cannot otherwize be included in an 
equation averaged over a scale larger than that of the pore size 
(the macroscopic scale). It has been shown that the utility and 
meaning of the coeffecient of dispersivity is in question at the 
macroscopic and megascopic scales when applied to heterogeneous 
natural aquifers (Pickens and Grisak, 1981a; Gelhar and Axness, 
1983; Molz et al., 1983; Sudicky, 1986; Rilley and Moltyaner, 
1988). This is because many natural aquifers exhibit macroscopic 
heterogeneities that are ordered in a way such that interpretation 
of the dispersion of transported solutes is dependent on the scale 
of observation (Pickens and Grisak, 1981). Consequently, 
measurements of dispersivity obtained for a geological medium at 
one scale can not in general be applied at another. For example, 
the two most widely employed methods for determining dispersivity 
are 1) using laboratory column methods, and 2) field tracer 
experiments. Tracer experiments conducted in laboratory columns 
usually yield values of dispersivity on the order of mm to cm (e.g. 
Reynolds, 1978; Taylor et al., 1987) while tracer experiments 
conducted in the field yield values ranging from cm to m depending 
on the scale of the experiment and nature of the heterogeneities 
(Gelhar et al., 1985). Thus, to make accurate predictions of



contaminant movement in aquifers and to design remedial measures 
for aquifer ~decontamination, measurements of macroscopic 
dispersivity should be obtained from tracer studies conducted at 
the field scale. ’ 

Despite recent advances in the field techniques for conducting 
natural gradient tracer experiments (e.g. Sudicky, 1986; Killey and 
Moltyaner, 1988), due to time and cost constraints, the forced 
advective tracer test method is more widely employed by those 
conducting field experiments to determine macroscopic dispersivity. 
Although there are a few examples where dispersivity is determined 
.from an advective tracer experiment conducted in uniformly 
one-dimensional flow (e.g. _sauty, 1980), tracer experiments 
conducted in-a radial flow field are more easily carried out and 
thus more commonly employed. '

» 

There are several solutions which have been developed to 
interpret the results of tracer experiments conducted in a radial 
flow field. Due to the nature of the governing equation in radial 
coordinates and the fact that groundwater velocity is a function of 
radial position, numerical methods are often employed to solve this 
boundary value problem (Ogata, 1958; Hoopes and Harleman, 1967; 
Sauty, 1980; .Pickens and Grisak, 1981b). Recently, several 
analytical solutions have been derived using the Laplace transform 
method (Tang and Babu, 1979; Hodgkinson and Lever, 1983; Hsieh, 
1986; Valocchi, 1986; Chen, 1987a; Moench, 1989). 

The analytical solutions are derived for both convergent and 
divergent radial flow, and for a variety of boundary conditions.
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In many cases (e.g. Hsieh, 1986) a continuity condition (Dirichlet 
boundary) is employed at the injection well to simulate a source of 
constant strength. Similarly, a Dirichlet boundary" has been 
employed to close the BVP at the withdrawal well in the Gase of 
convergent radial flow (Hodgkinson and Lever, 1983; Moench, 1989). 
Chen (1987a) argues that for divergent radial flow, a mass balance 
conducted between the injection well and formation will lead to a 
third type (Cauchy) boundary condition at this location. On the 
basis- of a comparison conducted by Chen, differences in the 
simulated concentration *are evident. depending on the boundary 
condition selected, particularly for the case where tracer is 
injected as an instantaneous pulse. Unfortunately, physical 
modeling was not conducted to verify the selection of the boundary 
condition and on the basis of a study conducted by van Genuchten 
and .Parker (1984) for solutions of equivalent oneedimensional 
uniform flow problems, some uncertainty remains as to the choice of 
the boundary condition at both the injection and the withdrawal 
well for either convergent or divergent flow. 

Recently it has been recognized that the effects of mixing and 
dispersion in the test instrumentation can substantially influence 
the results of both column (James and Rubin, 1972; JOhns, 1987) and 
field-scale experiments (Hodgkinson and Lever, 1983; Palmer, 1988; 
Moench, 1989). In particular, Palmer (1988) and Moench (1989) have 
shown that mixing in open sampling wells during field—scale 
experiments can significantly dilute the concentration of solute 
entering the well. Thus, the interpretation of the changes in

\

}



‘ 

4 
. 5 

concentration using an analytical solution which doesn't account 
for the mixing, will lead to error in the estimate for both 
velocity and dispersivity. 

Hodgkinson and Lever (1983) and Moench (1989) have developed 
analytical solutions to the radial flow case where solutes are 
transported convergently towards a pumping“ well. Mixing and 
dilution in the pumping well is accounted for in the Hodgkinson and 
Lever solution and mixing in both the pumping and the injection 
well is accounted for in the Moench solution. Vlniboth solutions, 
macroscopic continuity of solute concentration is assumed at the 
we1lbore—formation interface.

, 

An additional problem associated with the choice’ of 
appropriate boundary conditions ' for one-dimensional 
advection—dispersion models concerns the sampling procedure used to 
determine solute concentrations. Kraft and Zuber (1978), van 
Genuchten and Parker (1984) and Parker and van Genuchten 11984) 
distinguish between volume averaged (resident) and flux-averaged 
(flux) concentrations dependent on the sampling methods. Kreft and 
Zuber (1978) define the resident concentration as the mass of 
solute per elementary volume of the porous medium at a given time 
and flux concentration as the mass of solute crossing a unit area 
per element of time. In both cases the concentrations are defined 
macroscopically. 

_ 5 

Q
l 

Resident- concentrations~ ares typically obtained using 
non-invasive methods installed directly into the porous medium 
while flux concentrations are obtained using larger scale devices
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that may influence the groundwater flow regime significantly. For 
example, small scale sampling devices such as the B.A.1HT“ system 
(Torstenssonj 1984), Hydropunch“‘system (Edge and Cordry, 1989), 
suction lysmeters and saturated core samplers (Zapico et al., 1987) 
probably obtain samples having resident concentration (Parker and 
van Genuchten, 1984). Conversely, larger scale devices such as 
monitoring or other wells and pan lysmeters likely obtain samples 
having fluX—averaged concentration (Parker and van Genuchten, 1984; 
Valocchi, 1986; Chen, 1987a). Ultimately, however, there may be 
some uncertainty, as suggested by Parker and van Genuchten (1984), 
with respect to the nature of the concentrations obtained from a 
given sampling device. In addition, Chen (1987b) argues that the 
application of the flux transformation to a boundary value problem 
having continuity in concentration at the outlet boundary (i.e. 
BC/8x=O at the exit from the flow domain), renders the flux and 
resident concentrations to be the same. This suggests that the flux 
transformation may not be required for some solutions depending on 
the formulation of the boundary value problem, Therefore, the 
selection of appropriate boundary conditions for one-dimensional 
solute transport is further complicated by the possible need to 
distinguish between flux-averaged and resident concentrations. 

- An alternative approach is to define the measured 
concentration from the microscopic governing equations based on 
weighting functions which depend on the sampling device (Baveye and 
Sposito, 1987; Moltyaner, 1989). In this case, the scale or radius 
of influence of the sampling device plays the largest role in
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determining the averaged concentration and the distinction between 
flux and resident concentration is less obvious. However, if we 
assume that the weighting functions for the sampling devices are 
space and time invariant," then the macroscopically averaged 
governing equation can_be applied (Baveye and Sposito, 1987) and 
tthe issue of flux versus resident concentration is revived. 

In consideration of the uncertainty with respect to the myriad 
choice of solutions available for the interpretation of field 
tracer experiments conducted in a radial flow field, it was 
determined to undertake an investigation by which these solutions 
are evaluated and compared._ Although this has been done to some 
extent by Chen (1987a),~ his evaluation "was carried out on a 
strictly theoretical basis and did not account for the mixing 
effects at the wellbore—formation interface. 

The most appropriate means. by which. to investigate the 
properties of the boundary conditions for radial solute transport 
is through the use of physical models. Unfortunately, the design 
"and manufacture of physical models to simulate radial solute 
transport (e.g. Hoopes and. Harleman, 1967) is very difficult 
relative to physical models which simulate uniform one—dimensional 
flow. Thus, to conduct the comparison required for this study, 
solutions for the boundary conditions equivalent to those used for 
solutions to the radial flow problem, considering flux 
transformations, are derived for uniform flow and the physical 
modeling is conducted using columns. Mixing conditions -are 

considered at both the injection and withdrawal boundaries. The
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results obtained for the uniform flow case can then be extended to 
radial flow. 

There are many analytical solutions which account ‘for a 
variety of possible boundary conditions, currently available for 
uniform flow. Gershon and Nir (1969) provide a thorough 
compilation of these solutions and van Genuchten and Parker (1984) 
conduct a useful comparison and evaluation. Unfortunately, there 
are no solutions for uniform flow in which mixing in upstream and 
downstream reservoirs attached to the flow domain is accounted for 
explicitlyu .A non—rigorous mathematical study of the possible 
effects of mixing in a sampling well located in a uniform flow 
field (Palmer, 1988) ‘could be used to provide~ a basis ‘for 

interpretation of downstream mixing effects in a reservoir attached 
to a column. Therefore, for the purposes of this study, the 
necessary solutions to conduct the comparison are unavailable in 
the literature and must be obtained by direct solution of the 
various BVP.

_ 

» The purpose of this paper is to 1) develop appropriate inlet 
and outlet boundary conditions for one-dimensional uniform flow in 
terms of mass balance, which-account for mixing in reservoirs 
located at these boundaries, 2) find solutions for both resident 
and flux-averaged concentrations, 3) evaluate the solutions with 
regard to parametric sensitivity and, 4) evaluate the general 
applicability of) the solutions to realistically simulate the 
physical transport processes at the boundaries. ’A companion paper 
(Novakowski, this issue) is also presented in ‘which physical
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modeling, conducted using column tracer experiments, is employed to 
investigate some of the issues raised byspoints '3) and 4). The 
column experiments in that paper are conducted using ge_ological 
materials of both small and large dispersivity. A 

MATHEMATICAL DEVELOPMENT ' 

The One-dimensional form of the advection-dispersion equation 
which describes conservative solute transport in a uniform 
groundwater, flow field is given as: 

-D,/".g27€' =0 X20 
D 

y 

[1] A 

where C is resident concentration, v is the average linear 
groundwater velocity and D,-_ is the hydrodynamic dispersion 
coeffecient. Units for the dimensioned parameters are given in the 
notation. Equation [1] is presumed valid within the entire domain 
of solution except near the upstream and downstream boundaries 
where‘ D,_ may be ill—defined (Dagan and Bresler, 1985') . The 
coeffecient of hydrodynamic dispersion is further defined by 

n,=v¢,_+ne1>- :21 

where a,_ is the longitudinal dispersivity, n is porosity, 0 is 

tortuousity and D°' is the coefficient of molecular diffusion. For 
most advective tracer experiments conducted either in columns or in 
the field, the second term on the RHS is negligible. 

l 

Because we 
are considering uniform flow conditions and presuming a 

macroscopically averaged equation, a,_ is a spatially constant term
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‘of finite length within the solution domain. 

The initial condition which applies here to equation [1] is 
given as: '

-

\ 

P 

' C(x,0)=0 Osxsw 
w 

[3] 

: Equation [3] will apply to all of the solutions discussed in this
K

i PaP5r- ' 

\

4 

As a means of eliminating the coeffecients in equation [1] and 
_ 

thus facilitating the solution method, the following dimensionless 
groups are employed

A 

\ c;=c7c; 
x =.ig__v 

, 

” 
DL2 [41 

_ tV 
~ **=='B; 

4 where Co is the initial resident concentration in the upstream
1 

K 
reservoir and subscript D denotes a dimensionless parameter. Using 

K [4], equation [1] is developed in dimensionless form as 
'1

x 

ac, ac, a=c, 
i 

X920 

i 

- and the initial condition is given as 
[

. 

_\ c,(x,,, 0 ) =0 osxpsw [6] 

l In the following mathematical development, analytical 
L 

solutions are derived using the Laplace transform method. The 
} 

solutions are presented in the Laplace domain rather than in real 
L '

' 

i space. This is because several of the solutions lead to very

\

i 

-‘i

. _
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complex and in some cases intractable analytical inversions. When 
required, all inversions to real space are conducted using a 
numerical inversion scheme (this will be discussed following the 
mathematical development). 

In deriving lthe solutions accounting for mixing in the 
upstream reservoir (semi-infinite domain) and mixing in both the 
upstream and downstream reservoirs (finite domain), two general 
solutions to equation [5] are_required. _ 

» For the semi-infinite case, the concentration at x=w goes to 
zero and after application of the Laplace transformation, the 
general solution is ‘

- 

5}, (x,,. p) =Bexp(£x,) [71 

where B is a constant to be determined by the boundary conditions 
and 5 is given by 5 

z=1/2-,/‘WI ta] 

The overbar indicates the Laplace transformed concentration and p 
is the Laplace variable. 

y

. 

The general solution for a finite domain in Laplace space is 
given by. 

_ _ 

- €,,(x,,,p) =Aexp{Ax,)+Bexp{£x,) i 

‘ [9] 

where A and B are constants to be determined by the boundary 
conditions and A is given by 

1=1/2+/WI [10]
_
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Example solutions to the complete BVP are given in the Appendix. 

Mixing in the Upstream Reservoir 
,

i 

Mixing in a reservoir attached to the inlet boundary of‘a 
semi-infinite porous medium can be accounted for,by conducting a 
mass balance on the fluid leaving the reservoir and entering the

n domain. In dimensional form, the mass balance in the reservoir is 
given by '

1 

V§£¥%%;2-==yvC§(t) [11]

1 with the initial condition n

\ 

c;(o)=c; 
1 

- [12] 

where Viis the volume of the reservoir, Cifis the concentration in 
the reservoir, subscript i denotes the inlet reservoir and 7 is the 
cross—sectional area through which the groundwater is flowing (i.e. 
porosity times the cross-sectional area of the medium). _Velocity 
multiplied by 7 is equal to the volumetric flux of the groundwater 
(Q). An additional condition is-required to complete the mass 
balance on the formation side of the boundary: 

'Equations [11], [12] and [13] describe a slug input of tracer at 
time zero that is continually and physically mixed at t>0. Figure 
1 shows schematically, the physical configuration of the boundary 
value problem. ‘
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_ 

The particular solution having macroscopic continuity in 
concentration between the reservoir and the formation can be found 
using equations [7], [11], [12], [13] and the continuity condition 

C}(t)sC(0,t) [141 

The solution is given in dimensionless form in the Laplace domain 
8.5 

where Hm is the dimensionless mixing coeffecient for the upstream 
reservoir and is equal to - 

_g ViV Bp1'T<L [16] 

This condition, except in radial flow form, was employed by Moench 
(1989). 

o 

' ' 

Alternatively, solute concentration in the upstream reservoir 
can be expressed in terms of a macroscopic discontinuity with the 
concentration in the porous.medium. In this case; the continuity 
condition given by equation [14] is not employed. The particular 
solution is obtained using equations [7], [11], [12] and [i3] and 
is given as: ' 

» 

'
“ 

E (ix ,p) =-_-EDL-H-expifixpi ~ [17] . D D A ([5p_{P"'1) 

This condition is similar to that employed by Chen (1987a) for 
radial flow and to Idndstrom et al. (1967) for uniform flow.
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Neither of these solutions, however, consider mixing effects at the 
boundary.

_ 

Where tracer is continuously introduced into the water 
entering the reservoir, the initial condition, equation [12], and 
,the mass balance in the reservoir, equation [11], are modified to, 
respectively l 

c,(o) =0 [18] 

[19] 

The solutions [15] and [17] are thus modified by replacing Bm in 
the numerator with 1/p. 

To verify that the solutions conserve mass, a mass balance can 
be conducted on the fluid that has left the reservoir and entered 
the porous medium. The expression for mass balance in a 
semi-infinite domain is given by (van Genuchten and Parker, 1984): 

1; 
"’c,,, ( c,,) d~.-'= 1; 

“c, (x,,, z:,,) dx [20] 

where 1 and x are integration variables. The integrals in [20] are 
easily evaluated from the Laplace domain solutions using a few 
general properties of the Laplace transform method. For example, 
a mass balance on the solution for macroscopically continuous 
concentrations (equation [15]) is conducted by evaluating the left 
hand integral of [20] using a solution to equations [11] and [12] 
only to account for the mass leaving the reservoir. Thus I
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* 5 
L[]; "c,,,(z:,,)dr] 

_ 

[21] 

where L[] indicates a forward Laplace transformation. The definite 
integral on the RHS of [20] can be evaluated directly using 
equation [15]: 

f:°"‘*"' ‘D’ °"“'l<pl-g EL1p—) [221 

Therefore, the solution for macroscopically continuous 
concentration does not conserve mass. However, application of [201 
to the solution having discontinuous concentration at the inlet 
boundary, equation [17], shows that this solution conserves mass. 
This is similar to what was found with the solutions for uniform 
flow having non—mixing boundary conditions (van Genuchten and 
Parker, 1984). 

Mixing in the Downstream Reservoir ‘

' 

Figure 2 shows the physical configuration where a reservoir of 
volume V; is located at-a distance L downstream from an upstream 
reservoir of volume V5 By conducting a mass balance on the fluid 
leaving the.porous medium and entering the downstream reservoir, an 

’

- 

expression for mass’ flux in the downstream. reservoir can be 
formulated. In keeping with the derivation of the inlet boundary 
conditions, macroscopic continuity can also be included at the 
outlet boundary. Therefore, the outlet boundary condition which
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describes the amount of mass leaving the porous medium per unit 
time, l§(t), is given by: 

p 
M,_(‘t) =1 wow. t) -1>,"%’;tl1 [231 

and conservation of mass in the downstream reservoir is given by: 

V,£§%-tl»=M,,( :> -vvc~,u=> [241 

with initial condition 

c;(o)=o . [25] 

where the subscript e denotes the downstream reservoir. Continuity 
is given by:'

. 

C;(t)=C(L,t) [26] 

where C, is the concentration of solute in the downstream 
reservoir., Substitution of [26] and [23] into [24] simplifies the 
outlet boundary condition to: 

[27] 

Using the general solution, equation‘ [9], a particular 
solution in which boundary conditions [11], [12], [13], [14] and 
[27] are employed can be found using Cramer's rule. The solution 
method 'is given in the Appendix. The solution for the 
dimensionless concentration is given by: 

5,,(x,_,p)‘=\|'1eXP{1~XJ-\I1=eXP{€x,) 
p 

[281 i 

where " '
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29] W _ Bp1(Bp¢P"'-E)ex.P{EPe} [ 1" A1 

\|;2=. B”1(P”°P,+AM ?"?i§P°} [30]
1 

A1= ( B,,1p+£) (‘|3,,,,p+E) exp{EPe}- (ppip-+1) (B,,,p+1)_ expupe) [31] 

and Pe is the Peclet number equal to vL/DL. The coeffecient L is 
the length of the domain as shown in Figure 2 and the parameter 33° 
is the dimensionless mixing coefficient for the downstream 
reservoir(V,replaces viin equation [16]). This boundary condition 
is equivalent to that employed by Hodgkinson and Lever (1983) and 
Moench (1989) except in cartesian rather than radial coordinates. 

The boundary value problem can also be formulated to account 
for macrosCOPiC discontinuities in concentration at both the inlet 
and outlet boundaries. In this case the solution is obtained for 
the dimensionless concentration in the downstream reservoir (cm) 

only. The solution for concentration in the porous medium and 
upstream reservoir is given by equation [17]. The solution for the 
downstream reservoir is obtained using [17], [23], [24] and [251 

and is written as:
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- _ B eXp(EPe} C"°(p) ' (ppglfil) <Bmp+1) [32] 

The solution method is given in the Appendix. 
Unlike the equivalent solutions for non-mixing boundary 

conditions, (van Genuchten and Parker, 1984) equation [32] is 
disimilar to the solution for continuous concentration in a 
semi—infinite medium (equation [15]). This is because of the 
mixing conditions for equation [32] which are uniquely defined at 
both the inlet and outlet boundaries. . 

As ‘with the case for' the solutions in. the semi—infinite 
domain, the equivalent solutions for a constant tracer input are 
easily obtained by replacing Bm in the numerator of equations [28] 
and [32] by 1/p. 

A mass balance conducted on the solutions for macroscopically 
continuous and macroscopically discontinuous concentration in a 
finite domain shows that neither solution exhibits conservation of 
mass. The reason for this is not immediately evident, however, this 
observation is similar to the case for nOn—mixing vboundary 
conditions. Calculations of mass balance for non-mixing solutions 
for uniform flow show that only a mixture of discontinuous inlet 
and_ continuous outlet boundary conditions (Brenner's (1962) 
solution) conserves mass while uniformly continuous or 
discontinuous boundary conditions do not (van Genuchten and Parker, 
1984). Therefore, because it is difficult to present intuitive 
arguements which support. the use of combined continuous and

\
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discontinuous boundary conditions and because neither the solutions 
for uniformly continuous nor uniformly discontinuous conditions can 
be supported by arguements based on mass balance, the solutions for 
a finite domain must be evaluated by physical modeling. . 

Flux Averaged wransformation ~ 

The- transformation from resident to flux averaged 
concentration for one—dimensional advectioncdispersion is conducted 
using the following expression (Kreft and Zuber, 1978) g 

vc,= vc-D,-3-E 
V 

[3 3 1
_ 

where C is the resident concentration as employed previously and C, 
is the flug—averaged concentration. Obviously, in the case where 
dispersion is negligible, flux and resident concentrations are 
equal. Application of the transformation to the governing equation 
[1] results in an equation identical in form to [1] with the 
exception that CF replaces C (Kreft and Zuber, 1978). 

Intuitively, the application of the flux-averaged 
transformation may seem unnecessary for the boundary value problems 
developed herein due to the inherently explicit description of flux 
conditions at both the inlet and outlet boundaries. However, it 
can also be argued that by virtue of the nature of the transport of 
solutes across the planara inlet and outlet boundaries, the 
concentrations obtained from the reservoirs represent flux—averaged 
values irrespective of how they are measured. In turn, it is also 
conceivable that some modes of the measurement of concentration
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within the medium may yield flux-averaged values. Thus, a 
f1ux—averaged transformation may be required. 

Application of the transformation to the solutions for a 
semi-infinite domain, equations [15] and [17], results in the 
following expressions of flux concentration for the case for 
macroscopic continuity and macroscopic discontinui-ty, respectively: 

- A
, CD, (x,, . p‘) expifixpl [34] 

E;,<x,,, p> 
1 

[351 

Where Cm,is the dimensionless flux—averaged concentration. 
- The solution for a finite domain accounting for macroscopic 

continuity, equation [28], can be transformed using [33] to yield 
the expression: 

E,,,<x,, . p) =w,e><p<AxJ-w,e>¢p{€x,) £361 

where iq and 15 are as defined previous1y._ ~

_ 

V 

Application of the transformation to the equivalent case for 
discontinuous “concentration (equation [32]) leads to the 
expression: 

- 
p {EP} ~ 

°",“”= (B,.%f)q(>B,;+1) [37] 

Comparison of equations [32] and [37] shows that they are identical 
and thus, the concentration‘ in the downstream reservoir is 
completely independent of the definition of the concentration in

‘
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the medium. This is contrary to that observed by Chen (l987b) using 
the solution of Valocchi (1986)_for radial dispersion. Chen found 
sthat the imposition of continuous rather than discontinuous 
conditions at the outlet boundary of the medium led to similarities 
between flux and resident concentrations. The reason for the 
similarity noted here, is that the dispersive flux conditions 
imposed at both the inlet and outlet boundaries cancel during the 
development of the solutions for either flux or .resident 
concentrations. - -

‘ 

Mass balance between residence and flux concentrations can be 
established using the criteria (Kreft and Zuber, 1978):

' 

3C - .. 
c,,(x,,. tn) =-Lt”-$2;-"d-c 

_ 

[as] 

where 1 is an integration variable. Upon substitution, it is 

easily verified that only those solutions in which macroscopic 
continuity in concentration is considered, (equations [15], [34], 

[28] and [36]) satisfy equation [38]. Therefore, in terms of_mass 
balance, the solutions» having macroscopic discontinuity in 
concentration are not physically justifiable. Because this is 
contradictory to the case for resident concentration, a weakness in 
the mass balance approach to evaluation of the appropriate boundary 
conditions is suggested with regard to the solutions developed 
herein. Again, this must be addressed by a physical modeling 
study.
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Verification of the Solutions 4 

Unfortunately, there are no existing analytical solutions to 
which the solutions developed for‘ this paper can be directly 
compared. Verification' of the solutions must be conducted 
indirectly by reducing the solutions to known problems. For 
example, the elimination of fim in the solutions for a semi-infinite 
domain should reduce the expressions to the equivalent solutions

I 

for non-mixing first and third type inner boundaries (e.g. Ogata 
and Banks, 1961; Lindstrom et a1., 1967). Due to the combination 
of continuity and flux conditions expressed at the inlet boundary, 
solution [15] cannot be evaluated using this aPProach. However, as 
DL-» Oaat the boundary, solution [15] is reduced to 

E,(x,,,p) =—-—-( B921‘ 1) exp{£x,) y 

[39 1 

This can then be compared to a solution for a first type boundary 
(continuity) for uniform flow. Elimination of Bm in equation [39] 
after substitution of 1/p in the numerator leads to the expression: 

E,,<x,,.p> ==;§-e><p<€xJi [401 

which, in the Laplace domain, is the well known Ogata-Banks 
solution for a constant tracer input into a semi—infinite medium. 
Thus, equation [15] is partly verified using this method. In 
addition, solution [17] for the discontinuous case, can be 
evaluated in the same manner resulting in the expression:
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Z',',(x,.p)_=;1X-e>=plEx,,} [4111 

When analytically inverted, equation [41] is found to be identical 
to the solution of Lindstrom et al., (1967) for constant tracer 
input with a macroscopic discontinuity at the inlet boundary. 

Verification of the solutions for a finite domain is somewhat 
more difficult because only one known solution is available in 
which the continuity condition is expressed in the same manner as 
expressed here and is uniformly applied to both the upstream-and 
downstream boundaries. This solution is given by equations [8] or 
[23] in van Genuchten and Parker (1984), and equation [41] in this 
paper. The solution developed for this paper having similar 
boundary conditions but including mixing.in the reservoirs is given 
by equation [32]. By substitution of 1/p and elimination of fim, 
solution [32] is found to reduce to [41]. Thus, the solution [32] 
is verified. on 'this basis. Unfortunately, solution [28] for 
uniformly continuous concentration cannot be verified using this 
method. ' 

In all cases, the solutions for flux—averaged concentration 
were obtained by two independent means, 1) by direct substitution 
into equation [33], 2) by substitution of [33] into the boundary 
conditions and re—solving the new boundary value problem. 

Further verification of the solutions can only be conducted 
using a numerical model or physical analog. In a companion paper, 
solutions are evaluated by comparison to the results of several 
column experiments. ' "
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RESULTS AND DISCUSSION 

In the following discussion, the behavior of the particular 
solutions is analysed using illustrated examples evaluated in real 
space. The evaluation of the Laplace domain solutions in real 
space is conducted using a numerical inversion scheme. Several 
schemes including the Crump (1976), Talbot (1979) and De Hoog" et 
al. (1982) algorithms were evaluated using a variety of the 
solutions over a wide range of Peclet numbers. Both the Crump and 
Talbot. algorthms were found to be unstable (oscillatory 
convergence) at Peclet numbers greater than 100. The De Hoog 
algorithm, however, was found to be stable at Peclet numbers much 
in excess of 100 and, although in most practical situations Peclet 
numbers greater than 100 are rare, the De I-Ioog algorithm was 
selected to conduct the numerical inversions. Y

1 

The accuracy of the De I-Ioog inverter was evaluated by 
comparison of numerical inversions of equations [40] and [41] to 
the equivalent analytical solutions (Ogata, and Banks, 1961 ;' 
Lindstrom et al., 1967) for a variety of values of to and x,,. 

Results showed that accuracy was carried to at least the 5th 
significant figure even at Peclet numbers of 1000 (very sharp 
fronts). a 

' ' 

Solutions for a semi-In£i,.g_iJ:e Domain 
To illustrate the differencesbetween the various solutions 

for a semi.-infinite domain, example breakthrough curves are plotted 
in Figure 3 for macroscopically continuous and discontinuous flux
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and resident concentrations (equations [15], [17], [34] and [35]). 
Dimensionless concentration is.plotted against tn/xh for xn of 1 

(equivalent to a Pe of 1) and BM equal to 10. As is evident, the 
differences between the solutions are substantial, particularily 
the difference between flux and resident concentrations. The 
distinction between continuous and discontinuous concentrations is 
also large at these values of'x, and Bu. This suggests that proper 
choice of the particular solution most appropriate for a given 
physical problem is very important. Moreover, this illustrates the 
need to more properly define the physical processes occuring at the 
boundary interface and to more clearly define sampling methods with 
respect to the measurement of flux versus resident concentrations. 

~ Fortunately, increasing distance from the upstream reservoir 
or decreasing a',_ have a mitigating effect on the differences 

' 

, \ 

between the solutions. Figures 4 and 5 illustrate the dependence 
on distance (or Peclet number) of flux versus resident 
concentrations and continuous versus discontinuous concentrations, 
respectively, for a Bm of 10. At large distance all of the 
solutions overlap and only at small distance or large dispersivity 
is the distinction substantial enough to warrant evaluation. 
Therefore, for some practical situations the distinction between 
solution; and consequently the choice of solution, may be 
immaterial. '

V 

The influence of the dimensionless mixing coeffecient in the 
upstream reservoir, Hm, is illustrated in Figure 6 using the 
results from equations ‘[15] and [17] for continuous and
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discontinuous resident concentrations. 1 Figure 6 shows the 
distinction between solutions for a Bm of 1, 10 and 100 at a 
dimensionless distance of 1. As is aPP8rent, the distinction 
between solutions is relatively independent of Bm. Thus the volume 
of the upstream reservoir relative to the cross—sectional area 
through which the groundwater flows, 7, need not be a factor in the 
selection of an appropriate solution. However, larger values of 7 
lead to a longer period of peak concentration and thus become a 
consideration in determining practical aspects such as sampling 
period for column or field tracer experiments. . 

By itself, the mass balance for the upstream reservoir, 
equation [11], along with initial condition [12] is used to 
interpret borehole (point) dilution experiments for an estimate of 
horizontal groundwater velocity (Halevy et al., 1967; Drost et al., 
1968; Grisak et' al., 1977). To conduct a borehole dilution 
experiment, a slug of concentration is introduced into a borehole, 
completely mixed over time and measured periodically. Assuming 
equation [11] is appropriate, the declining concentration is solely 
a function of the advective mass flux leaving the borehole. 
However, if macroscopic continuity is applied and equation [13] 
used to complete the mass balance, a dispersive flux component is 
added to the mass flux leaving the borehole. This suggests that a 
dispersivity could be determined from the results of a borehole 
dilution experiment. aThis is illustrated in Figure 7 where 
solution [15] is compared against solution [39] which is the 
solution of equations [11] and [12]. The comparison is made for Hm
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of 1, 5 and 10. Although equation [34] is vbased on the 
dimensionless coeffecient Bm which encorporates qL, for comparative 
purposes this solution is identical to the solution obtained for 
the borehole dilution problem. The influence of-Bm in this case 
is relatively large, with the most substantial distinction between 
the solutions evident at smaller Bm. Therefore, by reducing 
reservoir volume, the possible influence of the dispersive flux 
term is more likely to be observed were it to occur. 

Intuitively, there is some difficulty in conceptualizing the 
physical mechanisms responsible for this process. However, this 
idea although developed in less rigorous mathematical form, has 
been employed previously (Fujinawa, 1983; Erickson, 1985). 
Therefore, an investigation is required so as to determine whether 
the borehole dilution method is of possible use for determining 
dispersivity. Because mass balance arguements are weak, the 
investigation must be conducted using direct physical analogy. 

Solutions for a Finite Domain - 

The solutions for a finite domain having macroscopically 
continuous and discontinuous resident and flux concentrations for 
a-Pe of 10 and Hm equal to 10, Bmequal to 10 and Bm equal to 100, 
Bmequal to 10 are plotted in Figure 8. Recalling that flux and 
resident, concentrations are identical for discontinuous 
concentrations, only ‘three curves are presented for each 
combination of BM and Bu For this particular Pe number, the 
distinction between continuous and discontinuous resident
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concentrations is minimal. _ However, the flux concentration is 
quite different exhibiting a much earlier peak arrival time in 
tn/Pe for both combinations of Bm and B5,. I 

'I_‘h"is distinction 
_ 

is shown more clearly in_ Figure 9 where 
resident and flux concentrations (continuous) are plotted for Pe of 
1 and 100 and Bm of 50 with B1,,-of 10 and 1. Where Pe equals 1. the 
difference between flux and resident concentration is most 
remarkable for larger B9,. As fin, is diminished the flux and 
resident concentration become more equivalent. Th-is is also true 
at a Pe of 100, although in this case there is much less 
distinction between the curves for flux concentration at B1,, equal 
to 1. Therefore, continuous flux concentrations are extremely 
insensitive to the volume of the downstream reservoir and thus flux 
and resident concentrations can be substantially different for 
larger B1,, independent of the Peclet number. This relation was also 
observed by Moench (1989) for convergent radial transport. 
However, this_observation is contradictory, recalling that by the 
definition of the flux-averaged transformation, as DL => 0, flux and 
resident concentrations should become equal. The reason for this 
contradiction is unknown, however, in view of the behavior of the 
solution, some uncertainty must be placed in the practical use of 
continuous flux concentrations. Again, this can be investigated 
using the results of physical modeling.

_ 

Figure 10 shows a comparison between continuous and 
discontinuous concentrations for a Pe of 1 and 10 at Bm equal to 
10, fin, equal to 10 and Bm equal to 50, B1,, equal to 10. As with the
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solutions for a semi-infinite medium, the difference between the 
continuity conditions is only important for small Peclet numbers. 
The distinction between the solutions also appears to be 
independentv of Hm and Bu Unlike the solutions for the 
semi—infinite case, there are no ramifications with regard to the 
ipractical measurement of concentration in the downstream reservoir 
dependent on the choice of solution, For a finite domain, some 
error (larger for smaller Pe) will be incurred if an inappropriate 
solution is applied to interpret resident concentrations. 

The relative influence of the Peclet number on ~resident 
concentrations is shown in Figure 11 for Pe of 1, 10 and 100 at Bm 
equal to 25, Bm;equal to 25 and Bm equal to 50 and Bm,equal to 1. 
It is clear from Figure ll that Bmyhas a-substantial influence on 
the sensitivity of the solution to dispersivity. The relation is 
similar to that observed for continuous resident concentrations in 
the upstream reservoir whereby the sensivity to aL is increased by 
decreasing Bu Therefore, in practical situations, it is best to 
minimise the volume of the downstream reservoir in order to improve 
the accuracy of the estimate of oi. This relation is also observed 
by Moench (1989) for the radially convergent case, although not to 
the same extent.
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concnuszons . . 

Due to the increased use of boundary conditions in which 
solute concentrations are fully mixed in a reservoir connected to 
a porous medium, an evaluation of several possible solutions for 
this problem was conducted. The Laplace transform method was 
-employed to derive solutions in the Laplace domain which account 
for mixing in reservoirs attached to both semi-infinite and finite 
domains. Continuity and discontinuity conditions at the boundaries 
and resident and flux-averaged concentrations are incorporated in 
the various solutions. Similarities in form between some of the 
solutions were observed. For example, the solution for 
macroscopically discontinuous concentration in a finite domain was 
found to be equivalent for both flux and resident concentrations. 

Mass balance equations were applied to the solutions for both 
resident and flux concentration. An inconsistent mix of solutions 
having different boundary conditions were observed to balance mass 
including the macroscopically discontinuous case for the 
semi-infinite- domain, none for the finite domain, and the 
continuous case for flux concentrations. Thus, because mass 
balance arguements are weak, no one solution or set of solutions 
can be identified as, the most representative of V the physical 
transport processes. Consequently, the validity of the solutions 
must be evaluated by direct application to physical models. 

"Evaluation of the parametric sensitivity of the solutions was 
also conducted by generating example concentration curves for a 
variety of possible PhYsical ‘conditions. For the solutions
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obtained for a semi-infinite domain, a substantial distinction 
vbetween the solutions depending on the continuity condition and 
flux versus resident concentration, was observed at small Peclet 
number, The distinction is diminished at Pe greater than 10. The 
same distinction was found. to apply to the solutions phaving 
continuous and discontinuous concentrations in a finite domain. 
However, the solution for continuous flux concentration in a finite 
domain was observed‘ to provide substantially different 
concentrations with respect to the solutions for resident 
concentration depending on the magnitude of the mixing coeffecient 
for the downstream reservoir. The solutions for a finite domain 
were also found to be increasingly sensitive to dispersivity with 
decreasing magnitude of the mixing coeffecient for the downstream 
reservoir. " 

After general consideration of the behavior of the solutions 
three issues remain to be resolved: 1) the distinction between 
continuous and discontinuous concentrations at small Peclet number 
2) the effect of macroscopic continuity and dispersive flux on 
solute concentration in the upstream reservoir, and 3) the 
contradictory effect of application of the flux transformation to 
the solution for macroscopically continuous concentration in a 
finite domain. These issues must be resolved by physically 
modeling both the transport and sampling processes that give rise 
to the boundary conditions on which these.issues are dependent.
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APPENDIX‘ -

i 

The following are derivations of the solutions [28]-[31] for 
continuous resident concentrations in a finite domain and solution 
[32] for discontinuous concentrations in a finite domain. 
continuous concentrations 

Combining inlet boundary conditions [11] and [13] in 
dimensionless form gives 

. a I 
-

. 

[A1] 
' D D 

with initial condition 

c,,1(o) =1 [A2] 

and continuity condition 

C51(t,)=C5(0,t,) . [A3] 

The outlet boundary condition in dimensionless form is given 
by ” 

B 
6c,,(Pe, z:,,) =_ ac,,(Pe, 1:1,) D’ at, 8x5 .- [A4] 

with initial condition 

Cb,(0) =0 4 [A5] 

Application of the forward Laplace transform to [A1]-[A5], 
respectively, gives 

[A6]



3 3'3 

E;,]u<p> =€,,<o.p> ("A11 

B,,.p5,,<[Pe,p> =-aim-Q {A81 dxb 

V 

Application of [A7] and substitution of the general solution 
[9] into [A6] and [A8] gives, respectively

V 

(Bp1p_"'E ) A4‘ (BpiP"'A) B=Bp1 
I 

[A9] 

(pp?-pg.) exp{1.Pe}A+ (pD°+:£) exp{£Pe}B=o 
_ 

y 

[A10] 

The constants A and B are found using Cramez-»'s rule and 
substituted back into the general solution] [9] to find the 
particular solution [28]—[31]. A

‘ 

Discontinuous"concentrationsi 
‘ The solution for discontinuous boundary conditions is found 

using the solution [17] and the outlet boundary conditions [23], 
[24] and [25] which in dimensionless form and combining [23] and 
[24] are given as "

A 

=¢D(pe, tn) [A11] 
~D 

_ D 

c,,(_o) =0 [A121 
-* Application of the Laplace transform to [A11] gives 

p,,,,pE,,,<p> =E;,<Pe,p$ A [A13]
D 

and, substitution. of equation [17] [into [A13] gives ‘the final
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solution [32]. The derivation of the solution [17] is found in a 
similar manner whereby the bounded general solution, equation [7], 
is substituted into the mass balance equations for the inlet 
boundary condition. '

'

~
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NOTATION L

,

A 
B

C 

Cn 

cm 
cm, 

¢m 
ca 

¢i 

Cr 

Co 

DL 
D.

L 
ML

n 

p . 

Pe

Q
t 

tn

v 

Va 

V}

x 

constant determined from boundary conditions - 

constant determined from boundary conditions 
resident concentration, M/I? 

dimensionless resident concentration, C/Co 
dimensionless concentration in the downstream reservoir, QJC 
dime_nsi_onles_s flux concentration, C,/Co ' 

dimensionless concentration in the upstream reservoir, q/C0
1 concentration in the downstream reservoir, M/IF

_ 

concentration in the upstream reservoir, M/IF 
flux concentration, M/L3' 
initial concentration, M/1?

A 

coefficient of hydrodynamic dispersion, 13/T 
coefficient of molecular diffusion, IF/T . 

length of finite domain, L 
_ 

i 5\ 

mass leaving medium per unit time, M/T 
porosity -

' 

Laplace variable 
Peclet number, vL/DL 
volumetric flow rate, vy 
time, T 
dimensionless time, tn?/DL . 

average linear groundwater velocity, L/T 
volume of the downstream reservoir, I? 

volume of the upstream reservoir, I? 

distance, L
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Bm
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A1 

5

9

X

1

X 
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dimensionless distance, xv/DL 
dispersivity, L - 

dimensionless mixing coefficient for the upstream reservoir, 
VWYVDL ’ 

' 

‘
‘ 

dimensionless mixing coefficient for the downstream - 

reservoir, V,v/ 'yD,_ 

produotzof porosity and cross—sectiona1 area available for 
flow, L ,

~ 

(BmP+£)(BmP+E) eXp{€Pe}-(BmP+X)(Bmp+%) eXp{XPe} 
1/2 - (p+1/4)‘” 

tortuosity 
1/2 + (p+1/4)“ 
integration variable 
integration variable 
[Bm(BmP+E) eXp{EPe}]/A1 

[fi»;(B».P+>~) eXP{£Pe}]/A1



4 

37 
ACKNOWLEDGMENTS

- 

The author would like to thank Allen Moench and Carl Palmer 
for several helpful suggestions offered during the initial stages 
of this study. The De Hoog algorithm was kindly provided by Ed 
Sudicky. The assistance of Chris Neville in the use of the De-fioog 
inverter is gratefully acknowledged. Comments that improved the 
draft manuscript were provided by Bob Gillham, Allan Crowe and 
Bernie Kueper. . 

REFERENCES 4 

A

_ 

Baveye, EP. and G. Sposito, The operational significance of 
continuum hypothesis in the theory of water movement through_soils 
and aquifers, Water Resour. Res., 20 (5), 521-530, 1984. 

Chen, C.—s., Analytical solutions for radial dispersion with Cauchy 
boundary at injection well, Water Resour. Res., 23(7), 1217+1224, 
19878. 

Chen, C.-S., Comment on "Effect of Radial Flow on Deviations From 
Local Equilibrium During Sorbing Solute Transport Through 
Homogenous Soils"-by A.J. Valocchi, Water Resour. Res., 23(11), 
2157, 1987b. 

,

“ 

Crump, x.s., Numerical inversion of Laplace transforms, J. Assoc. 
ComP. Mach., 23(1), 89-96, 1976. ‘

.



l

$

I

I

I

)

M

I

P

I

>

I

\

I

I

I

I 

we 

7-:

(

\ 

‘a

5 

J

1

I

I

I 

. 

A 

. 38 
Dagan, G. and E. Bresler, Comment on "Flux-Averaged and 
Volume-Averaged Concentration in Continuum,Approaches to Solute 
Transport" by J.C. Parker and M. Th. van Genuchten, Water Resour. 
Res., 21(3), 1299-1300, 1985. 

De Hoog, F.R., J.H. Knight and A.N. Stokes, An improved method 
fornumerical inversion of Laplace transforms, SIAM J. Sci. Statist. 
Comput., 3(3), 357-366, 1982. - *

1 

Drost, W., D. Klotz, A. Koch, H. Moser, F. Neumaier and W. Rauert, 
Point dilution methods of investigating groundwater f1ow.by means 
of radioisotopes, Water Resour. Res., 4(1), 125-146, 1968. 

Edge, R.W. and K. Cordry, The Hydropunch“K An in situ sampling 
tool for collecting ground water from unconsolidated sediments, 
Ground Water Mon. Review, 9(3), 177-183, 1989. 

Erikson, J.R., Parameter - estimation technique for the analysis of 
single-well tracer tests, M.s. thesis, Colorado State Univ., Fort 
Collins, co, 1925. - 

Fujinawa, K., Asymptotic solutions to the convection-dispersion 
equation and 'Powell's optimization method for evaluating 
groundwater velocity and dispersion coefficients from observed data 
of single dilution§tests, J. hydrol., 62, 333-353, 1983.



' 39 
Gelhar, L.W. and C.L. Axness, Three—dimensional stochastic analysis 
of macrodispersion in aquifers, Water Resour. Res., 19(1), 161-180, 
1983. 

Gelhar, L.W., A, Mantoglou, C. Welty and D.R. Rehfeldt, A review of 
field scale physical solute transport processes in saturated and 
unsaturated porous media; Report EA—4190, Electric Power Res. 
.Inst., Palo Alto, Calif., 1985.

1 

Gershon, N.D. and A. Nir, Effects of boundary conditions of models 
on tracer distribution in flow through porous media, Water Resour. 
Res., 5(4), B30—839, 1969. 

Grisak, G.E., W.F. Merritt and D.W. Williams, A flouride borehole 
dilution apparatus, Can. Geotech. 3., 14(4), 554*561, 1977. 

Halevy, E;, H. Moser, O. Zellhofer and A. Zuber, Borehole dilution 
techniques: a critical review,' In Isotopes in hydrology, 
International Atomic Energy.Agency, Vienna, Austria, 531-564, 1967. 

Hodgkinson, D.P. and D.A. Lever, Interpretation_ of_ a field 
experiment on the transport of sorbed and non—sorbed -tracers 
through a fracture in crystalline rock, Rad. Waste Mang. Nucl. Fuel 
Gycle, 4(2), 129-158, 1983. 

Hoopes, J.A. and D.R.F. Harleman, Dispersion in radial flow from a



. 
» 

. 40 
recharge well, J. Geophys. Res., 72(14), 3595~3607, 1967. 

Hsieh, P.A., A new formula for the analytical solution of the 
radial dispersion problem. Water Resour. Res., 22(11), 1597-1605, 
1986. ' 

James, R.V. and J. Rubin, Accounting for apparatus induced 
dispersion in analysis of miscible displacement experiments, Water 
Resour. Res., a(3), 717a721, 1973. ' 

Johns, R.A., Injection through fractures, M.S. thesis, Stanford 
Univ., Stanford, Calif., 1987. 

Killey, R.W.D. and G.L. Moltyaner, Twin lakes tracer tests: 
Setting, methodologyy and. hydraulic conductivity distribution, 
Water Resour. Res., 24(1o), 15s5—1s12, 1922. - 

Kreft, A. and A. Zuber, On the physical meaning of the dispersion 
equation and its solutions for different initial and boundary 
conditions, Chem. Eng. Sci., 1471-1480, 1978. 

Lindstrom, F.T., R. Hague, V.H. Freed and L. Boersma, Theory on the 
movement <of some herbicides in soils: Linear diffusion and 
convection of chemicals in soils, Environ. Sci. Technol., 1, 

561-sss, 1967.
u



4 41 
Moench, A.F., Convergent radial dispersion: A Laplace transform 
solution for aquifer tracer testing, Water Resour. Res., 25(3), 
439-447, 1989. 

nMoltyaner, G.L., Hydrodynamic dispersion at the local scale of 
continuous representation, Water Resour. Res., 25(5), 1041-1048, 
1.929. - 4- 

'

' 

Molz, F.J., 0.' Guven and J.G. Melville, An examination of 
iscale-dependent dispersion coefficients, Ground Water, 21(6), 
7159725, 1983. 

_

> 

Novakowski, K.S., An evaluation of boundary conditions for one- 
dimensional solute transport, 2, column experiments, Water-Resour. 
Res., this issue. . . 

Ogata, A., Dispersion in porous media, Ph.D. Thesis, Northwestern 
Univ., Evanston, Ill., 1958. 

p 

-. 

c\ 

Ogata, A. and R¢B. Banks, A solution of the differential equation 
of longitudinal dispersion in a porous media, U45. Geol. Surv. 
Prof. Paper 411-A, 1961; 

Palmer, C.D., The effect of monitoring well storage on the shape of 
breakthrough curves - A theoretical study, J. Hydro1., 97, 45e57, 
1988. '



I 

1 

i 

F 

‘P

\

b

\

Z

|

\ 

1 

" 42 

Parker, J.C. and M. Th. van ‘Genuchten, Flux-averaged and 
volume-averaged concentrations in continuous approaches to solute 
transport, Water Resour., Res., 20(7), 866-872, 1984. 

Pickens, J.F. and G.E. Grisak, Scale—dependent dispersion in a 

stratified granular aquifer, Water Resour; Res., 17(4), 1191-1211, 
1981a.

1 

Pickens, J.F. and G.E. Grisak, Modeling of (scale dependent 
dispersion in hydrogeologic systems, Water Resour. Res., 17(6), 
1701-1711, 1981b. 

Reynolds, W.D,, Column studies of strontium and cesium transport 
through a granular porous medium, M.Sc. thesis, University of 

Waterloo, Waterloo, Ont., 1978. ' 

Sauty, J.—P., An analysis of hydrodispersive transfer in aquifers, 
Water Resour. Res., 16(1), 145-158, 1980. 

sudicky, E.A.,_A.natural—gradient experiment on solute transport in 
a sand aquifer: Spatial variability of hydraulic conductivity and 
its role in the dispersion process, Water Resour. Res., 22(13), 
2069-2082, 1986. 

Talbot, A., The accurate numerical inversion of Laplace transforms,



. 

V

4 
Tang, D.K. and D.K. Babu, Analytical, solution of a velocity 
dependent dispersion problem, Water Resour. Res., 15(6), 1471-1478, 
1979.

V 

Taylor, S.R., G.L. Moltyaner, K.W.F. fioward and R.W.D. Killey, A 
comparison of field and "laboratory methods for determining 
contaminant flow parameters, Ground Water, 25(3), 321-330, 1987. 

Torstensson, B.A., A new system for ground-water monitoring, Ground 
Water Mon. Review, 4(4), 131-138, 1984. 

Valocchi, A.J., Effect of radial flow on deviations from local 
equilibrium during sorbing solute transport through homogenous 
soils, Water Resour. Res., 22(12), 1693-1701, 1986. 

van Genuchten, M. Th. and J.C. Parker, Boundary conditions for 
displacement experiments through short laboratory columns, Soil 
Sci. SOC. Am. J., 48(4),'703“708, 1984. 

Zapico, M.M., S. Vales and J.A. Cherry. A wireline piston core 
barrel for sampling cohesionless sand and gravel below the water 
table, Ground Water Mon. Review, 7(3), 74-82, 1987.



|

\

r 

’ 

44
r

I

i

I 

I

1

F 

_\tv_4

I

\

i 

LIST OF FIGURES 

Figure 1 

Figure 2 

schematic diagram showing the physical configuration of 
the upstream reservoir_and the porous media. 

Schematic diagram showing the physical configuration of 
'the upstream reservoir, the porous media and the 
downstream reservoir. 

Figure 3. example breakthrough curves for. continuous and 

Figure 4 

Figure S. 

Figure 6 

discontinuous mresident and_ flux concentrations in a 
semi-infinite medium. .The mixing coefficient for the 
upstream reservoir is equal to 10 and xb is equal to one. 

. Comparison of the solutions for flux versus resident 
concentration. Comparisons made at_xD equal 1, 10 and 
100 with Hm equal to 10. Continuity assumed at the 
reservoir-medium interface. 

Compari$On of continuous versus discontinuous resident 
concentrations at xn equal to 1, 10 and 100 and Bm equal 
to 10.

. 

Influence of the mixing coefficient of the upstream 
reservoir, Hm, on the distinction between continuous and 
discontinuous concentrations.’ "Dimensionless distance
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equals 1 and Bm ranges from 1 to 100. 

Figure 7. Concentration in the upstream reservoir for the case 
where continuity and dispersive flux are employed as 
’compared to the case where only advective flux removes 
mass from the reservoir. The comparison is made for Hm 
equal to 1, 5 and 10. 

Figure 8. Example breakthrough curves for continuous and 
discontinuous resident and flux concentrations in media 
of finite domain. The Peclet number is equal to 10 and 
'curves are plotted for Hm equal to Bm,equal to 10 and for 
Bm equal to 100,'Bm,equal to 10.
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Figure 9. Comparison between resident and flux concentrations where 
< continuity is employed at both the upstream and 

downstream boundaries. The comparison is made at Pe of 
-1 and 100 for Bm equal to 50 and Bm,equal to 1 or 10. 

Figure 10. Comparison of resident and flux concentrations for 
_ 

maeros¢OPically discontinous concentration at both 
boundaries. Peclet number equals 1 or 10 and Bm equals 
50, Bm,equal 10 or Bm equals 10, Bm,equals 10. 

Figure 11. Influence of fim,on the.measurement of Peclet number 
using the solutions .for ediscontinuous resident
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concentra-tions in a finite domain. Peclet numbers range 
from 1 to 100 for fin, equal to Bm equal to 25 and for 
Hm equal to 50, fin, equal to
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Concentration in the upstream reservoir for the case where 

continuity and dispersive fiux are employed as compared to 

the case where oniysadvective flux removes mass from the 

reservoir. The comparison is made for B91 equal to 1, 5 

and 10. -
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Example breakthrough curves for continuous and 

discontinuous resident and flux concentrations in media of 

finite domain. The Peclet number is equal to 10 and 

curves are plotted for B91 equal to 59° equal to 10' 

and for $91 equal to 100, B9, equal to 10. 
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Figure 11.

Q 
(D . 

Influence of B00 on the measurement of Peclet number 

using the solution for discontinuous resident 

concentrations in a finite domain. Peclet numbers range 

from 1 to 100 for 59° equal to B91 equal to 25 and for 

B91 equal to 50, B90 equal to 1. 
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