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ABSTRACT h 

In the ‘analysis of water quality data, samples- with 

concentrations below the analytical detection limit are sometimes 

replaced by arbitrary values. The performance of this replacement 

method has previously been examined in Monte Carlo studies by several 

authors. In this paper, the expectation of the sample mean and 

variance, under replacement by a value between 0 and the detection 

limit, are given for normally and lognormally distributed data. These 

expressions allow the performance of the replacement method to be 

evaluated under hypothetical conditions of practical importance, 

without doing extensive computer generation of samples. However, with 

actual data sets,, wherein the aim is to estimate the mean 

concentration and its variance, the properties of these estimators are 

unknown. More objective methods of estimation are the methods of 

maximum likelihood and log-probability regression, the properties of 

which are sunmmrized and compared using two examples.



RESUME 

Lorsqu‘i1 s'agit d'ana1yses des données sur la qualité qe 1'eau 

qui proviennent d'échanti11ons dont ‘les concentrations mesurées se 

situent en-dessous du seuii de détection, les mesures sont parfois 

remplacées par des vaieurs arbitraires. L'efficacité de cette méthode 

évaluée. par plusieurs‘ chercheurs qui ont (h\ ('1' (‘D\ d8 remp1ace_ment= 3 

appiiqué Ia méthode de Monte Carlo. Dans cet article, 1'espérance 

mathématique d'une moyenne et dfune variance données associée 5 un 

échantillon a qui on attribue arbitrairement une vaieur comprise entre 

O et 1e seuii de détection, est présentée dans 1e cas de données qui 

ont une distribution normaie‘ ou semi»1ogarithmique.- Ces formes 

d'expression‘ permettent diévaiuer 1'efficacité de Ta méthode de 

remplacement dans ~des conditions artificielies, mais qui ont une 

importance pratique sans qu'i1 soiti nécessaire de créer beaucoup 

d'échanti11ons par ordinateur. -Cependant, 1orsqu'i1 s'agit 
‘ ._ 

d'ensemb1es de données réelies et qu'i1 faut évaluer la concentration 

moyenne et sa variance, les propriétés de ces estimateurs sont 

inconnues. Les méthodes de maximum de vraisembiance et de régression 
bilogarithmique de probabiiité constituent des méthodes qui sont pius 

objectives que la précédente; nous faisons un résumé de ieurs 

propriétés et ies comparons au moyen de deux exemples. » _



MANAGEMENT PERSPECTIVE 

Although it is easy to demonstrate that substituting arbitrary 

values for censored observations can result in generating biased and 

unreliable estimators, this practice is still in common use when 

reporting summary statistics for water quality data. Analytical 

expressions are given in this paper which allows the performance of 

the replacement methods to be evaluated. These expressions provide an 

easy and less costly approach when compared to the Monte Carlo methods 

which have been used previously by several authors. More objective 

methods of estimation are discussed and evaluated using two data sets 

and it is concluded the modified maximum likelihood method provides a 

satisfactory alternative to ad hoc methods without introducing 

prohibitive computations.

\



PERSPECTIVE - GESTION 

"On peut démontrer sans peine que le remplacement par des valeurs 

arbitraires de mesures dont la distribution est tronquée donne lieu 

parfois 5 l'apparition .d'estimateurs qui comportent des erreurs 

systématiques et qui ne sont pas fiables. Toutefois, cette méthode 

demeure communément en usage pour la présentation qe statistiques 

condensées sur la qualité de l'eau. Cet article présente des 

expressions analytiques qui permettent d'évaluer l'efficacité des 

méthodes de remplacement. Ces expressions constituent une approche 

simplifiée et moins cofiteuse que la méthode de Monte Carlo utilisée 

antérieurement par plusieurs chercheurs. Nous analysons des méthodes 

d'évaluation davantage objectives et évaluons deux ensembles de 

données. Nous parvenons a la conclusion que la méthode modifiée du 

maximum de vraisemblance constitue une solution de rechange acceptable 
aux méthodes ad hoc sans qu'on doive introduire des calculs trop 

exhaustifs. Y



INTRODUCTION . 

Due to the limitations of’ chemical analytical methods, it 

frequently happens that the concentration of organic contaminants or 

metals can not be determined for each water sample because the 

concentration in the sample is less than the detection limit. In 

statistics, concentrations below the detection limit are said to be 

censored. Although statistical techniques for dealing with censored 

data are available (David, 1981) and are extensively used in 

industrial and medical applications, adhoc procedures are commonly 

applied to deal with censoring in environmental data. The adhoc 

m€thOdS Githéf‘ fl$S1gI'l an arbitrary Va1UE 120 S&fllP1ES 

concentrations below the detection limit or ignore these samples. 
' Censoring due to the concentration in a sample being below a 

fixed detection limit is called type I censoring. It is to be 

distinguished from type II censoring, which arises, for example, in 

life testing, where the number of censored observations is fixed. 

Gleit (1985) evaluated the performance of these adhoc procedures for 

small normal samples by means of a Monte- Carlo study where 
distributional parameters and censoring levels were chosen to 

represent those encountered in environmental‘ compliance sampling. 
Several methods for handling type I censored data, including adhoc 
procedures, were evaluated by Gilliom and Helsel (1986), again using a 

Monte Carlo study, but for a_ number of probability distributions 
considered to be appropriate for water quality data. In both of the 
above studies, the adhoc methods were compared with the method of 

maximum likelihood. El-Shaarawi (1989) and El-Shaarawi and Dolan 

(1989) illustrated the utility of the method of maximum likelihood
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in the estimation of the mean contaminant concentration in water for 

censored normal and lognormal data. 
V 

-
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In t-he present paper, the expressions for the expectation of the 

sample mean and variance, under the adhoc- procedure of replacement 

with an arbitrary value, are given for normally and lognormally 

distributed data. The expected performance of this adhoc procedure 

under various conditions is also given. In, general, estimators 

generated by the adhoc methods are almost always biased with the 

direction and magnitude of the bias unknown and dependent" on the 

distributional characteristics of the data. Furthermore, the bias is 

independent of the sample size and as a result such es-t‘ima-tors are 

inconsistent; Since maximum likelihood estimators are known to be 

asymptotically eff'ic‘ient and consistent, the steps in, estimation by 

the maximum likelihood method, are outlined. For completnessz. the log 

regression method is also discussed. Two examples are analyzed by 
l‘ 

,

' 

these methods. . 

Description of the estimation problem 

e 
' 

Suppose that out of n water samples, theconcentrations of the 

pollutant in m samples are below the limit of. detection X0‘ and the 

remaining r = n-m samples have the measured concentrations 

X1,...,X,-.g_; Suppose further that it is reasonable to assume that the 

concentrations Of pollutant in the n water samples represent a 

realization of n independent and identically distributed random 

variables. The objective is to estimate the mean concentration and 

the precision of this estimate. It will be assumed either that the 

X1 are normally distributed or that a transformation to normality is 

possible. A method for..determining such a transformation ‘is given
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belmw. when X can be assumed normal, the mean and variance will be 

denoted by u and 02. 
-‘" 

REPLACEMENT BY AN ARBITRARY VALUE 

According to this method the m values below the detection limit 

X9 are replaced by the single value yXg where y is a constant 

falling in the interval [0,1]. Values of y typically used are zero, Z 

and 1. The mean p and variance oz are estimated respectively by~ 

A . 

uv = P Y X0 + q X (1) 

' A r 
I A 

szv fHimA(vXo 
- uY)2 +i§1 (X, - u,>2}/n e <2) 

= q $2 + Pq (X - v X0)2 

r ’ 

_ 

V m where X = (X1 +..Xr)/r, S2 = X (X1 - X)2/r, p = E and q = 1-p. i=1 

Assuming normality 

To assess the performance of this method, the expectation of uv 
and szy are computed under the normality assumption. This will 

permit the estimation of the bias and the choice of a value for v 

which will eliminate the bias. The expectation of the estimates are 

Hfl>=u+wv%+o¢-rm 
A 

lo 

and
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Eufl>=m%1u4)hv<MQm>+@w+%§-vxmfi <0 

where 

var (xlxgxo) = 02 [1 + l 

The probability density and cumulative distribution functions of the 

standard normal distribution ' 

2
V 

A¢(g)’-=~-‘/%e"_§2_ and§_(€)=£E¢(z)dz ‘for-§.=5§=! 

are written without the argument in this section, since it is always 

Eh 

Hence, if instead of replacing the censored values by vX0, they 

are replaced by the conditional expectation of the censored values, 

E(X|X<Xg)= u - 0 %, an unbiased estimate for u would be obtained. 

However, replacing the censored values in (4) by u - o g, instead of 

vXg, leads to .

" 

E (szv) = 1n;11§1;21 ,2 [1 + 1§%€g%% + 
*5 I-\ 

'9'. \I,9 |_l /-\ U1 \/ 

and thus does not provide an unbiased estimate of 02. Equation (5) 

reduces to ‘gill oz when there is no censoring.‘ The right hand side 

of equation (4) equals nil oz when . 

<1-w>{v=r (X|XzXo) + @(v + c;%; - vXo)2] = 62- <6)
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This leads to"a quadratic equation.in YXQ with the solution 

_vXQ = u + o IQ; - o J %‘[T%5 - !§£l§{lz£nl 1 (7) 

Thus for large n, replacement of vXg by _(7) leads to an unbiased 

estimate of 02. It can be shown that 

A . 

= 2 
- 

- 0 8 var(uY) E($ Y)/(n 1) ( ) 

To illustrate the _effects of replacing the values below the 

detection limit by iero, ZXQ and X9, Table 1 gives the expected values 
A _ . 

of pv and szv for samples of size 10 from the normal distribution with 

o2;1 and various combinations of u and X9. Also given in the table 

are the expected proportion Q(Xg-p) of censored values; In the upper 

part of the table, the values of p for fixed detection limit Xg=4, 

span the situations from effectively all of the 10 water samples 

having concentrations below the detection limit to none of the 10 

samples having concentrations below the detection limit. For Xg=1, 

the expected proportion of samples below the detection limit does not 
exceed 0.5. Considering the extreme situations first, when Q(X0-u) is 

small, the estimates of u and oz equal the values under no censoring 

i.e., u and Bil 02, and are almost independent of YXO, while for 

large Q(Xg-u) the bias is quite serious with E(u Yl‘=vXg and E(s3Y) 

small. The variance of uY is also strongly biased for large values 

of Q(XQ~u). The range of 0(X0-u) between 0.02 and 0.84 are realistic

\'
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for contaminants in water. but a simple statement cannot summarize the 

table due to the dependence of the expectations on p, o and Xg. For 

example, with the expected proportion censored equal to 0.5, up will 

be biased low for vs0 and 0.5 and high for v=1.0 when u=4, but will be 

biased low only for v=0 when p=1. However, it is clear that in all 

cases the estimate of variance, szv, is biased low when val, which 

would lead to overly precise interval estimates for u, the mean 

concentration. a 

The E(uY) does not depend upon sample siie, n, nor does E(s2Y) 
l A‘ ‘ 

for large n. Thus the values of E(pY) in the table hold for any . 

sample size ‘and to obtain the corresponding value of E(s2Y) for 

large samples divide the quantity in the table by 0.9 or for a sample 

of size n1. multiply by §1§%1. The bias in the estimation of 03 

arises from using n as the divisor in equation (2), which agrees with 
the maximum likelihood estimator under complete data, and can be 

' ' 

h

l removed by using n~1 for small samples. From expressions (3) and (4), 

_the consequences of replacing censored values by vXg can be determined 
for the situations likely to arise in any particular application. 

Assuming lognormality 

If X is lognormally distributed with mean n and variance B2, then 

lnX is normally distributed with mean u and variance 03. Under 

this assumption the expectations of pv and s2Y are
4

A 
E(uY) = n[1-W(£-¢)] + YXo°(€) (9) 

and
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E<s$>=fl§l{[1-@<e>1var<X|x;Xo>+@<e>[1-@<s>1<E<X|XzXo>-vXo>2] <10) 

where £=(lnXQ—p)/0 

v=21n n- 2 1n<e2 + n2) 

d2=1fl(B2+n2)-2 In n 

E(XIXzXo)=n[1-@(€—v)J/[1-@(€)] 
' 

'_ _ s 

_ 
- - 

_ _ ._2. 
v='<><|*1X~>=~*I=°2"—[l5%é%%1 - Elma’; 1- 

The expectation of iv and_s2Y are given in Table 2, assuming X is 

lognormally distributed, for the same values of XQ, E(X) and var(X) as 
used in Table 1. In general, the effect of the value of Y is similar 
although the actual expectations differ, with the largest differences 
being in the E(s2Y) when the expected proportion censored is high. 

AS$.8SSlIl€l‘lt Of ‘U18 F8p1'dC€IIlEIlt fllEt|_’lQ(_1 

Table 1 and the derivation of expressions which give unbiased 

estimates of in and 03 are useful when the perfonmance of LY and 

szy is sought for a particular hypothetical situation. The question 
of how to proceed, given only a set of data, is not answered. For
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example, although replacing censored observations by their expectation 

and by expression (7) in ‘LY and szv, respectively, leads to 

unbiased estimates, this cannot be done without knowledge of u and 

02. - It is interesting ‘to note that this suggests an intuitive 

iterative procedure for estimating u and 02, based on updating an 

initial guess of their values. This, in fact, is the basis of the EM 

algorithm for the maximum likelihood estimation of u and 02, wherein 

the censored observations and their squares are replaced in the 

complete. data likelihood function by their, expectations, given the 

current estimates of u and 02 and the data (Dempster et al., 1977). 

The estimation of pp and 62, under replacement of censored 

observations by arbitrary values, has been studied by Monte Carlo 

methods, but it is difficult to interpret some of the results of these 

studies. Gleit (1985) evaluated the replacement method, (v=0,0.5,1) 

by generating samples of size 5, 10, 15 from a normal distribution 

with various values of u and 02 and fixed censoring level and then 

calculating mean square errors for‘ the estimation of the mean. 

Several other-methods were considered, including maximum likelihood 

ind one called fill-in with expected values. From the description, 

the latter would appear to be an implementation of the EM algorithm 

for maximum likelihood, but must differ since the reported mean square 

errors of these methods differ. Gleit's results are difficult to 

interpret because, although samples were censored according to type I 

censoring, the data sets have been grouped according to the proportion 

of censored values obtained in each set and mean square errors 

calculated for these groups. A summary over all tables appears to be 

that the replacement values, vXg, have low mean square error only when 

the replacement value is near the mean (Gleit, 1985).
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Gilliom and Helsel (1986) generated samples from four different 

probability distributions, each with four sets of parameters, for 3 

sample sizes and 4 censoring levels. However, only for the lognormal 

distributions, with the 'detection limit at the 80th population 

percentile and a sample size of 25, were the root mean square errors 

(RMSEs) reported separately for each distribution. The ranking of the 

RMSEs obtained for a particular replacement_ value (v=0 or 1) was 

dependent upon the parameters of the lognonmal distribution used to 

generate the data sets. If the comparison is restricted to methods 

which assume lognormality, namely the log regression and maximum 

likelihood under lognormality, then these latter methods have RMSEs 

two to three times smaller than the replacement methods for 1) 

estimation of the mean if the coefficient of variation (CV) does not 

exceed 1 and 2) estimation of the variance for CV=0.25. _Table 2 of 

Gilliom and Helsel should be consulted for the other cases since the 

rankings change with the CV. All other RMSEs reported were obtained 

with all 16 parent distributions being represented equally and thus 

are not interpretable. ' 

The expressions given in the previous two sections can be used to 

calculate the mean square Terror in estimating the mean using fly, 
under either normality or lognormality, since the mean square error is 

ELI}, — Evil]? = var-(fly) + £26,) - 

The mean square errors are given in Table 3 for the cases in Tables 1 

and 2, for the normal distributions considered by Gleit, and for the 

lognonmal distributions of Table 2 of Gilliom and Helsel. The mean 

square error provides one number for assessing performance, but the
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A . 

E(uY) and E(s2Y) are required if one needs to know whether large 

variance or large bias.are responsible for a large mean square error. 

From equation (1), it is clear that, YXO, the value by which the 
> 

' A 
censored observations are replaced, will dominate the value uv if 

the proportion, mln, of censored values is large. However, the bias 

introduced depends upon X9 and the distributional fonh and 

parameters. For example, if X is normally distributed the bias 

introduced by using uy is 

@(€)(YX0'l1)+.0¢(€) 

which will be small if 1) 0(5), the expected proportion censored, is 

small, 2) if D(£) is large but vXg is approximately equal to p or 3) 

for §(£) moderate, if (YXQ-u)~-o¢(£)/0(5). AAsi noted earlier, “the 

A
l 

E(pY) is independent of n, and thus so is the bias. The practical 

consequence of this is that the bias is not reduced by taking a larger 

sample. Gleit (1985) states that the US EPA often suggests replacing 

censored values by the detection limit (i.e. v=1) to obtain the most 

conservative estimate of pollution concentration, since the mandate of 

such agencies is to protect human health and the environment. It 

can be noted however, from Tables 1 and 2 and frmh E(s3Y) for the 

Gleit and the Gilliom and Helsel cases (computed but not given here), 

that szy for v=1.0 is biased low except when the expected proportion 

censored is small. In practice, the use of uv and s2Y will lead 

to estimators, the properties of which will ,be unknown. since 

the direction and size of the bias depend upon the set of values p, oz 

and X9, and p and 02 are the unknown quantities being estimated.~
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OTHER METHODS OF ESTIMATION 

The Method of Maximum Likelihood 

Under the normality assumption, the exact maximum likelihood 
A A ’

_ 

estimates, p and o, of p and o are obtained by iteratively solving the 

following two equations 

e2 = (X-p)(X-X0) + s2 (11) 

and p = X - h o 9(5) 

where h=m/r. 9(€)=¢(€)/0(5) and X. $2. €. ¢(£) and fl(€) are as 

previously defined under normality. 

Approximate values, um and om, of u and o can be obtained 

using Tiku's approximation (El-Shaarawi and Dolan, 1989) as 

um = (X - h B1 X0 -"h Bo om)/(1—h B1) (12) 

and 

Om = A1+ S1/1+A2 
where 

A1 = hBo (X0-7)/2(1—hB1) 

A2 
, B 1 

<30 

h(X0-X)2'(h(Bo2+4B12)-461)/4$2(1-hB1.)2 . 

(9(b) - 9(6))/(b-a). , 

s(a)~aB1.'a = 0'1 En — ¢P(1-P)/n]. 

b = ¢'1 En + ¢p(1-P)/H]. p é m/n.' 

and §'1 is the inverse of 0. '
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Confidence limits for these estimates in the log space and observation 

space can be obtained using “the asymptotic properties of the 

likelihood function. See El-Shaarawi (1989) for details and formulas. 

Loq;probability regression method A 

‘ 

Assuming X is lognormally destributed with mean n and variance 

§2,_Y = in X is normally distributed. The log-probability regression 

method can be summarized as follows: (1) fit the regression line of 

Y(m+1) on the normal score, Zm+1, for i=1,2,...r, where Y(m+1) 
is the ith largest observation among Y1,...,Yr and Zm+1 = 

Q'1[(m+i)/n+1], (2) use the intercept and the slope of the regression 

line to provide initial estimates for p and 0, respectively, i(3) 

estimate the censored values Y(1),...,Y(m) by ?(1),...,?(m) 

from the regression equation, and finally, (4) estimate the mean and 

variance of X by " 

"LR = (1;1e + X1)/n (13) 
'< 

l\ 
-0. 

~.4 

-4- 

"I54-'1 

F‘

A 

, [1§1e2Y< > + ‘Q

D 
l"I\)I 

—I| 

-L 

"F41 

I-I

X 
._a.N|

v 

- n HER]/(n-1) 

The following characteristics of this method should be noted: (1) the 

censoring point X0 plays no role in the estimation process and hence 

not only is the estimate biased, but also loss of information will 

result from ignoring Xb, and (2) there are no estimates available for
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the standard error of nLR and BZLR, thus confidence limits cannot 

be obtained or tests cannot be performed for the values of p and 0. 

For normally distributed data, the regression of X(m+1) on 

Zm+1 is used to estimate the censored values 'X(1),...,X(m) ‘and 

then »

’ 

A‘ m A r 
“LR = (1;1X(._|), +.i;1Xi)/fl 

A 

(.14) 

A Iv 
Ill A I‘ A 

i <12 = 
(izjlxfi) +1.§1x§ - np2LR)/(n—1). 

DISTRIBUTIONAL ASSUMPTIONS 

It frequently happens that the common distribution is assumed to 

be lognormal. Such an assumption should not be accepted automatically 
without using the data to determine its suitability. One approach is 

to use the. quantile-quantile (Q-Q) plot, which has the additional 
advantage of providing initial estimates of the parameters of the 
distribution, To construct. the 0-0 Plot, let X(m+1), 
X(m+2),...,X(n) be the observed values X1,...Xr arranged in 

ascending order. If the data are approximately normal, the plot of 

X(m+1) versus Z(m+1) will approximate a straight line with slope 0 

and intercept u. This plot is the basis of the log regression method 
which was discussed above. If the normality of’ the data is 

supported by the 0-Q plot, a transformation should be found so that 
the transformed data give an approximate straight line. Box and Cox
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(1964) define the class of transformations 

l_:l mi * A-”° Y={ A lnX , A-¢ 0 (15) 

iwhere A is a constant to be estimated and is usually restricted to the 

values -1, -0.5, 0, 0.5, 1. Note that A=1 corresponds to the normal 

distribution, while .A=0 corresponds to the lognonmal distribution. 

The parameter A may be estimated as the value which nmximizes the 

likelihood function of the data. Alternatively, a criterion based on 

a measure of goodness of fit can be used. A graphical method that 

assesses the fit is the Q-Q plot and that is the method used here. 

The value of A, which provides the best straight line when the ordered 

YA are plotted against Z, is chosen. 
V

1 

APPLICATIONS 

’ The data used to illustrate the methods of this paper are the 

concentrations (ng/l) of 1,3-dichlorobenzene and benzo(A) anthracene 

in 38 water samples from the Niagara River at Niagara-on=the-Lake. 

The Samples were collected by Environment Canada between April 1986 

and March 1987 (Data Interpretation Group C *Report, 1988). The 

detection limits are 0.50 ng/l and 0.26 ng/l for 1,3-dichlorobenzene 

and benzo(A)anthracene, respectively. ' The‘ Q-0 Plots for 

1,3-dichlorobenzene (Figurei 1), corresponding to the transformation 

parameter A;1,- Kél and A = 0.0, indicate that 4A=1 provides the 

appropriate transformation (e.g. no transformation is required). The 

corresponding plots for benzo (A) anthracene (Figure 2) indicates that 

the log transformation is adequate. .
_

\
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Table 4 gives the estimates of u and o using the methods of 

maximum_likelihood (ML). modified maximum likelihood (MML) and the log 

probability regression method (LR). This table shows that the 

differences between the ML and MML estimates are very small. However, 

the LR estimates differ substantially from the ML and MML methods. 

The joint 95% confidence limits for u and o are given in Figure 3 

for the benzo (A) anthracene data and the location of the ML estimates 

is also shown on the graph. The confidence limits which are based on 

the likelihood ratio, are not symmetric about the ML estimates. 

To show the effect of the assumed distribution of the data on the 

confidence limits, Table 5 presents the 95% confidence limits for the 

two contaminants using no transformation and the log transformation. 

The results indicate large differences in both the point estimates and 
the confidence limits. This emphasizes the importance of examining 

the distributional assumption prior to application of these methods. 

The values of uy and sy obtained for these two examples 

(Table 6), can be compared with the estimates obtained by the maximum 

likelihood method applied to data on the appropriate scale (Table 5). 

As expected, replacement of censored values by YXO provided estimates 

of the mean concentration of 1,3 dichlorobenzene close to the MLE, 

1.31 ng/l, since the proportion of censored values is low. However, 

benzo (A) anthracene, with 66 percent censored, v=0 underestimates the 

mean, while v=1.0 overestimates it, compared with the MLE of 0.25 

ng/l. It is also worth noting that maximum likelihood estimation, 

when the normality assumption is inappropriate, lead to a lower 

estimate.

\
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To compare the precision of the estimates, the 95 percent 

confidence limits for the mean using fly and s$ were computed as 

"Y i ".o25,n-~1 sv/‘G ’
‘ 

where t_Q25,n_1 is the ‘percentile from a ‘t distribution with n—1 

degrees of freedom, since this seemed to be the logical extension of 

the replacement method. The confidence interval with v=0 is slightly 

longer than that under maximum likelihood estimation for both 

contaminants, but 0.06_and 0.05 shorter than the MLE confidence limits 

for 1,3-dichlorobeniene and benzo (A) anthracene, respectively, for 

v=1.0. The difference in width is 20% of the mean for benzo (A) 

anthracene. 

SUMMARY AND CONCLUSIONS 

‘ 

The performance of the commonly used inethod of replacing the 

censored observations by an arbitrary value, when estimating the mean 

and standard deviation, have been assessed analytically and 

numerically. Expressions for the expected value of the mean and 

standard deviation show 1) the impossibility of obtaining unbiased 

estimates when a_ single value is used to replace the censored 

observations and 2) the direction and magnitude of bias depend upon 

the expected proportion of censored values and the distributional 

characteristics of the data. Further, the problem of bias is not 

solved by taking a larger sample since the bias is independent of 

sample size.
A
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To obtain asymptotically unbiased estimates it is necessary to 

replace the censored observations by one value and the squares of the 

censored observations by another. But this is just the procedure used 

in the EM algorithm for determining the maximum likelihood estimates 

and thus this leads directly to the maximum likelihood method, 

Although the method of maximum likelihood possesses asymptotically 

optimal properties with respect to unbiasedness and efficiency, an 

iterative solution is required and this may pose problems in 

Practice. This difficulty is removed by using an approximation such 

as given by Tiku (MML), since then the likelihood equations can be 

solved explicitly. The examples show the good agreement between the 

MML and ML estimates. 

The LR method is easy to compute, however, it has two 
disadvantages: 1) there is loss of information because it does not use 
the detection limit and 2) it provides no estimate of the precision 
with which the mean is estimated. 

As well as summarizing estimation by the LR, MML and ML methods, 
the present paper has made the point that these methods are based on 
distributional assumptions which should be checked when they ,are 
applied. This does not detract frmn the methods because checking 
assumptions is a component of any good data analysis. 

Thus the general conclusion is that an analysis based on the MML 
method provides a satisfactory alternative to ad hoc methods without 
introducing prohibitive computations. Further, the expressions for 
A . 

E(uY) and E(s2Y) given here, permit, by simple calculation, the 

assessment of the bias, both in estimation of the mean and in the 

precision of the estimate of the mean, under replacement of censored 

observations by arbitrary values, "for the hypothetical situations 

considered important in a particular application.
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Figure'0aptions 

Fig 1. Quantile—quantile plots of 1,3 dichlorobenzene 

Fig 2. Quantile—quantile plots of benzo (A) anthracene , 

Fig 3. 95% joint confidence region for u and o assuming that the log 

benzo (A) anthracene concentration is normally distributed.



Table 1. Expected values for the sample mean and variance when 
censored values are replaced by VXO, for v=0,0.5,1, in 
samples of size 10 from a normal distribution with mean u and 
variance o2=1. 

Detection Mean Expected 
Limit p Proportion 

X0 Censored

A 

E(vY) E(S2 Y) 

v=0 Y=005 v=1 v=0 Y=0.5 v=1m 

0.999 

2 0.977 

3 0.841 

4 0.500 

4 1 

5 0.159 

6 0.023 

7 0.001 

8 0.000 

9 0.000 

10 0.000 

1 1 0.500 

2 0.159 

3 0.023 

4 0.000 

5 0.000 

6 0.000 

0.000 

0.099 

0.719 

2.399 

4.449 

5.917 

5.995 

5.000 

9.000 

10.000 

0.999 

1.925 

2.995 

3.999 

5.000 

6.000 

2.003 

2.054 

2.401 

3.399 

4.766 

5.963 

6.998 

8.000 

9.000 

10.000 

11.149 

2.004 

2.997 

4.000 

5.000 

6.000 

4.000 

4.008 

4.083 

4.399 

5.083 

6.008 

7.000 

8.000 

9.000 

10.000 

1.399 

2.083 

3.008 

4.000 

5.000 

6.000 

0.022 

0.385 

2.488 

5.343 

3.836 

1.513 

0.946 

0.901 

0.900 

0.900 

0.891 

1.105 

0.966 

0.906 

0.900 

0.900 

0.006 

0.115 

0.794 

1.925 

1.775 

1.108 

0.917 

0.900 

0.900 

0.900 

0.543 

0.861 

0.910 

0.902 

0.900 

0.900 

0.000 

0.005 

0.062 

0.307 

0.676 

0.864 

0.898 

0.900 

0.900 

0.900 

0.307 

0.676 

0.864 

0.898 

0.900 

‘0.900



Table 2. Expected values for the sample mean and variance when 
censored values are replaced by yX¢,_for Y=0,O.5,1, in 
samples of size 10 from a lognormal distribution with mean n and 
'variance B3=1. 

Detection Mean Expected 
Limit n Proportion 

E01,) Ersiv) 

X0 Censored 
_ 

Y=0 Y=oa5 v=1 v=0 v=0o5 Y=1 

4 1 0.991 

2 0.956 

3 0.853 

4 0.549 

5 0.152 

6 0.009 

7 0.000 

8 0.000 

9 0.000 

10 0.000 

1 
'

1 0.661 

2 0.109 

0.001 1 3 

4 0.000 

5 0.000 

6 0.000 

0.106 

0.218 

0.704 

2.196 

4.449 

5.966 

7.000 

8.000 

9.000 

10.000 

0.661 

1.912 

2.999 

4.000 

5.000 

6.000 

2.066 

2.130 

2.409 

3.294 

4.753 

5.964 

17.000 

0.000 

9.000 

10.000 

0.992 

1.966 

.3.000 

4.000 

5.000 

6.000 

4.031 

4.041 

4.115 

4.392 

5.057 

6.002 

7.000 

8.000 

9.000 

10.000 

_1.323 

2.021 

3.000 

4.000 

5.000 

6.000 

0.599 

0.965 

5.514 

3.776 

0.902 

0.900 

0.900 

0.900 

1.215 

1.145 

0.903 

0.900 

0.900 

0.900 

0.291 

0.366 

0.949 

2.065 

1.905 

0.959 

0.901 

0.900 

0.900 

0.900 

0.912 

0.979 

0.901 

0.900 

0.900 

0.900 

0.116 

0.072 

0.145 

0.399 

0.762 

0.893 

0.900 

0.900 

0.900 

0.900 

0.630 

0.857 

0.900 

0.900 

0.900 

0.900



Table 3. Mean square error in the estimation of the mean of X by py for some normal and lognohmal examples. 

X0 

Normal Lognormal 
“ 

- 

7 0 S'“ E 
' 

E 
‘ 

t d " M S E- n E(X) var(X) gfigggtedon 
Mean quare rror 

P¢8§gr%ion 
ean quare rror 

Censored v=0 -v=0.5 v=1 Censored v=0 v=0.5 v=1 

4 10 

1 10

1 

1.19 
1.33 
1.43 
1.30 

Ul-§UJI\!l-I 

@\|O$U'l-hhlI\Jr-I 

0-I0-00-In-IOI-I 

._l.-l|—l.-fl 

I 

O 

I 

I 

U 

I

O 

000090000500 

wowuowo

1

1 

ooooocbo 

0 

0 

Q 
0' 

I 

010 

c>c><:c>c>c>c> 
uououo4>4>4>r— 

0.0625 
0.2500 
1.0000 
4.0000 

0.999 
0.977 
0.841 
0.500 
0.159 
0.023 
0.001 
0.000 

0.500 
0.159 
0.023 
0.001 
0.000 

0.500 
0.951 
0.500 
0.049 
0.664 
0.500 
0.136 

0.991 
3.665 
5.464 
3.157 
0.730 
0.175 
0.105 
0.100 

0.109 
0.129 
0.108 
0.101 
0.100 

0.241 
0.385 
0.211 
0.014 
0.280 
0.185 
0.042 

1.007 
0.016 
0.446 
0.575 
0.252 
0.125 
0.102 
0.100 

0.082 
0.096 
0.101 
0.100 
0300 
0.053 
0.022 
0.041 
0.007 
0.012 
0.032 
0.017 

9.002 
4.035 
1.160 
0.193 
0.062 
0.096 
0.100 
0,100 

0.193 
0.062 
0.096 
0.100 
0.100 

0.002 
0.112 
0.008 
0.004 
0.123 
0.017 
0.007 

0.981 
0.956 
0.853 
0.549 
0.152 
0.009 
0.000 
0.000 

0.661 
0.109 
0.001 
0.000 
0.000 

0.800 
0.800 
0.800 
0.800 

0.866 
3.262 
5.569 
3.667 
0.723 
0.129 
0.100 
0.100 

0.250 
0.135 
0.100 
0.100 
0.100 

0.537 
0.437 
0.307 
0.285 

1.174 
0.056 
0.454 
0.726 
0.261 
0.110 
0.100 
0.100 

0.097 
0.110 
0.100 
0.100 
0.100 

0.065 
0.022 
0.039 
0.163 

9.200 
4.175 
1.259 
0.198 
0.088 
0.099 
0.100 
0.100 

0.174 
0.096 
0.100 
0.100 
0.100 

0.054 
0.180 
0.426 
0.627 

The values of X0, n, E(X) and var(X) in the third and fourth sections of the table 
are those used to generate samples by Gleit (1985) and Gilliom and Helsel (1986}'Table 
2), respectively. The square root of the values in the fourth section of the table compare with those of Gilliom and Helsel if they are multiplied by 102.

\\
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Table 6. Estimation by replacement applied to the examples. 

. 
Obser-ved 

_ 

“ Width of 
Contaminant _ Proportion X0 y uv sv 95% Conf1dence ~ 

Censored ‘ 

r Interval 

1,3 Dichlorobeniene 0.16 0.50 0.0 1.2803 

0.5 1.3197 

1.0 1.3592

‘ 
Benzo(A)anthracene 0.66 0.26 0.0 0.1516 

0.2371 - 0.5 

1.0 0.3226 

0.7228 

0.6555 

0.5946 

0.2279 

0.1727 

0.1237 

0.48 

0.43 

0.39 

0.15 

0.11 

0.08
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