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MANAGEMENT PERSPECTIVE P 

The transfer of toxics at the air-water interface, the mixing of the surfave 
waters of lakes and oceans and the design of offshore structures are all dependent 
on, amongst other things, complex nonlinear interactions of the surface waves. 
This paper describes some of the nonlinear processes for Wave groups and as 
such is a valuable resource document for work in these programme areas. 

PERSPECTIVE DE GESTION - 

Le transfert de substances toxiques a l’i'nterface eau-air, le mélange des eaux 
de surface des lacs et des océans et le dessin des structures marins dépejndent, 
entre autres facteurs, des interactions 'comple‘x‘es non-linéaires entre les vagues 
de surface. Cette étude décrit certains ‘processus non-linéaires pour leslgroupes 
des vagues et constitue comme telle un préciieux document de référence piour 
ces domaines. 

Dr._ John Lawrence 
Director 

_ V 

Research and Applications Branch



EVOLVING VELOCITY FIELDS UNDER 
COALESCING WAVE GROUPS 

Drennan and M.A. Donelan 
National Water Research Institute 
Canada Centre "for Inland Waters 
Burlington, Ontario L7R 4A6 

ABSTRACT 
. Much of ocean wave theory is built upon the assumption that the ocean 

surface is made up of a field of random waves, each propagating independently 
according to the laws of linear theory. Increasingly, however, as more -accurate 
prediction models are required, attention has been focussed on the understand- 
ing of ‘phenomena - such as wave group propagation - which are inherently 
nonlinear. For instance, it is now known that nonlinear interactions among 
components in a wave group can have important consequences on the growth 
and evolution of individual waves. 

A fully nonlinear method, based on Fenton’s Fourier wave theory, was efm= 
ployed to study the evolution of wave groups in a wave tank. iWith our numerical 
model, we looked at the coalescence of a prototype wave group, the Gaussian 
wave packet. In particular, the evolution of the velocity field associated with the 
coalescing waves was investigated. The theoretical results have been compared 
with 1§neasu'rements made using a smface follower and an acoustic current metre 
in the 100 metre laboratory tank at the National Watejr Research Institute; 

RESUME i

, 

La théorie rnodeme des vagues est fondée en grande part-ie sur la premisse 
que la surface de la mer est composée d’un champ d’ondes, chacime d’e1le_s 
se propageant suivant les lois de la théorie lineaire. Toutefois, face au besoin 
de -fnodeles de prediction plus précis, la comprehension des phénornenes non- 
lineares, tel que la propagation des groupes de vagues-, est devenu necessaire. 
Par exemple, c’est déja connu que les interactions non-linéaires entre les com- 
posantes d’un groupe de vagues peu_vent avoir des consequences importantes 
-sur la croissance et l’evolution des vagues individuelles. .

' 

N otre etude de Pevolution des groupes de vagues dans un canal 5. houle se 
fonde sur la usage d’une méthode non-lineaire qui est basee sur la théorie des 
ondes Fourier d’apres Fenton. Avec notre algorithme numerique, nous etudions 
la coalescence d’un ensemble Gaussien des vagues utilise comme prototype. 
Spécifiquement, l’év'olution Adu champ de velocite du groupe de vagues. sera 
étudiee. Les resultats theoriques seront compares aux donnés expérimentales 
faites dans la canal a houle de 10,0 metres a l’I_NRE avec un courantornetre 
acollstique couple a dispositif de mesure du déplacement de la surface.

1 .



1. INTRODUCTION AND FORMULATION 
We consider the problem of the two dimensional, irrotational evolution of 

nonlinear wave groups travelling through an i_ncompressi_ble, inviscid fluid in 
wave tank of length L, We employ a Cartesian coordinate system (mo, y) centred 
at a bottom corner of the tank with :1: in the horizontal direction and y pointing 
upwards. The water surface is denoted y = r;(:c,t). For convenience, we use L 
and the gravitational constant g to render variables dimensionless-. Under the 
above assumptions, the fluid motion in the wave tank is described by Laplace’s 
equation ' 

V2¢ = 0, . (1) 

with boundary conditions 
V g ' ¢y=0ony=0 (2) 

1;, + ¢,1;, — Q53, ..= 0 on y = 17(:c,t) (3) 

1 , 

, , 

<15» + §(¢i + ¢§) + 11 = 0 on y = v(¢»,i) 1.4) 

' 

¢ and 17 21r-periodic in as (5) 

and ' initial conditions
g 

"K1", 0.) = f(-1) (5) 

'7:(w, 0) = 9($)» 
. 

" 

- (7) 

where the subscripts denote partial differentiation, Note that boundary condi- 
tion (5) effectively allows the group to pass though one tank wall and reappear 
out of the other. Although not physically realistic, this artifice permitsus to 
follow the evolution of the wave group over distances beyond one tank length. 
The reader is referred to Drennan, Kenton and Donelan (1990) where re'_flect‘ions 
off the end walls are taken into account. 

The complexity of the above system, which is nonlinear and involves a free 
boundary, has focussed most attention on numerical solutions. Longuet-Higgins 
and Cokelet (1976) and Dold and Peregrine (1984) have employed boundary 
integral techniques to follow the evolution of a plunging wave almost to the point 
of breaking. Such techniques, however, are long and complicated to implement. 
For flows in which the wave surface, 17(a:, t) remains single (valued, there exists 
an altemative approach which is both accurate and relatively simple. ' 

2. THE FOURIER METHOD 
The Fourier or pseudospectral method. employs truncated Fourier series 

to approximate horizontal (spatial) variation with a finite difference scheme 
for temporal variation. The method was proposed by Orszag (1971) and has

2



subsequently been refined by Fenton Rienecker (1982) in their investigations 
of solitary wave interaction. A useful summary of recent work applying the 
Fourier method to the steady wave problem can be found in Sobey (1989). 

F In Fourier wave theory, it is assumed that and 17 are 21r -periodic in the 
at-direction. We can then write 

ZN? Q C‘; h ' 

_,- _
1 

¢<w,y,t> = 1* <8) 

where N is the order of truncation, i = \/-Tl and d is the average depth. 
(The deep water case is handled by shifting the coordinate axis to the mean 
water level and replacing the hyperbolic function with exponentials.) This 
form satisfies "Laplace’s equation as well as the bottom (2) and periodicity 
(5) conditions. The N coefficients A,-(t) are found at each point in time by 
satiisfying the kinematic (3) and dynamic (4) boundary conditions at N discrete 
points (mm =‘ %,m = 0,... ,N — 1) of the free surface; the N free surface 
values 1;(:vm_,t) are found at the same time. With the Fourier method, the 
spatial derivatives -are easily calculated from the original Fourier series. From 
the series for 17, 

n<@»...t> = Wm = me-~'=~, <9) IP15 bu 

the discreteFourier transform yields
l 

N-1
H Em = rm) = Z 7lne('l#'41’)-_ (10) 

n=0 - 

The spatial derivative of 17 is then given by 

ZN? km 
a _ _ _i.z . 

a—=_§<w...,t>=- B,-we 1 -, <11) 

— i.e. the inverse Fourier transform of (jB,-‘). We note here that the accu- 
racy of this step, and indeed of the method itself, relies on the capability to 
approximate the unknown, functions <1: and 17 by truncateel Fourier series. If the 
functions are sufliciently smooth (nonsharp), the Fourier coefficients will decay 
with increasing frequency at an almost exponential rate, and the approximation 
will be an excellent one. If, however, there is a slope discontinuity, as with a 
sharp crest, the coefficients will decay slowly and a large number of them ‘will 
be required to adequately represent the function — in this case truncation may 
result in errors that will rapidly render the solution useless. In practice, the 

. 3 9



magnitude of N, and therefore the steepness of waves that can be approximated 
using Fourier theo1_'y,is limited by the available computefr memory, 

In order to advance the solution in time, a. second order finite difference 
scheme is employed. In particular, we use ' 

77(*7"m»t + A) = 1/<¢m,t - A) + 2A%’}<wm.t> + ow) <12) 

where A denotes the time step. Note that in order to advance the solution in 
time, we require initial values at times. 0 and A. Given 17 and 17¢ at time 0 
(by (6) and (7)), we calculate the A]-’s from (3) by solving a linear system of 
equations. We then solve for 17 and, the A,-’s at time A using -a first order finite 
difference scheme with ten steps of A / 10. Then, given solution vectors A and 17 
at two times t and t—A, the calculation of A,-(t+A) and 1;(:z:;,,,t+A) proceeds 
as follows: at time t, 

i

‘ 

calculate 2% .=' -2' jikl 
‘ 

_ 53¢ 
H 

>J.=0 
J coshjd ‘ 

<3’ 

83 
5, 

S‘

Z 
QM“ 

Q". in --. 
1: cosh jd 

= -11 - gag? -+ <§—§>*>, 

_ 
_ 

coshjqm _,-jzm dAj 
at 

_ 
_ dt coshjde for W’s ZN? 

9-. 

solve N :1: N system 

' calculate % = i'.75"1(j.7'i(r])) 
‘ .£9.Q=§§__5i‘fi 

at 6y 316$’ 

and finally A,~(t + A) = A,-(t — A) + 2-Aid’%(t) 
, 6 
17(:v,,,,t + A) = 17(a:¢,-,,t — A) + 2AE77(:c,,,,t). 

In summary, we note that the Fourier method requires two .indep.endent 
approximations. The first is that the Fourier series be truncated — this was 
discussed above-. The second is the finite difference approximation torthe time 
derivative. This latter error can be controlled to some degree through the 

'

'
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choice of A, at the expense of increased computational time. A linear stability 
analysis for the scheme has been carried out by Fenton and Rienecker (1982) 
with the result that A 5 (N — 1)"1/2. This yields an upper bound on the largest 
time step which can be employed at a given truncation order. As a check on 
the accuracy of the solution, the conservation of total energy requirement was 
strictly e'nfo_rced_. A sudden change in energy at some time step was a sign that 
stability was lost in the solution —— this was typically corrected by decreasing 
the time step. 

3. NUMERICAL RESULTS '
' 

We choose as our initial conditions the Gaussian wave packet given by 

we) = -_A D1/4
. 

4 24 2t 4B4t*2* 1 
'

V 

_ 

s1n( ~ -=- ~ Dgem + arctan4B2:r/g) (13) 

where D = 1 + 16B4:v2/g2. In a recent set of experiments conducted in the 
National Water Research Instit-ute’s 100 metre wave tank by Doering (1991), 
low amplitude Gaussian wave packets were produced at the wave board and 
allowed to propagate linearly down the tank past a wave gauge where their 
passage was recorded. The dispersed wave trains were then reversed, amplified 
and fed as input signals to the wave board. The passage of the coalescing wave 
group was then recorded using a wave gauge and a Minilab SD-12 acoustic 
current meter. T-he current meter was connected to a surface follower which 
kept it at a fixedjhorizontal position and a constant distance below the surface. 
Details of the measurejm_e'n'ts may be found in Doering (1991). 

By reversing the Gaussian wave packet and setting the parameters (A, B, 
Te and t) in (13) to coincide with the experimental values we are able to simulate 
the group coalescence. The algorithm described above was coded in Matlab and 
implemented on a 386-computer. The following .results a.re obtained using 256 
Fourier components in the series approximations (i,e. N = 256) and a time step 
of size A = 0.005. Figures 1 and 2 i_ll‘ustr”ate the comparison between laboratory 
measurements and numerical predictions. In Figure 1, we show time series of 
the horizontal velocity component, u, at a distance of 26.7 metres down the tank 
and a constant 1.6 cm, below the surface. The agreement between the surface 
follower measurements (a) and numerical solution (b) as the wave group passes 
is very good, although there are some discrepancies at larger times (greater than 
12 seconds) where the numerical solution is losing accuracy. This is related to 
the formation of a sharp crest associated the maximum coalescence of the group 
and could be corrected by increasing the number of Fourier components. Figure 
2 shows measured (a) and calculated (b) time series of the wave height, at a 

9
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/ 

location coincident with the ve'locit'y measurements and, again, the agreement 
between the two is very good. 

Finally, in Figure 3, we exploit the advantages of a numerical solution to 
look at space series of the horizontal surface velocity (equivalent to 256 wave 
stafis). The curves "in the figure show the space series at three times, O (initial 
condition), 7.1 and 14.2 seconds, and illustrate the evolution of the horizontal 
velocity field as the wave group coalesces. Note that during the short time 
period involved, the maximum velocity occuring in the group has increased by 
close to 50 % ! Although much of this is, of course, due to linear superposition, 
nonlinear interactions result in about ten per cent of the gain (and this increases 
quickly with increasing amplitude). 

A

Q 
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search and Development through project number 62123. 
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