

MANAGEMENT PERSPECTIVE

Dredging Interlaboratory Quality Control Study No.5 (DQC-5) was conducted at the request of Public Works Canada, Ontario Region and Environment Canada's Pollution Abatement Division of Conservation and Protection, to evaluate the quality of data generated by Canadian laboratories, particularly in the Great Lakes basin, for polynuclear aromatic hydrocarbons (PAHs), total PCBS and eight toxic trace metals in sediments. As part of a larger dredging program, this study was directed toward issues related to contaminated sediments in the Great Lakes, to the Remedial Action Programs in areas of concern, and to technology treatment of contaminated sediments in support of programs under the Canada-Ontario Agreement and the International Joint Commission. The results from this round-robin study indicate that several Canadian laboratories have the capability of performing sensitive and accurate analyses for total PCBs, some PAHs and most of the trace metals in sediment at concentration levels considerably higher than those of the Ontario Ministry of the Environment (MOE) guidelines for the open-water disposal of dredge spoils. However, this study casts some doubt on the ability of many of these same laboratories to accurately measure for certain PAHs and heavy metals, especially cadmium, at the level of the MOE The data also reveals that there are several dredging guidelines. laboratories who could benefit from more stringent in-house quality control and that a select few of the participants need to seriously reevaluate their methodologies and the quality of their calibration standards, especially for the PAHs and certain trace metals. Therefore, by providing an assessment of the capabilities of potential contract laboratories to perform specific sediment analyses in a precise and accurate manner, this report may be used as a guide for Public Works Canada and other federal agencies in the granting of future contracts for the testing of sediments from dredging activities and other marine construction projects.

i

Dr. J. Lawrence Director Research and Applications Branch

Perspective-gestion

L'Étude interlaboratoire nº 5 avant trait au contrôle de la qualité du dragage (DQC-5) a été menée à la demande de Travaux publics Canada (région de l'Ontario) et de la Division de la lutte contre la pollution du Service de Conservation et de Protection d'Environnement Canada. Cette étude avait comme objectif d'évaluer la qualité des données produites par les laboratoires canadiens, notamment les données concernant les hydrocarbures aromatiques polycycliques (HAP), les BPC totaux et neuf métaux toxiques traces dans les sédiments du bassin des Grands Lacs. Dans le cadre d'un programme de dragage plus vaste, la présente étude portait sur les questions concernant les sédiments contaminés dans les Grands Lacs, les Programmes de mesures correctives dans les zones de préoccupation et la technologie de traitement des sédiments contaminés avec pour but d'appuyer des programmes sous l'égide de l'entente Canada-Ontario et de la Commission mixte internationale. Les résultats de cette étude interlaboratoire indiquent que plusieurs laboratoires canadiens peuvent faire des dosages sensibles et précis des BPC totaux, de certains HAP et de la plupart des métaux traces dans les sédiments à des concentrations beaucoup plus élevées que celles fixées dans les lignes directrices du ministère de l'Environnement de l'Ontario (MEO) concernant le rejet des matériaux de dragage en eau de surface. Toutefois, l'étude soulève certains doutes concernant la capacité de plusieurs de ces laboratoire de mesurer précisément certains HAP et métaux lourds, notamment le cadmium aux concentrations fixées dans les lignes directrices du MEO concernant le dragage. Les données révèlent également que plusieurs laboratoires pourraient bénéficier d'un contrôle interne de la qualité plus sévère et qu'un petit groupe d'entre eux doivent réévaluer sérieusement leurs méthodes et la qualité de leurs étalons, notamment pour les HAP et certains métaux traces. Par conséquent, le présent rapport, qui présente une évaluation des capacités des laboratoires privés susceptibles d'effectuer des analyses spécifiques de sédiments de présenter des résultats précis et exacts, peut être utilisé comme guide par Travaux publics Canada et d'autres organismes fédéraux dans l'octroi des contrats futurs d'analyse des sédiments dans le cadre des activités de dragage et d'autres projets de construction en mer.

J. Lawrence Directeur Direction de la recherche pure et appliquée

ABSTRACT

This report describes interlaboratory study DQC-5, the fifth in a series of intercomparison studies conducted by the Quality Assurance group at the National Water Research Institute on various organic and inorganic parameters pertinent to dredging activities. The purpose of the present study was to evaluate the analytical capability and performance of contract and government laboratories on their analyses of polynuclear aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and toxic trace metals in naturallycontaminated reference sediments and direct-injection solutions. The analytical data submitted by nineteen Canadian laboratories for study DQC-5 were evaluated by various statistical treatments to identify outlying results and to assess laboratory performance with respect to precision, accuracy and bias.

The PCB data submitted by the participants were, for the most part, satisfactory and showed considerable improvement in accuracy and in comparability between laboratories when compared to dredging studies DQC-1, DQC-3 and DQC-4. For the analysis of PAHs, several of the participants produced satisfactory and comparable data, but there were also some extremely erratic, strongly biased, or out-of-control results submitted. Low recoveries of the PAHs from the sediment samples were one of the more common problems observed, but there were also some divergent results submitted for the directinjection solutions that would generally be more indicative of poor calibration standards and quantitation techniques. This confirms our previous experience that one should interpret the data for PAHs with caution.

Except for cadmium, the trace metal results were generally quite Interlaboratory results for copper, lead, nickel and zinc acceptable. demonstrated a high degree of accuracy and interlaboratory and intralaboratory precision with only a few exceptions. Chromium and arsenic results were slightly more divergent, likely due, in part, to the diversity in methodologies. Moderate difficulties with the analysis for mercury were particularily prevalent at the lower concentration levels. Cadmium results were the least satisfactory of the trace metal data, being neither comparable, nor reliable at less than 2 ug/g. In addition, more than a third of the participants reported detection limits for cadmium that would not have enabled them to quantitate this metal at the guideline levels suggested by the Ontario Ministry of the Environment for the open-water disposal of dredge spoils.

RÉSUMÉ

Le présent rapport présente l'étude interlaboratoire DQC-5, la cinquième d'une série d'études effectuées par le groupe d'assurance de la qualité de l'Institut national de recherche sur les eaux visant à comparer les résultats des laboratoires ayant trait à divers paramètres organiques et inorganiques mesurés dans le cadre des activités de dragage. L'étude avait pour objectif d'évaluer les capacités d'analyse et la performance des laboratoires privés et gouvernementaux dans leur dosage des hydrocarbures aromatiques polycycliques (HAP), des biphényles polychlorés (BPC) et des métaux traces toxiques dans des sédiments témoins contaminés naturellement et dans de simples solutions. On a évalué à l'aide de diverses méthodes statistiques les résultats de dosages présentés par dix-neuf laboratoires canadiens dans le cadre de l'étude DQC-5 dans le but de repérer les résultats aberrants et de déterminer la performance des laboratoires en ce qui a trait à la précision, à l'exactitude et aux biais reliés à leurs dosages.

Les résultats concernants les BPC présentés par les participants étaient, pour la plupart, satisfaisants et présentaient une amélioration considérable du point de vue de l'exactitude et de la comparabilité entre les laboratoires par rapport aux études DQC-1, DQC-3 et DQC-4. Dans le cas du dosage des HAP, plusieurs des participants ont obtenu des résultats satisfaisants et comparables, mais des résultats extrêmement erratiques, fortement blaisés ou non contrôlés ont également été présentés. Les faibles de taux de récupération des HAP dans les échantillons de sédiments étaient l'un des problèmes les plus courants, mais certains résultats divergents présentés pour les simples solutions pourraient en général indiquer de mauvais étalons et de piètres techniques de mesure. Ces résultats confirment notre expérience précédente qu'il faut interpréter avec précaution les résultats concernant les HAP.

Sauf dans le cas du cadmium, les résultats pour les métaux traces étaient en général plutôt acceptables. Les résultats interlaboratoires pour le cuivre, le plomb, le nickel et le zinc témoignent d'un degré élevé d'exactitude et de précision, tant interlaboratoire qu'intralaboratoire, à quelques exceptions près. Les résultats pour le chrome et l'arsenic étaient un peu plus divergents, probablement en partie à cause de la diversité des méthodes utilisées. Les dosages du mercure présentaient certains problèmes, particulièrement aux faibles concentrations. Les résultats pour le cadmium étaient les moins satisfaisants dans la catégorie des métaux traces; ils étaient en effet peu comparables et peu fiables à moins de 2 µg/g. En outre, plus du tiers des participants ont signalé des limites de détection pour le cadmium qui ne les auraient pas permis de mesurer ce métal conformément aux lignes directrices proposées par le ministère de l'Environnement de l'Ontario pour le rejet des matériaux de dragage en eau de surface

LIST OF TABLES

1.	List of Participants in Interlaboratory Study DQC-5
2.	Description of Samples
3.	Reference Values and Interlaboratory Medians for PAHs and PCBs in
	Sediment Samples
4.	Reference Values and Interlaboratory Medians for PAHs and PCBs in Ampule
1	Solutions
5.	Reference Values and Interlaboratory Medians for Trace Metals in
-	Sediment Samples
6.	Summary of Methodologies for the Analysis of PCBs in Sediments
7.	Summary of Methodologies for the Analysis of PAHs in Sediments
8.	Summary of Methodologies for the Analysis of Trace Metals in Sediments
9.	PCB Results for Sediment Samples #1-5 and Ampules 6 & 7
10.	PAH Results for Sediment Sample #1
11.	PAH Results for Sediment Sample #2
12.	PAH Results for Sediment Sample #3
13.	PAH Results for Sediment Sample #4
14.	PAH Results for Sediment Sample #5
15.	PAH Results for Ampules 8A and 8B
16.	PAH Results for Ampules 9A and 9B
17.	Arsenic Results for Sediment Analyses
18.	Cadmium Results for Sediment Analyses
19.	Chromium Results for Sediment Analyses
20.	Copper Results for Sediment Analyses
21.	Lead Results for Sediment Analyses
22.	Mercury Results for Sediment Analyses
23.	Nickel Results for Sediment Analyses
24.	Zinc Results for Sediment Analyses
25.	Detection Limits Reported for PAHs and PCBs in Sediments
26.	Detection Limits Reported for Trace Metals in Sediments
27.	Summary of PCB Results Flagged to the Interlaboratory Medians
28.	Summary of PAH Results Flagged to the Interlaboratory Medians
29.	Summary of Trace Metal Flags and Biases
30.	Summary of Overall Laboratory Performance
Appe	ndix I. List of Invited Participants
	ndix II. Late Trace Metal Data from Laboratory F065
	ndix III. Glossary of Terms and Symbols
	ndix IV. Tables IV-1 to IV-38: Tables of % Recoveries calculated from
	the Reference Values and from the Interlaboratory Medians

listed by individual laboratory

DREDGING QUALITY CONTROL STUDY No.5 (DQC-5)

The Analysis of Polynuclear Aromatic Hydrocarbons, PCBs, and Toxic Trace Metals in Sediment Reference Materials and Direct-Injection Solutions

by

Yvonne D. Stokker and Eleanor A. Kokotich

INTRODUCTION

Contaminated sediments have long been a major environmental concern in many areas of the Great Lakes. Extensive assessments of the levels and significance of contaminants in in-situ sediments, particularily in harbours and nearshore areas of the lakes, have been the focus of many scientific surveys', but the evaluation of dredge spoils for open-water disposal has also become an issue of considerable concern'. In the early 1970's, the Ontario Water Resources Commission developed sediment guidelines for evaluating dredged material for open-water disposal. These guidelines, which are based on total concentrations of contaminants (eleven heavy metals, nutrients, PCBs, cyanide and oil and grease) in the sediments, were later formalized in an Ontario Ministry of the Environment (MOE) report published in 19763. In the absence of federal regulations, Environment Canada (DOE) uses these MOE guidelines to evaluate the acceptability of dredgeate for open water disposal in the Great Lakes. However, since 1984, a joint committee, formed by DOE and MOE, has been reviewing these guidelines as well as regulations formulated by other agencies, and, by including a biological impact factor, hopes to establish more comprehensive sediment quality objectives and criteria for specific contaminants or contaminant classes^{4,5,6}.

In 1982, the Dredging Quality Control Program was initiated and funded by DOE's Environmental Protection Service, Ontario Region (EPS-OR). This new program, implemented over the next four years by the Quality Assurance and Methods Section (QAMS) at the National Water Research Institute (NWRI), was part of a larger dredging project that ensured that the organic and inorganic contaminants in dredged sediments were within the MOE guidelines and those of the United States Environmental Protection Agency. The program was designed

to help various federal agencies, such as the Department of Public Works, Small Craft Harbours, Environmental Protection and Fisheries and Oceans Canada, in those projects where data collection and interpretation were essential to the implementation of measures for abatement and control of pollution from dredging activities. Since these measures or decisions were based on data generated by contract laboratories, the capability of these laboratories to perform specific analyses in a precise and accurate manner, had to be established beforehand and their overall performance assessed. The continued use of interlaboratory QC studies could also then provide an ongoing evaluation of a laboratory's performance for use by these same agencies as a selection criterion. Hence, the goal for each of the individual QC studies was to ensure that potential contract laboratories gave reliable analytical results for specific analyses on the dredged sediments. From 1982 to 1986, four round-robin studies were designed and conducted by the QA group at NWRI as follows: DQC-1 evaluated the analysis of PCBs in naturally contaminated sediments and in standard solutions'; DQC-2 assessed the analysis of ten toxic trace metals in sediments'; DQC-3 again assessed the analysis of PCBs in naturally contaminated dry sediments and in standard solutions'; and DQC-4 evaluated the analysis of both PCBs and eight toxic trace metals in dry sediment reference materials¹⁶.

In October 1989, the Quality Assurance Group at NWRI was requested by Public Works Canada, Ontario Region and DOE's Pollution Abatement Division of Conservation and Protection, Ontario Region, to design and conduct another 'dredging' interlaboratory quality control study, this time on the analysis of polynuclear aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and toxic trace metals in sediments. The program would be directed toward issues related to contaminated sediments in the Great Lakes, to the Remedial Action Programs in areas of concern, and to technology treatment of contaminated sediments in support of programs under the Canada-Ontario Agreement and the International Joint Commission. Public Works Canada would also use this study as a guide in granting future contracts to private laboratories for the testing of sediments for dredging and other marine construction projects. Forty laboratories across Canada, who had the capability of analyzing for all three classes of pollutant of interest, were invited to participate in the round-robin study. A list of these forty laboratories is provided in Appendix I. Of those invited, twenty-two laboratories agreed to participate and, in early December, sample sets consisting of eleven sediment samples and four direct-injection ampules were sent to these participants. Over the next four months, 19 sets of results were received. A list of the participating laboratories is given in Table 1.

In this report on interlaboratory study DQC-5, the quality of sediment data for sixteen PAHs, total PCBs and eight trace metals, submitted by 19 government and private laboratories, is evaluated.

STUDY DESIGN

In the fall of 1989, a telephone survey of more than fifty government and private laboratories, located primarily in the Great Lakes basin, was conducted to assess the interest and capabilities of these laboratories to participate in a dredging interlaboratory round-robin study. The basic requirements for participation were (a) to have the capability to analyze for polynuclear aromatic hydrocarbons (PAHs), PCBs and eight toxic trace metals in sediments; and (b) to be able to provide results on a set of four to six sediments for each of the above classes by mid-January, 1990. A desirable element for the study was to include as many private laboratories as possible from southern Ontario since Public Works Canada would likely use this study as a guide in the granting of future contracts to private laboratories for the testing of sediments for dredging and other marine construction projects being conducted in the Great Lakes region. A list of forty qualified laboratories was compiled from the telephone survey. Written invitations were then sent to these forty laboratories to participate in the study, but only twenty-two responded positively. Samples were sent to the twenty-two participants in early December with a request for results by January 22, 1990. When only one set of results was received by that date, the study deadline was extended. By early March, nineteen laboratories had provided full or partial results.

- 3 -

The identities and a brief description of the samples distributed in study DQC-5 are given in Table 2. The sample set was comprised of eleven freeze-dried sediment samples and four sealed glass ampules. The sediment samples were fully homogeneous, naturally-contaminated reference materials (RMs) or certified reference materials (CRMs) specially developed for either PAH and PCB analyses or for trace metal analyses. With the exception of BCSS-1, all sediments originated from the Great Lakes basin and had been prepared at the National Water Research Institute in Burlington, Ontario¹¹⁻¹⁶. BCSS-1 was a marine sediment reference material purchased from the National Research Council of Canada (NRCC) and had been certified by them for its trace metal content.* The reference values for the various parameters in each of these materials are listed in Tables 3 to 5 along with each of the interlaboratory medians calculated from the results submitted in this study. The reference values for EC-2, EC-3 and WQB-1 are based on numerous multi-method, multioperator in-house and contract analyses and have been confirmed by up to five external round-robin studies. The preparation and development of these and other similar reference sediments at NWRI are reported elsewhere¹¹⁻¹³. TH-1, TH-2 and HR-1 were derived from typical dredging sites in Ontario but have not yet been fully characterized. Consequently, the true concentrations of the parameters of interest in these materials are not known with absolute certainty. However, while the reference values listed in Tables 3 to 5 for these latter sediments are based on a lesser number of in-house and external analyses, they too, have been verified by up to five round-robin studies.

The participants were requested to analyze for sixteen PAHs and for total PCBs in five of the sediment samples and for eight trace metals in the remaining six sediments. Specifically, the parameters of interest were: naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene,

* Since the distribution of the samples in this study, the NRCC has withdrawn its certification for mercury in sediment BCSS-1¹⁷. (Sample #15 in this study).

- 4 -

benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-c,d)pyrene, dibenzo(a)anthracene, benzo(g,h,i)perylene, total PCBs, arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc. Each sediment was to be extracted and analyzed using the laboratory's own routine methods of analysis. Sediment samples #2 and #5 and sediments #11 and #14 were provided as blind duplicate samples for the organic and inorganic analyses, respectively, in order that the participants could estimate their own in-house precision of analysis.

For the analysis of the ampules in this study, the participants were requested to determine the concentrations of the PAHs and PCBs using their own in-house standards and calibration procedures. Samples #6 and #7 were injection-ready 'standard' solutions of a 1:1:1 mixture of Aroclors 1242, 1254 and 1260 in isooctane and samples #8 and #9 were mixtures of the sixteen PAHs of interest. The 'A' series of ampules #8 and #9 were prepared in toluene for those participants who had indicated that they would be analyzing for the PAHs by gas chromatography. Similarily, ampules #8B and #9B were prepared at the same concentration levels in acetonitrile for those participants who would be using HPLC techniques. All ampules, whether for PCB or PAH analysis, were to be analyzed directly to give an indication of the quality and accuracy of inhouse standards, quantitation technique and selection of proper standards.

RESULTS AND DISCUSSION

Analytical Methodologies

Summaries of the analytical procedures employed by the participants for the PCB, PAH and trace metal analyses in this study are presented in Tables 6, 7 and 8, respectively. A wide variety of different techniques were used for the extraction of both the organics and the metals from the sediment samples as well as for their analytical measurement. Only seven laboratories of the nineteen who participated in this study, coextracted the PAHs and PCBs from the sediment samples.

- 5 -

Extraction of the sediment samples for PCBs was done primarily by sonication or soxhlet extraction although mechanical shakers and vortex mixers were also employed. A variety of solvents were used for the extractions including acetone/hexane mixtures, dichloromethane, acetone, hexane, carbon disulfide and cyclohexane. Cleanup of the PCB-containing extracts was mostly achieved by column chromatography using either Florisil or silica gel. As listed in Table 6, some participants also used either a base-partitioning step, an alumina column or sulfuric acid in addition to either Florisil or silica gel columns. Sulfur and sulfur compounds were removed by metallic mercury or activated copper.

Fifteen of the nineteen laboratories used capillary columns for the analysis of PCBs in this study. Three participants used packed OV-1 or OV-101 columns and one used a megabore HP-1 column. Five participants employed dualcolumn GC-ECD, each using a different combination of two capillary columns. Among the remaining ten laboratories, eight different capillary columns were employed. Three of these latter participants quantitated the PCBs using a mass selective detector (MSD). See Table 6 for details. Inspection of the ampule and sediment sample results in this study gave no clear indication of which technique or column provided more accurate PCB results.

The most commonly used method of extraction of the PAHs from the sediment samples was sonication although soxhlet extraction, and shaking were also used by a few laboratories. As seen in Table 7, dichloromethane was employed by eleven of the nineteen participants while five used acetone/hexane mixtures. Carbon disulfide, acetone and an acetone/dichloromethane mixture were each used by one laboratory. Ten participants applied their extracts to either silica gel columns or silica gel solid-phase extraction tubes for cleanup while only one chose SEP PAK and alumina. The remaining laboratories did not use any cleanup column steps.

For the detection and quantitation of the PAHs, thirteen laboratories used either GC-MSD or GC/MS techniques, three used GC-FID, and the remaining

- 6 -

three participants employed HPLC-UV, HPLC-fluorescence, or HPLC with a combination of the two detectors. All participants using gas chromatography analyzed for the PAHs by means of bonded phase fused silica capillary columns such as DB-1 or DB-5 in various lengths.

The extraction and digestion methods used by the participants in this study for the analysis of the eight trace metals in the sediment samples were quite varied. As can be seen in Table 8, the methods differed in most cases in their combination of acids for the digestion step, but several also differed in their analytical instrumentation. For the metals other than mercury and arsenic, the sediment samples were digested with aqua regia by eight of the eighteen laboratories, or a combination of HNO₃, HCl, HF, HClO₄ and H_1O_1 by the other ten. The extract was then analyzed by either flame atomic absorption spectroscopy (flame-AAS) or inductively coupled plasma atomic emission spectroscopy (ICP-AES). However, one participant used graphite furnace atomic absorption spectroscopy (GFAAS) for low level lead and cadmium analyses, and one employed direct current atomic emission spectroscopy (DCP-AES) for the analysis of all six of these metals.

Digestion of the samples for mercury analysis was accomplished by a combination of HNO_3 , HCl, H_2SO_4 and $HClO_4$ in the presence of $KMnO_4$, V_2O_5 , or $K_2S_2O_8$. The mercury in the digest was then reduced to elemental mercury by $SnCl_2$, $SnSO_4$ or hydroxylamine. For mercury, the most popular technique for analysis was cold vapour atomic absorption (AAS), although one participant used a mercury monitor and three employed ICP-AES.

The most popular procedure for digesting the sediment samples for the extraction of arsenic was by means of aqua regia. Two laboratories used alkaline fusion and the remaining eight used various combinations of different acids and reagents. As seen in Table 8, the extract was then analyzed by hydride generation AAS or ICP-AES. One laboratory used a colorimetric technique and two employed GFAAS. None of the participants in this study used Xray fluoresecence or neutron activation techniques for any of the metals.

- 7 -

Data Evaluation - Total PCBs

Table 9 lists the raw data reported by the participants for total PCBs in samples #1 to #7. The overall performance for PCB analysis in this study was, for the most part, satisfactory. As can be seen in Table 3, the interlaboratory medians of the seven test samples agreed closely with the reference values (76-102%) and the between-lab standard deviations ranged from 18 to 49% (after rejection of only the most extreme outliers).

To evaluate the accuracy of the PCB data in this study, the "per cent recoveries" (reported results vs. reference values or interlaboratory medians) were calculated for each sample and are tabulated by laboratory in Appendix To provide a semi-quantitative evaluation of this data, the individual IV. results were deemed to be satisfactory if they were within ±50% of the interlaboratory median but were designated as very low, low, high, or very high, if this "recovery" value was beyond this range. Appendix III outlines, in more detail, the procedures and criteria used in this study to assess laboratory performance for PCB and PAH analysis. Interlaboratory medians rather than reference values were used as evaluation criteria for data accuracy in the flagging procedure since not all the reference values for the different sediments have been finalized. However, in this case, laboratory performance evaluated against either a concensus standard (medians) or an absolute standard (reference values) would be valid since the interlaboratory medians for total PCBs in each sample were in close agreement with the reference values. Only in a few cases did the two values differ by more than 15%. A complete summary of the PCB results flagged to the interlaboratory medians is provided in Table 27.

It becomes obvious when studying the data in Appendix IV, that the recoveries obtained for ampule solutions #6 and #7 were considerably better than those obtained for sediment samples #1 to #5. Because the ampule solutions required no treatment their "recovery" values may be used as a measure of the accuracy of each participant's in-house calibration standards and their quantitation technique for total PCBs. As seen in Table 9, most results for the ampules were within ± 25 % of the design values except for the

- 8 -

data from laboratories F064, F065, F066, F084 and N197. It should be emphasized that the results obtained on injection-ready solutions are less indicative of a laboratory's performance in real life situations than those on sediment samples since the ampule solutions require no extraction and cleanup and are easier to quantitate than sediment extracts with their coextractives.

In Table 9, the PCB data for the five sediment samples show good comparability between most laboratories with only a few participants in this study submitting outlying results. When these few extreme results (i.e. those flagged either VH or VL) are rejected, the range of reported values becomes considerably narrower and the remaining data falls within two to three-fold of the reference values. Sediment samples #2, #3 and #5 originated from Lake Ontario in the Niagara River plume area and were naturally contaminated with high levels of chlorinated hydrocarbons. Perhaps because of these coextractives, the interlaboratory standard deviation for these three sediments ranged as high as 42% to 49%. Samples #1 and #4, on the other hand, were derived from typical dredging sites around Lake Ontario, and, while they were naturally contaminated with Aroclors 1254 and 1260, they contained much lower concentrations of other organic contaminants. The interlaboratory results for these two samples were much better than those for sediment samples #2, #3 and #5. After rejection of extreme outliers, the relative standard deviations for these two samples were 33% and 26%, respectively, and were consistent with the results submitted in studies DQC-3 and DQC-4.

Assessing the precision of PCB analysis was made possible in this study by the provision of duplicate sediment samples. The range of differences between duplicate samples #2 and #5 ranged from less than 5% (laboratories F066, N041, N107 and N158) to almost 200% (laboratory N197). Only nine of the eighteen participants achieved better than 25% precision of analysis between duplicate sediments #2 and #5.

Several of the PCB analyses conducted by laboratories F057 and N197 were out of control as some results were more than 2000-fold different from the reference values and the medians while others were considerably more accurate. N197 was also deemed to be erratic in their sediment analyses for PCBs because

- 9 -

they received both very high and very low flags. The extremely high sediment results for these two participants could have been due to poor quantitation and/or insufficient cleanup of their extracts so that non-PCB peaks (such as the chlorinated hydrocarbons in samples #2, #3 and #5) were being misinterpreted as PCB components. Laboratories F064, F065 and F084 provided very poor results for the direct-injection samples but were better in their analyses of the sediments. Laboratory N196, on the other hand, achieved good results for the direct-injection solutions but had extreme difficulty in recovering any more than 10% of the PCBs in the sediment samples. Since this participant was able to quantitate the Aroclor mixtures in ampules #6 and #7, it is believed that their low sediment recoveries were likely due to inadequate extraction and cleanup techniques or other random errors rather than to poor or inaccurate PCB standards or quantitation techniques. Laboratories F057 and F066 were considered to be biased high in these PCB analyses and F040, N196 and N208 were biased low in that more than a third of their results were flagged.

It is of interest to note that the detection limits reported by the participants ranged from 0.3 to 100 ng/g, a more than 300-fold difference. As listed in Table 25, six of the eighteen participants in this study reported detection limits for total PCBs in sediment at or above the 50 ng/g level listed by the Ontario Ministry of the Environment in their guidelines for evaluating dredge spoils for open-water disposal³.

In summary, despite the various quantitative techniques used by the participants, the PCB data in this study were satisfactory and comparable. Three laboratories, in particular, demonstrated severe analytical problems but the majority experienced, at most, only minor difficulties with these samples. Nevertheless, adequate precision in the analysis of the duplicate samples was achieved by only half of the participants. Therefore, while most laboratories provided acceptable data for total PCBs in the sediment samples, only laboratories F087, N041, N107 and N158 demonstrated both good precision and accuracy, without any evidence of bias in their PCB data. However, laboratories F063, F064, F094, and N200 provided PCB data that were satisfactory for the most part, but which demonstrated some imprecision in the duplicate samples and/or slight bias in their entire set of PCB results.

- 10 -

Data Evaluation - PAH analyses

The raw data reported by the participants for PAHs in the five sediment samples and two direct-injection mixtures may be found in Tables 10 to 16. Interlaboratory medians for each parameter in the samples were determined using all data (except the `less than' or `not detected' values) reported by the participants. Outliers were not rejected when calculating these medians since most of the results fell within two to three-fold of the reference values for each parameter in both the sediment samples and the injection-ready samples. In Table 3, a summary of the interlaboratory medians, the reference values and the recovery of the medians against the reference values, is provided.

Most laboratories analyzed for all sixteen PAHs, but only half of the participants could resolve isomeric pairs such as benzo(b)fluoranthene and benzo(k)fluoranthene. Laboratory F084 had difficulty resolving eight of the sixteen PAHs under study. One participant (F033) omitted five of the PAHs in the sediment analyses and another five PAHs in the direct-injection ampules. Laboratories F007, N107 and N196 submitted incomplete sets of PAH data (i.e. not all samples were analyzed). Four laboratories (F057, F084, N041 and N200) found that more than a third of the PAHs in the sediment samples were below their detection limits but only laboratories F084 and N041 were unable to measure any of the PAHs in the lowest concentration direct-injection sample (Ampule #9).

Evaluation of the accuracy of the PAH results was accomplished in the same manner as was done for the PCB data, using the "percent recoveries" calculated for each laboratory. Appendix IV provides a complete listing of each participant's recovery data in relation to both the reference values and the interlaboratory medians. However, since a few of the medians were not in close agreement with the reference values, and because this technique of evaluating a laboratory's data is a peer appraisal assessment, flags were assigned to the data based on recoveries calculated as a percentage of the median. Table 28 provides a summary of each laboratory's performance based on the percentage of their results that were flagged.

- 11 -

In previous organic interlaboratory studies, erratic in-house standards have been shown to be the single major source of error. Therefore, in the present study, samples #8 and #9 were designed to contain known quantities of each PAH of interest in order to evaluate the accuracy of the participants' in-house calibration standards and quantitation techniques for PAHs. Each of these 'standard' solutions could be quantified by direct injection into a gas or liquid chromatograph. As shown in Tables 15 and 16, the interlaboratory medians agreed with the design values for most of the PAHs in the higher concentration ampule but wider variation in results was seen in the lower concentration ampule. A comparison with Table 25, which lists the participants' detection limits for PAHs in sediment shows that many of the laboratories were at, or approaching, their limits of quantitation for many of the PAHs in sample #9. Laboratories F084 and N041 were unable to detect any of the 16 PAHs in this sample. For the two ampules, laboratory F057 was biased low while each of F065, F066, F094, and N196 were biased moderately Nevertheless, the overall performance of the participants on the two high. ampule mixtures was satisfactory since less than 25% of the results provided, Moreover, the comparability of the laboratories with their were flagged. different methodologies was good, as the lowest and the highest results reported, rarely exceeded a factor of two from the design values in each of the ampules.

The data submitted for the analysis of PAHs in the sediment samples were satisfactory for several of the participants, but as expected, were not as comparable as those for the direct-injection ampules. From 30% to 50% of the PAH results were flagged in each of the five sediments with sample #3 showing the widest range of results. Because the direct-injection results were more accurate for the majority of the participants, many of the problems encountered with the sediment samples were likely due to the extraction or cleanup steps of the procedure rather than the instrumental analysis portion of the method. Losses of the PAHs due to improper sample preservation or due to suspect storage conditions were avoided by providing the participants with freeze-dried sediments for which the stability of the parameters of interest has been monitored and verified for up to ten years.

In general, most of the interlaboratory medians for the PAHs in the sediment samples agreed fairly well with their corresponding reference values. (Refer to Table 3.) More than 80% of the individual results reported by the participants were within two to three-fold of the interlaboratory medians. Surprisingly, however, as can be seen in Table 3, the agreement of the medians to the reference values in sample #5 were far better than in its duplicate In sample #2, six of the medians were less than 70% of sample, sediment #2. their corresponding reference values, whereas in sample #5, all PAHs except chrysene had medians that were greater than 70% of the reference value. In total, half of the PAH medians in sample #5 were from 10% to 30% greater than the corresponding medians in sample #2. Low values for pyrene and chrysene were provided by many of the participants on all five sediment samples. Fluoranthene and benzo(a)anthracene in the lower-concentration sediment samples were also recovered in reduced amounts by several participants. The PAHs for which the interlaboratory medians were not in close agreement with the reference values were those same compounds for which the widest range of concentrations were reported. It appears then, that these data reflect a problem of erratic recoveries, rather than one of consistently low recoveries.

Careful examination of Tables 10 to 16 reveals a significant difference in the results for benzo(b)fluoranthene and benzo(k)flouranthene reported individually and as a sum of the two isomers. Most analysts who had difficulty resolving these two peaks reported total values that were considerably higher than the total concentrations calculated for the two parameters analyzed separately. Therefore, the agreement with the reference values would be considerably better if all B(b)F and B(k)F data had contributed to the interlaboratory medians. Furthermore, the intralaboratory precision of analysis averaged 15% and 30% for B(b)F and B(k)F reported individually, but was better than 10% between the duplicate samples for those reporting the sum of these two PAHs. However, since the results reported as a sum of the two parameters could not be statistically evaluated, they were not used in the calculation of the medians and the preparation of the data summaries.

The performance of a particular laboratory for the analysis of any or all of the PAHs can be readily assessed from the tables included in Appendix A glance at the summary of flags in Table 28 will tell, overall, whether IV. the results reported by the laboratory were satisfactory (few flags), biased high (presence of multiple VH or H flags), biased low (presence of multiple VL or L flags), or erratic (presence of both VH and VL flags). No matter which approach is used, (calculation of recoveries to the medians or to the reference values), results that are flagged VH or VL are usually indicative of significant analytical errors occurring in that laboratory on that particular sample. From Table 28, it becomes apparent, then, that laboratories F063, F064, F065, F066, and N158 provided the most comparable and most accurate data for PAH analyses in this study, as the calculated '% flagged' appraisals for these participants were less than 20%. (The 14% flagged value calculated for laboratory N200 does not necessarily reflect good accuracy because this participant submitted 'not detected' results for more than half of the PAH analyses.)

In Appendix IV, the tables for laboratories F040, N196 and N197 reveal that these participants were biased low in their sediment analyses because they had several L and VL flags on samples #1 to #5. Because their data were not flagged as severely on the direct-injection ampules, this would therefore indicate a possible problem with their PAH recoveries rather than one of poor calibration standards. N196 may have also had a problem with their low level calibration standard as many of their results for ampule #9 were flagged H and VH. Laboratory N041 would also be considered to be biased low on both their sediment and ampule analyses, because, despite the numerous 'not detected' data, 17 of 37 results provided by them were flagged L or VL. Laboratories F007 and N208 were biased moderately low because of low results submitted on several specific PAHs.

Laboratories F084, F087, F094 and N107 were each considered to be biased high in their PAH analyses because most or all of their PAH results were flagged H or VH. For laboratory F087, the ampule data submitted was quite good, suggesting that their calibration standards were adequate but that they

- 14 -

may have experienced interference problems or other difficulties in the quantitation of the PAHs in their sediment extracts. Laboratories F084 and F094, on the other hand, likely had low in-house calibration standards since they had received H and VH flags on both their ampule and sediment results. N107 was biased high for all but one of the PAHs in the sediment samples, but they did not submit any data for the direct-injection samples. Laboratories F033 and N090 were biased moderately high because of the numerous H and VH flags that they received on their results for a few of the PAHs in the sediment samples.

Generally, a laboratory's analyses are labelled erratic when they are assigned VH and VL flags for the same parameter on different samples. Their analytical system for a particular parameter is considered to be out-ofcontrol when single, extreme outlying results are reported. Thus, laboratory F057 was deemed to be erratic on several specific PAHs, while N196 was considered to be erratic overall on their PAH analyses in this study because their results for ampule #9 were flagged H and VH while all of their sediment PAH data were flagged L or VL.

Blind duplicate samples were provided so that the in-house precision of the participating laboratories might be assessed. In this study, sediment samples #2 and #5 were the duplicate samples for both the PAH and PCB analyses. From the data in Tables 11 and 14, the most precise laboratories for PAH analysis were F040, F063, F094, N090, N107 and N158 with each achieving less than 15% difference, on average, for all PAH results provided on these two samples. The poorest intralaboratory precision was demonstrated by laboratories F033, N197 and N208. (Laboratories F057, F084, N041, N196 and N200 could not be assessed for precision on their PAH analyses because of incomplete data sets.) Among the individual PAHs, the most precise results were obtained for phenanthrene, fluoranthene, benzo(b)flouranthene and indeno(1,2,3-c,d)pyrene while those who were erratic in their extraction or cleanup procedures saw this reflected primarily in the recoveries of naphthalene, fluorene, benzo(a)pyrene and benzo(g,h,i)perylene. For those

participants who experienced poor precision of analysis between samples #2 and #5 (laboratories F033, N197 and N208), improved in-house quality control and verification of extraction recoveries with external reference standards and spike solutions are strongly recommended.

It seems apparent then, that the overall interlaboratory results for PAHs were only moderately comparable. As with the data submitted for the PCBs in this study, there was a wide-ranging (more than 3300-fold) difference in the detection limits reported by the participants for PAHs in sediments. (Refer to Table 25.) Nevertheless, the interlaboratory medians, in most cases, were in relatively close agreement to their corresponding reference values and the majority of the data fell within a narrow range of these Some of the participants demonstrated very poor precision on the medians. duplicate sediment samples while a few others exhibited problems with severely biased results for either the direct-injection ampules or the sediment samples This would indicate a general need to reevaluate the quality of or both. their calibration standards and quantitation techniques. Many of the participating laboratories also seemed to have considerably more difficulty analyzing sediment sample #3 since close to 50% of the results were flagged. It is speculated that the presence of high levels of chlorobenzenes and PCBs in this sediment, coupled with the lower PAH concentrations, might have caused interpretation problems to some participants.

Therefore, while a select few of the laboratories need to seriously reevaluate their PAH calibration standards and/or methodologies, many of the participants in this study were able to provide satisfactory and comparable data for the PAHs in these freeze-dried sediment samples. Specifically, laboratories F063 and N158 provided the most accurate and precise data for PAHs in this study, while laboratories F007, F064, F065, F066 and N090 were either slightly less precise, or provided moderately biased data.

- 16 -

Data Evaluation - Trace Metals

All raw data received for the trace metal analyses in this study are summarized in Tables 17 to 24. An existing computer program was used to sort the data by parameter and to arrange them by increasing laboratory and sample number. The mean, standard deviation and median values for each sample are also given in these tables. For the trace metals reported as 'not detected', a 'less than' code was inserted in the data summary. The medians listed were calculated without these 'less than' values, except where the computerized Youden ranking technique had flagged some of the more extreme 'less than' values. The mean and standard deviation were calculated without any data rejection.

Each laboratory in this study analyzed for all eight trace metals. The detection limits reported by the participants for these metals in sediments, are listed in Table 26, along with the guideline levels issued by the Ontario Ministry of the Environment for evaluating dredge spoils for open-water disposal³. As can be seen in this table, eight laboratories listed a detection limit for cadmium that was at, or above, the guideline level. Laboratories N196 and N197 also listed detection limits above the guideline level for mercury. According to the detection limits provided by the participants in this study, each of the remaining laboratories should have been capable of analyzing sediments for the other seven metals at the level of the MOE guidelines. Therefore, the sediment samples used in this study were selected so as to cover the concentration ranges slightly below, at, and above the MOE guidelines for each of the trace metals of interest.

Two of the sediments that were used in this study were reference materials that had been certified for trace metals. Sample #12 was a sediment certified by the National Water Research Institute of Environment Canada for arsenic, selenium and mercury, and sample #15 was a certified sediment obtained from the National Research Council of Canada. The remaining reference values listed in Table 5 for sediment samples #10 to #14 were based on numerous in-house and external analyses, and have been confirmed in other interlaboratory round-robin studies, including dredging studies DQC-2¹ and DQC-4¹⁹.

Overall, most of the trace metal data provided in this study were satisfactory except for sample #15, which was the sediment obtained from NRCC. The recoveries for cadmium, chromium, lead and mercury in this sample were very wide-ranging and showed poor comparability between laboratories. However, since the initiation of this study, the NRCC has withdrawn its certification of mercury in this sediment due to the recent discovery of a contamination problem in a few of the bottles¹⁷. Therefore, the variability in results on this sample may not necessarily be indicative of poor laboratory performance. For the other five sediments, most of the participants provided acceptable data for all eight trace metals, such that, with the exception of the above-mentioned parameters in sample #15, each interlaboratory median was within 25% of its corresponding reference value.

The original instructions for this study requested total metal analysis of the six sediment samples. The results submitted by many of the participants did not appear to reflect this request. (Refer to Table 8 for a listing of the different methods employed by each of the participants for their trace metal analyses). Most digestion procedures for 'total' metal analysis entail complete destruction of the sediment matrix including the silica lattice. The 'extractable' metal dissolution procedures usually extract only the more readily available metals without destruction of the silica lattice. In this study, the digestion procedures varied from complete destruction using HF, HClO, and HNO, to weak leaching with aqua regia. The more rigorous digestions using hydrofluoric acid yielded the most consistent recoveries. Previous studies have shown that aqua regia digestions, with or without H,O,, yielded incomplete recoveries of most metals, especially chromium. For this reason, the participants in this study whose chromium data have been labelled as biased high, or who have received H or VH flags on their chromium results (Table 19), have probably obtained more accurate results than

those whose data were not flagged high. However, because this technique uses the deviation from the interlaboratory medians for calculation, the chromium flags do not accurately reflect the laboratory's performance with respect to their recoveries of total chromium. For this reason, the chromium flags have been excluded in the calculation of the laboratory performances in Tables 29 and 30. To correct this anomaly, the chromium flags could be calculated with respect to the reference value.

Both chromium and cadmium proved to be relatively difficult elements to analyze in this study as the number of flags and the interlaboratory standard deviations were very high for both metals. Despite the larger BAE that was used for chromium (50% at the LLBAE), 47% of the results were flagged. (Refer to Appendix III for an explanation of these terms and the technique of flagging). As discussed above, the variation in these results could be related to the number of different methodologies employed for extraction, with the lower chromium recoveries most likely reflecting incomplete digestion of the sediment samples. (Refer to the list of 'Acids used for Digestion' in Table 19). Therefore, for laboratories F087, N090 and N158, the statements of low bias in their data become even more critical.

Similar to the findings in dredging studies DQC-2⁴ and DQC-4¹⁴, cadmium results were probably the least satisfactory of the eight trace metals in this study in terms of both accuracy and precision. Even after excluding the data for sample #15, the interlaboratory standard deviations averaged 45%, indicating poor comparability among the participants. Furthermore, 16% of the results were submitted as 'not detected' and a third of the remaining results were flagged despite the larger BAE (50% at the LLBAE) assigned to this data set. The poor results may be due, in part, to a combination of high detection limits for cadmium (Table 26) and the low levels of cadmium in the sediment samples under study. Thus, a smaller degree of comparability between the participants was expected and seen. However, as in the case of the chromium data, the wide range in results could also be a reflection of the diversity in the methods employed in extracting the sediments. Mercury data were the most divergent in this study with an average interlaboratory precision of 80%, indicating poor comparability among the participants. After excluding the data for sample #15, the variability among results remains considerable, for both the higher and lower concentration samples. In addition, the intralaboratory precision for mercury in samples #11 and #14 was the worst of the eight trace metals under study. Nevertheless, less than a quarter of the data were flagged, which suggests that the variability in mercury analysis, while widespread among the study participants, was moderate, and not due to a few extreme results from one or two laboratories.

The interlaboratory results for copper, lead and zinc were excellent as less than 20% of these data were flagged. Very good comparability among the participants was demonstrated by average interlaboratory precisions of better than 20% for each of these metals. In the case of lead, a wider variation in results was obtained on only the very lowest level sample. A previous study, National Interlaboratory QC Study No.35²¹, which had used the same sediments (except for #15 from the NRCC), had shown very little difference between the 'extractable' and 'total' results submitted for cobalt, copper, lead and zinc. In this study, it was therefore not unexpected to find that good 'total' results were achieved by less rigorous digestion procedures than those required to extract a metal that was well-embedded in the silica lattice. Hence, the data in this study confirm that copper, lead and zinc were not well-embedded in the silica lattice of these particular sediment samples.

National Study #35²¹ also suggested that from 85% to 97% of the nickel in sediments #10 to #14 was in the 'extractable' form. As anticipated, the nickel results in this study were relatively accurate and precise despite the variation in methodologies used for extraction. The 30% interlaboratory precision calculated for the nickel results in sediment samples #11 and #14 was likely due to the extremely high concentration of nickel (approximately 900 ug/g) that was present in this sediment from Sudbury.

- 20 -

Lastly, arsenic data were also generally satisfactory in this study except for the erratic results reported by laboratories F064, F066 and F084. None of the participants provided biased data for this metal. Moreover, despite the imprecision of some of the submitted results and the few extreme outlying data points, the interlaboratory medians for arsenic were still very close to their corresponding reference values.

A summary of the performance of the participants in this study for their analyses of the eight trace metals in sediment is presented in Table 29. In this table, the number of results reported, the sum of the results flagged VL, L, H and VH, the percentages of results flagged (both including and excluding the chromium data for reasons described below), and a statement of biases, are presented for each participating laboratory. Laboratory N041 did not send any results for the trace metal portion of this study and laboratory F065 submitted their data well past the extended deadline, after the preliminary data summary had been released. Hence, these latter results could not be included in the interlaboratory evaluations, but have been listed in Appendix II. The remaining results were evaluated for accuracy and bias by the ranking and flagging procedures outlined in Appendix III. These procedures, which semi-quantitatively evaluate data accuracy and bias in a set of results, have been widely used in other interlaboratory studies.

Individual results were flagged VL, L, H or VH when they deviated significantly from the interlaboratory median. The most accurate laboratory was therefore the one with the least number of results flagged. As a comparison with their peers, the percentage of results flagged with respect to the total number of results reported is also given in Table 29. (Please note that the H and L flags are counted as only half of a VH or VL flag in order to add emphasis to the very extreme deviations from the median). This comparison, however, should be applied with caution as some participants did not provide sufficient data for assessment of their performance on all eight trace metals. From Table 29, it can be seen that the most accurate trace metal analyses were conducted by laboratories F007, F033, F040, F057, F094 and

- 21 -

N107. Participants F066, F087, N090 and N208 had slightly higher percentages of flagged results but would also be considered as having produced, on average, relatively accurate results for the trace metals in sediment in this study.

Bias was determined by Youden's ranking technique¹⁸⁻²⁸, as described in Appendix III. The bias statements listed for each laboratory in Table 29 refer to the tendency of their entire set of results for that particular metal to be higher or lower than those of the other participants in the study. Laboratories F063, F064, F087, F094 and N090 each produced biased results for one of the metals under study, while four laboratories recieved biased statements on more than one of the eight trace metals of interest. The copper and zinc data submitted by laboratory F066 were biased low while their set of mercury data was biased high. Laboratory N158 was biased low on their chromium and nickel results and N197 was deemed to be biased high on both their cadmium and mercury results. Laboratory N200 submitted biased low cadmium data while producing biased high results for chromium, copper and These statements of biased results are strong evidence of systematic lead. errors and are the areas that these laboratories should look to for The participants who provided unbiased data for all eight trace improvement. metals were laboratories F033, F040, F057, F084, N107 and N208.

The intralaboratory precisions of the participants on their trace metal analyses were evaluated in a similar manner to those of the organic analyses in this study. Sediments #11 and #14 were duplicate samples of a sediment reference material from Sudbury in which the concentrations of six of the eight trace metals of interest were well above all of the participants' detection limits, while its cadmium and mercury concentrations were at or above the majority of the reported detection limits. These latter two metals, because of their relatively lower concentration levels, had, as expected, the largest average difference between the duplicate samples, while nickel and copper were the two metals on which the participants obtained the best precision of analysis. When the average repeatability was calculated for each laboratory on all eight metals, ten participants had achieved better than 10% difference, on average, between the duplicate sample analyses. The most precise laboratories, by these calculations, were F007, F033, F040, F057, F064, F094, N107, N196, N197 and N208.

A laboratory's analyses were labelled erratic when their results for a particular parameter were assigned both VH and VL flags on different samples. In this study, laboratory F084 was deemed to be erratic on their arsenic and zinc analyses, and F087 was erratic on the results they submitted for lead and nickel. Laboratories F064 and F066 also submitted erratic results for arsenic, while N208 submitted some erratic mercury data.

Other than the biased and erratic results described above, satisfactory and accurate data were obtained from most participants for arsenic, copper, lead, nickel and zinc. Moderate difficulties with the analysis of mercury were experienced by many of the laboratories but may have been due, in part, to the low concentration levels in the sediment samples analyzed in this study. Sediment results for chromium and cadmium were indicative of considerably more problems than the other parameters. In agreement with the earlier dredging interlaboratory studies, $DQC-2^{i}$ and $DQC-4^{1i}$, cadmium results were neither comparable nor reliable at less than 2 ug/g. The digestion procedures used by several participants were likely the cause for their low recoveries of these two metals as they were not exhaustive enough to recover 'total' chromium and cadmium. The bias high statements for metals other than chromium were likely due to contamination, poor standards or poor background correction. For the majority of participants, the results for copper, lead, nickel and zinc indicated a high degree of accuracy and interlaboratory and intralaboratory precision with only a few minor exceptions. This suggests that reproducible results on the analysis of these trace metals can be expected from most laboratories who participated in this study. Overall, the participants who submitted the most precise, accurate and unbiased data for all eight trace metals, were laboratories F033, F040, F057 and N107. The data submitted by laboratories F007, F063, F064, F094, N090, N158, N196, and N208 were generally satisfactory but showed some degree of imprecision, reduced accuracy and/or bias in the trace metals analyses.

Performance Summary for Total PCB, PAH and Trace Metal Analyses

In order to assess the overall performance of the participants on both their organic and inorganic analyses, a summary was prepared (Table 30) of the bias and precision statements and percentages of flagged results assigned to each laboratory for the three classes under study. This table also lists the 'performance scores' of each laboratory and their 'overall performance rating' on the organic and inorganic samples as determined by the procedure described in Appendix III. These assessments can serve as a rough indication of the overall accuracy of the PCB, PAH and trace metal data since lower percentages of results flagged reflect more accurate results. In this study, seven laboratories (F007, F063, F064, F087, N041, N158 and N200) received a 'satisfactory' performance score of less than 20 and thus were considered to be the most accurate. Another group of nine laboratories received performance scores between 20 and 40 and were therefore declared to be 'moderate' with respect to accuracy in their overall performance. A final group of three laboratories (F084, N196 and N197) obtained performance scores greater than 40, which assigned them an overall performance rating of 'poor' in terms of accuracy for the three classes of parameter in this study.

Our scoring system for the preparation of Table 30 is tentative and is based on established flagging techniques which use the recoveries or deviations of the results relative to the interlaboratory medians as a basis to provide a semi-quantitative evaluation of the accuracy of the data. Thus, each laboratory was rated for accuracy relative to the performance of the other participants. However, there are several limitations to this technique. When scrutinizing the data in more detail, it becomes apparent that participants F007, F033, F065, N041, N090, N107 and N196 did not provide complete sets of data for all parameters or samples, so that their performance scores do not reflect their capabilities on the full scope of samples provided in this study. Also, laboratories F057, F084, N041 and N200 submitted a significant proportion of their organic data as 'not detected'. These limitations in a participant's detection capabilities, as well as any statements of bias and imprecision, or the presence of erratic results, were

not considered in the assignment of overall performance ratings. Finally, despite the fact that the analyses for each of the three classes were of a different nature, they were averaged on an equal basis when calculating the performance scores. Therefore, while these ratings are generally indicative of accuracy, it is not sufficient to use the assessment of the participants in Table 30 as the sole criterion for evaluation of their performance.

Of the seven participants in Table 30 who received a satisfactory rating with respect to accuracy, three laboratories (F007, N041 and N200) provided incomplete or insufficient data in this study. Furthermore, the PCB data submitted by laboratory F007, were severely imprecise for the duplicate sediment samples, and poor recoveries were seen in several of their PAH results. Both N041 and N200 submitted more than 50% of their PAH results as 'not detected' while demonstrating poor recoveries on much of their remaining PAH data. Laboratory F087 also submitted a considerable number of `not detected' results, but their performance shortcomings were more apparent in their biased high and out-of-control results submitted for several of the PAHs. Therefore, of the seven laboratories who were assigned a 'satisfactory' overall performance rating with respect to accuracy, only laboratories F063, F064 and N158 did not demonstrate any severe problems in the analysis of the three classes under study. Several of the participants who received a 'moderate' assessment rating, would also be considered to have generally performed well, but, as seen in Table 30, their data for at least one of the three classes of parameter under study were either incomplete, imprecise, or demonstrated strong bias.

Clearly then, no one laboratory performed exceptionally well in their analyses for all three classes of parameter in this study. Overall, laboratories F063, F064 and N158 submitted the best results for PCBs, PAHs and trace metals, as their data revealed only minor problems with imprecision or bias in some of the samples. Laboratories F007, F094, N090, N107 and N208 performed well on two of the three classes, but provided incomplete or somewhat less satisfactory results for the third set of parameters. All other participants in this study demonstrated more severe problems with their analyses of at least two of the three classes of parameters in this study.

- 25 -

CONCLUSION

The results of this round-robin study indicated that there are some laboratories capable of accurately analyzing for PAHs, PCBs, and trace metals in sediments. However, the study also revealed some extreme outlying and/or very erratic results produced by certain participating laboratories for total PCBs, arsenic and PAHs as well as some common, but less severe problems with the analysis of certain PAHs, chromium, cadmium and mercury.

The PCB data were, for the most part, satisfactory in this study. The interlaboratory medians of the seven test samples agreed closely with the reference values and good comparability between most laboratories was seen with only a few participants in this study providing outlying results. Since the concentrations of PCBs in these naturally-contaminated sediments have been established by extensive in-house analyses and further confirmed by several interlaboratory studies, the comparison of a participant's results to the reference values is a good indication of accuracy. The calculated recoveries listed in Appendix IV would also, therefore, reflect well the true capabilities of a laboratory, for total PCB analysis in real sediment samples at such levels. Precision was not as good as expected in this study, in that less than half the participants were able to achieve better than 25% precision of analysis between the duplicate sediment samples. The detection limits reported by the laboratories for total PCBs in sediments spanned a 300-fold range with one-third of the participants reporting detection limits that were at, or above, the 50 ng/g level listed by the Ontario Ministry of the Environment in their guidelines for evaluating dredge spoils for open water disposal³. Nevertheless, the results from this study indicate that one could place confidence in the PCB data being produced by the majority of the participating laboratories in this study.

Many of the participants produced satisfactory and comparable PAH data in this study, but some erratic, heavily biased, or out-of-control results were also observed. Incomplete sets of results were submitted by four participants, while another four reported more than a third of their results

as 'not detected'. Again, as with the PCBs in this study, there was a very wide range (more than 3000-fold) in the detection limits reported by the participants. Nevertheless, for those who did submit a complete set of PAH results, the majority of their sediment data were satisfactory in comparison to both the medians and the reference values. Furthermore, the precision of analysis for the PAHs was considerably better than that obtained for the PCBs, despite the fact that the same sediment samples were used for both determinations. Most of the laboratories who provided biased or imprecise results appeared to have experienced difficulties with recovering the PAHs from the sediments rather than with poor calibration standards. However, for those who performed poorly on both the ampule and the sediment analyses, their wide range of results and poor precision for several of these parameters would suggest a need for more accurate analytical standard solutions as well as external reference solutions with which they could monitor their accuracy. Therefore, while several of the participants were able to provide precise, accurate and relatively unbiased PAH data, the strongly biased, erratic and out-of-control results submitted by some of the other participants confirm our previous experience that one should interpret the data for these compounds with caution.

There are a wide variety of methods currently in use for the analysis of trace metals in sediment and this is illustrated well in this study. However, while the instructions for these samples requested 'total' metal analysis, the list of methodologies used by the participants reveals that several laboratories were employing digestion techniques that would not have been exhaustive enough to recover any more than the 'extractable' metal content. For those metals which had a significant proportion of their total content well-embedded in the silica lattice of the sediment, these less exhaustive procedures could have produced Nevertheless, low recoveries. the interlaboratory medians for the sediment samples were for the most part, in good agreement with the reference values and, for most parameters, the range of results was quite reasonable. The results for copper, lead, nickel and zinc demonstrated a high degree of accuracy and interlaboratory and intralaboratory precision with only a few minor exceptions. Chromium results

were less comparable, due in part, most likely, to the diversity in extraction methods. Moderate difficulties with the analysis of mercury were experienced by many of the laboratories especially at the very low concentration levels in some of the sediment samples analyzed in this study. Cadmium results were the least satisfactory of the trace metal data, being neither comparable, nor reliable at less than 2 ug/g. In addition, more than a third of the participants reported detection limits for cadmium that would not have enabled them to quantitate this metal at the guideline level issued by the Ontario Ministry of the Environment.

In summary, no laboratory performed exceptionally well on all of their analyses for PCBs, PAHs and trace metals in sediment. However, three participants (F063, F064 and N158) performed significantly better, on average, and an additional four (F007, F094, N107, and N208) were considered to have performed adequately well, having demonstrated only moderate difficulties with bias or imprecision in some of the samples. All other participants in this study appeared to have experienced more severe problems with their analyses of at least two of the three classes under study. Three laboratories, in particular, were so inaccurate, erratic or heavily biased on some of their analyses that it is recommended that they closely reevaluate the data being produced by their laboratory for the analyses of these particular classes of compound.

ACKNOWLEDGEMENTS

The authors of this report gratefully acknowledge the contribution of the participating laboratories to this study and would like to express their appreciation for their cooperation and patience.

REFERENCES

- Mudroch, Alena, Laurie Sarazin and Tammy Lomas. Summary of Surface and Background Concentrations of Selected Elements in the Great Lakes Sediments. J. Great Lakes Res. 14²:241-251 (1988).
- 2. Guidelines and Register for Evaluation of Great Lakes Dredging Projects. Report of Dredging Subcommittee to the Water Quality Programs Committee of the Great Lakes Water Quality Board, International Joint Commission, Windsor, Ontario, January 1982.
- Persaud, D. and W.D. Wilkins. Evaluating Construction Activities Impacting on Water Resources. Ontario Ministry of the Environment Report. 1976.
- Development of Sediment Quality Objectives. Phase I Options. Ontario Ministry of the Environment Report prepared by Beak Consultants Limited. October 1987.
- Development of Sediment Quality Guidelines. Phase II Guideline Development. Ontario Ministry of the Environment Report prepared by Beak Consultants Limited. September 1988.
- Persaud, D., R. Jaagumagi and A. Hayton. Development of Provincial Sediment Quality Guidelines. Ontario Ministry of the Environment draft report. May 1989.
- 7. Lee, H.B., R.L. Hong-You and A.S.Y. Chau. Dredging Quality Control Study No.1 (DQC-1). Analysis of PCBs in Naturally Contaminated Dry Sediments and Standard Solutions. CCIW-IWD Report Series #96-AMD-6-83-HBL. June 1983.

- Lee, H.-B. and A.S.Y. Chau. Dredging Quality Control Study No.2 (DQC-2). Analysis of Toxic Trace Metals in Sediment. CCIW-IWD Report Series #105-AMD-6-84-HBL. June 1984.
- Lee, H.-B., G. Dookhran and A.S.Y. Chau. Dredging Quality Control Study No.3 (DQC-3). Analysis of PCBs in Naturally Contaminated Dry Sediments and Standard Solutions. March 1985.
- Lee, H.-B., J.A. Abbott and A.S.Y. Chau. Dredging Quality Control Study No.4 (DQC-4). Analysis of PCBs and Toxic Trace Metals in Dry Sediment Reference Materials. NWRI Contribution No. 86-94. April 1986.
- 11. Chau, A.S.Y and H.-B. Lee. Analytical Reference Materials. III. Preparation and Homogeneity Test of Large Quantities of Wet and Dry Sediment Reference Materials for Long Term Polychlorinated Biphenyl Quality Control Studies. J. Assoc. Off. Anal. Chem. 63⁵:947 (1980).
- 12. Cheam, V. and A.S.Y. Chau. Analytical Reference Materials. Part IV. Development and Certification of the First Great Lakes Sediment Reference Material for Arsenic, Selenium and Mercury. Analyst <u>109</u>:775 (1984).
- Lee, H.-B., R.L. Hong-You and A.S.Y. Chau. Analytical Reference Materials. Part V. Development of a Sediment Reference Material for Chlorobenzenes and Hexachlorobutadiene. Analyst <u>111</u>:81 (1986).
- 14. Lee, H.-B., G. Dookhran and A.S.Y. Chau. Analytical Reference Materials. Part VI. Development and Certification of a Sediment Reference Material for Selected Polynuclear Aromatic Hydrocarbons. Analyst <u>112</u>:31 (1987).

- Lee, H.-B. and A.S.Y. Chau. Analytical Reference Materials. Part VII. Development and Certification of a Sediment Reference Material for Total Polychlorinated Biphenyls. Analyst <u>112</u>:37 (1987).
- 16. Cheam, V., K.I. Aspila and A.S.Y. Chau. Analytical Reference Materials. VIII. Development and Certification of a New Great Lakes Sediment Reference Material for Eight Trace Metals. The Science of the Total Environment 87/88:517 (1989).
- Marine Analytical Chemistry Standards Program (MACSP) Update. National Research Council of Canada. April, 1990.
- Youden, W.J. and E.H. Steiner. Statistical Manual of the Association of Official Analytical Chemists. Published by AOAC, P.O. Box 540, Benjamin Franklin Station, Washington, D.C. 20044 (1975).
- Clark, J.L. Evaluation of Performance of Laboratories Determining Water Quality Constituents through Natural Water Samples whose True Values are Unknown. In Summary of Conference Presentations, Envirometrics 81, p. 54-55, 1981. Alexandria, Virginia, April 8-10, 1981.
- Youden, W.J. Ranking Laboratories by Round-Robin Tests. In Precision Measurement and Calibration, H.H. Ku, Editor, NBS Special Publication 300 - Volume 1, U.S. Government Printing Office, Washington, D.C., 1969.
- Cheam, V., A.S.Y. Chau and W. Horn. National Interlaboratory Quality Control Study No. 35. Trace Metals in Sediments. Environment Canada IWD Report Series No.76. 1988.

Table 1. List of Participants in Interlaboratory Study DQC-5.

Federal Government:

- 1. Environment Canada C&P (EPS) Laboratory Services River Road Environmental Technology Centre Ottawa, Ontario
- 2. Environment Canada C&P (EPS) Laboratory Services Wastewater Technology Centre Burlington, Ontario
- 3. Environment Canada National Water Quality Laboratory Burlington, Ontario

Provincial Governments:

4. Ontario Ministry of the Environment Trace Organics QA/QC Section Rexdale, Ontario

Private Laboratories:

- 5. (a) AccuTest Laboratories Ltd. (inorganics) No results submitted Nepean, Ontario
 - (b) Paracel Labs (organic analyses) Nepean, Ontario
- 6. Acres Analytical Ltd. Niagara Falls, Ontario
- 7. Areco Canada Inc. Nepean, Ontario
- 8. Barringer Laboratories Mississauga, Ontario
- 9. Beak Consultants Ltd. Mississauga, Ontario
- 10. Bondar-Clegg & Co. Ltd. Ottawa, Ontario

No results submitted for PĊBs

Incomplete PAH results

No results submitted

Incomplete PAH and PCB results

No results submitted

continued

Table 1 (continued). List of Participants in Interlaboratory Study DQC-5.

- 11. Canviro Analytical Laboratories Ltd. Kitchener, Ontario
- 12. Clayton Environmental Consultants Ltd. Windsor, Ontario
- 13. DILLON Environmental Laboratories Mississauga, Ontario
- 14. Eco-Recherches Pointe-Claire, P.Q.
- 15. Enviroclean London, Ontario
- 16. Environmental Applications Group Markham, Ontario
- 17. Fine Analysis Laboratories Hannon, Ontario
- 18. Mann Testing Laboratories Mississauga, Ontario
- 19. OceanChem Group Dartmouth, Nova Scotia
- 20. Proctor & Redfern Ltd. Don Mills, Ontario
- 21. Technical Services Laboratories Mississauga, Ontario
- 22. Zenon Environmental Inc. Burlington, Ontario

No results submitted for trace metals

Incomplete PAH results

No results submitted

Late results submitted for trace metals, see Appendix II

Sample #	Identification Code	Origin
1	TH-1	Toronto Harbour
2	EC-3	Niagara River Plume
3	EC-2	Lake Ontario
4	ĤR-1	Humber River
5	EC-3	Niagara River Plume
6	EC-107	standard solution of 1:1:1 mixture of Aroclors 1242, 1254 and 1260 in isooctane
7	EC-109	standard solution of 1:1:1 mixture of Aroclors 1242, 1254 and 1260 in isooctane
8A	EC-417	standard solution of 18 PAHs in toluene
8B	EC-423	(prepared from neat materials) standard solution of 18 PAHs in acetonitrile (prepared from neat materials)
9A	EC-420	standard solution of 18 PAHs in toluene
9B	EC-426	(prepared from neat materials) standard solution of 18 PAHs in acetonitrile (prepared from neat materials)
10	TH-2	Toronto Harbour
11	SUD-1	Sudbury
12	WQB-1	Lake Ontario
13	HR-1	Humber River
14	SUD-1	Sudbury
15	BCSS-1	Gulf of St. Lawrence: Baie des Chaleurs

Table 2. Description of Samples.

Note 1: All samples prepared at the National Water Research Institute except for BCSS-1 which is a reference material from the National Research Council of Canada.

Note 2: Sediments 2 and 5 and sediments 11 and 14 are pairs of duplicate freeze-dried sediments for the organic and inorganic analyses, respectively.

Table 3. Reference Values	ues and Interlaboratory	Σ	edians for PAHs	and PCBs	in sediment samples.	(All values in ng/g)	.(5
eter	rerence lue	Sediment #1 Median "%]	% Recovery"	Reference Value	Sediments #2 & Median "% Recovery" #2 #2	#2 & #5 ery" Median #5	"% Recovery" #5
Naphthalene Naphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Fluoranthene Fluoranthene Pyrene Benzo (a) anthracene Benzo (a) pyrene Benzo (a) pyrene Dibenzo (a) pyrene Dibenzo (a) pyrene Dibenzo (a) pyrene Dibenzo (a) perylene	11111 11111 11111 11118 1118 111111	122 122 122 123 1111 1030 1030 1030 1030	11100000000000000000000000000000000000	40080803463 40080863369331111 4110086336938331111	120 33 34 34 280 280 280 586 66.6 115 357 62 357 62 356 66 62 357 62 356 66 62 356 62 356 62 356 62 356 62 356 62 356 66 66 66 66 66 66 66 66 66 66 66 66 6	111 111 30 30 34 30 28 431 431 431 431 431 431 431 431 431 431	122 128 128 128 128 128 128 128 128 128
Total PCBs	552	500.5	16	822	725.5 88	805	98
Parameter	Reference Value	Sediment #3 Median	"% Recovery"	Reference Value	Sediment #4 Median "%	Recovery"	
Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Fluoranthene Pyrene Benzo (a) anthracene Benzo (b) fluoranthene Benzo (b) fluoranthene Benzo (c) pyrene Indeno (123-cd) pyrene Dibenzo (ah) anthracene Benzo (ghi) perylene	100664123311111 555906641823311111 5559066733	25 25 25 25 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26		91366662399155	0040000000000000000000	10080031133344711469 11203113334671166 11009 11009 11009 11009 11009 1109 11	
Total PCBs	1220	930	76	544,	42:0	77	

- 35 -

,

.

,

Table 4. Reference Values and Interlaboratory Medians for PAHs and PCBs in Ampule Solutions.

Parameter	Design Value	Ampu	<u>#6 (pg</u> Jian	(ul) 18 Recovery"	Design Value	<u>Ampule</u> Mec	#7 Lian	(pq/ul) "% Recovery"		
Total PCBs	200		175.5	88	60		- 61	102		
										·
		A	Ampule #8 (no	(lu)			-	Ampule #9 (na/ul)	(10/	
Parameter	Design Value	Median "% #8A	k Recovery" Me #8A	Median #8B	"\$ Recovery" #8B	Design Value	Median #9A	"% Recovery" #9A	edian ⋕9B	"% Recovery" #9B
Naphthalene	19.89	15.74	79	27.7	139	0.497	0.444	68	0.49	66
Acenaphthylene	9.87	8.60	87	28.1	285	0.493	0.38		1.39	282
Acenaphthene	0.945	1.20	127	22.4	2370	0.472	0.43	91 .	038	80
Fluorene	37.84	30.9	82	37.0	96	0.473	0.322		0.38	80
Phenanthrene	16.05	13.8	86	16	100	0.502	0.4	80	0.5	100
Anthracene	0.974	0.93	95	2.36	242	0,0973	0.1	103	0.20	206
Fluoranthene	30°65	21.12 25 72	50	9.00	-00T	0.97.6	0.64	99	18.0	200
Pyrene Benzo(a) ant hracene		5.74	20	6.80	59	0.481	0.21	44	0.28	- 60 - 50 - 60
Chrvsene/Triphenvlene	19.17	14.68	LL	16	83	0.767	0.42	55	0.64	83
Benzo (b) fluoranthene	19,03	13.8	73	24.1	127	0.571	0.27	47	1.0	175
Benzo(k)fluoranthene	9.10	5.65	62	7.5	82	0.364	0.2		0.30	82
Benzo (a) pyrene	9.69	8.51	88	9°6	101	0.484	0.325		0.49	101
Indeno (123-cd) pyrene	15.70	14	68	15.9	101	0.491	0.260		2.15	438
Dibenzo (ah) anthracene	3,95	3.02	76	8.95	227	0.0987	0.083	84	1.35	1368
Benzo (ghi) perylene	13.97	14.4	103	15.9	114	0.437	0.285		0.75	172

8A, 9A - GC data for PAHs in toluene 8B, 9B - HPLC data for PAHs in acetonitrile

- 36 -

6/50	
9	
values	
FR	
t samples.	
stals in sediment sam	
4	
Metals 1	
Trace	
for	
ory Mediana	
nterlaborat	
I par	
Values an	
Reference	
<u>10</u>	
9	

					"% Recovery"	44 85 85 85 88 88 160 124 106
(All values in ug/g).		n's Recovery ⁿ #14	98 97 97 95 91 91	Sediment #15	Median "\$	54 47 117 101 9.8 0.40 0.160
	#14	Median #14	65 921 565 750 31 0.093 53		Reference Value	123 55.3 18.5 119 11.1 0.25 0.129 22.7
ediment samples	Sediments #11 & #	"% Recovery" #11		("\$ Recovery"	 88 98 98 85 104 104
Metals in s	Se	Median #11	68 922 570 785 32 1.75 0.103 51	Sediment #13	Median	116 34 77 1080 5.85 3.75 0.365 139
ans for Trace		Reference Value	941 565.0 771 32.5 2.30 0.11 58.0		Reference Value	38.5 38.5 81.0 81.0 6.85 6.85 0.35 0.35
sboratory Madi		"% Recovery"	93 93 114 104 104		"% Recovery"	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
and Interl	Sediment #10	Median	104 120 120 120 893 8.6 5.5 5.5 189 605	Sediment #12	Median	61 55 76.4 260 1.9 1.04 84
Reference Values and Interlaboratory Medians for Trace Metals in sediment samples.	ß	Reference Value	44.2 105.0 5.30		Reference Value	279.0 23.00 23.00 2.10 85.7
Table 5. B		Parameter	Chromium Nickel Copper Zinc Arsenic Cadmium Mercury Lead		Parameter	Chromium Nickel Copper Zinc Arsenic Cadmium Mercury Lead

Lab. No.	Extraction & Cleanup	Analysis & Comments
F007	-soxhlet extraction with acetone-hexane (59:41); base partition with 2% KHCO ₃ ; back-extract into hexane; Florisil column cleanup; Hg cleanup	dual GC-ECD, 30m DB-5 and 30m DB-17
F033	-coextract with PAHs ultrasonically using 1:1 acetone:hexane; wash with XAD milli-Q water, then CH ₂ Cl ₂ ; dry through Na ₂ SO ₄ ; silica gel column cleanup	dual GC-ECD, 30m SPB-1 and 30m SPB-5
F040	-coextract with PAHs by ultrasonic extraction using acetone; wash with water, then CH ₂ Cl ₂ ; Florisil column cleanup	dual GC-ECD, 15m DB-5 and 15m DB-1701
F057	-coextract with PAHs by ultrasonic extraction with carbon disulfide	dual GC-ECD, 30m DB-1 and 30m DB-1701
F063	-extract with acetone on a mechanical shaker; Florisil column cleanup	dual GC-ECD, 30m DB-5 and 30m DB-1701
F064	-extraction on a wrist shaker with 1:1 acetone:hexane; Florisil mini column cleanup	GC-ECD, 6ft OV-1
F065	-extract with hexane by ultrasonication; dry through Na ₂ SO ₄ ; cleanup using Florisil, silica and acid silica	GC-ECD, 30m DB-17
F066	-extract twice with 50/50 acetone/hexane on a wrist shaker; dry through Na ₂ SO ₄ ; silica gel column cleanup; cleanup with copper	GC-ECD, 30m DB-1
F084	-extract five times with hexane on a vortex mixer; Florisil column cleanup	GC-ECD, 60m DB-5
F087	-coextract with PAHs with 50:50 acetone:hexane ultrasonically three times; silica gel solid phase extraction tube cleanup; Florisii solid phase extraction tube cleanup; further cleanup with H_2SO_4 then Hg	GC-ECD, 30m SPB-5
F094	-coextract with PAHs by soxhlet extraction with CH ₂ Cl ₂ ; Florisil column cleanup	GC-ECD, megabore HP-1
N041	-extract three times with acetone and hexane ultrasonically; cleanup with H_2SO_4	GC-ECD, 6ft OV-1
N090	-coextract with PAHs using CH_2CI_2 ; silica get and alumina column cleanups; Hg cleanup	GC-MSD, 30m DB-5
N107	-soxhlet extraction with hexane/acetone; washed with NaCl/H ₂ O; dry through Na ₂ SO ₄ ; Florisil column cleanup; Hg cleanup	GC-ECD, 25m DB-5
N158	-coextract with PAHs with CH_2Cl_2 by ultrasonication; dry through Na_2SO_4	GC-MSD, 30m DB-5
N196	-soxhlet extraction with CH ₂ Cl ₂ ; dry through Na ₂ SO ₄ ; Florisil solid phase extraction tube cleanup	GC-ECD, 15m DB-5
N197	-soxhlet extraction with hexane/acetone; Florisil column cleanup; cleanup with H ₂ SO ₄	GC-ECD, 4ft OV-101
N200	-extract with cyclohexane on a vortex mixer; silica gel column deanup; Hg deanup	GC-ECD, 15m SPB-5
N208	-soxhiet extraction with CH ₂ Cl ₂ ; Florisil column cleanup	GC-MSD, 30m DB-1

t

Table 6. Summary of Methodologies for the Analysis of PCBs in Sediments.

Lab. No.	Extraction & Cleanup	Analysis & Comments
F007	-soxhlet extraction with acetone-hexane (59:41); base partition with 2% KHCO ₃ ; back-extract into hexane; dry through Na ₂ SO ₄	GC/MS
F033	-coextract with PCBs ultrasonically using 1:1 acetone:hexane; wash with XAD milli-Q water, then CH ₂ Cl ₂ ; dry through Na ₂ SO ₄ ; silica gel column cleanup	GC-MSD, 30m DB-5
F040	-coextract with PCBs by ultrasonic extraction using acetone; silica gel and alumina column cleanups	GC-MSD, 60m DB-5
F057	-coextract with PCBs by ultrasonic extraction with carbon disulfide	GC/MS
F063	-extract with 50:50 acetone: CH_2CI_2 on a mechanical shaker	GC/MS, 30m DB-5
F064	-extract with acetone/hexane on a wrist shaker; SEP PAK and alumina cleanups	GC/MS, 30m DB-1
F065	-extract with 1:1 acetone:hexane by ultrasonication; silica gel column cleanup	GC-MSD, 30m DB-5
F066	-extract twice by soxhlet extraction with CH_2Cl_2 ; dry through Na_2SO_4	ĠC/MS
F084	-extract five times with CH ₂ Cl ₂ ultrasonically; dry through Na ₂ SO ₄ ; silica get column cleanup	GC-FID, 30m DB-5
F087	-coextract with PCBs with 50:50 acetone:hexane ultrasonically three times; silica gel solid phase extraction tube cleanup	GC-FID, 30m SPB-5
F094	-coextract with PCBs by soxhlet extraction with CH_2Cl_2	GC-MSD, 30m DB-5; Results corrected for recoveries
N041	-extract three times with CH ₂ Cl ₂ ultrasonically; dry through Na ₂ SO ₄	GC-FID, 30m DB-5
N090	-coextract with PCBs using CH2Cl2; silica gel column cleanup	GC-MSD, 30m DB-5
N107	-soxhlet extraction with CH ₂ Cl ₂ ; dry through Na ₂ SO4	GC-MSD, 12m DB-1
N158	-coextract with PCBs with CH ₂ Cl ₂ by ultrasonication; dry through Na ₂ SO ₄	GC-MSD, 30m DB-5
N196	-soxhlet extraction with CH ₂ Cl ₂ ; dry through Na ₂ SO ₄ ; silica gel solid phase extraction tube cleanup	HPLC-UV
N197	-ultrasonic extraction with CH2CI2; silica gel column cleanup	HPLC-UV; first 10 PAHs HPLC-Fluorescence; last 6 PAHs
N200	-ultrasonic extraction with CH2Cl2; silica gel column cleanup	HPLC-Fluorescence
N208	-soxhlet extraction with CH ₂ CL; silica gel column cleanup	GC-MSD, 30m DB-1

۰,

Table 7. Summary of Methodologies for the Analysis of PAHs in Sediments.

Lab. No	. Digestion	Detection & Comments
F007	-Pb, Zn, Cr, Cu, Cd, Ni: digest with HF, aqua regia and H_2O_2 -Hg: hot block digestion with HNO ₂ , H_2SO_4 and V_2O_5 ;	DCP cold vapour AAS
	SnCl ₂ reduction	
	-As: NaOH fusion; HCi dissolution of the flux	hydride AAS
F033	-Pb, Zn, Cr, Cu, Cd, Ni: digest with HF, HClO4 and HNO3	flame AAS
	-Hg: digest with HNO ₃ , H ₂ SO ₄ , KMnO ₄ and K ₂ S ₂ O ₈ -As: alkaline fusion	cold vapour AAS hydride formation, ICP
F040	-Pb, Zn, Cr, Cu, Cd, Ni: hot block digestion with aqua regia	ICP-AES
	-Hg: digest with HNO ₃ and H ₂ SO ₄ ; SnCl ₂ reduction	cold vapour mercury monitor
	-As: digest with HClO ₄ , HNO ₃ and H_2SO_4 ; NaBH ₄ reduction	hydride generation, flameless AAS
F057	-Pb, Zn, Cr, Cu, Cd, NI: digest with HF, HCI, HClO4 and HNO3	flame AAS
	-Hg: digest with HNO ₃ -As: digest with HClO ₄ and HNO ₃ ; KI and SnCl ₂ reduction	cold vapour AAS
	The oldest with HOIO4 and HINO3; At and Short reduction	hydride generation, colorimetric
F063	-Pb, Zn, Cr, Cu, Cd, Ni, As: digest with aqua regia	flame AAS (Pb); ICAP;
	-Hg: digest with HNO ₃ , H ₂ SO ₄ , KMnO ₄ and K ₂ S ₂ O ₈	hydride generation, AAS (As) cold vapour AAS
F064	-Pb, Zn, Cr, Cu, Cd, Ni, As: digest with aqua regia -Hg: digest with aqua regia and KMnO,; SnCl, reduction	ICP-AES; GFAAS (As) cold vapour AAS
F065	-Pb, Zn, Cr, Cu, Cd, Ni, As: digest with aqua regia	ICAP; GFAAS (As)
	-Hg: digest with $HClO_4$, HNO_3 and H_2SO_4	cold vapour AAS
-066	-all metals: digest with aqua regia	ICP
F084	-Pb, Zn, Cr, Cu, Cd, Ni: digest with HF, HClO, and HNO ₃	flame AAS
	-Hg: digest with HNO ₃ , H ₂ SO ₄ , HCl, KMnO ₄ and K ₂ S ₂ O ₆ ; hydroxylamine sulphate-NaCl; SnSO ₄ reduction	cold vapour AAS
	-As: digest with HF, HClO ₄ , HNO ₃ , KMnO ₄ and K ₂ S ₂ O ₆	hydride, flameless AAS
087	-Pb, Zn, Cr, Cu, Cd, Ni: digest with aqua regia	flame AAS
	-Hg: digest with HNO ₃ , H ₂ SO ₄ , KMnO ₄ and K ₂ S ₂ O ₈	cold vapour AAS
	-As: digest with HNO ₃ and H ₂ SO ₄	hydride generation, AAS
-094	-Pb, Zn, Cr, Cu, Cd, Ni, As: digest with HF, HClO ₄ and HNO ₃	flame AAS; GFAAS (Pb & Cd, low level)
	-Hg: digest with HNO3 and H2SO4 and KMnO4; hydroxylamine+HCl	hydride generation, AAS (As) cold vapour AAS
	reduction; SnCl ₂ reduction	· • · · · ·

Table 8. Summary of Methodologies for the Analysis of Trace Metals in Sediments.

continued

Lab. No	Digestion	Detection & Comments
N090	-Pb, Zn, Cr, Cu, Cd, Ni: digest with HNO ₃ and H ₂ O ₂ then HCl -Hg: digest with aqua regia then KMnO ₄ ; NaCl-hydroxylamine sulphate; SnSO ₄ reduction	flame AAS cold vapour AAS
	-As: digest with HNO ₃ and H_2SO_4 ; KI and SnCl ₂ reduction	hydride generation, AAS
N107	-Pb, Zn, Cu, Cd and Ni: digest with aqua regia -Cr: digest with HF and aqua regia	AAS AAS
	-Hg: digest with HCl, HNO ₃ , H ₂ SO ₄ , KMnO ₄ and K ₂ S ₂ O ₈ -As: digest with HF, HCl and HNO ₃	cold vapour AAS hydride generation, AAS
N158	-Pb, Zn, Cr, Cu, Cd and Ni: aqua regia and H_2O_2 -Hg: digest with HNO ₃ and H_2SO_4 , KMnO ₄ and $K_2S_2O_a$;	ICAP cold vapour AAS
	NaCl-hydroxylamine sulphate; SnSO, reduction -As: digest with HCl, HNO, and aqua regia	hydride generation, ICP
N196	-Pb, Zn, Cr, Cu, Cd and Ni: digest with HF, HCl, HClO ₄ and HNO ₅	ICP
	-Hg, As: aqua regia	ICP; hydride generation-ICP(As)
N197	-Pb, Zn, Cr, Cu, Cd and Ni: digest with HCl, HNO ₃ and H_2O_2 -Hg: digest with HNO ₃ and H_2SO_4 ; KMnO ₄ and	flame AAS cold vapour AAS
	NaCl-hydroxylamine sulphate -As: HCl, HClO ₄ and H ₂ SO ₄	hydride generation, AAS
N200	-all metals: digest with aqua regia	ICP; cold vapour AAS(Hg); hydride generation-ICP(As)
N208	-Pb, Zn, Cr, Cu and Ni: digest with HNO3 and H_2O_2 -Cd, Hg, As: digest with aqua regia	ICP-AES flame AAS(Cd); cold vapour AAS(Hg); hydride generation, AAS(As) QC: CRM calibration verification

Table 8 (continued). Summary of Methodologies for the Analysis of Trace Metals in Sediments.

- 41 -

Table 9. PCB results for Sediment Samples #1-5 and Ampules 6 & 7.

Lab No.

Total PCBs

-		<u> </u>	n n	<u>.</u>		<u> </u>	
-		Sedimen	t Sample	(ng/g)	· · · · ·	Ampules	(pg/ul
	1	2	3	4	5	6	7
F007	456.8	1072.4	1560.9	450.5	594.0	148.8	48.4
F033	511	661	1820	420	2070	198	64.4
F040	210	265	480	200	280	125	47
F057	376	15415	25169	388	11699	233.1	63.3
F063	402	500	740	417	700	137	46
F064	737	800	1190	599	669	107	306
F065	490	1400	810	400	1500	71	'nd
F066	699	1120	1380	984	1140	349	170
F084	620	790	930	620	1300	0.03	<0.01
F087	714	889	864	576	805	208	75
F094	530	880	1030	390	1500	190	67
NØ41	590	580	670	580	560	200	<100
N090	-	-	-	-	_		
N107	548	896	1170	534	887	181	60
N158	560	587	835	530	620	182	42.3
N196	32.1	25.8	-	-	-	171	48.7
N197	370	170	29000	330	7900	69	<50
N200	200	420	580	360	580	180	62
N208	300	260	360	330	300	130	53
Interlab						· · · · · · · · · · · · · · · · · · ·	
Median	500.5	725.5	930	420	805	175.5	61
Reference						• <u>•••••</u> ••••••••••••••••••••••••••••••	
Value	552	822	1220	544	822	200	60

For an explanation of terms and symbols, see Appendix III.

Lab No.						·		Par	ameter							
	Naph-	Acen-	Ace-	F 1-	Phen-	Anth-	Fluor-	Pyrene	B(a)A	Chrys-	B(b)F	B(k)F	B(a)P	I(cd)P	D(ah)A	B(ghi)
F007	276	ba	7.5	78	700	151	790	877	556		754		613	746	373	973
FØ33	82.7	-	-	127	518	92.8	1030	1000	763	1020	941		1390	-	-	-
P040	36	nd	nd	nd	130	31	245	230	95	140	160	153	110	200	35	157
1057	<330	<330	<330	<330	977	510	1580	1240	348	749	1104		973		556	613
F063 F064	129	163	35 32	58	477	177	1540	1640	473		•	903)**	480	345	143	336
F065	83 143	42 83.7	40.9	61 36.8	611	111	1030	1000	355	654	-593		368	250	72	282
F065	143	51	25	30.0 56	439 500	96.3 86	653 610	693 610	158 660	169	•	373)**	162		81.1	361
F084	<100	<100	<100	<100	450	<100	1400	1700		610 200)**		100)**	860	710	240	810
F087	180	750	170	720	450	<100	1090	470	330	286)	(3 780	700)** 1090	<200 4280	(4) 490	900)** <100	3800
F094	370	75	55	126.7	755	120	1115	1120		624.45		140)**	4200	1110	200	2300 1100
RØ41	<20	<20	<20	<30	80	<40	<40	300	<70	<80	<70		470	<160	<220	<220
N090	-	18	46	21	653	264	1288	1269	424	968		886)**	762	689	109	370
N107	312	123	98	88	796	192	1305	1324	764	1078	1495	320	1125	665	252	780
N158	125	121	47.4	68.9	571	147	687	699	477	495	663	686	450	745	148	544
N196	9.38	nd	16.4	2.72	4.17	2.48	25.9	16.7	nd	25.7	12.5	2.18	30.9	3.17	ba	12.3
N197	240	<100	200	<10	100	20	670	470	230	310	7.90	240	440	1100	3800	1200
N 200	<100	<100	<100	<100	<100	<100	1090	<100	380	260	<100	280	710		200)**	<100
N208	59	14	10	23	270	34	650	660	540	540	920	320	430	640	200	600
Interla	h															
Nedian	127	79.4	46	61	489	111	1030	788	449	530	780	320	547	665	200	607
Referen	ce							,			• • •					
Value	.	1	÷ =14		611	112	1071	1118	640	923*	826	493	696	635	199	655

Table 10. PAH results for Sediment Sample \$1 (ng/g).

(

For an explanation of terms and symbols for tables 10 - 16, see Appendix III.

۱

Table 11. PAH results for Sediment Sample #2 (ng/g).

Lab No.	•							Par	ameter				•			
	Naph-	Acen-	Ace-	¥1-	Phen-	Anth-	Flüor-	Pyrene	B(a)A	Chrys-	B(b)F	B(k)F	B(a)P	I(cd)P	D(ab)A	B(ghi)
F00 7	288	21	48	43	431	97	391	327	172	233	306	146	204	262	113	354
P0 33	nd	-	-	nd	289	71.3	- 357	367	434	416	726	489	613	-	-	-
F040	28	nd	nd	nd	62	22	125	104	55	82	120	130	86	85	bā	75
P05 7	2140	<330	<330	<330	<330	<330	624	352	<330	<330	572		<330	<330	<330	<330
F0 63	83	48	21	27	245	61	743	652	263	243		585)**	349	282	113	313
F064	. 69	16	17	111	284	56	573	476	227	405	463		333	262	8.8	300
F065	136	39.2	35.9	28.5	262	54.4	312	257	339	354		727)**	354	800	126	992
F066	120	36	17	21	280	49	350	320	380	380	(750)**	460	570	170	63
P084	<100	<100	130	<100	200	700	300	700	()	500)**		700)**	500	{(500)**	400
F0 87	310	<100	<100	300	210	210	660	280	300	760	(1	180)**	4090	460	<100	1230
P094	340	30	40	70	350	70	580	540	440	260	(1	740)**	1210	910	190	1010
N041	<20	<20	<20	<30	<30	60	<40	170	70	<80	<70	<60	120	<150	<210	<210
N090	-	16	26	18	334	164	668	513	238	458	(1)	190)**	518	588	200	299
N107	252	92	59	49	424	106	713	614	490	652	950	355	728	578	179	655
N158	99.4	71.1	32.1	34.6	338	66.6	349	310	253	235	(1	B19)**	100	442	82.4	300
N196	2.44	nd	nđ	11.1	2.36	nd	29.2	8.62	nd	21.7	8.07	nd	19.9	2.49	nd	12.2
N197	<90	<100	100	30	<9	<9	140	29	150	62	210	52	100	330	600	230
N200	<100	<100	<100	<100	<100	<100	<100	<100	214	302	<100	392	471	(<	200)**	<100
N208	5	4	3	5	73	6	160	130	120	150	300	105	70	290	75	260
Interla	b															
Hedian	120	33	34	30	28 0	66.6	357	324	246	281	306	178	352	386	126	300
Referen	ce								. <u>-</u>	<u>-2009 -</u>					<u> </u>	
Value					293	58	579	466	323	456*	578	260	408	480	119	493

Table 12. PAH results for Sediment Sample #3 (ng/g).

Lab No	•	·						Par	ameter							
	Naph-	Acen-	Ace-	¥1-	Phen-	Anth-	Fluor-	Pyrene	B(a)Å	Chrys-	B(b)F	B(k)F	B(a)P	I(cd)P	D(ab)A	B(ghi)F
F00 7	5651	108	60	nd	1799	896	2022	439	112	171	141	141	66	9.3	'nď	124
F033	1600	-	-	230	1630	83.2	2100	1970	991	2080	3560	3560	3430	-	-	-
F040	525	60	ad	55	258	175	55	480	215	340	620	450	230	850	107	600
FØ57	<330	<330	<330	633	453	1380	2620	1390	341	937	2280	<330	709	<330	<330	<330
F063	2430	639	27	560	1440	210	4340	3730	1020	924	(2)	480)**	649	718	312	642
P064	1960	163	23	300	1990	196	4460	3540	927	2710	3830	1680	1380	2770	523	2430
P065	2710	356	45.5	767	1280	116	2020	1660	1190	1510	(3)	413)**	713	2690	737	2940
F066	4500	370	37	1100	2100	220	3300	3000	2200	2900	(4)	900)**	3600	2800	1100	2900
FØ84	2100	<100	200	500	5800	1000	2800	1900	(19	900)**	(2)	800)**	3600	(<)	200)**	800
F087	3590	370	1210	2480	8890	1050	2390	1150	3050	4920	4450	1350	4480	1650	<100	4040
F094	6480	390	80	1130	2040	.180	3760	2920	2160	2410	(7)	544)**	3660	3570	680	3520
NØ41	1100	<20	<20	200	1700	310	870	1100	620	740	780	<60	<80	380	<200	520
1 090	-	40	<8	374	1478	446	4229	2999	778	2839	(5)	652)**	1314	2011	<16	957
N107	6146	573	75	136	2276	496	4200	3476	1750	3102	3826	1452	1747	2042	689	2046
N158	3589	500	1236	1145	479	654	2968	2408	879	1069	(4)	800)**	790	1940	248	1312
N196	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
N197	<90	<100	100	<10	140	10	900	1100	1300	680	910	320	350	1300	4400	1400
N200	<100	<100	<100	<100	<100	<100	2030	1120	724	1020	<100	1190	982	(<	200)**	<100
N208	400	21	4	11	420	38	990	820	550	650	1340	590	350	970	310	800
Interl	ab													•		
Nedian		363	68	500	1630	220	2505	1780	927	1069	1810	1190	982	1795	602	1312
Refere	nce								<u></u>			· · · · · · - · · ·			<u> </u>	
Value		-,			1433	113	3480	2957	1347	1857*	2228	1147	1006	1790	559	1555

Table 13. PAH results for Sediment Sample #4 (ng/g).

,

Lab No) .			<u> </u>	· · · •		-	Par	azeter							
	Naph-	Acen-	Ace-	¥1-	Phen-	Anth-	Fluor-	Pyrene	B(a)A	Chrys-	B(b)F	B(k)P	B(a)P	I(cd)P	D(ab)A	B(ghi)
1007	212	16	54	55	601	113	609	555	337	289	78	46	62	44	nđ	62
F033	81.4	-	-	140	533	69.1	532	549	311	488	526	526	686	-	-	-
F040	24	nd	ba	.nđ	95	33	170	150	60	90	110	110	68	61	nd	70
F0 57	<330	<330	<330	<330	<330	<330	<330	<330	855	<330	<330	<330	<330	<330	<330	<330
F063	20	49	26	50	430	126	1170	1150	367	259		615)**	386	233	100	236
F064	60	18	27	49	511		815	737	261	412	412	191	310	179	57	216
F065	44.7	37.3	38.5	41,4	468	108	580	549	432	355		691.)**	333	458	120	529
F0 66	67	27	16	29	370	72	440	450	440	380		620)**	480	400	120	450
F084	<100	<100	200	<100	300	400	300	900	•	500)**		700)**	3700	(4)	100)**	<200
E0 87	130	260	<100	<100	280	<100	860	780	640	1710		140)**	2640	510	<100	1510
F094	330	30	60	120	630	130	910	890	530	320	-	530)**	1110	560	160	620
N041	<20	<20	<20	<20	<20	.70	160	260	<60	<70	<60	<60	270	<140	<190	<190
N090	•	15	54	35	574	254	952	832	418	554		233)**	513	417	101	244
N107	244	87	59	88	743	195	1140	1108	692	784	- 985	385	834	516	179	579
N158	110	67.1	40.6	56.9	519	99.8	468	444	312	254	(*	759)**	252	323	65.8	235
B 196	-	-	-	-		-	-	-	-	-	-	-	÷	÷.	-	-
N197	90	<100	300	<10	29	<9	350	470	290	290	590	190	350	850	2500	880
N200	<100	<100	<100	<100	<100	224	1020	<100	234	314	<100	342	390	(<	200)**	<100
N208		6	8	20	240	34	450	440	350	320	570	230	440	380	120	360
Interl	ab															
Nedian		30	47.3	50	468	108	580	552	359	320	526	211	440	400	120	360
Refere	D <i>C</i> P	- .					<u></u>			<u>.</u>						
Value					528	104	817	829	427	512*	466	262	426	332	111	331

.

Table 14. PAH results for Sediment Sample #5 (ng/g).

Lab Ņo	•							Par	ameter							
	Naph-	Acen-	Ace-	Fl-	Phen-	Anțh-	Fluor-	Pyrene	B(a)A	Chrys-	B(b)F	B(k)F	B(a)P	I(cd)P	D(ab)A	B(ghi))
F00 7	226	21	40	32	372	78	354	310	250	217	292	216	261	300	70	390
FØ33	116	-	-	nd	343	84.6	481	453	654	695	918	918			-	-
F040	28	nd	nd	nd	70	22	127	105	60	85	125	110	100		nđ	115
FØ57	<330	<330	<330	<330	<330	<330	366	<330	<330	<330	616		<330		<330	<330
F063	105	72	25	34	272	87	846	748	295	249		552)**	330		106	280
F064	19	22	17	23	290	54	527	436	200	354	414		292		64	249
F065	79.1	73.0	34.6	22.2	291	70.0	462	427	382	355		838)**	388		183	777
F066	93	30	15	20	230	43	280	250	340	300	•	580)**	430		180	540
FØ84	<100	<100	<100	<100	200	<100		900		500)**	•	200)**	1300	•	600)**	<200
FØ 87	220	<100	<100	<100	260	340	620	450	410	2550	•	330)**	4,360		<100	1160
F094	320	30	40	70	360	70	590	540	440	290	-	700)**	1180		190	970
N041	<20	<20	<20	<30	100	40	130	490	<70	<70			210		<210	<210
N090	-	14	36	23	354	158	678	535	284	532	(1	328)**	544	666	<4	332
N107	268	98	45	56	479	126	820	689	557	746	1041		1071	687	210	746
N158	132	73.5	33.3	39.9	345	71.0	355	314	261	241	(834)**	273	417	83.5	317
N196	-	-	-	-	-	-	-	- 🖛	-	-	-	-	-		-	-
k 197	<90	<100	<90	<10	21	<9	150	200	230	120	220	51	91		200	90
N 200	<100	<100	<100	<100	<100	<100	524	<100	160	250	<100	314	370	(<	200)**	<100
N208	51	8	9	14	150	21	280	230	240	240	520	220	370	410	110	370
Interl	ab										·					-
Nedian		30	34	28	281	71	431	443	284	290	467	218	388	414	145	3.70
Refere	nce															
Valüe					293	58	579	466	323	456*	578	260	408	480	119	493

Lab No.					•			Par	ameter							
	Naph-	Acen-	Ace-	F1-	Phen-	Anth-	Fluor-	Pyrene	B(a)A	Chrys-	B(b)F	B(k)F	B(a)P	I(cd)P	D(ah)A	B(ghi)
								8A: G	C resul	ts	-					
F00 7	-		-	÷	-	-	-	-	-	-	-		-	-	-	
FØ33	-	9.93	1.16	32.8	17.1	· -	22.0	12.6	-	-	24.9	11.9	13.6	10.3	-	14.8
F040	8.0	5.0	nd	14.0	8.0	1.0		11.0	2.0	6.0*	9.0	5.0	5.0	14	nd	9.0
F057	10.3	3.6	0.9	18.9	8.6	0.2	17.1	10.1	3.0	6.1	10.7	4.0	1.4	8.4		0.0007
F063	25.4	9.1	0.8	39.4	16.5	0.3	38.6	34.5	6.5	21.4	(4)	2.1)**	12.0	19.1	7.6	24.2
F064	22	10	1,4	39	17	1,1	39	30	6.0	16	16	5.4	7.1	. 11	2.0	14
FØ65	14-2	11.7	1.63	22.1	14.1	0.85	27.1	22.4	9.81	14.5	(2)	1.5)**	8.51	22.3	6.29	27.6
F066	25	10	1.8	43	25	1.8	40	35	5	16		(28)**	28	14	0.95	20
F084	6	6.9	0.7	58	28		(54)**	27		(28)**		(38)**	28	ł	30)**	26
FØ 87	16.69	8.09	1.20	34.33	13.70	0.85	1.56	24.94	5.74	14.27	18.25	6.74	8.24	13.58	2,96	15.95
F094	20.60	9.51	1.38	34.40	(20	.00)**	33.40	26.50	7.52	16.80	(23	. 80)**	12.10	16.00	3.07	14.90
NØ41	7.2	2.8	0.67	18	6.4	<0.41	32	27	<0.82	15	.13	<0.71	<1	<1.7	<2.4	8.1
N090	-	12.50	1.40	13,45	13.80	2.60	37.85	26.55	6.50	14.85	22.35	7.40	10.15	15.50	3.65	11,35
N107	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
N158	14.8	7.45	1.33	24.3	13.8	2.98	18.7	15.1	5.39	9.79	13.8	5.90	6.90	14.9	3.24	13.4
N208	18.4	5.02	0.77	29.0	9.05	0.43	21.2	16.1	3.94	9.99	7.85	4.61	4.99	7.81	1.74	7.80
Interla							· · · · · · · · · · · · · · · · · · ·			<u>. , ; ;</u>						
Nedian	15.74	8,60	1.20	30,9	13.8	0.93	27.1	25.72	5.74	14.68	13.8	5.65	8.51	14	3.02	14.4
Design																
Value	19.89	9.87	0.945	37.84	16.05	0.974	39.06	29.48	11.54	19.17	19.03	9.10	9.69	15.70	3.95	13.97
		· ·.	<u> </u>				8B: H)	LC resu	ilts		······································				<u></u>	
196	54.5	EA 7	30.7	40.0	15.0	4.00				10 2			0.01			
190	.34.J Ø.8	50.7 3.6	30.7	40.9 33		4.02 0.69	34.3 39	26.0	6.80 6.9	18,6 16	23.6 27	8.7 <u>7</u> 7.5	9,81 9,8		8.95 <0.05	14.7
1200	<10	28.1	<20	<10	18.4	¢، ۵۶ <1		48.8	5.7	.9.4		7.2		<1		17 i.3)**
Interla	b		···								~ .	<u> </u>		-1-	<u> </u>	
ledian	27.7	28.1	22.4	37.0	16	2.36	39	30	6.80	16	24.1	7.5	9.8	15.9	8.95	15,9
)esign					<u></u>			-							······.	
alue	19.89	9.87	0.945	37.84	16.05	0.974	39.06	29.48	11.54	19.17	19.03	9.10	9.69	15.70	3.95	13.97

Table 15. PAH results for Ampules 8A and 8B*** (ng/ul).

*** A(toluene); B(acetonitrile)

Lab No. Parameter Naph- Acen-Fl- Phen- Anth- Fluor- Pyrene B(a)A Chrys- B(b)F B(k)F B(a)P I(cd)P D(ah)A B(ghi)P Ace-9A: GC results **F007 F033** 0.36 0.38 0.32 0.37 0.71 0.70 -0.20 0.17 -0.22 0.13 0.17 0.2 F040 0.2 0.3 0.3 0.2 0.4 ۵đ 0.4 0.4 0.9 0.3* 0.2 0.3 0.5 nð 0.3 FØ57 0.22 0.11 <0.4 0.08 0.49 0.36 0.52 0.18 0.14 0.41 0.24 0.20 0.30 0.15 0.0009 0.0007 F063 0.5 0.4 0.5 0.4 0.5 0.9 1.0 0.2 (0.6)** nd 0.6 0.4 0.2 ٥đ 0.4 F064 0.5 0.5 0.2 0.5 0.5 0.5 0.1 0.9 0.9 0.2 0.4 0.3 0.2 0.2 0.1 0.2 F065 0.428 0.586 0.640 0.323 0.480 0.034 0.582 0.624 (0.825)** 0.463 0.779 0.329 0.299 0.185 0.270 FØ66 0.82 0.29 0.43 0.26 0.31 0.022 0.54 0.62 0.52 0.42 (0.95)** 0.32 0.22 0.025 0.31 F084 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 0.41 0.22 F087 0.20 0.20 0.24 <0.20 0.62 0.68 0.24 0.40 0.47 0.25 0.39 0.38 <0.02 0.48 2094 0.49 0.49 (0.82)** 0.82 0.56 0.44 0.66 0.19 7.83 (12.20)** 11.20 11.30 1.50 15.90 N041 **<0.22** <0.2 <0.2 <0.31 <0.31 <0.41 <0.4 <0.59 <0.82 <0.85 <0.8 <0.71 <1 <1.7 <2.4 <2.4 N090 0.46 0.38 0.12 0.31 0.13 0.73 0.66 0.21 0.44 0.51 0.22 -0.37 0.37 0.07 0.26 N107 N158 0.425 0.449 0.457 0.462 0.506 0.204 0.854 0.884 0.312 0.636 0.623 0.379 0.494 0.653 0.096 0.578 0.46 0.24 N208 0.33 0.30 0.34 0.04 0.41 0.44 0.11 0.26 0.21 0.11 0.16 0.14 0.05 0.15 Interlab Nedian 0.444 0.38 0.43 0.322 0.4 0.1 0.64 0.67 0.21 0.42 0.27 0.2 0.325 0.260 0.083 0.285 Design Value 0.497 0.493 0.472 0.473 0.502 0.0973 0.976 0.983 0.481 0.767 0.571 0.364 0.484 0.491 0.0987 0.437 9B: HPLC results N196 2.03 1.40 0.49 0.58 0.38 0.35 0.78 0.33 2.98 1.75 1.40 1.40 1.26 3.84 1.35 0.95 0.87 N197 <0.3 **(0.5** ×<0.3 0.41 0.47 0.071 0.95 0.28 0.64 1.0 0.30 0.49 0.45 <0.05 0.54 (0.4)** N200 <10 2.2 <20 <10 0.5 <1 0.8 0.7 0.2 0.2 0.3 0.2 0.3 <1 Interlab Nedian 0.49 1.39 0.38 0.38 0.5 0.20 0.87 0.95 0.28 0.64 1.0 0.30 0.49 2.15 1.35 0.75 Design Value 0.497 0.493 0.472 0.473 0.502 0.0973 0.976 0.983 0.481 0.767 0.571 0.364 0.484 0.491 0.0987 0.437

*** A(toluene); B(acetonitrile)

Table 16. PAH results for Ampules 9A and 9B*** (ng/ul).

SAMPLE 10 REPORTED 10 REPORTED 11 REPORTED 11 REPORTED 11 REPORTED 14 NULUE RANK VALUE RANK RANK RANK RANK RANK	BASIC ACCEPTABLE ERROR	R= 1.00 ug/g	CONCENTRATION ERROR	ROR INCREMENT = 0.	10
8.50 8.50 29.1 8.50 8.50 8.50 33.0 8.50 8.50 33.0 33.0 9.6 9.4 11.000 21.5 11.500 9.9 11.150 33.0 33.0 23.1 9.9 11.150 33.2 53.0 33.2 11.5 9.9 11.500 32.5 11.500 33.6 11.5 9.9 11.500 32.5 11.6 0.4 11.5 9.6 12.3 14.500 32.5 11.5 11.5 9.6 11.500 33.6 11.5 11.5 11.5 9.6 11.500 33.7 11.5 11.5 11.5 9.6 11.1.500 33.7 11.5 11.5 11.5 9.6 11.1.500 33.6 33.2 11.5 11.5 8.6 11.1.500 33.2 8 2 8 2 9.7 2.9 11.5 30.4 8 2 2 2 2 3 3 3 3	REPORTED 12 VALUE RANK VALUE	ED 13 RANK	1:4 REPORTED VALUE RANK	REPORTED NK VALUE	15 RANK
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	00004 00004 00000 00000 00000 00000		2 L 1 L 5 VL		
B. 6 30.4 2.9 8.2 8.6 32.5 9.7 32.5 9.7 32.5 9.7 32.5 9.7 32.5 9.7 32.5 9.7 32.5 9.7 32.5 9.7 32.5 9.7 32.5 9.7 32.5 9.7 32.5 9.7 32.5 9.7 32.5 9.7 32.5 9.7 32.5 9.7 32.5 9.7 32.5 9.8 6417 667 667 667 667 667 667 667 667 667 667 667 667 667 667 667 667 667 667 667 667 667 667 67550 667 67550 667 67550 667	VL 2.00 5.45 VL 2.00 5.45 3.7,20 5.65 3.7,20 5.65 5.65 5.65 5.65 5.65 5.65 5.65 5.65	VH 11 2668116/9114	23.25.3 44.8 H 23.55.3 4 8 H 22.2 H V 22.2 H V 22.2 H V 23.2 5 6 8 H 12.2 H V 24.6 8 8 H 25.2 H V 25.2	8.00 11. 16.00 11.0 15.00 11.0 10.00 13.5 VH 14.00 13.5 VH 17.00 10.6.3 VL 13.00 6.3 VL	2.550 2.5500 2.55000 2.5500 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.550000000000
2.9 8.2 8.6 32 9.7 32.5 9.7 32.5 9.7 32.5 9.7 32.5 32.5 32.5 32.5 32.5 32.5 32.5 32.5 33.50 33.50 5.833 667 6.417 42.00 7.000 7.000 8.567 667 6.417 6750	5.95		27.9	9.6	
8.6 32 9.7 32.5 9.7 32.5 9.7 32.5 9.7 32.5 1000 100.0F 23.00 3.833 23.00 3.833 33.50 5.583 33.50 5.583 33.50 5.583 33.50 5.583 6417 667 652.00 8.750 667 667 667 667 667 667 667 667 667 667 667 667 667 667 667 667 667 667 667 667 667 667 667 667 667 667 667 667 667 667 667 667 667 667 667 667 667 667 6750 667 6750 667	2.47		9 .3	3.4	
9.7 32.5 9.7 TOTAL AVERAGE NO. OF SAMPLES RANK RANK RANK RANK RANK RANK 23.00 3.833 32.50 5.5833 5.833 6 42.00 7.000 7.000 8.5633 66 6.413 66 66 7.000 8.250 52.000 8.250 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 10.750 66 66 67.50 10.917 66 66 67.50 10.917 66 66 67.50 10.917 66 66 <td>5.85</td> <td></td> <td>31</td> <td>9.8</td> <td></td>	5.85		31	9.8	
40. TOTAL AVERAGE NO.OF SAMPLES RANK RANK RANKED RANKED RANKED 23.00 3.833 50 5.583 6 33.50 5.583 6 6 33.50 5.583 6 6 33.50 5.583 6 6 33.50 5.583 6 6 42.00 7.400 6 6 42.00 7.600 6 6 522.00 8.250 8.250 6 522.50 8.750 6 6 552.50 8.750 6 6 552.50 9.250 6 6 552.50 10.917 6 6 65.50 10.917 6 6 72.050 11.2550 6 6	.00 ± 1.84 6.85		32.5	11.1 ±	1.4
23.00 333.50 442.00 5.5833 49.50 64.50 10.750 65.550 10.750 11.050 10.050 1000 10.050 1000 100		METHOD	OF DETECTION		
86.00 14.333 ALL AVERAGE		AAS, AAS, AAS, AAS, AAS, AAS, AAS, AAS,	AAS, hydride AAS, hydride AAS, hydride ICP, hydride AAS, hydride		

NOTE: Certified reference values on tables 17 - 24 are given with their uncertainties representing the 95% tolerance limits for an individual sample. All other reference values are recommended values only and are subject to change as more data become available.

- 50 -

Table 18.	CROMILU	r sarnsar w			- /5/8							
LOWER LIMI	r for u	SE OF BASIC	C ACCEPTABLE ERRO	ROR= 1.00	ug/g BASIC	IC ACCEPTABLE	3LE ERROR=	0.50 ug/g	CONCENTRATION	ON ERROR I	ERROR INCREMENT= 0	0.10
SAMPLE RI LAB NO	REPORTED VALUE	10 Rank	11 REPORTED VALUE	RANK	REPORTED VALUE	12 RANK	REPORTED VALUE	13 RANK	1 REPORTED VALUE	.4 RANK	REPORTED VALUE	15 RANK
NNNNN TNTTTTTTTTTTTT NNNNN TNTTTTTTTTTT	655 657 657 657 657 657 657 657	80001824400479479479479	22.00 22.00 22.00 20	10.00 11.00 12.00 14.000	<pre></pre>	20000000000000000000000000000000000000	งันแนต์สมคระสมคระสุขัน 2.1.0	22,000,000,000,000,000,000,000,000,000,	<pre>5:0 1:13 L 1:55 1:55 L 1:55 L 1:55 V 1:55 V 1:56 V 1:56 V 1:56 V 1:42 0:80 V V 2:2 V V 1:42 0:80 V 1:42 0:80 V 1:42 0:56 V 1:55 V</pre>	12.000 12.0000 12.0000 12.0000 12.0000 12.0000 12.0000 12.0000 12.0000 12.0000 12.0000 12.0000000000	460 460 460 460 460 460 460 460	м. 000 9000000000000000000000000000000000
MEAN	5.81		1.92		2.03		4.06		2.38		1.17	
Std.Dev.	2.76		1.08		0.35		1.12		1.81		1.85	
MEDIAN	5.5		1.75		1.9		3.75		1.76		0.40	,
REFERENCE VALUE	5.30		2.30		2.10		3.80		2.30		0.25 ± 0	.4
LAB NO. F007 F003 F003 F003 F003 F003 F003 F003	AVERAGE AVERAGE AVERAGE AVERAGE AVERAGE AVERAGE AVERAGE	AVERAGE RANK 1.100 1.100 5.800 5.800 6.8333 6.8333 6.8333 6.8333 7.917 9.417 7.917 9.417 7.917 1.1.750 11.750 11.750 14.167 7.814	NO. OF RANKED RANKED O O O O O O O O O O O O O O O O O O O	SUMMARY OF FLAGGING VLLVLVLVLVLVL VLL VLL VLL VLL VL VLVHVHVHV VHVHVHVH	ог с инини ИН ИНИНИН	I INSUFF BIASEL I NSUFF BIASEL	INSUFFICIENT DATA INSUFFICIENT DATA INSUFFICIENT DATA INSUFFICIENT DATA BIASED HIGH					

Table 18. Cadmium results for sediment analyses (ug/g).

- 51 -

LOWER LI	LIMIT FOR U	USE OF BASIC	ACCEPTABLE	ERROR=50.00		BASIC ACCEPTABLE		.00 ug/g		ERKOK	INCREMENT= 0.10	
SAMPLE	REPORTED VALUE	10 RANK	EPORTED VALUE	11 RANK	REPORTED	12 RANK	REPORTED VALUE	13 [,] RANK	REPORTED VALUE	14. RANK	REPORTED	15 RANK
F007	148. H	14.00		13.00	115. VH	12.00	150. H	15.50	100. H	12.00	104 VH	11.00
F050	167. VH	1.00	685	12.00	60. 104. VH	13.00 13.00		12.00	100. 100.	11.00 11.00	52. 131. VH	17-00
F063 F064	104.	00.00			40.40 40.40	00.0	94.3 116.	- 6 L	61. 61.	4,00	51. 51.	000
F084	97.2 1	800		11.00	94.9 H	11-00	81.8 10.2	000	102. H	13.00	117. VH	14.00
N090	66. L				31. L		1.02 1.02	00.1	37. L	00.1	30.	385
F094 N107	· . "	11.00		15.50	114. VH	14.50	- cc	14.00	114. VH	16.00	130. VH	16.00
96 IN	2.	12.00	22	10.00	93. H	10.00	127	11.00	88.	10.00	800 H	0.01
N200 N208	260. VH 88.	17.00		17.00	120. VH 48.	17.00	270. VH 93.	17.00	150. VH 52.	17.00	120. VH 43.	15.00 00 00
MEAN	116		76		74		124		78		76	
Std.Dev.	47		IE		33		49		32		38	
MEDIAN	104		68		61		116		65		54	
REFERENCE											- - -	
VALUE			•								123 ± 14	
LAB NO.	TOTAL	AVERAGE RANK	NO.OF SAMPLES RANKED	SUMMARY OF	OF NG			ACIDS	ACIDS USED FOR DICESTION	CESTION		
06'0N	6.00	1.000	ا وز	LEUL		BIASED			ΞŤ			
N158	14.00 18.00	2.333 3.000	ع م	L LL		BIASED BIASED	ED LOW	aqua aqua	regia, H ₂ O ₂ regia			
E066	23.00	3.833	9					aqua				
N208	33.50	5.583	9									
F063	34.50	5.750	ب م					aqua	regia			
E-0.40	48,50	8.083	9 10						regia			
N197	52.50	8.750	9					HC1,	HNO3, H ₂ O2			
E084	61.00	10.167	6	HVHH		·		нг , н	HCLO, HNO, HCLO, HCLO, HCLO, HCLO, HCLO, HCCO, H	C		
P007	77.50	12.917	0 10	ниннин	H/					H,O,		
E057	81.00	13.500	9	нинини	HNH					"ONH		
F033	83.00	m •	1 9 (нлннинн	HVH			HF, H	HCIO, HNO,			
LOIN	87.00 87.50	14-200	فنو	нинининин	нин				Aqua regla HClo., HNO.			
N200			9 10	VHVHVI	нлнлнлнлнл	BIASED	ZD HIGH	, e	regia			
OVERAT.I.	OVERALL AVERAGE											
RANK IS		000.6										

- 52 -

2
5
5
<u>Ö</u>
<u> </u>
60
ō.
8
2
2
g
4
LL.
ā.
ğ
<u> </u>
귻
ð
¢.
0
for
••
5
3
5
ø
н
L
pper
- Õ4
6
8
0
2
••
0
Z
-
Ĥ

.10	15 RANK	22224222222222222222222222222222222222				2.7	
ERROR INCREMENT= 0	REPORTED VALUE	16.0 222.1 222.1 222.1 222.1 4.1 122.1 14.8 120.5 14.8 14.6 14.7 14.8 14.7 14.8 14.7 14.8 14.7 14.8 14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7	17.3	2.4	17	18-5 ± 2	
	14 RANK	88 12 12 12 12 12 12 12 12 12 12					
CONCENTRATION	REPORTED VALUE	5655 5655 5655 5655 5700 74370 74370 74370 7800 7800 7800 7800 7800 7800 7800 7	577	84	565	565.0	
5.00 ug/g	13 RANK	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -					
ABLE ERROR=	REPORTED VALUE	70.5 75.9 84. 711.6 84. 771.6 777.6 777.6 777.6 777.6 777.6 777.6 777.6 777.6 777.6 777.6 777.6 777.6 777.6 777.6 777.6 777.6 777.9 777.00	78.9	82	77	81.0	BIASED LOW RIASED HIGH
BASIC ACCEPTABLE	12 Rank	212826288888888888888888888888888888888					BIASED
OR=20.00 ug/g B	REPORTED VALUE	62.5 L 75.4 L 75.4 N 75.9 7 73.9 17 73.9 17 74 74 17 74 174	78.9	9.3	76.4	800	UMMARY OF LAGGING L L VL HH HHH
ERROR=20.	11 RANK	10000000000000000000000000000000000000					OD EA
C ACCEPTABLE	REPORTED VALUE	573. 572. 572. 5572. 5570. 5530. 5530. 5530. 5500. 5500. 790. VH	586	77	570	565.0	NO.OF RANKED FRANKED 66 66 66 66 66 66 66 66 66 66 66 66 66
USE OF BASIC	10 Rank	44-1929-15-45-35-25-56 0020000000000000000000000000000000000					AVERAGE RANK 2.917 2.917 2.917 4.533 4.533 4.533 4.533 6.3333 4.500 8.913 8.913 8.913 8.913 111.108 8.913 112.750 112.750 112.750
LIMIT FOR U	REPORTED VALUE		123	10	120	105.0	TOTAL TOTAL RANK RANK 226.000 200 200 200 200 200 200 200 200 200
LOWER LI	SAMPLE	F 2007 F 2007 F 2005 F 2005 F 2006 F 2006 F 2006 F 2007 F	MEAN	Std.Dev.	MEDIAN	REFERENCE VALUE 1	LAB NO. LAB NO. F066 N158 F087 F087 F087 F087 F083 F083 F083 F084 F083 F084 F083 F084 F084 F087 F087 F087 F087 F087 F087 F087 F087

- 53 -

9.000

OVERALL AVERAGE RANK IS

(ɓ/ɓn)
analyses
sediment
lts for
Lead resu
e 21. I
IdaT

	ABLE ERROR=25.00 ug/g BASIC ACCEPTABLE ERROR=10.00 ug/g CONCENTRATION ERROR INCREMENT= 0.10	
،	BASIC ACCEPTABLE ERROR=10.00 ug/g	
	- <u>6</u> /бп	
	ERROR=25.00	
	LOWER LIMIT FOR USE OF BASIC ACCEPTABLE	
	BASIC	
	USE OF	
i	FOR	
	LIMIL	
	LOWER	

	RANK						
INCREMENT= 0.10	15 REPORTED VALUE	28.0 14.6 225. 5 225. 1 121. 8 224. VH 13. 1 13. 1 13. 1 28. 2 28. 2 29. 2 20. 20. 20. 20. 20. 20. 20. 20. 20. 20.	22.5	0.0	24	22.7 ± 3.4	
ION ERROR INC	14 RANK	୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦					
CONCENTRATION ERROR		522 522 522 522 522 522 522 522	50.8	9 •6	53	58.0	
	13 RANK	44 47 47 47 47 47 47 47 47 47					
BASIC ACCEPTABLE EKROK-LU. 00 ug/g	REPORTED VALUE	152. 120. 120. 130. 133. 147. 133. 142. 133. 155. 155. 155. 132. 132. 132. 132. 132. 132. 132. 132	137	20	139	143.5	SD HIGH
L ACCEPTA	12 RANK	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9					BIASED
6/6n	REPORTED VALUE	77 77 89 99 99 99 99 99 99 99 99 99 99 99 99	83.0	8.5	84	85.7	ь ор ур
ERROR=23.00	11 RANK	12,000 10,0000 10,0000 10,0000000000					FLAGGING FLAGGING LULVH LVLVH H H VHVH
	E	8587 867 867 867 867 867 867 867 867 867 8	51.7	9.4	51	58.0	NO. OF RANKED RANKED 666666666666666666666666666666666666
	10 Rank						AVERAGE RANK 3. Sterrage 3. Sterrage 3. Sterrage 5. 5833 9. 00 9. 00 9. 00 9. 00 113. 2550 110. 167 110. 167 100 100 100 100 100 100 100 100 100 10
	REPORTED VALUE	1162. L 1162. L 1162. L 1162. L 1181. L 1181. L 1181. L 1181.	192	24	189		TOTAL RANK RANK 27.50 27.50 27.50 27.50 27.50 55
	SAMPLE LAB NO	77777777777777777777777777777777777777	MEAN	Std.Dev.	MEDIAN	REFERENCE VALUE -	LAB NO. F033 F033 F033 F033 F033 F034 F034 F066 F064 F063 F063 F007 F007 F007 F007 F007 F007 F007 F00

rable 22. Mercury results for sediment analyses (ug/g).

	R INCREMENT= 0.10		0.205 13.00 0.18 11.00 0.158 7.00 0.158 4.00 0.158 4.00 0.158 14.00 0.16 7.00 0.16 7.00 0.155 3.00 0.155 3.00 0.155 7.00 0.155 7.00 0.156 7.00 0.16 7.00 0.16 0.00 0.16 0.00 0.16 0.00 0.16 0.00 0.15 0.00 0.0	0.379	0.553	0.160	0.129 ± 0.012	
	CONCENTRATION ERROR	REPORTED VALUE RANK	0.100 10.50 0.09 8.00 0.095 9.00 0.095 9.00 0.097 15.00 0.11 12.50 0.125 114.00 0.125 14.00 0.168 12.50 0.11 12.50 0.168 10.50 0.05 VH 16.00 0.04 3.00 0.04 3.00	0.,118	0.112	0.093	0.11	
	0.10 ug/g	13 RANK	888 8441111 - 2000 - 20					
	TABLE ERROR=	RTED	0.315 0.315 0.377 0.377 0.377 0.377 0.528 0.528 0.528 0.5244 0.378 VH 0.29 0.29 0.78 VH 0.79 VH	0.411	0.201	0.365	0.35	BIASED HIGH BIASED HIGH
	BASIC ACCEPTABLE	ED 12 RANK	и 12.00 12.00 12.00 14.000 11.0000 11.0000 11.0000 11.0000 11.0000 11.0000 11.0000 11.000				± 0.15	BLAST
· /6/6m) esei	R= 0.30 ug/g	REFORTED VALUE	7.500 2.500 5.500 5.500 1.12 7.500 1.04 7.500 1.04 7.500 1.04 7.500 1.04 7.500 1.000 1.04 8.000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000000	1.26	0.83	1.04	1.09	SUMMARY OF FLAGGING VLL VLLUHVL VLLUHVL VL VH VH VHVHVHV VHVHVHVHVHVHVHVHVHV
	ACCEPTABLE ERROR	11 REPORTED VALUE RA	0.120 0.120 0.104 0.105 0.105 0.1200 0.1200 0.1200 0.1200 0.1200 0.1200 0.1200 0.1200 0.1200 0.120000000000	0.127	0.108	0.103	0.11	NO Rankes Rame Rame Rame Rame Rame Rame Rame Rame
T STUBBI	SE OF BASIC	10 Rank	00000000000000000000000000000000000000	•				AVERAGE RANK 3.417 3.417 3.667 3.667 4.583 4.583 8.7583 8.7583 9.083 9.083 9.083 9.083 9.083 9.083 10.250 110.333 15.460 115.460 115.460
- Mercury	LIMIT FOR US	REPORTED: VALUE	0.620 0.61 0.61 0.65 0.446 0.446 0.538 0.556 0.5578 0.556 0.55780 0.55780 0.55780 0.5578000000000000	0.651	0.252	0.605	1 1 1	RANK RANK RANK RANK RANK RANK RANK R221500 866555555555555555555555555555555555
Table 22	LOWER LI	AMPLE AB NO	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	MEAN	Std.Dev.	MEDIAN	REFERENCE VALUE	LAB NO. F094 F094 F094 F094 F094 F094 F094 F003 F003 F003 F003 F004 F009 F009 F009

- 55 -

8.588

OVERALL AVERAGE RANK IS

T FOR U	- 181	C ACCEPTABLE	ROR=25.00	ug/g BASIC	IC ACCEPTABLE	3LE ERROR= 6	.25 ug/g	CONCENTRATION	ERROR	INCREMENT= 0.2	
10	RANK	11 REPORTED VALUE	RANK	REPORTED VALUE	12 RANK	REPORTED VALUE	13 RANK	REPORTED VALUE	14 RANK	REPORTED VALUE	15 RANK
	N0400-00	981 974 9850 9895	211.9480.00 000000000000000000000000000000000	36. VI 555. 7 555. 7 51. 6 51. 7 51. 6 51. 7 51.	468466666	500 500 500 500 500 500 500 500 500 500	101 101 100 100 100 100 100 100 100 100	971. 969. 0255. 956.	11.00 15.000	000-00-140	460LN04
					112.50		12.00 14.00 13.00				19121
		580. VL 965. 1100. 790.		48.8 79. VH 50. H 55.	1 4 50 8 50 8 50	31. 3 33. VH 38. 30.	15.00 7.00 11.00	610. VL 981. 780. 1000. 760.	13.00 14.00 14.00	590 Н 590 Н 620 Н 460 Н	15.00 15.00 16.00 16.00
	,	876		57.7		37.5		862		50.1	
	,	267		10.5		9.6		270		7.8	
		922		55		34		921		47	
		941		59.3		38.5		941		55.3 ± 3.6	
A	AVERAGE RANK	NO.OF SAMPLES RANKED	SUMMARY OF FLAGGING	OF.							
	22.167 33.9177 55.7500 65.7500 76.5500 75.750000000000	ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼	нлнини гиници гили татат татат		BLASED LOW	, LOW					
	83396	ە ە ە ە	нн ИНИН НИИНИН ННИНН		BIASEI	BIASED HIGH					
	000.6										

Table 23. Mickel results for sediment analyses (ug/g).

- 56 -

Table 24. Zinc results for sediment analyses (ug/g).

LOWER LI	LIMIT FOR U	USE OF BASIC	C ACCEPTABLE ERRO	OR=99.00	6/bn	BASIC ACCEPTABLE	BLE ERROR=20.00	p.00 ug/g	CONCENTRATION	ERROR	INCREMENT= 0.1	0
SAMPLE LAB NO	REPORTED VALUE	10 RAN	11 REPORTED VALUE	2	REPORTED VALUE	12 RANK	REPORTED VALUE	13 RANK	REPORTED VALUE	14 RANK	ORTED	15 RANK
F003 F033 F053 F065 F065	839. 839. 820. 945. 727. VL 886.	10000000000000000000000000000000000000	824. 737. 760. 822. 904. H	12.000 11.000 11.000 12.000 11.000 12.0000 12.0000 12.0000 12.0000 12.0000 12.0000 12.0000 12.0000 12.0000 12.0000 12.0000 12.0000 12.0000 12.0000 12.0000 12.0000 12.0000 12.0000 12.0000 12.00000 12.00000 12.0000000000	2893. 2609. 227. H 2227. H	11.00 13.50 13.50 13.50 13.50 14.00 13.50 14.000	1122. 1180. 1145. 1030. 1030.	13.00 14.00 14.00 1.50	778. 749. 770. 820. 910. VH	11.00 14.00 22.00 22.00	123. H 123. H 980. 5 116. 114.	16.00 13.50 11.00
F0666 F0844 F0844 F0940 F0090 F00940 F0090 F000 F00	ຓຑຓ໐ຑຑ	123.000 123.0000 123.0000 123.0000 123.000000000000000000000000000000000000	1205. VH 758. 829. 785. VH 750. VH	17.00 13.00 16.00	240. 35.4 VL 261. 258. 258. 320. VH	112.000 112.000 112.000 112.000	1504. VH 1060. 1057. 1220. H 1040.	16.00 154.00 154.00 154.00	1043. VH 720. 818. 946. VH	124-000 124-000 112-000	150. VH 150. VH 101. 104. 104. 95.0	17-00 13-50 10-00 10-00
N196 N196 N200 N208 N208	80101	11.000 15.000 7.000	786. 740.	10.00 14.00	299. H 260. 259.	15.00 8.50 7.00	1080. 11000. 1030.	11.00	818. 750. VL 750.	13.00 13.00 8.50 8.50	115. 120. 94.	12.00 15.00 3.50
MEAN	921		81.7		257		1114		756		107	
Std.Dev.	180		116		62		114		169		16	
MEDIAN	668.		785		260		1080		750		101	
REFERENCE VALUE -	1 1 1		ILL		279.0		1100		171		119 ± 12	
LAB NO.	TOTAL RANK	AVERAGE RANK	NO.OF SAMPLES RANKED	SUMMARY C FLAGGING	C OF		ŗ					
74000000000000000000000000000000000000	8844406666655666666666666666666666666666	2.300 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 2.50000 2.50000 2.50000000000	ຓຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨ	нлнини нлнини нлн нлн н н н н н н н н н	НАНАТАНАНА НАНАНА НАНА НАНА НАНА НА Н Н Н Н	BIASED BIASED	I LOW					

- 57 -

8.921

AVERAGE

OVERALL RANK IS

Table 25. Detection Limits Reported for PAEs and PCBs in Sediments (ng/g).

Parameter

Lab No.

	ļ																
							1	PAHs									PCBs
	Naph-	Acen-	Ace-	F1-	Phen-	Anth-	Fluor-	Pyr-	B(a)A	Chrys-	B (b) F	B (k) F	B(a)P	I (cd) P	D (ah) A	B (ghi) P	Total PCBs
F007	10	10	10	10	10	10	10	10	10	01	10	TO	10	10	10	10	100
E033	I	10	10	15	15	I	15	15	I	1	30	30	30	30	I	30	77
F040	100	100	100	100	100	1.00	100	100	100	100	100	100	100	100	100	1.00	20
F057	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	ŋ
F063	100	100	100	100	100	100	100	100	200	200	200	200	200	200	200	200	10
F064	40	50	40	40	70	10	20	60	20	20	60	60	40	40	40	40	Ń
F065	10	10	10	10	0 T	10	10	10	10	10	10	10	10	20	20	20	100
F066	ß	S	S	S	S	Ņ	ŝ	ŝ	ŝ	S	S	Ω.	5	2 L	ŝ	5	50
F084	100	100	100	100	1.00	100	1.00	100	(2	(200)	(20	(200)	200	·}	(200)	200	20
F087	100	100	100	1:00	100	100	1:00	100	1.00	100	100	1.00	100	200	100	200	10
F0.94	10	10	10	10	10	10	10	10	10	10	10	10	10	20	30	30	Ń
N041	10	10	10	10	10	10	10	10	10	10	10	10	10	30	30	30	50
060N	ı	2-5	2-5	2-5	2-5	2-5	2-5	2-5	2-5	2-5	2-5	25	2-5	2-5	2-5	2-5	2-5
LOTN	25	25	25	25	25	25	25	25	25.	25	25	25	25	25	25	25	10
N1 58	24.0	9.6	9.6	9.6	3.2	4.8	80	8.0	33.6	33.6	22.4	22.4	19.2	24.0	0 19.2	2 19.2	3.2
9.6 TN	30	10	10	15	20	15	15	15	10	15	30	40	40	30	15	15	0.3
16 TN	06	100	06	10	ő	6	10	Ġ	6	6	10	6	6	ά	100	10	80
N200	100	1:00	100	100	100	100	100	100	100	100	100	100	100	100	100	100	10
N208	0.1	0.1	0,1	0.1	0,2	0.2	01	0.2	0-2	0.2	0.2	0.2	0.2	2 0.3	3 0.2	2 0.2	10
Note:	Ontario 50 ng/g	Ontario Ministry of the Environment guidelines for 50 ng/g for Total PCBs.	of the I l PCBs.	3nv1ronn	ent guid	lelines f		ting dre	dge spol	evaluating dredge spoils for open-water disposal'	en-water	disposa	list	a concent	concentration level	vel of	

- 58 -

....

Lab No.				Trace	Metals			
	Hg	Pb	Zn	Cr	Cu	Cd	Ni	As
F007	0.1	5	5	5	2	5	5	0.1
F033	0.01	5.0	1.0	1.0	1.0	1.0	3.0	0.2
F040	0.01	1.0	2.0	1.0	0.5	0.05	0.2	0.03
F057	0.005	0.05	0.05	0.05	0.01	0.005	0.05	0.5
F063	0.002	2	0.3	0.3	0.3	0.2	2	1
F064	0.01	0.1	0.1	0.1	0.1	0.05	0.1	0.1
F065	0.1	4	1	2	1	1	4	0.4
F066	0.05	10	.5	5	5	0.2	5	0.5
F084	0.10	1	1	1	1	0.1	1	0.05
F087	0.005	0.50	0.25	0.10	0.10	0.50	0.25	0.2
F094	0.01	0.2	0.5	1	0.5	0.01	1	0.05
N041	0.02	0.2	3	3	3	1	5	0.2
N090	0.003	0.004	0.004	0.010	0.006	0.007	0.004	0.002
N107	0.01	1.0	0.5	0.5	0.5	0.2	0.5	0.1
N158	0.010	0.500	0.040	0.200	0.040	1.00	0.200	0.300
N196	2	0.001	0.001	0.001	0.001	2	0.001	0.1
N197	0.5	20	10	20	20	2	20	0.3
N200	0.02	1.0	1.0	1.0	1.0	1.0	1.0	1.0
N208	0.01	5	1	1	1	0.1	2	1
MOE Guideli	0.3 nes*	50	100	25	25	1.0	25	8

Table 26. Detection Limits Reported for Trace Metals in Sediments (ug/g).

* Ontario Ministry of the Environment guidelines for evaluating dredge spoils for open-water disposal.³

Lab #	Total No. of Results Reported	No. of Results "Not	No. of Detectable Values		of I Flag		lts	<pre>% Flagged*</pre>
	Reported	Detected"	Values	VH	Ĥ	L	ÝL	
F007	7	0	7	0	1	0	0	7
F033	7	0	7	1	1	0	0	21
F040	7	.0	7	0	0	4	Ö	29
F057	7	0	7	3	0	0	0	43
F063	7	0	7	0	0	0	0	0
F064	7	0	7	1	0	0	0	14
F065	7	1	6	0	2	1	0	25
F066	7	0	7	2	2	· 0	0	43
F084	7	1	6	. 0	1	0	1	25
F087	7	0	7	0	0	Ó	0	0
F094	7	Ó	7	0	1	0	0	7
N041	7	1	6	Ô	0	0	0	0
N090	0	0	0		-	-	-	_
N107	7	0	7	0	0	0	0	0
N158	7	0	7	0	0	Ó	0	0
N196	4	Ö	4	0	0	0	2	50
N197	7	1	6	2	0	1	1	58
N200	7	0	7	0	0	1	0	7
N208	7	0	7	0	0	3	0	21

Table 27. Summary of PCB Results Flagged to the Interlaboratory Medians.

* H and L flags are counted as half of VH and VL flags, respectively.

Less than values and "not detected" results are not included in the calculation of the % Flagged.

Refer to Appendix IV for a complete listing of the individual flags by parameter for each laboratory.

Table 28	. Summary or	PAN Results	Flagged to t	ne Inte	artap	orat	OFY I	aequans.
Lab #	Total No. of Results Reported	No. of Results "Not	No. of Detectable Values		of R Flagg		ts	<pre>% Flagged*</pre>
	Reported	Detected"	142400	ЙН	Ĥ	L	VL	
F007	80	4	76	6	4	2	13	29
F033	77	3	74	14	11	4	0	29
F040	112	20	92	1	1	37	29	53
F057	112	52	60	8	6	8	7	.37
F063	105	2	103	10	9	4	1	17
F064	112	Ó	112	3	7	11	.1	12
F065	105	0	105	8	10	7	0	16
F066	105	0	105	8	13	5	2	18
F084	93	38	55	22	6	1	0	46
F087	109	16	93	30	8	2	1	39
F094	103	0	103	32	18	0	0	40
N041	112	75	37	0	0	15	2	26
N090	100	3	97	. 8	21	6	2	24
N107	80	0	80	26	36	1	0	56
N158	108	0	108	12	6	3	0	15
N196	64	9	55	6	6	3	21	57
N197	112	22	90	9	3	14	14	35
N200	105	59	46	2	4	3	.1	14
N208	112	0	112	<u>0</u>	0	21	16	24

Table 28. Summary of PAH Results Flagged to the Interlaboratory Medians.

* H and L flags are counted as half of VH and VL flags, respectively.

Less than values and "not detected" results are not included in the calculation of the % Flagged.

Refer to Appendix IV for a complete listing of the individual flags by parameter for each laboratory.

Lab #	No. of	Elements		of F Flagg		lts	% Flagged*	Laboratory Bias
1	Results Reported	not Analyzed	VH	H	L	VĻ		
F007	(a) 42 (b) 36 (6 "<")	none	1 0	7 2	4 4	1 1	18 11	Cd (insufficient data)
F033	(a)46 (b)40 (3 "<" ; 1	none flagged)	2 0	5 1	4 4	1 1	16 9	-
F040	(a) 48 (b) 42	none	0	0 0	1 1	0 0	1 1	-
F057	(a) 47 (b) 41 (1 "<")	none	3 0	4 2	0 0	1 1	13 5	-
F0.63	(a) 47 (b) 41 (5 "<" ; 4	none flagged)	1 1	0 0	2 2	10 10	26 29	Zn (biased low); Cd (insufficient data)
F064	(a) 48 (b) 42	none	8 8	1 1	3 3	1 1	23 26	Cu (biased high)
F065	nil	none	** ;	see A	ppe	ndix	II **	DATA SUBMITTED LATE
F066	(a) 47 (b) 41	none	4 4	2 2	1 1	1 1	14 16	Cu and Zn (biased low); Hg (biased high)
F084 .	(a) 48 (b) 42 (1 "<")	none	15 14	20	0 0	6 6	46 48	-
F087	(a) 47 (b) 41 (1 "<")	none	2 2	0	<u>4</u> 3	4 4	17 18	Cr (biased low)
F094	(a) 48 (b) 42	none	3 0	10 7	1 1	1 1	20 12	Ni (biased high)
N041	nil	all	-	-	-	-	~~	-
090	(a) 48 (b) 42	none	6	3 3	5 0	0	21 18	Cr (biased low)
N107	(a) 48 (b) 42	none	6 3	6 4	1 1	0 0	20 13	-
N158	(a) 47 (b) 41 (1 "<")	none	5 5	1 1	5 2	2 2	21 21	Cr and Ni (biased low)
Ň196	(a) 40 (b) 34 (8 "<")	none	4 4	5 3	3 3	1 1	23 24	Cd and Hg (insufficient data)
N197	(a) 47 (b) 41 (1 "<")	none	11 11	1 1	1	1 1	28 32	Cd and Hg (biased high)
N200	(a) 48 (b) 42	none	14 8	5 5	1 1	4 4	44 36	Cr, Cu and Pb (biased high); Cd (biased low)
N208	(a) 48 (b) 42 (2 "<" ; 1	none flagged)	1 1	0 0	22	6 6	17 19	-

Table 29. Summary of Trace Metal Flags and Biases.

H and L flags are counted as half of VH and VL flags, respectively. *

(a) with Cr flags included(b) without Cr flags

Less than values that were flagged are included in the calculation of the % Flagged.

	.ur (% Flagg	ed"	DEDEODIGNOE	OVERALL	
Lab #	PCBs	PAHs	Metals*	PERFORMANCE SCORE**	PERFORMANCE RATING***	Comments
F007	7	29	11	16	Satisfactory	ampules not analyzed for PAHs; poor PCB precision; some low PAH recoveries; 6 "nd" cadmium results.
F033	21	29	9	20	Moderate	5 PAHs not analyzed in sediments; some PAHs blased high; poor PCB and PAH precision; 3 "nd" cadmium results.
F040	29	53	1	28	Moderate	20 "nd" of 119 organic results; low PCB and PAH recoveries.
F057	43	37	5	<u>2</u> 8	Moderate	52 "nd" of 119 organic results; out-of-control PCBs; some erratic PAHs; low PAH recoveries from ampules.
F063	0	17	29	15	Satisfactory	5 "nd" cadmium results; zinc biased low.
F064	14	12	26	17	Satisfactory	copper biased high; erratic arsenic.
F065	25	16	-	21	Moderate	low PCB recoveries from ampules; trace metal data submitted late, therefore not included.
F066	43	18	16	26	Moderate	PCBs biased high; copper and zinc biased low; mercury biased high; erratic arsenic.
F084	25	46	48	40	Poor	39 "nd" of 100 organic results; low PCB recoveries from ampules; poor PCB precision; poor PAH resolution; PAHs biased high; some PAHs out-of-control; erratic arsenic and zinc.
F087	0	39	18	19	Satisfactory	<pre>16 "nd" of 116 organic results; PAHs biased high; some PAHs out-of-control; chromium biased low; erratic lead and nickel.</pre>
			. <u> </u>			

Table 30. Summary of Overall Laboratory Performance.

continu

- 63 -

	11	🕏 Flagg	ed"	DEDEODWANCE	OVERALL	
Lab #	PCBs	PAHs	Metals*	PERFORMANCE SCORE**	PERFORMANCE RATING***	Comments
F094	7	40	12	20	Moderate	poor PCB precision; PAHs biased high; nickel biased high.
N041	0	26	-	13	Satisfactory	76 "nd" of 119 organic results; PAHs biased low; no data submitted for trace metals
N090	-	24	18	21	Moderate	no data submitted for PCBs; some PAHs biased high; chromium biased low.
N107	0	56	13	23	Moderate	ampules not analyzed for PAHs; PAHs biased high.
N158	0	15	21	12	Satisfactory	chromium and nickel biased low.
N196	50	57	24	44	Poor	<pre>9 "nd" of 68 organic results; very low PCB and PAH recoveries; 4 "nd" cadmium results; 4 "nd" mercury results; no organic data submitted for sediments #3, #4 and #5.</pre>
N197	58	35	32	42	Poor	23 "nd" of 119 organic results; poor PCB and PAH precision; out-of-control PCBs; low PAH recoveries; cadmium and mercury biased high.
N200	7	14	36	19	Satisfactory	59 "nd" of 112 organic results; poor PAH recoveries; chromium, copper and lead biased high; cadmium biased low.
N208	21	24	19	21	Moderate	low PCB and PAH recoveries; poor PAH precision; erratic mercury.

Table 30 (continued). Summary of Overall Laboratory Performance.

* Chromium data has been excluded (see text)

** PERFORMANCE SCORE = (Σ %Flagged)/3 (except for labs F065, N041 and N090 who only submitted data for two of the three classes in this study)

*** OVERALL PERFORMANCE RATING determined as follows:

Satisfactory:	Performance Score < 20
Moderate:	20 S Performance Score <40
Poor:	Performance Score \geq 40

APPENDIX I

List of Invited Participants

Federal Government:

- Environment Canada C&P (EPS) Laboratory Services River Road Environmental Technology Centre Ottawa, Ontario
- Environment Canada C&P (EPS) Laboratory Services Wastewater Technology Centre Burlington, Ontario
- Environment Canada
 C&P (EPS) Laboratory Services
 West Vancouver, B.C.
- 4. Environment Canada National Water Quality Laboratory Burlington, Ontario

Provincial Governments:

5. Ontario Ministry of the Environment Trace Organics QA/QC Section Rexdale, Ontario

Private Laboratories:

6. AccuTest Laboratories Ltd. Nepean, Ontario

will forward samples for organic analyses to Paracel Labs

Inorganic analyses only;

- Acres Analytical Ltd. Niagara Falls, Ontario
- 8. AGRI-SERVICE Laboratory Inc. Kitchener, Ontario
- 9. Altech Environmental Consulting Ltd. Willowdale, Ontario
- 10. Aquatic Sciences Inc. St. Catharines, Ontario

No response

No response

No response

(continued)

No response

APPENDIX I (continued) List of Invited Participants

- 11. Areco Canada Inc. Nepean, Ontario
- 12. Barringer Laboratories Mississauga, Ontario
- 13. Beak Consultants Ltd. Mississauga, Ontario
- 14. Bondar-Clegg & Co. Ltd. Ottawa, Ontario
- 15. C.I.L. Inc. Mississauga, Ontario

No response

- 16. Canviro Analytical Laboratories Ltd. Kitchener, Ontario
- 17. Clayton Environmental Consultants Ltd. Windsor, Ontario
- 18. Concord Scientific Corporation Downsview, Ontario
- 19. Dearborn Chemicals Company Ltd. Mississauga, Ontario
- 20. DILLON Environmental Laboratories Mississauga, Ontario
- 21. Eco-Recherches Pointe-Claire, P.Q.
- 22. Enviroclean London, Ontario
- 23. Environmental Applications Group Markham, Ontario
- 24. Fine Analysis Laboratories Hannon, Ontario
- 25. Mann Testing Laboratories Mississauga, Ontario
- 26. Monenco Analytical Labs Woodbridge, Ontario

No response

(continued)

Declined

No response

APPENDIX I (continued) List of Invited Participants

- 27. Novalab Ltee Lachine, P.Q.
- 28. Nucro-Technics Ltd. Scarborough, Ontario
- 29. OceanChem Group Dartmouth, Nova Scotia
- 30. ORTECH International Mississauga, Ontario
- 31. Paracel Labs Nepean, Ontario
- 32. Pluritec Laboratoire Ltee Cap-de-la-Madelaine, Quebec
- 33. Pollutech Ltd. Oakville, Ontario
- 34. Proctor & Redfern Ltd. Don Mills, Ontario
- 35. Sussex Environmental Services Inc. London, Ontario
- 36. Technical Services Laboratories Mississauga, Ontario
- 37. Water and Earth Sciences Assoc. Ltd. Carp, Ontario
- 38. Wellington Environmental Consultants, Inc. Guelph, Ontario
- 39. XRAL Environmental Don Mills, Ontario
- 40. Zenon Environmental Inc. Burlington, Ontario

Declined; Inorganic analyses not yet on stream

No response

No response

No response (see AccuTest Laboratories)

No response

No response

No response

No response

No response

No response

APPENDIX II

The following results were received from laboratory F065 after the data summary was prepared and released for distribution. These data are reproduced below for information only as they are not included or evaluated in this report.

April 1, 1990

Parameter			diment Sa			. <u> </u>
	10	11	12	13	14	15
Mercury	0.8	0.1	1.3	0.3	0.1	<0.1
Lead	186	62	104	138	64	38
Zinc	840	709	217	969	785	88
Chromium	76	38	37	86	44	36
Copper	98	506	61	63	537	11
Cadmium	5	2	2	3	2	<1.0
Nickel	30	749	48	28	661	40
Arsenic	5.9	33	19	5.0	2.8	8.1

Trace Metal Sediment Sample Results for Laboratory F065

APPENDIX III

Glossary of Terms and Symbols

Legend for Tables 9-25:

*	Chrysene/Triphenylene
**	Peaks not resolved; total value reported
nd	not detected
-	not analyzed
	data not available
Naph-	Naphthalene
Acen-	Acenaphthylene
Ace-	Acenaphthene
Fl-	Fluorene
Phen-	Phenanthrene
Anth-	Anthracene
Fluor-	Fluoranthene
Pyrene	Pyrene
B(a)A	Benzo(a)anthracene
Chrys-	Chrysene
B(b)F	Benzo(b)fluoranthene
B(k)F	Benzo(k)fluoranthene
B(a)P	Benzo(a)pyrene
I(cd)P	Indeno(1,2,3-c,d)pyrene
D(ah)A	Dibenzo(a,h)anthracene
B(ghi)P	Benzo(g,h,i)perylene

Explanation of Terms for Data Evaluation Techniques:

A set of results is said to be <u>biased</u> when the set exhibits a tendency to be either higher or lower than some standard. The standard which has been used in the analysis of our studies thus far has been the performance of all other participating laboratories. The ranking procedure employed in testing for bias and the rationale for evaluating laboratories' performances by ranking results are described in more detail elsewhere¹⁰⁻²⁰ but a brief synopsis is presented below. In our use of the procedure, there is about one chance in twenty of deeming a set of results biased, when in fact it is not, (i.e. $\alpha=0.05$).

Ranking is a non-parametric statistical technique used for the detection of pronounced systematic error (bias) in interlaboratory studies. According to Youden's procedure", rank 1 is given to the laboratory that provided the lowest result, rank 2 to the next lowest. In the case of a tie, the average rank is given to the tied laboratories. Results with a "<" (less than) sign are not ranked. For each parameter, the total rank of each laboratory is the sum of the individual ranks for each sample. In the present case of the trace metals in Study DQC-5, statistically, the permissable score limits for 17 laboratories and six test samples are approximately 20 and 88 (for a full set of data at 5% probability). A laboratory with a score lower than 20 is identified as biased low for that particular set of data. Similarily, a laboratory with a total rank higher than 88 is identified as biased high. In both cases, their results are classified as outliers. In cases where a laboratory did not provide all of the results, or where some of the results were not ranked, the average rank instead of total rank was used for the determination of bias statements.

The more comparable laboratories should have ranks in the middle rather than on the extreme ends. However, laboratories with middle ranks do not necessarily mean that they provide more consistent results since very high results (high ranks) and very low results (low ranks) would average out to yield a total rank close to the median. Therefore, ranking alone is not sufficient to determine the performance of a laboratory.

<u>Flagging</u> (for inorganic analyses): When the true values of constituents in test samples are unknown, individual results can be evaluated by a peer group assessment technique in terms of their absolute differences from the interlaboratory medians. Medians are chosen rather than means since they are not influenced by a moderate number of extreme values. Using this assumption then, that the median values establish the correct target values, it follows that at all concentrations, there must exist a basic acceptable error (BAE) which reflects an allowable deviation from the median. This basic acceptable error is incremented at a concentration level referred to as the lower limit for use of basic acceptable error (LLBAE). The LLBAE for each parameter in a

- 70 -

round-robin study is usually set at the lower end of the range of medians in the test samples. Since it appears that for almost all substances, the absolute variability of the analytical method increases with increasing concentrations, the allowable error must therefore be increased using a concentration error increment (CEI). The amount that is used to augment the BAE for each sample is calculated by multiplying the CEI by the difference between the target value (i.e. the median of that particular sample) and the LLBAE. The values chosen for BAE and CEI are derived from the overall results received from the participants and are selected such that only the most extreme laboratory results are flagged. Further discussion on this evaluation technique has been reported elsewhere¹⁹.

For the inorganic analyses in this study, LLBAE was set at the lower end of the range of medians in the test samples. For most of the metals, a 20-25% error at LLBAE was considered acceptable, and thus, was used as the BAE. However, for cadmium, chromium, lead and mercury, a 30-50% error at LLBAE was used as the BAE since their concentrations in this study were relatively low or, because the participating laboratories' capabilities for the analysis of that particular metal varied widely. (Refer to Table 26 for a list of the reported detection limits for each laboratory in this study). For samples whose medians were at or below LLBAE, the results were evaluated according to the following formulae:

Acceptable: $X \leq BAE$ H or L: $BAE < X \leq 1.5 X BAE$ VH or VL: X > 1.5 x BAE

where X represents the absolute difference between sample and median results. In this study, the samples whose medians were above the LLBAE used a CEI that was arbitrarily set at 0.1 for all but one of the metals of interest. 0.2 was used as the CEI for nickel because of the wide concentration range between the highest and lowest samples. Sample results were then evaluated by the above formulae except that the augmented BAE was used instead of the BAE.

- 71 -

Therefore, by this flagging technique, all results were graded into the following three groups in the order of decreasing accuracy: (1) results with no flags, (2) results with H (high) or L (low) flags, and (3) results with VH (very high) or VL (very low) flags. Computer printouts which include sample data, individual, total and average ranks, and flagging and biased statements for each metal in this study are given in Tables 17-24. A summary of individual flags and bias statements for each laboratory on their trace metal analyses is given in Table 29.

<u>Flagging</u> (for organic analyses): In order to assess the organic results provided by each laboratory, a modified approach to the technique of flagging was used. To begin, each laboratory's results were recalculated to a "percent recovery" in relation to the interlaboratory medians. Arbitrarily, in this study, recoveries within ± 50 % of the median were deemed to be satisfactory and any values beyond this range were flagged. Hence, the results were evaluated according to the following rating groups:

Very High (VH)		X	2	200%	
High (H)	150%	٢	X	<	200%
Satisfactory (no flags)	50%	<	X	<	150%
Low (L)	25%	<	X	<u><</u>	50%
Very Low (VL)		X	5	25%	

Thus, as was done for the inorganic data, all organic results were graded into three groups in the order of decreasing accuracy as follows: (1) results with no flags, (2) results with H (high) or L (low) flags, and (3) results with VH (very high) or VL (very low) flags. Appendix IV provides a complete listing of each laboratory's recovery data in relation to the interlaboratory medians and their resultant flags. Appendix IV also provides a listing of each laboratory's "percent recoveries" in relation to the reference or design values of the organic samples in this study. It was found that, because the

÷ 72 ÷

medians, for the most part, accurately reflected the reference and design values of the samples in this study, there was not a significant difference in the summary of flags if the latter recovery values were used in assessing each laboratory's results for flags. A summary of individual flags for each laboratory on their organic data is given in Tables 27 and 28, for PCB and PAH analyses, respectively.

<u>Performance Score</u>: To rate the laboratories according to their overall competence in the analysis of all three classes of parameters, a Performance Score was calculated using the percentage of flags obtained in each class:

Performance Score =
$$(\Sigma \ Flagged)/3$$

By calculating an average rather than a sum of the % flagged, those laboratories who had not submitted data for one of the classes did not unfairly receive a better rating in their performance score.

The <u>Overall Performance Rating</u>, for classifying the participating laboratories according to their relative competence in the analysis of more than one class of parameter, was then determined as follows:

Satisfactory: Performance score < 20

Moderate: 20 < Performance score < 40

Poor: Performance Score > 40

Because this assessment is a peer appraisal technique, the limits for each rating were arbitrarily set, such that a few participants would receive the highest rating, and the majority would lie in the moderate range. It is very important to note, however, that some participants may receive a satisfactory rating, despite having provided an incomplete set of results, a large number of `not detected' values, and/or be biased for one or a number of parameters.

		Sample #						
PAHs	1	2	3	4	5	8A	9A	
Naphthalene							-	
Acenaphthylene						-	-	
Acenaphthene	<u> </u>		÷	يت بين جب		÷	÷	
Fluorene						· 🗕	-	
Phenanthrene	115	147	126	114	127	-		
Anthracene	135	167	793	109	134	~ .	-	
Fluoranthene	74	68	58	75	61	-	-	
?yrene	78	70	15	67	67		-	
Benzo (a) anthracene	87	53	8	79	77	÷	-	
Chrysene	57	51	9	56	48	-	-	
Benzo (b) fluoranthene	91	53	6	17	51	-	-	
Benzo(k)fluoranthene	84	56	12	18	83	<u></u>	• 🗕	
Benzo (a) pyrene	88	50	7	15	64	-	-	
Indeno (123-cd) pyrene	117	55	5	13	63	-	-	
Dibenzo (ah) anthracene	187	95	nd	nd	59	-	-	
Benzo(ghi)perylene	149	72	8	19	79	-	-	

Table IV-1. % Recovery for Laboratory F007 Calculated from the Reference Value.

			Sample #	- <u></u>	······	Ampu	le #
PCBs	1	2	3	4	5	6	7
Total PCBs	83	130	128	83		74	81

APPENDIX IV

	Sample #									Ampule #		
PAHS	.1		2		3		4		5		8A	9A
Naphthalene	217	VH	240	VH	220	VH	260	VH	204	VH	-	
Acenaphthylene	nd		64		30	L	53		70		-	-
Acenaphthene	163	H	141		88		114		118		- '	-
luorene	128		143		nd		110		114			÷
henanthrene	143		154	Ĥ	110		128		132	ς.	-	-
Inthracene	136		146		407	ЙН	105		110		-	
luoranthene	77		110		81		105		82		-	_
yrene	111		101		25	VL	101		70		-	· _
Senzo (a) anthracene	124		70		12	VL	94		88		-	-
Chrysene	100		83		16	VL	90		75		÷	-
Senzo (b) fluoranthene	97		100		8	VL	15	VL	63		-	-
enzo(k)fluoranthene	129		82		12	ΫĹ	22	VL	99		-	-
Benzo (a) pyrene	112		58		7	VL	14	VL	67			-
Indeno (123-cd) pyrene	112		68		5	VL	11	VL	72		-	-
ibenzo (ah) anthracene	187	H	90		nd		nd		48	L	-	-
Senzo(ghi)perylene	160	H	118		9	ŶL	17	ŸL	105		-	÷

Table IV-2. % Recovery for Laboratory F007 Calculated from the Interlab Median.

			Sample #			_Ampu	le #
PCBs	1	2	3	4	5	6	7
Total PCBs	91	148		107	74	85	79

			Ampule #				
PAHS	1	2	3	4	5	8A	9A
Naphthalene		÷				-	_
Acenaphthylene						101	73
Acenaphthene						123	80
lüorene	÷					87	68
henanthrene	85	99	114	101	117	107	74
Anthracene	83	123	74	66	146	-	-
luoranthene	96	62	60	65	83	56	73
yrene	89	79	67	66	97	43	7 1
Benzo (a) anthracene	119	134	74	73	202		<u> </u>
Chrysene	111	91	112	95	152	-	-
Benzo (b) fluoranthene	114	126	160	113	159	131	35
Senzo(k)fluoranthene	276	188	310	201	353	131	47
Benzo (a) pyrené	200	150	341	161	387	140	45
Indeno (123-cd) pyrene	 ÷	-		-	-	66	26
bibenzo (ah) anthracene	-	-	-	· _	-	-	-
Senzo(ghi)perylene	-	_	-	-	·	106	39

Table IV-3. * Recovery for Laboratory F033 Calculated from the Reference Value.

			Sample #			Ampu	le #
PCBs	ľ	2	3	4	5	6	7
Total PCBs	93	80	149	77	252	99	107

		-		S	<u>ample</u>	. #					A	mpul	<u>e #</u>	
PAHS	.1		2		3		4	-	5		8A		9A	
Naphthalene	65		nd		62		100		105		-			
Acenaphthylene	-		-		-		-		-		115		95	
Acenaphthene	. 		÷		• -		-		-		97		88	
Fluorene	208	VH	nd		46	L	280	VH	nd		106		99	
Phenanthrene	106		103		100		114		122		124		93	
Anthracene	84		107		38	L	64		119		-			
Fluoranthene	100		100		84		92		112		81		111	
Pyrene	127		113		111		99		102		49	L	104	
Benzo (a) anthracene	170	H	176	H	107		87		230	ЙН	_		_	
Chrysene	192	н	148		195	H	153	H	240	VH	-		_	
Benzo(b)fluoranthene	121		237	VH	197	H	100		197	H	180	H	74	
Benzo(k)fluoranthene	425	VH	275	VH	299	VH	249	VH	421	VH	211	VH	85	
Benzo(a)pyrene	254	VH	174	H	349	VH	156	H	407	VH	160	H	68	
Indeno (123-cd) pyrene	-		-		_		· -		-		74		50	
Dibenzo (ah) anthracene			.		-		-		-				-	-
Benzo(ghi)perylene	-		_		_		÷		-		103		60	

Table IV-4. %	Recovery for	Laboratory FO	33 Calculated	from the	Interlab Median.	

			Sample #			Ampu	
PCBs	1	2	3	4	5	6	7
Total PCBs	102	91	196 H	100	257 VH	113	106

N.

.

			Sample #	······		Ampule #		
PAHS	. 1	2	3	4	5	8A	9A	
Japhthalene						40	40	
cenaphthylene						51	61	
cenaphthene						nd	64	
luorene						37	42	
henanthrene	21	21	18	18	24	50	80	
Inthracene	28	38	155	32	38	103	nc	
luoranthene	23	22	2	21	22	36	41	
yrene	21	22	16	18	23	37	41	
Senzo (a) anthracene	15	17	16	14	19	17	187	
hrysene	15	18	18	18	19	31	39	
enzo(b)fluoranthene	19	21	28	24	22	47	35	
Senzo(k)fluoranthene	31	50	39	42	42	55	55	
Benzo (a) pyrene	16	21	23	16	25	52	62	
ndeno (123-cd) pyrene	31	18	47	18	29	89	102	
ibenzo (ah) anthracene	18	nd	19	nd	nd	nd	nd	
Senzo(ghi)perylene	24	15	39	21	23	64	69	

	Table IV-5.	* Recovery	for Laboratory	F040 Calculated	from the Re	ference Value.
--	-------------	------------	----------------	-----------------	-------------	----------------

			Ampule #				
PCBs	. 1	2	3	4	5	6	7
Total PCBs	38	32	39	37	34	63	78

				Sa	ample	#			<u> </u>			pul	<u>e #</u>	·
PAHS	. 1		2		3		4		5		8A		9A	
Naphthalene	28	L	23	ŸL	20	VL	29	L	25	VL	51		45	L
Acenaphthylene	nd		nd		17	VL	nd		nd		58		79	
Acenaphthene	'nd		nd		nd		nd		nd	,	nd		70	
Fluorene	nd		nd		11	VL	nd		nd		45	L	62	
Phenanthrene	27	L	22	VL	16	VL	20	VL	25	VL	58		100	
Anthracene	28	L	33	L	80		31	L	31	Ĺ	108		nd	
Fluoranthene	24	VL.	35	L	2	VL .	29	L	29	L	52		63	
Pyrene	29	L	32	L	27	L	27	Ľ	24	VL	43	L	60	
Benzo (a) anthracene	21	VL	22	VL	23	VL	17	VĻ	21	VL	35	L	429	VH
Chrysene	26	L	29	L	32	L	28	L	29	L	41	L	71	
Benzo (b) fluoranthene	21	VL	39	L	34	L	21	VL	27	L	65		74	
Benzo(k)fluoranthene	48	L	73		38	L	52		50	L	88		100	
Benzo (a) pyrene	20	VL	24	VL	23	VL	15	ΫL	26	L	59		92	
Indeno (123-cd) pyrene	30	L	22	VL	47	L	15	VL	33	L	100		192	H
Dibenzo (ah) anthracene	18	VL	nd		18	VL	nd		nd		nd		nd	
Benzo(ghi)perylene	26	L	25	VL	46	L	19	VL.	31	Ĺ	63		105	

Table IV-6	. & Recovery	for Laboratory	F040 Calcu	lated from t	he Interlab Median.

	<u></u>	Sample #							Ampule #		
PCBs	1	2	3		4		5		6	7	
Total PCBs	42 L		È .		48		35	L	71	77	

			Sample #		`	Ampule #		
PAHS	. 1	. 2	3	4	5	8 <u>A</u>	9A	
Naphthalene						52	44	
Acenaphthylene						36	22	
Acenaphthene						95	nd	
Fluorene						50	17	
Phenanthrene	160	nd	32	nd	nd	54	.98	
Anthracene	455	nd	1221	nd	nd	21	370	
Fluoranthene	148	108	75	nd	63	44	53	
Pyréne	111	76	47	nd	nd	34	18	
Benzo (a) anthracene	54	nd	25	200	nd	26	29	
Chrysene	81	nd	50	nd	nd	32	53	
Benzo (b) fluoranthene	134	99	102	ńđ	107	56	42	
Benzo (k) fluoranthene	312	nd	nd	nd	nd	44	55	
Benzo (a) pyrene	140	nd	70	nd	nd	14	62	
Indeno (123-cd) pyrene	184	nd	nd	nd	73	54	31	
Dibenzo(ah) anthracene	279	nd .	nd	nd	nd	18	0.9	
Benzo (ghi) perylene	94	nd	nd	nd	nd	0.005	0.2	

Table IV-7. % Recovery for Laboratory F057 Calculated from the Reference Value.

t

		Sample #							
PCBs	1	2	3	4	5	6	7		
Total PCBs	68	1875	2063	71	1423	117	106		

				Sa	mple :	ŧ					Ampu	le #	
PAHS	. 1		2		3		4		5	8 A		9A	
Naphthalene	nd		1783	VH	nđ		nd		nd	65		50	L
Acenaphthylene	nd		nd		nd		nd		nd	42	L	29	L
Acenaphthene	nd		nd		nd		nd		nd	75		nd	
Fluorene	nd		nd		127		nd		nd	61		25	VL
Phenanthrene	200	VH	nd		28	L	nd		nd	62		123	
Anthracene	459	VH	nd		627	VH	nd		nd	22	VL	360	VH
Fluoranthene	153	H	175	H	105		nd		85	63		81	
Pyrene	157	H	109		78		nd		nd	39	L	27	L
Benzo (a) anthracene	78		nd		37	L	238	VH	nd	52		67	
Chrysene	141		nd		88		nd		nd	42	L	98	
Benzo (b) fluoranthene	142		187	H	126		nđ		132	78		89	
Benzo(k)fluoranthene	481	VH	nd		nd		nd		nd	.71		100	
Benzo (a) pyrene	178	H	nd		72		nd		nd	16	VL	92	
Indeno (123-cd) pyrene	176	Ĥ	nd		nd		nd		84	60		58	
Dibenzo (ah) anthracene	278	VH	nd		nd		nd		nd	23	VL	1	VL
Benzo(ghi)perylene	101		nd		nd		nd		nd	0	.005	VL 0	.2 VI

Table IV-8. % Recovery for Laboratory F057 Calculated from the Interlab Median.

		<u></u>	Ampule #				
PCBs	1	2	3	4	5	6	7
Total PCBs	75	2125 VH	2706 VH	92	1453 VH	133	104

			Sample #			Ampul	e #
PAHs	.1.	2	3	4	5	8A	9A
Naphthalene	-,			مب هد خد		128	101
Acenaphthylene						92	81
Acenaphthene						85	106
fluorene		<u>⇒ ÷ −</u>		+	÷÷÷	104	85
henanthrene	78	84	100	81	93	103	1.00
Anthracene	158	105	186	121	150	31	nd
fluoranthene	144	128	125	143	146	99	92
Pyrene	147	140	126	139	161	117	102
- Benzo (a) anthracene	74	81	76	86	91	56	42
Chrysene	46	53	50	51	55	112	78
[Benzo (b) fluoranthene Benzo (k) fluoranthene]	68*	70*	7.3*	84*	66*	150*	64
Benzo (a) pyrene	69	86	65	91	81	124	83
Indeno (123-cd) pyrene	54	59	40	70	56	122	41
Dibenzo (ah) anthracene	72	95	56	90	89	192	nd
Benzo(ghi)perylene	51	63	41	71	57	173	92

Table IV-9. % Recovery for Laboratory F063 Calculated from the Reference Value.

	·	Sample #							
PCBs	1	2	3	4	5	6	7		
Total PCBs	73	61	61	77	85	69	77		

			• •	S	ample	#					A	mpule	#
PAHS	1	•	2		3		4		5		8 8		9A
Naphthalene	102		69		95		25	VL	95		161	H	113
Acenaphthylene	205	VH	145		176	H	163	H	240	VH	106		105
Acenaphthene	76		· 62		40	L	55		74		67		116
Fluorene	95		90		112		100		121		128		124
Phenanthrene	98		88		88		92		97		120		125
Anthracene	159	Ĥ	92		95		117		123		32	L	nd
Fluoranthene	150	H	208	VH	173	H	202	VH	196	H	142		141
Pyrene	208	VH	201	VH	210	VH	208	VH	169	H	134		149
Benzo (a) anthracene	105		107		110		102		104		113		95
Chrysene	80		86		86		81		86		146		143
[Benzo(b)fluoranthene + Benzo(k)fluoranthene]	82	*	121	*	83*	r	83	*	81	*	216*	VH	128,
Benzo (a) pyrene	88		.99		66		88		85		141		123
Indeno (123-cd) pyrene	52		73		40	L	58		65		136		77
Dibenzo (ah) anthracene	72		90		52		83		73		252	VH	nd
Benzo(ghi)perylene	55		104		49	L	66		76		168	H.	140

Table IV-10. % Recovery for Laboratory F063 Calculated from the Interlab Median.

		Sample #							
PCBs	1	2	3	4	5	6	7		
fotal PCBs	80	69	80	99	87	78	75		

			Sample #	· · · · · · · ·		Ampule #		
PAHS	. 1	2	3	4	5	8A	9A	
Japhthalene						111	101	
Acenaphthylene				<u> </u>		101	101	
Acenaphthene						148	106	
luorene						103	106	
henanthrene	100	97	139	97	99	106	100	
nthracene	99	97	173	103	93	113	103	
luoranthene	96	99	128	100	91	100	92	
yrene	89	102	120	89	94	102	92	
Senzo (a) anthracene	55	70	69	61	62	52	42	
hrysene	71	89	146	80	78	83	52	
enzo (b) fluoranthene	72	80	172	88	72	84	53	
enzo(k)fluoranthene	54	80	146	73	67	59	55	
enzo(a) pyrene	53	82	137	73	72	73	41	
ndeno (123-cd) pyrene	39	55	155	54	53	70	41	
ibenzo (ah) anthracene	36	74	94	51	54	51	101	
Senzo(ghi)perylene	43	61	156	65	51	100	46	

Table IV-11. % Recovery for Laboratory F064 Calculated from the Reference Value.

		Sample #							
PCBs	1	2	3	4	5	6	7		
Total PCBs	134	97	98	110	81.	54	510		

•		-		S	ample	#					Ampu	le #	
PAHS	1		2		3	a .	4		5		8A	9A	
Naphthalene	65		58		76		74		.17	VL	140	113	_
Acenaphthylene	53		48	L	45	L	60		73		116	132	
Acenaphthene	70		50	L	34	L	57		50	L	117	116	
Fluorene	100		370	VH	60		98		. 82		126	155	H
Phenanthrene	125		101		122		109		103		123	125	
Anthracene	100		84		89		99		76		118	100	
Fluoranthene	100		161	H	178	H	141		122		144	141	
Pyrene	127		147		199	H	134		98		117	134	
Benzo (a) anthracene	79		92		100		73		70		105	95	
Chrysene	123		144		254	VH	129		122		109	95	
Benzo (b) fluoranthene	76		151	H	212	VH	78		89		116	111	
Benzo(k)fluoranthene	83		117		141		91		79		96	100	
Benzo (a) pyrene	67		.95		141		70		75		83	62	
Indeno (123-cd) pyrene	38	Ľ	68		154	H	45	L	61		79	77	
Dibenzo (ah) anthracene	36	L	70		87		48	L	44	L	66	120	
Benzo(ghi)perylene	46	L	100		185	H	60		67		97	70	

Table IV-12. % Recovery for Laboratory F064 Calculated from the Interlab Median.

	, 		Sample #			Ampu	le #
PCBs	1	2	3	4	5	6	7
Total PCBs	147	110	128	143	83	61	502 VH

)	Sample #			Ampul	<u>e # -</u>
PAHS	1	2	3	4	5	8A	9A
Naphthalene				÷.÷-		71	86
Acenaphthylene	 ,			— , —		119	119
Acenaphthene						172	136
fluorene					<u> </u>	58	68
Phenanthrene	72	89	89	89	99	88	96
Anthracene	86	94	103	104	121	87	35
luoranthene	61	54	58	71	80	69	60
Pyrene	62	55	56	66	.92	76	63
Benzo (a) anthracene	25	105	88	101	118	85	96
Chrysene	18	78	81	69	78	76	102
[Benzo(b)fluoranthene + Benzo(k)fluoranthene]	28*	87*	101*	95*	100*	87*	88
Benzo (a) pyrene	23	87	71	78	95	88	68
Indeno (123-cd) pyrene	45	167	150	138	153	142	61
bibenzo (ah) anthracene	41	106	132	108	154	159	187
Benzo(ghi)perylene	55	201	189	160	158	198	62

Table IV-13. & Recovery for Laboratory F065 Calculated from the Reference Value.

			Sample #							
	PCBs	1	2	3	4	5	6	7		
fotal	PCBs	89	170	66	74	182	36	nd		

		S	ample #			Ampule #		
PAHS	.1	2	3	4	5	8A	9A	
Naphthalene	113	113	105	55	71	90	96	
Acenaphthylene	105	119	98	124	243 VH	136	154 H	
Acenaphthene	89	106	67	81	102	136	149	
Fluorene	60	95	153 H	83	79	72	100	
Phenanthrene	90	94	79	100	104	102	120	
Anthracene	87	82	53	100	99	91	34 L	
Fluoranthene	63	87	81	100	107	100	91	
Pyrene	88	79	93	99	96	87	93	
Benzo (a) anthracene	35 L	138	128	120	135	171 H	220 VH	
Chrysene	32 L	126	141	111	122	99	185 H	
[Benzo (b) fluoranthene + Benzo (k) fluoranthene]	34* L	150* H	114*	94*	122*	126*	17 <u>6*</u> H	
Benzo (a) pyrene	30 L	101	73	76	100	100	101	
Indeno (123-cd) pyrene	43 L	207 VH	150 H	115	177 H	159 H	115	
Dibenzo (ah) anthracene	41 L	100	122	100	126	208 VH	223 VH	
Benzo(ghi)perylene	59	331 VH	224 VH	147	210 VH	192 H	95	

Table IV-14. * Recovery for Laboratory F065 Calculated from the Interlab Median.

PCBs		Sample #							Ampule #		
	1	2		3	4	5		6		7	
	98	193		87	95	186	H	40	L	nd	

- 87 -

			Sample #			Ampul	e #
PAHS	-1	2	3	4	<u>5</u>	8A	9 A
Japhthalene						126	165
Acenaphthylene						101	59
Acenaphthene						190	91
luorene		÷÷÷				114	55
henanthrene	82	96	147	70	78	156	62
nthracene	77	84	195	69	74	185	23
luoranthene	57	60	95	54	48	102	55
yrene	55	69	101	54	54	119	63
Senzo (a) anthracene	103	118	163	103	105	43	108
hrysene	66	83	156	74	66	83	55
Benzo (b) fluoranthene Benzo (k) fluoranthene]	83*	89*	145*	85*	69*	100*	102
Benzo (a) pyrene	124	113	358	113	105	289	66
Indeno (123-cd) pyrene	112	119	156	120	104	89	45
bibenzo (ah) anthracene	121	143	197	108	151	24	25
Senzo(ghi)perylene	124	13	186	136	110	143	71

Table IV-15. % Recovery for Laboratory F066 Calculated from the Reference Value.

		Sample #							
PCBs	1	2	3	4	5	6	7		
Total PCBs	127	136	113	181	139	175	283		

	Sample #										Ampule #			
PAHS	. 1		2		3		4		5		8A		9A	
Naphthalene	94		100		175	н	82		84		159	H	185	H
Acenaphthylene	64		109		102		90		100		116		76	
Acenaphthene	54		50	L	54		34	L	44	L	150	H	100	
Fluorene	92		70		220	VH	58		71		139		81	
Phenanthrene	102		100		129		7.9		82		181	H	78	
Anthracene	77		74		100		67		61		194	H	22	VL
Fluoranthene	59		98		132		76		65		148		84	
Pyrene	77		99		169	H	82		56		136		93	
Benzo (a) anthracene	147		154	H	237	VH	123		120		87		248	VH
Chrysene	115		135		271	VH	119		103		109		100	
[Benzo(b)fluoranthene + Benzo(k)fluoranthene]	100*		155*	H	163	* н	84*		85*		144	ł	202*	ŶĤ
Benzo (a) pyrene	157	H	131		367	VH	109		111		329	VH	98	
Indeno (123-cd) pyrene	107		148		156	н	100		121		100		85	
Dibenzo (ah) anthracene	120		135		183	H	100		124		31	L	30	L
Benzo(ghi)perylene	133		21	VL	221	VH	125		146		139		109	

Table IV-16. % Recovery for Laboratory F066 Calculated from the Interlab Median.

			Sample #			Amr	oule #
PCBs	. 1	2	3	4	5	6	7
Total PCBs	140	154 H	148	234 VH	142	199	H 279 VH

		Ś	ample #	·····		Ampule #		
PAHs	1	2	3.	4	5	8 A	9A	
Naphthalene						30	nd	
Acenaphthylene						70	nd	
Acenaphthene						74	nd	
Fluorene						153	nd	
Phenanthrene	74	68	405	57	68	174	nd	
Anthracene	nd	1207	885	385	nd	1064	nd	
Fluoranthene]	131	52	80	37	69	135*	nd	
yrene	152	150	64	109	193	92	nd	
[Benzo(a)anthracene - Chrysene]	269*	77*	59*	53*	64*	91*	nd nd	
Benzo (b) fluoranthene Benzo (k) fluoranthene]	432*	84*	83*	234*	nd*	135*	nd nd	
Benzo (a) pyrene	nd	123	358	869	319	289	nd	
[Indeno (123-cd) pyrene + Dibenzo (ah) anthracene]	588*	100*	nd*	926*	434*	153*	nd nd	
Benzo(ghi)perylene	580	81	51	nd	nd	186	nd	

Table IV-17. % Recovery for Laboratory F084 Calculated from the Reference Value.

· · · · · · · · · · · · · · · · · · ·		Sample #							
PCBs	1	2	3	4	5	6	7		
Total PCBs	112	96	76	114	158	0.015	nd		

۰,

		<u></u>	Sa	mple_#				Ampule #		
PAHS	1		2	3	4		5	8A	9A	
Naphthalene	nd		nd	82	nd		nd	38 L	nd	
Acenaphthylene	nd		nd	nd	nd		nd	80	nd	
Acenaphthene	nd		382 VH	294 VH	423	VH	nd	58	nd	
Fluorene	nd		nd	100	nd		nd	188 H	nd	
Phenanthrene	92		71	356 VH	64		71	203 VH	nd	
[Anthracene	nd		1051 VH	455 VH	370	VH	nd	193* H	nd	
+ Fluoranthene]	136		84	112	52		93	1.9.9	nd	
Pyrene	216	VĤ	216 VH	107	163	H	203 VH	105	nd	
[Benzo(a)anthracene + Chrysene]	429*	VH	114*	95*	74*		87*	137*	nd nd	
[Benzo(b)fluoranthene + Benzo(k)fluoranthene]	518*	VH	145*	93*	231* 1	VH	nd*	195* H	nd nd	
Benzo (a) pyrene	nd		142	367 VH	841 1	VH	335 VH	329 VH	nd	
[Indeno (123-cd) pyrene + Dibenzo (ah) anthracene]	566*	VH	117*	nd*	788*	VĤ	465* VH	176* H	nd nd	
Benzo (ghi) perylene	626	VH	133	61	nd		nd	181 H	nd	

Table IV-18. * Recovery for Laboratory F084 Calculated from the Interlab Median.

		Sample #						
PCBs	1	2	3	4	5	6	7	
otal PCBs	124	109	100	148	161 H	0.017	VL nd	

		S	Sample #							
PAHs	1	2	3	4	5	<u>Ampul</u> 8A 82 127 91 85 87 4 85 50 74 96 74 85 86 75	9A			
aphthalene					<u> </u>	84	82			
cenaphthylene	<u>ل مر</u>						41			
cenaphthene						127	42			
luorene	<u></u>	'				91	47			
henanthrene	31	72	620	53	89	85	48			
nthracene	nd	362	929	nd	586	87	nd			
luoranthene	102	114	69	105	107		63			
yrene	42	60	39	94	97	85	69			
enzo (a) anthracene	52	93	226	150	127		50			
hrysene	30	167	265	334	559		52			
Benzo(b)fluoranthene Benzo(k)fluoranthene]	94 221	141*	200 118	157*	159*		82 69			
enzo (a) pyrene	615	1002	445	620	1069		81			
ndeno (123-cd) pyrene	77	96	92	154	100		77			
ibenzo (ah) anthracene	nđ	nd	nd	nd	nd	75	nd			
enzo(ghi)perylene	351	249	260	456	235	114	110			

Table IV-19. % Recovery for Laboratory F087 Calculated from the Reference Value.

		Sample #							
PCBs	1	2	3	4	5	6	7		
Total PCBs	129	108	71	106	98	104	125		

				San	mple #					<u></u>	mpul	<u>e #</u>	
PAHS	. 1		2		3		4	5		8A	,	9A	
Naphthalene	142	-	258	VH	140		160 H	198	н	106		92	
Acenaphthylene	945	VH	nd		102		867 VH	nd		94		53	
Acenaphthene	370	VH	nd		1779	VH	nd	nd		100		47	L
Fluorene	1180	VH	1000	VH	496	VH	nd	nd		111		68	
Phenanthrene	39	L	75		545	VH.	60	.93		.99		60	
Anthracene	nd		315	VH	477	VH	nd	479	VH	91		nd	
Fluoranthene	106		185	H	95		148	144		6	VL	97	
Pyrene	60		86		65		141	102		97		101	
Benzo (a) anthracene	73		122		329	VH	178 H	144		100		114	
Chrysene	53		270	VH	460	VH	534 VH	879	VH	97		95	
[Benzo (b) fluoranthene + Benzo (k) fluoranthene]	100 341	VH	244*	VH	246 113	VH	155* H	194	* H	132 119		174 125	
Benzo (a) pyrene	782	VH	1162	VH	456	VH	600 VH	1124	VH	97		120	I
Indeno (123-cd) pyrene	74		119	•••	92		128	116		.97		146	i
Dibenzo (ah) anthracene	nd		nd		nd		nd	nd		98		nd	Ĺ
Benzo(ghi)perylene	379	VH	410	VH	308	VH	419 VH	314	ΫĦ	111	,	168	H

Table IV-20. % Recovery for Laboratory F087 Calculated from the Interlab Median.

		Sample #								
PCBs	1	2	3	4	.5	6	7			
Total PCBs	143	123	93	137	100	119	123			

			Sample #	· · · · · · · · · · · · · · · · · · ·	<u> </u>	Ampul	e.#
PAHS	. 1	2	3	4	5	8A	9A
Naphthalene						104	113
Acenaphthylene			(96	89
Acenaphthene		-				146	104
Fluorene						91	104
[Phenanthrene + Anthracene]	124 107	119 121	142 159	119 125	123 121	117*	137*
Fluoranthene	104	100	108	111	102	86	68
Pyrene	100	116	99	107	116	90	83
Benzo (a) anthracene	134	136	160	124	136	65	40
Chrysene	68	57	130	63	64	88	1021
[Benzo(b)fluoranthene + Benzo(k)fluoranthene]	162*	208*	224*	210×	203*	85*	1305*
Benzo(a)pyrene	188	297	364	261	289	125	2312
Indeno (123-cd) pyrene	175	190	199	169	213	102	2303
Dibenzo (ah) anthracene	101	160	122	144	160	78	1520
Benzo(ghi)perylene	168	205	226	187	197	107	3641

Table IV-21. % Recovery for Laboratory F094 Calculated from the Reference Value.

		Sample #								
PCBs	1	2	3	4	5	6	7			
Total PCBs	96	107	84	72	182	95	112			

		····.	•	Sa	mple	#					Amp	ule #	
PAHs	. 1 ,		2		3		4		5		8A	9A	
Naphthalene	291	VH	283	VH	252	VH	405	VH	288	VH	131	126	
Acenaphthylene	94		91		107		100		100		111 ′	116	
Acenaphthene	120		118		118		127		118		115	114	
Fluorene	208	WH	233	VH	226	VH	240	VH	250	VH	111	152	H
[Phenanthrene + Anthracene]	154 108	Ħ	125 105		125 82		135 120		128 99		136*	164*	Ħ
Fluoranthene	108		162	H	150	H	157	H	137		123	103	
Pyrene	142		167	Ĥ	164	H	161	H	122		103	122	
Benzo (a) anthracene	192	H	179	H	233	VH	148		155	H.	131	90	
Chrysene	118		93		225	VH	100		100		114	1864	VH
[Benzo(b)fluoranthene + Benzo(k)fluoranthene]	195	* H	360*	VH	251*	VH	208*	VH	248*	VH	122*	2596*	VH
Benzo (a) pyrene	239	VH	344	VH	373	VH	252	VH	304	VH	142	3446	VH
Indeno (123-cd) pyrene	167	H	236	VH	199	H	140		246	VH	114	4346	ΫĤ
Dibenzo (ah) anthracene	100		151	Ħ	113		133		131		102	1807	VH
Benzo(ghi)perylene	181	H	337	VH	268	VH	172	H	262	VH	103	5579	VH

Table IV-22. % Recovery for Laboratory F094 Calculated from the Interlab Median.

		Sample #							
PĈBs	1	2	3	4	5	6	7		
Total PCBs	106	121	111	93	186 H	108	110		

	·		Sample #	<u></u>		Ampul	.e #
PAHs	1	2	3	4	5	8A	9A
Naphthalene						36	nd
Acenaphthylene						28	nd
Acenaphthene			_			71	nd
Fluorene						48	nd
Phenanthrene	13	nd	119	nd	34	40	nd
Anthracene	nd	1.03	274	67	69	nd	nd
Fluoranthene	nd	nd	25	20	22	82	nd
Pyrene	27	36	37	31	105	92	nd
Benzo (a) anthracene	nd	22	46	nd	nd	nd	nd
Chrysene	nd	nd	40	nd	nd	78	nć
Benzo (b) fluoranthene	nd	nd	35	nd	nd	68	nd
Benzo(k)fluoranthene	nd	nd	nd	nd	nd	nd	nd
Benzo (a) pyrene	68	29	nd	63	51	nd	nd
Indeno (123-cd) pyrene	nd	nd	21	nd	nd	nd	nd
Dibenzo (ah) anthracene	nd	nd	nd	nd	nd	nd	nd
Benzo(ghi)perylene	nd	nd	33	nd	nd	58	nd

Table IV-23. & Recovery for Laboratory N041 Calculated from the Reference Value.

		Ampule #					
PCBs	1	2	3	4	5	6	7
fotal PCBs	107	71	55	107	68	100	ņd

				S	ample	#					Ampule #		
PAHs	1		2		3		4		5		8A		9A
aphthalene	nd		nd		43	L	nd		nd		46	L	nd
cenaphthylene	nd		nd		nd		nđ		nd		33	L	nd
cenaphthene	nd		nd		nd		nd		nd		56		nd
luorene	nd		nd		40	L	nd		nd		58		nd
henanthrene	16	VL	nd		104		nd		36	L	46	L	nd
nthracene	nd		90		141		65		56		nd		nd
luoranthene	nd		nd		35	L	28	Ļ	30	L	118		nd
yrene	38	Ľ	52		62		47	L	111		105		nd
enzo (a) anthracene	nd		28	L	67		nd		nd		nd		nd
hrysene	nd		nd		69		nd		nd		102		nd
enzo(b)fluoranthene	nd		nd		43	L	nd		nd		94		nd
enzo(k)fluoranthene	nd		nd		nd		nd		nd		nd	•	nđ
lenzo (a) pyrene	86		34	L	nd		61		54		nd		nd
ndeno (123-cd) pyrene	nd		nd		21	VL	nd		nd		nd		nd
ibenzo (ah) anthracene	nd		nd		nd		nd		nd		nd		nd
enzo(ghi)perylene	nd		nd		4.0	L	nd		nd		56		nd

Table IV-24. % Recovery for Laboratory N041 Calculated from the Interlab Median.

PCBs	·	Sample #							
	1	2	3	4	5	6	7		
Total PCBs	118	80	72	138	70	114	nd		

,			Sample #	· · · · ·		_Ampule #	
PAHS	1	2	3	4	5	8A	9A
Naphthalene			· · · ·			_	
Acenaphthylene						127	93
Acenaphthene				<u> </u>		148	80
Fluorene						36	25
Phenanthrene	107	114	103	109	121	86	62
Anthracene	236	283	395	244	272	267	134
luoranthene	120	115	122	117	117	97	75
yrene	114	110	101	100	115	90	67
Benzo (a) anthracene	66	74	58	98	88	56	44
Chrysene	105	100	153	108	117	77	57
Benzo(b)fluoranthene Benzo(k)fluoranthene]	143*	142*	167*	169*	158*	117 81	89 60
Senzo(a)pyrene	109	127	131	120	133	105	76
indeno (123-cd) pyrene	109	123	112	126	139	99	75
bibenzo (ah) anthracene	55	168	nd	91	nd	92	71
Senzo(ghi)perylene	56	61	62	74	67	81	60

Table IV-25. % Recovery for Laboratory N090 Calculated from the Reference Value.

		Sample #Ampule #									
PCBs	1	2	3	4	5	6	7				
otal PCBs		-	-	_		 _					

				San	nple.#	and a second		Ampule	e #
PAHS	1		2		3	4	5	8A	9A
Naphthalene	-		-			_	-	-	-
Acenaphthylene	23	ŶL.	48	L	11 VL	50 L	47 L	145	121
Acenaphthene	100		76		nd	114	106	117	88
Fluorene	34	Ľ	60		75	70	82	44 L	37 I
Phenanthrene	134		119		91	123	126	100	78
Anthracene	238	VH	246	VH	203 VH	235 VH	223 VH	280 VH	130
Fluoranthene	125		187	Ĥ	169 H	164 Ĥ	157 H	140	114
Pyrene	161	Ĥ	158	H	168 H	151 H	121	103	99
Benzo (a) anthracene	94		97		84	116	100	113	100
Chrysene	183	H	163	H	266 VH	173 Ĥ	183 Ĥ	101	105
[Benzo (b) fluoranthene + Benzo (k) fluoranthene]	171		246*	VH ,	188* H	167* H	194* H	162 H 131	189 H 110
Benzo (a) pyrene	139		147		134	117	140	119	114
Indeno (123-cd) pyrene	104		152	H	112	104	161 H	111	142
Dibenzo (ah) anthracene	55		159	H	nd	84	nd	. 121	84
Benzo (ghi) perylene	61		100		73	68	90	79	91

Table IV-26. % Recovery for Laboratory N090 Calculated from the Interlab Median.

- 99 -

		Sample #							
PCBs	<u>1</u>	2	3	4	5	6	7		
otal PCBs	-	-	-	-	-	-	-		

		<u>* * *</u>	Sample #			_Ampule #	
PAHs	1	2	3	4	5	8A	9A
Naphthalene							-
Acenaphthylene						-	.
Acenaphthene			÷			-	-
Fluorene						, -	-
Phenanthrene	130	145	159	141	163	-	-
Anthracene	171	183	439	188	217	-	-
luoranthene	122	123	121	140	142	-	-
Pyrene	118	132	118	134	148	-	-
Benzo (a) anthracene	119	152	130	162	172	÷	-
Chrysene	117	143	167	153	164	-	-
Benzo(b)fluoranthene	181	164	172	211	180	-	-
Benzo(k) fluoranthene	65	137	127	147	145	-	-
Benzo (a) pyrene	162	178	174	196	263	-	-
Indeno (123-cd) pyrene	105	120	114	155	143	-	-
bibenzo (ah) anthracene	127	150	123	161	176	-	-
Senzo(ghi)perylene	119	133	132	175	151		-

Table IV-27. % Recovery for Laboratory N107 Calculated from the Reference Value.

		Sample #								
PCBs	1	2	3 ,	4	5	6	7			
Total PCBs	99	109	96	98	108	91	.100			

		Sample #									<u>Ampule #</u>		
PAHS	1		2		3		- 4		5		8A	9A	
Japhthalene	246	VH	210	VH	239	VH	300	VH	241	VH	-		
cenaphthylene	155	Ĥ	279	VH	158	H	290	VH	327	ЙН	. 🗕	-	
cenaphthene	213	VH	174	H	110		125		132		-	-	
luorene	144		163	H	27	L	176	H	200	VH	-		
henanthrene	163	H	151	H	140		159	H	170	H	-	-	
nthracene	173	H	159	H	225	VH	181	H	177	H	-	-	
luoranthene	127		200	VH	168	Ħ	197	H	190	H	-	-	
yrene	168	H	190	Ĥ	195	Ĥ	201	VH	156	H	-	-	
enzo (a) anthracene	170	H	199	н	189	H	193	H	196	H			
hrysene	203	VH	232	VH	290	VH	245	VH	257	VH	-		
enzo (b) fluoranthene	192	H	310	VH	211	VH	187	H	223	VH	-	-	
enzo(k)fluoranthene	100		199	н	122		182	H	173	H	-	-	
enzo(a)pyrene	206	VH	207	VH	178	H	190	Ĥ	276	VH	-	-	
ndeno (123-cd) pyrene	100		150	Ĥ	114		129		166	H	-		
ibenzo (ah) anthracene	126		142		114		149		145		-	-	
enzo(ghi)perylene	129		218	VH	156	H	161	H	202	VH	-	-	

Table IV-28. & Recovery for Laboratory N107 Calculated from the Interlab Median.

· <u>····································</u>			Sample #			Ampul	
PCBs	1	2	3	4	5	6	7
Total PCBs	109	124	126	127	110	103	<u>98</u>

			Sample #			_Ampule #		
PAHS	1	2	3	4	5	8A	9A	
Naphthalene					-,-;-	74	85	
Acenaphthylene						75	91	
Acenaphthene	<u> </u>	÷				141	97	
Fluoreñe					بدانشر تد	64	.98	
Phenanthrene	93	115	33	98	118	86	101	
Anthracene	131	115	579	96	122	306	210	
luoranthene	64	60	85	57	61	48	87	
Pyrene	63	67	81	54	67	51	90	
Benzo (a) anthracene	75	78	65	73	81	47	65	
Chrysene	54	52	58	50	53	51	83	
Benzo (b) fluoranthene	80	98*	142*	104*	100+	73	109	
Benzo(k)fluoranthene]	139	901	142^	104*	100*	65	104	
Senzo (a) pyrene	65	25	79	59	67	71	102	
Indeno (123-cd) pyrene	117	92	108	97	87	95	133	
Dibenzo (ah) anthracene	74	69	44	59	70	82	97	
Benzo(ghi)perylene	83	61	84	71	64	96	132	

Table IV-29. % Recovery for Laboratory N158 Calculated from the Reference Value.

			Sample #		Ampul	e #	
PCBs	1	2	3	4	5	6	7
Fotal PCBs	101	71	68	97	75	91	71

	;		· · · · ·	S	ample #	· -, .		Ampule #		
PAHS	. 1		2		3	4	5	8A	9A	
Naphthalene	98		83		140	135	119	94	.96	
Acenaphthylene	152	H	215	VH	138	224 VH	245 VH	87	118	
Acenaphthene	103		94		1818 VH	86	98	111	106	
Fluorene	113		115		229 VH	114	143	79	143	
Phenanthrene	117		121		29 L	111	123	100	127	
Anthracene	132		100		297 VH	92	100	320 VH	204 VH	
Fluoranthene	67		98		118	81	82	69	133	
Pyrene	89		96		135	80	71	59	132	
Benzo (a) anthracene	106		103		95	87	92	94	149	
Chrysene	.93		84		100	79	83	67	151 H	
[Benzo(b)fluoranthene	85		169*	н	160* H	103*	122*	100	231 VH	
+ Benzo(k)fluoranthene]	214	ЙН	103-		100~ H	103-	122-	104	190 H	
Benzo(a)pyrene	82		28	L	80	57	70	81	152 H	
Indeno (123-cd) pyrene	112		115		108	81	101	106	251 VH	
Dibenzo (ah) anthracene	74		65		41 L	55	58	107	116	
Benzo(ghi)perylene	90		100		100	65	86	93	203 VH	

Table IV-30. & Recovery for Laboratory N158 Calculated from the Interlab Median.

	<u></u>	Sample #						
PCBs	1	2	3	4	5	6	7	
Total PCBs	112	81	90	126	77	104	69	

	· · · · · · · · · · · · · · · · · · ·		Sample #			Ampule #		
PAHS	1	2	.3	4	5	8B	9 <u>₽</u>	
Naphthalene			,-			274	99	
Acenaphthylene				<u> </u>		514	118	
Acenaphthene		 .				3249	80	
Fluorene						108	74	
Phenanthrene	0.7	0.8	- `	-	-	99	156	
Inthracene	2	nd	-	-	. –	413	339	
luoranthene	2	5	-	-	-	88	305	
yrene	1	2	-	-	-	88	207	
Benzo (a) anthracene	nd	nd		-	-	59	364	
Chrysene	3	5	-	-	-	97	183	
Benzo (b) fluoranthene	2	1	-		-	124	245	
Senzo(k)fluoranthene	0.4	nd	-	-	· _	96	385	
Benzo (a) pyrene	4	5	-		-	101	260	
Indeno (123-cd) pyrene	0.5	0.5	. 	-	-	113	783	
bibenzo (ah) anthracene	nd	nd	-	-	-	227	1368	
Senzo(ghi)perylene	2	2	-	-	-	105	218	

Table IV-31. % Recovery for Laboratory N196 Calculated from the Reference Value.

,			Sample #			Ampule	* #
PCBs	1	Ż	3	4	5	6	7
Total PCBs	6	3	· _	_		86	81

	۰		S	ampl	e #	<u> </u>		An	pule	#	,
PAHs	1		2		3	4	5	8B		9B	
Naphthalene	7	VL	2	VL		_	_	197	Ĥ	100	
Acenaphthylene	nd		nd		-	-	-	180	H	42	
Acenaphthene	36	L	nd		.	-	-	137		100	-
Fluorene	4	VL	37	L	-	-	_	111		92	
Phenanthrene	0.9	VL	0.8	VL	-	-		99		156	H
Anthracene	2	VL	nd		_	-	-	170	H	165	H
Fluoranthene	3	VL	8	VL	-	-	-	88	.	343	VH
Pyrene	2	VL	3	VL		-		87		214	
Benzo (a) anthracene	nd		nd		-	-	-	100		625	
Chrysene	5	VĻ	8	VL	-	-	÷	116		219	
Benzo(b)fluoranthene	2	VL	3	VL	-	-		98		140	
Benzo(k)fluoranthene	0.7	VL	nd		-	-	_	117		467	VH
Benzo (a) pyrene	6	VL	6	VL	-	-	-	100		257	VH
Indeno (123-cd) pyrene	0.5	ΫL	0.6	VL	-	_		111		179	H
Dibenzo(ah)anthracene	nd		nd		-	-	-	100		100	
Benzo (ghi) perylene	2	VL	4	VL	-	. —		92		127	

Table IV-32. & Recovery for Laboratory N196 Calculated from the Interlab Median.

				Sample			<u> </u>	Ampu	<u>le #</u>
PCBs	1		2		3	4	5	6	7
Fotal PCBs	6	ΫL	4	VL	-	_		97	80

			Sample #		<u> </u>	_Ampule #		
PAHS	. 1	2	3	4	5	8B	9B	
Japhthalene						4	nd	
cenaphthylene						36	nd	
cenaphthene			, .			1481	nd	
luorene						87	87	
henanthrene	16	nd	10	5	7	100	94	
nthracene	18	nd	9	nd	nd	71	73	
luoranthene	63	24	26	43	26	100	89	
yrene	42	6	37	57	43	102	97	
Senzo (a) anthracene	36	46	97	68	71	60	58	
hrysene	34	14	37	57	26	83	83	
Senzo (b) fluoranthene	96	36	41	127	38	142	175	
enzo(k)fluoranthene	49	20	28	73	20	82	82	
lenzo (a) pyrene	63	25	35	82	22	101	101	
ndeno (123-cd) pyrene	173	69	73	256	38	89	92	
ibenzo (ah) anthracene	1910	504	787	2252	168	nd	nd	
enzo(ghi)perylene	183	47	90	266	18	122	124	

Table IV-33. % Recovery for Laboratory N197 Calculated from the Reference Value.

Ċ

			Sample #			Ampule #		
PCBs	1	2	3	4	5	6	7	
otal PCBs	67	21	2377	61	961	35	nd	

				S	ample	#					A	mpul	e #	,
PAHs	. 1		2		3		4		5		8B		9B	
Naphthalene	189	H	nd		nd		111		nd		3	ÝL	nd	
Acenaphthylene	nd		nd		nd		nd		nd		13	VL	nd	
Acenaphthene	435	VН	294	VH	147		634	VH	nd		63		nd	
Fluorene	nd		100		nd		nd		nd		89		108	
Phenanthrene	20	VL	nd		9	VL	6	VL	7	VL	100		94	
Anthracene	18	VL	nd		5	VL	nd		nd		29	L	36	L
Fluoranthene	65		39	L	36	L	60		35	L	100		100	
Pyrene	60		9	VL	62		85		45	Ľ	100		100	
Benzo (a) anthracene	51		61		140		81		81		101		100	
Chrysene	58		22	Ϋ L	64		91		41	L	100		100	
Benzo (b) fluoranthene	101		69		50	L	112		47	Ľ	112		100	
Benzo (k) fluoranthene	75		29	L	27	L	90		23	VL .	100		100	
Benzo (a) pyrene	80		28	L	36	L	80		23	VL	100		100	
Indeno (123-cd) pyrene	165	H	85		72		213	VH	43	Ľ	88		21	VL
Dibenzo (ah) anthracene	1900	VH	476	VH	731	VH	2083	VH	138		nd		nd	
Benzo(ghi)perylene	198	Ħ	77		107		244	VH	24	VL	107		72	

Table IV-34. % Recovery for Laboratory N197 Calculated from the Interlab Median.

		Sample #								
PCBs	1	2	3	4	5	6	7			
Total PCBs	74	23 VL		79	981 VH	39 L	nd			

			Sample #			Ampule	<u>ə. #</u>
PAHs	1	2	3	4	5	8B	9B
Naphthalene		ڪ هزيد	<u>ج کے ج</u>			nd	nd
Acenaphthylene						285	446
Acenaphthene						nd	nd
Fluorene		÷				nd	nd
Phenanthrene	nd	nd	nd	nd	nd	115	100
Anthracene	nd	nd	nd	215	nd	nd	nd
Fluoranthene	102	nd	58	125	91	102	82
Pyrene	nd	nd	38	nd	nd	166	71
Benzo (a) anthracene	59	66	54	55	50	49	42
Chrysene	28	66	55	61	55	49	26
Benzo (b) fluoranthene	nd	nd	nd	nd	nd	127	53
Benzo(k)fluoranthene	57	151	104	131	121	79	55
Benzo (a) pyrene	102	115	98	92	91	84	62
[Indeno(123-cd)pyrene + {Dibenzo(ah)anthrace	nel ^{nd*}	nd*	nd*	nd*	nd*	nd	nd
+ Benzo (ghi) perylene		nd	nd	nd	nd	85*	75

Table IV-35. % Recovery for Laboratory N200 Calculated from the Reference Value.

		Ampule #					
PCBs	1	2	3	4.	5	6	7
Total PCBs	36	51	48	66	71	90	103

	• <u> </u>		S	ample #				Ampu	le	#	
PAHS	. 1		2	3	4		5	8B		9B	
Naphthalene	nd		nd	nd	ňd	_	nd	nd		nđ	
Acenaphthylene	nd		nd	nd	nd		nd	100		158	H
Acenaphthene	nd		nd	nd	nd		nd	nd		nd	
Fluorene	nd		nd	nd	nd		nd	nd		nd	
Phenanthrene	nd		nd	nd	nd		nđ	115		100	
Anthracène	nd		nd	nd	207 V	7H	nd	nd		nd	
Fluoranthene	106		nd	81	176	H	122	103		92	
Pyrene	nd		nd	63	.nd		nd	163	H	74	
Benzo (a) anthracene	85		87	78	65		56	84		71	
Chrysene	49	L	107	95	98		86	59		31	L
Benzo(b)fluoranthene	nd		nd	nd	nd		nd	100		30	L
Benzo(k)fluoranthene	88		220 VH	100	162	H	144	96		67	
Benzo (a) pyrene	130		134	100	89		95	83		61	
[Indeno (123-cd) pyrene + {Dibenzo (ah) anthrace	nel ^{nd*}		nd*	nd*	nd*		nd*	nd		nd	
+ Benzo (ghi) perylene			nd	nd	nd		nd	62*		19*	VL

Table IV-36. % Recovery for Laboratory N200 Calculated from the Interlab Median.

		Sample #							
PCBs	1	2	3	4	5	6	7		
Fotal PCBs	40 L	58	62	86	72	103	102		

			Sample #			_Ampule #		
PAHs	. 1	2	3	4	5	8A	9 A	
Naphthalene	••••••••				••••	93	93	
Acenaphthylene						51	49	
Acenaphthene			<u> </u>			81	72	
Flüorène						77	70	
Phenanthrene	44	25	29	45	51	56	60	
Anthracene	30	10	34	33	36	44 ′	41	
Fluoranthene	61	28	28	55	48	54	42	
Pyrene .	59	28	28	53	49	55	45	
Benzo (a) anthracene	84	37	41	82	74	34	23	
Chrysene	59	33	35	63	53	52	34	
Senzo (b) fluoranthene	111	52	60	122	90	41	37	
Senzo(k)fluoranthene	65	40	51	88	85	51	30	
Benzo (a) pyrene	62	17	35	103	91	51	33	
Indeno (123-cd) pyrene	101	60	54	114	85	50	29	
bibenzo (ah) anthracene	101	63	55	108	92	44	51	
Senzo (ghi) perylene	92	-53	51	109	75	56	34	

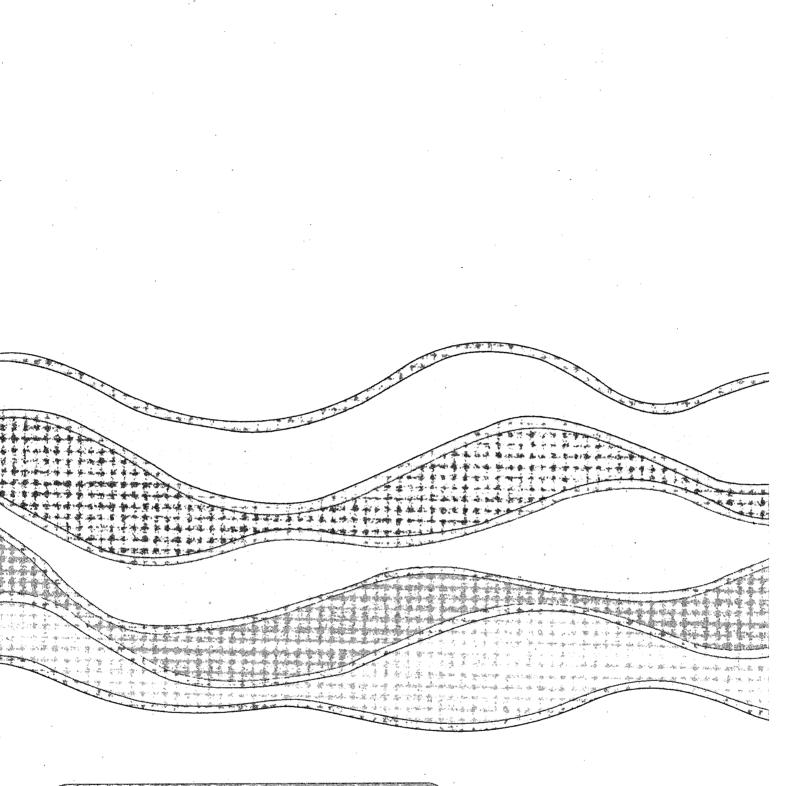
Table IV-37. % Recovery for Laboratory N208 Calculated from the Reference Value.

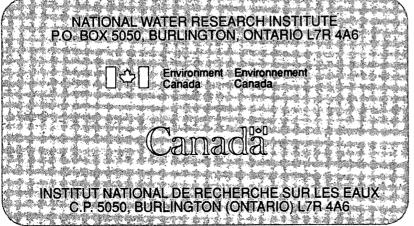
Sample # Ampule # PCBs Total PCBs

	• •		· · ·		Sampl	e_#	<i>den</i> 1.				Ampul	e #
Pahs	1		2		3		4		5		8A	9A
Naphthalene	46	L	4	VL	16	VL	9	VL	46	L	117	104
Acenaphthylene	18	ΫL	12	VL	6	VL	20	VL	27	L	58	63
Acenaphthene	22	VL	9	VL	6	VL	17	VL	26	L	64	79
Fluorene	38	L	17	VL	2	VL	40	Ļ	50	L	94	102
Phenanthrene	55		26	L	26	L	51		53		66	7:5
Anthracene	31	L	9	VL	17	VL	31	L.	30	L	46 L	40
Fluoranthene	63		45	Ļ	40	L	78		65		78	64
Pyrene	84		40	L	46	L	80		52		63	66
Benzo (a) anthracene	120		49	L	59		97		85		69	52
Chrysene	102		53		61		100		83		68	62
Benzo (b) fluoranthene	118		98		74		108		111		57	78
Benzo(k)fluoranthene	100		59		5.0	L	1.09		101		82	55
Benzo (a) pyrene	79		20	VL	36	L	100		95		59	49
Indeno (123-cd) pyrene	96		75		54		95		99		56	54
Dibenzo (ah) anthracene	100		60		. 51		100		76		58	60
Benzo(ghi)perylene	99		87		61		100		100		54	53

Table IV-38. & Recovery for Laboratory N208 Calculated from the Interlab Median.

	•	Sample #								
PCBs	1	2		3		4	5	6	7	
otal PCBs	60	36	L	39	L	79	37 L	74	87	


.


.

ſ

.

.

Think Recycling! Pensez à Recycling!