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ABSTRACT A

~ 

The recently heightened interest in the assessment of the 
current state of environmental conditions and the detection of any 
change in environmental conditions has led to a corresponding 
interest in statistical trend assessment methods. In this paper, 
the determination of any trend is considered as a part of the 
larger task of characterizing the variability of an environmental 
quality indicator. The features of several parametric and 
nonparametric methods are discussed with respect to their 
applicability for estimation and detection, the ability to handle 
changes of different forms, the inclusion of concomitant variables 
in the analysis and the inherent assumptions 'of the method. 
Examples of the analysis.of water quality data using these methods 
are given. A
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MANAGEMENT PERSPECTIVE 

The assessment of trends in environmental quality indicators 
and the reporting of such assessments are priorities for national 
and international agencies. Environmental data sets are generally 
complex and require variability, in addition to changes in long 
term tendency, to be adequately accounted for in the analysis for 
any trend.o In the present paper, several statistical methods which 
account for seasonality and trend are compared with respect to the 
underlying model for trend. It is shown that clear objectives about 
the types of changes that are important for a.particular set of 
monitoring data are essential, since the methods model the trend 
and seasonal components in different ways.
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IRTRODUCTION 
4 Statements ,about the assessment .of trends pervade the 

publications of national and international agencies concerned with 
environmental conditions. Consider the example of surface_water 
quality. Monitoring networks have been established inia number of 
countries, where trend assessment was either the sole objective or 
one of a number of objectives of the network, for example, the 
Water Quality Assessment Program, Canada (Kwiatkowski, 1987) and 
the U.S.-Geological Survey's Benchmark and NASQAN networks (Briggs, 
1978). Recently, the heightened interest in environmental problems 
has led to new efforts to convey the information obtained from 
monitoring networks to decision makers and the public, often called 
state of the environment reporting, and to define environmental 
indicators to facilitate the integration of environmental and 
economic considerations in the decision—making process. Again, 
trend assessment is a priority. * h, 

In the Organization for Economic Cooperation and Development 
(OECD) report on environmental. indicators (OECD, _1991), a 
preliminary set of 18 indicators of environmental performance was 
issued. The indicators were chosen to measure environmental 
performance with respect to level and changes in level of 
environmental quality and, although they are mainly calculated 
quantities such as estimates of (X5 emissions, river quality 
indicators are measured concentrations of dissolved oxygen and 
nitrate in river water. In all cases, graphics such as bar graphs, 
pie charts, or plots, with lines joining yearly values, are used to
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present trends. The preliminary set of environmental indicators 
issued" by Canada (Environment Canada. 1991), using selection 
criteria that included support by sufficient data in order to show 
trends over -time, contained a higher proportion of' directly 
measured indicators than the OECD set. For example, as well as 
calculated CO2 emissions, atmospheric CO2 concentration was also 
taken as an -indicator. Other examples of directly' measured 
indicators are phosphorous and nitrogen concentrations in surface 
water. ’Graphics similar to those in the QECD report were used to 
illustrate-changes in the indicators. 

Q

‘ 

The question of what is meant by trend arises. The above 
examples illustrate the expression of objectives in very general 
terms. It seems reasonable to understand trend as the general 
direction and tendency (Oxford Dictionary) of the quantity of 
interest. It then rests with the individuals working with this 
problem at the scientific level to make the general definition 
specific so that hypotheses may be tested and the magnitude of 
change estimated. . 

-

A 

Since the primary objective of this paper is to consider 
statistical methods suitable for environmental trend analysis, and 
an important contribution that statistical methodology can make is 
to provide eprecise and unbiased estimates of trend, it is 

appropriate to consider trend analysis as part of the larger task 
of characterizing variability in the data to be used to assess 
trend. This is particularly important with-respect to state.of the 
environment reporting and environmental indicators, since simple
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indicators or reports are being called for (e.g. Canada's Green 
Plan in Brief, Department of Supply and Services, 1990). .The ideal 
,is a simple and clear presentation of a properly estimated well- 
defined quantity. Much work has been done towards achieving this 
goal for monitoring data, and some examples of methods of analysis 
of atmospheric and water quality variables are considered here. 
Several of the methods are then applied to a single water quality 
data set. . 

‘
A 

_ 

' 

In discussing the methods, the major objectives are.to show 

how other sources of variability are separated from trend, and to 
describe the model for trend underlying the methods. The ability 
to accommodate covariates in the analysis and the existence of 
measures of uncertainty are also considered. Methods are not 

described in detail since this can be found in the references 

cited. Attention is restricted to a set of observations on one 

environmental quality variable collected over time at one location 
under a monitoring program where sampling is done at approximately 
equal intervals in time, the number of years of data available is 
short to moderate and a number of samples have been taken within 
each year. A

’
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METHODS OF ACCOUNTING FOR SEASON 
IN TREND ANALYSIS 

BLOCKING BY SEASQQ 

Consider observations on an environmental variable obtained at 
.m identifiable times within a year, over n -years.’ For example, 
observations could be made daily, monthly or seasonally. It is 

assumed, ‘for the moment, that identification of the time within the 
year at the particular interval chosen, for example, identification 
of the month‘ of observation, is adequate. Let yij denote the 
observation of the variable at the j‘-" sampling time within the 
year, for year i, where i=l,2,...-,n and j=l,2,...,m. ‘ 

f Many analyses for trend have been based on an additive model 
of within-year, betweeneyear, and error components. An example of 
such.a model is "A 

’
' 

YU_= 91* Bj*'5U (1) 

where oz, is the component for year pi, B] "the component for the jib 

sampling time within the year and an the residual variability. The 
objective is to determine changes over years free of seasonal 
ef fect-s . 

Nonparametric Methods y 
- 

_ _ 

Recently, nonparametric methods have been widely used in the 
analysis of water quality data because fewer assumptions must be 
satisfied than with parametric methods. Hirsch g_t_: al. (1982) 

illustrated the use of a blocked Kendall's 1, the seasonal Kendall 
, 5 _
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test for trend, and extended the nonparametric slope estimator of 
Thiel (1958) and Sen (1968) to account for ’seasonality (the 
seasonal Kendall slope estimator). Gilbert (1987) gave a simple 
procedure for a confidence interval for the seasonal Kendall slope 
estimator. 

_

- 

The seasonal Kendall test for trend is an intrablock method 
(van Belle and Hughes, 1984). The effect of season is eliminated 
by calculating the test statistic separately for each season and 
summing these statistics to obtain an overall test statistic.' In 

terms of the set of observations, (yfi), this becomes clear if the 
data are arranged as in Table l, where, for ease of expression, 
season j is used instead of the jm sampling time within the year. 
The possibility of missing data is included through the subscript 
on the number of observations in a season,rn for j=l,2,...,m. The 
test statistic calculated for season j is

' 

S; = §5_q1'\4(Y|<j ‘ Yij)._ -_ (2) 

where 

._,Ol-' 

_ _ 

x>0 -i T 

sgn(x) = 
{ 

if x=0 (3) 
A 

- x<0 - 

If this statistic is used for a trend test on the data for 
month j, it involves testing the hypothesis, Hm that yfi, ya, ..., 

ymi are a sample of_nj independent and identically distributed 
random variables. A two sided alternative, H1, is the hypothesis

'
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that the distribution is not the same for all ya, yn, with i,k$n 
and i¢k. It is used as'a test for trend because it is powerful for 
the alternative of a monotonic trend. If (1) is taken to represent 
all of the observations, the hypotheses for the test within season 

j are Ho: a,=O (i=1,2, . . . ,n) and,H_‘: a,sqzs. . .50“ or oqzazz. . .20" with 
at least one-strict inequality._ There is an explicit assumption of 
independence between seasonal values at least one year apart under 

. 1 

both Ho and H1. Further, under the assumption of independence, it 

is a test of trend alone only if the additional assumption, that 

the effect for season j is constant over all years, holds (i.e. a 

model such as (1) above with no interaction terms). If this is 

true, ‘taking ‘differences, yu-yfi, will remove the .seasonal 
component. ‘ 

‘ 

W

- 

, 
The seasonal Kendall test statistic is 

s = gs] (4) 
1" . 

and it is used to test the hypothesis of independent and identical 
distributions within season against the alternative that this does 
not hold in at least one season. It is inappropriate to combine 
the S5 if the trend is not homogeneous over seasons and_van Belle 
and Hughes (1984) showed_how to test for homogeneity, provided the 
observations within a year can be assumed independent. 

The analogous nonparametric estimate of slope is the median of 
all possible slopes based on pairs of observations hhich are in the 

same season, and thus, is clearly satisfactory only for linear
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changes. Let B denote this slope estimator, then B is the.median 
ofv 

A 

A

' 

~ 

01.; < yu)/.(k-i) o <5) 

for i<k and j fixed, taken over j=1,2,...,m. 
Nonparametric estimation of the magnitude of a step change in 

a water quality variable has been considered by Hirsch (1988) and 

the seasonal Hodges-Lehman estimator, As“; which is the analogue of 

B, was found to perform well. Suppose that a step change occurred 
after year 2. Then the objective is to estimate the change in 
level between the two periods i=1,2,...,£ and i=2+1,...,n. For 
season j, all possible differences (yu — yn) are calculated where 
i=1,2,...,£ and k=£+l,...,n, and this is done for j=1,2,...,m. AWL 
is the median of the m£(n-2) differences. Helsel and Hirsch (1992) 
give ‘methods for calculating the confidence interval for the 

Hodges—Lehman estimator. 
A corresponding nonparametric, method for ‘testing for' the 

existence of a step change and estimating the point of this change 
is given by Pettitt (1979). Although this has not been applied to 
water quality variables it has been used to look for changes in 

diatom concentrations in sediment cores (Esterby gt §i., 1986). 

The seasonal Kendall test is not robust to serial dependence 
(Hirsch _et gl., 1982) -and the variance of S under different 
assumptions about serial dependence has been obtained by 
Zetterqvist (1991) and El—Shaarawi and Niculescu (1992). Hirsch 
and Slack (1984) have proposed a modification in the presence of 
serial dependence, and Lettenmaier (1988) has given a similar test. 

\ 8
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The Spearman rank correlation coefficient, rs, can replace 
Kendall's 

_ 
1 when blocking is present (Taylor, 1987) .‘ The 

coefficient rs has been used to test for trend under blocking by 
month (El—Shaarawi gt al., 1983). The Spearman partial rank 

correlation test has been described by McLeod gt Ll, (19911). 

Lettenmaier (1976)-has considered the effect of serial dependence 
on-the Spearman coefficient, the t-test and Mann-Whitney test for 
step change . ' 

Least Squares Regression » 

The regression analysis under blocking is also based on model 

(1) and thus, changes over years are examined separately within 
each season first and then, over all seasons, if the changes are 

shown to be homogeneous. The differences between the nonpa_rametric 
and the regression methods are that, in the latter, the form of the 
change will be an explicit part of the model, and more general 
forms can readily beincluded. For season j, a linear trend, an 

example of a curvilinear trend, and a step change at year k can be 
modelled respectively as . 

Yu = "1 * 511 * ‘ii 
Yij = "1 * 3j1i "' 13525-2 " 541 

A 
(5) 

and . Yij = an + p11 + EU 
' 

_ 

= "' + 6;] j->k 

Regression methods have been used to examine changes over time 
separately for each month, for example, by E-1-Shaarawi g _a_]_._.

9



(1991). Tests of significance of a change over time of a specified 
form and estimation of the change are part of the regression 
methodology. Similarly, a test for homogeneity of change can be 
made prior to estimating’ an overall change. A method for 
estimating the point of change in a regression relationship 
(Esterby and El-Shaarawi, 1981) has been shown to be usefull, for 
environmental variables . , 

The assumptions of independence and the adequacy of the method 
of blocking "to account for seasonality, which were required for the 
intrablock nonparametric methods, are also required -for A the 

. . \ 

regression methods. The additional assumptions required for 

regression are homogeneity of error variances and normality of the 
errors. Techniques which help to meet these assumptions are 
weighted regression and transformations. Serial correlation can be 
accommodated by generalized least squares, b_ut as with. the 
nonparametric methods, is more problematic than other data 
features. This aspect is discussed further under cyclical seasonal 
components . '

" 

CYCLICAL SEASONAL, pcompqonnurrs
, 

some degree of smoothness in the seasonal component is often 
more realistic. Harmonic‘ components have provided adequate 
description of seasonal variability in environmental variables 
which are influenced by cyclical physical processesr Examples are 
models of physical water measurements such as temperature 
(Mc_Michael and Hunter, 1972; Neilson and Hsieh, 1982) and chemical

10



water quality parameters (El-Shaarawi gt al., 1983). Such 
deterministic seasonal components seem more appropriate for a time \s . 

series which shows a consistent strong annual cycle (McMichael and 
Hunter, 1972) and, evidence for this may actually come from the 
values of parameters obtained in trying to fit a purely stochastic 
model (Reinsel and Tiao, 1987). 

- An additive_model for monthly data, which assumes a stable 
annual cycle and a linear trend, could be represented by 

Yij = u + B. sin-2;; + B3 ~=<>s?;z-’ + w(i:+j/1.2) + rm <1)
p 

where yU'is the value of the environmental variable in month j of 
year i. Additional harmonic terms, other forms for non-seasonal 
deterministic terms and independent or dependent errors can be 
accommodated in models of this type. Reinsel and Tiao (1987) found 
that a model with annual and semiannual seasonal components, a two- 
phase trend component, and nu modelled as an autoregressive 
process, provided a good description of the variability in monthly 
averages of stratospheric total ozone. An iteratively reweighted 
least squares procedure was used to obtain parameter estimates and 
the order of the autoregressive process was determined from the 
sample autocorrelation and partial autocorrelation functions of the 
residual series. - V 

The general-form of the mean plus seasonal component in (7) is 

equivalent to using monthly indicator variables, i.e. blocking, but 
now a more parsimonious representation of the monthly mean is given 
by the fewer sinusoidal terms. Here the trend over the whole time 

11 1' 
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period can be thought of as being determined from the original 
observations minus the value at month j given by the harmonic 
seasonal component, ,which itself is (estimated over all 

observations. Under blocking, the trend term is estimated in the 
regression analysis from the original observations minus the 
appropriate monthly mean and in the seasonal nonparametric trend 
estimators (slope or step change) by differences between 
observations within the same-month. Thus numerical differences in 
trend estimates using regression methods under the same error'model 
would result from the different ways of modelling the seasonal 
component, with the further difference of method when comparing 
with nonparametric results. ' 

SMOOTHEVD SEASONAL COMPONENTS 
In some cases the seasonal variation may be poorly represented 

by sinusoidal terms and a general smoothing procedure may be more 
appropriate. An example of a robust smoother is the locally- 
weighted regression smoother, LOESS (Cleveland and Grosse, 1991), 

which has been used to show the general tendency in large sets of 
water quality data (Bodo, 1989). A seasonal—trend decomposition 
procedure based on LOESS, STL, (Cleveland gt gl., 1990) has been 
applied to monthly averages of atmospheric CO2. STL iteratively 
smooths the 'detrended seasonal component and' then the 
deseasonalized.trend component. The series is decomposed into 
seasonal, trend and residual components. The major purpose of STL 
is to estimate the seasonal component so seasonal adjustment may be

12



performed, but piost-*-smoothingof the sum of the trend and residual 
components may provide an adequate description of the low—frequency 
variation in the data. The algorithm is designed to reduce the 
competition for the same variation by the high frequency (seasonal) 
and low frequency (trend) terms. 

_ 
W

‘ 

Of particular interest to the present paper-, is the method of 
smoothing the seasonal component.’ It is assumed that change over 
time for data collected in a particular season will be smooth, 
whereas changes from season to season within a year will be 
irregular. The seasonal component is constructed by fitting a 

slowly changing smooth curve to the measurements over years within 
a season (called cycle subseries by Cleveland g _al., (1990) and 
measurements within a block here) separately for each season. The 
estimates 1;", ya, . . . ,§,._j obtained for 

h 

j=1,2, . . . ,m are then 
rearranged ‘in the order of observation, to give y1~1,y,2‘,...,y1m, 

92, , . . . ,9“, , 9,2, . . .~ ,9m, which provides the temporary seasonal 
component. The result of a low-o-pass filtering "is subtracted from 
the temporary seasonal component to give the final sea_sOnal 

component at the current loop of the procedure.
_ 

This low frequency smoothing within season, which generates 
the seasonal component in STL, is providing ya picture of gradual 
change in exactly the same subset of the data used to test for and 
estimate trend in the blocking methods above. In fact, this form 
of plot, without the smoothed curve, has been recommended by 
Esterby e_t Q. (1991) for use with the seasonal Kendall .1 and 
nonparametric slope estimator so that a plot which corresponds to 

Q
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the method of analysis can be examined in the course of the 
analysis. Despite the way the individual terms of the seasonal 
component, yfi, are obtained, it is the collection of terms in order 
of observation that provides the seasonal component-and thus this 
method is more similar to the use of a cyclical seasonal component 
than blocking methods. The STL seasonal component is really a 

global estimate of the seasonal component (i.e. over all data) and 
not one derived from values within a particular season. 

An important difference between STL and the previous methods 
are that there is no underlying assumption of homogeneity of the 
within—season change over all seasons, as can be seen from the 
cycle sub-series plots of Cleveland gt al. (1990). This allows 
more flexibility in modelling the seasonal variation in individual 
years and results from the underlying assumptions of separating 
total variation into low frequenCY, high frequency and residual 
components; The assumption, that the value,_yU, is an adequate 
representation for season j in year i, is necessary, but none of 
the other assumptions considered for the previous methods are 

necessary since STL is providing primarily graphical summaries of 
the variability in the data, However, the authors note that by 
using STL in combination with a standard ARIMA model, confidence 
intervals for the seasonal component could be obtained.’

14
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OTHER CONSIDERATIONS IN THE 
. ANALYSIS FOR TREND ’ 

Fixed interval versus time of observation 
For all environmental series the interval of observation 

and/or interval used to provide the data for analysis is important. 
Environmental observations collected over time exhibit variation at 
each level of division of the time scale. If.daily data is to be 
used, then either at the sampling or data analysis stage, decisions 
have had, to be. made to “make the observation for a day 
representative of the day, under some assumptions; For example, if 
diurnal variation occurs, two possibilities are-that sampling be 
done at the same time each day, or an average taken of samples 
collected over the_day. vsimilarly, using one value of the water 
quality variable to represent the month requires -careful 

consideration, since the hydrological cycle differs from year to 
year due to changes in weather conditions. 

An alternative to using fixed monthly intervals/is to use the 
day of observation and fit a smooth curve to the seasonal variation 
within year.i Between year differences can then be looked at as 
step changes or smooth changes. Esterby gt gl. (1991) fitted, to 
river water quality data, regression models of the form 

t 

Yij = [J + Bil‘ COS + Biz Sin (fltij + + £5; _ 

where the pair (yU,tfi) is the value of the water quality variable 
and day of measurement within the year for the jw observation in 
year i, u=2w/365, f(i,j) represents the change over years, either 
linear trend as Qi or yearly mean ai for i=1,2,...,n, and the 

' ’ 
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subscripts for y and t are as shown in Table 1. Curvilinear 
change, additional harmonic terms, time variable as (i+j/12) and 
dependent errors are all possible modifications. The results of 
the regression methods were compared with results using the 

seasonal Kendall’ trend test' and seasonal nonparametric slope 

estimate for specific conductance measurements at locations along 
a river system. 1 

_ 

Robust smoothing methods could also be "used to obtain 
seasonal, trend and residual components when day of measurement is 
used. However, the algorithm in STL is not applicable because 
cycle sub-series are not available. Either observations are not 
taken on the same day each year or the hydrological cycle is not at 
the same point on a given day each year. The procedures of 

smoothing detrended seasonal components and deseasonalized trend 
components could be applied, however the smoothing step for season 
is done over they entire data iset,» as for "trend, but with a 

freguency different from the trend frequency. 

Inclusion of covariates K

‘ 

The question of whether covariates should be included in the 
analysis for trend is complex and depends upon the interconnected 
matters of the definition of trend, form of environmental quality 
variable, reason for the analysis and method of analysis. With 
respect to water quality, Zetterqvist (1991) states what seems to 
be the motivation when covariates are included. That is, if the 

v
7 

objective is to test- for or estimate .trends in~ environmental

16
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variables due to human activities, then covariates that will remove 
variation produced by natural phenomena should be included. if the 

\_ 

change over time of the variable, irrespective of what may be the 
underlying reason, is wanted, such covariates are not needed. 
However, when covariates are included, the objective will be met 
only if the relationship (between environmental variable and 
covariate is adequately modelled. 1

- 

Of the methods considered here, regression methods allow the 
inclusion of covariates directly as independent variables and this 
includes the case of cyclical seasonal components. Adjustment of 
variables is required before nonparametric methods can be used. 
Smith and Rose (1991) compare multiple regression with the Kendall 
correlation coefficient 1 where adjustment for the covariate was to 
a) the dependent variable only, and b) both dependent variable and 
time. They show that method a) can produce misleading results and 
method b) is generally less powerful than multiple regression. The 
LOESS algorithm (Cleveland and Grosse, 1991) handles vector valued 
predictors but this feature has not been used in STL. 

Transfer function models have also.been used to include flow, 
as well as other covariates, in the analyses of water quality 
series (McLeod gt al., 1983, and Zetterqvist, 1991). McLeod gt Q1. 
(1991) propose a methodology for inclusion of covariates when water 
quality-series are not amenable to analyses by parametric time 
series methods. \' 

Flow, as a covariate of water quality parameters, provides an 
example where careful modelling is required. Zetterqvist (1991) 

17‘
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found transfer function models adequately accounted fQr 
intervention-type effects on phosphorous concentrations in the 
Ijungbyan River but were not able to model the complicated 
relationship with covariates such as flow. Esterby gt al. (1990) 

noted that the relationship between a water quality variable and 
flow may change with season and differ by location on a river 
system. Teti (1984) gives another example of time-variant patterns 
due to different sources of water. 

Missing data , . 

In the presence of missing data, the nonparametric wand 

regression methods, excluding methods where serial dependence is 
modelled, can be applied.“ However, the interpretation of the 
results should always be done in view of how much-information is 
missing due to gaps in the record. The regression methods with 
serially dependent errors require equal spacing of observations.for 
the estimation of the error component. y 

- EXAMPLE 
Water quality monitoring for major ions and nutrients at 

locations in the South Saskatchewan River basin, in the provinces 
of Alberta and Saskatchewan, has been conducted in some form since 
the early 1950's (Munro, 1987). The water quality issues in the 
basin, which are relevant to major ions and nutrient monitoring, 
result from deterioration of water quality due to eutrophication, 
increased salinity, and industrial_ and urban discharge of

18



pollutants. Specific conductance data at a South Saskatchewan 
River location, below' major urban centres and the irrigation 
district of southern Alberta, are considered here. ’Sampling was 
done at approximately monthly intervals and the data record between 
1975 to 1986 was used since there was a sample within each month 
over this period. The results from the nonparametric analysis of 
the 1978 to 1985 data blocked by month and_the regression analysis 
using a sinusoidal seasonal component and day of sampling (Esterby 
gt gl., 1991) will be compared. The longer period, 1975 to 1986, 
has been used for the run of the STL program and, for comparison, 
the model with a sinusoidal seasonal component and day of sampling 
is also shown. ' 

'

- 

Under blocking, the change over time being considered is that 
within each.month and Figure 1 allows an initial visual impression. 
The test aof the hypothesis of_ randomness using the Kendall 
statistic separately for each month provides a significant result 
at the 0.05 level only for April (Table 2). Since the test for 
homogeneity is not significant, the seasonal Kendall statistic can 
be used to draw a conclusion for all months, which is that there is 
no evidence against the hypothesis of randomness. The confidence 
interval based on the nonparametric slope estimator gives the same 
conclusion. ‘

' 

The regression analysis with a sinusoidal seasonal component 
and a linear trend over years provides an estimate of the slope 
comparable to that from the nonparametric method (Table 2). 
Examination of the plot of the residuals versus time (not shown

19
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here) suggests why the change from_year to year in the mean level 
is not well modelled by a linear term. The change that occurs in 
this period is one of step changes, with the mean level of 436 in 
1979 and 1980 being-hiqher than the mean level of 394 in the other 
years (Esterby gt al., 1992). Such a conclusion would not appear 
to hold for individual months although there are generally higher 
values in the early years for most_months. The regression model 
however allows for yearly differences in the seasonal cycle in the 
form of different phase shifts and amplitudes, and the change over 
years that is looked at is in the mean level about which this 
yearly seasonal cycle fluctuates. 

_ 
Other stations on" the same river system gave similar 

conclusions about_step changes and the estimated yearly levels are 
shown in Figure 2, where the progression from headwater site to 
location of greatest impact corresponds to going from top to bottom 
in the figure, and AKOO01 is the location considered in detail 
here. The regression model fitted to the period 1974 to 1987 is 

shown in Figure 6, with the residuals from the model as the second 
plot. ’ 

'

_ 

l 

Analysis under'blocking, either'by regression or nonparametric 
methods, allows assessment of changes in individual seasons or 
months to be made directly. This may be necessary when sampling 
does not occur throughout the year, e.g. it may be done only in 
certain seasons, or when one expects or wants to know about changes 
which correspond to different events, such as_varying sources of 
water over the year.

Y 
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The components of the decomposition of specific conductance 
between 1975 and 1986 are shown in Figure 3. The form of the 
seasonal cycle is, in a general way, comparable to the 2 component 
sinusoidal (i.e. two frequencies) model fitted vby regression 

(Figure 6). The shorter period used in the nonparametric and 
regression analyses above was 1978 to 1985, which corresponds to 
month 37 to 120 in the Figure 3» Months 49 to 71 are in years 1979 
_and 1980 and and increase in concentration is shown here, in 

agreement with the regression results. Other plots which are 
provided by the STL program are the cycle sub—series plots of the 
seasonal components, which correspond to Figure 1, but are now 
estimated quantities, and the line plots of these components by 
month (Figure 5). The latter plot dramatically shows that the 
decomposition model allows both different form and direction of 
change within a month from month to month. 1

, 
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Table 1. Data collected in m seasons over n years 
= 

V 

Season 

Year 1 2 3 ... j ... m 

1 Yn - Yn 
3 Yz1 Y22 
3 Y31 YB: 

- 0 1 - » 8 0 

i Yn Yu 
I 3 O 

'

8 

n 1 Ym Ym 

000 
coo 
not 

~00 

y1|n 
Ym 
Ym 
Ym 
Ym 

Number of n, n2 
Observations »

nm



“ Table 2. Summary of analysis by nonparametric methods and regression with sinusoidal seasonal component. 

Test Period 5 Variate Value 

Kendall‘ Jan. -0.52 
Feb. 

" Mar. -1.15 
Apr. 

_ 

-2.19’ 
May. 0.73 
June. 1.15 
Aug. 0.31 
Sept. 0.84 
Oct. -0.31 
Nov.- 

_ 

0.52 
Dec. -0.94 

Seasonal Kendall“ Year —0.78 

van Belle and Hughes” Year 
_ 

Trend 0.66 
Homogeneity 12.32 

Slope Estimate and 95% - 

Confidence Interval 
_ 

_
. Nonparametric - — 

Regression — - NI-' M\O U101 
OI 

O\l-' 
I-‘I-' 

OI 
N\l 

' Significant at the 0.05 level. 5 

’ The entries in the table for the Kendall and seasonal tests are the standard normal deviate form, with continuity 
correction, as described by Hirsch gt al. (1982). - 

b The statistics for test of trend and homogeneity, without continuity corrections, as described by van Belle and Bughes 
(1984), are distributed approximately as chi squares with 1 and 11 degrees of freedom, respectively. ‘
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