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ABSTRACT
The recently helghtened 1nterest in the assessment of the
current state of environmental conditions and the detection of any
change in environmental conditions has led to a corresponding
interest in statistical trend assessment methods. 1In this paper,

the determination of any -trend is considered as a part of the

‘larger task of c':haracterizing‘the variability of an environmental

quality indicator. The features of several parametric and
nonparametric methods are discussed with respect to _theirb
applicability for estimation and detection, the ability to handle
changes of different forms, the inclueion of concomitant variables
1n the analysis and the inherent assumptions of the method.
Examples of the analys1s of water quality data using these methods'

are g‘lven .



MANAGEMENT ?ERSPECTIVE

The assessment of trends in environmental quality indicators
and the reporting of such aSSéssments are priorities for national
and international agencies. Environmental data\;ets are generally
complex and require yariability,,in addition to changes in long
term tendency, to be adequately accounted for in the.analisis for
any trend. In the present paper, several statistical methods which
account for seasonality and trend are compared with respect to the
underlying model for trend. It is shown that clear 6bjectives about
the types of changes that are important for'a.particular set of
monitoring data are essential, sincé the methods model the trend

and seasonal compbnentg in different ways.



INTRODUCTION

Statements about the assessment .of trends pervade the
publications of national and-ihternatiéngl agencies concerned with
environmental conditions. Consider the example of surfacé_water
quality. Monitoring networks héve been established in a number of
countries, where trend assessment was either the sole objectivé or
one of a number of objectives of the network, for example, the
Water Quality AsseSsment:Program, Canada (Kwiatkowski, 1987) and
the‘U.S.-Geongical Survey's Benchmark and NASQAN networks (Briggs,
1978). Recently, the heightened interesf in environmental p:oblems
has led to new efforts tobconvey the information obtained from
monitoring networks to decision makers and the public, ofteh called
state of the environment reporting, and to define environmental
indicators to facilitate the integration of énvironmental and
economic considerations in the decision-making process. Again,
trend assessment is a priority. | |

In the Organization for Economic Cooperation and Development
(OECD) report on environmental indicators (OECD, 1991), a
prelimihary set of 18 indicators;of environmental performance was
-.iSSued. The indicators were choéen to measure environmental
performance with ‘respect to level and changes in level of
-envirOnmental quality and, although they'are mainly calculated
quantities such as estimates of co, eﬁissions, river quality
indicators are measured cohcentratians of dissolved oxygen and
’nitrate in rivér water. In all cases, graphics such as bar graphs,

pie charts, or plots, with lines joining yearly values, are used to
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present trends. The preliminary set of environmental indicators
issued by Canada (Environment Canada, 1991), using selection
criteria that included support by sufficient data in order to show
trends over -time, contained a higher proportion of directly
measured indicators than the OECD set. For example, as well as
calculated céz emissions, atmospheric CO, concentration was also
taken as an_-indidator. Other exampleé of diréctly’ measured

indicators are phosphorous and nitrogen concentrations in surface

~ water. 'G:aphics similar to those in the OECD report were used to

illustrate changes in the ihdicators.

The question of what is meant by trend arises. The_above
examples illustrate the expression of objectives in very genéral
terms. It seems'reasonéble to_understand trend as the géneral

direction and tendency (Oxford DictionarY) of the quantity of

- interest. It then rests with the individuals working with this

probiem at the scientific level to make the general definition
specific so that hypotheses may be tested and’the‘magnitude of
change estimated.

Since the primary objective of this papér is to consider
statistical methods suitéble.for environmental trend analysis; and

an important contribution that statistical methodology can make is

" to provide precise and unbiased estimates of trend, it is .

' apprépriate to consider'frend analysis as part of the lardger task

of'characterizing variability in the data to be used to assess
trend. This is particularly important with respect to state.of the

environment reporting and environmental indicators, since simple
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'indiéators or reports ére being called for (e.é. Canada's Green
Plan in Brief, Depértment of Supply and Servicgs,‘1990). The ideal
is a simple and clear>pfesentation of a properly estimated well-
\defined qﬁantity. Much work has been done towards achieving this
goal for monitoring data, and some e#amples*éf methods of.analysis
of atmospheric>and water quality Variablés are‘considered here.
 Several of the methods are then applied to a single water gquality
data set. _

In discussing the methods, the major objectives are. to show
how other sources of variability are separated from trend, and to
describe the model for trend underlying the methods.v The ability_
to accommodate covariates in the analysis and the existence of
measures of uncertainty are also considered. Methods'are not
described in‘detail since this can be found in the referénces
cited. Attention is restricted to a set of obgerVationg on one
lenvironmental quality variable epllected over time at one location
under a monitoring program where sampling is done at apprdximately
eéuéllintervals in time, the number of years of data available is
short té.modérate and a number df samples.have been taken within

each year.



METHODS OF ACCOUNTING FOR SEASON
IN TREND ANALYSIS

BLOCKING BY SEASON

Consider observations on an environmental variable obtained ét
m identifiable times 'wi‘thin o year, over n years. For ex‘ampie,
observations could be made daily, monthly or. seasonally. It is
‘assumed, for the moment, that identification of the time within the
year at the particular interval chosen, for example, identification
of the month of observation, is adequate. Let y;; denote the
observation of the Variéble at the j* sampling time within the
year, for year i, where i=1,2,...,n and j=1,2,... ,fn.. |

Many analyses for trend have been based oh an additive model
‘'of within-year, between-year, and error components. An ex’amp‘le of
such a model is

Yij_-= @ + By + €y (1)

where «; is the component for year i, 8; the component for the 3t
sampling time within the year and ¢;; the residual varigbiiity. The
objective is to determine changes ovor years free of ééasonal
effects. |
Nongérametric _Methods S

Recently, nonparametric methods have been widely used in the
ana,lysis. of water quality .data becauée fewer assumptions vmust be
satisfied than w1th parametric methods. Hirsch et gl.' (1982)
illustrated the use of a blocked Kendall's 7, the seaéonal Kendall
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test for'trend, and extended the nonparametric slope estimator of -

Thiel (1958) and Sen (1968) to account ‘for seasonality (the

seasonal Kendall slope estimator). Gilbert (1987) gave a simple

‘procedure for a confidence interval for the seasonal Kendall slope

éstimator;

The seasonal Kendall test for trend is an intrablock method
(vah Belle and Hughes, 1984). The effect of season is eliminated
by calculating_the test statistic sepa:atEIy for ea@h season and
summing these statistics to obtain an overall teét statistic. In
terms of the set of obServationé,”(y”),vthis becomes clear if‘the

data are arranged as in Table 1, where, for ease of expression,

- season j is used instead of the jt sampling time within the year.

The possibility of missing data is included through the subscript
on the number of observations in a season, n; for j=1,2,...,m. The

test statistic calculated for season j is

S; = Y sgn(yy; - ¥ij) - (2)
f<k . . . )
where
_ 1 x>0 . ‘
sgn(x) = { 0 if x=0 (3)
: -1 %<0 :

If this statistic is used_fbr a trend test on the data for

month j, it involves téstihg the hypothesis, Hy, that y“, yn, ooy

Yo;; are a sample of n; independent and identically distributed

random variables. A two sided alternative, H,, is the hypothesis
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that the distribution is not the same for all y;;, y,;, with i,ksn

and i#k. It is used as a test for trend because it is,poﬁerful for
the alternative of a monotonic trend. If (1) is taken to represent
all of the observations, the hypotheses for the test within seeson
| j are Ho:: =0 (i=1,2,...,n) a;nd.H_,_: @, S®,S. . . SQ, OF @ 20,2...2Q, with
at least ene-Strictvinequality._ There is an explicit assumption of
ihdependence between seasonal values at least one year apar? under
boﬁh H, and H,. Further, under the aesnmption'of independence, it
is a test of trend alone only if the additional assumption, that
the effect fof season j is constant over all years, holds (i.e. a
model such as (1) above with no interaction terms). If this is
true, 'taking ‘differences, ¥,;~Yij/ will remove the seasonal
component. | |

The seasonal Kendall test statistic is

s=Ys - (4)

and it is used to test the hypothesis of independent and identical
disfributions within seéson againét the alternative that this does
.not hold innat least one season. It is inappropriate to combine
the,Sj‘ifvtne trend is not homogeneous over seasons and.van Belle
and Hughes (1984) showed how to test for homogeneity,-provided‘the
cbservations within a year can be assumed independent. .

The analogous nonparametric estimate of slope is the median of
all possible slopes based on pairs of'observations;%hieh are in the

same season, and thus, is clearly satisfactory only for linear



changes. Let B denote this siope estimator, then B is the median

of

(Y - ¥i)/(k-1) (9
for i<k and j fixed, taken over j=1,2,...,m. |
Nonparametric estimation of the magnitude of a step change in
a water quality variable has been'considered by Hirsch (1988) and
the seascnal Hodges-Lehman estimator, Ay, , which is the analogue of
B, was found to perform well. Suppose that a step change occurred
after year ¢. Then the objectlve is to estimate the change in
level between the two periods i=1,2,...,¢ and i=2+1,...,n. For
season j, all bossible differences (ykj yu) are calculated where
i=1,2,...,2 and k—2+1,...,n, and thls is done for j=1,2,...,m. Ag
is the median of the'me(n—E) differences. Helsel and Hirsch (1992)
give methods for calculating the confidence interval for the
Hodges-Lehman estlmator.

A corresponding nonparametrlc method for ‘testing for the
existence of a step change and estimating the point of this change
is given by Pettitt (1979)} .Although this has not beeh applied to
water quality variables it hasvbeen used to look for changes in
‘diatom concentrations in sediment'cores‘(Esterby et al., 1986).

The seasonal Kendall test is not robust to serial dependence
(Hirsch et al., 1982) -and the variance of. S under different
assumptions about seriall dependence has been obtained by
Zettergvist (1991) and El-Shaarawi and Niculescu (1992). Hirsch
- and Slack (1984) have proposed a modification'in»the presence of
serial dependence, and Lettenmaier (1988) has given a similar test.
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The Spearman rank correlation coefficient, r;, can replace
Kendall's 7 when blocking is present (Taylor, 1987). The
coefficient r; has been used to test for trend under blocking by
month (El-Shaarawi et al., 1983). The Spearman partial rank
correlation test has been described by Mcleod et al. (1991).
Lettenmaier (1976);has considered the effect of serial dependénce
oq-the Spearman coefficienf, the t-test and Mann-Whitney test for

step change.

Least Squares Regression

The regression analysis under blocking is also based on model
(1) and thus, changes over years are examined separately within
each season first and then, over all seasons, if the changes are
shown to be homoéeneoUs. The differences between the nonparametric
and the regression methods are that, in the latter, the form of the
change will be an explicit part of the model, and more general
forms can readily be included. For season j, a linear trend, an
example of a curvilinear trend, and a step change at year k can be

modelled respectively as

Yij =@ + Bl + €55
_ ; . .
Yij = @; + Bjl + Bjpi® + € (6)
and . yij = an + ﬂj'l + e‘ij lSk
= ajZ + ﬁjz + e,ij i>k

Regression methods have been used to examine changes over time
separately for each monﬁh, for example, by El-Shaarawi et al.
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(1991). Tests of significance ofta change over time of a spécified
form and estimation of the change are part of the regression
methodology. Similariy, a test for homogeneity of change can be
made prior to estimating an overall change. A method for'
.estimating the point of change in a regression relatiobéhip
(Esterby and El-Shaarawi, 1981) has been shown to be useful for
envifonmental variables.

The~assump£ions of independence and the adequacy of the method
of blocking to account for seasonality, which were required for the
intrablock nonparametric methods, are also required for the
regression methods. The additionai assumbtions requi}ed for
regtession are homogeneity of error varionces and normality of the
errors. Techniques whiCh help to meet these assumptions‘are
weighted regression and trahsformations.> Serial corrélation can be.
accommodated by generalized 1least squareo, but ‘as withl the
nonparametric methods; -is more problematic than other data
features. This aspect is discussed further under cyclical seasonal

components.

'CYCLICAL .SEYASONAL, COMPONENTS

Some degree of smoothness in the seasonal component is often
_,more realistic. Harmonic components have provided adequate
description of seasonal variability in environmental variables
which are influenced by cyclical physical processes. . Examplés are
models of physical water measurements such as température

(McMichael and Hunter, 1972; Neilson and Hsieh, 1982) and chemical
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water gquality pafameters (El-Shaarawi et al., 1983). Such
determin{stic seasonal components seém more appropriate for a time
series which shows a consistent'strong annual cycle (McMichael and
Hunter, 1972) and, evidence for this may actually come from the
values of parameters obtéined in tryin§ to fit a purely stbchastic
model (Reinsel and Tiao, 1987).

An additive_model‘for‘ﬁonthly-data, which éssumes a stable

annual cycle and a lihear trend, could'be represented by

Yij = 4 + By Sin% + B, COS% + w(i+]j/12) « N4j (7)
where y;; is the value of the environmental variable in month j of
year i. additional harmonic terms, other forms for non-seasonal

deterministic terms and independent or dependent errors can be

- accommodated in models of this type. Reinsel and Tiao (1987) found

that a model with annual and semiannual seasonal components, a two-
phase trend component, and n;; modelled as an autoregressive
process, provided a good description of the variability in monthly
averages of sﬁratoSpheric total ozone. ‘An iteratively reweighted
least squares procedure was used to obtain parametér estimates and
the order of the autoregressive process was determined from the
sample autocorrelation and partial autocorrelation'functions of the
residual series. |

The general form of the mean plus seasonal component in (7) is
equivalent to using monthly indicator variables, i.e. blocking, but
now a more parsimonious representation of the monthly mean is given
by the fewer sinusoidal terms. Here thé'trend over the whole time
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period can be thought of as being determined from the original

observations minus the value at month j given by the harmonic

- seasonai - component, .which itself 1is estimated over all

observations. Under blocking, the trend term is estimated in the '

regression analysis from the original observations minus the
appropriate monthly mean and in the seasonal nonparametric trend

estimators (slope or step change) by differences between

. observations within the same month. Thus numerical differences in

trend estimates using regression methods under the same error'model
would result from the different ways of modelling_the seasonal
component, with the further difference of method when comparing

with nonparametric results.

SMOOTHED SEASONAL COMPONENTS
In some cases the seasonal variation may be poorly represented

by sinusoidal terms and a general smoothing procedure may be more

'appropriate.‘bAn example of a robust smoother is the locally-

weighted regression smoother, LOESS (Cleveland and Grosse, 1991),
which has been used to show the general tendency in large sets of
water quality data (Bodo, 1989). A seasonal-trend decbmposition

procedure based on LOESS, STL, (Cleveland et al.;, 1990) has been

applied to monthly averages of atmospheric CO,. STL iteratively

smooths the detrended seasonal component and then ' the
deseasonalized trend component. The series is decomposed into
seasonal, trend and residual components. The major purpose of STL

is to estimate the seasonal component so seasonal adjustment may be
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performed,‘but postasmoothing-of the sum of fhe‘trend and residual -
components may provide an adequate description of the low-frequency
variation in the data. The algorithm is designed to reduce the

competition for the same variation by the high frequency (seasonal)

and low frequency (trend) terms.

of particular intereét to the presént paper, is the method of
smoothing the seasonal component. It is assumed that change over
time for data collected in a particular season will be smooth,
whereas changes from season to season within a year will be
irregular. The seasonal component is constructed by fitting a
élowly changing smooth curve to the measurements over years within
a season (called cycle subseries by Cleveland et al., (1990) and
measurements within a block here) separately for each éeason, The
estimates §”,§ﬁ,...,§m obtained for 3j=1,2,...,m are then
rearranged in the order of observation, to give ¥, ¥y e+ ¥iur
Yoqreoes¥pme 9m"ﬂ"9mv which provides the temporary seasonal
component. The result of a low-pass filtéring'is subtracted from
the temporary seasonal component to give the final seasonal
component at the cutrent loop of the procedure.

This low frequency smoothing within season, which generates
the seasonal component in STL, is providing a picture of gradual
change in exactly the same subset of the data used to test for and
estimate trend in_the blocking methods above. In faét, this form
of pibt,'withoﬁt the smoothed curve, has been recommended by
Esterby et al. (1991) for use with the seasonal Kendall 7 and

nonparametric slope estimator so that a plot which corresponds to
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the method of analysis can be examined in the course o‘f- the
analysis. Despite the way the individual terms of the seasonal
componént, §”,vare obtaineqd, it is the collecfion of terms in order
of observation that provideé the seasonal component and thus this
method is more similar to the use of a cyclical seasonal component
than blocking methods{ The STL seasonal compohent is really‘a
glecbal estimate of_the seasonal component (i.e. over all data) and
not one derived from values within a particular season.

| An important difference between STL and the previous_methods
are that there is no underlying assﬁmption of homogeneity of the
within-season change over all seasons, as can be seen from the
cycle sub-series plots of Cleveland et al. (1990). This allows
rmoré flexibility in modelling the seasonal variation in individual

years and results ffom‘the underlying assumptions of'Separating_
total variation into low frequency, high frequency and residual
components. ‘The assumption, that the value, yn, is an adequate
representation for éeason 3 iﬁ year i, is necessary, but none of
the other assumptions considered for the previous methods are
necessary since STL is providing primarily graphical summaries of
the variability in the data. However, the authors note that by
. using STL in combination with a standard ARIMA model, confidence

intervals for the seasonal component could be obtained.-
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OTHER CONSIDERATIONS IN THE 7
ANALYSIS FOR TREND /
Fixed interval versus time of observation
For all environmental series the interval of observation
and/or interval used to provide the data for analysis is impotﬁant.
Environmental observations collected over time exhibit variation at

each level of division of the time scale. If daily data is to be

'used, then either at the sampling or data analysis stage, decisions

have had to be made to make the observation for a day
representative of the day, under some assumptions. For example, if
diurnal variaﬁion occurs, two possibilities_are-that sampling be
done at the same time each day, or an average taken of samples
collected over the day. - Similarly, using onhe value of the water
quality variable to repreéent the month reéuifes .careful
éonsideration, since the hydrological cyclé differs from year to
year due to changes in'weather conditions.

An alternative to using fixed monthly‘intervaleislto use the
day of observation and fit a smooth curve to the seasonal variation
within year. Between year differences éan then be looked at as
step changes or smooth changes. Esterby et al. (1991) fitted, to
river water quality data, regression models of the form

Y55 = B+ By cos wty; + By sin wty; + £(1,3) + € . (8)
where the pair (y”,t“) is the value of the water Quality variable
and day of measurement within the year for the jm-observation in
year i, mééﬂ/365, £(i,j) represents the change over years, either

linear trend as @i or yearly mean a; for i=1,2,...,n, and the
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subscripts for y and t are as shéwn'in Table 1. Curvilinear
chahge, additional harmbnic‘terms, time variable as (i+j/12) and
dependent errors are all possible modifications. The results of
the regression methods were compared with results using the
seasonal Kendall trend test apd seasonal nonparamétric slope
estimate for specific conductance measurements at locations along
a river system. |

Robust smoothing methods could also be used to obtain
seasonal, trend and residual components when day of measurement is
used; However, the alggrithm in STL is not applicable because
cycle sub-series ére not available; Either observations are not
takén on the same day each year or the hydrological cycle is not at
the same point on a given day each year. The procedurés of
smoothing detrended seasonal components and deseasonalized trend
components could be applied, however the smoothing step for season
is. done over the entire data set, as for 'Erend, but with a

freéuency different from the trend frequency.

Inclusion of covariates

’The question of whether covariates should be included in the
analysis’fof trend is complex and depends upoh the interconnected
matters of the definition 6f trend, form of environmental quality
variable, reason for the analysis and method of analysis. With
respect to water quality, Zetterqgvist (1991) states what seems to
be the motivation when covariates are includéd,. That is, if the

objective is to test for or estimate trends in environmental
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variables duelte human activities, then covariates that will remove
‘variation produced by natural phenomena shouldlbe included.b If the
change over time of the variable, irresﬁeetive'of what mayrbe the
underlying reason, is wanted, such covariates are not needed.
However, when covariates are included, the objective will be met
only if the relationship between environmental variable and
covariate is adequately modelled. ‘

| of the metheds considered here} regression methods allew the
inclusion of covariates directly as independent variables and tﬁis
includes the case of cyclical seasonei‘components. Adjustment of
variables is required before nonparametric methods can be used.
Smith and Rose (1991) compare multiple regression with the Kendall
correlation coefficient r where adjustment for the covariate was to
a) the dependent variable only, and b) both dependent variable and
time. They show that method a) can produce misleading results ane
method b) is generally less powerful than multiple regression. The
LOESS algoriﬁhm (Cleveland and Grosse, 1991) handles veetor valued
predictors but this feature has not been used in STL.

Transfer function models have also been used to include flow,
as well as other covariates, in the analyses of water Quality
series (Mcleod et al., 1983, and Zetterqvist, 19921). Mcleod et al.
(1991) propose a methodology for,inclusion of covariates when water
quality series are not amenable to analyses by parametric time
series methods. |

Flow, as a‘eovariate of water quelity parameters, provides an

example where careful -modelling is required. Zetterqvist (1991)
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found transfer function quels adequately accounted for
intervention-type effects on phosphorous concentrations in the
Ljungbydn River but were hot able to model the complicated
relationship with covariates such as flow.‘ Esterby'g; _l. (1990)
noted that the relationship between a water qualify variable and

flow may change with season and differ by location on a river
system. Teti (1984) gives another example of time-variant patterns

due to different sources of water.

Missing data ' ' P

In the presence of nmissing data, the nonparametric Vand

‘regression methods, excluding methods where serial dependence is

modelled, can bé applied. However,; the interpfetation of the
results éhould always be done in view of how much information is
missing dﬁé'to gaps in the record; The regression methods with
serially dependent errors require equal spacing of observations. for
the estimation of the errér component. | i
EXAMPLE

Water quality monitoring for méjor ions and nutrients at
locations in the South Saskatchewan River basin, in the provinées
of Alberta and Saskatchewan, has been conducted in some form since
the early 1950's (Munro, 1987). The water quality iséues ih the

basin, which are relevant to major ions and nutrient monitoring,

. result from deterioration of waterfquality>due to eutrophication,

increased salinity, and industrial and wurban discharge of
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pollutants. Specific conductande data at a South Saskatchewan
River location, below major urban centres and the irriéation
district of southern Alberta, are considered here. Sampling was
done at approximately monthly intervals and the data record between
1975 to 1986lwas used since there was a sample within each month
over this period. The‘results from the nonparametric analysis of
the 1978 to 1985 data blockéd by month and the regression analysis
using a sinusoidal seasonal component and day of sampling (Esterby
et al., 1991) will be compared. The longer period, 1975 to 1986,
has been used for the run of the STL program and, for compariéon,
the model with a sinusoidal seasonal component and day of sampling
is also shown.

Under blocking, the change over time being considered is that
within each month and Figure 1 allows an initial visual impression.
The test of the hypothesis of randomness using the Kendall
statistic separately for each month provides a significant result

at the 0.05 level only for April (Table 2). Since the test for

~homogeneity is not significant, the seasonal Kendall statistic can

be used to draw a conclusion for all months, which is thét there is
no evidence against the hypothesis of randomness. The confidence
interval based on the nonparametric siope estimator gives the same
conclusion. |

The regression analysis with a sinusoidal seasonal component
and a linear tfend over years provides an estimate of the slope
comﬁarable to. that from the nonparametric method (Table 2).

Examination of the plot of the residuals versus time (not shown
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here) suggests why the change from year to year in the mean level
is not well modelled by a linéar term. The change that occurs in
this period is one of step changes, with the mean level of 436 in
1979 and 1980 being higher than the mean level of 394 in the other
years (Esterby et al., 1992). Such a cohclusion would not appear
to hold for individual months- although there are generally higher
values in thé early years for most months. The regression model
however allows forbyearly differences in the seasonal cycle in the
form of different phase shifts and amplitudes, and the change over
years that is looked at is in the mean level about which this
yeafly‘seasonal cycle fluctuaﬁes.

Other stations on the same river system dgave s$§imilar
conclusions about step changes and the estimated yeariy levels Are
shown in Figuré 2, where the progression'froh headwater site to
location of greatest impact corresponds to going from top to bottom
in the figure, and AK0001 is the location considered in detail
here. The regression model fitted to the period'1974 to 1987 is
shown in Figure 6, with thebresiduals from the model as the.seCOndv
piot. |

Analysis under blcl:ckin‘g,' either by regression or noriparamet_ric
methods, allows assessment of changes in individual seasons or
months to be made directly. This may be necessary when sampling
does not occur throughout the year,'é.g. it may be done only in '
- certain seasons, or when one expects or wants to know about changes
which correspond to different events, such as varying sources of

water over the year.
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The components of the decomposition of specific conductance
between 1975 and 1986 atre shown in Figure 3. The foirm of the
seasonal cycle is, in a general way, comparable to the 2 component‘
sinusoidal (i.e. two frequencies) model fitted by regression
(Figure 6). The shorter periodbused in the nonparametric and
régression analyses above was 1978 to 1985, which corresponds to
month 37 to 120 in the Figurex3u Months 49 to 71 are in yéars 1979
and 1980 and an increase in concentration is shown here, in
agreement with the regression results. Othér plots which are
provided by the STL program aré the cyclé Sub—Seriés'plots‘of the
seasonal componentsj wﬁich correspond to Figure 1, but are now
estimated quantities, and the line plots of these components by
month (Figure 5). The latter plot_dramaticélly shows that the
décompoéition model allows both different form and direction of

change within a month from month to month.
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Table 1. Data collected in m seasons over n years

Season
Year 1 2 3 e 3j . m
1 Yiu - Yy Yi3 .o Yyj cee Yin
2 Y21 Y22 Yz oo Yz; <o Yon
3 Y31 Y3, Y33 SRR Y3 o Y3n
f R4 Yie Yis coe Yij .o Yin
n ) _ yn1 ynz . y"B . . ‘o . Ynj LI ym
Number of n, n, ng n, n,

Observations
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Tabie'z. Summary of analysis by nonparametric methods and
regression with sinusoidal seasonal component.

Test : _ Period . variate Value
Kendall® Jan. =0.52
' Feb. =-0.52
? Mar. -1.15
Apr. -2.19"
May. 0.73
June. 1.15
July. ‘ ~0.52
Aug. . 0.31
Sept. 0.84
Oct. ' -0.31
Nov. . 0.52
Dec. -0.94
Seasonal Kendall? Year -0.78
van Belle and Hughes® Year
Trend 0.66
Homogeneity 12.32

Slope Estimate and 95%

- Confidence Interval _
Nonparametric -1.9 -5.1 1
Regression -2.2 -5.6 1

* significant at the 0.05 level.

a The entries in the table for the Kendall and seasonal tests
are the standard normal deviate form, with continuity
correction, as described by Hirsch et al. (1982).

b The statlstlcs for test of trend and homogenelty, without
continuity corrections, as described by van Belle and Hughes
(1984), are distributed approximately as chi squares with 1
and 11 degrees of freedon, respectlvely
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