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Management Perspective

Hydraulic fracturing is a method of reservoir stimulation that is frequently applied in the oil and gas
indu_stri.es and has considerable potential for applica,ﬁon;in conjunction with _thé remediation §f contaminated
grouhdwater. The injection of hydraulic fracturing fluid into a geologic for_fnation displaces the fluids that are
distributed within thé formation prior to fracturing and, in the case of groUndwatei' remediation, this process
may result in thé mobilization of the target contaminants. Thus, the application of hydraulic fractqring could
conceivably Hamper, rather than assist, the remediation effort. AI relatively simple mathematical solution that
models- the process of formation fluid displacement due to hyd,_ra‘ulic fraétlurin‘g has been applied to a variety
of fracturing scenarios. This paper désQﬁBes a more detailed, and CQnsiderany more computationally
demanding, solution that circumvents a limiting assumption invoked in the formulation of the preyioué
solution, A comparison of selected results computed using these two solutions indicates that the simple
solution is 'accufate for a useful range of formation and hydraulic fracture treatment conditions. The

accuracy of this solution ehables the routine evaluation of the potential for contaminant mobilization by

‘hydraulic fracturing for settings of realistic complexity.
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- Abstract
Hydraulically fracturing a geologic formation results in the displacement of the fluids that are
distributed within the formation in response to fracturing fluid loss and \por'oelasticity effects’.“This process
will limit the application of hydraulic fracturing in conjuﬁction with groundwater contamination remediation
i tﬁe resulting fluid displac.ement translates to deleterious mobilization 61 the target contaminants. A
dynamic solution for determining the fluid displacement accompanying hydraulic fracturing is d__eyeloped and
compared to a simpler, static solution. The static solution is shown to be adequate for ch_a_racteristi-c

formation and fracture treatment parameters .

Introduction and Review of the Static Solution

"Hydraulic fracturing is a routine method of oil and gas well stimulation that may be equally beneficial
when applied in conjunction with grouridwater contamination remediation (Murdoch et al., 1991). Fracturing
fluid loss to the surrounding formation thrdugh the walls of the fracture, and poroelasticity effects associated
‘ with the con.'lp'ression of the formation, estéblish an advective transport regime within the formation and
displace the fluids that are initially distributed within the formation. This process of fluid disblacement may
limit the abplicétion of hydraulic frécturihg..t'echﬁology as an aid to groundwater contamination remediation

as the induced fluid displacemeht has ,the‘potentia,l for the mobilization of the target c_ontan:inants.
Piggott énd Elsworth (1994a) introduced a procedure for calculating the fluid displacement that

accompanies hydraulic fracturing. The solution applies to the particular case of a PKN hydraulic fracture
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(Perkins and Kern, 1961; Nordgren, 1972) su_biect to fracturing fluid loss to the formatioh at a rate that is

equal to the rate of fluid injection, thereby minimizing poroelastlc:ty effects.

Figure 1 illustrates the extension of a PKN hydraulic fracture. Two symmetnc fracture segments
propagate away from the wellbore with a constant height, H, to a maximum length of L = L at the end of
fluid injection t = t,. The remaining parameters that regulate fracture enenéion and fluid displacement are
the diffusivity and porosity of the formation section, D and n, the ffacturing fluid leakoff coefficient, C,, and
the rate of fracturing fluid injection, Q. The extension of a PKN hydraulic fracture subject to fluid loss at the

raté of fluid injection is given by (Nordgren, 1972)

. a | | |
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where the local rate of fl,uid loss to the formation through the two opposing fracture walls is

@

in which 1 is defined as the fime at which the formation is first éxposed to fracturing fluid. Fluid flow within
the formation occurs in the plane of the x- and y-axes (see Figure 1) and fluid displacement is indexed by

the displacement components in the directions of coordinate axes

A =X -X, .
T | . ©)
Ay =YY

where X, and y, and x, and y, are the initial and final positions of a reference fluid particle, resbe‘cti‘vely. The
total displacement of the particle is then given by
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The solution for formation fluid displacement reported in Pigi'gott and Elsworth (1994a) is based on

the assumption that the displacement of the reference fluid particle is sufficiently small that the velocity that

" is applied to the particle is unchanged with respect to the motibn of the particle. This is referred to as a



static solution, since it assumes that the fluid particle is static with respect to the calculation of velocity. This

approximation yields

5= ot | 2 \/_Td_
P -1 (5)
i, = f ‘/— i o
with
e = O R Vot | ©

where g.eomet,r_y. is expressed in dimenéionless form relative to the Iength of the fractﬁre at thé end of fluid
injection, x, = /L, and y, = y/L,.. In (5), integration implies the superposition of displacement increments
due to fluid loss along the length of the fracture with -1 < x4 <1 andy,=0.

The .assu‘mption that the velocity of the fluid particle is everywhere equal to the vélocity calculated
at the initial location of the particle is .an obvious limitation of the static so’lu'ti'on‘. It is expected that the
accﬁracy of t_helstatib_solution will degrade as the displacement of the particle increases, and that a
dynamic solution that explicitly represents the motion of the patticle is required for the case of large
displacement magnitudes. This paper introduces such a solution, again for a PKN hydraulic fracture subject
to high flujd loss, and compares the displacement magnitudes predicted by the static and dynamic solutions

as a measure of the adequacy of the static solution.

Formuilation of the Dynamic Solution
The dynamic solution is derived through the superposition of velocity increments that correspond to
the discretization of fiuid loss to the formation with respect to time and position along the length of the
fracture. Derivation of the dynamic solution begins with the hydraulic head induced by continuous, point

fluid injection as stated by the Theis relation (e.g., Freeze and Cherry, 1979)
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where u is d_éfined as
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and Q is the rate of fluid injectib‘n, r is the distance between the fluid source and the obsérvatjon location,

T and D are the transmissivity and diffusivity of the formation, and t is time relative to the onset of fluid

injection.

From (7) and (8), it can be shown that the advective veIocify induced by a finite injection event is

Q 1 1 : . \
V=t = u.e™ AL (9
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where
2 ’
T 4D(t-t)
Here, Q_, t, and At denote the rate, onset, and duration of the injection event; H and n are the thickness

i
and porosity of the formation; and r, is the distance between the injection-and observation locations
(subscripts i and j indicate the timing and position of the injection event, respectively). The geometry of this
scenario is depicted in Figure 2. Partitioning the radially directed velocity increment given by (9) into

components in the directions of the x- and y-axes yields
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The variation of fluid injection with time and position during the period of fracmre extension may be

determined from (1) and (2) as



(12)

where time is expressed in dlmensmnless form relative t6 the duration of fluid injection, td t/t and Ax; is

an increment of fracture length as shown in Figure 2. Substitution of (12) into (11) yields
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which describes the velocity contributed by fracturing fluid loss at a particular time and position along the
length of the fracture. The velocity resulting from fluid loss over the duration of injection and length of the

fracture is obtained by superposition of these velocity increments. In integral form, this translates to
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Fracturing fluid loss to the formation cedses at the end of fluid injection since the high rate of fluid loss

precludes the retention of theflujd within the fracture. Thus, the limits of integration with respect to time

aret, = 0andt, =t,* wheret, is the lesser of the current time and the time at the end of fluid injection.
The limits of integration with respect to position are X, 4 = -exj;d' and X, = X,,” Where x ;" is the lesser of the
current length of the fracture and the length of the fracture at the end of fluid injection.

Equation (14) is an integral equivalent of a system of nonlinear ordinary differenti’all equations and
is s’ubj‘ect'to the initial coﬁditions x(t) = x, and y(t) = y, at t = 0. The desired output of the dynamic solition
are the values x(t} = X, and y(t) = y, corresponding to t — . ‘

Calculation of fluid displacement using the dynamic selu_t,ion is co_neiderably more intricate and
R computationall'ly dem,and_,i,ng than the analogous exercise using _the statie solution. This task is furtﬁer
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complicated by the singular behaviour of the infegrands in (14) and by the lack of a definite upper bound
for the solution of the system of differential equations. The singular behaviour of the integrands may be
managed through the application of Gauss-Chebyshev quadrature (Press et al., 1992). An approximate

upper bound for the solution of the system of differential equations may be obtained by monitoring the

motion of the fluid particle in terms of the characteristic time

t, = i ‘ (15)
8D
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which is the time to peak velocity assuming instantaneous injection at the wellbore. In this approach, the

motion of the particle is determined over increments of the characteristic time and iteration- is terminated

when the displacement of the particle over an increment is less than a nominal fraction of the calculated,
total displacement of the particle. | | |

The dyna‘mic solution was implemented as a FORTRAN algorithm that exploits the IMSL subroutines
DGQRUL and DIVPRK (IMSL., 1992) for Gatjss-Chebyéhev quadrature and evaluation of the system of

differential equations, respectively. While carefully. programmed for optimal performance, the dynamic

_ solution proceeds many orders of magnitude fofe slowly than the static solution. This contrast indicates

the value of the static solution as an alternative to the dynamic solution.

' Comparison of the Static and Dynamic Solutions
A comparison of tﬁe siatic and dynamic solutions was undertaken using the formation and fracture
treatment parameters cited in Piggott and Elsworth (1 994a). Briefly, these parameters are a formation
thickness of H = 45.7 h, a leakoff coefficient of C, = 0.000393 mv/s'?, an injection rate and duration of ‘
Q =0.0795 m¥s and t, = 12 000 s, and a fracture length of L, = 77.0 m. These parameters correspond to
hydraulic fracturing performed in the context of hy,drocarbon reservoir stifﬁ,ulation and may transléte to
displacement magnitudes that exceed the values thé_t are characteristic. of hydraulic fracturing applied in

conjunction with groundwater contamination remediation. In this oo’r'ﬁpa,rison. the porosity of n = 0.2 cited

'in Piggott and Elsworth (1994a) was replaced by a range of porosities of n = 108 to 107 to illustrate the




impact of varying displacement magnitudes on ‘the static and dynamic sqlutioné. Further, an arbitrary

diffusivity of D = 1 mzlé was assumed following preliminary analyses that indicated that diffusivity regulates
the timing of fluid motion; and not the terminal displacement of the particle. Total disblacem,ent was
determined for the five observation locations indicated in Figures 3 and 4; these 'observatioﬁ locationis are
posmoned at (xo,yo) = (0. 25Lp,0 25L,), (0.5L,,0.5L), (LyLy), (L, 2L,) and (4L,4L)).

Flgure 3 compares the total fluid displacements computed for the five observation locations usmg the
static and dynamic solutions and the indicated range of porosities. Displacement decreases with increasing
distance from the wellbore, as lndexed by observation locations. 1 through 5. The magnitudes predicted by
the static and dynamic solutions match precisely for all observation locations for porosities in the range of
n= 102 to 10°'. However, the solutions diverge for decreasing values of porosity, where the departure of
the solutions is apparent first for observation Iocatidns that are'cl.ose to the wellbore and subject to
relati&ely large displacement. Thus, displacement magnitude is sigriificant in defining the error associated
with the staiic solution. This is an expected result as the static solution explicitly assumes limited fluid

displacement. Significantly, the static solutioﬁ consistently overestimates the dynamic results at small values
of porosity. Evaluating the potential for contaminant mobilization using the static solution is therefore a
: q‘onservative approach as the static solution either accurately estimaies,_ or overestimates, fluid
diSplaéemeht. it should be noted thét the lower end of the indicated range of porosities is plausible only
for ,nat’u'rally fractured media'ahd is included to illustrate the departure of the static and dynamic results.

Fi’gure.4 compares the results c‘ompu_ted using the dynamic solution to results _dete,rm,_ingd through

. the assumption that fluid loss to the formation occurs at the wellbore rather than along the length of the
fracture.‘ In previous ahalyses (Piggott and Elsworth, 1994a; Piggott and Eisworth, 1994b), this axisymmetric
approximation was shown tb be adequate for observation locations ;.)és'_i,t_'i;ned at greater than two fracture

A lengths from the we‘llbore, r,> 2L,. The axisymmietric approximation shown in F'igure‘ 4 Was obtained by
relating the total volume of fluid injected iﬁto the fortnation, Qt, to the bore volume included between the

initial and final positions of the fluid particle, xr2Hn - xr?Hn. This allows the total (radial) fuid displacement

of the paﬂicle to be determined as




a, . ae)

The relation between the distributed and axisymmetric results noted in the previous analyses is-equally
apparent in Figure 4, which indicates a close tnatch between the dynamic and axisymmetric results for
locations 3; 4 and 5. These observation locations represent r, > 1.4L;. The axisymmetric approxifnation also

replicates the convergent behaviour of the dynarmiic results for n < 10, where the static results differ from

.the dynamic results at even the most remote observation locations.

Conclusions .‘

The favourable comparison between the static and dynamic solutions indicates that there_ is a range
of formation and fracture treatment conditions wnere the static solution can be appl'ied in place of the
dynamic solution. This outcome has particular r‘elevance for other modes of fracture ext‘ension,.'and for
complex‘ forhetion geometries, whete the static solution assumes.a much more convoluted form (Piggott ’
and Elsworth 1994b); for example three-dlmensnonal fracture propagatlon where ﬂu1d displacement is
regulated by muitiple hydraulic boundanes While dynamic solutions can be obtained for these settings, the
correspondence between the static and dynamlc solutions for pIausane conditions, and the fact that the
static solution represents a conservatlve estimate of fluid displacement, favour the use of the static solutlon

as an index of the _potenti'z_ji_l for contaminant mobilization. Indeed, the static calculation of fluid displacement

" for complex fracture and forimation geometries is sufficiently computationally demanding that the additional

, demends imposed by the dynamic solution would be likely to preclude routine ena_lysis_. _
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f a PKN hydraulic fracture.

Figure 1. lllustration of the extension o
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- Figure 2. Geometry of the advective velocity resulting from a ﬁnité, pbint injection event.
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Figure 3. Comparison of the fluid displacement magnitudes predicted using the static and dynamic

solutions. Results are shown for the five obé‘ervation locations indicated in the inset.
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- Figure 4. Comparison of the fluid displac_:ement' magnitudes predicted using the axisymmetric and dynamic

solutions. Results are shown for the five observation locations indicated in the inset.
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