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Management Perspective

"Mussel watch" programs, which use concentrations of contaminants in the tissues of bivalves
to indicate spatial and temporal trends in pollution, have been well-established in marine and
estuarine environments for many years. Freshwater mussels could perform the same function in
freshwater systems, but to date they have received surprisingly little attention. Studies on marine
bivalves have shown that biological factors can significantly influence the bioaccumulation of
metals by these organisms, and must therefore be standardized or accounted for in the design of
biomonitoring programs. This study is believed to be the first major attempt to quantify the
effects of biological factors on the bioaccumulation of metals by freshwater mussels. The
impetus behind the study was to provide a biomonitoring technique in support of the St.
Lawrence Action Plan (covering the Québec portion of the river) and the St. Lawrence River
Remedial Action Plan (covering the Cornwall-Lake St. Francis area) that would demonstrate the
success of cleanup activities and track improvements in the river over time.

A wide size range of specimens of Elliptio complanata and Lampsilis radiata radiata (F.
Unionida€) was collected from the metal-polluted Sorel delta area of the St. Lawrence River in
June 1990, and 35 males and females of each species were weighed, measured, aged and
individually analyzed for residues of 12 metals in their soft tissues. The best-fitting multiple
regression models predicting metal concentrations in mussels from these variables were then
determined. Such models explained a substantial proportion of the variability in the data, ranging
from 17% for Se to 68% for Mn. In general, species was the most important factor, followed
by age/size, growth rate and sex, although age/size explained more of the variability than species
for Cd and Hg. Standardizing for these factors, or accounting for them in multiple regression
models, would therefore greatly improve precision in mussel monitoring programs. E.
complanata generally accumulated higher and less variable concentrations of metals; thus this
species would be the better choice for most biomonitoring applications.



Sommaire & Pintention de la direction

Depuis de nombreuses années, on a recours a des programmes de «surveillance des moules» pour
recueillir des données sur les concentrations de contaminants dans les tissus des bivalves et les
utiliser comme indicateurs des tendances spatio-temporelles de la pollution, en milieu tant marin
qu’estuarien. Les moules d’eau douce pourraient fort bien étre utilisées aux mémes fins mais,
assez curieusement, trés peu d’attention leur a été accordée a ce jour. Les études sur les bivalves
marins ont révélé que les facteurs biologiques peuvent avoir un effet déterminant sur la
bioaccumulation des métaux par ces organismes. Ces facteurs doivent donc étre pris en compte
ou standardisés dans la conception des programmes de biosurveillance. A notre connaissance,
la présente étude constitue la premiére véritable tentative de quantifier les effets des facteurs
biologiques sur la bioaccumulation des métaux par les moules d’eau douce. L’objectif de départ
était de mettre au point une méthode de biosurveillance utilisable dans le cadre du Plan d’action
Saint-Laurent (portion québécoise du Saint-Laurent) et du Plan d’assainissement du Saint-Laurent
(région Cornwall-lac Saint-Frangois) pour montrer le succés des travaux de nettoyage et suivre
I’évolution temporelle de 1’assainissement du Saint-Laurent.

Des spécimens de toutes tailles d’Elliptio complanata et de Lampsilis radiata radiata (Unionidae)
ont ét€ récoltés en juin 1990 dans le Saint-Laurent, dans les eaux polluées par les métaux du
delta de Sorel. On a pesé et mesuré 35 miles et femelles de chacune des espéces, déterminé leur
dge et effectué une série d’analyses afin de déterminer les concentrations des résidus de
12 métaux accumulés dans leurs tissus mous. Les meilleurs modéles de régression multiple
permettant de prévoir les concentrations de métaux dans les moules a partir de ces variables ont
ensuite été déterminés. Ces modeles expliquaient une part importante de la variabilité des
données, qui variait de 17 % pour le Se & 68 % pour le Mn. De fagon générale, le facteur le plus
important était I’espéce, suivi par I’dge et la taille et par le taux de croissance et le sexe.
Toutefois, pour le Cd et le Hg, I’dge et la taille expliquaient un plus fort pourcentage de la
variabilité que I’espéce. La standardisation de ces facteurs ou leur prise en compte dans les
modeles de régression multiple permettrait donc d’accroitre considérablement la précision des
programmes de surveillance des moules. De fagon générale, les concentrations de métaux étaient
plus élevées mais moins variables chez E. complanata. Cette espéce s’impose donc pour la
majorité des applications de biosurveillance.




Abstract

Metcalfe-Smith, J.L., R.H. Green, and L.C. Grapentine. 1994. Influence of biological factors on
the bioaccumulation of metals by Elliptio complanata and Lampsilis radiata radiata
(Bivalvia: Unionidae) from the St. Lawrence River. Can. J. Fish. Aquat. Sci.

Studies on marine bivalves have shown that biological factors can significantly influence the
bioaccumulation of metals by these organisms, but similar studies on freshwater mussels are
virtually absent. This information is needed for the proper design of mussel monitoring programs
in freshwater systems. A wide size range of specimens of Elliptio complanata and Lampsilis
radiata radiata was collected from a metal-polluted site on the St. Lawrence River, and 35 males
and females of each species were weighed, measured, aged and individually analyzed for residues
of 12 metals in their soft tissues. The best-fitting multiple regression models predicting metal
concentrations in mussels from these variables were then determined. Such models explained
a substantial proportion of the variability in the data, ranging from 17% for Se to 68% for Mn.
In general, species was the most important factor, followed by age/size, growth rate and sex,
although age/size explained more of the variability than species for Cd and Hg. E. complanata
generally accumulated higher and less variable concentrations of metals; thus this species would
be the better choice for most biomonitoring applications.




Résumé

Metcalfe-Smith, J.L.; R.H. Green et L.C. Grapentine. 1994. Effets des facteurs biologiques sur
la bioaccumulation des métaux par Elliptio complanata et Lampsilis radiata radiata (Bivalvia :
Unionidae) dans le Saint-Laurent. Journal canadien des sciences halieutiques et aquatiques.

Des études sur les bivalves marins ont démontré que les facteurs biologiques peuvent avoir un
effet déterminant sur la bioaccumulation des métaux par ces organismes. Tres peu d’études ont
été consacrées a ce phénomeéne chez les bivalves d’eau douce. Cette information est extrémement
utile pour concevoir les programmes de surveillance des moules dans les écosystémes d’eau
douce: Des spécimens de toutes tailles d’Elliptio complanata et de Lampsilis radiata radiata
(Unionidae) ont été récoltés dans le Saint-Laurent, dans un milieu pollué par les métaux. On a
pesé et mesuré 35 méles et femelles de chacune des espéces, déterminé leur 4ge et effectué une
série d’analyses afin de déterminer les concentrations des résidus de 12 métaux accumulés dans
leurs tissus mous. Les meilleurs modeles de régression muitiple permettant de prévoir les
concentrations de métaux dans les moules a partir de ces variables ont ensuite été déterminés.
Ces modeles expliquaient une part importante de la variabilité des données, qui variait de 17 %
pour le Se &4 68 % pour le Mn. De fagon générale, I’espéce était le facteur le plus important,
suivi par 1’dge et la taille et par le taux de croissance et le sexe. Toutefois, pour le Cd et le Hg,
I’4ge et la taille expliquaient un plus fort pourcentage de la variabilité que 1’espéce. De fagon
générale, les concentrations de métaux accumulés étaient plus élevées mais moins variables chez
E. complanata. Cette espéce s’impose donc pour la majorité des applications de biosurveillance.



Introduction

"Mussel watch" programs, which use concentrations of contaminants in the tissues of bivalves
to indicate spatial and temporal trends in pollution, have been well-established in marine and
estuarine environments for many years. Bivalves meet most of the criteria normally used for
selecting a biomonitor to evaluate the distribution and bioavailability of contaminants; an up-to-
date list of these criteria is provided by Crawford and Luoma (1993). In particular, bivalves are
sedentary, relatively tolerant and hardy, of reasonable size and have high bioconcentration
capacities for most organic and inorganic contaminants. Perhaps the most difficult criterion to
satisfy is the need for concentrations of chemicals in a biomonitor to correlate well with levels
of exposure (Johnson et al. 1993). Clearly, organisms that can regulate metals will not be
suitable as indicators of metal bioavailability. Bivalves are generally considered to be poor metal
regulators in comparison with more highly-evolved aquatic organisms such as fish and
crustaceans (Bryan 1979), thus they offer a distinct advantage as biomonitors.

Despite the extensive use of marine bivalves in biomonitoring programs, freshwater mussels
have received surprisingly little attention (Phillips and Rainbow 1993). This has been attributed
to a lack of species with widespread distributions, but the fact that marine shellfish are consumed
by humans while freshwater species are not is surely a factor. The only group of freshwater
organisms for which protocols are well established are commercial species of freshwater fish
(Crawford and Luoma 1993; Phillips and Rainbow 1993), even though fish are not the ideal
choice for all biomonitoring applications.

According to Thomson et al. (1984), "...metal uptake by organisms remains the only method
available for estimating biologically available metal concentrations in natural systems...".
Although this is the main purpose of biomonitoring, organisms also provide a time-integrated
measure of contaminant levels in the environment. Phillips and Rainbow (1993) believe the latter
role to be even more critical in freshwater than marine systems, as temporal fluctuations are more
extreme due to variations in river flows and the magnitude of trace metal sources. Unfortunately,
organisms are also inherently variable. Studies on marine bivalves have shown that biological
factors such as species, sex, age, size, reproductive cycle and nutritional status can significantly
influence the bioaccumulation of metals by these organisms. Although the literature on the use
of freshwater mussels to monitor metal pollution appears extensive (see Metcalfe-Smith et al.
1992, Metcalfe-Smith 1994 and references therein), a closer examination reveals that most studies
were limited to assessing the upstream/downstream influence of a metal-discharging industry on
a local species. There have been few attempts to standardize beyond species and perhaps a
limited size range, even though it has long been recognized that the considerable variation in
metal residues among individual mussels "...remains an obstacle to more extensive applications"
(Millington and Walker 1983).

As the demands placed on freshwater mussel biomonitoring programs move beyond the simple
documentation of point source impacts and toward more complex applications such as: (a)
prioritization of sites for remedial action, (b) detection of incremental change over time in
response to pollution abatement initiatives and (c) supporting the wide-ranging objectives of



2

large-scale ambient monitoring programs such as the U.S. Geological Survey’s National Water-
Quality Assessment Program (Crawford and Luoma 1993), it is apparent that the design of these
programs will have to become more sophisticated. The principles learned from studies on marine
bivalves may apply to freshwater species; however, this has not been confirmed to date
(Crawford and Luoma 1993). This study is believed to be the first major attempt to quantify the
effects of biological factors (species, sex, age, size and growth rate) on the bioaccumulation of
metals by freshwater mussels. It therefore takes a step toward the development of protocols for
the use of these organisms in biomonitoring programs, and provides a ba51s for comparison with
the marine literature.

Materials and Methods
Study site

The Sorel delta area of the St. Lawrence River was chosen for this investigation because it is
known to be heavily contaminated with metals. The study site (Fig. 1) was located several
kilometres downstream of three major metal-discharging industries, namely, Tioxide Canada Inc.,
Aciers Inoxydables Atlas Inc. (Atlas Steel) and Q.I.T.-Fer et Titane Inc. (Québec Iron and
Titanium). In 1988, Tioxide produced 52,000 t of titanium dioxide pigments, Atlas Steel
manufactured 60,000 t of stainless steel, and Q.I.T. produced 1,040,000 t of titanium slag
(Gonthier 1991). According to a 1976-77 survey of the 43 industries discharging into the river
between Cornwall, Ontario and Sorel, Québec, these three industries alone contributed nearly half
of the total metal loadings to this 200 km reach (Environnement Canada 1985). Loadings of Pb,
Ni, Fe, Cr and Zn from the industries, as well as Cu and Zn from the Richelieu River, were
particularly high (Table 1). The most recent data available on industrial loadings are for 1989,
and these are also shown in Table 1.

Collection, measurement and ageing of mussels

In previous work (Metcalfe-Smith 1994), Lampsilis radiata radiata (Subf. Lampsilinae) and
Elliptio complanata (Subf. Ambleminae) were identified as the dominant species of unionids in
the St. Lawrence River. Therefore, the study focused on these two species. A wide size range
of specimens of both species was collected from the study site by SCUBA divers on 27 June
1990 during the peak of the reproductive season, i.e. just prior to the release of glochidia (Clarke
1981; Trdan 1981). A total of 201 L. r. radiata and 134 E. complanata were obtained. Mussels
were rinsed clean of sediment using river water, wiped dry with Kimwipes®, placed in plastic
food storage bags and immediately frozen on dry ice without permitting them to clear their
digestive tracts. A rationale for omitting the depuration step is provided by Metcalfe-Smith
(1994). In the laboratory, all specimens of E. complanata and 125 specimens of L. r. radiata
were thawed for 30 min, then opened, sexed and shucked individually into acid-washed glass jars
and weighed. As the latter species is dioecious and sexually dimorphic, all 201 specimens were
first separated into males and females on the basis of shell shape. Then, 59 females and 66
males representing a wide size range were processed for each sex. E. complanata cannot be
sexed by external examination, and populations may include dioecious, hermaphroditic and
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sequentially-hermaphroditic individuals (Downing et al. 1989). In a study on Lac de I’Achigan,
Québec, Downing et al. (1989) found that hermaphrodites functioned as females but with an
efficiency of ova or glochidia production that was correlated with the percentage of female tissue
in their gonads. In the present study, the 65 gravid specimens were considered to be females and
the 69 non-gravid specimens were designated as males.

In order to obtain an equal number of specimens and a similar gradient of sizes for each
species:sex combination, all specimens in each category were sorted into size-classes based on
5 g intervals of soft tissue wet weight ranging from 5-10 g to 50-65 g. Four specimens from
each size-class were then arbitrarily chosen for analysis. Where fewer than four specimens were
available (the under 15 g and over 50 g size-classes), all were taken. A total of 35 specimens
in each category was selected and these were individually freeze-dried, weighed and ground to
a fine, homogeneous powder using a Bel-Art Micro-Mill® with stainless steel blades and
grinding chamber. One male L. r. radiata had been misidentified as a male E. complanata, thus
the sample sizes were adjusted to n = 36 and n = 34 for these two categories, respectively.

The shells of all 140 specimens selected for analysis were air-dried, then maximum length,
height and width were measured to the nearest 0.01 mm using vernier callipers (dimensions are
illustrated in Figure 2 of Green and Hinch 1986) and both valves were weighed together.
Estimates of age for E. complanata and L. r. radiata were generally obtained by counting
macroscopically visible external growth rings on the shells, which were assumed to be annual
(Tevesz and Carter 1980). Shells were cleaned of sediment and attached algae, then examined
using reflected and transmitted light from an incandescent lamp. The dark, annual growth rings
were counted from the umbo outwards. During previous examinations of shells in this
laboratory, the first visible growth ring tended to be 10 to 20 mm in length. This agrees with
other estimates of length at one year (Lampsilis: McCuaig and Green 1983, Day 1984; Elliptio:
Strayer et al. 1981). Thus, for shells in which a growth ring less than 20 mm in length was not
visible due to erosion of the umbo region, the first visible ring (in all cases > 25 mm) was
assumed to be the second year’s growth ring. All specimens estimated to be less than 13 years
old (49 of the 69 E. complanata and 60 of the 71 L. r. radiata) could be aged using external

rings.

For approximately half of the 31 specimens aged 13 years and older (12 E. complanata and 3
L. r. radiata), counts of external growth rings were considered unreliable as estimates of age
because rings were either (a) irregular or unusually close in their spacing (especially at the outer
edges), or (b) weakly differentiated by their colour and physical relief from the adjacent
periostracum. In these cases, cross sections or "thin sections" of the shells (Clark 1980; Day
1984) were prepared. Valves were cut along the longest axis from the umbo to the posterior
edge using a low speed saw with a diamond blade. Cut surfaces were polished with emery and
lapidary papers, and epoxy-glued to microscope slides. Shells were cut a second time to leave
0.5 to 1.0 mm sections, which were polished and coated with clear nail polish. Under light
microscope (dissecting and/or compound), the dark lines extending through both the nacre and
the prismatic layer were counted as annual growth bands (Day 1984).
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Shell ageing is somewhat subjective; therefore, all estimates were made by the same
experienced person (L.C. Grapentine). Table 2 provides a guide to the precision of age estimates
based on the best judgement of the estimator. Nearly 95% of the mussels in this study could be
aged to within a range of two years. Ages of the study specimens were 3 to 40 years for E.
complanata and 2 to 17 years for L. r. radiata.

Analysis of mussels for metal residues in soft tissues

Mussels were analyzed individually for metal residues in their soft tissues by Environment
Canada’s National Laboratory for Environmental Testing (NLET), Burlington, Ontario, using
standard procedures described in their Analytical Methods Manual (NLET 1992). Briefly, the
analytical methods and associated detections limits (DLs) on a ug.g” dry weight basis for the
tested elements were: Hg - cold vapour atomic absorption (AA) spectroscopy; DL = 0.03; As and
Se - atomic emission spectroscopy using an inductively coupled argon plasma (ICAP) system,
DL = 0.50 for both elements; Al, Cr, Cu, Fe, Mn, Ni and Zn - direct aspiration AA spectroscopy,
DLs = 0.50 (Ni), 2.0 (Cr, Cu, Zn), 10.0 (Fe, Mn) and 50.0 (Al); Cd and Pb - graphite furnace
AA spectroscopy, DLs = 0.01 (Cd) and 0.20 (Pb). Samples were analyzed in accordance with
the routine quality assurance (QA) procedures of the NLET, which include duplicate analyses to
determine sample homogeneity, analysis of three reference materials to determine accuracy,
spike-recovery tests to assess interference, and analysis of blanks to determine contamination due
to laboratory procedures. Samples which do not meet the QA objectives are reanalyzed, and
those which still do not meet the standards are rejected. No samples from this study were
rejected. However, due to insufficient material one sample could not be analyzed for As, Se, Cd
or Pb and two others could not be analyzed for Cd or Pb. Quality control reports are available
from the authors. Raw data are attached as Appendix I.

Statistical methods

Measures of eight biological parameters (species, sex, age, dry weight of soft tissues, and shell
length, width, height and weight) and twelve chemical parameters (concentrations of Al, As, Cd,
Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se and Zn as ug.g” dry weight in the soft tissues) on 140 individual
mussels from the study site constituted the dataset. Linear statistical models, i.e. multivariate and
univariate analysis of covariance (MANCOVA, ANCOVA), were applied to the dataset in order
to develop multiple regression models that best predicted metal concentrations in mussel tissues
from biological factors. In such models relationships between variables should be linear.
Therefore, the data were transformed to maximize linearity. Because interpretation of results is
simpler if predictor variables are not highly correlated, principal components analysis (PCA) was
used to reduce the biological parameters, which were expected to contain redundant information,
to independent components prior to applying the models.

Correlation-based PCA was first performed on seven of the biological variables: species, sex,
the four measures of shell size and dry tissue weight, with the latter five variables log-
transformed for allometry. The first principal component (PC1) accounted for 61% of the
variability and was strongly and similarly related to all five measures of size, but unrelated to
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sex or species. Therefore, it was defined as "PC size". PC2 accounted for 19% of the variability
and represented species, with some loading on shell shape that would be species-related. PC3
explained 14% of the variability and loaded entirely on sex. Because age was significantly
correlated with all size variables in both species (r = 0.48 to 0.67 in E. ¢ omglanat a and 0.56 to
0.72 in L. r. radiata, p < 0.01), it could not be used as an independent variable in the prediction
models. A further PCA was thus performed on the variables PC size and age, using the
transformation In (age - 1.5) to achieve maximum linearity. PC1 accounted for 89% of the
vanablhty and had equal same-sign loadings on both variables. PC1 thus represented the main
axis of the age-size relationship, distinguishing large/old from small/young mussels. PC2
accounted for the remainder of the variability (11%) and had equal opposite-sign loadings on the
two variables. PC2 thus represented deviation from the main age-size relationship, distinguishing
fast-growing from slow-growing mussels (Fig. 2).

After reducing the eight biological parameters to four independent components, namely species
(species 1 = E. complanata, species 2 = L. r. radiata), sex (sex 1 = female; sex 2 = male),
age/size (PC1 of the PC size vs. transformed age PCA) and growth rate (PC2 of the PC size vs.
transformed age PCA), linear models were generated using these components as the predictors
and metal concentrations (In-transformed) as the dependent variables. Covariates were the
age/size and growth rate components. Initially, MANCOVAs on the full dataset were used to
assess significance of the four predictors across all dependent variables. These were followed
by a series of ANCOVAs, one for each dependent variable, to examine the influences of
biological factors on the accumulation of individual metals.

Results

Based on a MANCOVA test performed on the full dataset, all biological factors were
significant predictors of metal concentrations in mussel tissues (Table 3). Significance of the
species x sex interaction term indicated that the influence of sex was primarily species-dependent.
MANCOVAs were also run separately for each species, and the results were similar in both cases
(Table 3). Age/size was the most significant predictor, followed by growth rate, with sex being
the least important factor influencing metal concentrations. Relationships appeared to be a bit
stronger for E. complanata.

To determine the importance of the various biological factors as predictors of individual metals
in mussels, univariate ANCOVAs were performed on the full dataset for each of the 12 metals.
The models explained a substantial proportion of the variability in tissue residues for most
metals, ranging from 17% for Se to 68% for Mn (Table 4). Species was a highly significant
predictor for every metal except Se, and explained more of the variability than any other
predictor for all remaining metals except Cd and Hg. Age/size was a significant predictor for
all metals except Cr, Pb and Se, and concentrations of Cd and Hg were much more dependent
on the age/size of a mussel than its species. Growth rate was also a significant predictor for half
of the metals, accounting for 2-12% of the total variability. The effect of sex was significant for
only three metals (Cd, Hg and Zn), but the species x sex interaction was significant for Cu and
Se. This indicates that concentrations of Cd, Hg and Zn were higher in the same sex in both
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specics, while concentrations of Cu and Se were higher in males of one species and females of
the other. In any case, sex never explained more than 3% of the variability in the data.

Concentrations of Ni, Cr, Al, Cu, Pb, Hg and Fe were significantly higher in E. complanata,
whereas those of Zn, As, Mn and Cd were significantly higher in L. r. radiata. Mean
concentrations are compared in Table 5. To determine whether higher concentrations were
accumulated by male vs. female, old vs. young or fast-growing vs. slow-growing mussels,
separate ANCOVAs were performed for each species and the signs of the regression coefficients
(positive or negative) were used to indicate the direction of each biological effect (Table 6).
Concentrations of As, Cd, Mn, Zn, Hg and Fe were higher in older/larger individuals of both
species, although the effect was not statistically significant for Fe in L. r. radiata. Concentrations
of Cu, Al, Ni, Cr, and Se were higher in younger/smaller specimens of L. r. radiata, but only Cu
showed this trend in E. complanata. Concentrations of Pb were not affected by age/size in either
species. Growth rate was a significant predictor of Mn and Fe residues in both species and also
of Cd, Hg, Se and Pb in E. complanata. In all cases, concentrations were higher in slower-
growing mussels. For the three metals that had shown a significant sex effect in the full dataset
(Cd, Zn and Hg), concentrations were higher in males of both species, but not significantly so.
For the two metals that had shown a significant interaction between species and sex in the full
dataset, Cu was higher in female E. complanata and Se was higher in male L. r. radiata,

In general, the prediction models accounted for more of the total variability in tissue metal
concentrations for E. complanata than L. r. radiata (Table 6). For example, the largest proportion
of variability explained for a metal in L. r. radiata was 29% for Cd, whereas 46-73% was
explained for Cd, Fe, Hg, Mn and Zn in E. gqmglariata. The notable exception was Al, for which
age/size accounted for a significant proportion of the variability in L. r. radiata but none of the
biological factors had predictive value for E. complanata. Table 5 compares the coefficients of
variation (CV) for each metal between the two species. Concentrations of Ni, Cr, Al, Zn and As
were much more variable in L. r. radiata, whereas concentrations of Mn, Cd and Se were slightly
more variable in E. complanata and there were no differences between species for Cu, Pb, Hg
and Fe. Thus, for most metals E. complanata displayed less variability among individuals, and
more of this variability could be explained.

Although it is appropriate to use techniques such as PCA and log-transformation of the data to
quantify relationships between biological factors and metal concentrations in mussels, it is useful
to return to the raw data for confirmation. Four metals selected to illustrate the various
relationships are presented in Fig. 3, where concentrations of Cr, Zn, Cd and Cu in mussel tissues
are plotted against true age for each species:sex combination. Species accounted for 41% of total
variability in the data for Cr, where concentrations were higher in E. complanata than L. r.
radiata; none of the other biological factors were significant predictors of this metal (Fig. 3a).
Species accounted for 39% of the total variability for Zn and concentrations were higher in L.
I. radiata than E. complanata (Fig. 3b). Concentrations were also significantly higher in older
specimens and in males of both species, however, age/size explained much more of the total
variability (17%) than sex (2%). Similar to Zn, levels of Cd were significantly higher in L. r.
radiata than E. complanata and in older specimens and males of both species (Fig. 3c). However,
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interspecific differences accounted for only 5% of the total vanablhty for this metal, whereas
age/size accounted for 36% and growth rate (higher concentrations in slower-growing mussels)
an additional 6%. Copper (Fig. 3d) was the only metal for which concentrations were
significantly higher in younger/smaller specimens of both species. The significant species x sex
interaction for this metal was driven by higher concentrations in female E. complanata.

Discussion
Use of linear models to predict metal concentrations in bivalves from biological factors

Metal concentrations in the tissues of unionids from the Sorel delta area of the St. Lawrence
River were significantly influenced by biological factors. In general, species was the most
important determinant, followed by age/size, growth rate and sex. Several other studies have
used similar models to show that biological factors account for much of the variability in the
metal burdens of freshwater and marine bivalves. Hinch and Stephenson (1987) analyzed the
gills and bodies of E. complanata from two relatively uncontaminated Ontario lakes for Cd, Cu,
Mn and Zn, and found that age and shell length were frequently as important as, or even more
important than, the lake of origin as sources of variability. Jones and Walker (1979) calculated
multiple linear regressions of Cd, Fe, Mn and Zn concentration against shell volume (a measure
of the amount of shell material produced and thus an indicator of age) and dry body weight for
the freshwater mussel Velesunio ambiguus from the River Murray in South Australia. Their
models explained a significant proportion of the variability for all metals except Cd. Popham
and D’ Auria (1983) collected 20 size groups of the blue mussel, Mytilus edulis, from a clean and
a polluted site in Burrard Inlet, British Columbia over a period of 13 months, and determined the
effects of both mussel size (dry weight) and season on concentrations of various elements in the
tissues. Their models explained a significant amount of the variation for Cu, Fe, Mn, Pb, Zn,
Br and Sr. Both factors were significant determinants for most elements, although the influence
of season was mainly due to seasonal changes in weight. Popham and D’ Auria (1983) found that
the way in which concentrations of elements were influenced by size and season differed between
the two sites, and concluded that regression equations derived for one location cannot necessarily
be applied to another location with a different pollution status. Strong and Luoma (1981) came
to similar conclusions in their study of four populations of Macoma balthica in San Francisco
Bay.

Lobel et al. (1989) collected M. edulis from a subtidal site in Newfoundland and determined
the contribution of biological factors to the total variability in tissue residues for 25 elements.
Predictors included all of those considered in the present study except age, plus condition index,
various growth ratios (e.g. shell width:height), and an "“insolubility index" that measured the
contribution of gut contents and was only significant for Al. They included many redundant
variables in their models and the predictive values of individual parameters were difficult to
separate. However, sex was significant for the largest number of elements, followed by soft
tissue dry weight and condition factor, followed by width:height ratio, which-is an indicator of
relative age. The importance of sex was clearly greater for M. edulis than for E. complanata or
L. 1. radiata in the present study. Lobel et al. (1989) accounted for significant proportions of the
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variability in their data for Al, As, Cd, Cu, Mn, Pb, Se and Zn (Cr, Fe, Hg and Ni were not
tested). In a later paper, which appears to have examined a subset of these mussels, Lobel et al.
(1991) reported that chronological age was not a significant predictor of any element in
specimens aged 3 to 14 yrs. They concluded that "...age is better dealt with in physiological
terms by factors such as size, condition and growth rate...". In contrast, chronological age (in
combination with size) had more influence than growth rate on metal concentrations in unionids
from the St. Lawrence River.

Influence of species on metal accumulation

Intuitively, one would expect species to be the most important biological factor influencing the
metal concentrations accumulated by mussels. With the notable exceptions of Cd and Hg,
species was the most significant predictor of metal levels in the current study. Interspecific
differences observed were consistent with those reported in previous studies on the St. Lawrence
and Ottawa Rivers (Metcalfe-Smith 1994 and Metcalfe-Smith et al. 1992, respectively; Table 7).
In most cases, these differences were so dominant that they emerged even when the samples were
not controlled for other biological factors. For some elements, increasing the sample size or
standardizing for biological parameters noticeably enhanced the differences between species.
Absolute concentrations in tissues varied between species by factors ranging from 1.2 to 2.5 X
in both this study (calculated from mean values given in Table 5) and the earlier St. Lawrence
River studies, and by 1.5 to 2.5 X in the Ottawa River study. Metcalfe-Smith et al. (1992)
reviewed the literature comparing metal accumulation among various species of unionids, and
found that maximum factors of 2 to 3 X were most commonly observed. Reasons for the
differential uptake of metals by E. complanata vs. L. r. radiata are not understood at present.
Both species are filter-feeders and they coexist in mixed colonies, suggesting that their exposure
regimes should be similar. However, they are members of different subfamilies of the F.
Unionidae and have different reproductive strategies, growth rates and lifespans. There are also
indications that L. r. radiata may be more capable of regulating metals (Metcalfe-Smith 1994).

Influence of size and age on metal accumulation

Since the early work of Boyden (1977) identified a strong link between organism size and metal
uptake in shellfish, the influence of size and, to a lesser extent, age on metal accumulation by
marine and freshwater bivalves has been a topic of considerable research. The magnitude and
direction of these effects have been shown to vary greatly among and within metals, species and
studies (Brix and Lyngby 1985; Hinch and Stephenson 1987; Elder and Collins 1991). As a
result, few generalizations have been made. While some differences among metals and species
might be expected, differences among studies on the same metals or species are more difficult
to explain. Much of the confusion may be due to the great variety of conditions under which
these relationships have been tested. Factors such as sample size, the biological response
variables measured and their ranges (Boyden 1977; Bryan and Uysal 1978), sampling season
(Strong and Luoma 1981; Lobel et al. 1991) and the pollution status of the study site (Manly and
George 1977; Popham and D’Auria 1983) have considerable influence on the relatlonshxps
between size or age and metal concentrations in bivalves.
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Twenty-five papers on the influence of size or age on metal uptake by bivalves, including eight
on freshwater mussels and 17 on marine bivalves, were reviewed for comparison with the present
study. Only studies on natural populations were considered, i.e. laboratory experiments and
caged mussel studies were not included. All studies considered size, and five also considered
age. Results for size are summarized in Table 8 (a detailed compilation of the data is presented
in Appendix II). Data on freshwater mussels are presented separately from those on marine
mussels, because they are directly relevant to the present investigation. The 25 studies examined
18 different species from 65 locations of varying pollution status. Sample sizes used to
determine relationships between size and metal residues ranged from 5 to 126 specimens
analyzed individually or in composites. Metal concentrations in whole soft tissues, or in a few
cases individual organs, were related to either dry weight (most studies), wet weight or shell
length of the organism. Ranges of values tested varied from 3 to 430 X for dry weight, 2 to 25
X for wet weight and 2 to 3 X for shell length. Season or reproductive condition were reported
only sporadically. It is apparent from the variety of experimental conditions and their potential
for confounding the results that few studies can be directly compared. However, the body of
information can be examined for prevailing trends and compared with the results of the present
study. Because age and size were significantly correlated in E. complanata and L. r. radiata
populations from the Sorel delta, it was assumed that the effect of age/size in this study would
be comparable to the effect of size in other studies. In fact, separate linear regressions of metal
concentrations against age and size yielded the same trends. The influence of age will be
specifically addressed later.

Unfortunately, there have been very few studies to date on freshwater mussels and most were
conducted at uncontaminated sites. Furthermore, Merlini et al. (1965), Renzoni and Bacci (1976)
and Hinch and Stephenson (1987) used concentrations in organs, rather than whole soft tissues,
to determine relationships. Nevertheless, some general trends emerge from Table 8a.
Relationships between size and metal concentrations in mussels were more often significant at
polluted sites (57% of 21 tests) than clean sites (37% of 71 tests). Where significant
relationships occurred, they were usually negative at clean sites (54% of significant tests) and
positive at polluted sites (58%). However, this dataset is very small and the findings are
inconclusive. Trends for individual metals were unclear except that concentrations of Cu tended
to be higher in smaller specimens.

The data on marine bivalves are more extensive (Table 8b), but it is not known how readily
they can be applied to freshwater mussels. For example, many of the species tested were deposit
feeders that might be expected to behave differently than filter-feeders. Similar to the results for
freshwater mussels, however, relationships were more often significant at polluted sites (72% of
72 tests) than clean sites (61% of 88 tests). In general, significant relationships were more
common among marine than freshwater studies. Where significant relationships occurred, they
were usually negative at both clean (85% of significant tests) and polluted sites (60%). However,
the incidence of positive relationships was obviously much greater at polluted sites. This
suggests that at relatively uncontaminated sites, bivalves are able to regulate at least some metals
such that body burdens do not accumulate over time. However, at polluted sites these
mechanisms fail and body burdens increase with size and age. Trends were eéxamined on a
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‘metal-by-metal basis and were in several cases similar to those observed for freshwater mussels.
Concentrations of Cu in marine and freshwater bivalves, including E. complanata and L. r.
radiata, were consistently hlgher in smaller animals. Copper is an essential nutrient that may be
well-regulated by many species, thus preventing it from accumulating over time. Zinc
demonstrated the same trend as Cu in marine bivalves from clean sites, but the reverse trend at
polluted sites. Levels of Zn were also higher in older/larger unionids from the Sorel delta area,
which is known to be highly contaminated with Zn. This suggests that the regulatory capabilities
of bivalves for Zn, which is also an essential nutrient, may be more limited than those for Cu.
Concentrations of Ni were usually higher in smaller marine bivalves, and this was also observed
for unionids. Iron and Mn were higher in smaller marine bivalves at all sites where significant
relationships were observed. In contrast, Fe and Mn were higher in larger E. complanata and L.
L. radiata in the present study. Seah arid Hobden (1969) and Hobden (1970) found that Mn and
Fe were actively accumulated by E. complanata and stored in an insoluble form that was not
depleted after 6 months of starvation. In earlier work, they had found that concentrations of Fe
in M. edulis, which were initially one-third of those in E. complanata, decreased steadily under
conditions of starvation until a stable level of permanently stored Fe was reached. It would
appear that unionids have a greater capacity for storing Fe and Mn, which would accumulate over
time and hence be higher in larger animals. Trends for Pb and Cd were variable, with negative,
positive and insignificant effects observed in marine bivalves from both clean and polluted sites.
Age/size did not influence Pb concentrations in either E. complanata or L. r. radiata, but Cd
levels were higher in older/larger specimens of both species. Data on Al, As, Cr, Hg and Se
were insufficient to draw any general conclusions from the marine data, although the two studies
on Hg reported, as we did, higher concentrations in larger animals.

For the six metals showing an increase in concentration with increasing age/size in E.
complanata and L. r. radiata, this effect explained a considerable proportion of the variability in
the data for all metals except As. For the five metals showing an increase in concentration with
decreasing age/size in one or both species, the proportion of the variability accounted for was
much lower. According to Strong and Luoma (1981), smaller individuals of many bivalve
species accumulate higher concentrations than larger individuals due to their more rapid uptake
rates. For metals that do not accumulate over time, i.e. those that can be regulated, a negative
correlation may occur when young animals have been included in the sample. For slow-
exchanging metals such as Cd and Hg that have been shown to accumulate with age (Strong and
Luoma 1981), the negative influence of younger animals may be offset and an overall positive
correlation for the metal would result. Negative correlations between age/size and metal levels
were significant for Cu, Al, Ni, Cr and Se in L. r. radiata, but only for Cu in E. complanata.
Metcalfe-Smith (1994) found that L. r. radiata displayed a narrower range of tissue concentrations
for all metals except Mn and Zn than sympatric E. complanata from 11 sites of varying pollution
status on the St. Lawrence River, and concluded that L. r. radiata may be more capable of
regulating metals. This would be consistent with the greater number of negative correlations
observed for this species in the present study.

Bivalves tend to become larger as they age; hence one would expect age and size to be directly
related and the influence of both factors on the accumulation of metals to be the same. Many
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studies on unionids have demonstrated significant positive correlations between age and various
measures of organism size (for a review, see Metcalfe-Smith and Green 1992). Others, however,
have found age and size to be poorly related (e.g. Hinch and Stephenson 1987; Hanson et al.
1988). Age and size are not simple parameters; rather, they represent multiple biological
processes. Size, for example, may reflect factors such as growth rate and surface-to-volume ratio,
whereas age may reflect sexual maturation and duration of exposure (Newman and Heagler
1991). It therefore seems plausible that the effects of age and size on metal bioaccumulation
might differ. Williamson (1980) reported that age and size (body weight) had opposite and
independent effects on Cd concentrations in a land snail, and recommended that the two factors
be controlled separately in biomonitoring programs. Actually, he found that concentrations of
Cd increased with both age and size over the entire population, because age and size were
correlated. However, within a given year-class concentrations were higher in smaller individuals.
Williamson (1980) felt that this was due to higher metabolic rates, and hence greater uptake, in
animals that were small for their age. Whereas rapid uptake might explain the high
concentrations sometimes observed in very young mussels, it would not explain differences
among members of a cohort. Within a specific year-class, it is more likely that animals that are
small for their age would be slower-growing and thus have slower metabolic rates. It follows
that they may also have slower uptake rates, but the effect could be offset by less dilution of
body residues. Williamson’s (1980) study is often quoted as an example of the opposite effects
of age and size on metal uptake, but this is somewhat misleading. In fact, his findings point out
the importance of growth rate as a determining factor.

As previously mentioned, only five investigators considered the influence of both size and age
on the accumulation of metals by bivalves. Of these, only two aged their specimens, as we did,
by counting annual growth bands in the shells (Hinch and Stephenson 1987 for E. complanata
and Lobel et al. 1991 for M. edulis). Langston (1980) inferred ages of Scrobicularia plana from
shell length using the Walford Plot method, while Jones and Walker (1979) and Millington and
Walker (1983) used shell volume as a surrogate for age in their studies on V. ambiguus. One
might expect that where age and size were correlated, both factors would have the same effect
on metal uptake. Conversely, where age and size were not correlated, opposite effects might
occur. This was generally true, although there were exceptions. Langston (1980) found that age
and size of S. plana were correlated in three different populations, and that the effects of both
parameters on As concentration were the same, i.e., effects of both age and size were negative
in an uncontaminated estuary, positive in a polluted estuary and insignificant at an intermediate
site. Jones and Walker (1979) reported that age and size were not correlated in V. ambiguus
from a site on the River Murray, and that concentrations of Fe, Mn and Zn increased with age
but decreased with dry weight. Millington and Walker (1983) sampled the same site in the same
year and confirmed the result for Fe, but reported strong correlations between age and size for
this population. Hinch and Stephenson (1987) determined that age and size were not correlated
in populations of E. complanata from Beech and Tock Lakes in Ontario, but observed only one
statistically significant opposite effect among 16 age-size comparisons involving five metals and
two components of the soft tissues (gills and bodies). Interestingly, Campbell and Evans (1991)
collected a similar number of E. complanata of the same size range from Beech Lake a year later
and found that age and size were highly cormrelated. They observed a significant positive
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correlation between size and Cd concentration in whole soft tissues, as did Hinch and Stevenson
(1987) for gills and bodies. Finally, Lobel et al. (1991) examined the effects of age and size on
concentrations of 24 elements in M. edulis. The effect of size (dry weight) was significant for
14 elements and negative for all except potassium. Chronological age was not a significant
predictor of any element. However, width to height ratio (W:H), which is an indicator of relative
age, was significant for seven elements and always positive. Lobel et al. (1991) did not state
whether age and size were correlated in their study population, but it appears that they were not.
The use of W:H as an indicator of age deserves comment. Animals age at rates that are
individually determined by genetic and environmental factors. A parameter such as W:H, which
represents the physiological age of an individual, should therefore be a more sensitive indicator
of the ageing process than a categorical parameter such as chronological age. This might explain
why significant relationships were observed for W:H but not for years of age in Lobel et al.’s
(1991) study. Concentrations of As, Cd, Fe, Hg, Mn and Zn in E. complanata and L. r. radiata
from the St. Lawrence River were found to be higher in older specimens. The same relationship
was also observed for these metals in several other studies, e.g. Fe, Mn and Zn in V. ambiguus
(Jones and Walker 1979; Millington and Walker 1983), As and Cd in M. edulis (Lobel et al.
1991) and As in S. plana from a contaminated site (Langston 1980).

Influence of growth rate on metal accumulation

By using PCA, we were able to extract a growth rate component from the dataset and to
evaluate its influence on metal concentrations separately from age and size per se. The effect
of growth rate was significant for Cd, Fe, Hg, Mn, Pb and Se in E. complanata, but only for Fe
and Mn in L. 1. radiata. In all cases, concentrations were higher in slower-growing mussels. The
effect may have been more pronounced in E. complanata due to the wider range of ages and thus
growth rates among the tested specimens, or because this species had a slower growth rate in
general. Over the full range of specimens examined, the average yearly increment in soft tissue
dry weight was 0.09 g for E. complanata vs. 0.23 g for L. r. radiata. These values are not
directly comparable, because all L. r. radiata were 17 years old or younger, whereas nine E.
complanata were between the ages of 18 and 40. However, when growth rates of specimens aged
three to 17 years were compared, the average yearly increment was still 20% lower for E.

complanata (0.20 g) than L. r. radiata (0.24 g).

Other investigators have consistently reported higher concentrations of metals in slower-growing
bivalves whenever the effect of growth rate was significant. Davies and Pirie (1978) examined
trends for Hg in separate size classes of M. edulis from the Firth of Forth, Scotland, and in the
population as a whole. They found that concentrations of Hg increased with increasing wet tissue
weight at the population level, but within each size class the correlation tended to be negative.
This is very similar to the findings of Williamson (1980) for Cd in land snails. Langston (1980)
found that the growth rate (increase in dry soft tissue weight with age) of S. plana slowed with
age in a contaminated estuary in Wales and accelerated with age in a clean estuary. In both
locations, concentrations of As were higher in slower-growing clams, thus levels increased with
age at the contaminated site and decreased with age at the clean site. Lobel and Wright (1982)
determined the influence of various biological factors on levels of Zn in M. edulis from the Tyne
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Estuary, UK, and used the ratio of soft tissue dry weight to shell dry weight as an indicator of
flesh condition (FC). Although not strictly comparable to the growth rate parameter used in the
present study, both variables provide a measure of the degree of dilution by soft tissue. Lobel
and Wright (1982) found that FC was negatively correlated with Zn concentration, suggesting that
levels were higher in animals that were "less meaty". In later studies on M. edulis from
Newfoundland, Lobel et al. (1991) replaced FC with CI (condition index = soft tissue dry weight:
shell length x width x height), because they felt it was a more reliable indicator of condition.
They concluded that CI was the most important variable influencing element concentrations in
mussels, because it was highly significant for all chemical classes. For 14 of the 24 elements
tested, including Cd, Cu, Mn and Pb, concentrations were higher in specimens with a low flesh
weight for the size of their shell. Concentrations of Al, As, Se and Zn were unaffected.

Influence of sex on metal accumulation

Sex was the least important factor influencing metal concentrations in unionids, accounting for
at most 3% of the overall variability in the data. Concentrations of Cd, Hg and Zn were higher
in males of both species, but the effect appeared to be weak since it only reached statistical
significance when all 140 specimens were considered. The effect of sex on levels of As, Cu, Mn
and Se was species-dependent, i.e., concentrations differed between the sexes for one species but
not the other. In a related study that was conducted concurrently, Metcalfe-Smith (1994)
compared metal concentrations in males and females of these species among six sites on the St.
Lawrence River. Samples were analyzed as composites, and differences between the sexes were
determined over all sites using a paired-difference test. The Sorel study site was included in the
investigation. Concentrations of Cu were found to be higher in female than male E. complanata,
‘while concentrations of Cd, Fe, Se and Zn were higher in male than female L. r. radiata. The
results of the two studies taken together suggest that Cu and As tend to be higher in female
mussels, while Cd, Fe, Hg, Mn, Se and Zn tend to be higher in males. There were no apparent
differences between the sexes for Al, Cr, Ni or Pb.

Studies on marine mussels have shown that concentrations of metals in both males and females
are highest immediately prior to spawning, and that differences between the sexes are at a
minimum during this period (for a review, see Metcalfe-Smith 1994). In this study, unionids
were collected just before releasing their glochidia. Thus, it is possible that sex may be a more
important source of variability at other times of the year. Only one other study on a freshwater
mussel was available for comparison. Jones and Walker (1979) found no differences in the
accumulation of Cd, Fe, Mn or Zn by male vs. female V. ambiguus, but did not describe the
reproductive status of the specimens. The literature on marine bivalves generally showed that
sex was an important predictor of metal residues and, in contrast to the results for unionids, that
levels were usually higher in females. The results of five studies (Watling and Watling 1976 for
Choromytilus meridionalis, no season given; Orren et al. 1980 for post-spawn C. meridionalis;
Klumpp and Burdon-Jones 1982 for pre-spawn Trichomya hirsuta; Latouche and Mix 1982 for
M. edulis, no season given; Lobel et al. 1989 for post-spawn M. edulis) were remarkably
consistent. They indicated that Cu, Fe, Mn, Zn and probably also As and Se were higher in
female mussels, Pb was higher in males, and there were no differences between the sexes for Cd,
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Ni and probably also Al and Cr. Lobel et al. (1991) determined that sex explained most of the
variability in their data for As, Cu, Mn, Se and Zn in M. edulis.

Conclusion

In conclusion, biological factors accounted for a substantial proportion of the variability in
tissue metal concentrations among individual freshwater mussels from a metal-contaminated site
on the St. Lawrence River. Standardizing for these factors, or accounting for them in multiple
regression models, would therefore greatly improve precision in biomonitoring programs that use
mussels to determine spatial and temporal trends in metal pollution. Species, size, age and
probably growth rate should all be considered when designing a mussel monitoring program, but
sex could be ignored at little cost. The influences of biological factors sometimes differed
greatly among metals; however, relationships for a given metal were often similar in both species.
E. complanata would be the superior choice for biomonitoring for the following reasons: (a) it
exhibited less individual variation in metal levels than L. r. radiata, and more of this variability
could be explained; (b) it accumulated higher concentrations of most metals; and (c) it was
shown in earlier work (Metcalfe-Smith 1994) to have a greater capacity for discriminating among
sites of differing pollution status, probably because of a general inability to regulate metals.
Comparisons between this study and the marine literature revealed many inconsistencies with
respect to the relative importance of various biological factors as predictors for certain metals and
the magnitude and direction of their effects on tissue concentrations. For example, sex seemed
to be more important and age less important in marine bivalves, and the influence of size was
usually significant regardless of the pollution status of the study site. There may be fundamental
differences in the mechanisms of bioaccumulation between marine and freshwater mussels or in
the behaviour of metals in marine vs. freshwater systems. However, more studies must be
conducted in freshwater systems before it can be determined if marine "mussel watch" protocols
are applicable to freshwater mussel monitoring programs, or if new protocols must be developed.
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TABLE 1. Combined loadings of metals (kgd™) to the Sorel delta area of the St. Lawrence
River from industrial point sources (Québec Iron and Titanium, Atlas Steel and Tioxide Canada
Inc.) in 1976-77 and 1989, and loadings from the Richelieu River in 1976-77. Data for 1976-77
from Environnement Canada (1985); 1989 data on Q.LT. and Atlas Steel from Danielle Joly,
Environmental Protection Service, Montréal (pers. comm.); 1989 data on Tioxide from Centre
Saint-Laurent (1992). NA = data not available.

Loadings of metals (kgd™?)

Metal Industries, 1976-77 Industries, 1989 Richelieu River, 1976-77
Al NA 1764 - NA

Cd 0.60 (3.5%)* 19 NA

Cr 570 (61%) 513 NA

Cu 148 (34%) 311 1135

Fe 29101 (67%) 98734 18

Hg 0.18 (19%) 0.11 NA

Ni 225 (80%) 217 NA

Pb 942 (97%) 44 109

Zn 923 (55%) 325 1587

* % of total loadings from the 43 industries discharging to the river between Cornwall, Ontario
and Sorel, Québec.
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TABLE 2. Precision of age estimates for E. complanata and L. 1. radiata based on counts of annual growth
increments (external rings or internal bands) in the shells.

Number of specimens in each precision category

E. complanata E. complanata L. r. radiata L. r. radiata

Precision of age External rings Internal bands External rings Internal bands
estimate (* # years) (n=57) (n=12) (n = 68) (n =3)

0 21 0 28 0

0.5* 18 0 28 0

1 17 5 12 2

1.5° 1 0 0 0

2 0 2 0 0

3 0 3 0 1

5-10 0 1 0 0

10-15 0 1 0 0

*range of 1 year, e.g. 6-7; "range of 3 years, e.g. 6-9.
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TABLE 3. Significance of biological factors as predictors of metal concentrations in mussels (results of
MANCOVA tests where x = biological factors, y = In-transformed concentrations of all 12 metals, n = 137 for
species combined, n = 69 for E. complanata, and n = 68 for L. r. radiata).

Species combined Species separate
E. complanata L. r. radiata

Predictor Probability value Predictor Probability value Probability value
Species T 00001 ** Sex 00487 % _ 0.0679
Sex 0.0947 Age/size 0.0001 ** 0.0001 **
Species x Sex 0.0024 ** Growth rate  0.0013 ** 0.0398 *
Age/size 0.0001 **
Growth rate 0.0001 **

** significant @ p < 0.01; * significant @ p < 0.05.
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TABLE 4. Significance of biological factors as predictors of metal concentrations in mussels (results of
ANCOVA tests where x = biological factors, y = ln-transformed concentrations of individual metals, n = 137
for Cd and Pb, n = 139 for As and Se, and n = 140 for all other metals).

Percent of total variability in the data explained by the model and by individual predictors

** significant @ p < 0.01; * significant @ p < 0.05; - not significant.

Metal Model Species Age/size Growth rate Sex  Species X Sex
Mn 68% ** 38% **  27% ** 2% ** . -

Zn 59% ** 39% ** 17% ** - 2% * -

Fe 55% ** 35% ** 14% ** 6% ** - -

Ni 51% ** 48% ** 2% * - - -

As 49% ** 38% ** 7% ** - - -

Cd 49% ** 5% ** 36% ** 6% ** 2% * -

Cr 42% ** 41% ** - - - -

Pb 42% ** 38% ** - 3% * - -

Hg 40% ** 9% ** 25% ** 3% * 2% * -

Al 31% ** 23% ** 6% ** - - -

Cu 28% ** 17% ** 8% ** - - 3% *
Se 17% ** - - 12% ** - 3% *




TABLE 5. Mean concentrations of metals (ug.g" dry weight) in E. complanata (n = 69) and L.
L. radiata (n = 68 for Cd and Pb, n = 70 for As and Se, and n = 71 for all other metals), and
coefficients of variation (CV = SD/mean X 100%).

E. complanata L. r. radiata

Metal Mean conc’n CV Mean conc’'n CV

Ni 7.81 ** 32% 310 88%
Cr 25.8 ** 34% 12.2 74%
Al 718 ** 56% 300 79%
Cu 14.3 ** 25% 11.3 28%
Pb 10.81 ** 34% 6.07 36%
Hg 0.12 ** 42% 0.10 40%
Fe 8783 ** 36% 5167 37%
Zn 223 30% 448 ** 58%
As 343 22% 543 ** 36%
Mn 1592 48% 2954 ** 38%
Cd 0.40 70% 0.51 ** 59%
Se 2.65 16% 2.58 10%

** concentration significantly higher in this species @ p < 0.01.
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Figure captions

FIG. 1. Location of the study site on the St. Lawrence River, downstream of three major metal-
discharging industries (Québec Iron and Titanium, Atlas Steel and Tioxide Canada, Inc.).

FIG. 2. Relationship between size and age of mussels, where "PC size" represents all five
measures of size (shell length, width, height, weight and soft tissue dry weight) and age is In-
transformed to achieve maximum linearity with PC size. PC1 distinguishes large-old from small-
young mussels and PC2 distinguishes fast-growing from slow-growing mussels.

FIG. 3. Relationships between concentrations of metals in the soft tissues and years of age for
each species and sex tested. Four representative metals are illustrated.
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Think Recycling!
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Pensez a recycler !




