
CCIW
DEC 3 2007
LIBRARY

210_{Pb} Dating of Sediments from the St. Lawrence River (Core 087, Station TCT1) Ontario

L.J. Turner

NWRI Contribution No. 96-28

TD 226 N87 No. 96-28

Pb dating of sediments from the St. Lawrence River (Core 087, Station TCT1), Ontario. L.J. Turner

> CONTRIBUTION 96-28 July 1996

National Water Research Institute Canada Centre for Inland Waters Burlington, Ontario L7R 4A6

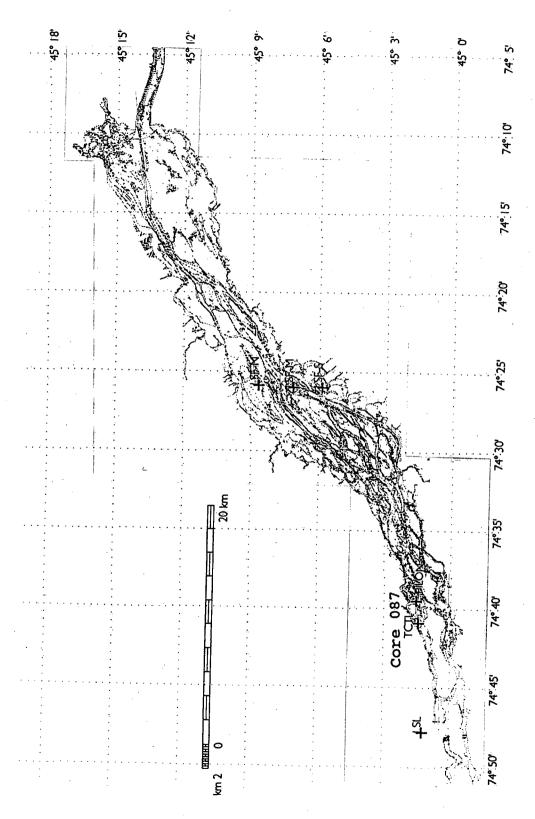
Turner, L.J., 1996. ²¹⁰Pb dating of sediments from the St. Lawrence River (Core 087, Station TCT1), Ontario. National Water Research Institute, Burlington, Ontario. NWRI CONTRIBUTION 96-28, 27p.

Summary

A sediment core was dated from the St. Lawrence River, Ontario. The ²¹⁰Pb profile of the sediment core was used to determine the chronological age of the sediment as well as the sedimentation rate. The mean specific gravity was determined to be 2.505 gcm⁻³. The sedimentation rate was calculated to be 0.80 cmyr⁻¹ for core 087 using a CIC model. The average mass sedimentation rate was determined to be 0.20 gcm⁻²yr⁻¹ using the CIC1 model, 0.22 gcm⁻²yr⁻¹ using the CIC2 model, and 0.22 ± 0.020 gcm⁻²yr⁻¹ using the CRS model.

INTRODUCTION

In this study, a core (087) taken from the St. Lawrence River (station TCT1), was dated using a 210Pb method (Eakins and Morrison, 1978). The core was collected by Technological Operations personnel (National Water Research Institute, Burlington) and submitted for analysis by H. Biberhofer (CCIW, NWRI, Study LTSS-95). Other eastern Canadian cores have been dated using this method (Turner and Delorme, 1988a-b, 1989a-g, 1990, 1992; Turner, 1990a-e, 1991a-g, 1992a-c, 1993a-d, 1994a-b, 1995a-g, 1996a).


LOCATION AND CORE PREPARATION

The location of the sample site from which the core was taken (Station TCT1; 45.02°N, 74.68°W) is shown in Figure 1. On February 17, 1996, the St. Lawrence River was cored using a lightweight corer (10.16 cm diameter) at a water depth of 12 m. Core 087 was transported to Burlington, Ontario and placed in cold storage. On March 27, 1996, the core was subsectioned into 1-cm intervals giving fifty-two (52) samples. The samples were weighed, freezedried, and then re-weighed. These weights were used to calculate porosity and the uncompacted depth (see Appendices A - B, Delorme, 1991).

A plot of porosity versus uncompacted mid-depth and cumulative dry weight for core 087 is shown in Figure 2. Regions of decreased porosity for two sections of the core (samples 16-23 and 49-52) may indicate changes in lithology.

Specific Gravity was determined using an automated Accupyc pycnometer (Micromeritics, 1992). Mean specific gravity for the sediments of core 087 is 2.505 ± 0.052 g cm⁻³ based on 11 samples and 55 determinations (see Appendix C this report).

Figure 1. Location map of the sampling site for core 087, St. Lawrence River, Ontario.

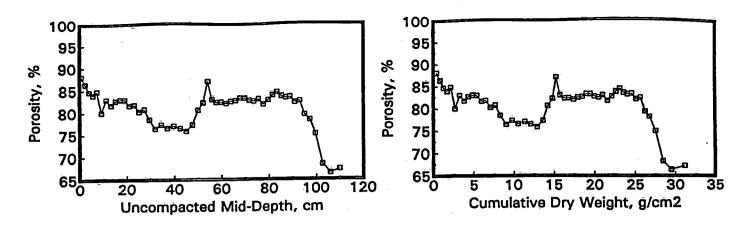


Figure 2. Distribution of porosity with uncompacted mid-depth or cumulative dry weight for core 087.

METHOD

Laboratory Procedures

Homogeneous portions of 24 samples (Table 1, including 2 sets of replicates) from core 087 were treated using a variation on the Eakins and Morrison (1978) polonium distillation procedure. Details of the laboratory procedure are found in a laboratory manual (Turner, 1990).

Following grinding and homogenizing, 1 g (upper core) to 3 g (lower core) of sediment were treated with concentrated HCl to remove carbonate materials, then mixed with approximately 10 dpm ml⁻¹ of ²⁰⁹Po spike in a test tube. The ²⁰⁹Po spike was prepared on September 6, 1991 at 6.07 dpm/ml activity. The test tube and contents were then placed in an oven at 110°C until dry.

After cooling, glass wool plugs (one to hold the sediment at the bottom of the tube, one dampened to catch polonium at the opening of the tube) were inserted, then the tubes were placed into a tube furnace and heated to 700°C for ½ hr to distill the polonium from the sediments. At this temperature, polonium passes easily from the sediment, through the dry wool plug and does not condense until reaching the wet wool plug outside the furnace.

After cooling, the tube was cut, and the upper part containing the damp glass wool (condenser) was digested in concentrated HNO₃ under reflux (to destroy organic material). The residue was then

filtered and the filtrate boiled down and digested with two HCl treatments to remove any remaining traces of HNO3.

The polonium was then plated from the remaining solution onto a finely polished silver disk. The disk was counted in an alpha spectrometer. ²⁰⁹Po was identified by its 4.88 MeV alpha particle, and ²¹⁰Po by its 5.305 MeV alpha particle. The ²¹⁰Po counts obtained from the spectrometer were compared to the ²⁰⁹Po counts (of known activity) to determine the activity of ²¹⁰Po in the sediment sample.

Sediment Dating Theory

Dating of lacustrine sediments has been actively pursued for several decades (Robbins and Edgington, 1975; Matsumoto, 1975; Appleby and Oldfield, 1978; and Farmer, 1978). Sedimentation rates are derived using either the CIC (constant initial concentration of unsupported ²¹⁰Pb; Robbins and Edgington, 1975; Matsumoto, 1975) or the CRS (constant rate of supply; Appleby and Oldfield, 1978) model. The CIC model assumes a constant sedimentation rate over the time period in which unsupported ²¹⁰Pb is measured. The CRS model assumes a variable sedimentation rate. Both models assume a constant flux of unsupported ²¹⁰Pb to the sediment/water interface. Depth can be corrected for sediment compaction in the CIC model using sediment porosity measurements, otherwise cumulative dry weight is used. Sediment compaction is accounted for in the CRS model by dealing with cumulative dry weight instead of sediment depth.

The profile of 210Pb in a sediment core can be described as follows:

$$A_{Tx} = (A_{Uo})e^{-\lambda t} + A'$$
 (1a)

where

 A_{Tx} is the total activity of ²¹⁰Pb in the sample in pCig-1 dry wt at depth x, and of age t.

A' is the activity of ^{210}Pb supported by ^{226}Ra in pCig 1 dry wt (represented by constant ^{210}Po activities attained at depth),

 A_{Uo} is the unsupported activity of ^{210}Pb at the sediment/water interface in pCig 1 dry wt,

 λ is the radioactive decay constant for ²¹⁰Pb (0.693/22.26 yr⁻¹ = 0.0311 yr⁻¹),

And since $A_{Ux} = A_{Tx} - A'$ then $A_{Ux} = (A_{Uo})e^{-\lambda t}$ (1b)

where A_{Ux} is the unsupported activity of ²¹⁰Pb in the sample in pCig¹ dry wt at depth x,

The Constant Initial Concentration (CIC) Model:

In the following derivations, equations which refer to the usage of cumulative dry weight instead of uncompacted depth in the CIC model are designated with an 'a'.

In the CIC model, uncompacted mid-depth, z, can be used instead of natural depth, x, to compensate for sediment compaction. Otherwise cumulative dry weight is used. The uncompacted mid-depth is calculated from uncompacted thickness (Delorme 1991).

$$t_{ui} = \{ (\phi_o - \phi_i) / (1 - \phi_o) \} + (TV_i * V_q)$$
 (2)

where t_{ui} is the uncompacted thickness of the ith sample,

 ϕ_i is the porosity of the i^{th} sample expressed as a percentage,

 $\phi_{\rm o}$ is the porosity at the sediment-water interface calculated by regressing the top four sample porosities $(\phi_{\rm i})$ against natural mid-depth, and $\phi_{\rm o}$ = y intercept,

 TV_i is the total volume of the i^{th} sample,

 $V_{\rm q}$ is the volume of a cylinder 1 cm high and surface area equal to either the inside of the core tube or the stainless steel extrusion ring, whichever is appropriate.

The CIC model assumes a constant sedimentation rate (or mass sedimentation rate) over the time period in which unsupported 210pb is measured, thus

$$t = z/S_o (3)$$

$$t = c/\omega \tag{3a}$$

where S_o is the sedimentation rate in cmyr⁻¹ at the sediment/ water interface,

z is uncompacted mid-depth,

c in cumulative dry weight in g cm⁻²,

 ω is the mass sedimentation rate in g cm⁻²yr⁻¹.

The total 210Pb activity at the sediment water interface is:

$$A_{To} = (P/\omega) \tag{4}$$

where P is the flux of ²¹⁰Pb at the sediment water interface in pCi cm²yr⁻¹, (assumed constant).

Substituting equations (3) [and (3a)] and (4) into equation (1a) gives:

$$A_{Tz} = (P/\omega) e^{-\bar{z}\lambda/S_o} + A'$$
 (5)

or.

$$A_{Tx} = (P/\omega)e^{-C\lambda/\omega} + A'$$
 (5a)

Equation (5) or [5(a)] can be simplified using natural logarithms:

$$\ln(A_{Tz} - A') = \ln(P/\omega) - (\lambda/S_o)z$$
 (6)

$$\ln(A_{Tx} - A') = \ln(P/\omega) - (\lambda/\omega)c$$
 (6a)

The form of the equation is y = b + (m) x

A graphical solution for P/ω (the y-intercept) and λ/S_o [or (λ/ω)] (the slope of the line) is possible from a plot of x and y {z vs $\ln(A_z - A')$ } [or c vs $\ln(A_x - A')$] (see Figure 4). As λ is known, then S_o [or ω] can be calculated.

$$S_{o} = \lambda/\text{slope} = \lambda/(m)$$
 (7)

$$\omega = \lambda/\text{slope} = \lambda/(m)$$
 (7a)

When using uncompacted depth, the mass sedimentation rate ω (g cm⁻²yr⁻¹) is represented by:

$$\omega = S_o (1 - \phi_o) \rho_s = S_i (1 - \phi_i) \rho_s$$
 (8)

where ρ_s is the density of the solid phase of the sample (assumed constant),

 S_i is the sedimentation rate (cmyr⁻¹) at a given uncompacted mid-depth z.

The flux at the sediment/water interface P (pCi cm⁻²yr⁻¹) can be calculated from the y-intercept and mass sedimentation rate.

$$P = \omega (e^b)$$
 (9)

Using equation (6) [or (6a)] the time 't' in years since the sample was deposited is given by:

$$t = \frac{\ln (A_{Tz} - A') - \ln(P/\omega)}{(-\lambda)} = \frac{z}{S_o}$$
 (10)

or
$$t = \frac{\ln (A_{Tx} - A') - \ln(P/\omega)}{(-\lambda)} = \underline{c}$$
 (10ai)

which can be written as:

$$t = -\frac{1}{\lambda} \ln \frac{(A_{T_z} - A')}{A_{T_0}} = \frac{z}{S_o} \quad \text{or} = \frac{c}{\omega}$$
 (10aii)

The uncompacted mid-depth (cm) divided by the sedimentation rate $(cm\,yr^{-1})$ [or cumulative dry weight, $(g\,cm^{-2})$ divided by mass sedimentation rate $(g\,cm^{-2}\,yr^{-1})$] gives t.

The Constant Rate of Supply (CRS) Model:

Since the CRS model assumes a constant rate of supply, then

$$P = A_{Ui} * \omega_t$$
 (11)

where P is the flux of 210Pb at the sediment water interface in pCi cm-2 yr-1, (assumed constant)

 A_{Ui} is the initial activity of unsupported ^{210}Pb in sediment of age t

 ω_{t} is the dry Mass Sedimentation Rate (g cm⁻²yr⁻¹) at time t.

Sediment laid down during time period δt occupies a layer of thickness (δx):

$$\delta x = \underline{\omega_t} \quad \delta t \tag{12}$$

were ρ_x is the dry mass/unit wet volume of the sample (g cm³) at depth x.

$$\rho_{x} = \frac{d\omega}{dx} \tag{13}$$

The rate of change of depth is

$$x' = \frac{\omega}{\rho_x} \tag{14}$$

where ' denotes differentiation with regards to t.

and
$$x' \rho_x = \omega = x'_0 \rho_0$$
 (15)

Equation (15) combines with (1b) to give

$$x' \rho_x A_{Ux} = x'_{o} \rho_{o} (A_{Uo}) e^{-\lambda t}$$
(16)

Let
$$B(x) = \int_{x}^{\infty} \rho_{x} * A_{Ux} dx = \int_{x}^{\infty} A_{Ux} d\omega \qquad (17)$$

represent the total residual or cumulative unsupported ^{210}Pb beneath sediments of depth x,

and
$$B(0) = \int_0^\infty \rho_o * A_{Uo} dx = \int_0^\infty A_{Uo} d\omega$$
 (18)

represent the total residual unsupported $^{210}\mathrm{Pb}$ in the sediment column, then

$$B(x) = B(0)e^{-\lambda t}$$
 (19)

The age of layer at depth x is thus:

$$t = -\frac{1}{\lambda} \ln \frac{B(x)}{B(0)}$$
 (20)

where B(x) and B(0) are calculated by direct numerical integration of the ^{210}Pb profile (the plot of unsupported activity versus cumulative dry weight).

The mass sedimentation rate is calculated by dividing the change in the mid-sample cumulative dry weight by the difference of time in years for the sample analyzed.

The mean 210Pb supply rate (flux) is calculated from

$$P = \lambda B(0) \tag{21}$$

Quality Assurance/Quality Control

Quality Assurance: Collection and Preparation of Core Samples
The samples for core 087 were collected using a lightweight corer.

When the core was extruded, the outer smeared portion was removed using a stainless steel ring to prevent contamination of sediments from above (following the procedure outlined by Delorme, 1991). The samples were freeze-dried using a standard procedure. Minimum loss of water from each sample was achieved by keeping tight lids on the vials before weighing and freeze drying. There was no transfer of sediments from the vials until freeze-drying was complete and the dry weights obtained.

Test runs for quality control on the alpha spectrometry equipment were last done in June, 1996.

Quality Control: Contamination and Method Checks

Blanks (no sample, no spike), were run through the same analytical procedures as samples, to determine if there was contamination from analytical reagents. Blanks, prepared at the same time as the sediment samples, exhibited a background activity of 0.03 dpm when run in all detectors, an activity comparable to empty sample holders.

Yield tracer solutions (no sediment sample) were also run through the analytical procedure. No counts above background were detectable in the ²¹⁰Po region of the spectra for disks prepared using only the spike (no sample), indicating no polonium (²¹⁰Po) contamination in the analyses from spike solutions.

Quality Assurance: System Checks

The alpha spectrometer has been monitored since May of 1988. Sample chambers are examined on a monthly basis for contamination. Empty sample holders give a background count rate of 0.01 dpm which equals the equipment specifications.

RESULTS

Table 1 lists the ²¹⁰Po activities for the 24 samples prepared for core 087. Figure 3 depicts the ²¹⁰Po activity profile with depth and cumulative dry weight. The symbols used in figure 3 indicate which detector was used during sample analysis. Circles represent

detector 3, triangles represent detector 2, and squares represent detector 1.

Table 1. Activity of 210Po in Core 087 Sediment.

75.7			40. 5.	
Sample	Cum. Dry Wt. g/cm2	Uncomp. Mid Depth cm	210Po dpm/g	DET No.
1 3 5 6 6R 6R2 7 9 10 11 13 15 17 20 23 25 30 35 35R 35R 35R 35R 25 50 52	0.41 1.28 2.17 2.70 2.70 2.70 3.26 4.34 4.85 5.40 6.50 7.67 9.50 11.32 13.61 14.81 17.40 19.99 19.99 19.99 19.99 22.63 25.12 28.46 31.16	0.78 4.03 7.41 9.25 9.25 9.25 11.28 15.28 17.14 19.06 23.08 27.27 31.92 39.65 47.64 52.16 61.79 71.62 71.62 71.62 81.55 90.87 102.57 109.87	11.0 10.8 11.2 6.5 ± 0.4 6.3 ± 0.3 6.2 ± 0.2 8.4 6.8 8.1 7.1 6.2 5.5 5.1 4.6 3.8 5.3 5.1 4.6 ± 0.0 4.7 ± 0.1 4.5 4.6 5.6 2.3	2 1/2/3 1/2/3 1/2/3 3 2 1 3 2 3 1/2/3 1/2/3 1/2/3 1/2/3 2 3 1/2/3 2 3 1/2/3

Reproducibility of Results

Two slices from core 087 were chosen to have the analysis for ²¹⁰Po repeated. These are listed in Table 2. The ²¹⁰Po activities are given in Table 1.

Table 2 Reproducibility of Core 087 analyses.

Core	<u>Sample</u>	Uncompacted Mid Depth	²¹⁰ Po activity <u>Mean</u> ± <u>Std De</u> viation		
087	6	9.3	$\frac{-3 \pm 0.1}{6.3 \pm 0.1}$		
	35	71.6	4.6 ± 0.0		

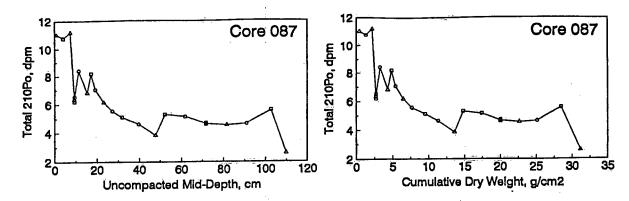


Figure 3. Distribution of Total 210Po activity in dpmg 1 in relation to uncompacted mid-depth and cumulative dry weight for core 087.

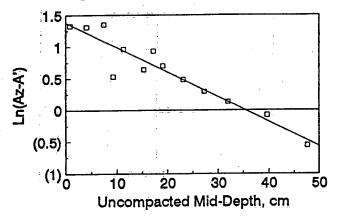


Figure 4. The distribution of uncompacted mid-depth against $\ln(A_z - A')$ for core 087. The y intercept of the regression line = 1.3799, the slope = -0.0391.

210 Pb Analysis of St. Lawrence River core 087, using the CIC model.

For the first CIC model, the unsupported activity is plotted against uncompacted mid-depth (Figure 4) using the expanded equation (6). Based on the graphical solution, the y-intercept is $\ln(P/\omega)=1.3799$ and the slope of the line (λ/S_o) is -0.0391 (see Appendix D). Samples 1 to 13 were used to calculate an average sedimentation rate of 0.80 cmyr⁻¹, an average mass sedimentation rate of 0.20 gcm⁻²yr⁻¹ and a flux of 0.79 pCicm⁻²yr⁻¹. The mean dates calculated for each core section, based on a division of the uncompacted mid-depth by the sedimentation rate (equation 3), are given in Appendix G. The '±' values are two standard deviations

based on data calculated for the top, bottom, and mid-depth of the sample.

For the second CIC model, the unsupported activity is plotted against cumulative dry weight (Figure 5) using the expanded equation (6a). Based on the graphical solution, the y-intercept is $\ln(P/\omega) = 1.3626$ and the slope of the line (λ/ω) is -0.1408 (see Appendix E). Samples 1 to 13 were used to calculate an average mass sedimentation rate of 0.22 gcm²yr⁻¹ and a flux of 0.86 pCicm²yr⁻¹. The dates calculated for each core section, based on a division of the cumulative dry weight by the mass sedimentation rate (equation 3a) are given in Appendix G. The '±' values are two standard deviations based on data calculated for the top, bottom, and midsection of the sample.

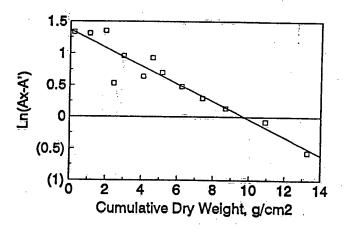


Figure 5. The distribution of cumulative dry weight against $\ln(A_x - A')$ for core 087. The y intercept of the regression line = 1.3626, the slope = -0.1408.

Ideally, the CIC1 and CIC2 models should give almost identical results. A difference in the mass sedimentation rates and atmospheric fluxes determined from the CIC1 and CIC2 models may indicate a problem in the calculation of uncompacted mid-depth. It may indicate a change in lithology that was not completely accounted for by porosity or specific gravity measurements.

A comparison of the mass sedimentation and atmospheric flux rates for this core shows good agreement.

210Pb Analysis of St. Lawrence River core 087, using the CRS model.

For the CRS model, the unsupported activity is plotted against cummulative dry weight (Figure 3). The profile is integrated to determine B(0) and B(x) and calculate time (see Appendix F) according to equation 20. Since not all samples were analyzed for 210 Pb activity, a multiple regression analysis was performed to obtain the dates for each core section as given in Appendix G. samples 1 to 14 were used in this example to calculate an average mass sedimentation rate of 0.22 ± 0.02 gcm⁻²yr⁻¹ and flux of 0.88 pCi cm⁻²yr⁻¹. The variation in mass sedimentation rate in core 0.87 is illustrated in figure 6.

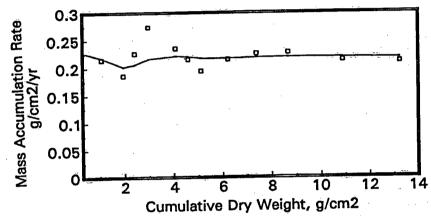


Figure 6. Plot of mass sedimentation rate versus cumulative dry weight for core 087. Points represent mass sedimentation rates determined from integrated area defined by activity and cumulative dry weight for the sample, the line represents the running mean of the mass sedimentation rate.

Comparison of CIC and CRS 210Pb Analysis of Core 087.

Table 3 lists mass sedimentation and atmospheric flux rates as calculated from the CIC and CRS models. The rates are in good agreement with the CIC2 and CRS models agreeing more closely. The year corresponding to individual core sections (Appendix G) as determined by the CIC and CRS models are plotted against cumulative dry weight in Figure 7. Figure 7 shows a very close agreement between the two models. This indicates that the assumption of a 'constant sedimentation rate' for the CIC model was an acceptable one.

Table 3. Summary of Mass Sedimentation Rate and Atmospheric Flux.

Model	Average Mass Sedimentation Rate g.cm ⁻² .yr ⁻¹	Atmospheric Flux pCi cm ⁻² yr ⁻¹		
CIC1	0.20	0.79		
CIC2	0.22	0.86		
CRS	0.22 ± 0.020*	0.88		

Based on incremental mass sedimentation rates (Appendix F)

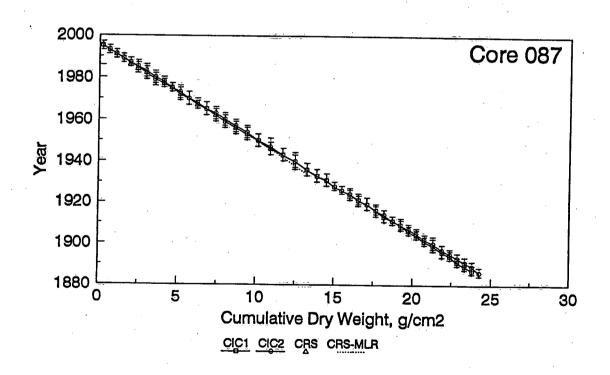


Figure 7. Plot of the Year determined from CIC (squares and circles)/CRS (triangles) models versus cumulative dry weight for St. Lawrence River Core 087.

REFERENCES

Appleby, P.G. and F. Oldfield. 1978. The calculation of ²¹⁰Pb dates assuming a constant rate of supply of unsupported ²¹⁰Pb to the sediment. Catena 5:1-8

Delorme, L.D. 1991. The preparation of lacustrine sediment samples from cores for use in dating and paleolimnology. National Water Research Institute, Burlington, Ontario, Contribution 92-188, 18p.

Eakins, J.D. and R.T. Morrison. 1978. A new procedure for determination of lead-210 in lake and marine sediments. International Journal of Applied Radiation and Isotopes 29:531-536.

Farmer, J.G. 1978. The determination of sedimentation rates in Lake Ontario using the ²¹⁰Pb dating method. Canadian Journal of Earth Sciences 15:431-437.

Matsumoto, E. 1975. ²¹⁰Pb geochronology of sediments from Lake Shinji. Geochemical Journal 9:167-172.

Micromeritics 1992. Automated Accupye pycnometer 1330, for determining skeletal density and volume of powders, porous materials, and irregularly shaped solid objects. Operators Manual V2.01, Micromeritics Instrument Corporation, Norcross, Georgia.

Oldfield, F. and P.G. Appleby. 1984. Emperical testing of ²¹⁰Pb dating models for lake sediments <u>IN</u> Lake Sediments and Environmental History (Eds. E.Y. Harworth and J.W.G. Lund). University of Minnesota Press, Minneapolis. pp 93-124.

Robbins, J.A. and D.N. Edgington. 1975. Determination of recent sedimentation rates in Lake Michigan using Pb-210 and Cs-137. Geochimica et Cosmochimica Acta 39:285-304.

Turner, L.J. 1996a. ²¹⁰Pb dating of lacustrine sediments from Lake Erie (Core 083, Station 351), Ontario. National Water Research Institute, Burlington, Ontario. NWRI Contribution 96-02, 31p.

Turner, L.J. 1995a. ²¹⁰Pb dating of lacustrine sediments from Irondequoit Bay, Lake Ontario (Core 065, Station IB-94-2), New York. National Water Research Institute, Burlington, Ontario. NWRI Contribution 95-100, 30p.

Turner, L.J. 1995b. ²¹⁰Pb dating of lacustrine sediments from Hamilton Harbour (Core 066, Station JPC94HHD4), Lake Ontario. National Water Research Institute, Burlington, Ontario. NWRI Contribution 95-108, 24p.

Turner, L.J. 1995c. 210Pb dating of lacustrine sediments from Mud

Lake (Core 068), Ontario. National Water Research Institute, Burlington, Ontario. NWRI Contribution 95-109, 37p.

Turner, L.J. 1995d. ²¹⁰Pb dating of lacustrine sediments from Preston Lake (Core 074), Ontario. National Water Research Institute, Burlington, Ontario. NWRI Contribution 95-110, 32p.

Turner, L.J. 1995e. ²¹⁰Pb dating of lacustrine sediments from Hamilton Harbour (Core 071, Station HH93-2; Core 072, Station HH93-8; Core 073, and Station HH93-11), Lake Ontario. National Water Research Institute, Burlington, Ontario. NWRI Contribution 95-113, 35p.

Turner, L.J. 1995f. 210Pb dating of lacustrine sediments from Lake Erie (Core 077, Station 348), Ontario. National Water Research Institute, Burlington, Ontario. NWRI Contribution 95-119, 27p.

Turner, L.J. 1995g. ²¹⁰Pb dating of lacustrine sediments from Lake Erie (Core 082, Station 348), Ontario. National Water Research Institute, Burlington, Ontario. NWRI Contribution 95-277, 27p.

Turner, L.J. 1994a. ²¹⁰Pb dating of lacustrine sediments from Lake Erie (Core 055, Station 84-1), Ontario. National Water Research Institute, Burlington, Ontario. NWRI Contribution 94-116, 25p.

Turner, L.J. 1994b. ²¹⁰Pb dating of lacustrine sediments from Big Creek Marsh (Core 058, Station 173) and Coletta Bay (Core 059, Station 174), in Inner Bay, Lake Erie, Ontario. National Water Research Institute, Burlington, Ontario. NWRI Contribution 94-127, 32p.

Turner, L.J. 1993a. ²¹⁰Pb dating of lacustrine sediments from Hamilton Harbour (Core 047, Station 37-1; Core 051, Station 22-D; and Core 052, Station 20-C), Lake Ontario. National Water Research Institute, Burlington, Ontario, Technical Note RAB-TN-93-42, 41p.

Turner, L.J. 1993b. ²¹⁰Pb dating of sediments from Malden Creek (Core 053) and Muddy Creek (Core 054), Ontario. National Water Research Institute, Burlington, Ontario, Technical Note RAB-TN-93-43, 16p.

Turner, L.J. 1993c. ²¹⁰Pb dating of lacustrine sediments from Humber Bay (Core 048, Station 42-D1), Lake Ontario. National Water Research Institute, Burlington, Ontario, Technical Note RAB-TN-93-53, 15p.

Turner, L.J. 1993d. 210Pb dating of lacustrine sediments from Hamilton Harbour (Core 049, Station STP-D1; and Core 050, Station

STP-BEN1), Lake Ontario. National Water Research Institute, Burlington, Ontario, Technical Note RAB-TN-93-52, 19p.

Turner, L.J. 1992a. ²¹⁰Pb dating of lacustrine sediments from Hamilton Harbour Station 33 (Core 031, Box 1; Core 032, Box 2; Core 33, Box 4; and Core 034, Benthos 1), Ontario. National Water Research Institute, Burlington, Ontario, Technical Note RAB-92-07, 30p.

Turner, L.J. 1992b. ²¹⁰Pb dating of lacustrine sediments from Brewer Lake (Core 035) and Costello Lake (Core 036) in Algonquin Park, Ontario. National Water Research Institute, Burlington, Ontario, Technical Note RAB-92-10, 25p.

Turner, L.J. 1992c. ²¹⁰Pb dating of lacustrine sediments from Humber Bay (Station H27, Core 041; Station H14a, Core 042; and Station H2a, Core 043), Lake Ontario. National Water Research Institute, Burlington, Ontario, Technical Note RAB-92-18, 21p.

Turner, L.J. 1991a. ²¹⁰Pb dating of lacustrine sediments from the Saguenay River (Core 011, Station S90-103), Quebec. National Water Research Institute, Burlington, Ontario, Technical Note RAB-91-04, 13p.

Turner, L.J. 1991b. ²¹⁰Pb dating of lacustrine sediments from Adolphus Reach (Core 012, Station C-2) and the North Channel (Core 013, Station C-4) of Lake Ontario. National Water Research Institute, Burlington, Ontario, Technical Note RAB-91-06, 25p.

Turner, L.J. 1991c. 210 Pb dating of sediments from the St. Lawrence River Estuary (Core 014, Station E_{90} -551 and Core 015, Station E_{90} -552), Quebec. National Water Research Institute, Burlington, Ontario, Technical Note RAB-91-11, 20p.

Turner, L.J. 1991d. ²¹⁰Pb analysis of sediments from the St. Lawrence River Estuary (Core 016, Station LE, Core 017, Station 134A; Core 018, Station 145B; Core 019, Station 168 and Core 020, Station 174), Quebec. National Water Research Institute, Burlington, Ontario, Technical Note RAB-91-13, 13p.

Turner, L.J. 1991e. ²¹⁰Pb analysis of lacustrine sediments from East Lake (Core 021, Station 158 and Core 022, Station 159), Ontario. National Water Research Institute, Burlington, Ontario, Technical Note RAB-91-16, 24p.

Turner, L.J. 1991f. ²¹⁰Pb analysis of lacustrine sediments from the Bay of Quinte (Core 023, Station 875 and Core 024, Station PM1), Ontario. National Water Research Institute, Burlington, Ontario, Technical Note RAB-91-22, 23p.

Turner, L.J. 1991g. 210Pb analysis of lacustrine sediments from the

Bay of Quinte (Core 025, Station D and Core 026, Station F), Ontario. National Water Research Institute, Burlington, Ontario, Technical Note RAB-91-26, 25p.

Turner, L.J. 1990. Laboratory Determination of ²¹⁰Pb-²¹⁰Po using alpha spectrometry, Second Edition. National Water Research Institute, Burlington, Ontario. Technical Note LRB-90-TN-07, 63p.

Turner, L.J. 1990a. ²¹⁰Pb dating of lacustrine sediments from Hamilton Harbour (Core 001, Station 31A), Ontario. National Water Research Institute, Burlington, Ontario, Technical Note RAB-90-10, 21p.

Turner, L.J. 1990b. ²¹⁰Pb dating of sediments from the St. Lawrence River (Core 007, Station E90-540; Core 008, Station E90-541; Core 009, Station E90-550), Quebec. National Water Research Institute, Burlington, Ontario, Technical Note RAB-90-17, 28p.

Turner, L.J. 1990c. ²¹⁰Pb dating of lacustrine sediments from East Lake (Core 002, Station 155; Core 003, Station 156), Ontario. National Water Research Institute, Burlington, Ontario, Technical Note RAB-90-21, 40p.

Turner, L.J. 1990d. ²¹⁰Pb dating of lacustrine sediments from East Lake (Core 004, Station 157; Core 005, Station 160; and Core 006, Station 161), Ontario. National Water Research Institute, Burlington, Ontario, Technical Note RAB-90-22, 54p.

Turner, L.J. 1990e. ²¹⁰Pb dating of sediments from the St. Lawrence River (Core 010, Station E90-542), Quebec. National Water Research Institute, Burlington, Ontario, Technical Note RAB-90-23, 17p.

Turner, L.J. and L.D. Delorme. 1992. ²¹⁰Pb dating of lacustrine sediments from Hamilton Harbour Station 26 (Core 027, Box 1; Core 028, Box 2; Core 029, Box 4; and Core 030, Benthos 2), Ontario. National Water Research Institute, Burlington, Ontario, Technical Note RAB-92-06, 38p.

Turner, L.J. and L.D. Delorme. 1990. ²¹⁰Pb dating of sediments from the St. Lawrence River (core 155, Station E7-510; core 156, Station E7-520; and core 157, Station E7-530), Quebec. National Water Research Institute, Burlington, Ontario, Technical Note LRB-90-TN-04, 32p.

Turner, L.J. and L.D. Delorme. 1989a. 210Pb dating of lacustrine sediments from Lake St. George (core 122), Ontario. National Water Research Institute, Burlington, Ontario, Technical Note LRB-89-13, 26p.

Turner, L.J. and L.D. Delorme. 1989b. 210Pb dating of lacustrine sediments from Round Lake (Core 106), Ontario. National Water

Research Institute, Burlington, Ontario, Technical Note LRB-89-15, 24p.

Turner, L.J. and L.D. Delorme. 1989c. ²¹⁰Pb dating of lacustrine sediments from the Bay of Quinte (core 151), Ontario. National Water Research Institute, Burlington, Ontario, Technical Note LRB-89-28, 16p.

Turner, L.J. and L.D. Delorme. 1989d. 210Pb dating of lacustrine sediments from the Bay of Quinte (cores 149 and 150), Ontario. National Water Research Institute, Burlington, Ontario, Technical Note LRB-89-29, 25p.

Turner, L.J. and L.D. Delorme. 1989e. ²¹⁰Pb dating of lacustrine sediments from Hamilton Harbour (cores 152, 153, 154), Ontario. National Water Research Institute, Burlington, Ontario, Technical Note LRB-89-30, 18p.

Turner, L.J. and L.D. Delorme. 1989f. ²¹⁰Pb dating of lacustrine sediments from Grenadier Pond (Core 145), Ontario. National Water Research Institute, Burlington, Ontario, Technical Note LRB-89-31, 28p.

Turner, L.J. and L.D. Delorme. 1989g. ²¹⁰Pb dating of lacustrine sediments from Turkey Point Marsh (Core 146), Ontario. National Water Research Institute, Burlington, Ontario Technical Note LRB-89-32, 17p.

Turner, L.J. and L.D. Delorme. 1988a. 210Pb dating of lacustrine sediments from Hamilton Harbour (cores 137, 138, 139, 141, 142, 143). National Water Research Institute, Burlington, Ontario, Technical Note LRB-88-9, 42p.

Turner, L.J. and L.D. Delorme. 1988b. 210Pb dating of lacustrine sediments from Lake St. Clair, (cores 140 and 144). National Water Research Institute, Burlington, Ontario, Technical Note LRB-88-10, 13p.

Appendices

phem	MIX	
A	Wet and dry weights for core 087.	Page 21
B	Calculation of porosity and uncompacted depths given sample wet and dry weights, and specific gravity for core 087.	22
C	Specific gravity determination.	23
D	Lead sedimentation rate analysis, CIC1 Model.	24
E	Lead sedimentation rate analysis, CIC2 Model.	25
F	Lead sedimentation rate analysis, CRS Model.	26
G	Mean date calculated for each core slice.	27

Appendix A: Wet and dry weights for core 087.

```
087 Core Number Station TCT1
2.5051 Specific Gravity gcm<sup>3</sup>
81.0734 Surface area cm<sup>2</sup>, 10.16 cm Tube diameter
49.5144 Surface area cm<sup>2</sup>, 7.94 cm Cutter diameter
0.7961 Rate of sedimentation cmyr<sup>-1</sup>
0 NUMBER OF SAMPLES BELOW THE SURFACE BEFORE THE DIAMETER CHANGES TO CUTTER DIAMETER
```

```
Sample Wet** Dry** Vial
Sample Wet**
             Dry**
                    Vial Spec.
                                                        Wt.
                     Wt.
                          Grav.
                                  Number Wt.
                                                 Wt.
                                                             Grav.
              Wt.
Number Wt.
   1 102.745 43.521 23.348 2.51*
                                    40 99.462 48.274 24.183 2.43*
                                         97.992 47.180 24.352 2.43
      99.911 45.136 23.313 2.51
                                     41
                                         95.971 47.163 23.643 2.44
                                     42
     92.043 45.115 23.708 2.52
      94.074 47.097 24.379 2.52
                                     43
                                         92.092 46.722 24.273 2.45
                                     44 104.749 50.821 24.322 2.45
     91.669 45.252 24.174 2.53*
     92.888 50.435 23.715 2.53
                                    45 105.372 52.563 24.372 2.46*
                                     46 100.106 50.031 23.631 2.48
   7 104.981 51.987 24.282 2.54
                                         97.949 53.111 24.169 2.50
   8 102.907 52.348 23.629 2.54
                                     47
                                         91.909 51.830 23.723 2.52
                                     48
      95.091 49.098 24.558 2.54
                                     49 102.983 59.951 23.641 2.55
     97.615 49.540 24.362 2.55*
  11 103.661 51.611 24.305 2.55
                                     50 108.484 70.117 24.556 2.57
  12 102.090 52.623 24.287 2.54
                                     51 114.619 75.222 23.698 2.59
     95.868 49.789 23.642 2.54
                                    52 171.069106.455 24.288 2.61*
  13
  14 101.338 53.920 24.322 2.54
                                       **Includes Vial Weight
      99.354 52.252 23.718 2.54*
  15
      99.814 55.479 24.560 2.54
  16
  17 108.991 61.577 24.374 2.54
  18 104.897 58.164 23.316 2.54
  19 107.518 60.309 23.645 2.54
  20 119.516 65.440 24.354 2.54*
  21 109.434 61.556 24.370 2.53
  22 114.638 64.423 24.283 2.51
  23 108.542 59.976 24.179 2.50
  24 101.070 52.506 23.326 2.49
  25 110.811 54.444 24.178 2.47*
  26 102.976 45.652 24.308 2.48
      94.303 47.926 24.162 2.48
  27
  28 103.462 52.000 24.277 2.49
      98.478 49.879 23.717 2.49
  29
  30 105.671 52.836 23.729 2.49*
  31 100.392 50.246 23.628 2.48
      99.499 49.478 23.337 2.47
      98.446 48.339 23.326 2.46
  33
  34 103.071 50.670 24.578 2.44
      97.434 49.053 24.320 2.43*
      96.947 49.131 24.288 2.43
  36
      98.532 48.470 23.321 2.43
  37
  38 109.564 54.358 24.285 2.43
```

*Measured specific gravity. Other values calculated by linear regression.

39 101.438 49.649 23.313 2.43

Appendix B: Calculation of porosity and uncompacted depths given sample wet and dry weights, (Delorme, 1991) and specific gravity for core 087. Time in years calculated from CIC1 sedimentation rate data.

													ii i dice e	ata.
Samp		Dry	Cumm.	Water	Sed.	Total	. Comp	. Comp	. Como.	. Sampi	e Uncor	ma libor	ma llassi	- •
Numb	Wt.	Wt.	Dry W	t Cont.	Võl.		Thic		Mid-pt	t Porce	Thial	ip unice	mp Uncom	
	g	ġ	g/cm2	cm3	cm3	cm3	cm	cm						t B.P.
1	79.40	20.17	0.41						CM CAS	, <u>"</u>	cm	cm	_ ciii	Years
2	76.6	21.82	0.85					_ 70						0
3	68.34		1.28										0 2.38	2
4	69.70		1.74									4.8	5 4.03	
5	67.50										1.74	6.5	9 5.72	7
6	69.17		2.17	46.42						84.76	1.63	8.2		ġ
7			2.70	42.45	10.56	53.01	1.07		6.53	80.08	2.06			11
-	80.70		3.26	52.99	10.93	63.92	1.29	8.36	7.71					14
- 8	79.28		3.84	50.56	11.31	61.87	1.25	9.61						
9	70.53		4.34	45.99	9.65	55.64	1.12							16
10	73.25	25.18	4.85	48.08	9.88	57.95	1.17				9737			19
11	79.36	27.31	5.40		10.72	62.77	1.27					2000		21
12	77.80	28.34	5.97		11.14	60.60	1.22						, , , , ,	23
13	72.23		6.50		10.28	56.36						22.10	21.07	26
	77.02		7.10		11.65		1.14			81.75	1.96	24.06	23.08	28
2.2	75.64		7.67			59.07			16.13	80.27	2.16	26.22	25.14	31
2.2	75.25			4/.10	11.24	58.34	1.18	17.90	17.31	80.73	2.10	28.32		34
- : -	-	30.92	8.30	44.33	12.18	56.52	1.14	19.04	18.47	78.45	2.29	30.61		37
2.2	84.62		9.05	47.41		62.07	1.25	20.30	19.67	76.39	2.61	33.22		40
No. 1	81.58	34.85	9.75	46.73		60.46	1.22	21.52	20.91	77.29	2.49	35.71	34.47	43
	83.87	36.66		47.21	14.44	61.65	1.25	22.76	22.14	76.57	2.58	38.29		
20	95.16	41.09		54.08	16.19	70.26	1.42	24.18	23.47	76.96	2.72	41.01	E	46
21	85.06	37.19	12.08	47.88	14.72	62.60	1.26	25.45	24.82	76.48			39.65	49
22	90.36	40.14	12.89	50.22	15.98	66.19	1.34	26.78	26.12		2.61	43.62		53
23	84.36	35.80	13.61	48.57		62.89	1.27	28.05		75.86	2.75	46.37		56
24	77.74	29.18	14.20	48.56					27.42	77.22	2.54	48.91	47.64	59
212	86.63	30.27		56.37		60.30	1.22	29.27	28.66	80.54	2.16	51.07	49.99	62
	78.67	21.34				68.61	1.39	30.66	29.97	82.16	2.17	53.24	52.16	65
	70.14				8.62	65.94	1.33	31.99	31.32	86.93	1.64	54.88	54.06	67
		23.76 1			9.58	55.95	1.13	33.12	32.55	82.88	1.84	56.72	55.80	70
	79.19	27.72 1		51.46		62.62	1.26	34.38	33.75	82.19	2.04	58.76	57.74	72
	74.76	26.16 1		48.60		59.11	1.19	35.58	34.98	82.22	1.97	60.73	59.75	75
_3 -	31.94	29.11 1		52.84		64.51	1.30	36.88	36.23	81.91	2.11	62.84	61.79	77
	76.76	26.62 1	-	50.15	10.73	60.87	1.23	38.11	37.50	82.38	1.99	64.83	63.84	
	76.16	26.14 1	8.46	50.02	10.59	60.61	1.22	39.33	38.72		1.97	66.80	65.82	80
	5.12	25.01 1	8.97	50.11		60.29	1.22	40.55	39.94	83.11	1.90			82
	78.49	26.09 1	9.49	52.40	10.67	63.08	1.27	41.83	41.19	83.08	1.96	68.70	67.75	85
	3.11	24.73 1	9.99	48.38		58.55	1.18	43.01	42.42	82.63		70.66	69.68	87
36 7	2.66	24.84 2		47.82		58.04	1.17	44.18	43.59		1.92	72.58	71.62	89
37 7	5.21	25.15 2		50.06		60.41	1.22	45.40		82.39	1.93	74.51	73.55	92
38 8	5.28	30.07 2		55.21		67.59	1.37		44.79	82.87	1.93	76.44	75.48	94
	8.13	26.34 2		51.79		62.64		46.77	46.08	81.68	2.19	78.63	77.54	97
	5.28	24.09 2					1.27	48.03	47.40	82.68	1.99	80.62	79.63	100
	3.64	22.83 2		51.19			1.23	49.26	48.65	83.75	1.86	82.48	81.55	102
	2.33	23.52 2		50.81	9.38		1.22	50.48		84.41	1.77	84.25	83.37	104
				48.81			1.18	51.66	51.07	83.51	1.83	86.08	85.17	106
	7.82	22.45 2		45.37			1.10	52.76		83.18	1.78	87.86	86.97	109
	0.43	26.50 2		53.93 1		64.73	1.31	54.07		83.32	1.97	89.83	88.85	111
	1.00	28.19 2		52.81 1		64.26	1.30	55.37		82.17	2.08	91.91	90.87	
	6.48	26.40 25		50.07 1	0.64		1.23			82.48	1.98	93.89		114
	3.78	28.94 26		44.84 1		≃ 3	1.14			79.50			92.90	116
48 68	3.19	28.11 26		40.08 1			2 -				2.19	96.08	94.99	
49 79	2.34	36.31 27		43.03 1						78.26	2.20	98.28	97.18	
50 83	3.93	45.56 28	3.46	38.37 1	7.75					75.11		100.92	99.60	
		51.52 29		39.40 1				2.2				104.21		
52 146	78	82.17 31	1.16	6/ 61 Z	1 /0							107.76		
176				۵۰.01 ۵	1.40	96.09	1.94	64.20	63.23	67.24	4.21	111.97	109.87	

Appendix C. Specific gravity determination.

The specific gravities (g cm⁻³) of Core 087 sediments were determined using an automated Accupyc pycnometer (Micromeritics, 1992).

Sample	No. of Tests	Uncompacted Mid Depth	Specific <u>Gravity</u>	<u>Mean</u>
1	5	0.78	2.509 ± 0.003	_
5	5	7.41	2.526 ± 0.002	
10	- 5	17.14	2.548 ± 0.006	
15	5	27.27	2.538 ± 0.001	
20	5	39.65	2.538 ± 0.002	
25	5	52.16	2.473 ± 0.001	. •
30	5	61.79	2.494 ± 0.001	
35	5	71.62	2.432 ± 0.003	
40	5	81.55	2.426 ± 0.002	
45	5	90.87	2.461 ± 0.005	
52	5	109.87	2.610 ± 0.002	2.505 ± 0.052

Appendix D. Lead Sedimentation Rate Analysis, CIC1 Model.

 $\ln (A - A') = \ln (3.975) - 0.039 (Z) R = -0.949$

where (A - A') = unsupported ²¹⁰Pb in pCig⁻¹, and \bar{Z} = uncompacted depth in cm. based on data from lines 1 to 13

Specific Gravity = 2.505 g cm⁻³ $P/\omega = 3.975$ $\omega = 0.200$

The initial porosity at the sediment/water interface is 89.98

Atmospheric flux rate at the time of collection 1996.129 is 1.763 dpm cm 2 yr $^{-1}$ or 0.794 pCi cm $^{-2}$ yr $^{-1}$

Supported ²²⁶Ra activity = 1.161 pCig⁻¹ or 2.578 dpm g⁻¹

Sedimentation Rate = 0.796 cm yr

Mass Sedimentation Rate = $0.200 \text{ g} \cdot \text{cm}^{-2} \cdot \text{yr}^{-1}$

Uncomp Depth cm.	Porosity		Total 210Pb pCi g-1	²¹⁰ Pb ANAL Unsupp. ²¹⁰ Pb dpm·g ⁻¹	YSES Unsupp. ²¹⁰ Pb pCig-1	Sed. Rate cmyr ⁻¹	Years (*)
0.78 4.03 7.41 9.25 11.28 15.28 17.14 19.06 23.08 27.27 31.92 39.65 47.64 52.16 61.79 71.62 81.55 90.87	0.8805 0.8466 0.8476 0.8008 0.8290 0.8266 0.8295 0.8292 0.8175 0.7639 0.7639 0.7639 0.7722 0.8216 0.8191 0.8263 0.8375 0.8217	11.009 10.766 11.176 6.349 8.398 6.809 8.182 7.055 6.162 5.545 5.106 4.624 3.842 5.297 5.137 4.650 4.544 4.640	4.959 4.850 5.034 2.860 3.783 3.067 3.686 3.178 2.776 2.498 2.300 2.083 1.731 2.386 2.314 2.094 2.047 2.090	8.431 8.188 8.598 3.771 5.820 4.231 5.604 4.477 3.584 2.967 2.528 2.046 1.264 2.719 2.558 2.071 1.966 2.062	3.798 3.688 3.873 1.699 2.621 1.906 2.524 2.016 1.615 1.336 1.139 0.922 0.569 1.225 1.152 0.933 0.886 0.929	0.7607 0.7660 0.7686 0.7709 0.7232 0.7598 0.7477 0.7244 0.7514 0.7367 0.7054 0.6631 0.7003 0.6980 0.7157 0.7472 0.7423	1996 1991 1986 1984 1981 1976 1973 1970 1965 1959 1951 1936 1928 1921 1910 1900 1886
102.57 109.87	0.6838 0.6724	5.576 2.578	2.512 1.161	2.998 0.000	1.350		

^(*) Year calculated using the sedimentation rate of the sample

Appendix E. Lead Sedimentation Rate Analysis, CIC2 Model.

 $\ln (A - A') = \ln (3.906) - 0.141 (X) R = -0.948$

where (A - A') = unsupported ²¹⁰Pb in pCig⁻¹, and X = cumulative dry weight in gcm⁻² based on data from lines 1 to 14

Specific Gravity = 2.505 g cm⁻³ $P/\omega = 3.906$ $\omega = 0.221$

The initial porosity at the sediment/water interface is 89.98

Atmospheric flux rate at the time of collection 1996.129 is 1.918 dpm cm⁻²yr⁻¹ or 0.864 pCi cm⁻²yr⁻¹

Supported ²²⁶Ra activity = 1.161 pCig-1 or 2.578 dpmg-1

Mass Sedimentation Rate = 0.221 gcm²yr⁻¹

SUMMARY OF 210Pb ANALYSES

MidSam Cum. DryWt. g·cm ⁻²	Porosity	Total ²¹⁰ Pb dpm·g ⁻¹	Total ²¹⁰ Pb pCi g-1	Unsupp. 210Pb dpm·g-1	Unsupp. 210Pb pCi g-1	Years (°)
0.20	0.8805	11.009	4.959	8.431	3.798	1996
1.07	0.8466	10.766	4.850	8.188	3.688	1991
1.96	0.8476	11.176	5.034	8.598	3.873	1987
2.43	0.8008	6.349	2.860	3.771	1.699	1985
2.98	0.8290	8.398	3.783	5.820	2.621	1983
4.09	0.8266	6.809	3.067	4.231	1.906	1978
4.60	0.8295	8.182	3.686	5.604	2.524	1975
5.13	0.8292	7.055	3.178	4.477	2.016	1973
6.23	0.8175	6.162	2.776	3.584	1.615	1968
7.39	0.8073	5.545	2.498	2.967	1.336	1963
8.68	0.7639	5.106	2.300	2.528	1.139	1957
10.90	0.7696	4.624	2.083	2.046	0.922	1947
13.25	0.7722	3.842	1.731	1.264	0.569	1936
14.51	0.8216	5.297	2.386	2.719	1.225	1931
17.10	0.8191	5.137	2.314	2.558	1.152	1919
19.74	0.8263	4.650	2.094	2.071	0.933	1907
22.38	0.8375	4.544	2.047	1.966	0.886	1895
24.83	0.8217	4.640	2.090	2.062	0.929	
28.00	0.6838	5.576	2.512	2.998	1.350	-
30.33	0.6724	2.578	1.161	0.000	0.000	

(*) Year calculated using the mass sedimentation rate of the sample

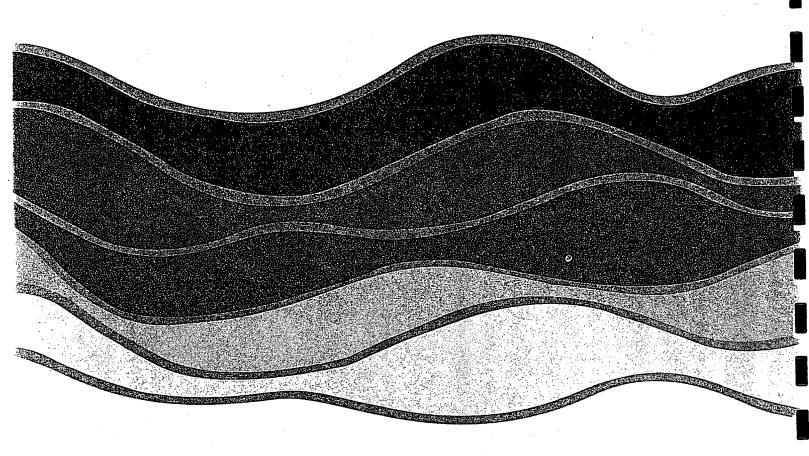
Appendix F. Lead Sedimentation Rate Analysis, CRS Model.

Depth Uncomp Mid-Pt Cm 0.78 4.03 7.41 9.25 11.28 15.28 17.14 19.06 23.08 27.27 31.92 39.65 47.64 *B.P. = Based or Total Ar	n data fr	MidScn Cum. Dry Wt g/cm2 0.20 1.07 1.96 2.43 2.98 4.09 4.60 5.13 6.23 7.39 8.68 10.90 13.25	Unsupp. Activity pCi/g 3.798 3.688 3.873 1.699 2.621 1.906 2.524 2.016 1.615 1.336 1.139 0.922	Area pCi/cm2 0.779 3.219 3.365 1.337 1.177 2.513 1.119 1.203 2.015 1.697 1.596 2.297 1.748	Cum. Area pCi/cm2 0.779 3.997 7.362 8.699 9.876 12.389 13.508 14.711 16.726 18.423 20.020 22.317 24.065	Time B.P.* Years 0.897 4.895 9.686 11.808 13.799 18.514 20.859 23.588 28.752 33.853 39.528 49.994 61.137	Cum.Ave Mass SedRate g/cm2/yr 0.229 0.218 0.202 0.216 0.221 0.220 0.217 0.217 0.218 0.219 0.218 0.219 0.216 0.006	Date	Mass SedRate g/cm2/yr 0.229 0.215 0.186 0.226 0.274 0.235 0.215 0.215 0.225 0.227 0.213 0.210
---	-----------	---	--	--	---	---	--	------	---

Atmospheric flux rate at the time of collection 1996.129 is 0.88 pcicm2yr1

Appendix G. Mean date calculated for each core slice.

	Uncompacted	Cum.	Cum.			
	Mid Depth	Dry Wt.	Dry Wt.	CIC1	CIC2	CRS*
Sample		g:cm-2	Mid Sam	<u>Year</u>	<u>Year</u>	<u>Year</u>
1	0.78	0.41	0.20	1995 ± 2	1995 ± 2	1994
2	2.38	0.85	0.63	1993 ± 2	1993 ± 2	1992
3	4.03	1.28	1.07	1991 ± 2	1991 ± 2	1990
4	5.72	1.74	1.51	1989 ± 2	1989 ± 2	1988
5	7.41	2.17	1.96	1987 ± 2	1987 ± 2	1986
6	9.25	2.70	2.43	1985 ± 3	1985 ± 2	1984
7	11.28	3.26	2.98	1982 ± 3	1983 ± 3	1981
8	13.32	3.84	3.55	1979 ± 3	1980 ± 3	1979
9	15.28	4.34	4.09	1977 ± 2	1978 ± 2	1976
10	17.14	4.85	4.60	1975 ± 2	1975 ± 2	1974
11	19.06	5.40	5.13	1972 ± 3	1973 ± 3	1972
12	21.07	5.97	5.68	1970 ± 3	1970 ± 3	1969
13	23.08	6.50	6.23	1967 ± 2	1968 ± 2	1967
14	25.14	7.10	6.80	1965 ± 3	1965 ± 3	1964
15	27.27	7.67	7.39	1962 ± 3	1963 ± 3	1962
16	29.47	8.30	7.99	1959 ± 3	1960 ± 3	1959
17	31.92	9.05	8.68	1956 ± 3 1953 ± 3	1957 ± 3 1954 ± 3	1956 1952
18	34.47	9.75	9.40	1953 ± 3	1954 ± 3	1952
19	37.00	10.49	10.12	1950 ± 3	1930 ± 3 1947 ± 4	1949
20	39.65	11.32	10.90 11.70	1946 ± 3	1947 ± 4 1943 ± 3	1945
21	42.32	12.08	12.49	1943 ± 3	1943 ± 3 1940 ± 4	1937
22	45.00	12.89 13.61	13.25	1936 ± 3	1936 ± 3	1934
23	47.64 49.99	14.20	13.23	1933 ± 3	1933 ± 3	. 1 /3 1
24 25	52.16	14.20	14.51	1931 ± 3	1931 ± 3	
26	54.06	15.24	15.02	1928 ± 2	1928 ± 2	
20 27	55.80	15.72	15.48	1926 ± 2	1926 ± 2	
28	57.74	16.28	16.00	1924 ± 3	1924 ± 2	
29	59.75	16.81	16.55	1921 ± 3	1921 ± 2	
30	61.79	17.40	17.10	1919 ± 3	1919 ± 3	
31	63.84	17.93	17.67	1916 ± 3	1916 ± 2	
32	65.82	18.46	18.19	1913 ± 3	1914 ± 2	
33	67.75	18.97	18.72	1911 ± 2	1911 ± 2	
34	69.68	19.49	19.23	1909 ± 3	1909 ± 2	
35	71.62	19.99	19.74	1906 ± 2	1907 ± 2	
36	73.55	20.50	20.24	1904 ± 2	1905 ± 2	
37	75.48	21.00	20.75	1901 ± 2	1902 ± 2	
38	77.54	21.61	21.31	1899 ± 3	1900 ± 3	
39	79.63	22.14	21.88	1896 ± 3	1897 ± 2	
40	81.55	22.63	22.38	1894 ± 2	1895 ± 2	
41	83.37	23.09	22.86	1891 ± 2	1893 ± 2	
42	85.17	23.57	23.33	1889 ± 2	1891 ± 2	,
43	86.97	24.02	23.80	1887 ± 2	1889 ± 2	
44	88.85	24.55	24.28		1886 ± 2	


^{44 88.85 24.55 24.28 1886} \pm 2 *Calculation based on a Multiple Linear Regression with an \mathbb{R}^2 of 0.9997 and a Standard Error of 0.3251.

DATE DUE REMINDER

30 AUG 2005

Please do not remove this date due slip.

NATIONAL WATER RESEARCH INSTITUTE P.O. BOX 5050, BURLINGTON, ONTARIO L7R 4A6

Canadä

INSTITUT NATIONAL DE RECHERCHE SUR LES EAUX . C.P. 5050, BURLINGTON (ONTARIO) L7R 4A6 Think Recycling!

Pensez à recycler!