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These and forthcoming results are applicable to the assessment of the proposed 
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Flock masses are fractured over a wide range of scales. Groundwater flow in the 
low-pe'rme_abil'ity rock masses that are candidates for the disposal of nuclear fuel 
waste is often ‘dominated by conduction in fractures. This paper introduces a 
method of constructing a three-dimensional model of a fractured rock mass from 
rheasurable data. Mathematical procedures can then be applied to the model to 
predict the rate of contaniinarit transport in the fractures.

_ 

A scoping analysis of fracture trace length data from the Chalk River Laboratory 
of AECL will be completed by mid 1997. External sources of funding for this 
research are being developed in collaboration with scientists from AECL.
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Fractal relations for the diameter and trace length 
of disc-shaped fractures

' 

Andrew R. Piggott 
National Water Research institute, Burlington, Ontario, Canada 

Abstract. Analytic relations are developed between the fractal parameters of a random, _ 

isotropic population of disc-shaped fractures and the parameters of the corresponding 
population of fracture traces expressed in outcrop. These relations indicate that a fractal 
dist_ribu_t_ion' of fracture diameters translates to a fractal distribution of trace lengths and 
that the parameters for diameter may be uniquely determined ‘from the parameters for t 

trace length. Probabilistic results demonstrateithe accuracy of the analytic relations and 
identify non_idea_l"behavior's at the limits of the computed trace length data. It is expected 
that these relations will be useful in the three-dimensional characterization of fracture "

. 

systems in rock "from in situ trace length data. 
' " "

» 

Introduction 
Rock masses are ubiquitously fr'actu'r'ed over a wide range‘ 

of spatial scales,“ from rnicrocracks visible inthin section to 
features apparent in remote sensing data. Knowledge of 
fracturing as ‘a function of scale is critical to many geological 
pursuits, including the estimation of-groundwater flow in the 
low-permeability rock masses that arecandidates for the 
disposal of nuclear fuel waste. Much of the research that has 
been conducted relative to discretely fractured rock ‘masses 
is based on the assumption thatthe constituent fractures are 
finite, linear features distributed within a two-dimensional. 
domain. These idealized fracture systems are reminiscent of 
the pattems of fracture traces that are observed in outcrop. 
While this assumption is su,ff1,cien,t to acknowledge the 
influence of fracture system geometry on rock mass behavi- 
or, it does not allow the tliree-dtirnensional aspects of 
geometry to be addressed. For example, the percolation 
behaviors for 'two-' and three-dimensional groundwater flow’ 
in dis‘c0n'tinuously' conductive rock masses are significantly 
different [Piggott and Elswonh, 1992], and therefore the 
validity of estimating three-dimensional groundwater flow 
using a two-dimensional model is uncertain. 

In geological settings such as granitic plutons, it is 

appropriate to‘ represent a three-dihmensionial fracture system 
as a population of finite, two-dimensional features. Many 
researchers have adopted a conceptual model 'of this 

geometry, wherein each feature is assumed to be planar and 
circular, or disc-shaped. The geometry of the system is then 
described in termsof the positions of the fractures relative to 
x, y, and z coordinate axes, X, -the orientations of the frac- 
tures relative to these axes,‘ V, and the" diameters of the 
fractures, D. This rather simple model facilitates a range of 
calculations such as determining fracture system connectivity 
[e.g., Billaux er al., 1989; Charlaix ez al., 1984; Guegueri 
and Dienes, 1989] and simulating groundwater flow'within 
the fractures [e.g., Cacas er al., 1990; Long et al., 1985-; 
Piggott and Elsworth, 1989]. ' 
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The concept of fractal geometry [Mandelbrot 1983] is an 
appealing‘ approach to the characterization of fractured rock 
masses, the principal benefitbeing that detailed and real_ist_i_c 
geometries may be stated using a-minimal set of parameters. 
Examples of the expression of fracture ‘geometry and density 
as a function of scale using fractal methods are reported by 
Barton and Larsen [l9.85'],<La Pointe [I988], and Kularilake 
er al. [I996]. This paper addresses the relation between the 
fractal parameters of a population of disc-shaped fractures 
and the parameters of the population of traces lengths that 
results from the intersection of the fracture system with a 
planar outcrop surface. These relations provide a method of 
char'ac'teri‘z'ing a three-dirriensional fracture system using data 
that is measurable in situ_. "

- 

In addition to the standard conceptual mojdel of disc- 
shaped fractures, this study assumes that fractures are 
uniformly and randomly distributed within a rock mass and 
ha_ve -a uniform and 

' 

random distribution of orientation 
defined by the dip direction, oz, and dip angle, [3, of the fracé 
tures [Prie_st, 1985]. The orientation'of the outcrop surface 
does not influence the results, and" therefore the relations 
developed herein may be applied to an outcrop surface with 
any orientation (e.g., a horizontal or sloping ground surface 
exposure or a mined excavation at depth). Each fracture that 
intersects the outcrop surface results in a trace length of L, 
such that 0 S L S D where‘ the specific value of L is defined 
by the position and orientation of the fracture relative to the 
outcrop surface. This sampling forms a convoluliort between 
the distributions of fracture diameter and trace length. 
Inversion of this convolution allows the fractal parameters 
for diameter to be determined from the parameters for trace 
length. - 

Mathematical Development ' 

In this application, a population of disc-shaped fractures 
is deemed fractal if the number of fractures per unit volume 
with a diameter greater than or equal to D may be approxi- 
mated using 

~,,=_“;. <1) Du 
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where FD is the fractal dimension of the distribution of 
diameters and an is a constant of proportionality. This form 
of number-size relation has been applied to a range of 
fragmented geologic media [’Turcnrrt.'. l98o];- applications to 
fracture trace length data are report_et_l by .S't"/wlz er al. [ I993} 
and Watanabe and Takahaxhi I I095]. it is also possible to 
describe this distribution in terms of a volumetric density of 
fractures of diameter D, p,,, where this density is related to 
(I) throttgh_

'

- 

N, = p ,1D ‘ 
(2) 

I J I) 

and t_he_rcfore 

u,f 
pl, 

= 
. (3) 

Figure I depicts a disc-shaped fracture intersecting a 
planar outcrop surface. View A shows the fracture and 
outcrop surface in three-dimensional perspective and indi- 

cates the linear trace of the intersection of the fracture with 
the outcrop surface. View B shows the dip of the frttcl't'tre 

relative to the outcrop surface. B. and the distance between 
the fracture center and outcrop surface, 3. View C shows the 
diameter of the fracture. D. and the length of the intersection 
of the frttcture with the outcrop surface. L. The trace length, 
diame_t_er. dip angl_ejt_t_nd pos_ition of the fracture are related 
via .

- 

I 

[3 = sin".....2.az_..._11 (4) . 
_

. 

where the permissible range of values of z is 

0 s ; s gt/D‘—L’ . (5) 

_ 

View/K
l 

Disc-shaped fracture Z Fracture center 

‘ Outcrop surface 

_ n __ _ W 7 
Fracture trace 

View B View C 

Figure 1. Geometry of a disc-shaped fracture intersectingla 
planar outcrop surface. 

A

. 

The probabil_ity that the scenario shown in Figure l results 
in a trace length of may be determined from the probabil- 
ity density function for the dip angle, pp, as [Gurrmah er aI.. 
I982] 

. 

PIIDZ) = ,,D:‘i__lZ _ to 

where 
'2 (7): 

. 

P=— 
ll K 

fora uniform, random distribution of dip angles. Differentiat- 
ing (4) with respect to trace length yields 

d 22L * 

B = 
. 

' 

g 

r (8) 
" dl. (D2_L2)lD2__LJ_4Z2 

and substituting (7) and (8) into (6) yields 

4 . : 
/2l‘(D;:) = 

4 (9) 
7I(l)2 -L3) /DZ‘, [_!_4Z.‘ 

The number of fracture traces of length L per unit arezi oi 
an outcrop surface resulting from the intersection of fractures 
of diameter D with the -surface is . 

P,,(D.z) = ZP,,PL(l),z)A: ~ ('0) 

Here fractures on either side of the outcrop surface are 
considered, and Az isan increment of the distance from the 
surface. Integrating (10) over (-5) yields the areal density of 
trac'es_of length L3 due to fractures of diairrteter D ' 

t>.<1>.> -;t2---579,, - on 

All fractures with a diameter of D 2 L have a finite probabil- 
ity of producing atracc length of L upon intersection with an 
outcrop surface. Thus the areal density of traces of length L 
resulting from fractures of any diameter may be determined 
by integrating (11) with respect to fracture] diameter 

HM 

‘I 

pL = _'- f;’___pDdD. <12) 
L t/D‘?-Li’

n 

Substituting‘(3) into (12) and integrating the result yields 
l 1+F ' 

t"_"_‘_° " aF ( 2 )1 
_ p L = _°_l__;_‘_F , (13) 

‘/7? R2 
V 

F0) .

2 

U where I‘ denotes the gamma function. 
4 

1 

D ‘The number of fracture traces per unit area of an outcrop 
B 

_ Z » surface with a length greater than or equal to L is the areal 

I 
_ 

1 _ 
equivalent of’(1_) and may be calculated as ‘

' 

i ~L- = IpLdL .~ <14) 
- L 

Substituting (13) into (14) and integrating the result yields
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1*-FD ' 

an F0 IT 
2 

)
l 

- NL = i" . (1.5) 
' fi?F5‘1rt2+Ff>L5q e

2 

Equation (15) has a fractal form which is analogous to that 
of (1); tha1'i.s,

‘

\ 

N,_ = Z: . (16) 
1." 

This indicates that a population of disc-shaped fractures 
exhibiting a fractal distribution of diameters results in a 
fractal distribution of .trace lengths when expressed in 
outcrop. Further, it is possible to. determine the fractal 
dimension and coefficient for diameter from the parameters 
for trace length via ._ -

' 

FD = 5+1 <11) 

and 

3+FL 
= _._..."-_.__.____... (13) a” 4*‘/-'€FL+1 2+F,_ R7-) 

From (15), intersecting a fracture system with a planar 
outcrop surface reduces the fractal dimension for trace length 
by a unit value relative to the fractal dimension for fracture 
diameter. A s_ir_nilar relation may be used to determine the 
fractal dimension of afracture surface with rough, fractal 
topography from sections cut through and across the surface 
[e.g., Piggozr and Elswarth, 1995] and of a fractal population 
of spheres from sections cut through the population [Sammis 
et aL,~l987]. 

i 
‘

' 

Verification Exercises » 

Equation (15) may be velfified using a p_robabi_1_istic 

approach that forms a population of ' fractures with 
_ 
the 

parameters an and F D. The first step in this approach is to 
specify the srnallest fracture diameter that is required in the 
results, Dmin. The total number of fractures is then determined 
from (1) as 

' A

G 
"T = _%A_xAyAZ , (19) 

where Ax, Ay, and AAz are prescribed dimensions of the 
fracture system. Fracture centers are generated frorn'uniform- 
ly distributed,“ random values with 0 S x S Ar, 0 S y S Ay, 
and 0 S z S Az. The orientations of" the fractures are corn-. 
puted from uniformly distributed, random dip directions and 
angles using 

' ' ' 
* 

'
“ 

V 

°‘?S°.‘ SW15. 

V = sin on si_nB 
(20) 

I3 cos
A 

with 0 S 0tS 21; and OS [3 S it/2. Finally, the required 
distribution of diameters is" generated using 4

" 

D = Dmin
’ 

(1 _§)lIF,, 

where Q is a un_i_formly distributed, random value with 
0 S § S 1. The intersection of each fracture with the outcrop 
surface is calculated using linear algebra [Ant0rt, 1981], 
constraining the intersection segment to match the circular 
shape of the fracture. In this case, the outcrop surface is 

positioned at the center of the fracture system and oriented 
perpendicularto the z axis. Those fractures which intersect 
the outcrop’ surface yield trace lengths,‘L,, which may be 
sorted into descending order and plotted relative to ~ 

NL = _i_ <22) 
AxA_y . 

for cQmparison with the analytic result computed using.(l5). 
This probabilistic approach has been implemented as a 

FORTRAN algorithm where the required random values are 
generated using the RAN2 function described by Press er a_l_._ 
[l992]L The following examples assume a fracture system 
with dimensions of A;c'= Ay = 41-; 100 m, where the 
smallest fracture represented in the results is Dm = l m. A 
value of ab _= 1 is assumed for fractal dimensions of FD _= 2, 
3, and 4 and results in a total of n, = 10“ fractures for all 
three realizations. Figure 2 shows the distribution of the 9542 
trace lengths rendered using FD = 3. The region containing 
the fracture centers is obvious as the highly populated 
portion of Figure 2. Traces that extent beyond this region are 
the result of fractures that are centered within the populated 
volume but which in_terse'ct'the outcrop surface beyond the 
boundaries of the volume. 
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Figure 2. Fracture traces for a fracture system with the 
fractal parameters an = 1 and F D = 3. The dimension of the 
highly populated ponion of the figure is 100 rn; 

i‘
4



/ 

18,124 PIGGOTT: FRACTAL RELATIONS FOR DISC-SHAPED FRACTURES \ 

Figure 3 compares the analytic results determined using 
(15) to the probabilistic results determined using (22). A 
linear relation between NL and L is indicative of a fractal 
distribution when plotted in the logarithmic form of Figure 3. 
The two sets of results compare closely for trace lengths 
between 1 and 10 m, confirming the accuracy of the analytic 
relations. There is a‘ substantial and -consistent discrepancy 
between the sets of results for trace lengths of less than 1 m. 
This range of values is the product of fractures with diam- 
eters greater than 1 m, as the smallest diameter represented 
in the results is Dm = l m. Thus the discrepancy at the 
lower end of the range of data is indicative of a lack of 
fractures of corresponding dimension. In situ, th_is can result 
from se|ecti_ve‘sampling practices; for example, mapping 
fracture traces using geophysical techniques which are most 
responsive to larger scale features. The results also diverge 
for trace lengths greaterithan 10 m. Here the-departure is less 
substantial and consistent than at the lower end of the range 
of data. This discrepancy is the result of the sparse sampling 
of larger fracture diameters. In situ, a scarcity of larger 
fractures and the truncation of fracture traces at the lir_nits of 
an outcrop region may cause the characterization results to 
deviate from the fractal form. Similar departures are apparent 
in the trace length data reported by Scholz at ql. [1993] and 
are attributed to similar sampling limitations. 

Conclusions -

- 

Fractal geometry is a useful method of representing the 
geometry and scale dependence of‘ fracturing in a range of 
geologic settings. A number-size relation for the frequency 
of fractures of a prescribed dimension is one method of 
characterizing a fracture system in fractal form. The analytic 
relations developed in this paper indicate that for a popula- 
tion of disc-shaped fractures, a fractal distribution of fracture 
diameters results in a fractal distr_i_bution of trace lengths 
when the three-dimensional fracture system is intersected by 
a planar outcrop surface. The fractal parameters of the 
distributions are uniquely related, and therefore a population 
of fracture diameters, which cannot be directly measured in 
situ, may be characterized in fractal form through the 
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Figure 3. Analytic and probabilistic distributions of fracture 
trace length for fracture systems with the fractal parameters aD=landFD=2, 3, and4. -
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interpretation of trace length data, which can be readily 
measured in outcrop. The probabilistic results reported in this 
paper suggest that the departure of trace length data from a 
fractal form at the upper and lower limits of a range of data 
may be indicative of sampling limitations. Thus it may be 
reasonable to interpret trace length data in terms of a fractal 
model if an intermediate range of data displaying fractal 
behavior is apparent. 

The relations developed in this paper apply to homogene- 
ous and isotropic fracture systems. The principal implication 
of this limitation is likely“ to be that the relations are not 
applicable to fracture systems with statistically disparate 
groupings of orientation. While similar analytic relations and 
probabilistic results may be feasible for more complex 
models of fracture system geometry, the acquisition of data 
to support these models and the robust determination of the 
fractal parameters of the models may prove to be daunting 
tasks. An effort to collect and interpret fracture trace length 
data for a granitic rock mass over varying scales of approxi- 
mately 20 m to l0 km is currently in progress. The results 
that have been achieved to date indicate a reasonable match 
relative to the analytic relations developed in this paper, with 
fractal parameters that are roughly consistent with those used 
in the verification exercises. As a result, the analytic relations 
reported in this paper may have considerable value in 
practical application. . 
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