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This work was performed as a contribution to the GLAP |l program focusing on
the remediation of areas of concern and to the national priorities including
sustainable development, groundwater, and toxic substances. It also supports the
Nuclear Fuel Waste Management Program and the Atomic Eriergy Control Act.
These and forthcoming results are applicable to the assessment of the proposed
low-level radioactive materials disposal facility at the Chalk River Laboratory of
Atomic Energy of Canada Limited. This work began in 1995 and is expected to
continue through at least 1997.

Rock masses are fractured over a wide range of scales. Groundwater flow in the

~ low-permeability rock masses that are candidates for the disposal of nuclear fuel

waste is often"dominated by conduction in fractures. This paper introduces a
method of constructing a three-dimensional model of a fractured rock mass from
measurable data. Mathematical procedures can then be applied to the model to

predict the rate of contamiinarit transpott in the fractures.

A scoping analysis of fracture trace length data from the Chalk River Laboratory
of AECL will be completed by mid 1997. External sources of funding for this

research are being developed in collaboration with scientists from AECL.
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Fractal relations for the diameter and trace length

of disc-shaped fractures

Andrew R. Piggott

National Water Research Institute, Burlington, Ontario, Canada

Abstract. Analytic relations are developed between the fractal parameters of a random,
isotropic population of disc-shaped fractures and the parameters of the corresponding'
population of fracture traces expressed in outcrop. These relations indicate that a fractal
distribution of fracture diameters translates to a fractal distribution of trace lengths and
that the parameters for diameter may be uniquely deterimined from the parameters for -
trace length. Probabilistic results demonstrate the accuracy of the analytic relations and
identify nonideal behaviors at the limits of the computed trace length data. It is expected
that these relations will be useful in the three-dimensional charactenzatxon of fracture

systems in rock from in situ trace length data.’

Introduction

Rock masses are ubiquitously fractured over a wide range
of spatial scales, from microcracks visible in-thin section to
features apparent in remote sensing data. Knowiedge of
fracturing as a function of scale is critical to many geological
pursuits, including the estimation of groundwater flow in the
low-permeability rock masses that are.candidates for the
disposal of nuclear fuel waste. Much of the research that has
been conducted relative to discretely fractured rock masses
is based on the ‘assumption that the constituent fractures are
finite, linear- features distributed within a two-dimensional
domain. These idealized fracture systems are reminiscent of
the patterns of fracture traces that are observed in outcrop.
While this assumption is sufficient to acknowledge the
influence of fracture sysiem geometry on rock mass behavi-
or, it does ‘not allow the three-dimensional aspects’” of
geometry- 0 be addressed. For example, the percolation
behaviors for two- and three-dimensional groundwater flow

_in discontinuously conductive rock masses are significantly

different [Piggort and Elsworth, 1992}, and therefore the
validity of estimating three-dimensional groundwater flow
using a two-dimensional model is uncertain.

In geological settings such as granitic plutons, it is
appropriate to represent a three-dimensional fracture system
as a. population of finite, two-dimensional features. Many
researchers have adopted a conceptual model of this
geometry, wherein each feature is assumed to be planar and
circular, or disc-shaped. The geometry of the system is then
described in terms of the positions of the fractures relative to
x, v, and z coordinate axes, X, the orientations of the frac-
tures relative to these axes, V, and the diameters of the
fractures, D. This rather simple model facilitates a range of
calculations such as determining fracture systein connectivity
{e.g., Billaux et al., 1989; Charlaix et al., 1984, Gueguen
and Dienes, 1989] and simulating groundwater flow’ within
the fractures [e.g., Cacas et al., 1990; Long et al., 1985;
Piggott and Elsworth, 1989]. :
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The concept of fractal geometry {Mandelbrot, 1983] is an
appealing approach to the characterization of fractured rock
masses, the principal benefit being that detailed and realistic
geometries may be stated using a-minimal set of parameters.
Examples of the exprcssion’ of fracturé geometry and density
as a function of scale using fractal methods are reported by
Barton and Larsen [1985] La Pointe {1988], and Kulatilake
et al. {1996]. This paper addresses the relation between the
fractal parameters of a population of disc-shaped fractures
and the parameters of the population of traces lengths that
tesults from the intersection of the fracture system with a
planar outcrop surface. These relations provide a method of
characterizing a thiee-dimensional fracture system usmg data
that is measurable in situ.

In addition to the standard conceptual model of disc-
shaped fractures, this study assumes that fractures are
uniformly and randomly distributed within a rock mass and
have -a uniform and’ random distribution of orientation
defined by the dip direction, o, and dip angle, B, of the frac-
tures [Priest, 1985). The orientation of the outcrop surface
does not influence the results, and therefore the relations
developed herein may be applied to an outcrop surface with
any orientation (e.g., a horizontal or sloping ground surface
exposure or a mined excavation at depth) Each fracture that
intersects the outcrop surface results in a trace length of L,
such that 0 € L £ D where the specific value of L is defined
by the position and orientation of the fracture relative to the
outcrop surface. This sampling forms a convolitiorf between
the distributions of fracture diameter and trace length.
Inversion of this convolution allows the fractal parameters
for diameter to be determmed from the parameters for trace
length.

Mathematical Development

In this application, a population of disc-shaped fractures
is deemed fractal if the number of fractures per unit volume
with a diameter greater than or equal to D may be approxi-
mated using

N. = D , . (1)
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where F, is the fractal dimension of the distribution of
diameters and a,, is a constant of proportionality. This form
of number-size relation "has been applied to a range of
iragmented geologic media {Turcorte, 1986}; applications to
lracture race length data are reported by Scholz er al. [1993]
and Waranabe and Takahashi [1995]. Tt is also possible to
describe this distribution in terms of a volumetric density of
fractures of diameter D. p,, where this density is related to
(1) through_ '

- 2)
= | p,dD . (2
1 7,[ I
and thercfore
pl) - al)Fl) (3)
D

Figurc 1 depicts a dise-shaped fracture intersecting a
planar ocutcrop surface. View A shows thc fracture and
outcrop surface in three-dimensional perspective and indi-
cates the lincar trace of the intersection of the fraciure with
the outcrop surface. View B shows the dip of the {racture
rclative 10 the outcrop surface, B. and the distance between
the fracture center and outcrop surface, 2. View C shows the
diameter of the fracwure, D, and the length of the intersection
of the fracture with the outcrop surface, L. The trace length,
diameter, dip uhgl_g,‘z_\_nd position of the fraciure are related
via

B =sint 22 @
/D17
where the permissible range of values of z is
< VDTLT . &)

View A

— D_isc—shaped fracture

Fracture center

Fracture trace

View B View C

. Figure 1. Geomeltry of a disc-shaped fracture 1nterscctmg a

planar outcrop surface.
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The probability that the scenario shown in Figure 1 results
in a trace length of L may be determined from the probabil-
ity densnv function for the dip angle, Ppg. as [Guitman et al..

1982]

’ dB‘

p,(D 7y = Py (6)

where
S 2
Py = = )]
T

for a uniform, random distribution of dip angles. Differentiat-
ing (4) with respect to trace length yields

dB 2zL \
= . ®)
dL (DZ_LZ) /DZ_L2_4Z2
and substituting (7) and (8) into (6) yiclds
p D) = 2k : 9)
i n(DLY DT T a0

The number of fracture traces of length L per unit area of
an outerop surface resulting from the intersection of fractures
of diameter D with the surface is

p,(D2) = 2p,)pL(D,z)A’ : (10)
Here fractures on either sxde of the outcrop surface are
considered, and Az is an increment of the distance from the
surface. Integrating 10) over (5) yields the area] density of
traces. of length L due to fractures of dla.meter D ‘

L
nW

All fractures with a diameter of D 2 L have a finite probabil-
ity of producing a trace length of L upon intersection with an
outcrop surface. Thus the areal density of traces of length L
resulting from fractures of any diameter may be determined
by mtegratmg (11) with rcspect to fracture dlameter

(D) = po . (1n

p,= 2 [ L _p,dp. (12)
%y /D?-L? ,
Substituting (3) into (12) and integrating tln_e result yields
1+F
n_—_2) T
a F G

p=op 2o L 13)

1: "oy L '

where I" denotes the gamma function.

“The nurnber of fractiire traces per unit area of an outcrop
surface with a length greater than or equal to L is the areal
equ:valent of/(l) and may be calculated as

(14)

Substituting (13) into (14) and integrating the result yields

{
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1+F

N2
N9 Fo T (15)
iy Foml p 2 Fpy 157
2 f

Equation (15) has a fractal form which is analogous to that
of (1); that is, '

(16)

This indicates that a population of disc-shaped fractures
exhibiting a fractal distribution of diameters results in a
fractal distribution of .trace lengths when expressed in
outcrop. - Further, it is possible to. determine the fractal
dimension and coefficient for diameter from the parameters
for trace length via _

F, =F,+1 amn
and
3+F,
A S
= L : (13)
% a"ﬁFLﬂ T+ F
N—-5)

2

From (15), intersecting a fracture system with a planar
outcrop surface reduces the fractal dimension for trace length
by a unit value relative to the fractal dimension for fracture
diameter. A similar relation may be used to determine the
fractal dimension of a fracture surface with rough, fractal
topography from sections cut through and across the surface
{e.g., Piggott and Elsworth, 1995] and of a fractal population
of spheres from sections cut through the population [Sammis
et al.,-1987]. ' '

Verification Exercises

Equation (15) may be verified using a probabilistic
approach that forms a population of* fractures with the
parameters a, and Fp. The first step in this approach is to
specify the smallest fracture diameter that is required in the

results, D ;. The total number of fractures is then determined
from (1) as ' '
aD
n. = -7 AxAyAz , (19
.min

where Ax, Ay, and Az are prescribed dimensions of the
fracture system. Fracture centers are generated from aniform-
ly distributed, random values with 0 < x < Ax, 0 S y < Ay,
and 0 < z < Az. The orientations of the fractures are com-
puted from uniformly distributed, random dip directions and
angles using ' o

cosa sinf '
(20)

V =|sino sinf

cosp

18,123

with 0 S <27 and 0< P <7/2. Finally, the required
distribution of diameters is' generated using . -

D= _Dm a1
(l _;)UF‘,

where £ is a unjformly distributed, random value with
0 < € <'1. The intersection of each fracture with the outcrop
surface is calculated using linear algebra [Anton, 1981),
constraining the intersection segment to match the circular
shape of the fractire. In this case, the outcrop surface is
positioned at the center of the fracture system and oriented
perpendicular to the z axis. Those fractures which ifitersect
the outcrop surface yield trace lengths, L, which may be
sorted into descending order and plotted relative to

N o=t

A (22)
AxAy .

. for comparison with the analytic result computed using.(15).

This probabilistic approach has been implemented as a
FORTRAN algorithm where the required random values are
generated using the RAN2 function described by Press et al,
[1992]. The following examples assume a fracture system
with dimensions of Ax'= Ay = Az= 100 m, where the
smallest fracture represented in the results is D, = | m. A
value of @, = 1 is assumed for fractal dimensions of F, = 2,
3, and 4 and results in a total of n; = 10° fractures for all
three realizations. Figure 2 shows the distribution of the 9542
trace lengths rendered using Fj, = 3. The region containing
the fracture centers is obvious as the highly populated
portion of Figure 2. Traces that extent beyond this region are
the result of fractures that are centered within the populated
volume but which intersect the outcrop surface beyond the
boundaries of the volume.

Figure 2. Fracture traces for a fracture system with the
fractal parameters a, = 1 and F, = 3. The dimension of the
highly populated portion of the figure is 100 m. :
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Figure 3 compares the analytic results determined using
(15) to. the probabilistic results determined using (22). A
linear relation between N, and L is indicative of a fractal
distribution when plotted in the logarithmic form of Figure 3.
The two sets of results compare closely for trace lengths
between 1 and 10 m, confirming the accuracy of the analytic
relations. There is 4 substantial and -consistent discrepancy
between the sets of results for trace lengths of less than 1 m.

This range of values is the product of fractures with diam-

eters greater than 1 m, as the smallest diameter repr‘esemed
in the results is Dy, =1 m. Thus the discrepancy at the
lower end of the range of data is indicative of a lack of
fractures of corresponding dimension. In situ, this can resujt

from selective sampling practices; for example, mapping

fracture traces using geophysical techniques which are most
responsive to larger scale features. The results also diverge
for race lengths greater than 10 m. Here the departure is jess
substantial and consistent than at the lower end of the range
of data. This discrepancy is the result of the sparse sampling
of larger fracture diameters. In situ, a scarcity of larger
fractures and the truncation of fracture traces at the limits of
an outcrop region may cause the characterization results to
deviate from the fractal form. Similar departures are apparent
in the trace length data reported by Scholz et al. [1993] and
are attributed to similar sampling limitations.

Conclusions

Fractal geometry is a useful method of representing the
geometry and scale dependence of fracturing in a range of
geologic settings. A number-size relation for the frequency
of fractures of a prescribed dimension is one method of
characterizing a fracture system in fractal form, The analytic
relations developed in this paper indicate that for a popula-
tion of disc-shaped fractures, a fractal distribution of fracture
diameters results in a fractal distribution of trace lengths
when the three-dimensional fractire system is intersected by
a planar outcrop surface. The fractal parameters of the
distributions are uniquely related, and therefore a population
of fracture diameters, which cannot be directly measured in
situ, may be characterized in fractal form through the

10 - —
0
> 10
‘ g Fo=2
s 100N~ T
. é F,=3
2, Analytic. results i
0" - Probabilistic results
| FIJ =4
10-6 1 ,l )
10" 10° 10 10

Trace length, L (m)

Figure 3. Analytic and probabilistic distributions of fracture
trace len gth for fracture systems with the fractal parameters
ap=1and F,=2,3, and 4.
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interpretation of wace length data, which can be readily
measured in outcrop. The probabilistic results reported in this
paper suggest that the departure of trace length data from a
fractal form at the upper and lower limits of a range of data
may be indicative of sampling limitations. Thus it may be
reasonable to interpret trace length data in terms of a fractal
model if an intermediate range of data displaying fractal
behavior is apparent.

The relations developed in this paper apply to homogene-
ous and isotropic fracture systems. The principal implication
of this limitation is likely to be that the relations are not
applicable to fracture systems with statistically disparate
groupings of orientation. While similar analytic relations and
probabilistic tesults may be feasible for more complex
models of fracture system geometry, the acquisition of data
to support these models and the robust determination of the
fractal parameters of the models may prove to be daunting
tasks. An effort to collect and intérpret fracture trace length
data for a granitic rock mass over varying scales of approxi-
mately 20 m to 10 km is curfently in progress. The results
that have been achieved to date indicate a reasonable match
relative to the analytic relations developed in this paper, with
fractal parameters that are roughly consistent with those used
in the verification exercises. As a result, the analytic relations
reported in this paper may have considerable value in
practical application. .
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