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Abstract ,
Environmental assessmerits that incorporate surveys of ecological communities require that the
methods used to summarize and test impact-related hypotheses have a reasonable chance of correctly
declaring a community (un)impacted when it really is. In this study, we used simulated data of known
characteristics to evaluate the ability of three ordination methods (non-metric multidimensional scaling,
NMDS; principal components analysis, PCA; cotfe‘sponde_r,ice analysis, CA) and model affinity (MA)
to classify unimpacted and impacted ecological communities. Our simulations included both long and
short ecological gradients and four levels of noise in species abundances. NMDS, PCA, CA and MA
were equa] in their ab1]1ty to con'ectly class1fy ummpacted commumtles but were not alway’s equal in
'NMDS when the ecologlcal gradlent was long and when the species abundances were as noisy as is
typically found in real faunal survey data. '
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_ Introduction

Ecological communities are often used as endpoints in monitoring and assessment programs to determine
ecological condition (Rees et al., 1990;_ Davis and Simon, 1995). Typically, variations in composition

among reference communities are used to judge the ecological significance of effects on communities from

 impacted locations. When the composition at a test (impacted) site falls outside of the normal range of

variation of reference communities,'th'e test site is decldred impacted (Kilgo‘ﬁf et al,, 1998).

" Thereare several general ways to summarize ecological oommumty composition when comparing |

- testand reference sites including: (1) biotic indices, (2) clustering; (3) ordination; (4) multivariate analysis

of variance; and (5)"model-aﬂin’ity (MA) approaches. Biotic indices, ordination axes, and model-affinity
endpoints are more useful than clustering bécause they can be more readily applied in hypothesis testing
procedures, and because they give quantitative results allow for estimating the degree of nnpact Biotic
indices such as the Index of Biotic Integrity (IBI) for fish (Karr, 1981) and for benthic macroinvertebrates
(Kerans and Karr, 1994) are usually derived to present a summary of the tolerance of the community to
degraded conditions. Biotic indices do, however, require prior céﬁbr‘atioﬁ, and tend to be subjectively
derived. They are also typically calibrated to detect specific kinds of stresses (e.g., the Biotic Index by
Hilsenhoff, 1988, was designed to detect nutrient status) As such, indices may not detect impacts resulting
from unusual stresses '

Multivariate analysis ofrV’ariar’;ce is appropriate for assessing impacts on biological conpnurﬁti&s,

but only when the iumber of communities (sites) i,S'weH in excess of the number of taxa encountered in

the survey. Ordination methods are often used to reduce the high number of taxa (variables) into a

reduced set of synthetic variables (axes) that summarize similarities in composition émong sites. These
ordination axes can be used in hypothesis testing procedures like any other variable (Hotelling, 1933;
Green, 1979: Gauch, 1982a:143; Gray et al, 1988; Warwick et al., 1988). Ordination methods filter noise
(Gauch, 1982b) and have been shown to result in more sensitive assessments of ifnpacts on biological
communities (Warwick et al., 1988). Ordination methods can, however, distort the true underlying
similarities among c_:onumhities. As such, there is potential for ordination methods to misclassify true
reference and impact sites. ‘ | .

Given the potential for distortion with ordination methods, some (e.g., Novak and Bode, 1992;
Barton, 1996; Bailey et al., 1998) have proposed using model-afﬁni_ty (MA) approaches instead of



ordination. With MA approaches, the average composition of all reference. communities .is used to
represent the expected reference community. The similarity of communities to this expected reference
condition is then used as the biological response. The variation in similarity values of reference sites to the

average reference community is then used to characterize the normal range of variation in composition of"

reference communities. Hypothesis testing can also be performed (Barton, 1996). With MA, similarity

(or dissimilarity) can be measured as any ecological distance measure such as Percent Similarity of
Community, PSC, the Bray-Curtis distance measure or Jaccards Coefficient of Community for
presehce/absence data (Barton, 1996; Bailéy et al., 1998). Incontrast to ordination methods, model-affinity
approaches do not filter noise. As such, model-affinity approaches.may not be as sensitive to impacts on
communities. ‘ _ '

In environmental assessment, it is important that we use analytical mefhods that are unbiased and
have a good likelihood of ‘léading us to the correct coﬁclusions of the degree of impairment. To date, no
studies have examined the effect ordinations have on the probability of a correct conclusion. Nor has
" ariyone done a full examination of the petformance of MA approaches. Given the potential for ordinations
 to distort underlying structure, one would assume that ordinations may overestimate the degree of

impairment and incorrectly classify reference sites as impacted. In contrast, because model-affinity
| methods do not filter noise, they may not detect impacts when they truly occur. The objective of’ this,papé;
isto cdmpare the petformance and ordination and model-affinity approaches for detecting impacts on
biological communities. In this paper, we evaluate three ordinations: (1) principal components analysis
(PCA); (2) correspondence analysis (CA); and (3) non-metric multidimensional scaling (NMDS). These
ordination methods were chosen to represent the basic variety of’ te‘chniques that exist: other methods tend
to be derivatives of these three techniques. o
- This paper differs from other papers that have evaluated ordination techniques in the past.
Typically, co‘mparison papers use simulated data to cor_;étmct a set of species distributions across a
theoretical ecological gradient. Then communities are “sampled” at specific locations on the gradient. The
resulting sampling pattern is used to represent a sampling grid in ecological space (Austin, 1976; Kessel
and Whittack_er, 1976; Gauch et al., 1977; Feoli and Feoli-Chiapella, 1980, Gauch et al, 1981, Kenkel and
Orloci, 1986). Those techiiques shown to give an ordination diagram that re-creates the sampling pattern
- are then considered successful. In this analysis, we care little if the ordination method accurately portrays
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the mdeflying structure so long as the method detects impacts when_fhey occur. As such, this aﬁalysis
focuses on establishing the probability of correctly classifying sites as either impacted or unimpacted using

~ the four analytical tools (i.e., MDS, PCA, CA, MA).

Methodology

Simulations _

Environmental monitofing programs generally incorporate either site-specific (Green, 1979; Hodson et al,,
1-996) or regional- reference (Hughes, 1995) locations against which to judge presumed impacted
locations. Regional-reference data are usually used to evaluate the ecological significance of observed
differences (Reynoldson et al.,, 1998). Consequently, in this analysis, we simulated scenarios analogous
to those incorporating regional-reference locations into study designs.

We used COMPAS (Minchin, 1987) to simulate an impact gradient and to vary the nature of
species distributions across the impact gradient. COMPAS is a DOS-based ﬂgorithfn that 5imulat¢s ,
species abundance curves across theoretical gradienté The software allows users to specify a variety of
distributional characteristics for individual species as well as for sets of species.

The ablhty of an ordination to successfully portray the true underlying similarities among samples
is influenced in part by beta diversity or the degree of differences in community composition from across
a gradient. Gradients with high beta diversity have large changes in composition across the gradient..
Typically, high beta ¢ver51ty results in species curves across “long” gradients that follow Gaussian éurves. |
Such high beta-diversity systems are more optimally ordinated by CA or MDS because these ordinations
do a better job of re-creating the underlying structure (sjmilaxities among samples, Austin, 1976; Fasham,
1977, Ter Braak and Prentice, 1988). In contrast, gradients with loW beta diversity have many species in
common across the gradient. Low beta diversity generally results in species abundances that vary ina
hnear fashion across the “short” gradient. Such low beta-diversity systems are more optimally ordinated
with PCA because PCA is designed to ordinate variables (taxa) that are linearly related (Ter Braak and
Prentice, 1988). Given the importance of gradient length, we simulated both a short gradient (0.5 half
changes) and long (4 half changes) ecological gradient. Representative species curves are shown in Figure
1 | ' |

In addition to gradient length (beta diversity), noise also influences the ability of an ordiha‘tidn to
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noise in species abundances. Without any object means to quantify noise, we simulated species
abundances with no noise, as well as low, medium and high noise. Noise parameters in COMPAS were
specified as given in Table 1. The high noise simulation was selected based on an apparent sumlanty
between species abundance distributions in the simulated data and species abundance distributions
~ observed from field collections of fish in southern Ontario (Figure 1). oy

We used a single sampling pattern to “collect” communities from the eight simulated gradients.
The sampling pattern included 100 “reference” commiunities (samples) cbllected randomly from a

sub-space of the ecological gradient. An additional 20 “test” communities (samples) were collected at

equally spaced positions across the simulated gradient (Figure 2). Sampling positions within the reference
community space was determined froma normal distribution. Asa consequence, we could usean estithate

of the limits of the normal range .of variation to denote which samples wé would expect to consider

impacted and unimpacted. Those inside the normal range of variation for the reference communities would

be considered unimpacted, while those outside the normal range of variation would be considered
impacted (Kilgour et al,, 1998). - | ;

Ordinations

Each data set was ordinated with PCA, CA, andNMDS. Bray-Curtis dissimilarities were used as the input
‘matrices to the NMDS ordinations. NMDS ordinations used initial configurations base on a principal-
coordinates ordination. NTSYS-pc software (Rohlf, 1993)-was used to perform the ordinations. With
each ordination technique, the data analyst must at some point decide how many axes will be used in
subsequent hypothesis tests. However, with the exception of PCA, there are few guidelines for selecting
significant axes (Jackson, 1993). In this énalysis, we therefore examined the probability of incorrectly
classifying communities based on retaining both one, two and three ordination axes.

Model Affinity
For each data set, the average reference community was calculated by ave_raging the abundances of each
* taxon found in the reference samples (Novak and Bode, 1992). Bray-Curtis distances (dissimilarities) to




the average re_ference commumty were calculated for each sample (Novak and Bode, 1992). NTSYS-pc |

- software (Rohlf, 1993) was used to calculate these similarities/dissimilarities.

Classifying Communities

As above, communities that fell inside the envelbpe of reference community space were cohsidejred
unimpacted, while those falling outside the envelope were considered impacted. For each ordination, and
for the model affinity approach, we estimated the true underlying effect size for éach of the 100 reference

communities and 20 test communities observations using:

ES= X"f—te‘gt,
S, ef .

re;

where X ref was the mean position of reference communities, Sre.f was the standard deviation of

reference-community positions and zest was the posiﬁéh of any individual community along the
ecological gradient. As before, these positions are in ecological space, not physmal space and so '
represent the true relative ecological distances between communities.

Kilgour et al. (1998) define the normal operating range of reference communities as the region
enclosing 95% of the reference population. Others have defined the normal range of variation as the

region enclosing 75% reference population (Yoder and Rankin, 1995) or 9% of the reference

community (Reynoldson et al., 1998). These limits can be expressed in standardized units such as the

number of standard deviations from the mean of the réference (i.e.; Z-scores for univariate responses)
or as generalized distances from the centroid of the reference population (for multivariate responses)-.
For univariate responses, the limits of the 95% région lie at 1.96 o (standard deviations). We
evaluated the ability of each ordination method and the model affinity approach to correctly classify

both impacted and unimpacted communities based on this definition for normial ranges.

Evaluating Perfénnance,
' Based on known positions along the ecological gradients, we knew whether or not a site truly
did lie inside the defined normal range. To evaluate each of the analytical approaches, we then
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determiined the proportion of communities that were correctly classified as being within 6r outside the
limits of the normal range. For example, based on an analysis using the model affinity approach, we
estimated the ecological distance of each community from the average reference community (in
standard devxatxons SD). Those communities falling within 1.96 SD of the mean of the reference
communities were classified as being unimpacted, while those >1.96 SD from the mean of the
referenice community responses were classified as impacted. We compared the observed frequencies of
~ impacted and unimpacted with the predlcted frequencies, to estimate the proportion of times that
classifications were incorrect. These distances were expressed as either Z-scores (for single axis
solutions and model affinity results), or as generalized distances for two-axis ordination solutions.
Equation [1] above was used to estimate observed effect sizes for single axis responses and for model
affinity responses. As above, communities with observed effect sizes in excess of the critical effect
 sizes were declared impacted. When two or more ordination axes were retained, the ob‘se_rvéd effect
size, or generalized distance (D) for each of the 120 sites was estimétjed using:

D= ‘/ (Yr - Im@' S r—l(-)_(r _Imna [2]

Xris the centroid (vector of sample mean responses) of the reference locations, Imp is the vector of

responise at the impact location, and S;? is the inverse of the variance-covariance matrix for the

reference locations (Owen & Chmielewski, 1985) ‘The hnuts of the normal range he at \IX (x D)

i |
| —

| generalized distances from the population centroid, where Xz(& 0 is the xth peroentxle of a chi-square
distribution for p variables (Rode & Chinchilli, 1988; Kilgour et al., 1998). The 95® percentile lies at
2.45 generalized d.lstances for two axis solutions, and at 2.79 generahzed distances for three axis
solutions. These limits were therefore used to classify communities based on two- and three-axls
ordination solutions. _

Based on these classxﬁcatlons we determined the probability of fa]sely declaring an unimpacted

reference site impacted, and of falsely declaring an impacted site unimpacted. Ninety-five percent
confidence limits for these proportions were calculated using equations for binomial distributions given
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in Zar (p 378, 1984). Murtaugh (1996) recommends this overall approach for evaluating the

performance of an ecological endpoint or methodology.

Results

- How well were ummpated communities classified?

There were no apparent differences in analytical methodologies in classification probabxhtles In galeral,
the probability of incorrectly classifying truly unimpacted communities varied between about 2 and 10%
(Figures 3 and 4). Differences in ecological gradient length and noise level had no apparent effects on the

'probébility ofa correctly classifying a true reference community' Incréasin‘g the number of ordihation axes

community, pamMarly with the longer gradient (Flgures 3 and 4).

How well were impacted communities classzﬁed?

Classification probabilities of truly impacted communities did tend to vafy with method used, but also
varied with noise level, and length of the gradient. With ari increase in noise level, there was an apparent
increase in the probability of an incorrect clasmﬁcatlon (i.e., impacted communities were classified as
unimpacted). This was true for both short and long ecological gradlents (Figures 3 and 4) Regardless of
noise, an increase in gradient length resulted in an increase in the probability of correct classnﬁcatxop. With

the short ecological gradient, there was no apparent improvement in classification probabilities with an

increase in the number of ordination axes. In contrast, with'the longer ecological gradient, inclusion of the
second and third ordination axes’markédly increased the probability of a correct classiﬁcétioﬁ (Figures 3
and 4). ‘With the long gradient, poor classification of truly impacted communities occun'ed as a result of
an apparent distortion of'the underlymg pattern. Flgure 2 shows the apparent dxstoruon that occurred for
communities that were truly very different from the reference condition. Using just the first axis results,

1t was apparent that the estlmated effect size was an underestxmate By inclusion of the second and third
ordination axes, the magnitude of effect was more _appropnately estimated, thus the likelihood of a correct

classiﬁdation was improved.



How did the model affinity approach compare to ordination methods?

The model-aﬂimty approach perfonned about as well as the ordination methods under certain situations.
When the ecologlcal gradient was short, the model-affinity approach tended to perfonn as well as the
ordinations (F igures 3 and 4). When the ecologlcal gradient was long, the model—aﬂimty approach tended
to do as well as ordinations only if the ordination was based‘ojn a single axis. In contrast, when the
ecological gradient was long and when two ordination axes were used to estimate effect size, CA and
NMDS had higher classification probabilities than the model affinity approach (Figures 3 and 4)

With all analytical tools, the probability of declaring a community impacted increased with the.
magritude of the impact (Figure 5). As such, errors are only likely to be made for those communities that
are relatively close to the critical effect size. For CA, there was a liigher probability of incorrectly
declaring a commiunity uni.mpacted‘When it lay between 1.96 and 2.2 0. In contrast, errors with NMDS
were made between 1.96 and 3 0, and with PCA and MA were made between 1.96 and 5 6. CA appeared

to inflate observed effect sizes to a much greater degree than did NMDS, especially for large effects in .

" excess of 3 0 (Figure 5).

Discussion
| Environmental assessments that incorporate surveys of ecological oommumtles reqmre that the methods
| used to summarize and test impact-related hypotheses have a reasonable chance of correctly declaring a
community (un)impacted when it really is. This study, using simulated data of kxiown characteristics,

demonstrated that NMDS, PCA, CA and MA are equal in their ability to correctly classify unimpacted

communities, but not always equal in their ability to classify impacted communities. PCA and MA tend
not to perform as well as CA and NMDS when the ecological grachent is long and when the species

abundances are relatively noisy. :
With the exception of the long-gradient, high-noise simulation, all three ordination methods were

reasonably good at classifying impacted communities. This ﬁndmg is in some contrast to recommendations
that PCA be used to ordinate short gradients while CA be used to ordinate long gl‘adients (ter Braak and
Prentice, 1988). The main concern when using PCA to ordinate long ecological gradients is the potential
for an arch effect (see the CA ordination, Figure 2). With arch effects, communities at opposite ends of
the primary gradient are shown to be more similar than they really are, relative to the spread of
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-communities in the middle of the primary axis. Although arch effects were evident with CA, and to som,é
“extent PCA with the long gradient (Figure 2), the arch had no apparent effect on the probability of
: éorfe;ﬂy classifying impacted communities so long as multiple ordination axes were used to calculate

observed effect sizes. The concern over arch effects, therefore, seems unwarranted.  As an analytical
approach, MA has recently received considerable atfenﬁon in the benthic macroinvertebrate literature.

Novak and Bode (1992) used the approach to démonstrate impacts of mines on benthic orgatﬁérrxs? while
Barton (1996) used the approach to characterize impacts of agricultural practices on benthos in southern
Ontario, Canada. Our results show that the MA approach tended not to perform as well as the ordination
methods with the longer ecological gradient, regardless of the level of noise. With no or moderate noise,
MA had difficulty classifying impacted communities lying between 196and2.5¢ (Figure 5). Such errors

were eliminated with each of the ordination methods, but only if multiple ordination axes were used to

make the assessment.. The use of 6rdinat_ion analyses have the advaritage that there are multiple axes that
potentially add information. | ’ |

- How many ordination axes s_hoi;ld be incorporatéd into an estimate of effect size? This is a good
question. For now, there are rules on selecting significant axes only for PCA (Jackson, 1993). With CA,

Lebart et al. (1984) provide guidance on whether the first axis is significant, but not later axes. There are

no rules for axis selection in NMDS. One pdss_ibility for selecting significant axes in both CA and NMDS
would be theuse of randomization tests to determine if'the observed variance (un)explained by a given axis
was unusual compared to a null distribution of variance (un)explained for each axis (Jackson, 1993). Such
randomizations with CA and NMDS would, however, require customized algorithms. The disadvantage
to using inultiple ordination axes is that additional axes use up degrees of freedom in hypothesis testing
procedures. Ifbudgets for faunal surveys permit the collection of communities from only a few sites, the
use of multiple ordination axes in hypothesis testing procedures may become probiernatic because there
may be too few error degrees of freedom. |

Some perceive ordination methods as primarily noxse-ﬁltenng procedures (Gauch, 1982) The

*results from this study show that this ablhty to filter noise did not always improve the ability to classify

impacted communities. With the short ecological gradient, none of the ordination methods had a great

. ability to correctly classify impacted communities when any amount of noise in species abundances was

present, Noise, in the case of the short gradient, was apparently stronger than the undetlying signal with

the result that none of the ordination methods was able to adequately classify impacted communities
(Figures 3 and 4). In contrast, in the case of the long gradient, both CA and NMDS had high probabilities

of correctly classifying impacted communities regardless of noise level. Withthe hi'gh;gfadien’t, high-noise



- simulation, MA had a low probability of correctly classifying impacted communities, demonstrating the
inability of MA to filter noise. Although MA is attractive in that it avoids the potential for distortion that
can occur with any ordination method, distortion (as discussed above) appears not to be a valid concern.
As a result, the inability of MA to recover patter from noisy species distributions should make this
analytxcal approach less attractive in  relation to CA and NMDS. Ordinations (particularly CA and NMDS)
are more likely to provide correct classifications of impacted communities regardless of the underlying
gradient length or level of noise in spemes distributions. -

Other charactenstlcs of CA and NMDS may be considered in any selection between the two
methods. In these simulations, NMDS accounted for a greater amount of the total variation in the data
 sets than did CA (Table 2). NMDS also appeared to inflate the un_derlymg effect sizes less than did CA

(Figure 5). Estimated effect sizes with NMDS should, therefore, give us a better understanding of the |
degree of impact of a commurity. In contrast to this benefit with NMDS, CA has the advantage that the

species themselves are automatically ordinated. Such species ordinations give an understanding of the
faunal differences between communities, usually aiding our understanding of the nature of the impact and
therefore of potential rehabilitative measures. ' ‘
All simulation expenments have constrairits. With this study, we perceive at least three major
" constraints that should be considered. First, none of the simulations included rare taxa that tend to distort
ordination diagrams in CA. The possibility exists that CA miay perform poorer (may not classify impacted
cbmmmiiﬁes as well as shown here) when rare taxa are irichided in a data set. ‘Second, the maxirnum size
of impacts simulated in this study were just over § 6. We targeted impacts of this size because we hoped
| to observe the performance of the various methods near the crmcal effect size of 1.96 ¢, and because it
is rare for impacts to exceed 5 6 in aquatic ecological impact studies (Kilgour, 1997; Reynoldson et al,
unpublished data). Finally, in this set of simulations, impacted comifiiunities were sampled on both sides
* of the reference community (Figure 2). This itnpact scenario represents a relatively complex pattern that

may not always exist in the real world. Typically, we think of impacts as occurring in a single direction

- from the reference community. For example, we might think of organic entichment in streams as
increasing the numbe,,rbof worms and decreasing the mimbers of mayflies, stoneflies etc. However, the
nature of the taxonomic cMge in communities do tend to vary with the kind of stress. As a result,
observing impacts in more than one direction from the reference community is not necessarily

unreasonable..
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Table 1. Charactenstlcs of the elght similations used to evaluate ordination methods and model aﬂimty

Question response
‘Charactenstlcs of Species Distributions o B

4] # of ecologlcal gradients ) 1

@# ofspemes in group 1 200 —

(3) Frequence dlstnbunon for modal abundances o Vu_xlllifor,m random

. minimum value for the uniform random distribution 1 (default)

. maximum value for the uniform random distribution 100 (default)

@) Frequence distribution for ranges (1) on the fist gradlent " normal (Gaussian) (default)
'+ mean value for the normal distribution 100 (default)

. standard deviation for the normal distribution 30 (default)

(5) Frequency distribution for modol coordinates (m) on the  uniform random (default)
first gradient

+  minimum value for the uriform random distribution  -95 (default)

. maximum value for the uniform random dlstnbutlon 195 (default)

©) Frequency dxstn'butlon for alpha and gamma on grad1ent‘ uniform random (defmxlt)
1 05

. minimurn value for the uniform random distribution 3.5

. maximum value for the umfonn ra.ndom dlsmbutlon _

(7) Modes of ma]or species adjusted to a more even No (defa\ﬂf)

spacing?

(8) Do you want to mtroduoe mterspemﬁc interaction? o 1_No (default)

(9) Do you want to introduce a systematic trend in total No (default)

abundance?

Quahtatlve N01se Charactensucs |

(10) Do you want to mtroduce quahtatrve noise? No (ﬁo .doiée)

Yes (low; medium and high noise)

- -
! [P .




Q 1~)— Frequency distribution for modal probabilities (PO)

° minimum value for uniform random distribution

J maximum value for uniform random distribution

umform reaé.ng‘ular (deféuit)
low noise = 0.8 (default)
medium noise = 0.5

high noise = 0.2

low doise = 1.0 (default) A
medium noise = 1.0 (default)
high noise = 1.0 (default)

(12) Multiplier for alpha and gamma values to be used for
qualitative response functions

0.2 (default)

. Quantitative Noise Characteristics

(13) Do you want to introduce quantitative noise

Nd (no noise)
Yes (low, medmm and high noise)

(14) Select ﬁ'equency dlsmbunon for random deviations

normal (default)

- (15) Method for determining values of the standard
- deviation for the noise distribution as a function of the

original (noiseless) abundance values (A):

value proportxonal to the square root'
of abundance (default)

(16) Constant of proportionality o be used in computmg

values of t_he standard devlatlon

low noise = 0.1 (default)
medium noise = 1.0
high noise = 10




Table 2. Ordination results shoWing the variance (un)explained by axis.

Simulation Characteristics ‘NMDS PCA CA
- (variance unexplained with (variance explained by (variance explained by
solution based on 1,2 or 3 axis) axis)
axes)
Gradient Length Noise  # Species 1 2 3 1 2 3 1 2 3
short o none 115 <0.01 <0'.01~ <0.01 08 0.13 0.82 0.74 0.19 004
low 113 | 0.65 0.54 0;48 0.1 0.08 0.08 0.13 0.06 0.05
medium 112 » 0.73. 0.64 0.57 0.1 0.08 0.07 .0.07 0.07 006
high 112 084 076 071 009 007 006 005 004 004
long none 199 - 0.03 0.01 0.01 0.58 0.27 0.08 = 043 031 0.13
low 186 0.12 01 . 009 0.33 0.18 - 0.06 0.33 0.24 0.12
medium 186 021 0.19 . 017 0.2 0.12 0.06 0.24 0.18 10
iigh 170 0.56 0.52 0:49 0.09 0.07 0.05 0.07 = 0.07 0.06

.18



. Figure Captiorisr

Flgure 1. (a) Examples of species abundance curves w1th varying levels of noise. (b) Abundances of four
ﬁsh species across thermal gradient in streams in southern Ontario (data from Banon etal, 1985)

Figure 2. Distribution of reference and test communities across the simulated ecological gradient, and

~ ordination dxagrams (first two axes only) for NMDS, PCA and CA for the long-gradient with no

noise. These diagrams show the underlying dlstomon An optimal diagram would portray the |
distribution of communities as given in the distribution of reference and test commumtles

Figure 3. Probability of incorrectly classifying unimpacted commumn&s as unpacted with long and short »

_ ecological gradients and four levels of noise in species abundances. ,
Figure 4. Probability of incorrectly classifying impacted communities as unimpmacted with long and short.

‘ecological gradients and four levels of noise in species abundances.

Figure 5. Relationship between actual and observed effect size for each of the four analytical

methodologies. Effect sizes calculated with the ordination results were based on the retention of
three axes. Critical observed effect sizes are 1.96 o (dotted line) and 2.76 6 (solid line) Results -
shown pertain to the simulation with a long gradient with high noise..
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The department has been in the process of
developing a Reference-Condition Approach for
aquatic ecosystem health assessment through major
projects on the Great Lakes (biological sediment
guidelines) and the Fraser River (FRAP). This is also
being promoted as the basis for a National Aquatic
Ecosystem Health Programme. The reference-
condition approach offers a powerful alternative
because sites serve as replicates rather than the
multiple collections within sites that are the replicates
in traditional designs using inferential statistics. With
the reference-condition approach, an array of
reference sites characterises the biological condition
of a region; a test site is then compared to an
appropriate subset of the reference sites, or to all the
reference sites with probability weightings.

This research was conducted through a post-doctoral
fellowship sponsored in part by the Science Horizons
programme. One of the major problems in assessing
ecosystem health is establishing effect sizes. Current
thought at NWRI uses a multivariate approach for
setting numeric ecosystem targets (BEAST).
However, other researchers had expressed some
reservations concemning the ordination methods being
used. This paper compared a number of ordination
methods including that being used in current software
developed by the Institute. The findings of this paper
supported the approach taken in the BEAST.
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