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Abstract V 

Environmental assessments that incorporate surveys of ecological communities require that the 

methods used to and test impact-related hypotheses have a reasonable chance of correctly 

declaring a community (un)impacted when it really In this study, weused simulated data of known 

characteristics to evaluate the ability of three ordination methods (non—metric multidimensional scaling, 

NMDS; principal components analysis, PCA; correspondence analysis, CA) and model affinity (MA) 
to classify unirnpacted and impacted ecological communities. Ourisimulations included both long and 

short ecological gradients and four levels of noise in species abundances. NMDS, PCA,‘ CA and MA 
_ 

were equalin their ability to correctly classify communities, but were not always in 

their ab_i_1ity'to classify impacted communities. PCA and MA tended not to perform as well as CA and 
NMDS when the ecological gradient was long and when the species abundances were as noisy as is ' 

typically found in real faunal survey data

'
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Introduction 

Ecological communities are often used as endpoints in monitonng and assessment programs to determine 

ecological condition (Rees et a1., 1990; Davis and.Simon, 1995). Typically, variations in composition 

among reference communities are used to judge the ecological significance ofefibcts on communities from 
‘ impacted locations. Whenth_e composition at a test (impacted) site falls outside of the nomial range of 

variation of reference commun'ities,'the test site is declared impacted (Kilgour et a1., 1998). 
‘ 

_ 
There are general ways to ecological composition when comparing

_ 

_ 

test and reference sites including: (1) biotic indices, (2) clustering;i(3) ordination; (4) multivariate 

ofvariarlce; and (/5)"model-aflinity (MA) approaches. Bioticindices, ordination axes, and model-aflinity 

endpoints are more useful than clustering because they can be more readily applied in hypothesis testing . 

procedures, and because they give quantitative results allow for estimating the degree of Biotic 

such as the Index ofBiotic Integrity (IBI) for fish (Karr, 1981) and for benthiic rnacroirivertebrates 

(Kerans and Karr, 1994) are usually derived to present a summary ofthetolerarlce of the community to 

degraded "conditions. Biotic indices do, "however, require prior calibration, and tend to be subjectively _ 

derived. They are also typically calibrated to detect specific-kinds of stresses (e.g., the -Biotic Index by 

Hilsenhofli 1988, was designed to detect nutrient status). As such, indices may not detect impacts 

from unusual str'esses. 
' 

’ 

A

H 

Multivariate analysis ofivariance is appropriate for assessing irnpacts on biological communities, 

but only when the »nu'r_nbe‘r of communities (sites) _is'well in excess of the number of taxa encountered in 

the survey. Ordination methods are often used to the high ‘number of taxa (variables) into a . 

reduced set of synthetic variables (axes) that summarize similarities in composition among sites. These 
_

A 

ordination axes can be used in hypothesis testing procedures like any other variable (Hoteflillg, 1933.; 

1979; Gauclt 19823.: 143; Gray etal, 1988; Warwick et al., 1988). Ordination methods filter noise 

(Gauch, 198215) and have been shown to result in more sensitive assessments of impacts on biological 

communities (Warwick et ‘at, 1933). Ordination methods can, however, distort the ‘true underlyirig 

sinlilarities among communities. As -such, there is potential for ordination rnet_ho‘ds to rriisclassify true 

reference and impact sites. 
A 

V

. 

Given the potential for ‘distortion with ordination methods, some (e.g., Novak and Bode, 1992; 

BartolL'1996;‘Bailey et all, 1998) have proposed using model-affirlity (MA) approaches instead of
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ordination. VV1th MA approaches, the average composition of all reference. communities ‘is used to 
represent the expected reference The similarity of "communities to this expected reference 

condition is then used as the biologicalresponse. The variation in similarity values of reference sites to the 

average reference community is then usedto characterize.the—normal.range ofvariation in composition of 

reference communities, Hypothesis testing can also be performed (Barton, 1996). Wrth MA, similarity 
'

' 

(or dissimilarity) can be measured as any ecological distance measure "such as Percent Similarity of 

Community, PSC, the Bray—Curtis distance measure for Jaccards Coefficient of Commrmity’ for 

presence/absence data (Barton, 1996; Bailey et a1.,. 1998). In contrast to ordination methods, model-afinity 

approaches do not filter noise. As such, model-aflinity approachesrnay not be as sensitive to impacts on 

communities. 
I 

_ 
V

p 

In environmental assessment, itis important that we use analytical methods that are unbiased and 

have a good likelihood of ‘leading us to the correct conclusions of the degree" of irnpairment. To date, no 

studies have examined the effect ordinations have on the probability of a correct conclusion. Nor has 
' 

anyone done afiillexamination ofthe perfonnance ofMA approaches. Given the potential for ordinations 
I 

to distort underlying structure, one would assume that ordinations may overestimate the degree of 

impairment and incorrectly classify reference sites as impacted-. In contrast, because model-affinity 
I 

methods do not filter noise, they may not detect impacts when they truly occur. The objective of thisppaper 

is to compare the performance and ordination and model-afinity approaches for detecting impacts on 

biological communities. In this paper, we evaluate three Qrdinations: (1) principal components 

(PCA); (2) correspondence analysis (CA); and (3) non-metric multidimensional scaling (NMDS). These 

ordination methods were chosen to represent the basic of techniques that exist: methods tend 

to be derivatives of these three techniques. 

p 

paper differs from other papers that have evaluated ordination techniques in the past. 

Typically, comparison papers use simulated data to construct‘ a set "of species distributions across a 

theoretical ecological gradient. Then cornrnunities are “sampled” at specific locations on gradient. The 

resulting Sampling pattern is used to represent a sampling grid in ecological space (Austin, 1976; Kessel 

and Whittacker, 1976; Gauch etal., 1977; Feoli and Feoli-Chiapella, 1930; Gauch et al., 1981; Kenkel and 

Orioci, 1986). Those.techniq'u_es shown to give an ordination diagram thatre-creates the sampling pattern 
I‘ 

are then considered successful. In this analysis, we care little if the ‘ordination method accurately portrays
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the underlying structure so long as the method detects impacts when they occur. As such, this analysis 
focuses on establishing the probability of correctly classifying sites as either impacted or unimpacted using 

‘ the four analytical tools (i.e.,'MDS, PCA, CA, MA). 

A 

Methodology 
Simulations 

Environmental rnonitoring programs generally incorporate either site-specific (Green, 1979; Hodson et a1., 

1996) or regional- reference (Hughes, 1995) locations against which to judge presumed impacted 

locations. Regional-reference data are usually used to evaluate the ecological significance of observed
A 

differences (Reynoldson et a1., 1998). Consequently, in this analysis, we simulated scenarios analogous 
to those incorporatingnregpional-lreference‘ locations into study 

b

‘ 

We COMPAS (1Vfinc_hin,- 1987) to simulate an gradient and to vary the nature of 

species distributions across the impact gradient. COMPAS is a DOS-based algorithm that simulates , 

species abundance across theoretical gradients. The software allows users to specify a variety of 

distributional characteristics for individual species as well as for of species.
V 

The ability of an ordination to successfully portray the true underlying among samples 

is influenced in part by beta diversity or the degree of in community composition fi'om across 

a gradient. Gradients with high beta diversity have large changes in composition across the gradient. . 

Typically, high beta diversity _results in species curves across “long” gradients that follow Gaussian curves.
. 

Such high beta-diversity systems are more optimally ordinated by CA or MDS‘ because these ordinations 
do a better job of re-creating the underlying structure (similarities among samples, Austin, 197 6;.Fasham, 

1977; Ter Braak and Prentice, 1988). In contrast, gradients with low beta diversity have many species in 

common across the Low beta diversityvgenerally results‘ in species abundances that vary in a 
fashion across the “short” Such low beta-diversity systems are more optimally ordinatjed 

with PCA because PCA ‘is designed to ordinate variables (taxa) that are linearly related (Ter Braak and 
Prentice, 1988). Given the importance ofgradient length, we simulated both a short gradient (0.5 half 
changes) and long (4 halfchanges) ecological gradient. Representative species curves are shown inFigur'e 

1. 

A 

v

_ 

In addition to gradient length (beta diversity), noise also influences the ability of an ordination to
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successfhlly portray the underlying similarities among communities. We therefore varied the amount of 
noise in species’ abundances. Vlrithout any object means ‘to noise, we simulated species 
abundances with no noise, as well as low, and high noise. Noise parameters in COMPAS were 
specified as given in Table 1. The high noise simulation was selected based on an apparent 

between species abundance distributions in the simulated data and species abundance distributions 

A 

observed from field collections of fish in southern Ontaxio (Figure 1).’ V

, 

We-used a single sampling pattern to “collect” communities com the eight simulated gradients. 
The sampling pattern included 100 “reference” communities (samples) collected randomly from a 

subspace of the ecological gradient. An additional 20 “test” communities'(sa.mples) were collected ‘at 

equally spaced positions across the simulated gradient (Figure 2-). Sampling positions within the reference 

comrnuriity space was determined fiom a normal distribution. Asa consequence, we could use an estimate 

of the. limits of the normal range ‘of variation to denote which samples we would expect to. consider 

impactedand unimpactedl Those in_s1_'_de the normal range ofvariation for the reference communities would , 

-be considered unirnpacted, while those outside the normal. range of variation would be considered 

impacted (Kilgour et al.', 1998). . 

'

i 

Ordinatjonst 

Each data set was ordinated PCA, CA, andNMDS. Bray-Curtis dissimilarities were used as the input 

_matrices to the NMDS ordinfations. N1vfl)S ordinations used initial configurations base on a principal- 
coordinates ordination. NTSYS-pc software (Rohlf, 1993)-was used to perform the ordinations. With 

each ordinationtechnique, the data must at some point decide how many axes will be used in 

subsequent hypothesis tests. However, with the eitceptiojn ofPCA, there are few guidelines for selecting 

significant axes (Jackson, 1993). In this analysis, we therefore the probability of incorrectly 

classiiying comrnunities based on retaining both one, two and three ordination axes. 

Model Afiinity 
‘For each data set, the average reference community was calculated by averaging the abundances of each 

‘ taxon found in the reference samples (Novak and Bode, 1992). Bray-Curtis distances (dissimilarities) to 
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the average reference were calculated for each sample (Novak and Bode, 1992). NTSYiS-pc
I 

1 software (Rohl£ 1993) was used to calculate these sirnilatities/dissimilarities. '
' 

J 

C lassifi/Tng Communities 
As above, communities that fell inside the envelope of reference community space were considered 

unimpacted, while those falling outside the envelope considered impacted. For each ordination, and 

for the model aifinity approach, we the true underlying elfect size for’ each of the 100 reference 

communities and 20 test communities observations using: 

ES: X"-:Jf.‘_'_t§f5:t’ S f
. 

1'2 

where -Yref was the mean position of reference communities, Sref was the standard deviation of
‘ 

reference-community positions and test was the position of any individual community along the 

ecological gradient. As before, these positions are in ecological. space, not physical space and so 

represent the true relative ecological distances between communities. 
' 

_

A 

Kilgour et al, (1998) define the normal operating range of reference comnjtunities as the region 

enclosing 95% of the reference population. Others have defined the normal range of variation as the 
region enclosing 75% reference population (Y oder and Rankin, 19957) or 99%of the reference

I 

community (Reynoldson et _a1,., 1998). These limits can be expressed in units such as the 

number of standard deviations fi'om the mean of the reference (i.e_., Z-scores for univariate responses) 

or as generalized from the centroid of the reference population (for multivariate responses). 

For univariate responses, the limits of the 95% region lie at 1.96 0 (standard deviations). We 
evaluated the ability of each ordination method and the model affinity approach to correctly classify 

bothimpactedandunimpacted communities based on this definition for normal ranges.
9 

Evaluating Perybrmance A 

V 

Based on known positions along the ecological gradients, we knew whether or not a site truly 

did lie inside the defined normal range. To evaluate each of the analytical approaches, we then 
._
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determined the proportion of communities that were correctly classified as beingwithin or outside the 

limits of the normal range. For example, based on analysis using the model aflinity approach, we 
estimated the ecological distance of each community from the average reference community (in 

standard deviations, so). Those comrnunities falling within 1.96 so ofthe mean of the reference 

_c'om_muniti_es were classified as being unimpacted, ‘while those >1.96 SD from the mean of the 
reference community responses were classified as impacted. We compared the observed fiequencies of 

T 

impacted and unirnpacted with the predicted fiequjefncies, to estimate the proportion of times that 

classifications were incorrect. These distances were expressed as either Z-scores ‘(for single axis 

solutions and model aflinity results), or as generalized distances for _two-axis ordination solutions. 

Equation [1] above was used to estimate observed elfect for single axis responses and for model 

aflinity responses. As above, with observed efi‘ect sizes in excess ofthe critical efl‘ect' 

_ sizes were declared impacted. When two or more ordination axes were retained, the observed elfect 

size, or generalized distance (D) for each of the 120 sites was estimated using-:.
' 

D: \/(32; —Imn'sr‘1o‘<r —Imn. [21 

Kris the centroid (vector of sample mean responses) of the reference locations, Imp is the vector of 
T 

response at the location, and S," is the inverse of the variance-covariance matrix for the 

reference locations (Owen & Chmielewskj, 1985). The limits of the normal range lie at ‘l X 2(x, p) 
T 

generalized distances from the population cernroid, where Xam) is the xth percentile of a chi-square 

distributionforp variables (Rode & Chinchilli, _1988; Kilgour et a1., 1998), The 95”‘ percentile lies at 
2.45 generalized distances for two axis solutions, and at 2.79 generalized distances for three axis 

solutions. These limits were therefore used to-classify communities based on two- and three-axis 

ordination solutions. » 

.
, 

Based on these classifications, we determined the probability of falsely declaring an unimpacted 

reference siteimpacted, and of falsely declaring an impacted site unimpacted. Ninety-five percent 

confidence limits for these proportions were calculated using equations for binomial distributions given



_ 

,

.

,

. 

u

,

‘ 

in Zar (p 378, 1984). Murtaugh (1996) recommends this overall approach for evaluating the 

performance of an ecological endpoint or methodology. 
A

' 

Resnltsi 

v How well were ufiimpated commgznities classified? 
There were no apparent diiferences in methodologies in classification probabilities. Inigmeral, 

the probability of incorrectly classilying truly communities varied between about 2 and 10% 

(Figures 3 and 4). Difierences in ecological gradient length and noise level had no apparent effects on the 

'probability of a correctly classifying atrue reference community; Increasing the numberof ordination axes
_ 

on which to base the assessment, tended "not to changegthe probability of incorrectly 
ai ‘ 

community, particularly with the longer gradient (Figures 3 and 4).‘ 

How well were impacted communities clas.s'zfie_d? 
i 

s

. 

Classification probabilities of truly impacted'comrnuniti_es did tmd to vary with method used, but also 

variedwith noise level, and length of the gradient. With an increase in noise leveL there was an apparent 

increase in the probability of incorrect classification (1.e., impacted communities were classified as 

unimpacted). This was true for both short and long ecological gradients (Figures 3 and 4). Regardless of 

noise, an increase in gradient length resultedlin an increase the probability of correct classification. With 

the short ecological gradient, there was no apparent improvement in classification probabilities with an 

increasein the nmnber of ordination axes. In contrast, ’with‘the longer ecological gradient, inclusion of the 

second and third ordination axesmarkedly increased the probability of a correct classification (Figures 3 

and 4). ‘With the long gradient, poor classification of truly impacted communities occurred as a result of 

an apparent distortion of the underlying pattern Figure 2 shows the apparent di_storu'on that occurred for 

lcomrnunities that weret_ru_ly very different from the reference condition. Using just the first results, 

it was apparent the estimated efiect was an underestimate. By inclusion of the second and third 

ordination axes, the magnitude of efl’ect was more appropriately estimated, thus the likelihood of. a correct 

classification was improved.
A

i



Hawdid the madellafiinity approach compare to ordination methods? 
The model-aflinity approach performed about as well as the ordination methods under ‘certain situations. 

When the ecological was short, the modeleaffinity approach tended to perform as well as the 

ordinations igures 3 and 4). When- the ecological gradient was long, the model-affinity approach tended 

to do as well as ordinations only if the ordination was basedon a single axis; In contrast, when the 

ecological gradient was long and when two ordination were used to estimate efi'ect size, _CA and 

NMDS had classification probabilities thanthe model aflinity approach (Figures 3 and 4). 

With all analytical tools, the probability of ‘ declaring a community impacted increased the- 

magnitude of the impact igure 5). As such, errors are only to be made for those communities that 

are relatively close to the critical efi'ect For CA, there was a higher probability of incorrectly" 

declaring a community unirnpactedywhen it lay between 1.96 and 2.2 o. In contrast, errors with NMDS 
were made between 1-.96‘ and 3 o, and with PCA and MAwere made between 1 .96 and 5 6. CA appeared 
to inflate observed effect sizes to a much greater degreethan did NMDS, especially for large effects in . 

‘ 

excess of 3 0 (Figure 5).
A 

Discussion 

Environmental assessments that incorporate surveys of ecological that the rnethods 
4 

used to and test irnpact-related hypotheses have a reasonable chance of correctly declaring a 

(un)impacted' when it really is. This study, using_ simulated data of known characteristics, 

demonstrated that NMDS, PCA, CA and MA are equal in their to correctly classify unimpacted A 

commuriities, but not always equal in their abilityto classify'irnpacted communities. PCA and MA tend 
not to p.erfortn as Well as CA and N1\/fl)S when the ecological gradient is long and when the species 
abundances are relatively noisy. 

' 

V

‘ 

A 

With the exception of the long-gradient, high-noise simulation, all three ordination methods were 

reasonably good at classifying impacted communities. 'I'his is in some contrast to recommendations 

that PCA.be used toordinate short‘ gradients while CA be used to ordinate long gradients (ter Braak and 
Prentice, 1988), The main conoem when using PCA.to ordinate long ecological gradients is the potential 

for an arch effect (see the CA ordination, Figure 2). With arch e.fl'eCt_,s, communities at opposite ends of 
the gradient . are shown to be more similar than they really are, relative to the spread of

10
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- communities in the middle of the Although arch effects were evident with CA, and to some 
« extent. PCA with the long gradient. (Figure 2), the arch had no apparent elfect on the probability of 

. correctly classifying impacted communities so long as multiple ordination axes were used to calculate 

observed effect sizes. The concern over arch efiects, therefore, seems unwarranted. As an analytical 
approach, MA has recently received considerable attention in the benthic macroinvertebrate literature. 
Novak and.Bode (1992) used the approach to demonstrate impacts of mines on benthic orgarrisms, while 
Barton (1996) used the approach to characterize impacts of practices on_ benthos_in southern 

Ontario, Canada. Our results show that the MAapproach tended not to perform as well as the ‘ordination 

methods with the longer ecological gradient, regardless of the level of noise. With no or modaate noise, 
MA had difliculty classii‘ying.irr'1pacted communities lying between 1.96 and 2.5 on (Figure 5). Such errors 
were eliminated each of the ordination methods, but only if multiple ordination axes were used to

p 

makethe assessment- The use of ordination analyses have the advantage that there are multiple axes that 

potentially add irifonnation. 
I 

*

V 

V How many ordination axes should be incorporated into an estimate of effect size? This is a good 
question. For now, there are rules on selecting significant axes only for PCA (Jackson, 1993). With CA, 

et al. (1984) provide guidance on whether the first axis is significant, but not later axes. There are 

no nrles for axis selection in NMDS. One possibility for selecting- significant axes in both CA and NMDS 
wouldbe the use of randomization tests to determine if-the observed variance '(un)explained' by a given axis 

was unusualcompared to a mill distribution of variance (un)explain_ed for each axis (Jackson, 1993). Such 

randornizations with CA NMDS would, however, requirecustomized algorithms. The disadvantage 
to using multiple ordination axes is that additional axes use up degrees of freedom hypothesis testing 

procedures. Ifbudgets for faunal surveys permit the collection of communities from only a few sites, the 

use of multiple ordination axes in hypothesis testing procedures may become problematic because there 

may be too few error degrees of fieedom. _

A 

Some perceive ordination methods as primarily noise-filtering procedures (Gauch, 1982). The 
I 

results fiom this study show that this ability to filter noise did not always improve the ability to classify 
impacted cornrnunities. With the short ecological gradient, none of the ordination methods had 2.1. great 

. ability to correctly classify impacted communities when anyarnount of noise in species abundances was 

presentk Noise, in the case of the short gradient, was apparently stronger the underlying signal with 

the result that none of the ordination methods was able to adequately classify impacted communities 

(Figures 3 and 4). In contrast, in the case of the -long gradient,~both CA and had high probabilities
_ 

of correctly classifying impacted communities regardless of noise level. With the hi'gh;gr"adi‘e‘n’t, high-noise



A simulation, MA had a low probability of correctly classifying impacted communities, demonstrating the 
of MA to filter noise. Although MA is attract1v' e in that it avoids «the potential for distortion that 

can occur with any ordination method, d1'_stortion (as discussed above) appears not to be a valid concern. 

As a result, the of to recover pattern fiom noisy species distributions should make this 

analytical approachless-attractive relation to CA and NMDS. Ordinations (particularly CA a'nd‘NMD S) 
are more likely to provide correct classifications of. impacted communities regardless of the underlying 

gradient length or level of noise ‘species distributions. — 

Other characteristics of CA and NMDS may be considered in any selection between the two 
methods. In these simulations, l\1MDS acccuntedfor a. greater amount of the total variation in the data 

. sets than did CA (Table 2). NMDS also appeared to inflate the underlying. efiect sizes less than did CA 
(Figure 5). Estimated effect sizes with NMDS should, therefore, give us a better understanding of the

I 

degree ofimpact of a community. In contrast to this benefit with.NMDS, CA has the advantage that the 
species themselves automatically ordinated. Such species ordinafions give an understanding of the 

fauna] difierences between cotmnunities, usually aiding our understanding of the nature of the impact and 

therefore of potential rehabilitative 
’ 

_‘ 

All simulation have constraints. With this study, we perceive at least three major 
' 

constraints should be considered. First, none of the simulations included rare taxa that tend to distort 

ordination diagrams in CA. The possibility exists that-CA may perform poorer (may not classify impacted 

communities as well as shown here)'when rare taxa are included in a data set. "Second, the maximum size 

of simulatedin this study were just over 5 c. We targeted impacts of this -size because we hoped 
i 

to observe the performance of the varicusmethods near the critical elfect size of 1.96 o, and because it 

is rare for itnpactsto exceed 5 G in aquatic ecological impact studies (Kilgour, 1997; Reynoldson et al., 

unpublished data). Finally, in this set dr simulations, impacted comtnunifies were sampled on both sides 
' 

of the reference community (Figure 2). This impact scenario represents a relatively complex pattern that 

may notalways exist in the real world. Typically, we think of impacts as occurring in a single direction" 

. from the reference community, For example, we might think of organic enrichment streams as 

increasing the number of worms and. the numbers of mayflies, stoneflies etc. However, the 

nature of the taxonomic change in communities do tend to vary with the kind of stress. As a result, 

observing impacts in more than one direction from the reference community is not necessarily 

unreasonable. . 

Acknowledgements

l 

-I 

T 

% 

T

T 

% 

f 

f

E

f



This study was supported by fiom Science Horizons Canada to BWK and an NSERC Canada 
operating grant to RCB. We thank Manny Stein for comments on an earlier version ofthis manuscript. 

Literature Cited 

M.P. 1976. Performance of four ordination techniques assuming three difi‘e1-em not1-linear 

response models. Vegetatio, 33:43-49. 
‘

_ 

Bailey, 110., M.G. Kennedy, M.Z. Dervish and RM. Taylor. 1998. Biological assessment offreshwater 
ecosystems using a reference condition approach: comparing predicted and actual benthic 

invertebrate communities in Yukon streams. Freshwater Biology, in press. 

Barton, DR.‘ 1996. The use of ‘percent model afinity to assess thee_fi‘ects of on benthic 

invertebrate communities in headwater streams of southem Ontario, Canada. Freshwater Biology, . 

35:397-410. 
_

_ 

Davis, W. S. and T.P. Simon (eds). 1995. Biological Assesmenimd Criteria T ools for Water Resource 
Plannirzg Decision Making. 

_ 

Lewis, Boca Raton. 
8

‘ 

Fasham, MIR 1977. A comparison of nomnetricmultidilnensional principal components and - 

reciprocal averaging for the ordination of simulated coenoclines, and coenoplanes. Ecology, 

58:551-561. 1 

'
‘ 

Feoli, E. and Feoli-Chiapella, L. 1980. Evaluation of ordinationimethods through simulated coenoclinesz 
’ some comments. Vegetatio, 42:35-41. 

Gauch, H.G., Jr. 1982a. Muliivan'ateAnalysis in Commun"ityEc0lo'gy, Cambridge Hress. 298' 

pp. 
_ _

. 

Gauch, H.G., Ir. 1982b. Noise reduction by eigenvector ordinations. Ecology, 6321643-1649. 

Gauch, I-1G,, Jr., R.H. Whittaker and S.B. Singer. 1981. A comparativesutyd of nonmetlic ordinations‘. V 

. Jm«rnaiafEco1ogy, 6'9:135‘-152. 
g

, 

Gauch, H.G., Jr., RI-I Whittaker and "LR Wentworth. 1977. A comparative study of reciprocal 
averaging andother ordination techniques. Journal ofEcology, 65:157-174.. [ 

Gray, J.s., M Aschan, MR Carr, 1:11 Clarke, RH. Green, T.H. Pearson, IL Rosenberg and RM 
Warwick. 1988. 

, 

Analysis of community 5' attributes of tie. benthic macrofauna of 

Frierljord/Langesundfjord and in a mesocosrrr eiiperiment. Mame Ecology Progress Series, 
46:151-165.



Green, R.H. Sampling Design and Stafistical Methods for Environmental Biologists. John Wiley and 

Sons, Toronto. 257 pp. . 

p

K 

I-Iilsenhoff, W.L. 1988. Rapid iigeld assessment of organic pollution with a family-level biotic index. 

Journal of the North American Benthological Society, 7:65-68. 

Hodson, P.V., K.R Munkittriclg 11 Ste_ver1.s,"and_ A Colodey. 1995. Atier—testing strategy for managing 
programs of environmental eflfects monitoring. Water‘ Quality Research Journal of Canada,

' 

31:215-224. 

_ 

Hotelling, 1933-, Analysis of a. complex of statistical variables into principal components. Journal of 

_ 

Educational Psychology, 24:v417.-441. 

Hughes, RM. 1995.. Defining acceptable biological status by comparing with reference conditions. In, 
W. Davis T.P. Simon (eds), Biological Assessmentand Criteria, Tools for Water Resource 

Planning and Decision Making. Lewis, Boca Raton. pp 31-48. 
' 

Jackson, D.A. 1993. Stopping rules in principal components analysis: a comparison of heuristic and 

statistical approaches. Ecology, 742-204-2214. 

A Karr, J.R 1981. Assessment ofbiological integrity using fish communities. Fisheries, 6:21-27. 

Kenkel, N.C. and L. Orloci. 1986. metric and.non1netric mrrltidimensional scaling to ecological 

studies: some new results. Ecology, 67 2919-928. 
‘

. 

Kerans, B.L. and IR 19.94. A benthic index ofbiotic integrity (B-IBI) for rivers of the Tennessee 
, 

\lalley. Ecological Applications, 4:768-785. ~ 

Kessel, SR andplu-I 1976. Comparison ofthree ordination techniques. Vegetatio, 31:21 -29. 

Kilgour, B_.W., KM. Somers and D.E. Matthews. 1998. A 95% rule a criterion for ecological 

_ 

significance in environmental monitoring and assessment. Ecoscienoe, in press. 

Lebart, L., A. Motineau and K.M. Warwick. 1984. Multivariate Descriptive Statistical Analysis, 
. 

Correspondence Analysis andRelated Techniques for Large Matrices. John Wiley & Sons, New 
9 

York. 
I

' 

Minchin, PR. 1987. Simulation of mul_t_idimensior1al community patterns: towards a comprehensive 

model. Vegetatio, 71:145-156. 
9 

V 

W

V 

Murtaugh, P.A. 1996‘. The 6Va1l1ation‘of ecological indicators. Ecological Applications, 6: 132- 

139. _ 

'

_ 

Novalg MA and RW. Bode. 1992. Percent model aflinity: a new measureof macroinvertebrate 

commurrity composition. Journal of the North American Benthological Society, 11:80-85.



\ 

, 

oweii, 1G. and MA ‘Chmielewsld. 1935. On canonical variates analysis and me construction of 

confidence ellipses in systematic studies. Systematic Zoology, 342366-3-74, 

Rees, I,-I.L., Moore, T.H. Pearson, M. Elliot, M Service, I. Pomfiet and"D. Johnson. 1990. 

Procedures for the monitoring of marine benthic communities at UK sewage sludge disposal 
sites. Department ofAgriculture and Fisheries for Scotlczrtd. Scottish Fisheries Information 

PamphletiNur_n1:>er 18. 
I 

A 

' 
’ 

_

’ 

Reynoldson, T..B., RH. Norris,’ v;H, Resh, K.E. Day and'D.M. Rosenberg. 1998. The reference 

condition: a comparison of multimetric and multivariate approaches .to assess watéraquality 

impainnent using benthic macroinvextebrates. Journal of the North American Benflblogical, 
’ 

Society, 16:833-852. 

I 

.

- 

Rode, RA and V.M. 1988. The use of Box-Cox t‘ransforrnat_ions in the ‘development of 

multivariatetolerance regions with applications to clinical ‘chemistry. American Statistician, 42:23; 

30. - 

' 

.

‘ 

Rohlf, F.J. 1993. NTSYS-pc, Numerical Taxonomy and Multivariate System. Version 1.80. 

, 

.Exet;e;r software, Setauket, NY
I 

Ter Braak, C.J.F. and LC. Pren_tiee.. 1933. A theory of gradient analysis. Advances ir1 Ecological 

Research, 18:271-317. 
“ ‘

A 

Warwick,R.M, MR Carr, KR. Clarke, LM Gee and RH. Green. 1988. Amsocosm expen'mer_'1_ton- A 

the eifects of hydrocarbon and copper pollution on a sublittoral sofi-sediment meiobenthic 

community. Marine Ecology Progress Series, 46: 181-191. A 

Yoder, C.O. and E.T. 1995. Biological criteria program development implementation in 

Qhio. In, W.S. Davis and T.P. Simon (eds),IBiologica1 Assessment and Criteria, Tools for Water 

_ 

Resource Plannirig and Decision Making. Lewis Publishers, Boca Raton, FL. 

Zar, J .H. 1984. Biostatistical Analysis, 2”’ edition Prentice-Hall, 
New. Jersey.



Table 1. Characteristics of the eiglit simulations used to evaluate ordination methods and model afiinity. 

abundance?
N 

Qualitative_Noise Characteristics
I 

(10) Do you to introduce cgualitative noise? 

Question response 

of Species Distributions 
H V 

I i 

(1) aiureeolégical gradients 
_

1 

D 

(2)o_fspecies in group 1 
V 

H H H 200
_ 

(3) Frequericue distribution for modalabundances 
— I 

uniform random 

-. value for the uniform random distribution 1 (default) 

- value for the uniform random distrflaution 
_y 

100 (default) 

(4) Frequenceidistrfibufion for ranges (r) on the first gradient 
M 
normal (Gaussian) (default) 

' 

- 
_ 

mean value for the normal distribution 
i 

100 (d¢fa11lt) 

- standard deviationvfor the normal distribution 30 (default) 

(5) Frequency distribution modal coordinates (m) on the (default) 

first gradient
’ 

s ' minimum value for the uniform random disuibution -95 (default) 

- mairirnum value for the uniforrn random distribution 195 (default) 

(6) Frequency for alpha and gamma on uniform randorIJ.(€iCfa111t) 

1 0.5 
'

' 

- value for the uniform random distribution 3 .5 

- value for the_unit‘orm random distribution
_ 

(7) Modes of major species adjusted to more even No (default) 
spacing?

A 

(8) Do to introduce inter_s_pecific interaction? 
V 

l\Io (default) 

(9) Do you want to introduce a trend in total No (default) 

No (no noise) 
Yes (lola/,~ medium and high noise)



(l 1) Iirequency distn'bution*for modal probabilities (P0) 
- minimum value for uniform random distribution 

- maximum value for random distl"il)'ufion 

rectangular (default) 

low noise = 0.8 (default) 
medium noise = 0.5 
high noise = 0.2 
low rloise = 1.0 (default)

A 

medium noise = 1.0 (default) 
high noise =‘ 1.0 (default) 

(12) Multiplier for alphaand gamma values to be used for 
qualitative response iilnctions 

- Quantitative Noise Characteristics 

(f3) Do you want to. introduce quantitative noise 

02 (default) 

No (no noise) 
Y_es (low, medium and high noise) 

(14) Select fi'equency distribution for _rarldoln deviations 

l (15) Method for determining values ofthe standard I 

' deviation for the noise distfibution as a function of the 

on'ginal (noiseless) abun_da’I!._G9 Values (A): 

_(16) Constant of proportionality o be used in computing
I 

values of the standard deviation 

normal (default) i 

value proportional to the square root" 

of abundance (default) 

low noise =0.-.1 (default) 
no‘ise.=v 1.0 

high noise = 10



Table 2. Ordinatioii results showing the vaxiance (11n)explained by axis. 

Si'n1ulationCjharacteristics NMDS PCA_ 
i 

CA 
' (variance unexplained with (variance explained by (variance explained by 
solution based on 1, 2 or 3 axis) axis) 

axes) 

Gradient Length Noise # Species 1 2 3 1 2 3 1 2 3 

short 
’ 

- none 115 <0.01 <0.01 <0.01 0.86 
‘ 

0.13 0.82 0.74 0.19 0.04 

V 

low 113 -0.55 0.54 . 0.48 0.1 0.08 0.08 0.13 0.06 0.05 

medium -0.73. 0.64 0.57_ 0.1. 0.08 
_ 

0.07 0.07 0.07 0.06
_ 

high 112 0.84 
A 

0.76 0.71 0.09 0.07‘ 0.06 0.05 0.04 0.04
' 

long non_e 199 
‘ 

0.03 0.01 0.01 0.58 0.27 0.08 0.43 0.31_ 0.13 

low 186 0.12 0.1 0.09- 0.33 0.18 « 0.06 0.33 0.24 0.12 

medium 185 0.21. 0.19 . 0.17‘ -0.2 0.12 0.05 0.24 0.18 10 

_hi§1i 170 
' 

0,56 0.52 0.49 0.09 0.07 0.05 0.07 
' 

0.07 0.06 

.18



V Figure Captions 

'1, (a) Examples of species abundance curves with levels of noise. (1)) Abundances of four 

fish‘ species across thermal gradient in streams in southern Ontario (data fiom Bartonet al.,- 1985), 
Figure _2. Distribution of reference and test communities acrossthe simulated ecological gradient, and 

’ 

ordination diagrams. (first two axes only) for NMDS, PCA and CA for the longegradient with no 
noise. diagrams show the underlying distortion An optimal would portray the 

-distribution of 'COIiim11flitieS as. givenin the distnbution of reference and test communities. 

Figure 3. Probability ofincorrectlyc1ass1fy1ng_:'_ 
° 'ummp' acted commum_ "tiesasimpacted with long and short

7 

_ 

ecological gradients andfour levels of noise in species abundances; A 

Figure 4. Probability ofincorrectly classifying irnpactedlcomI.!llJ.I,1ities as unimpmacted with long and short. 

_ 
ecological gradients and four levels of noise in species abtmdances.

' 

_Figure 5-. Relationship between actual and observed eifect size for each of the four analytical 

met_hodologies.— Eifect sizes calculated with the ordination results were based on theretention of 

three axes. Critical observed efl'ect are 1.95 a (dotted line) and 2.75 a (solid line) Results ~ 

shown pertain to the simulation along with high noise-»
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The department has been in the process of 
developing a Reference-Condition Approach for 
aquatic ecosystem health assessment "through major 
projects on the Great Lakes (biological sediment 
guidelines) and the'Fraser River (FRAP). This is also 
being promoted as the basis for a. National Aquatic 
Ecosystem Health Programme. The reference- 
condition approach offers a powerful alternative 
because sites serve as ‘replicates rather than the 
multiple collections within sites that are the replicates 
in traditional designs using inferential statistics. With 
the reference-condition approach, an array of 
reference sites characterises the biological condition 
of a region; a test site is then compared to an 
appropriate subset of the reference sites, or to all the 
reference sites with probability weightings. 

This resea_rch was conducted through a post"-doctoral 
fellowship sponsored in part by the Science.Horizons 
programme. One of the major problems in assessing 
ecosystem health is establishing effect sizes. Current 
thought at NWRI uses a multivariate approach for 
setting numeric ecosystem targets (BEAST). 
However, other researchers had expressed some 
reservations concerning the ordination methods being 
used. This paper compared a number of ordination 
methods including that being used in current software 
developed by the institute. The findings of this paper 
supported the approach taken in the BEAST.
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