


q6 - 74

Title:

Authors:

NWRI Publication#:

Citation:

EC Priority/Issue:

Currelft Status:

Next Steps:

MANAGEMENT PERSPECTIVE

Negative pH and extremely acidic mine waters from Ifon Mountain,
California

Nordstrom, D.K,, Alpers, C.N., Ptacek, C.J. and Blowes, D.W.
a8 -234
Science; in submittal.

This work supports the ESD Issue Conserving Canada’s Ecosystems
(metals) and the business plan deliverables Thrust #3 (groundwater
remediation). It also supports the EC Action Plan Conserving
Canada’s Ecosystems with the focus Develop and implement
strategies to conserve ecosystems. The study was initiated in 1992 and
was funded by the United States Geological Survey and Environment
Canada.

Oxidation of sulfide minerals in mine workings and mine wastes can
result in the formation of extremely acidic waters and elevated
concentrations of dissolved metals. The Richmond Mine at Iron
Mountain, California was declared a U.S. EP.A. Superfund site,
because of the extremely high concentrations of metals (100°s g/L)
and acid (pH between 0 and -3.6) observed in waters derived from the
mine workings. This project was initiated to quantify the geochemical
mechanisms leading to the formation of these extreme concentrations,
and methods to quantify the mine water pH for calculating mineral
saturation indices and for developing remediation plans for
the site.

Future research efforts will be directed toward evaluating mechanisms
limiting the solubility of thetals in hyperacidic mine drainage waters,
methods for remediating these waters and a conceptual model
applicable to hyperacidic mine waters in general.
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“
Extremely acidic mine waters with pH values as low as
—38, total dissolved metal concentrations as high as 200
g/L. and suifate concentrations as high as 760 g/L. have
been encountered underground in the Richmond Mine at
Iron Mountain, CA. These are the most acidic waters known.
The pH measurements were obtained by using the Pitzer
method to define pH for calibration of glass membrane
electrodes. The calibration of pH below 0.5 with glass
membrane electrodes becomes strongly nonlinear but is
reproducible to a pH as low as —4. Numerous efflorescent
minerals were found forming from these acid waters.
These extreme acid waters were formed primarily by pyrite
oxidation and concentration by evaporation with minor
effects from aqueous ferrous iron oxidation and efflorescent
mineral formation.

Introduction

The pH scale for aqueous solutions and natural waters is
often given as 0—14 withoutany explanation. It is an arbitrary
and convenientrange because it places the value for neutrality

of pure water at 25 °C (pH = 7.0) squarely in the middle. -

Values of pH less than 0.0.and greater than 14.0 not only are
possible butalso have been prepared frequently in chemical
laborateries. A definition for PH. however, had not been
accepted until the 1920s, and a definition of pHvalues below
1.0 had not been possible until the last 22 Years. For practical
purposes, pH has been defined as ~log a4, where ay; =
¥4+ My, and the former National Bureau of Standards (NBS)
established a set of conventions that limits measurements
tol=pH =< 13and to ionic strength, /< 0.1 mdm™3 (). The
main limitations are the activity coefficient expression, the
range of defined standard pH buffers, and interferences with
the reversible response of the glass H*-sensitive membrane
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elec&ode. We demonistrate in this papér that pH can be
" defined and measured below 0.0 and that waters of such low
pH exist in nature. : )

The two dominant sources of extreme acidity in natural
waters are magmatic gases that contribute HCl, HF, and
HzS80, (from oxidation of HzS and SO) to veiits, fiimaroles,
crater lakes, and hot springs in active geothermal areas (2)
and the oxidation of pyrite which produces sulfuric acid (3~
5). The most acidic pH values reported for environmental
samples known to the authots are HCI-H;S0, hot springs
near Ebeko volcano with estimated pH as low as —1.7 (6, 7),
the HCI-HF fumarolic condensates from Kilauea Iki esti-
mated to have a pH = ~0.3 (8), the lake waters from Poas
crater, Costa Rica with an estimated pH of —0.89 (9, 10), and
the acid crater lake of Kawah Ijen on the istand of Java with
estimated pH values in the range 0f 0.02—0.2 (11). Low values
of pH for pore waters in sulfidic tailings and acid mine waters
issuing from metal sulfide deposits have been reported in
the range of 0.1-2.1 (12~ 14). Errors are suspected for some
ofthe values below pH 0.5, however, because low pHstandard
buffers were rarely used for calibration and the methods of
calibration are not described. In this report we present new
data on acid mine waters from the undergroundworkings at
Iron Mountain that have pH values as low as —3.6 with total
dissolved solids concentrations as high as several hundred
grams per liter. We document the methods of calibration
and measurement and recommend them for use in ultra-
acidic waters.

The opportunity to sample and analyze acid mine waters
of extraordinarily low pH arose in 1990 after the U.S.
Environmental Protection Agency had completed under-
ground renovations in the Richmond Mine at Iron Mountain,
a Superfund site near Redding, CA. Iron Mountain was mined
for gold, silver, copper, zinc, and pyrite (in the production
of sulfuric acid). It was the largest producer of copper in the
State of California and the sixth largest copper producer in
the U.S. Mining of the thick iron oxide (gossan) cap began
about 1879 and underground mining for copper beganabout
1897. It was mined intermittently unitil 1962 when open-pit
mining for pyrite ceased. The first EPA Record of Decision
in 1986 recommended partial capping of the mountain to
prevent rapidly infiltrating surface runoff from reaching the
underground workings. The decision also recommended
surface water diversions, and subsurface renovation was
recommended to determine whether underground reme-
diation was possible. The main ore bodies are massive sulfides
consisting of 95% or more pyrite, with chalcopyrite, quartz,
sphalerite, and lesser amounts of pyrrhotite and galena
making up the remaining 5% of the ore (15, 16). The
Richmond ore body is a single massive sulfide about 50 m
high, 70 m wide, and almost 1 km long. The country rock is
the Balaklala rhyolite, underlain by the Copley greenstone,
both of Devonian age. Country rocks were hydrothermally
altered at the time of mineralization and were subsequently
altered by seawater to an assemblage of quartz, albite,
chiorite, and muscovite (sericite) (15, 16). Acid mine waters
draining the site have been observed since at least 1940;
Richmond Mine portal effluent typically has pH valies of
about 0.5—1.0 and very high concentrations of SO, (20— 108
g/L). Fe (13-19 g/1), Zn (0.7-2.6 g/L), Cu (0.12—0.65 g/L),
As (34-59 mg/L), Cd (4-19 mg/L), and T1 (0.2~0.4 mg/L)
(14. 17). In 1983, Iron Mountain was listed on the National
Priority List under CERCLA regulations, and detailed site
characterization and remedial investigations were begun,
Treatment alternatives have been examined, and partofthe
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TABLE 1. Molality, pH, and Activity Coefficients for Sulfuric -
Acid Standards ‘

H;SOQ molality pH?* by T pH? ?m.b
0.146 0.86 0.76 0.87 0.74
0.734 0.09 0.89 0.18 0.73

"1.497 —-0.38 1.28 -0.18 0.81
2.319 -0.79 2.12 —0.46 0.99
2.918 -1.07 3.23 -064 120
3.657 =1.41 571 -0.85 - 1.58
4.485 T =178 11.2 =1.08 2.24
5.413 -2.19 24.6 -1.32 3.37
7.622 . -3.13 165.4 -1.87 B.96
9.850 ~-4.09 1200. -2.37 22.96

*Values computed by PHRQPITZ (25) at 25 °C, using the.Macinnes
convention for scaling Pitzer singte-ion activity coefficients, Nalues
computed by PHRQPITZ (25) at 25 °C, using unscaied Pitzer singte-ion
activity coefficients,

1986 Record of Decision Was to conduct further substirface
investigations.

Experimental Section
The occurrence of Richmond Mine effluent waters with pH

- 'values less than 1 suggested that underground there may be

seep waters with pH < 0 mixing with other waters with pH

> 1. Hence, we were prepared to measure the pH of waters’

with negative pH before going into the field. Measurements
of pH below 1.0 with-a commercial glassmembrane electrode
may be subject to significant errors and uncertainties from
several sources including the following: (1) inappropriate
use of the conventional definition of pH, (2) strongly nonideal
solution behavior, and (3) nonlinear and irreversible electrode
response (which may include. nonideal solution behavior,
acid errors from asymmetry potential, residual liquid-
Jjunction potentials, and interferinig reactions of sulfate with
thereversible properties of the hydrated glass membrane (1,

18).

Application of the Pitzer ion interaction theory to sulfuric.

acid (19) makes it possible to define pH values < 1 and to
usea set of standardized sulfuric acid solutions as pH buffers
for calibration purposes. The specific ion interaction theory,
commonly referred to as the Pitzer equations for calculating
activities and activity coefficients, considersaqueous fonsto
bemostlydissociated in solution instead of formingion pairs
and other cortiplexes. Nonideal interactions between jons
are accounted for by additive energy terms that are based on
the virial series for intermolecular forces, analogous to that
used for interacting gas particles in statistical mechanics (20).
Both attractive and repulsive tefms dre considered, and
mixing parameters allow for multicomponent interactions.
Measurements of pH in HzS0, solutions deviate less from

. ideal behavior than solutions of HCI, HNO3, and H3:POyacids

{21). Galster (22 has noted that sulfuric acid s$hows the least
tendency for acid errors among the strong acids {except
phospheric acid) and shows no sign of a leached layerin the
glass membrane, Ferrous iron is the major cation in most
acid mine waters. The addition of mixing parameters, for the
Fe(IS0,—H280,—H;0 system (23) to the Pitzér model, allows
calculation of the pH of concentrated acidic ferrous-sulfate
solutions of known molality. .

Ten sulfuric acid standards were prepared (Table 1) for
pH < 1.0 with molalities between 0.146 and 9.85 as

determined by titration against anhydrous Na;CO; as a

primary standard. Molalities were checked by density
determinations. The pH of these standard solutions was
defined by the Pitzer method (19, 24, and the Maclnnes
convention was used for scaling individual ion activity
coefficients using the computer program PHRQPITZ (25
(Figure 1). Defining individual ion- activity coefficients

o calculated with PHRQPITZ

+ standard solution for pH calibration

Py NN ——
- 3 2 -1 0 1

log molality H,SO,

FIGURE 1.. Curve for pH as a function of sulfuric acid concentration
based on the Pitzer method using the PHRQPITZ code at 25 °C.

requires assumptions and choosing a theoretical approach.
One attractive approach is simply to define pH as ~log mi.
or to measute pH in terms of my+ (26, 27) and thus avoid
the ambiguities in the activity coefficient. Unfortundtely, this
approach harbors difficulties for acid mine waters because
(1) analytical methods for protons tend to disturb the

- chemical equilibria, e.g., the acidity titration is neither very

precise nor accurate owing to the irreproducible oxidation
of iron and the hydrolysis and precipitation of metals that
give poar inflection points, (2) determination of the “free”
protons, as opposed to the “total” protons, will depend on
a chemical model and its assumptions, a problem thar
becomes worse as the acidity increases, and (3) it would
require a major departure from, and revision of, prior pH
determinations and chemical modeling assumptions. A
related approach would be to determine the pH by charge
balance différence when the hydrogen ion is the major cation.
This method would depend on a careful analysis but primarily
suffers from being model-dependent. For example, sulfate
(the majoranion) is analytically determined as'SO, but exists
primarily in solution as HSO4 (for pH < 2) complexed to
varying degrees with metal cations. Another approach
suggested by Knauss and others (28, 29) uses a liquid-
junction-free cell containing specific ion electfodes to
measure the activities of protons and chloride ions. This
approach might be preferabie for acid mine waters if there
were a reliable sulfate, or bisulfate, ian-selective electrode.
but none exists to the best of our knowledge.

Single-ion activity coefficiént estimates for protons based
on the Pitzer approach ¢an be scaled with the Maclnnes
assumption (25) or left unscaled (30). We have used the
Maclnnes'scaling because of its preference in brine calcula-
tions involving pH (25, 31), but we note that the pH
determined will differ from unscaled pH values and that this
difference increases with decreasing pH as seen in Table 1.

Two different electrodes were used for calibration: {(an
Orion Ross combination glass electrode with a 3.5 M KCl
filling solution and (2) a Sargent-Welch combination glass
electrode with a saturated (4.8 M) KCI filling solution.
Temperature dependence was determined by measuringthe
electrode potentials of standards and samples at temperatures
of 25, 35, 41, and 47 °C (Figure 2). In addition to the sulfuric
acid standards, buffer standards of HCI-KCI (pH 1.0 and
2.0), potassium tetroxalate (pH 1.68), anid potassium phthal-
ate-HCI (pH 3.0) were used and found to be consistent and
reproducible to within 0.02 pH units. Non-Nernstian response
below pH 0.5 was observed for both electrodes. Acid errors
were not an obvious problem as indicated by reproducible
readings in the negative pH range although there was an
initial adjustment necessary when changing to solutions of
higher acid concentration. After completion of the field work,
the response of the pH electrode assembly was assessed by
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FIGURE 2. Calibration curves for Sargent-Weich combination
electrode at four tetmperatures using pH as defined from Figure 1.

preparation of standard solutions containing known con-
centrations of pure H;SO4and mixtures of H,SO, and FeSO..

The Pitzer model (20, 23—25) was used to calculate the
theoretical pH of the prepared standard solutions. If the
unscaled Pitzer approach is used, pH values for sulfuric acid
solutions begin to diverge from Maclnnes scaled values at
pH values below —0.5. For example, for a 5 molal sulfuric
acid solution the MacInnesscaled pH would be —2, whereas
the unscaled pH would be about —1.2.

Laboratory measurements were madeto assess the effect’

of FeSO, addition on the response of the pH electrode to
sulfuric acid solutions. Freshly prepared FeSO4-7H,0 was
added to normalized sulfuric acid solutions to cover a range
in FeSO, concentration, the solutions were equilibrated, and
the response measured while maintaining temperature,
similar to the approach described by Blowes (13). The
concentration of H,SO4 was varied from 0 to > 8 m, and the
concentration of FeSO, was varied between Qand > 2 m. The
measured fesponses at 25 and 45 °C are presented in Figure
3A.B, a temperature range that spans most of the under-
ground field conditions. Deviations of up to 20 mV were
observed for samples ranging from 0 to > 2 m FeSO, for
samples with approximately the same concentration of acid.
This deviation inresponse can be attributed to either nonideal
electrode effects or to interactions between ferrous irén,
sulfate, or bisulfate jons. To account for the latter effect, the
theoretical solution pH was calculated using PHRQPITZ (25).
The known concentrations of FeSQ, and H,SQ, were used
as model input. The PHRQPITZ database was modified to
include Pitzer ion interaction parameters to account for
temperature-dependent interactions between Fe(Il), HSO,,
and SO,*” (23). A comparison between the pH calculated
using PHRQPITZ and the pH calculated-using a sulfuric acid
calibration curve and measured emf values indicates devia-
tions in pH were < 0.5 pH units at 25 °C and < 0.3 pH units
at 45 °C. The deviations were negative and were greatest for
samples with the highest FeSQ, and H,50, concentrations
and the highest values of ionic strength, with the exception
of positive deviations observed at very high H;SO, concen-

» trations (~8 m) and 45 °C. Therefore, we Suggest puresulfuric
acid standards (Table 1) provide a good starting point for the
measurement of pH in extremely acidic mine waters, such
as those encountered in this study.

Residual liquid junction potentials were calculated for
the experimental samples using the Henderson equation
which was developed for weak electrolyte solutions (). This
equation provides information on the general trend in
deviation expected for a residual liquid junction potential
but may not provide an accurate estimate of magnitude. The
calculated values indicate deviations in pH as a resuilt of
residual liquid junction potential approach +0.03 pH units
forsamples having pH > 0.5-and approach ~0.2 pH units for
the more acidic samples.

258 = ENVIRONMENTAL SCIENCE & TECHNOLOGY / VOL. 34, NO. 2. 2000

6
— L/
4 T=25°C
2 4
i 01
2 —— H,SO, Calibration 1
....... H,S0, Calibration 2
-4 1 4 H,SO, - FeSO, Mixtures
"6 v T T T T T T T T
100 150 200 250 300 350 400 450 500 550
EMF (mV)
6 -+
T=45°C
ar ~o_
2} TN~2a
- \\BE'\'QL-
5 Or =~

Calibration at 25°C
-2 —s— H,S0,Calibration 1
a  H,S0,Calibration 2

-4 F
a  H,S0, - FeSO, Mixtures
_6 i i 1 A A i 1 4
100 150 200 250 300 350 400 450 500 550

EMF (mV)

FIGURE 3. Electrode response for standards containing sulfuric
acid and ferrous sulfate. (A) 25 °C and (B) 45 °C with sulfuric acid
calibration curve at 25 °C (dashed lirie) and at 45 °C (solid line)
shown as reference.

Water samples were collected as part of the subsurface
reconnaissance at the Richmond Mine and were filtered on
site by hand:pumping through 0.2 um pore size membranes
using poiyethylene containers that hold 150 mL of solution,
except for those with total dissolved solids greater than 200
g/L. which ¢ould not be filtered most likely due to instan-
taneous precipitation of metal—sulfate salts. Samples were
diluted 1:10 with 0.1 M HCI for cation and Fe(ll/total)
determinations and 1:10 with distilled water for anion
determinations. The field dilutions were essential because
some undiluted samples precipitated a large mass of iron—
sulfate crystals within minutes to hours after cooling to
ambient temperaturesand later chilling on ice. Four samples
were collected in sterilized bottles for microbiological
examination, which failed to find evidence of living Thio-
bacillus ferrooxidans in the waters of negative pH. T.
ferrooxidans was cultured from a water sample with pH =
0.4 collected in October 1992 (1. Suzuki, written communica-
tion, 1993). The microbial results should not be considered
a definitive statement that living microbes were not present.
just that the conventional cultures were negative. Modifica-
tions in the culture medium may be required to successfully
culture microbes from these extreme water compositions.
Temperatiire, relative humidity, and pH were measured on
site. Efflorescent minerals were collected in sealed plastic
bags and insealed glass jars. Several of the mineral specimens
were later preserved in mineral ail.

Results and Discussion

Twelve acid mine waters were sampled in the underground
workings of the Richmond Mine, ranging in pH from 1.5 to
—3.6 (Table 2). The four samples with lowest pH values came
from the following: (90WA109) drippings from a cluster of
Zn~Cumelanterite {(Fe" sZn 05Cit 51)SO4-7H,0] stalactites in
an open raise, (J0WA110A) drippings in a large open stope,




TABLE 2. Acidic Mine Waters found in the Richmond Mine, Iron Mountain, CA during _Septgt_r_ié; 1990

Pb

sample ‘code pH 70 S0, Fe{total)
90WA101 1.51 40.6 14" 2.67
S0WA102 0.52 299 NA 20.3
90WA103 0.48 34.8 118 20.3
S0WA104 0.42 30.2 110 15.2
S0WA105 0.42 334 130 223
90WA106 0.52 37.8 118 21.2
SOWA107 0.46 471 130 20.6
90WA108 =0.35 43.5 420 55.6
90WA109 -0.7 38 360 86.2
90WA110A -2.5 42 760 124
90WA1108 -2.4 42 650 . 141
90WA110C -3.6 46 NA 16.3

*Congentrations are in grams per liter. NA = not analyzed.

Fe(ll) In Cu cd As
2.47 0.058 0.293 0.0004 0.0001 0.003
16.9 NA NA NA NA NA
18.1 2.01 0.290 0.016 0.0036 0.056
124 0.731 0.362 0.0048 0.0017 0.023
20.4 2.26 0.218 0.018 0.0043 0.048
19.4 2.04 0.301 0.016 0.0035 0.062
18.8 2.28 0209 . 0.018 0.0042 0.045
50.8 6.15 0578 0.043 0.0043 0.169
79.7 7.65 2.34 0.048 0.0038 0.154
34,5 23.5 4,76 0.211 0.012 0.340
34.9 20.0 318 0.172 0.011 0.222
9.8 NA NA NA NA NA

(30WA110B) a pool of mine water collecting the drips of
sample 90WA110A, associated with rémerite [FeFe!l,(SO,),:
14H.0] formation, and (90WA110C) a pool of mine water
assaciated with rhombaclase [(H30)Fe'(S0y);-3H,0} forma-
tion. Abundant effloresences. stalactites, and stalagmites of
these and other sulfate minerals were found throughout most
of the accessible passages of the Richmond Mine (32).
Minerals were identified by X-ray diffraction, optics, and

microchemical tests and later confirmed by scanning electron

microscopy-energy dispersive analysis (33, 34).

Chemical analyses for sorhe of the major constituents in
the mine waters are shown in Table 2. The pH values recorded
here are the lowest yet reported anywhere that we know of
for any acid miinie water. The lowest pH of —3.6 is the lowest
known for any water in the efivironment. The temperatures
of these waters varied between 30 and 47 °C. The four lowest
pH samples formed large crystalline masses of sulfate
minerals upon cooling and therefore must have been at or
above saturation with respect to these minerals when
collected at the mine watertemperatures. For example, water
sample 90WA108 must have been near saturation with respect
to Zn—Cu melanterite, because it was collected dripping
from a large- melanterite stalactite and an undiluted sample
precipitated a large mass of melanterite crystals on cooling.
Similaly, samples 90WA110A and B precipitated romerite
and sample 30WA110C precipitated rhomboclase upon
cooling. Heating and cooling of these samples has shown
that the precipitation of melanterite is quickly reversible and
can be used to determine the temperature dependence of
the solubility and trace-element partitioning of that phase
(35).

Mine waters of negative pH at Iron Mountain, CA, have
been affected by at least four processes: (a) acid generation
by pyrite oxidation, (b) concentration of H* and other ions
by evaporation, (c) consumption of H* during oxidation of
Fe(ll) to Fe(ll}), and (d} acid production or consumption
during efflorescent mineral formation.

Sulfuric acid is produced by the oxidation of pyrite
according to the reaction

FeS, + 14Fe®* + 8H,0 — 15Fe®* + 250, + 16H* (1)

Considerable evaporation occurs in the underground mine
waters.at Iron Mountain due to the thermal energy released
from reaction 1. Water temperatures as high as 47 °C were
measured, and higher temperatures probably occur farther
underground in inaccessible parts of the mine.

Process (c) consumes acidity at pH < 2 according to the
reaction

Fe?* +'/,0,+ H* — Fe* + '/,H,0 @)

because hydrolysis of Fe(1ll) is minimal.

The effect on solution pH from process (d) depends on
the stoichiometry of the secondary sulfate salts formed.
Melanterite, coquimbite, rhornboclase, copiapite, arid jarosite
have all been found to form as secondary salts at Iron
Mountain. Formation of the sifnple salts melanterite and
coquimbite by the reactions

Fe** + S0, + TH,0 — Fe''s0,:7TH,0 3)
2Fe** + 350, + 9H,0 — Fe',(S0,),-9H,0 (4)

have no direct effect on pH but may have an indirect effect
through changes in sulfate~bisulfate speciation. Formation
of rhomboclase by the reaction

Fe** + 250, + H + 4H,0 — (H,0)Fe™(50,),3H,0
5

will remove acidity from solution and store it in solid form.
Copiapiteand jarosite contain hydroxyl groups and theérefore
are considered basic salts, although the solutions from which
they form are quite acidic; formation of these minerals -
releases acidity to solution by the reactions

Fe** + 4Fe® + 650, + 18H,0 —
FeFe'',(SO,)¢(OH), 16H,0 + 2H* (6)

3Fe*™ + 250, + K* + 6H,0 —
KFe™,(S0,),(OH)s + 6H" (7)

Thus, formation of Fe (I11) sulfate minerals has two effects
on the acidity of the mine waters. During oxidation of iron,
there is an irreversible loss of acidity, which tends ta keep
the pH from going much lower. During solidification of the
maining acidity is stored in a solid form. Ferri¢ sulfate salts
within Iron Mountain appear to be most abundant in
hydrologic “dead ends” where oxidation and evaporation
processes have maximum opportunity to proceed, whereas
melanterite, the most abundant ferrous sulfate salt, occurs
in areas of recent pyrite oxidation where the ferrousiron has
not had time to oxidize to ferric. We suggest the unusual
water compositions found at Iron Mountain are dominated
by pyrite oxidation (with waters at or near to melanterite
saturation) ‘and by evaporative concentration to give pH
values less than zero. Efflorescent mineral formation plays
a relatively minor role in controlling the pH.
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