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MANAGEM gig 1" gggsegcx mg 
The environmental and human health threats posed by toxic substances and other substances of 
concern are prevented or reduced.

- 

Environment _canada needs reliable in_for_'mation to assess and predict the fate and transport of 
contaminants in the groundwater environment. The numerical model discussed in this paper is designed 
to sim_ul_at_e bedding relationships in outwash deposits. This model can be used to‘ estimate 
hydrogeological properties of these sediments, and hence provide important information for the 
prediction of the transport and fate of contaminants in a groundwater environment. The project originally 
designed to assist in understanding of“ the hydrogeological environment at the Gloucester Landfill toxic 
waste site. Ottawa. It also has wider implications for the control of contaminant loadings through cyclic 
sediments to coastal wetlands in the Great Lakes basin. 

This paper resulted f_rorn a collaborative resear’chVpr'ogr'am with Dr. L. Bentley, Dept. of Geology and 
Geophysics at the ‘University of Calgary is continuing during FY 96/97. Ph.D._student, ‘K. Parks, 
developed the numerical model as part of his Ph.D. thesis. "During FY 98/99, the graduate student 
completed his thesis. defended,‘and this paper is a direct product of the thesis . 

Nothin._f.urther is planned. .at:this.time.... .



§0MMAIRE A L’lNTENTION DE LA DIRECTION 

On prévient on on réduit les risques pour Penvironnernent et pour la santé humaine posé par les 
substances toxiques et par d’autres substances préoccupantes. 

Environnement Canada a besoin d’informations fiables pour évaluer et prévoir le devenir et le transport 
des contaminants dans les eaux souterraines. Le modele numérique examine dans cette publication doit 
simuler les rappoits de litage dans les dépéts d’épandage fluvio-glaciaire. On peut utiliser ce modéle pour 

' 

évaluer les propriétés hydrogéologiques de ces sediments et obtenir ainsi des information: importantes 

pour la prévision du transport et du devenir des contaminants dans les eaux souterraines. On a d’abord 
conéu ce projet pour faciliter la comprehension du milieu hydrogéologique de la décharge de déchets 
toxiques de Gloucester (Ottawa). Cemodele présente également un intéret plus général pour la limitation 
'des charges decontaminants par des sediments cycliques aux lieuxlmmides cfitiers dans le bassin des 

Grands Lacs. 

Cettevpublication est le rés.u1tatd'un programme as fechefches on collaboration av'e.c 

M. L. Bentley, du Departejment dc géotogie et ae gécphysique de 1?Unive_rs.ité dc qui mg 
poursuivi au cours de PAF 1996/97. Un du troisiéme cycle, M. K Parks, a développé le modéle 
numérique dans le cadre de sa these de doctorat. Au cours de l’AF 1998/99, il a terrniné la redaction de sa 
these et 1’-a défeudue, et cette publication est lmée directement sur cette demiére. 

On ne prévoit aucune autme pour1’instant.



RE.. 

On pent utiliser la méthode du recuit sirnulé pour superposer des structures statistiques 
markoviennes a des champs aléatoires structures représentant l’hétérogé'néité rocheusej. 
Cette approche pennet d’utiliser des conditions plus réalistes du point de vue géologique 
dans les simulations stochastiques destinées aux simulateurs d’écoulement. Les matrices 
de probabilitée de transition de Markov sont encodées dans (les histogrammes multipoints 5, 
Pintérieur d1’7une fonction objective, et on construit ensujite des champs catégoriques 2D 
par recuit simulé. Les questions de rendement nuisant it l’u_ti1isation du recuit simulé avec 
les fonctions objectives markoviennes sont notamment les distributions catégoriques des 
échelles de longueur, les importances relatives des échelles de longueur par rapport a la 
taille de la grille et la complexité des structures de Markov intercalées. Pour y rernédier, il 
est recommandé, notamment, de sélectionner une taille dc grille appropriée, de choisir 
avec soin le type dc recuit et detenir compte d’autres critéres basés sur le test statistique 
du chi carré, souvent utilisé dans les analyses markoviennes. A 1’ aide de structures de 

v Markov, on peut alors faire appel A des structures réalistes sur‘-le' plan géologique comme 
ladépendance é.1’égard d’éléjments d’ordre supérieur, la cyclicité et la directionalité. On 
peut utiliser le rééchelonnernent temporel pour assurer un transfert a l’horizontale adéquat 
de structures markoviennes verticales dans le cadre d’une adaptation probabiliste de la loi 
dc Walther. Cette technique est démontréepar des exemples hypothétiques et observés sur 
le terrain. ‘

l



ABSTRACT 
Simulated can be employed to impose Markovian structures on structured

. 

random fields representing rock heterogeneity. By this approach one can transmit more 
geological realism into stochastic simulations for flow simulators._ Markov transition probability 
matrices are encoded into multiepoint histograms objective function and then 2D

I 

categorical fields are constructed with simulated Peformance issues that compromise 

annealing Markovian objective functions irlclude categorical length-scale distrl'b“tr‘tion‘s, 

relative magnitudes of length scales to grid and complexity in embedded Markov
i 

The remedies to ‘these include proper selection of grid size, carefiil choice of ‘type of 

annealing and consideration of alternative stopping criterion based on a chi-squared test statistic 

common in Markovian Geologically realistic structures like higher order dependency, 

cyclicty, be enforcedby employing Markov structures". Temporal 

can be used to ensure proper transferrence of vertical Markovian structures to the horizontal 

under a probabilistic restatement of Walther’-s Law. Hypothetical field examples demonstrate 

the technique 
4
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IN, I Re‘ ODUCTION 

Stochastic simulation of heterogenous rock for flow» simulators can be done by a variety of 

methods (e.g., Koltermarm and Gorelick 1996). A practical challenge to their implementation 
how to better constrain simulations to match geological concepts of reasonableness 

(Deutsch and Hewitt 1996). In the parlance of" stochastic simulations, constraining °“tPm3 

through conditioning prior knowledge reduces the space of uncertainty explored by the 

A outcomes and thus increases their utility in decison-making. 

Doveton (1994) suggests that Markov models can play a role in more geological ‘ 

realism into simulator Markov statistics encapsulate information onrelationships between 

categories as well as length-scale information. In their common form, Markov statistics are 

presented in form of a transition probability matrix. The matrix tabulates the probability that a 

time or space series in the same state or enters a state with each succeeding step.
' 

,Davis (1986) provides a complete introduction



Markov structures have long been used by geologists to identify quantify facies and 

stratigraphic relationships in bedding sequences (e.g.-, Schwarzacher 1975; Walker 1979; Xu and 
MacCarthy 1996). Various methods exist to directly generate Markov fields (Krumbein 1967; 

Harbaugh and Bonham-Carter 1970; Lin and Harbaugh 1984; Moss 1990; Luo 1996) or use 

Markovstructures to improve, inform, or calibrate other geostatistical-or geosystem simulation 

methods (e.g_.__, Murray 1994; Carle and Fogg 1996). Despite their obvious attraction to 

geologists, Markov fields have had relatively little penetration into the practice of stochastic 

simulation. Koltermann and Gorelick (1996) cite the dificulty of conditioning pure Markov fields 

to other types of ‘field as a» barrier to their practical use. Whereas pure Makov fields may have 

limited applicability in stochastic reservoir simulation, we propose the enforcement of Markov 

structures in sto.chastic- fields still worthy of pursuit because they are amenable to the capture 

and expression of some geologically attributes of stratal architecture. 

In this paper we document the construction of two-dimensional stochastic fields with Markov 
properties by simulated annealing using “the m.ult._ipo_int histogram method of Deutsch and Journel 

(1992). We demonstrate how annealing performance is affected if Markov structures are being 
enforced-. As well, we demonstrate that meaningful geometries can be effectively 

reproduced in _stochast_ic fields by imbuing them with a Markov structure. We Imderscore that 
conventional geologic reasoning offers ample justification for building multidimensional random 

fields with __Markov properties fi"'om observations of vertical 

CONSTRUCTING MARKOV FIELDS WITH SIMULATED ANNEALING 

Markov Chains and Fields- 

A sequence of events wherein the present state of the sequence is contingent on the state 
of the sequence at some time prior to the present is said to be a Markov chain. The structure ofa 

Markov chain can be summarized in a “transi_t'_i_o_n frequency matrix”, wherein the fiequencies of 

transition-fi'om any one state to itself ‘or the other states are tabulated (in columns) by state (the



l'0WS)- If the fiequencies are normalized by the row totals, the provides the probability of 
transition ’fro1’r1 any state to any‘ other in a unit step. A chi-squared testis usually applied to an 
experimental Markov matrix to determine if the transitions collectively or individually are 

significantly diflerent than a random series of events (Davis, 1986). Two and three dimensional 
spatial fields can also have Markov properties (Lin and Harbaugh 1984). Detailed discussion of 
the relationships between stratal patterns Markov structures are found in Harbaugh and 
Bonham-Carter (1970) Schwarzacher (1975) as well as the references cited above. 

Sir_i1ulatedAnnealing 

Simulated annealing is a global optimization. method whereby a field that honors’ an 
idealized set of control statistics can be generated in a stochastic fiamework, Gateway references 
to the details of annealing methodology are Ouenes and Bhagavan (1994) and Jensen et al.(1997). 
The essence ofthe annealing methodology is summarized below. 

To generate a stochastic field or image by annealing, an ideal or training“ field is 
‘ characterized by a combination of or other descriptive measurements. A field is 
then generated. The field can be a totally random image matching the ideal global 
or a structured field created by a difierent algorithm The same descriptors are calculated for the 

field. An objective function, 0, is then computed as the difference or diflerence 

between the ideal and field descriptors. The components of the objective function may be 
weighted to assign equal importance to small and large or components 
pofmeasurement. The field is then perturbed, by replacing the value of one of the field 

' elements drawn fiom the underlying global histogram or by swapping two nodes at 
random. The objective function is recalculated. Perturbations that the value of the

_ 

objective lfimction are kept; Perturbations that increase the value of the objective fimction are 
accepted a probability that decreases in proportion to the increase in objective filnction 
scaled by a parameter called the ‘ftemperature”. If ‘the values of O are normalized by the original 
value, then the formal probability rule for acceptance (eqn. 1) is a Boltzman distribution of the 
form;



00 . “mm P accept : 
‘ 

(Equation 1) 

where Pm“ is the probability of accepting a perturbation-, 0.,“ is the normalized value of the 
objective fimction calculated before the perturbation, Om, is the value of the objective 

calculated after the perturbation, T the temperature, set to 1 (Jensen et al. 

1997)
4 

Ifa pre-chosen number of perturbations are accepted (usually of the order of ION where N 
is the number of elements in a field) before some number of total perturbations (of the, 

order IIOON), the ‘temperature is reduced by some fiietor less 1 (usually 0.1). Fast updating 

schemes are employed to avoid completely 0 alter every perturbation, for instance 
only subtracting the contribution of the perturbed field values from 0 and then adding 
contribution of the newvalues (e.g., Deutsch and Journel 1992). procedure is repeated until 

the objective fimction falls below a threshold or its value can no longer be reduced. A very low 
value of O, of the order 1x10", means that the annealed field closely matches the desired 

attributes encoded in the objective function. ' 

The change in the value of O with perturbations is called the objective functi.0n'trajectory. 
The -standard implementation of employing Equation 1 allows hill-climbing to avoid 

undesirable 1ocal_ along the objective ihnction trajectory. Steepest-descent or iterative 

improvement variants, where only improvements are accepted, can also used. These variants are 
' much faster but can be prone to becoming trapped inlocal depending on the nature of O. 

Formulation of the Objective Function for Constructifig Markov Fields 

A Markov transition matrix can be easily encoded in an annealing objective fu.n.cti0.I.1 as a 

series of multipoint histograms as first described by'Fa'rm’er (1992). Two-point histograms denote 

the expected number of transitions from any state i to any state j for a given lag in a 

direction. For the forward direction of a simple Markov chain, the expected of transitions 

f, between states i andj in an nx-ny-nz ‘field that ‘uses edge-wrapping to avoid edge effects 
in (Deutsch he Cockelfhatn is;



fly = I 
i)|I]X°I1yenz_ (Equation 2) 

where 13(1) is the proportion of state i and P(j]i) is the probability of transition to state j given 
“you are in state i. The proportion of state i can be found by powering the transtion until 

the columns values More complex Markov structures can be built using multiple 
dependencies and encoded in a fishion. Markov chains wherein the state‘ at any point 
depends upon the state at more than one location or time prior to point are said to have a 

higher order structure. For example, if the ‘state depends upon the state at a time or location 
immediately prior as well as the state two lags prior, we say the chain is a second-order Markov" 
structure. Higher order structures in geologic materials suggest the presence of multiple, 
independent processesacting at different scales in depositionprocess.

A 

In our implementation, the following objective function is enforced to generate two- 

dimensional, first-order fields:
V 

0 = -o:{>:,-as >:,=1 2:,-=1[———-.t:.-—--1 
IWVJJ 

(Equation 3) 

where 0 is the value ofthe objective fimction, iandj are stateiindices, im isthe 
number of states, b/,‘g';$J is the number of transitions from i to .j in the idir"‘ direction of the ideal or 

‘ 

training image, and ff§9’J_i is that value calculated for the current image being annealed . The 

calculated value of the objective function is normalized by the_ initial non-normalized value of 0, 

0“. _The squared difference between J andf,$,{,_, is divided f'.,;,!;’,,._, to more equal 

weighting to small values of transitionfi-equencies. 

Performance Issues

< 

The main appeals to continued research intthe appficeifions of simulated are: 1) its 

. 

lack of an underlying statistical model, 2) its ability to condition stochastic fields with information
I



from disparate sources, and 3) the hope that future improvement in computer performance will 
eventually reduce the computional expense to levels comparable to presently faster algorithms. If 

Markov structures are to be enforced in stochastic fields through simulated then the 

following perforrnance issues need to be considered: 

° Scale Eifects 

0 Complexity Eifects 
0 Implementation Strategy 
0 Stopping Criteria 
0 Efi‘ect of Conditioning. 

The impact of these issues on of Markov structures are illustrated by 
examples in this section using both.hypothetical and field-dataderived Markov structures. 

Table 1 shows four hypothetical, 3-state, first-*-order Markov transition matrices that are used ' 

in the examples. The length scale of any one state in a Markov chain can be described by any 
number of measures. The thickness or duration ofa state in a first-order Markov process be 

geometrically distributed with an arithmetic mean approximated by (Doveton 1994): 

pg: (Equation 4)
’ 

where pa is the value of the diagonal element in the ith row of transition probabilty and_ A is 
the step length in the. In the transition probability matrices 1A and 1B, all the values along 
the diagonal are identical, implying that are no the average length.-scales ofthe 

bodies of each state. In Tables 1C and ID, the values along the diagonals are different, implying 
that the average length scales are difierent between the three states. 

The transitions between different states in a Markov chain are encapsulated in the embedded 
form of the transition proability matrix, also shown in Table 1. The embedded form is calculated 
by setting diagonal values to zero and renomalizing the ofi‘-diagonal elements by their sum. In 

C-Ziilijjii-XII-‘I1-Zir-II



the embedded form of IA, there is no preferred tr'ansition from any state to any other, meaning 
that the juxtaposition ofthe bodies has no structure, In the embedded form of Table lB,ithere is 
a preferred pattern of state-to-“state transitions B-G-W-B-G-W.i.., since there is three times the 
probabilty of going to state G from B than W and so on. repetition is referred to as cyclicity. 

If there is in the cyclicity if the chain direction was to be reversed, the Markov is 

said to possess the property of directionalty. The chain in Table 1B shows directionality. The 
embedded form ofrnatrix 1C is the same as 1B. The embedded form of 1D has more of arandom 
component because there is no preference fiom state W to. either B or G. 

For comparison, a first-order, five-‘state Markov chain derived fi'om real field is shown 
in Table 3. The lithologic data in the transition fiequency come fi'om vertical cores taken 
from boreholes through a finely .inte‘rbedded-, glaciolaeustrine sedimentary sequence at the 

-Gloucester landfill near Ottawa, Ontario. The sediments are interpreted to be deposits of 
coalescent, subaqueons deltas that built out fiom subglacial drainage tunnels into meltwater lakes 
in front of retreating glaciers. At site, this layer acts as an aquitard or confining layer, 
hydraulically separating a surficial aquifer fi'om a deeper, saturated glacio-fluival sand aquifer 
which hosts acontaminated groundwater pltlme (Jackson et al. 1991; Gailey and Gorelick 1995). 

The lithologies were logged at regular each of the cores. The number of 
transitions from any state to iteslf or diflerent states along a single 2-mm step were then counted 
to form the transition matrix.The results from all the boreholes were then combined under the 

assumptions that the process of formation was homogenous aeross the drill.-site and the 

boreholes were fir enough .fi-om each other to represent independent samples of the process of 
‘ 

deposition. In this case, a chi-squared test determined that the Markov as a whole 
significantly different than a random series of events, mainly the sediments are layered at 

about a 10 to 50-cm scale and the transition fiequency is overwhelmingly diagonally
, 

dominant. No significant higher order structure could be detected, The embedded Markov 
structure determined to be no difierent than a random series of events, which is consistent to 
the interpretation that the sedimentary process was dominated by episodic events linked to 
ice-wasting. ‘Detailed analysis however did indicate a significant association of 

~‘ overlyinglmedium sand, suggesting a linked origin in the depositional system. In the analysis,



however, the random associated with episodic events presumably triggered by glacial 

thought to have overwhelmed the more regular, autocyclic, prodelta sedimentary 

processes predicted by a simper sedimentologieal model of delta processes (Parks 1998). 

Eflect of Length Scale 

fields with Markov properties on finite becomes increasingly diflicult as the 

length-scale of the bodies become large relative to the of the grid. Figure 1 -shows the 

objective fimction trajectories for single realizations of 3-state, first-order structure with 

no embedded structure. The trajectory A corresponds to the transition probability in Table 

1A where the diagonal elements are 0.60. The transition probability structure was imposed 

isotropically in both x. and y directions on a regular 100x100 field-. The other trajectories 

on Figure 1 represent’ the same matrix but the diagonal elements have been increased to 

0.70, 0.80, and 0.90. The mean body length in the x and y directions are increasing‘ relative to the 
dimension of the field (Eqn. 4_). As the mean body length increases relative to the field size, more 

perturbations are "required to reduce the objective fimction to an acceptable 

value (in this case 1x10“). In the last case, where p;.=0.90, the ratio of grid dimension to body 

length is nearly 10 and the number of perturbations at one temperature is exceeded 

before the stopping criterion is reached. 

Effects offncreasing Complexity 

performance deteriorates as the Markov structure becomes increasingly complex. 

V 

in terms of: numbers of states, the cornplexity in the embedded form, and dilference in length.-scale 

distributions between states. Figure 2 shows the five objective function trajectories for single, 

100x100 unit realizations created from Table 1A through 1D and Table 2. Iterative improvement 

was used. From the discussion above, we can see that of the five structures presented, Table 1A ~ 

has the least structure - bodies of identical length-scale ‘distributions and no embedded structure. 

Table 1B has bodies of identical length-scales but cyclicity and in the embedded 

structure. Table IC has difl‘erent length-scale distributions plus cyclicity and 

whereas _1D has more randomness than 1C. Table 2 has a greater degree of randomness in its
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embedded form as Well as has five states diflerent length scale—distribu'tion's. The combined 

efiect of complexity and increasing lengthéscjales relative to grid size increase the 

number of perturbation__s— needed to successfillly anneal the field. In the of the Gloucester 
structure, the slope of the objective fimction trajectory was too shallow to reach the desired 

value ofO in an acceptable ofperturbatro‘ 
' 

ns. 

Implementafion Strategy 

As documented in the references above, there are a number ofvariants of that can 

be employed to create stochastic fields. To our Markov fields, we employed a strategy 
whereby the random fields were seeded with the expected proportions of each state determined by 
powering the transition probability Perturbations were done by swapping pairs: of grid 

values selected at random. In general, iterative improvement performed acceptably well 

3'-state, first-order:Ma‘rkov As length-scales, number of states, complicated embedded 
structures etc. were incorporated, true annealing “hill-climbing” tends to perform better. In 

the case generating _a 1(_)_Qx_’-1(_)_0 ‘field for the 5-state Gloucester transition structure, neither true 

annealing or iterative improvement were suflicient on their own to reduce the normalized 
objective fimction below- an acceptable threshold in an acceptable of perturbations. The 
objective fimction trajectories for two attempts are shown in Figure 3. In the case of pure 

iterative improvement, the objective function trajectory becomes trapped in an unaccept..a_b1e local 

minimmn. In the case of pure alone, the objective fimction trajectory does not descend 

quickly enough to reach the desired threshold in less than 2x107 perturbations. Post-processing 

the outcome of true with iterative improvement found to produce satisfactory 
I 

results. 

Stopping Criterion 

In most applications of annealing, a very low ‘value of normalized objective fimction is used as 

the stopping criterion. The use of a very low value implies a high degree of confidence in the 
value of the ‘idealized or training measures embedded in objective function. But in earth



_ 
1.1? 

science ‘applications, our information fiomfilmsnfisurliee and even outcrop is often incomplete 

and matching the Markov transition may not be warranted. As mentioned 
the introduction, a chi-squared test statistic eranbiusedédetermine if an observed Markov or 

its embedded are significantly difmem form a random series of events. The same 

fonnulation can be used to determine if Wm Lhkovtransition matrices are diiferent iiom each 
other at some level of statistical significance Easterling, 1982). Table 3 compares 

the values of the normalized objective fimcfin fltassociated numbers ofperturbations needed to 
anneal a single isotropic field. with the structmr'eofi'I'ahle: 1c different stopping criteria based 

on the chi-squared test statistic. One can see level ofstatistical significance employed 

in the chi-squared test decreases fi-om 0.20 m 0lEfl,;it?:becomes increasingly easy to accept that 
annealed field is not significantly different the: training structure with commensurate 

computational savings in the form of fewer: Figure 4 shows the same stopping 

points on a plot of the objective function iterative improvement was used in 
this relatively simple example, the objetrttive trajectory is quite steep and the 

computational savings associated with aflii-squared ‘test as a stopping criterion are not 

profound. However, when the objective mmfimbmomes less steep, the computational savings 
associated with reaching a normalized objectiive§.'mction' value in the order of 1x1 0'3 or 1x10‘ can 

be substantialncompared to the effort needetittoiw.-.Ii~-a'r_value.i11 the order of 1x10‘. - 

EfiTerz:I:$€’0n_ditz'on_ing 

Stochastic images generated by constrained or “conditioned” to honor field 

obser”vations~ simply by assigning the appntn;n7in5e:grid locations the observed values and not 

‘perturbing them. This approach producm desirable discontinuities the vicinity of the 

conditioning data. The discontinuities can the weighting the contr_ibution of any part 

of the global objective function involving data heavier than none-conditioning grid
' 

blocks (Deutsch and Cockerham, 1994). an experiment wherein 8.! 100x100 field 

with the structure in Table .1,C was conditim&t’owmatch data from a vertical §“well” of lengths 5, 

25, and 100 blocks. The vahies of the were obtained by a difibrent 

unconditional realization with the same case, a weighting of‘ 5 used on 

I|:‘11Z11_1Zl-Z:»ifZlZ*TZjZ
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transition probabilites that involved conditioning data. For the cases of wells of lengths 5 and 25 

grid blocks, true armealing reached a satisfactory threshold of the normalized objective fimetion 

based on a chi-squared test statistic at a 0.01 level of significance. The detail of the well around 

the 25-block well shows that the field has been acceptably smoothed. We found that weights 
higher than 5 degraded the annealing performance rapidly. The objective function trajectory for

I 

the field conditioned by a 100-block Well became trapped in an unacceptable local 

before passing the chi.-squared threshold.
' 

CAPTURING GEOLQGICALLY MEANINGFUL STRUCTURES IN I 

4 STOCHASTIC FIELDS WITH MARKOV STRUCTURES 

The previous section demonstrated that embuing stochastic fields with Markov properties is 

reasonably straightforward using simulated annealing provided that attention is paid to some key 

performance issues. In this section we look at examples of styles of strata] architecture that 

can be in stochastic fields by this approach. The first examples shown are hypothetical 

but we they demonstrate some of the potential of applying this technique to simulation of 

real rock In the final example, an unconditioned stochastic imageof the Gloucester 

confining layer is presented to demonstrate that these ideas can be carried out with field data. 

Example 1: First versus Second-Order Structure 

As above, Markov chains and fields can possess a higher order structure. 

I Table 4 shows a hypothetical, three-‘state structure. The structure is shown in the form. of three 

transition probability matrices. Matrix 4A shows the transition probability structure going fiom 
location x+1 fiom x given that the Markov chain is in state “Black” at locaton x-1: where we have 
_arbritran'ly_ chosen 1:=9 Likewise, Matrix 4B shows transition matrices if the Markov 

chain is in state “Gray” at X-1: and 4C shows the probabilities is the Markov chain is in state 
“White” at x_-t. Higher order structures are discussed in detail in Harbaugh and Bonham-Carter 

(1970). Table 4D shows the first-order Markov structure “embedded” in the second-order 
‘ structure of Table 4A-4C. Two . 100x100 fields were generated by using rnultipoint
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histograms to enforce the second-order structure as well as the first-order structureof Table 4. 

These two fields are shown as g1_-ay-scale in Figure 6. Accompanying the fields are 

indicator variograms for each of the three categorical states. From the gray-scale images, it 

appears that the second-order Markov image has more structure than. the first-order image. The 
second-order image ‘appears to have move extensive areasof predominantly gray or white pixels, 
The gray and white categories show strongareduction in indicator at the lag 

corresponding to the spatial wavelength of the second-order structure. These structures in the 

‘indicator variograms are a measure of the statistical structure in the second-order Markov image 
that is lacking in the firstéorder Markov image. T

T 

Example 2: Directianality and Cyclicity 

The concepts of and cyclicity in Markov were introduced above. 

Directionality common in many sedimentary depositional environments, e.g».v, consider 

shoaling-upward sequences on carbonate banks or fining-upward sequences in channel deposits. 

Directionality means there will be an up and or a basinward-and landward asyrnrnetry in a 

bedding sequence. Cyclicity or the regular, non-random repetition of beds is also common in the V_ 

rock record. In Markov chains, cyclicity is detected by the presence of complex eigenvalues in 

the transition probabiliy matrix (Schwar2acher~, 1975). The hypothetical transition probability 

in Table SA has obvious cyclicity and complex eigenvalues as shown. Directionality is 

also evident in the embedded form - is a directionality in the ofi‘-diagonal elements 

that would change if the chain was run backwards. A single two.-dimensional field with this 
I 

transition matrix enforced in the vertical and horizontal directions ..s_hoWn as a grayscale image in 

Figure 7A. 

For comparison, the and cyclicity was removed in the horizontal direction by - 

averaging the ofl‘-diagonal elements in the Markov structure as shown in Table 5B. Note that the 

complex eigenvalues have now The structure of Table 5B was enforced 

in the horizontal in the grayscalejmage iniI_"igure 7B, leaving the vertical structure as before. This 

example highlights the flexibity of annealing to hybrid structures that better accommodate
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geological concepts of reasonableness. There are many geological environments where 

directionality and cyclicity are apparent in vertical bedding relationships but does not extend to 

realtionships in the horizontal, 

Example 3: Honoring T ime-Spatial Relationships in Markov Representations of Strata: 
Going from the Vertical to the Horizontal with Walther ’s ‘Law 

Doveton (199.4) revisits the common suggestion that Markov measures of vertical 
fi-om boreholes may be transferred to the horizontal to inform a description of horizontal 

“variability. If Markov structures are to have a. use in injecting geologic realism into stochastic 

models, then this suggestion warrants further examination. 

A 

The geological justification for this transference comes through invocation _of Walther’s Law 
of Facies Succession, an operating principle of stratigraphy. According to M_idd_1eton’s translation 

(i973), Walther’s Law was originally stated as follows:
A 

‘The various deposits of the same thcies areas similarly the sum of the rocks of different 

fiicies are formed beside each other in space, though -in cross-section we see them lying 
on top of each other. As with biotopes, it is a a basic statement of far-reaching significance 

that only those facies and facies areas can be superimposed which can be observed 

beside each other at the present time.” 

Middleton emphasizes: “ Walth_er’s Law leads us to expect that each facies show o'nly'c‘ertainy 

transitions to other facies, but it does not suggest that all of the genetically related facies can be 

arranged, in a single sequence, because some facies may represent alternatives at" a given stage in 

the development of anyparticular cycle”.
I 

This statement the justification for using Walther’s Law for translating vertical Markov__ 
measures of to the horizontal in a probabilistic framework. Recast in Markovian terms, 

one might restate Walther’:s Law as follows: Ifthe probability of any state succeeding another in



15- 

the vertical is equal to the probability that the states developed adjacently at a given time, then the 

probabilities of any state being juxtaposed horizontally should equal the probability that states are 

vertically superimposed, provided the horizontal juxtaposition is coeval The probabilistic 

approach can also accommodate minor erosional breaks in a succession as a component of 
’ 

random noise (Doveton, 1994). assumption will only work so long as the depositional 
process is stationary at -thescalet of interest. \ 

IfWalther’s Law of facies succession is used to of Markov measures of vertical 

variability in bedding sequences to the horizontal, a coordinate‘ transformation fiom vertical space 
to vertical time must considered that ensures that horizontal surfiices equal lines. The 

coordinate transformation necessary to transfer vertical Markov measures to the horizontal along 

time lines is a simple rescaling of each category separately according to their relative depositional 

rates. The mechanics of this rescaling (Schwarzacher, 19695 is shown in Figure 8A, where a 

hypothetical three-lithology system is rescaled fiom cotmted in space to equivalent 

transitions in time that the relative depositional rates of sandstone-, shale, and limestone 

.are 1.0, 0.5, and.0.33, respectively. This rescaled Markov temporal structurelwas enforced in the 

vertical direction of a 100x100 field in Figure 8B whereas ‘the horizontal structure enforced was 
the original Markov spatial structure. realization was backtransformed to vertical spatial. 

coordinates by post-processing in a way as to compress the limestone and shale pixels 

vertically in inverse proportion to their relative rates of deposition. Markov fields constructed in 

a Waltherian framework should conserve the sediment, time, and volume elements of a 

- depositional system, Prior‘ to vertical back-‘transformation, Markov fields could be regarded as 

. 

Synthetic Wheeler diagrams (Wheeler, 1958). 

If desired, compaction efl'ects can be similarly incorporated. Similarly, significant gaps in the 

record due to erosion and nondeposition are accounted for as a nondepositional or ' 

erosive state existing through It is conceivable that if sufiicient geochronological or 

‘biostratigraphic data exist to reconstruct these states, they could enter a Markov-model as a 

category in a coordinate system that is removed inthe baclctransformation.
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Example 4: A Stochastic Image of the Gloucester Site Confining Layer. 

Figure 9 shows the final example: a 100x100 2D stochastic image of the confining layer at the 
Gloucester site, All of the structures encapsulated Markov transition in Table 2 are 

present in this image. The efibrt required to anneal this image was shown above in Figure 3. 

Annealing this image was dihieuh, but not impossible, because of the of states present, 

the low ratio of grid size to mean body lengths, and the complexity of the structure. This 

example demonstrates that field. data can be gathered fi'om. borehole cores,’ translated into a 

meaningful‘ 
’ Markov probability structure and used to inform a stochastic image of a complex 

geological system byannealing in a formcompletely suitable for use in flow simulation. 

In paper, we demonstrate how conditioned structured fields honouring Markov transition 
probability structures can be generated s_im_u_la_ted To guide future applications of 
this technique, the performance issues pertaining to scale efiects, structural complexities, and 

choice of stopping criteria were discussed.and remedies ofiered, namely: 

' Scale Efi'ec'ts. As categorical length scales increase relative to grid size, annealing 

performance The general remedy is to use a larger grid.
V 

0 Complexity Efifects. As number of states, variation in categorical length scales, or 

complexity in the embedded Markov chain increase, annealing performance diminishes. 
The remedy is to choose alarger grid or possibly try a combination of routines. 

0 ‘ Stopping Criteria. To remedy complexity efiects or to reduce computational cost, a 
chi-esquaired test statistic can ‘be used to evaluate if the annealed image is significantly 
difl'e'rent than the image at some predetermined level of confidence. This 

approach can be justified when the Markov model is being fi'om incomplete 

subsurface data or is otherwise incompletely‘ known. Incorporation of such a stopping 

c1"it'erion‘may be also considered when Markov structures are to be blended other 

kinds of structures in an objective function.
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By incorporating Markov structures in stochastic simulation of real rock systems, one » 

capture more geologic realism, We show how Markov structures can capture geological 
complexities in natural systems pertaining not only to length scales and categorical 

interrelationships but also stratal achitecture pertaining to aspects of depositional process: higher 

-order structures, cyclicity, and directionality. The flexibility of approach to accomodate 

geological_reaSQniI1g through hybrid structures and rescaling to honor time-space relationships in 

real rock systems was highlighted. An example is where field datataken fiom borehole 
cores was successfully transmitted to a. stochastic image by this method. 
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- LIST OF TABLES 

Table l.Four hyp'otheti,c_al, first-order, 3-state Markov transition probability and their 

embedded forms used in experiments in Figures 1 through 5. The state labels stand for 
colors ‘in grayscale images of'a1mea_1ed fields: B=blaek. W=white.

' 

Table 2. A first-order, 5‘-state Markov transition probability its embedded fonn derived 

fiom borehole-cores taken fi'om a confining layer at the Gloucester site near Ottawa, 

Ontario, Canada." 
‘ T 

I

J 

Table 3. A comparison offinal normaliied objective function values and inunber of perturbations 
asssociated with a conventional annealing ’’’’ " stopping‘ criterion and using a chi-squared test 

statistic for between the trial image and the structllre. The trial image is a 

100x100 the first-order Markov in Table 1C. Results are shown graphically in 

Figure 4.
' 

Table 4. A hypothetical, second-order, 3-state Markov structure (4A-4.C) the associated or 

embedded first-order Markov structure (41)) for comparison. These st1'uct'ures are used "in Figure 

6.. 

Table 5. ‘A hypothetical, first-order, 3-state Markov structure showing both directionality and 
cyclicity (SA) and the same structure after directionality cyclity has been removed by 

V 

averaging ofi'-diagonal elements (SB). Comparison of accompanying eigenvalues shows that SA
_ 

has the complex eigenvalues diagonostic of cyclicity whereas 5B does not. structures are 

used inFigure‘7. t
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LIST OF FIGURES 

‘Figure 1. Objective fiinction trajectories for four 3-state Markov structures with no embedded 
structures and different categorical length scales.. In 1A, Pi";-'0.60 for each state; in 1B, 0.70; in 

1C, 0.80; in 1D, 0.90. The corresponding mean body lengths for each PE (Eqn. 4) are IA: 1.5, 

1B: 2;.—3, 1C: 4.0, and 1D:9.0 units. The grid size is 100x100 The ratios of grid size to mean 
body lengths are 66.7, 42,9, 25.0, and llil units, respectively. ratio decreases, 

Figure 2: Objective function trajectories (using iterative improvement) for four, 3-state Markov 
structures (A-D) with increasingly complicated structures corresponding to those in Table ’ 

1A-1D.. The trajectory E is that for the 5-state structure for the Gloucester confining layer in 
Table 2. All trajectories come fiom a single annealing run. Comparison of the trajectories shows 
that, in general, as complexity ofMarkov structure increases, the angle of descent of the annealing 
trajectory tends to decrease.

A 

Figure 3: Objective 'fi1nct.ion trajectories for the 5-state Markov structure in Table 2 comparing 
the annealing performance of iterative improvement (Trajectory A) to that of true annealing 
post-processed with iterative improvement (Trajectory The combined approach succeeded in 
reducing the objective fiinction value to an acceptable whereas the iterative 

improvement ‘approach became trapped in an unacceptable minimum. The performance of true 
- annealing alone (first segment of Trajectory B) also was unsuccessful in reducing the objective. 

-4 function to an acceptable minimum a tolerable number of perturbations. 

Figure 4: Stopping points fiom Table 3 placed on the objective function trajectory (iterative
‘ 

improvement used).
A 

I 

Figure 5: Efect of conditioning on annealin" 

' 

g performanc' 
' 

e. Trajectories on lefi; show annealing 
performance when a 100x100 3-state field is conditioned to honor a vertical Well of length A) 5' 

_units, B) _25 units, and C) 100 units. True annealing was used. Stopping criterion is When the
4
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calculated chi-squared test statistic fell belowl3.2;,— corresponding to a level of significance of 0.01 
and 5 degrees of fieedom. Run C trapped in a local’ minimum before satisfying the 
stopping criterion. The on the conditioning was set to 5.0. The field on the right 
shows detail of field B in the of the conditioning well (outline). The underlying Markov 
structure isthatinTable 1c.

' 

Figure 6. Comparison of first and second-order, 3-state Markov fields as shown in Table 4. 
Comparative indicator variograms (I(h)) are shown for each state. The gray and white states 
show a strong reduction in indicator sernivariance at the lag corresponding to the, spatial 

wavelength ofthe second-order 

Figure 7. Comparison of detail from two 100x100 fields honoring the first-order, 3-state 

Markov structures in Table 5. In field A, the ‘directionality and cyclity of ‘Table 5A is-enforced. in 
both the vertical and the horizontal Field B is a hybrid field, combing structure of Table 5A 
in the vertical and that of5B (no directionality or cyclity) in the horizontal 

Figure 8,. Illustration of conversion of a 3-state Markov field fiom spatial coordinates to 
equivalent temporal coordinates and back using relative rates of depostion to rescale vertical 

categorical length scales. The t0_'p field is generated in mixed timeespace coordinates with in 

the vertical The bottom field is the same but back-transforrned to pure spatial coordinates. 

Black represents space. 

Figure 9: Unconditional panel reproduction of the Gloucester confining layer generated fiom 
field-data derived, 5-state, first-order Markov structure shown in Table_2. The field was 
generated_by'the combined approach shown in Figure 3.
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