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MANAGEMENT PERSPECTIVE

The environmental and human health threats posed by toxic substances and other substances of
concemn are prevented or reduced. :

Environment Canada needs reliable information to assess and predict the fate and transport of
contaminants in the groundwater environment. The numerical model discussed in this paper is designed
to simulate bedding relationships in outwash deposits. This model can be used to’ estimate
hydrogeological properties of these sediments, and hence provide important information for the
prediction of the transport and fate of contaminants in a groundwater environment. The project originally
designed to assist in understanding of the hydrogeological environment at the Gloucester Landfill toxic
waste site, Ottawa. It also has wider implications for the control of contaminant loadings through cyclic
sediments to coastal wetlands in the Great Lakes basin.

This paper resulted from a collaborative research program with Dr. L. Bentley, Dept. of Geology and
Geophysics at the University of Calgary is continuing during FY 96/97. Ph.D. student, K. Parks,
developed the numerical model as part of his Ph.D. thesis. During FY 98/99, the graduate student
completed his thesis, defended, and this paper is a direct product of the thesis .

Nothing further is planned at this time.
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SOMMAIRE A L’INTENTION DE LA DIRECTION

On prévient ou on réduit les risques pour ’environnement et pour la santé humaine posé pai' les
substances toxiques et par d’autres substances préoccupantes.

Environnement Canada a besoin d’informations fiables pour évaluer et prévoir le devenir et le transport
des contaminants dans les eaux souterraines. Le modele numérique examiné dans cette publication doit
simuler les rapports de litage dans les dépéts d’épandage fluvio-glaciaire. On peut utiliser ce modéle pour

* évaluer les propriétés hydrogéologiques de ces sédiments et obtenir ainsi des informations importantes

pour la prévision du transport et du devenir des contaminants dans les eaux souterraines. On a d’abord
congu ce projet pour faciliter la compréhension du milieu hydrogéologique de 1a décharge de déchets
toxiques de Gloucester (Ottawa). Ce-modtle présente également un intérét plus général pour la limitation

‘des charges de contaminants par des sédiments cycliques aux licux humides ctiers dans le bassin des

Grands Lacs.

Cétte publication est le résultat d’un programme de rechefches eéffectiiées eri collaboration avec

M. L. Beritley, du Département de géologié et de géophysique de I"Université de Calgafy, qui sest
poursuivi au cours de 1’ AF 1996/97. Un étudiant du troisiéme cycle, M. K. Parks, a dévéloppé le modéle
numérique dans le cadre de sa thése de doctorat. Au cours de I’AF 1998/99, il a terminé 1a rédaction dé sa
thése et 1’a défendue, et cette publication est basée directement sur cette derniére.

On ne prévoit aucune autre activité pour P’instant.




RESUME

On peut utiliser la méthode du recuit simulé pour superposer des structures statistiques
markoviennes & des champs aléatoires structurés représentant I’hétérogénéité rocheuse.
Cette approche permet d’utiliser des conditions plus réalistes du point de vue géologique
dans les simulations stochastiques destinées aux simulateurs d’écoulement. Les matrices
de probabilité de transition de Markov sont encodées dans des histogrammes multipoints &
I’intérieur d’une fonction objective, et on construit ensuite des champs catégoriques 2D
par recuit simulé. Les questions de rendement nuisant & I'utilisation du recuit simulé avec
les fonctions objectives markoviennes sont notamment les distributions catégoriques des
échelles de longueur, les importances relatives des échelles de longueur par rapport 4 la
‘taille de la grille et la complexité des structures de Markov intercalées. Pout y remédier, il
est recommandé, notamment, de sélectionner une taille de grille appropriée, de choisir
avec soin le type de recuit et de tenir compte d’autres critéres basés sur le test statistique
du chi carré, souvent utilisé dans les analyses markoviennes. A I’aide de structures de
- Markov, on peut alors faire appel & des structures réalistes sur l¢ plan géologique comme
la dépendance & I’égard d’éléments d’ordre supérieur, la cyclicité et la directionalité. On
peut utiliser le rééchelonnement temporel pour assurer un transfert a P’horizontale adéquat
de structures markoviennes verticales dans le cadre d’une adaptation probabiliste de la loi
de Walther. Cette technique est démontrée par des exemples hypothétiques et observés sur
le terrain. :
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ABSTRACT

Simiilated annealing can be employed to impose Markovian statistical structures on structured ,
random fields representing rock heterogeneity. By this approach one can transmit more
geological realism into stochastic simulations for flow simulators. Ma:kov transition probability
miattices are encoded into multi-point histograms within an objective function and then 2D |
categorical fields are constructed with simulated annealing. Peformance issues that compromlse
annealing wrth Markovian objective functlons include categorical length-scale distributions,
relative magnitudes of length scales to grid size, and complexity in embedded Markov structures.
The remedies to lthese. issues include proper selection of grid size, careful choice of type of
annealing and consideration of alternative stopping criterion based on a chi-squared test statistic
common in Markovian analysis. Geologically realistic structures like higher order dependency,
cyclicty, and directionality can be enforced by employing Markov structures. Temporal rescaling
can be used to ensure proper transferrence of vertical Markovian structures to the horizontal
undef a probabilistic restatement of Walther’s Law. Hypothetical and field examples demonstrate
the technique -

INTRODUCTION
Stochastic simulation of heterogenous rock for flow simulators can be done by a variety of
methods (e.g., Koltermann and Gorelick 1996). A practical challenge to their implementation
remains how to better constrain simmlations to match geological concepts of reasonableness

(Deutsch and Hewitt 1996). In the parlance of stochastic simulations, constraining outputs
through conditioning with prior knowledge reduces the space of uncertainty explored by the

. outcomes and thus increases their utility in decison-making.

Doveton (1994) Suggeéts that Markov models can play a role in transmitting more geolc"Jgical :
realism into simulator grids. Markov statistics encapsulate information on relationships between
éategoﬁes as well as length-scale information. In their commdn form, Markov statistics a_ré
presented in form of a transition probability matrix. The matrix tabulates the probability that
time or space series stays in the same state or enters a different state with each succeeding step.
Davis (1986) provides a complete introduction.




Markov structures have long been used by geologists to identify and quantify facies and
stratigraphic relationships in bedding sequences (e.g., Schwarzachér 1975; Walker 1979; Xu and
MacCarthy 1996). Various methods exist to directly generate Markov fields (Krumbein 1967;
Harbaugh and Bonham-Carter 1970; Lin and Harbaugh 1984; Moss 1990; Luo 1996) or use
Markov structures to improve, inform, or calibrate other geostatistical or geosystem simulaﬁon
methods (e.g, Murray 1994; Carle and Fogg 1996). Despite their obvious attraction to
geologists, Markov fields have had relatively 'little penetration into the practice of stochastic
simulation. Koltermann and Gorelick (1996) cite the difficulty of conditioning pure Markov fields
to other types of field data as a barrier to their practical use. Whereas pure Makov fields may have
limited applicability in stochastic reservoir simulation, we propose that the enforcement of Marl/c‘ov
structures in stochastic fields is still worthy of p’ﬁrsuit because they are amenable to the capture
and expression of some geologically meaningful attributes of stratal architecture.

In this paper we document the construction of two-dimensional stochastic fields with Markov
properties by simulated annealing using the multipoint histogram method of Deutsch and Journel
(1992). We demonstrate how annealing performance is affected if Markov structures are being
enforced. As well, we demginst:até that meaningful stratal geometfies can be effectively
reproduced in stochastic fields by imbuing them with a Markbv structure. We underscore that
conventional geologic reasoning offers ample justification for building multidimensional random
fields with Markov properties from observations of vertical bedding.

CONSTRUCTING MARKOYV FIELDS WITH SIMULATED ANNEALING
Markov Chains and Fields.
A sequence of events wherein the present state of the sequence is contingent on the state
of the sequence at some time prior to the present is said to be a Markov chain. The structure of 2

Markov chain can be summarized in a “transition frequency matrix”, wherein the frequencies of

transition from any one state to itself or the other states are tabulated (in columns) by state (the




rows). If the frequencies are normalized by the row totals, the matrix provides the probability of
transition from any state to any other in a unit step. A chi-squared test is usually applied to an
experimental Markov matrix to determine if the transitions collectively or individually are
significantly different than a random series of events (Davis, 1986). Two and three dimensional
spatial fields can also have Markov properties (Lin and Harbaugh 1984). Detailed discussion of
the relationships between stratal patterns and Markov structures are found in Harbaugh and
Bonham-Carter (1970) and Schwarzacher (1975) as well as the references cited above.

Sir_;zulated Annealing

idealized set of control statistics can be generated in a stochastic framework. Gateway references
to the details of annealing methodology are Ouenes and Bhagavan (1994) and Jensen et al.(1997).
The essence of the annealing methodology is summarized below.

To generate a stochastic field or image by anneaiing, an ideal or training field is first

* characterized by a combination of statlstlcal or other descriptive measuréments_. A trial field is

then generated. The trial field can be a totally random im‘age matching the ideal global histogram
or a structured field created by a different algorithm. The same descriptors are calculated for the
trial field. An objective function, O, is then computed as the difference or squared difference
between the ideal and trial field descriptors. The components of the objective filnction may be
weighted to assign equal importance to small and large values or components with different units

‘of measurement. The trial field is then perturbed, usually by replacing the value of one of the field
~ elements with another drawn from the underlying global histogram or by swapping two nodes at

random. The objective function is recalculated. Perturbations that redice the value of the
objective function are kept. Perturbations that increase the value of the objective function are
accepted with a probability that decreasés in proportion to the increase in objective function
scaled by a parameter called the ‘ftempérature”. If the values of O are normalized by the original
value, then the formal probability rule for acceptance (eqn. 1) is a Boltzman distribution of the

form:




00 new
P accept = exp( M_O )

(Equation 1)

where Puepe is the probability of accepting a perturbation, Oqa is the normalized value of the
objective function calculated before the perturbation, O is the normalized value of the objective
value calculated after the perturbation, and T is the temperature, initially set to 1 (Jensen et al.
1997) ‘

If a pre-chosen number of perturbations are accepted (usliaI_ly of the order of 10N where N

is the number of elements in a field) before some maximum number of total perturbations (of the

order 100N), the temperature is reduced by some factor less than 1 (usually 0.1). Fast updating
schemes are employed to aveid completely recalculatmg O after every perturbation, for instance
only subtracting the contribution of the perturbed field values from O and then adding
contribution of f_h_e new values (e.g., Deutsch and Journel 1992). This procedure is repeated umntil
the objective function falls below a threshold or its value can no longer be reduced. A very low
value of O, of the order 1x10%, ‘means that the annealed field closely matches the desired
attributes encoded in the objective function.

The change in the value of O with perturbations is called the objective function trajectory.
The standard implementation of annealing employing Equation 1 allows hill-climbing to avoid
undesirable local minima along the objective function trajectory. Steepest-descent or iterative
improvement variants, where only improvements are accepted, can also used. These variants are
- much faster but can be pr’ohe to becoming trapped in local minima, depending on the nature of O.

Formulation of the Objective Function for Constructing Markov Fields

A Markov transition matrix can be easily encoded in an annealing objective function as a
series of multipoint histograms as first described by Farmer (1992). Two-point histograms denote
the expected number of transitions from afny state i to any state j for a given lag in a given
direction. For the forward direction of a simple Markov chain, the expected number of transitions
f, between states i and j in an nx.ny.nz field that uses edge-wrapping to avoid edge effects

(Deutsch and Cockerham 1994) is:

|




fii = P(1)eP(j| i)enxenyenz. (Equation 2)

where P(j) is the proportion of state i and P(jli) is the probability of transition to state j given that

you are in state i. The proportion of state i can be found by powering the transtion matrix until

the columns values stabilize. More complex Markov structures can be built using multiple
dependencies and encoded in a similar fashion. Markov chains wherein the state at any point
depends upon the state at more than one location or time prior to that point are said to have a
higher order structure. For example, if the state depends upon the state at a time or location
immediately prior as well as the state two lags prior, we say the chain is a second-order Markov
structure. Higher order structures in geologic materials suggest the presence of multiple,
mdependent processes acting at different scales in the deposition process.

In our implementation, the following objective function is enforced to generate two-
dimensional, first-order fields: '

im ﬂj,‘;”,_,]z : .
O= Oo {zldlr-l i—l 21_1 [""_d;;""”] (Equation 3)

where O is the value of the nomralized objective function, i and j are state:indic'es, im is the
number of states, /2%, is the number of transitions from 1 to j in the idir™ direction of the ideal or

 training image, and £5%,; is that value calculated for the current image being annealed . The

calculated value of the objective function is normalized by the initial non-normalized value ef 0,
(°. The squared difference between fif%, andfisd,, is divided by 73, to give more equal
weighting to small values of transition frequencies.

Performance Issues

N
u .
The main appeals to continued research in the applications of simulated annealing are: 1) its

lack of an underlying statistical model, 2) its ability to condition stochastic fields with information




from disparate sources, and 3) the hope that future improvement in computer performance will
eventually reduce the computional expense to levels comparable to presently faster algorithms. If
Markov structures are to be enforced in stochastic fields through simulated armealing, then the
following performance issues need to be considered:

* Scale Effects

e Complexity Effects

* Implementation Strategy
* Stopping Criteria

¢ Effect of Conditioning.

The impact of these issues on annealing of fields with Markov structures are illustrated by
examples in this section using both hypothetical and field-data derived Markov structires.

Table 1 shows four hypothetical, 3-state, first-order Markov transition matrices that are used -

in the examples. The length scale of any one state in a Markov chain can be described by any
number of measures. The thickness or duration of a state in a first-order Markov process will be
geometrically distributed with an arithmetic mean approximated by (Doveton 1994):

Pi= i, (Equation 4)

where p; is the value of the diagonal element in the ith row of transition probabilty matrix and A is
the step length in the chain. In the transition probability matrices 1A and 1B, all the values along
the diagonal are identical, implying that thcre are no differences in the _avei‘ag_e length-scales of the
bodies of each state. In Tables 1C and 1D, the vahues along the diagonals are different, implying
that the average length scales are different between the three states.

The transitions between different states in a Markov chain are encapsulated in the embedded
form of the transition proability matrix, also shown in Table 1. The embedded form is calculated
by setting the diagonal values to zero and renomalizing the off-diagonal elements by their sum. In
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the embedded form of 1A, there is no preferred transition from any state to any other, meaning
that the juxtoposition of the bodies has no structure, In the embedded form of Table 1B, there is
a preferred pattern of state-to-state tfansitions B-G-W-B-G-W..., since there is three times the
probabilty of going to state G from B than W and so on. This repetition is referred to as cyclicity.
If there is asymmetry in the cyclicity if the chaifi direction was to be reversed, the Markov chain is
said to possess the property of directionalty. The chain in Table 1B shows directionality. The
embedded form of matrix 1C is the same as 1B. The embedded form of 1D has more of a random
component because there is no preference from state W to eithet B or G.

For comparison, a first-order, five-state Markov chain derived from real field data is shown
in Table 2. The lithologic data in the transition frequency matrix come from vertical cores taken
from boreholes through a finely interbedded, glaciolacustrine sedimentary sequence at the

Gloucester landfill site near Ottawa, Ontario. The sediments aré interpréted to be deposits of

coalescent, subaqueous deltas that built out from subglacial drainage tunnels into meltwater lakes
in front of retreating glaciers. At this site, this layer acts as an aquitard or confining layer,
hydraulically separating a surficial aquifer from a deeper, saturated glacio-fluival sand aquifer

which hosts a contaminated groundwater plume (Jackson et al. 1991; Gailey and Gorelick 1995).

The iithologies were loggéd at regular intervals within each of the cores. The number of
transitions from any state to iteslf or different states along a single 2-mm step were then counted
to form the transition matrix. The results from all the boreholes were then combined under the
assumptions that the process of formation was homogenous across the drill-site and that the
boreholes were far enough from each other to represent independent samples of the process of

- deposition. In this case, a chi-squared test determined that the Markov matrix as a whole was

significantly different than a random series of events, mainly because the sediments are layered at
about a 10 to 50-cm scale and the transition frequency matrix is overwhelmingly diagonally
dominant. No significant higher order structure could be detected. The embedded Markov
structure was determined to be no different than a 'rar__idom series of events, which is consistent to
the interpretation that the sedimentary process was dominated by episodic events linked to
ice-wasting. Detailed analysis however did indicate a significant association of diamict and

~ overlying medium sand, suggesting a linked origin in the depositional system. In the final analysis,




however, the random signal associated with episodic events presumably triggered by glacial
wasting is thought to have overwhelmed the more regular, autocyclic, prodelta sedimentary
processes predicted by a simper sedimentological model of delta processes (Parks 1998).

Effect of Length Scale
Annealing fields with Markov properties on finite grids becomes increasingly difficult as the

length-scale of the bodies become large relative to the size of the grid. Figure 1 shows the
objective function trajectories for annea]mg single realizations of 3-state, first-order structure with
no embedded structure. The trajectory A corresponds to the transition probébi]ity matrix in Table
1A where the diagonal elements are 0.60. The transition probability structure was imposed
isotropically in both the x and y directions o a regular 100x100 unit field. The other trajectories
on Figure 1 represent the same matrix but where the diagonal elements have been increased to
dimension of the field (Eqn. 4). As the mean body length increases relative to the field size, more
perturbations are required to reduce the notmalized objective function to an acceptable minimum
value (in this case 1x10%). In the last case, where p;=0.90, the ratio of grid dimension to body
length is nearly 10 and the maximum number of perturbations at one temperature is exceeded
before the stopping criterion is reached.

Effects of Increasing Complexity

Annealing performance deteriorates as the Markov structure becomes increasingly complex

' ifi terms of numbers of states, the complexity in the embedded form, and difference in length-scale
distributions between states. Figure 2 shows the five objective fiinction trajectories for single,
100x100 unit realizations created from Table 1A through 1D and Table 2. Iterative improvement

was used. From the discussion above, we can see that of the five structures presented, Table 1A

has the least structure - bodies of identical length-scale distributions and no embedded structure.
Table 1B has bodies of identical length-scales bﬁt cyclicity and directionality in the embedded
structure. Table 1C has different length-scale distributions plus cyclicity and directionality

whereas 1D has more randomness than 1C. Table 2 has a greater degree of randomness in its

aE E T N ;n
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embedded form as well as has five states with different length scale-distributions. The combined
effect of increasing complexity and increasing length-scales relative to grid size increase the
number of perturbations needed to successfully anneal the field. In the case of the Gloucester
structure, the slope of the objective fimction trajectory was too shallow to reach the desired
minirmurm value of O in an acceptable rumber of perturbations.

Implementation Strategy

As documented in the references above, there are a number of variants of annealing that can
be employed to create stochastic fields. To anneal our Markov fields, we employed a strategy
whereby the random fields were seeded with the expected proportions of each state determined by
powering the transition probability matrix. Perturbations were done by swapping pairsl of grid
values selected at random. In general, iterative improvement performed acceptably well with
3-state, first-order Markov structures. As length-scales, humber of states, complicated embedded
structures etc. were incorporated, true annealing with “hill-é]imbing” tends to perform better. In

the case generating a 100x100 field for the 5-state Gloucester transition structure, neither true

annealing or iterative improvement were sufficient on their own to reduce the normalized
objective function below an acceptable threshold in an acceptable mumber of perturbations. The
objective function trajectories for two attempts are shown in Figure 3. In the case of pure
iterative improvement, the objective function trajectory bec‘omeé trapped in an unacceptable local
minimum. In the case of pure annealing alone, the objective function trajectory does not descend
quickly enough to reach the desired threshold in less than 2x10” perturbations. Post-processing
the outcome of true annéaling with iterative improvement was found to produce satisfactory

| results.

Stopping Criterion

In most applications of annealing, a very low value of normalizéd objective function is used as
the stopping criterion. The use of a very low value implies a high degree of confidence in the
value of the idealized or training measures embedded in the objective function. But in earth
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science applications, our information fronm tthe subsurface and even outcrop is often incomplete
and matching the Markov transition frequemxcies exactly may not be warranted. As mentioned in
the introduction, a chi-squared test statistic evan besused:determine if an observed Markov chain or
its embedded form are significantly diffewent fiom: a random series of events. The same
formulation can be used to determine if twen Mirkov transition matrices are difféerent from each
other at some level of statistical significancie (Peswers-and Easterling, 1982). Table 3 compares
the values of the normalized objective functimn sudtassociated numbers of perturbations needed to
anneal a single isotropic field with the structmre efTable 1C with different stopping criteria based
on the chi-squared test statistic. One can sese it} as-thie level of statistical $igniﬁc‘ance employed
in the chi-squared test decreases from 0.20 to Q8%F, it becomes increasingly easy to accept that the
annealed field is not significantly differemt fwm: the training structure with commensurate
computational savings in the form of fewerr pestrbations. Figure 4 shows the same stopping
points on a plot of the objective function trajectory.. Because iterative improvement was used in
this relatively simple example, the objectiive fimction trajectory is quite steep and the
computational savings associated with using a elii-squared test as a stopping criterion are not
‘profound. However, when the objective fumctimmbecomes less steep, the computational savings
associated with reaching a normalized objectiivefinction value in the order of 1x10° or 1x10* can
be substantial compared to the effort needed:tto wachi 2 value in the order of 1x10%.

Effeests ef €onditioning

Stochastic images generated by annealiingeznbe constrained or “conditioned” to honor field
observations simply by assigning the approypaEste grid locations the observed values and not
_perturbing t_h@m. This approach produces wmdesirable discontinuities in the vicinity of the
conditioning data. The discontinuities can bre smeothed by weighting the contribution of any part

of the global objective function involving confiffoning data heavier than non-conditioning grid

blocks (Deutsch and Cockerham, 1994). Fijgme 5-shiows an experiment wherein a 100x100 field
with the structure in Table 1C was conditiome#itosmatch data from a vertical “well” of lengths 5,
25, and 100 blocks. The values of the welf: data were obtained by sampling a different
unconditional realization with the same swructre: In:this case, a weighting of 5 was used on

I .
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transition probébilites that involved conditioning data. For the cases of wélls of lengths 5 and 25
grid blocks, true annealing reached a satisfactory threshold of the normalized objective fanction
based on a chi-squared test statistic at a 0.01 level of significance. The detail of the well around
the 25-block well shows that the field has been acceptably smoothed. We found that weights

higher than 5 degraded the annealing performance rapidly. The objective function trajectory for

the field conditioned by a 100-block well became trapped in an unacceptable local minimum
before passing the chi-squared threshold. |

CAPTURING GEOLOGICALLY MEANINGFUL STRUCTURES IN
| STOCHASTIC FIELDS WITH MARKOV STRUCTURES

The previous section demonstrated that embuing stochastic fields with Markov properties is
reasohably straightforward using simulated annealing provided that attention is paid to some key
performance issues. In this section we look at some examples of styles of stratal architecture that
can be embedded in stochastic fields by this approach. The first examples shown are hypothetical
‘but we trust they demonstrate some of the potential of applying this technique to simulation of
real rock systems. In the final example, an unconditioned stochastic image of the Gloucester
confining layer is presented to démonstrate that these ideas can be carried out with field data.

Example 1: First versus Second-Order Structure

As discussed above, Mov chains and fields can possess a higher than single order structure.
- Table 4 shows a hypothetical, three-state structure. The structure is shown in the form of three
traxisiﬁoh probability matrices. Matrix 4A shows the transition probability structure going from
location x+1 from x given that the Markov chain is in state “Black” at locaton x-t where we have

arbzin'aﬁly_ chosen =9 grid units. Likewise, Matrix 4B shows u'ansitidn matrices if the Markov

chaini is in state “Gray” at x-t and 4C shows the probabilities is the Markov chain is in state
“White” at x-t. Higher order structures are discussed in detail in Harbaugh and Bonham-Carter
'(1970). Table 4D shows the first-order Markov structure “embedded” in the second-order
- structure of Table 4A-4C. Two.100x100 fields were generated by annealing using multipoint
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~ histograms to enforce the second-order structure as well as the first-order structure of Table 4.

These two fields are shown as gray-scale images in Figure 6. Accompanying the fields are
indicator variograms for each of the three categorical states. From the gray-scale images, it
appears that the second-order Markov image has more structure than the first-order im‘aé‘e. The
second-order image appears to have move extensive areas of predominantly gray or white pixels.
The gray and white categories show strong-reduction in indicator semivariance at the lag
corresponding to the spatial wavelength of the second-order structure. These structures in the
indicator variograms are a measure of the statistical structure in the second-order Markov image
that is lacking in the first-order Markov image. |

Example 2: Directionality and Cyclicity

The concepts of directionality and cyclicity in Markov Chains were introduced above.
Directionality is common in many sednnentary depositional environments, e.g., consider
shoaling-upward sequences on carbonate banks or fining-upward sequences in channel deposits.
Directionality means there will be an up and down, or a basinward-and landward asymmetry na
bedding sequence. Cyclicity or the regular, non-random repetition of beds is also common in the
rock record. In Markov chains, cyclicity is detected by the presence of complex eigenvalues in
the transition probabiliy matrix (Schwarzacher, 1975). The hypothetical transition probability
matrix in Table SA has obvious cyclicity and has complex eigenvalues as shown. Directionality is
also evident in the embedded form - there is a distinct directionality in the off-diagonal elements
that Woul& change if the chain was run backwards. A single two-dimensional field with this

 transition matrix enforced in the vertical and horizontal directions is shown as a grayscale image in

Figure 7A.

For comparison, the directionality and cyclicity was removed in the horizontal direction by -
averaging the off-diagonal elements in the Markov structure as shown in Table 5B. Note that the
complex eigenvalues have now dlsappeared. The symmetnc structure of Table 5B was enforced
in the horizontal in the grayscale image in‘Figure 7B, leaving the vertical structure as beforé. This
example highlights the flexibity of annealing to capture hybrid structures that better accommodate



14

geological concepts of reasonmableness. There are many geological environments where
directionality and cyclicity are apparent in vertical bedding relationships but does not extend to
realtionships in the horizontal.

Example 3: Honoring Time-Spatial Relationships in Markov Representations of Strata:
Going from the Vertical to the Horizontal with Walther's Law

Doveton (199.4) revisits the common suggestion that Markov measures of vertical variability
from boreholes may be transferred to the horizontal to inform a descﬁption. of horizontal
‘variability. If Markov structures are to have a use in injecting geologic realism into stochastic
models, then this suggestion warrants further examination.

‘The geological justification for this transference comes through invocation of Walther’s Law
of Facies Succession, an operating principle of stratigraphy. According to Middleton’s translation
(1973), Walther’s Law was originally stated as follows: '

“The various deposits of the same facies areas and similarly the sum of the rocks of different
facies areas are formed beside each other in space, though in cross-section we see the_:ﬁ lying
on top of each other. As with biotopes, it is a a basic statement of far-reaching significance
that only those facies and facies areas can be stiperimposed primarily which can be observed
beside each other at the present time.”

Middleton emphasizes: ¢ Walther’s Law leads us to expect that each facies will show only certain
transitions to other facies, but it does not suggest that all of the genetically related facies can be
arranged in a single sequence, because some facies may represent alternatives at a given stage in
the development of any particular cycle”. |

This statement gives the justification for using Walther’s Law for translating vertical Markov
measures of variability to the horizontal in a probabilistic framework. Recast in Markovian terms,

one m‘igh; ,restaté Walther’s Law as follows: If the probability of any state succeeding another in
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the vertical is equal to the probability that the states developed adjacently at a given time, then the
probabilities of any state being juxtaposed horizontally should equal the probability that states are
vertically superimposed, provided the horizontal juxtaposition is coeval. The probabilistic

approach can also accommodate minor erosional breaks in a succession as a component of

- random noise (Doveton, 1994). This assumption will only work so long as the depositional

process is stationary at the scale of interest. \

If Walther’s Law of facies succession is used to justify transfer of Markov measures of vertical
variability in bedding sequences fo the horizontal, a coordinate transformatidn from vertical space
to vertical time must considered that ensures that horizontal surfaces equal time lines. The
coordinate transformation necessary to transfer vertical Markov measures to the hotizontal along
time lines is a simple rescaling of each category separately according to their relative depositional
rates. The mechanics of this rescaling (Schwarzacher, 1969) is shown in Figure 8A, where a
hypothetical three-lithology system is rescaled from transitions counted in space to equivalent
transitions in time assuming that the relative depositional rates of sandstone, shale, and limestone
are 1.0, 0.5, and 0.33, respectively. This rescaled Markov temporal structure was enforced in the
vertical direction of a 100x100 field in Figure 8B whereas ’thel horizontal structure enforced was
the original Markov spatial structure. This realization was backtransformed to vertical spatial
coordinates by post-processing in such a way as to coxhpress the limestoné and shale pixels
veitically in inverse proportion to their relative rates of deposition. Markov fields constructed in

a Walthexjian framework should conserve the sediment, time, and volumie eléments of a

- depositional system. Prior to vertical back-transformation, Markov fields could be regarded as
~ synthetic Wheeler diagrams (Wheeler, 1958).

If desired, compaction effects can be similarly incorporated. Similarly, significant gaps in the
sedimentary record due to erosion and nondeposition are accounted for as a nondepositional or -
erosive state existing through time. It is conceivable that if sufficient geochronological or
‘biostratigraﬁhic data exist to reconstruct these states, they could enter a Markov model as a
category in a mixed coordinate system that is removed in the backtransformation.
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Example 4. A Stochastic Image of the Gloucester Site Confining Layer.

Figure 9 shows the final example: a 100x100 2D stochastic image of the confining layer at the
Gloucester site. All of the structures encapsulated in the Markov transition matrix in Table 2 are
present in this image. The effort required to anneal this image was shown above in Figure 3.
Annealing this image was difficult, but not impossible, because of the number of states present,
the low ratio of grid size to mean body lengths, and the complexity of the structure. This
example demonstrates that field data can be gathered from borehole cores, translated into a
meaningfil Markov probability structure and used to inform a stochastic image of a complex
geological system by annealing in a form completely suitable for use in flow simulation.

SUMMARY

In this paper, we demonstrate how conditioned structured fields honouring Markov transition
probability structures can be generated with simulated annealing. To guide future applications of
this technique, the performance issues pertaining to scale effects, structural complexities, and

choice of stopping criteria were discussed and remedies offered, namely:

¢ Scale Effects. As categorical length scales increase relative to grid size, annealing
performance diminishes. The general remedy is to use a larger grid. |

e Complexity Effects._ As number of states, variation in categorical length scales, or
complexity in the embedded Markov chain increase, annealing performancé diminishes.
The remedy is to choose a larger grid or possibly try a combination of arinealing routines.

* - Stopping Criteria. To remedy complexity effects or to reduce computational cost, a
chi-squared test statistic can be used to evaluate if the annealed image is significantly
different than the training image at some predetermined level of confidence. This
approach can be justified when the Markov model is being estimated from incomplete
subsﬁri'nce data or is otherwise incompletely known. Incorporation of such a stopping
criterion may be also considered when Markov structures are to be blended with other
kinds of structures in an objective function.
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By incorporating Markov structures in stochastic simulation of reé,l rock systems, one can
capture more geologic realism. We show how Markov structures can capture geological
complexities in natural systems pertaining not onmly to length scales and categorical
interrelationships but also stratal achitecture pertaining to aspects of depositional process: higher
-order structures, cyclicity, and directionality. The flexibility of this approach te accomodate
geological reasoning through hybrid structures and rescaling to honor time-space relationships in
real rock systems was highlighted. An example is shown where field data taken from borehole
cores was successfully transmitted to a stochastic image by this method.
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- LIST OF TABLES

Table 1.Four hypothetical, first-order, 3-state Markov transition probability matrices and their
embedded forms used in annealing experiments in Figures 1 through 5. The state labels stand for
colors in grayscale images of annealed fields: B=black, G=gray, W=white,

Table 2. A first-order, 5-state Markov transition probability matrix and its embedded form derived
from borehole cores taken from a confining layer at the Gloucester landfill site near Ottawa,
Ontario, Canada. | "

Table 3. A comparison of final normalized objéctive function values and fiumber of perturbations
statistic for similarity between the trial image and the training structure. The trial image is a
100x100 grid with the first-order Markov structure in Table 1C. Results are shown graphically in
Figure 4. '

Table 4. A hypothetical, second-order, 3-state Markov structure (4A-4C) with the associated or
embedded first-order Markov structure (4D) for comparison. These structures are used in Figure
6.

Table 5. A hypothetical, first-order, 3-state Markov structure showing both directionality and
cyclicity (5A) and the same structure after directionality and cyclity has been removed by

~ averaging off-diagonal elements (5B). Comparison of accompanying eigenvalues shows that SA

has the complex eigenvalues diagonostic of cyclicity whereas 5B does not. These structures are
used in Figure 7.
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LIST OF FIGURES

Figure 1. Objective function trajectoties for four 3-state Markov structures with no embedded
structires and different categorical length scales.. In 1A, P;=0.60 for each state; in 1B, 0.70; in
1C, 0.8’0; in 1D, 0.90. The corresponding mean body lengths for each P; (Eqn. 4) are 1A: 1.5,
1B: 2.3, 1C: 4.0, and 1D:9.0 units. The grid size is 100x100 units. The ratios of grid size to mean
body lengths are 66.7, 42.9, 25.0, and 11.1 units, respectively. As this ratio decreases, annealing
performance dimishes.

Figure 2: Objective function trajectories (using iterative improvement) for four, 3-state Markov

structures (A-D) with increasingly complicated structures corresponding to those shown in Table -

1A-1D. The trajectory E is that for the 5-state structure for the Gloucester confining layer in
Table 2. All trajectories come from a single annealing run. Comparison of the trajectories shows
that, in general, as complexity of Markov structure increases, the angle of descent of the annealing
trajectory tends to decrease. |

Figure 3: Objective function trajectories for the 5-state Markov structure in Table 2 comparing
the annealing performance of iterative improvement (Trajectory A) to that of true annealing
post-processed with iterative im_pfovement (Trajectory B). The combined approach succeeded in
reducing the objective function value to an acceptable minimum whereas the iterative

improvement approach became trapped in an unacceptable minimum. The performance of true

- annealing alone (first segment of Trajectory B) also was unsuccessful in reducing the objective

_ function to an acceptable minimum within a tolerable number of perturbations.

Figure 4: Stopping points from Table 3 placed on the objective function trajectory (iterative

improvement used).

 Figure 5: Effect of conditioning on annealing performance. Trajectories on left show annealing

performance when a 100x100 3-state field is conditioned to honor a vertical well of length A) 5
units, B) 25 units, and C) 100 units. True annealing was used. Stopping criterion is when the
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calculated chi-squared test statistic fell below13.2, corresponding to a level of significance 0f 0.01
and 5 degrees of freedom. Run C became trapped in a local minimum before satisfying the
stopping criterion. The weighting on the conditioning pairs was set to 5.0. The field on the right

shows detail of field B in the vicinity of the conditioning well (dutline). The underlying Markov
structure is that in Table 1C. '

Figure 6. Comparison of first and second-order, 3-state Markov fields as shown in Table 4.
Comparative indicator variograms (I(h)) are shown for each state. The gray and white states
show a strong reduction in indicator semivariance at the lag corresponding to the spatial
wavelength of the sécond-order structure.

Figure 7. Comparison of detail from two 100x100 unit fields honoring the first-order, 3-state
Markov structures in Table 5. In field A, the directionality and cyclity of Table 5A is enforced in
both the vertical and the horizontal. Field B is a hybrid field, combing the structure of Table SA
in the vertical and that of 5B (no directionality or cyclity) in the horizontal.

Figure 8. IHustration of conversion of a 3-state Markov field from spatial coordinates to
equivalent temporal coordinates and back using relative rates of depostion to rescale vertical
categorical length scales. The top field is generated in mixed time-space coordinates with time in

the vertical. The bottom field is the same but back-transformed to pure spatial coordinates.

Black represents unfilled space.

Figure 9: Unconditional panel reproduction of the Gloucester confining layer generated from

 field-data derived, 5-state, first-order Markov structure shown in Table 2. The field was

generated by the combined approach shown in Figure 3.



TABLE 1

PO B G W PO B G W

B | 0.60 020 020 B | 000 050 0.50
G | 020 060 020 G | 050 000 050
w | 020 020 060 w | 050 050 000
A3 states, all same length scale, no embedded structure

PAE B G W PAOI B G W
B 0.60 030 0.10 B {000 075 025
G Io.xo 0.60 030 G | 025 000 075

.~ W | 030 0.10 060 W | 075 025 0.00

Fi} Transition Matrix Embedded Matrix
B. 3 states, all same length scale, embedded structure with
preferred cyclicty of B-G-W-B-G-W...

P B G W PIE B G W
B | 0.60 030 Q.10 B | 000 075 025
G | 0075070 0225 G | 025 000 075
W | 0.I5 005 0.80 w | 075 025 000

Full Transition Matrix Enibedded Matrix

C. 3 states with different length scales but same embedded structure as B.

PO B G W POl B G W
B 060 030 0.10 B | 000 075 025
G {010 070 020 G | 067 000 033
w [ 010 010 080 w 0,50 0.50 0.00

Full Transitich Matix Embedded Matrix

D. 3 states with same length scales as C but more complex embedded
. . structure.




TABLE 2

Med. Fine

Rt Sand Sand Silt Clay Diamict

Med.Sand | 0.8965 ~ 00460 00345 00115 00115
Fine Sand | 00048 0.8350 00271 0.1133 0.0197
Silt 00290  0.0880 0.7971 0.1014 0.0145
Clay 0.0013 0.0583 0.0265 0.9007 0.0132
Diamict 0.0253. 0.0633 0.0000 0.0506 - 0.8608

S-state lithofacies transition matrix associated with aquitard bedding

derived from vertical core data from Gloucester Landfill sits, Ontario,

Med. Fine R
P Sand Sand sttt Clay Diamict
Med.Sand | 00000 . 04444 03333 0.1 o.1111
Fine Sand | 00297 00000  0.1642 0687 01194
silt 01420 02859 00000 04998  0.0715
Clay 0.0131 0.5871 02669 00000  0.1329
Diamict 0.1818 04547 00000 03635  0.0000
S-state embedded transition matrix asspciated with aqiiitard beddiog in
cores from the Gloucester Landfill site; Oritario, Canada.




TABLE 3

Normalized
SwppiagCriera Qe e

Qz’.c‘i’-"’:';’%z';f_‘gf)f“‘_  |ossos0s| sesas
L <Xey=59%a=020,v=4 [0830c04| 88663
<X = 178G =0.10,v=4 0.108e:03| 87639
Tia<Ar=94%: @=0.05,v=4 [0.132¢-03| 86809
<o = 11.14:0.= 0,025, v=40.154-03 86233
Yt = 13.28: = 0.01,v=4 | 0.1885-03 85455

" a=level of significance p= degrees of freedom




TABLE 4

B ¢ w B G W
B | 0.85 00750075 B | 065 0.1750.17
G ‘ 0.0750.85 o.o75| G j 020 055 025
W1 0.0750.0750.85 w1020 055 025

A. PK)JI=B) B. PK)JII=G)

B G W B G W
B | 060 020 020 B | 0.80 0.10 010
G '0.3_5 025 040 ‘ G ‘021 0.50 029'
W | 025 025 050 W [ 023 025 052

C. PE)I=W) D. PO




TABLE 5

KR B G W
B lQ_ﬁO 0.37 0.03

G
w

Lo
Eigenvalues: 0.4+,294j‘
0.4-294i

0.03 060 037
0.37 003 060

POI B G W
B | 060 020 020
G ‘ 020 060 0.20
W | 020 020 0.60

1.00

Eigenvalues: | 0.40

0.40

!
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FIGURE 7



FIGURE 8

sandstone  shale hmmne sandstone shale limestone
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(dark gray) ’ P
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limestone | 16 121 0.02 0.18 0.80
(white) ~
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