

Treatability Study of the Graces

TD 226 N87 no. 99-224

19

2. . . .

Treatability Study of the Graces Quarters Contaminated Aquifer Using Vitamin BIZ-Catalyzed Reductive Dechlorinatized Part I. Microcosms

S. Lesage, K. Millar, S. Brown, H. Steer

NWRI Contribution No: 99-224

Treatability study of the Graces Quarters Contaminated Aquifer using Vitamin B12-Catalyzed Reductive Dechlorination Part 1: Microcosms

Final Report

April 10, 1999.

NWRI Cont # 99-224

Prepared by:

Suzanne Lesage, Ph.D., Kelly R. Millar, M.Sc., Susan J. Brown, B.Sc., Helena Steer, B.Sc.

National Water Research Institute, 867 Lakeshore Rd., Burlington, Ontario L7R 4A6 Canada

For:

Dames & Moore Inc 849 International Drive, Suite 320 Linthicum, MD 21090

MANAGEMENT PERSPECTIVE

Title:

Treatability Study of the Graces Quarters Contaminated Aquifer using Vitamin B12-Catalyzed Reductive Dechlorination. Part 1: Microcosms.

Author(s):

S. Lesage, K. Millar, S. Brown, and H. Steer

NWRI Publication #:

Citation:

Report to Dames and Moore subcontract number BAL-S-0198-0121 on U.S. DOE contract DEAC05-84OR21400

EC Priority/Issue:

This work is being conducted under the "Clean Environment" issue. The paper presents the results of a contract obtained from the U.S. Department of Energy through Dames and Moore Inc. to conduct a treatability study for groundwater at from Graces Quarters, Aberdeen Proving Ground, a U.S. Military research facility in Maryland. This contract was obtained to test the vitamin B12 technology for the remediation chlorinated compounds, for which a patent was received last year.

Current Status:

The microcosms study is complete. It was followed by a column test which is a separate report.

Next Steps:

This work was conducted as part of a larger feasibility study to evaluate all existing technologies at the site. The results were very positive and the technology has been selected for a pilot scale study to be conducted at the site. The project, which is in the planning stage, will be conducted by Dames and Moore, with our technical advice.

ABSTRACT

The use of vitamin B12 reduced by titanium (III) citrate for the reductive dechlorination of chlorinated aliphatic hydrocarbons has been the subject of numerous microcosm studies, many suggesting possible *in situ* field applications. However, most of the work has been conducted in the aqueous phase with carbon tetrachloride or tetrachoroethene. This paper describes a laboratory treatability study consisting of eight treatment conditions conducted with aquifer material and contaminated site groundwater from Graces Quarters, Aberdeen Proving Ground, MD. The purpose of the study was to look at the effect of combining the use of vitamin B12 and titanium citrate with various carbon sources to evaluate the combination of chemical and biological treatments. The site groundwater is contaminated with a mixture of 1,1,2,2-tetrachloroethane, carbon tetrachloride, chloroform, tetrachloroethene.

The eight treatment conditions evaluated were: (1) vitamin B12 (10 mg/L), titanium citrate, and glucose; (2) titanium citrate and glucose; (3) titanium citrate and yeast extract; (4) γ -irradiated sterile control with vitamin B12 (10 mg/l), titanium citrate, and glucose; (5) glucose only; (6) vitamin B12 (10 mg/l), titanium citrate and glucose, with yeast extract added after 2 days; (7) an alternate chelating agent and vitamin B12; and (8) vitamin B12, titanium citrate, and yeast extract.

Each treatment combination was conducted using site aquifer material and highly contaminated groundwater ($2000 - 4000 \mu g/L$) or less contaminated groundwater ($<1,000 \mu g/L$). Each was run in triplicate, for a total of six active microcosms per treatment condition. In addition, two microcosms consisting of aquifer material and highly or less-contaminated groundwater (with nothing else added) were used as controls for each microcosm condition. In addition to monitoring for the chlorinated hydrocarbons, the microcosms were monitored for titanium, methane, ethane, ethene, acetylene, glucose, citrate, lactate, acetate, and propionate.

This series of experiments showed that the vitamin B12/titanium citrate reaction was effective in treating all the compounds initially present in the site groundwater. When vitamin B12 was present, chlorinated alkanes were fully degraded within 5 minutes, whereas the half-life for tetrachloroethene was 33 minutes. The final products of the 1,1,2,2-tetrachloroethane degradation were *cis*- and *trans*-DCE, which remained above their maximum acceptable concentration after 28 days. Some vinyl chloride was formed, but did not persist. First order reaction rate constants were not dependant upon contaminant concentration. The addition of titanium citrate alone, without vitamin B12, did degrade the chlorinated methanes and ethanes (but not the ethenes), but at a much reduced rate. The γ -irradiated control showed that most of the dechlorination observed was abiotic; however, vinyl chloride degraded more rapidly in the non-sterilized microcosms. In the treatment containing glucose only, carbon tetrachloride was dechlorinated to chloroform, but no other reaction was observed. This means that the addition of a carbon source alone would not be sufficient to induce bacterial populations capable of degrading all the contaminants. The degradation of glucose under these anerobic conditions produced large amounts of CO₂, which contributed to the removal of some of the chlorinated products. List of abbreviations

B12	Vitamin B12	
DCE	dichloroethene	
DCM	dichloromethane	
DUP	duplicate	
ECD	electron capture detector	
FID	flame ionization detector	
GC/MS	gas chromatography/mass spectrometry	
L	liter	
MDL	method detection limit	
mM	millimolar	
PERC	perchloroethylene or tetrachloroethene	
ppm	parts-per-million	
PQL	practical quantitation limit	
TCD	thermal conductivity detector	
TCE	trichloroethene	
TeCA	1,1,2,2-tetrachloroethane	
μg	microgram	
VC	vinyl chloride	
VFA	volatile fatty acid	

Table of Contents	
i. List of Figures	4
ii. List of Tables	4
I. Introduction	
II. Methods	
III. Results	10
1. Preliminary experiments	10
2. Microcosm 1 (titanium citrate, 10 mg/L vitamin B12 and glucose)	10
3. Microcosm 2 (titanium citrate and glucose)	17
4. Microcosm 3 (titanium citrate and yeast extract)	21
5. Microcosm 4 (y- irradiated soil -vitamin B12, titanium citrate and glucose)	24
6. Microcosm 5 (glucose)	27
7. Microcosm 6 (vitamin B12, titanium citrate and glucose, yeast extract added after 2 days)	30
8. Microcosm 7 (vitamin B12, new titanium chelate)	32
9. Microcosm 8 (Titanium citrate, yeast extract, vitaniin B12)	35
10. Post-microcosm reactions	38
IV. Conclusions	39
V. References	40
VI. Appendix A	41

i. List of Figures

Figure 1	Reactions pathways for the reaction of the site		
	contaminants with vitamin B12 and titanium citrate	7	
Figure 2	Summary of results, Microcosm 1a	12-13	
Figure 3	Average glucose and citrate concentrations for the Q52	·	
	and Q14 microcosms	14	
Figure 4	Volatile fatty acids (averages, full data sets in Appendix 1)		
Figure 5	Microcosms 1a. Beginning and after 28 days. The small		
	bottle is the supernatant of F that exploded.	17	
Figure 6	Summary of results, Microcosm 2		
Figure 7	Summary of results, Microcosm 3	22-23	
Figure 8	Summary of results, Microcosm 4	25-26	
Figure 9	Summary of results, Microcosm 5	28-29	
Figure 10	Summary of results, Microcosm 6	31	
Figure 11	Summary of results, Microcosm 7	33-34	
Figure 12	Summary of results, Microcosm 8	36-37	

ii. List of Tables

Table 1	Experimental Design – Microcosms	. 9

Page

I. Introduction

This report summarizes the results that were obtained by conducting a series of microcosms for the treatment of groundwater from the Graces Quarter area at Aberdeen Proving Grounds. The use of vitamin B12 as part of an integrated chemical/biological treatment train was being envisaged because of the suitability of the contaminants at the site for the vitamin B12- catalyzed reaction.

In this project, combinations of chemical and biological treatments were conducted in microcosms containing contaminated water from two areas at the site, representing high (Q14) and low (Q52) concentrations of contaminants, in the presence of aquifer material from a single source at the site.

The experimental design was developed in collaboration with the supervising group. The purpose of the different treatments was to establish the rate of reaction of the different contaminants with titanium citrate with and without vitamin B12 and in combination with carbon sources to determine the possibility of natural attenuation after the chemical treatment.

In the vitamin B12/titanium citrate process, vitamin B12 is a catalyst, meaning that it enhances the reaction, but is not consumed by it. The titanium (III) citrate, on the other hand, provides the electrons for the reduction of the chlorinated compounds. It is therefore consumed and must be replenished. We have developed an alternative technique for field use based on titanium metal (Lesage et al., 1997). This method was used throughout the experiment.

The principal contaminants in the site water are: 1,1,2,2-tetrachloroethane (TeCA), carbon tetrachloride, chloroform, tetrachloroethene (PERC) and trichloroethene (TCE). The vitamin B12 reaction produces sequential reductive dechlorination of all of these compounds. A schematic diagram of the degradation pathways is shown on Figure 1.

Reductive dechlorination may be caused by titanium citrate alone or be catalysed by vitamin B12. The ease of dechlorination is governed by the oxidation state of the carbon. Therefore carbon tetrachloride is the most reactive, followed by chloroform and TeCA. All of these compounds can be dechlorinated by reduced titanium only, but the rate of reaction is enhanced by the presence of B12. The ethenes are much less reactive and require the presence of vitamin B12. The rate of reaction also decreases with the degree of chlorination. Because the reaction medium is buffered to pH 8, some base-catalyzed elimination of HCl may occur with the chloroethanes.

This unique combination of contaminants makes the site an ideal candidate for remediation using an integrated chemical/biological approach based on the use of vitamin B12. In the proposed scenario, the vitamin B12/titanium citrate would be injected in the zones of high contamination to reduce the concentration of the chlorinated solvents to a level that could be tolerated by bacteria. A carbon source is included in the treatment such that bacteria will be able to proliferate down gradient. The vitamin B12 treatment has been shown to be non-toxic and compatible with the growth of anaerobic bacteria (Lesage et al., 1996). This integrated approach is expected to reduce the cost of treating a plume.

6

C:\my documents\B12\microcosm final report.doc

S. Lesage NWRI

04/09/99

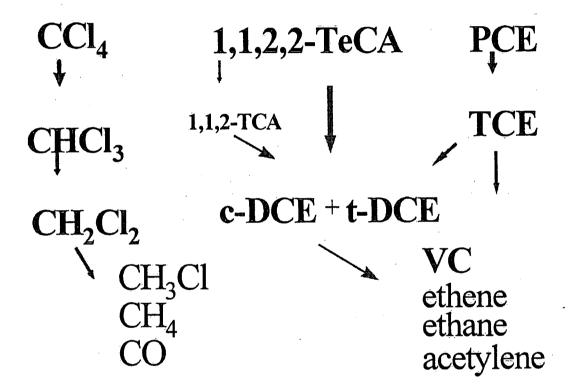


Figure 1: Reactions pathways for the reaction of the site contaminants with vitamin B12 and titanium citrate.

7

C:\my documents\B12\microcosm final report.doc

04/09/99

II. Methods

The experimental methods are described in details in the Work Plan and will only be summarized here.

The microcosms were conducted in sealed 160 mL serum bottles containing 100 g of aquifer material from the site and 100 mL of site water. The bottles were incubated inverted at room temperature. Each treatment was carried out in triplicate with Q52 (low) and Q14 (high) site water, except for M7 and M8 where only low site water was used. In addition, because the site water samples had not been composited and there was potential for variability between bottles, two references containing water from the same bottles as the treatment, but no reagents, were setup as on-going controls.

The eight treatments used, their purpose and the monitoring schedule are listed in Table 1.

All the microcosms were monitored using an SRI GC equipped with dual columns leading to an electron capture detector (ECD) and a TCD/FID in series. This instrument was used to monitor the headspace of the microcosms for all the chlorinated volatile compounds and their known degradation products, except CO. Small liquid samples were withdrawn to analyze for citrate and the volatile fatty acids that are known biological degradation products of glucose and citrate. Glucose itself was tested using an EncoreTM glucometer.

C:\my documents\B12\microcosm final report.doc 04/09/99

8

Table 1: Experimental design- Microcosms.

Treatment (Each at 2 substrate concentrations)	Purpose	Chemical Analyses and Schedule
1.vitamin B12 (10 mg/L) with titanium citrate and glucose	optimal treatment	Days : 0, 1, 3, 7, 15, 30
2. titanium citrate and glucose	control for reducing conditions	Days : 0, 1, 7, 19, 29
3. titanium citrate and yeast extract	to promote methanogens	Days: 0, 1, 4, 16, 28
 γ-irradiated with vitamin B12, titanium citrate and glucose 	abiotic control	Days: 0, 1, 3, 7, 16, 28
5. glucose	Biologically active control	Days: 0, 5, 14, 27, 48
6. vitamin B12 (10 mg/L) with titanium citrate and glucose. Yeast extract after 2 days.	to establish a methanogenic population after TeCA has been reduced by B12	Days: 0, 1, 2, 6, 14, 29
7. Alternate chelator with vitamin B12	- hopefully not as easily biodegraded as citrate	Days: 0, 1, 3, 7, 15, 28
8. vitamin B12 (10 mg/L) with titanium citrate and yeast extract	similar to 3, but with vitamin B12 - again to promote methanogens	Days: 0, 1, 3, 7, 15, 28

9

C:\my documents\B12\microcosm final report.doc

04/09/99

III. Results

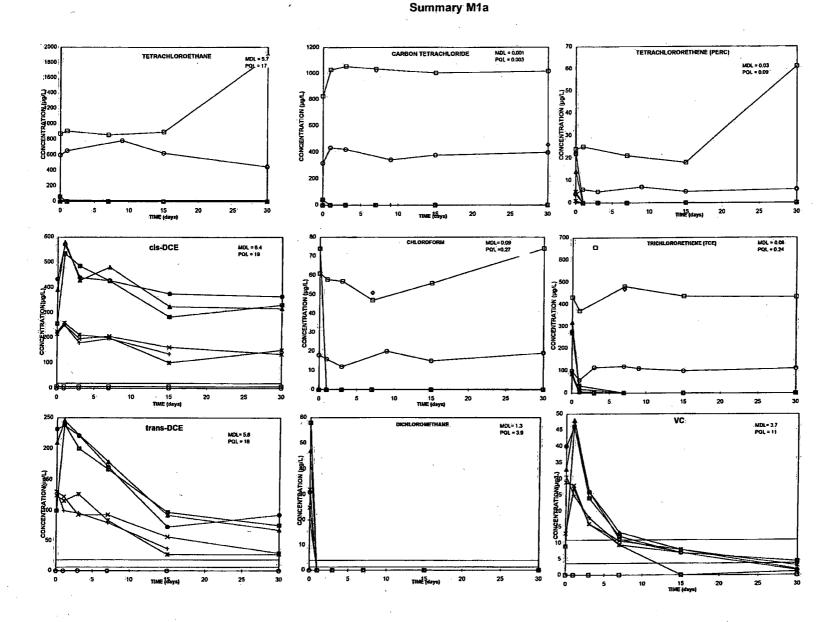
1. Preliminary experiments

Before beginning the actual experiments, it was necessary to establish the amount of titanium necessary for the reduction of the aquifer solids. Based on experience elsewhere, three rinses with a concentrated titanium citrate solution had been sufficient. Also, no data existed on the effect of titanium citrate alone on carbon tetrachloride and TeCA. It was therefore necessary to establish the effect of the treatment on site water alone.

It was found that only measuring the Eh was not sufficient to evaluate the long term viability of the treatment. Instead, the amount of iron (as Fe⁺²) was found to be a more useful indicator of the redox status of the aquifer material. The measurement was done using colorimetric test strips. The aquifer material was judged as being sufficiently reduced when the supernatant contained less than 50 ppm Fe. This required six rinses with 30 mM Titanium (III) citrate on average. Based on the very high reducible Fe content of the aquifer material, a full scale system where all the aquifer material would have to be reduced would be cost prohibitive. Nonetheless, the experiments were still carried out with the planned amounts of solids, because combined chemical/biological treatment scenarios were to be evaluated.

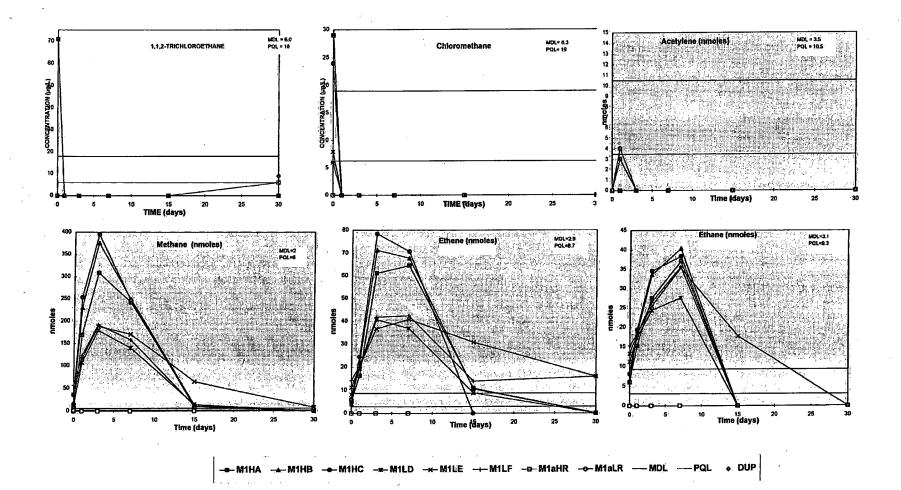
2. Microcosm 1 (titanium citrate, 10 mg/L vitamin B12 and glucose)

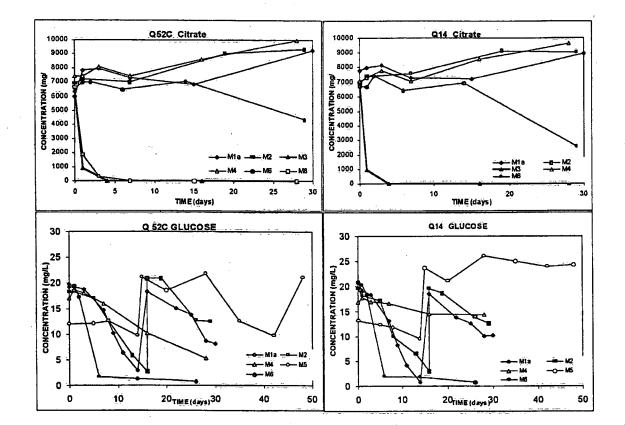
The purpose of microcosm 1 was to see the effect on the site water of the vitamin B12/titanium citrate using conditions that had been found optimal for the degradation of PERC. The results obtained are to be used in the design of the column experiments. The results are summarized in graph in Figure 2, and the complete results are shown in Appendix A. Within one day, all the tetrachloroethane (TeCA), carbon tetrachloride and tetrachloroethylene (PERC), were below detection limit. Some chloroform, dichloromethane and chloromethane were apparent on day 0, but had disappeared by

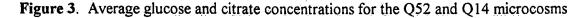

C:\my documents\B12\microcosm final report.doc 04/09/99 day 1. Trichloroethylene also decreased significantly by day 1 and was below detection limit by day 3. The products of transformation appearing within the first 3 days, *cis* and *trans*-DCE, vinyl chloride (VC), ethane and ethene can account for all the TeCA and PERC and TCE transformed within experimental error (400 from 450 nmoles for the low site water). For the high site water, approximately 1000 nmoles of product were obtained from 1400 nmoles (sum of TeCA, PCE and TCE). No significant amounts of 1,1,2-trichloroethane and chloroethane were found.

The half-lives for TeCA and carbon tetrachloride cannot be calculated because more than 90% was degraded at the first measurement. It is therefore estimated to be less than 5 minutes, the time usually taken for mixing and equilibration after the addition of vitamin B12. The half-lives for PERC was calculated using first order kinetics to be 33 min for the low and 57 min for the high level water. For TCE it was 5.6 hours and 6.2 hours for the low and high water respectively. This implies that in an *in-situ* well application most of the initial reaction would occurs in the well, before recirculation into the surrounding aquifer.

After seven days, the gas pressure increased significantly within the microcosms because of the formation of CO_2 , a product of glucose biodegradation. It was necessary to vent the microcosms to take accurate headspace measurements. The amount of gas removed was recorded and used in the calculations. The graphs show the results in total number of moles per bottle. The results were calculated using the ideal gas law and the measured volume. Because the amount of gas removed was often as large as the volume of headspace remaining, this caused a depletion of the gases, most of which could not be detected after 15 days. This also had an effect on the remaining chlorinated compounds.


A predicted value could be calculated based on the volume of gas removed and the Ostwald coefficient. Most of the reduction in contaminant concentration could be accounted for by these calculation. Confirmation of this was expected from the sterile control (see Microcosm 4 below).


11



---MIHA ---MIHB ---MIHC ---MILD ---MILE --- MILF ---MIAHR --- MIALR --- MDL --- PQL . DUP

Summary M1a

The biological activity in the microcosms was monitored by analyzing for glucose, citrate (Figure 3) and the volatile fatty acids (Figure 4). Formate and acetate were produced immediately, however glucose levels did not decrease significantly until day 7. These products probably arise from the other sugars present in the commercial glucose used. Invertose is actually a high fructose corn syrup that contains glucose, fructose, and other higher saccharides, which are not measurable by the glucose meter. Lactate appeared after the supplementation at day 15, when glucose became seriously depleted (from 20 to <1 mM). Microcosm M1aLF exploded due to a hairline crack in the neck of the vial and pressure build up sometime between days 18 and 21, however some of the

14

C:\my documents\B12\microcosm final report.doc

04/09/99

supernatant was saved and transferred to a 60-mL serum vial for continuous monitoring. Lactate, a common glucose metabolite, was measurable by day 19 and, along with formate and acetate, continued to increase over the 30 day monitoring period. Small amounts of propionate and butyrate, generally less than PQL, were measurable by the end of the analyses. The production of acid metabolites was accompanied by a drop in pH from 8.0 to a final pH of 5.5 on day 30. Because the methane concentrations were low and could be accounted for by the abiotic degradation of carbon tetrachloride during the first two days, it was concluded that no methanogenic bacteria were present A picture of the microcosms (Figure 5) at the beginning and after 28 days of incubation show the color changes that accompany the redox status of the microcosms.

At the end of the experiment, a GC/MS analysis was conducted to confirm the absence of TeCA and the quantity of VC left. The TeCA was below 1 μ g/L whereas the concentration of vinyl chloride varied from 1.1 to 4.3 μ g/L (full results in Appendix A). The GC/MS analysis also revealed the presence of several metabolites of glucose (heterofermentative pathways): acetaldehyde, ethanol, acetone, butanol and three esters of butanoic acid (ethyl, propyl and butyl). These peaks were probably the cause of the large unknown peaks seen in the FID. There was also some butene, a compound that has been observed as a product of the B12 reduction of PERC and TCE.

In summary then, the vitamin B12 with titanium citrate converted carbon tetrachloride completely to non-chlorinated products. TeCA, PERC and TCE were mostly converted to *cis* and *trans*-DCE, with some VC, ethene and ethane.

C:\my documents\B12\microcosm final report.doc

04/09/99

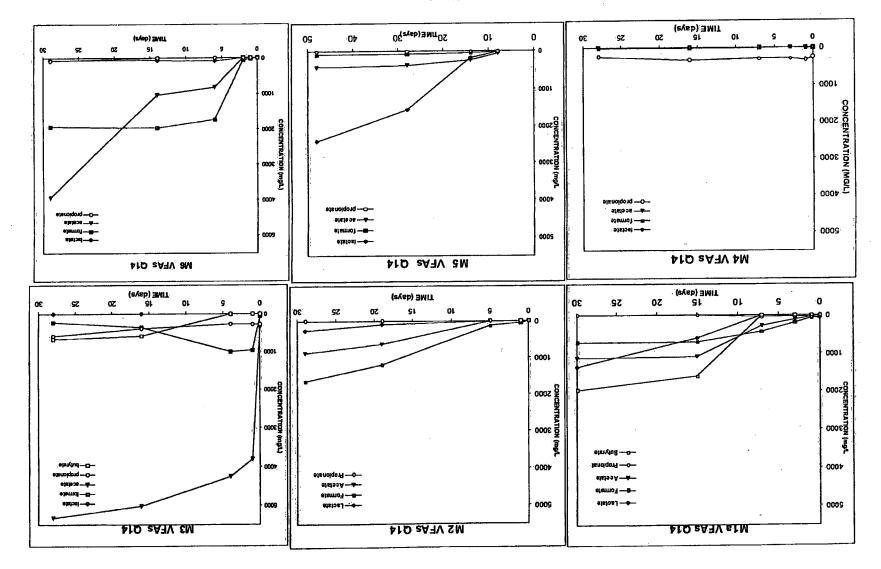
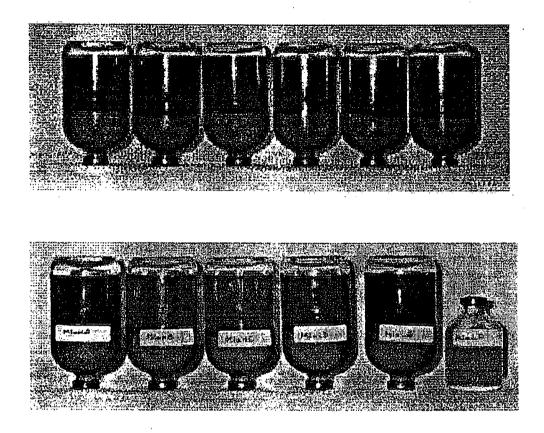


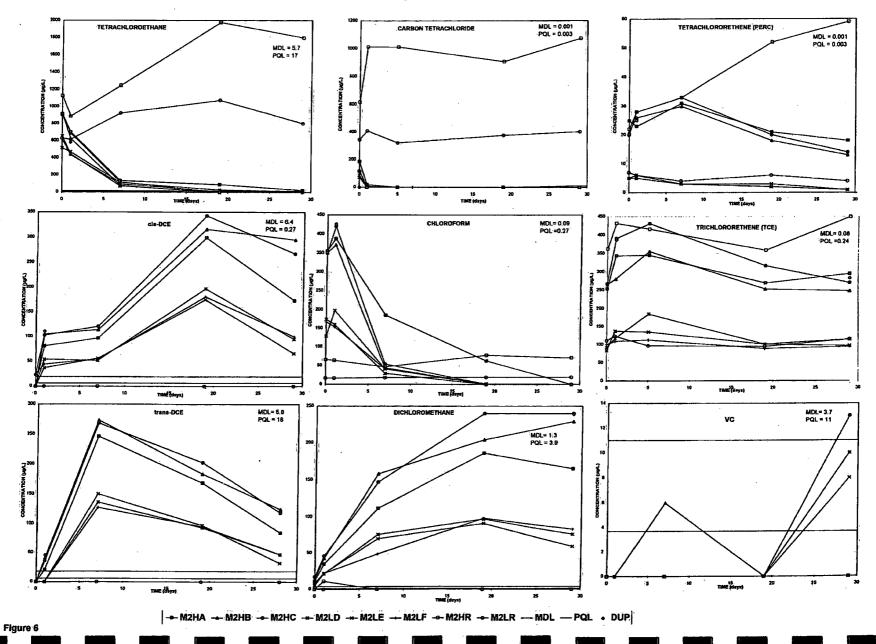
Figure 4. Volatile fatty acids (averages, full data sets in Appendix 1)

NMKI S. Lesage

91

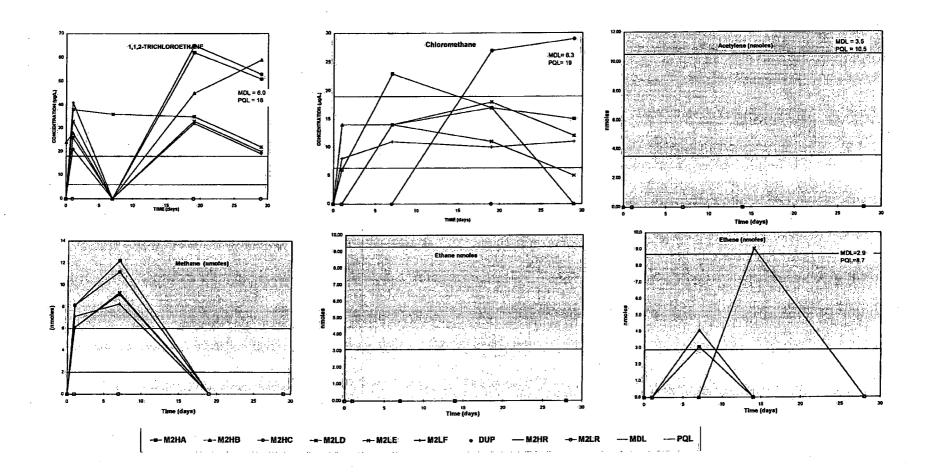
C/my documents/B12/microcosm final report doc




Figure 5. Microcosms 1a. Beginning and after 28 days. The small bottle is the supernatant of F that exploded.

3. *Microcosm 2 (titanium citrate and glucose)*

The purpose of microcosm 2 was to measure the effect of the reducing solution alone, without vitamin B12 being present. Glucose was added to prevent citrate utilization by bacteria.


A summary of the results is shown on Figure 6. Carbon tetrachloride was degraded within one day to chloroform which in turn was dechlorinated to DCM. However, in the absence of B12, DCM persisted for the 28 days of the study. TeCA was also degraded with the concurrent formation of *cis*- and *trans*-DCE, but at a much lower rate than in the

C:\my documents\B12\microcosm final report.doc

Summary Microcosm 2

Summary Microcosm 2

presence of B12 (half-life of 2.3 ± 0.3 days for the high level water and 2.6 ± 0.4 days for the low level). TeCA was transformed to *cis* and *trans*-DCE and 1,1,2-trichloroethane. Many analytical problems were experienced around day 7, which means that the accuracy of the data points on that day are less than for the rest. Nonetheless, the trends remained the same after that period.

There were very little observed losses of PERC and TCE throughout the incubation period and the losses that were, could potentially be attributed to venting. Indeed, similar to what had been observed for M1, glucose was degraded to CO_2 which had to be vented. This effect is very evident for methane, and somewhat less dramatic for the chlorinated compounds. There was very little vinyl chloride, ethene or ethane produced, supporting the fact that there was in fact no degradation of the chlorinated ethenes.

Glucose consumption (Figure 3) was comparable to M1a however there were generally lower amounts of VFAs produced, except for formate which was generated in concentrations double those found in the M1a series (Figure 4). Acetate production, on the other hand, was delayed and not detected until day 19. Lactate concentrations were lower than in M1a, and propionate and butyrate were not detected in the 29 day incubation period. As a result of the lower concentration of acids produced, the pH decreased a final pH of 6.4 as compared to 5.5 in M1a. CO₂ production was much lower in M2 microcosms with an average volume of 55 mL of gas vented from M2 vials as compared to 293 mL vented from M1a microcosms. One significant difference between M1a and M2 microcosms, apart from the vitamin B_{12} addition, was the amount of titanium added. M1a microcosms contained an average of 20 mM titanium, while M2 and all subsequent microcosms had 30 mM titanium added. Although the reducing solution was prepared in the same manner for all of the microcosms, it is possible that in the particular batch used for microcosm M1a, the oxalate had a shorter reaction time with the titanium metal. To prevent further inconsistencies in future batches, the exact concentration of titanium oxalate was measured prior to preparing the microcosms. Increased concentrations of titanium in M2 microcosms may have had an inhibitory effect on the

C:\my documents\B12\microcosm final report.doc

20

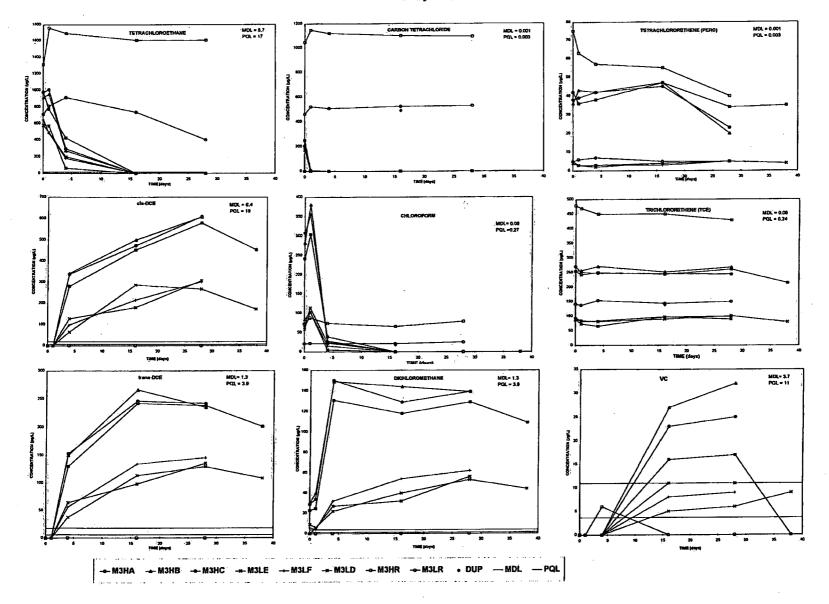
04/09/99

indigenous microorganisms hence lower CO₂ production and decreased concentrations of acid metabolites.

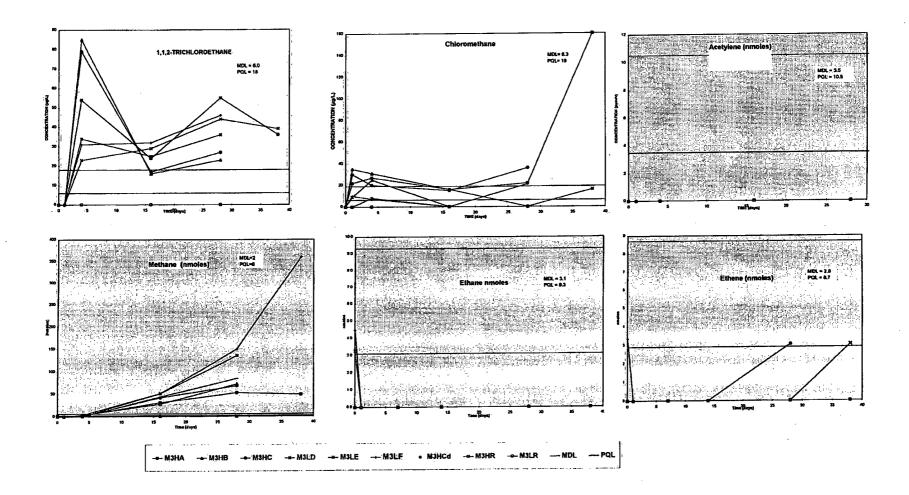
In summary then, the presence of vitamin B12 was essential to achieve the degradation of chlorinated ethenes and to the complete degradation of carbon tetrachloride.

4. Microcosm 3 (titanium citrate and yeast extract)

The purpose of microcosm 3 was to create favorable conditions for anaerobic methanogenic bacteria which are known to be able to dechlorinate ethenes and ethanes. It was also useful as a comparison to M2, because there was no glucose added, and therefore no large amount of CO_2 present to create a sparging effect. However, because there was no glucose, titanium citrate was rapidly used by the bacteria present. Therefore any reduction reaction had to occur within the first four days. Afterward, any further transformation would be more likely the product of biological activity.


The results are summarized on Figure 7. The rate of degradation of TeCA was similar to M2 (half-lives 2.4 ± 0.6 days for the high concentration and 1.7 ± 0.8 , for the low concentration site water). Similarly all the carbon tetrachloride was transformed to chloroform within 1 day and to dichloromethane within the following sampling. Dichloromethane was not degraded further. Cis and trans-DCE appeared concurrently and this coincided almost exactly with the disappearance of TeCA. The production of vinyl chloride was only evident after 15 days. There was no degradation of TCE, but some PERC was lost in the high level microcosms after 15 days.

As predicted, without glucose amendments, citrate was degraded rapidly to less than PQL by day 1 (Figure 3). CO_2 generation was strong until citrate was completely utilized and then was negligible for the remainder of the monitoring period. The pH was relatively stable, between 7 and 8, over the course of monitoring.


21

04/09/99

Summary Microcosm 3

Summary Microcosm 3

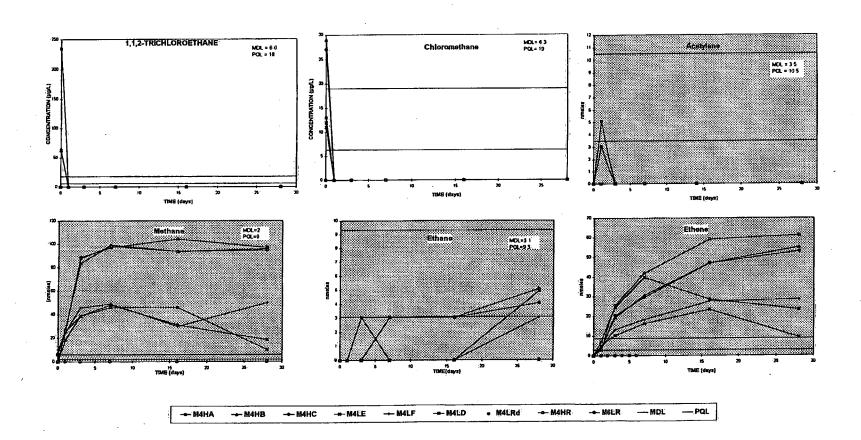
Because the amount of methane was still increasing after 28 days, the microcosms were kept intact and monitored after 38 days. More methane was present than in any of the other treatments. It is therefore apparent that a methanogenic population was being established. Although the concentration of *cis* and *trans*-DCE started to decrease, the rate of dechlorination was not very rapid.

In summary, methanogenic conditions were not obtained as rapidly as hoped and therefore biological degradation did not occur even within an extended period. This led to residual concentrations of dichloromethane, PCE, TCE and vinyl chloride.

5. Microcosm 4 (y- irradiated soil -vitamin B12, titanium citrate and glucose)


The purpose of microcosm 4 was to be able to differentiate between the chemical and biological components of the dechlorination reaction and to provide an environment where no CO_2 would be produced and therefore where losses to the gas phase would be minimal. A preliminary sample of soil, site water and reagents was sent to the irradiation facility at McMaster University (Hamilton, Ontario) to see the effect of irradiation alone. While there were no visible changes in the soil and in any of the dry chemicals, the irradiation completely destroyed all the contaminants in site water. Alternatives such as sterilizing the site water and respiking contaminants, or irradiating the soil but filtering the site water were considered. The latter method was retained.

The soil was rinsed four times with titanium citrate in Milli-Q water before it was sent to the facility. When the sterilized reagents returned, they were used to make up titanium citrate in site water that was filtered through a $0.2 \mu m$ filter. All transfers were made in a laminar flow hood. In addition, to prevent contamination during sampling and GC analyses, the syringe needles were rinsed in pure ethanol.


The results (Figure 8) in the first few days were very similar to those in M1a, that is the degradation of TeCA, carbon tetrachloride and PERC all occurred within the first

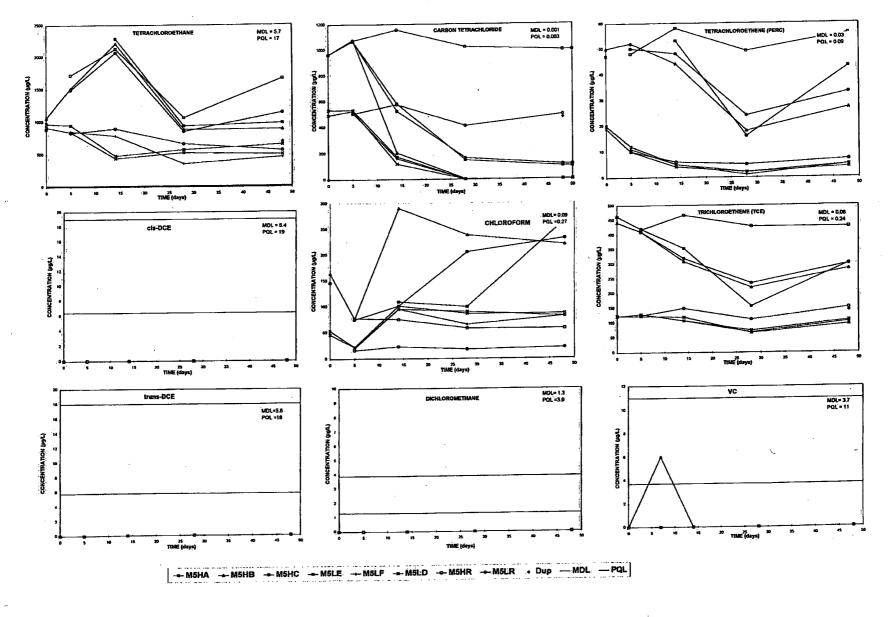
C:/my documents/B12/microcosm final report.doc

04/09/99

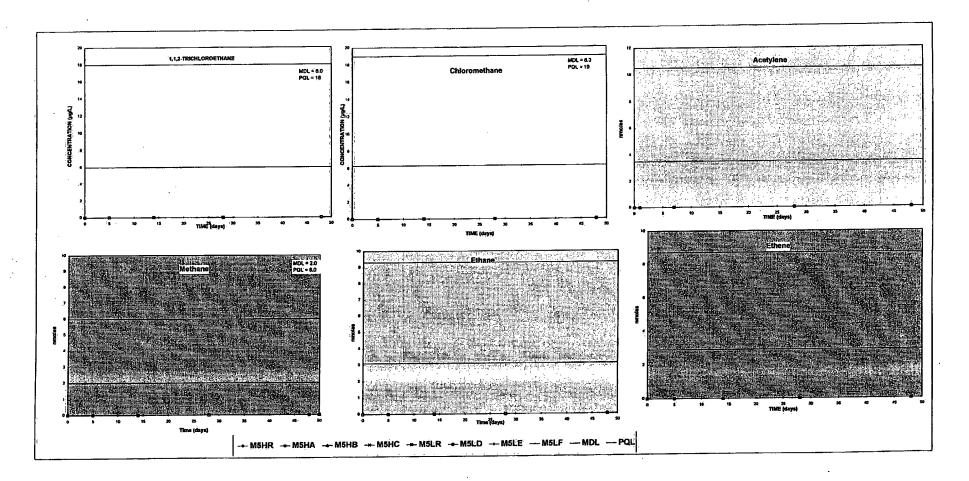
Summary M4

few hours. Measurable half-lives were obtained for carbon tetrachloride high only (21 min), PERC (high, 4 hours; low, 15 min) and TCE (high, 8 hours; low, 11.5 hours). After two days, the only chlorinated products present were *cis* and *trans*-DCE and vinyl chloride. During the whole period, there was no degradation of *trans*-DCE, a little of cis and slightly more of vinyl chloride. The apparent low results for cis-DCE of the M4HA bottle seems to be an analytical anomaly, because, as can be seen in the tabulated results, the concentrations calculated on the FID were closer to those of the two other high replicates. Similarly, the methane and ethene formed remained stable once formed, except for D and E after 7 and 15 days respectively.

No losses in citrate were observed over a 28 day period, however by day 7 the microcosms had lost their reducing conditions as was apparent by a colorless, as opposed to brown, supernatant. To restore reducing conditions, 10 mL of the supernatant was removed and replaced with a fresh sterile concentrate of Ti(III)-citrate, hence the increase in citrate noted on day 16. Sterility appeared to be maintained in all but two of the microcosms, M4LD and M4LE, in which glucose degradation products, acetate and formate, were detected by days 7 and 28, respectively. Lactate was not detected despite the complete removal of glucose. In addition, CO_2 was measurable solely in M4LD and M4LE.


This confirms that the reductive dechlorination reaction that was observed in the other vitamin B12 containing microcosms was indeed abiotic and that the later losses when glucose was present were attributable to venting to the gas phase. This also means that the vitamin B12 catalyzed reaction is not very effective in degrading *cis* and *trans*-DCE in this situation.

6. Microcosm 5 (glucose)

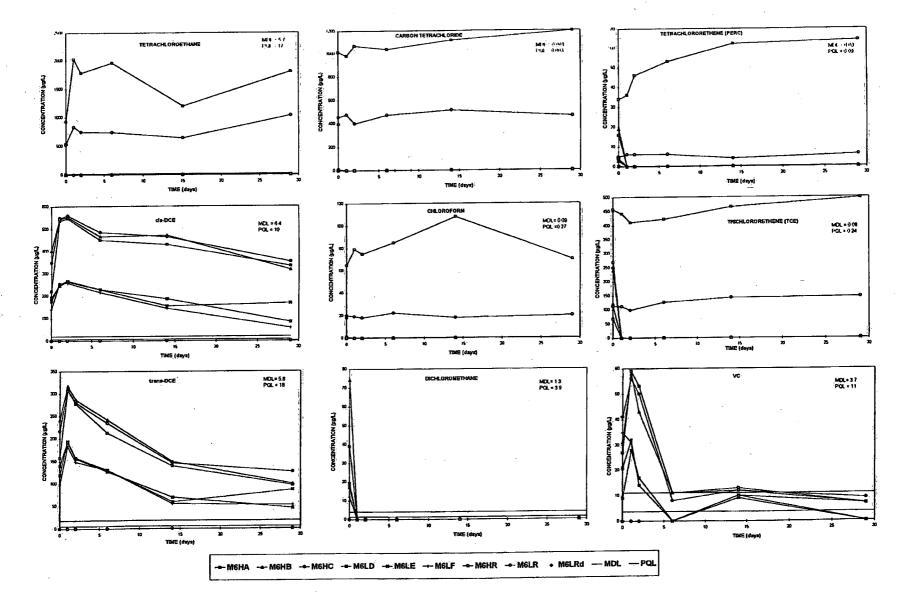

The purpose of this microcosm was to find out if the bacteria occurring naturally at the site could induce reductive dechlorination when given a carbon source.

04/09/99

Summary Microcosm 5

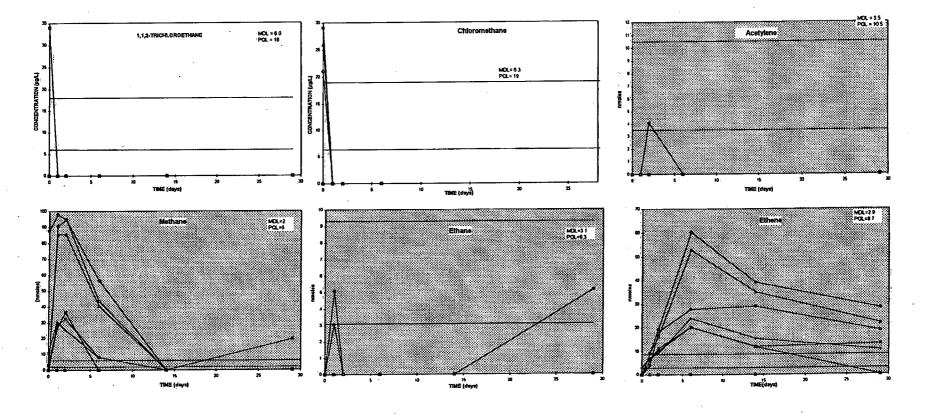
Summary Microcosm 5

The results are shown on Figure 9. As expected, for the first few days, no reaction occurred. After 14 days a flocculate type growth was visible in the microcosms while glucose concentrations were beginning to decrease, with consequent production of lactate, acetate, formate and CO₂. As these microcosms were meant as a control for chloride, glucose was re-spiked at day 15 in accordance to its addition to M1a and M2 microcosms. It appeared however, that bacterial activity was lost shortly after this time as glucose concentrations remained stable over the next 28 days. This cease in growth was likely a result of inhibitory low pH values as the initial pH of the site water, 5, dropped to 4 by day 14, and between 3-4 by day 28.


After 14 days, the concentration of carbon tetrachloride started to drop with a concurrent increase in chloroform. There was no effect on any of the other chlorinated compounds and the chloroform was not degraded further, even after 48 days. Therefore, it is unlikely that the sole addition of a carbon source will be sufficient to produce conditions where the site contaminants will be biodegraded.

7. Microcosm 6 (vitamin B12, titanium citrate and glucose, yeast extract added after 2 days)

The purpose of this treatment was to try to induce methanogenic conditions after most of the chlorinated ethanes had been removed by the vitamin B12 treatment. This was to verify if the lack of intrinsic remediation at the site was due to the toxicity of some of the compounds to bacteria. The toxicity of trichloroethane and of chloroform to methanogens has been well documented.


Therefore for the first two days, the conditions were virtually identical to those in M1a, except that the titanium was higher due to some variability in the strength of the titanium oxalate solution. The results (Figure 10) were virtually identical as well. TeCA, carbon tetrachloride, chloroform and PERC disappeared within hours, and the TCE within one day. The measured half-lives were 15 and 48 min for PERC in the low and high site

C:\my documents\B12\microcosm final report.doc

Summary M6

Summary M6

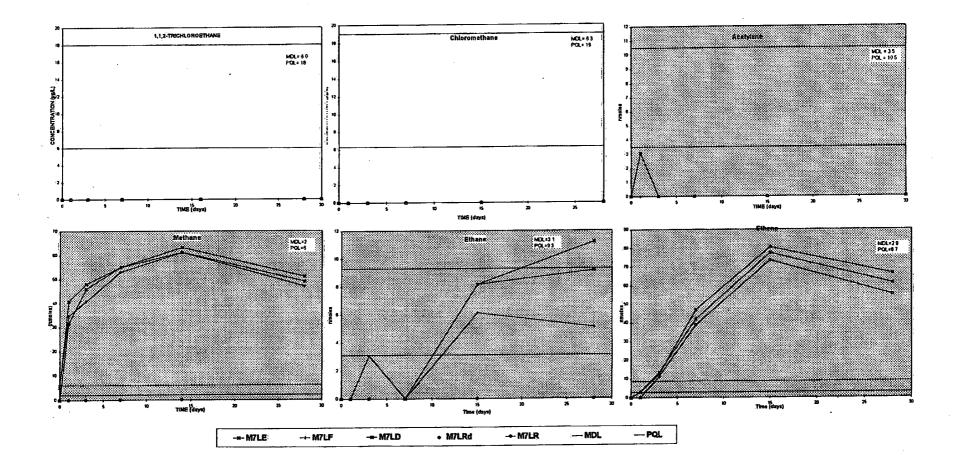
-- MEHA -- MEHB -- MEHC -- MELE -- MELF -- MELD . MELRd -- MEHR -- MELR -- MDL -- PQL

water and 2.4 (low) and 3.5 (high) hours for TCE. Therefore, when yeast extract was added, there were only *cis* and *trans*-DCE and vinyl chloride left to degrade.

The added glucose in M6 was sufficient to prevent citrate utilization for more than 14 days with losses notable in four of six of the microcosms on day 29. Degradation of glucose however, resulted in the generation of much more CO_2 than in the microcosms lacking glucose. Glucose metabolism is generally to lactate with smaller amounts of acetate and ethanol produced, while acetate is the major product of citrate degradation with no lactate being formed. High acetate concentrations coincided with those microcosms in M6 that exhibited significant citrate degradation by day 29. As formate is also generated from glucose, concentrations in M6 were double that of M3 and M8. The pH of the microcosms was relatively stable, between 7 and 8, over the course of monitoring.

Methanogenic conditions were not established within the 29 days of the study in this system. Since M6LE did exhibit a slight increase in methane on the last day, it was monitored again on day 50. The concentration of methane had doubled, without any significant effect on the concentration of the chlorinated compounds.

8. Microcosm 7 (vitamin B12, new titanium chelate)


The purpose of this set was to evaluate the reactivity and stability of a new product that was developed by a chemical company. The premise was that this would be just as reactive as titanium citrate, but hopefully not degraded as rapidly, hence it could dispense us of adding the glucose. Because there was a lot of uncertainty associated with this treatment it was only tried with Q52 water.

The method that was used to make up this solution was different than with citrate and resulted in the site water being brought to pH 12 for a few minutes. As can be seen on Figure 11, this was sufficient to transform all the TeCA to TCE. The half-life of TCE was 2.3 ± 0.8 days. The disappearance of carbon tetrachloride was too rapid to be measured (half-life < 5 min.) and that of PERC was 70 min. Very little vinyl chloride was formed and

MDL = 0 03 POL = 0 02 MDL=57 A PQL=17 MOL = 0 001 POL = 0 003 TETRACHLOROETHANE CARBON TETRACHLORIDE TETRACHLOROETHENE (PERC) 500 1400 CONCENTRATION (Jug/L) ł 1 and 200 -• 30 IS TIME (days) 20 ä 20 15 TIME (days) TIME (days) TRICHLOROETHENE (TCE) CHLOROFORM cla-DCE MDL=0.09 POL=0.27 MDL = 6,4 PCL = 19 MDL = 0.08 POL = 0.24 254 CONCENTRATION (101) RATION (UDA.) ᇒ 8 150 10 ۰ŧ 0 . 15 25 ż 15 TIME (days) is TIME (days) 20 TIME| {days} MDL+58 POL=18 trans-DCE DICHLOROMETHANE VC MOL=13 POL=39 45 MDL=37 POL=11 g" CONCENTRATION (1911) ENTRATION (June) CONCENT NO2 61 0 ۰**۴**-15 25 20 25 20 5 10 15 Tible (days) 20 TIME (days) 25 TIME (days) -+- M7LE ---- M7LF • M7LRd ---- MDL --- PQL --- M7LR --- M7LD

Summary M7

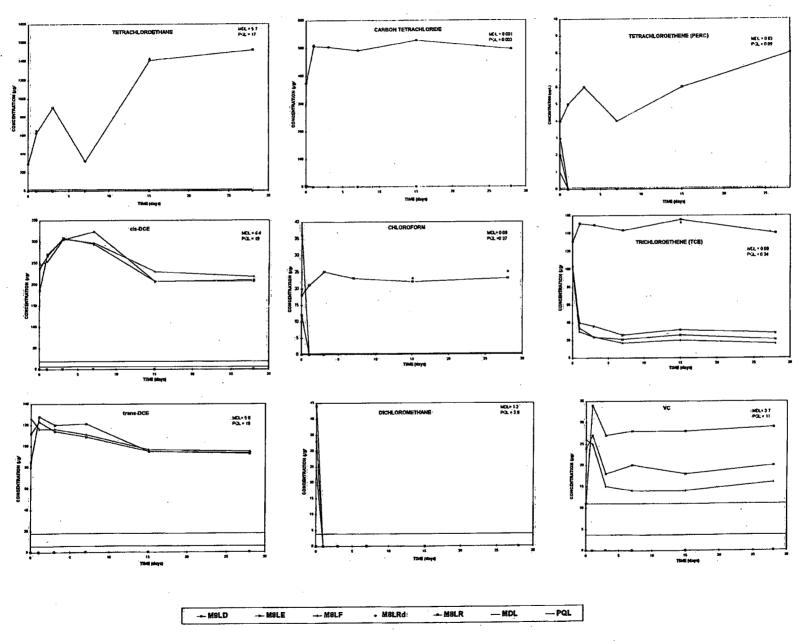
Figure 11

Summary M7

Figure 11

it was a transient species. The rate of formation of ethene was almost identical to the rate of degradation of TCE (k= 0.2 compared to -0.3 days⁻¹).

This chelate was chosen because it was anticipated to be less biodegradable than citrate, such that glucose amendments to the remedial solution would be unnecessary. As this compound was not measurable using the ion chromatography methods, its degradation could only be assessed by the appearance of degradation products that were measurable. Reducing conditions were maintained throughout the 28 day analysis period with the supernatant remaining dark and clear with visually no evidence of bacterial growth, such as clouding of the supernatant due to cell proliferation. On day 28 very small amounts of formate were measured, yet no other VFAs were detected. No gas generated in any of these microcosms.


Based on information for compounds with a similar chemical structure, this product is expected to have low toxicity and would be an excellent alternative to citrate. Because it is a metal chelating agent, however, there may be restrictions in its use in some areas because it could mobilize toxic metals. However, it is not yet commercially available. Therefore it was decided to continue to use citrate and glucose for the column study.

9. Microcosm 8 (Titanium citrate, yeast extract, vitamin B12)

This microcosm was added at the end, when it was noted that microcosm 3 had generated some methane but that the dechlorination was relatively slow. Since it is known that the anaerobic bacteria responsible for dechlorination require vitamin B12 as a growth factor, it was decided to try this combination. In addition, the presence of vitamin B12 would cause a rapid abiotic dechlorination of chloroform, carbon tetrachloride and tetrachloroethane that may have inhibitory effects on this microbial population. Only low site water was used for this set.

The results (Figure 12) were very similar to those of M4, the sterile control, in that there was no loss of cis and trans-DCE to the gas phase. However, since glucose had not been added, not all the TCE was degraded because citrate was lost after one day. The half-

35

Summary M8

Figure 12

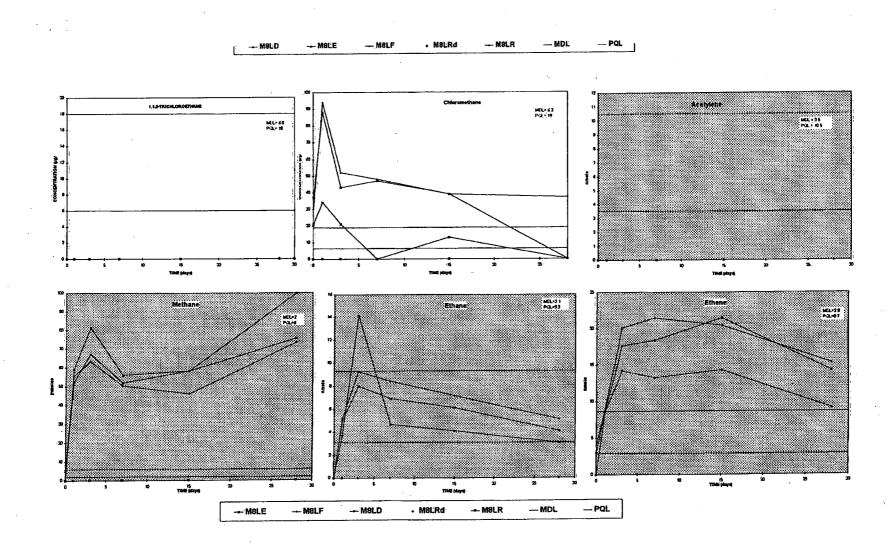


Figure 12

life for PERC was 65 min, whereas for TCE it was 1.4 ± 0.25 days, if the first 3 days of data only are considered. The results were also comparable to the first few days of M6, save the TCE. When compared to M3 (yeast extract and titanium citrate), the difference was in the B12-catalyzed degradation of PCE, TCE and TeCA. The amount of methane formed after 28 days was not higher than in M3 and could still all be attributed to the degradation of carbon tetrachloride (maximum potential of 320 nmoles/bottle) and not to methanogenesis.

As predicted, without glucose amendments, citrate was degraded rapidly to less than PQL by day 3 (Figure 3). CO_2 generation was strong until citrate was completely utilized and then was negligible for the remainder of the monitoring period. Acetate concentrations were in excess of 4 g/L upon complete degradation of citrate. Formate was generated also from citrate but it appeared that the bacteria were utilizing it as concentrations were decreasing over the last 2-3 weeks of analyses. The pH remained between 7 and 8, over the whole incubation period.

In summary, the presence of vitamin B12 did not significantly impact the methanogenesis or the rate of dechlorination in these microcosms. The absence of glucose resulted in the rapid disappearance of citrate, stopping the degradation of TCE.

10. Post-microcosm reactions

After the end of the incubation period, the supernatant was transferred to 40 mL volatile vials and 10 mLs were sampled with an autosampler for purge-and-trap GC/MS analysis to confirm the presence/absence of target compounds for which the MDL was below the MAC using the SRI GC, and to identify other compounds formed.

After a 11 days, the headspace was sampled again and analysed for *cis* and *trans*-DCE using the Photovac. The results are therefore semi-quantitative. In many of the bottles of M1a, the ratio of *trans/cis* DCE had decreased significantly and some new early eluting peaks, having the same retention time as acetone and ethanol were formed. After

04/09/99

three more days, *trans*-DCE was at the detection limit in one of the bottles. A month later, *cis* and *trans*-DCE had disappeared completely. This did not happen at the same rate in all the microcosms. The same phenomenon was observed in M4. After 45 days, *cis* and *trans*-DCE had decreased in M4LF and M4HB. Two weeks later their concentration was low in all but one (M4HC). The glucose was gone in all of them, but not the citrate. Acetate and formate was high in all, and propionate disappeared. The Eh was negative in all of them. There was no correlation between the concentration of the fatty acids and the disappearance of *cis* and *trans*-DCE. It is therefore possible that bioremediation will occur in the aquifer after the vitamin B12 treatment. The column experiments will provide a better indication of this possibility.

IV. Conclusions

This series of experiments showed that the vitamin-B12/titanium citrate reaction was effective in treating all the compounds present in the Graces Quarter site. The rate of degradation of the chlorinated ethanes and of tetrachloroethene was very rapid. The final products were *cis* and *trans*-DCE which remained above their maximum acceptable concentration after 28 days. There was no difference in reaction rates between high and low site water. The addition of titanium citrate alone, without vitamin B12, did degrade some of the contaminants, but at a much reduced rate. The γ -irradiated control showed that most of the dechlorination observed was abiotic. The degradation of glucose under these anaerobic conditions produced large amounts of CO₂, which contributed to the removal of some of the chlorinated products.

C:\my documents\B12\microcosm final report.doc

04/09/99

V. References

- Lesage, S., Brown, S. and K. Millar. 1996. "Vitamin B₁₂-Catalyzed Dechlorination of Perchloroethylene present as Residual DNAPL" *Groundwater Monitoring and Remediation*, Fall issue, 76-85.
- Lesage, S., Brown, S. and K. Millar 1997. "Method for Dehalogenating Contaminated Water and Soil" U.S. Patent 5,645,374. Date of issue: July 8, 1997.

Millar, K. and S. Lesage. 1997 "Bio-compatibility of the Vitamin B₁₂-catalyzed Reductive Dechlorination of Tetrachloroethylene". In: In Situ and On-Site Bioremediation, B. Alleman and A. Leeson, chairs. Proceedings of the Fourth International Symposium on In Situ and On Site Bioremediation, New Orleans, Louisiana, April 28-May 1, 1997. Vol 4(4), 471-477.

C:\my documents\B12\microcosm final report.doc

04/09/99

VI. Appendix A

C:\my documents\B12\microcosm final report.doc

04/09/99

41

Microcosm 1a

Vitamin B12, titanium citrate, glucose

Microcosm 2

Titanium citrate, glucose

Microcosm 3

Titanium citrate, yeast extract

Microcosm 4

Irradiated, vitamin B12, titanium citrate, glucose

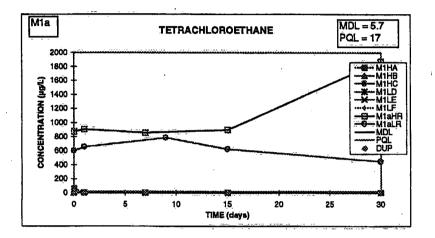
Microcosm 5

Glucose

Microcosm 6

Vitamin B12, titanium citrate, glucose, yeast at day 3

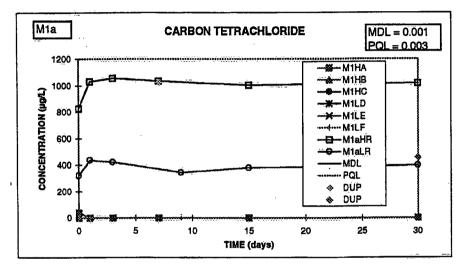
Microcosm 7


Alternate chelator and titanium, vitamin B12

Microcosm 8

Vitamin B12, titanium citrate, yeast extract

Tetrachloroethane (TeCA) Microcosm 1a


SITE WATER 2114 695	١
Time M1aHR M1HA M1HB M1HC M1aLR M1LD M1LE M1LF M1aLRd #201 000	99) en including initial calibration data)
0.04 n.d. n.d.	
0.08 n.d. n.d.	
1 908 n.d. n.d. n.d. 656 n.d. n.d. n.d.	
7 858 n.d. n.d. n.d. n.d. n.d.	
9 786	
15 895 n.d. n.d. n.d. @24 n.d. n.d. n.d. 0	951
30 1875 n.d. n.d. n.d. 449 n.d. n.d. n.d. 456	1 1

Carbon tetrachloride

Microcosm 1a

SITE WATE	R	904 364								
Timë 0	M1aHR 825	M1HA 41	M1HB	M1HC	M1aLR 319	M1LD n.d.	MILE	M1LF	M1HRd	M1aLRd
0.04			n.d.				n.d.			
0.08				n.d.				n.d.		
1	1029	n.d.	n.d.	n.d.	435	n.d.	n.d.	n.d.		
3	1055	n.d.	n.d.	n.d.	421	n.d.	n.d.	n.d.		
7	1035	n.d.	n.d.	n.d.		n.d.	n.d.	n.d.	1024	
9					344					
15	1004	n.d.	n.d.	n.d.	378	n.d.	<u>n.d</u> .	n.d.		
30	1017	n.d.	n.d.	n.d.	398	n.d.	n.d.	n.d.		390

TETRACHLORORETHENE (PERC)

35

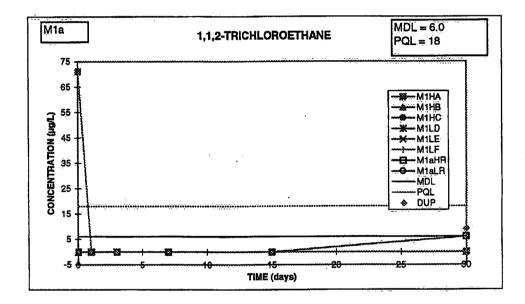
Microcosm 1a

6

lesu				

SITE	WATER	

Time	o M	11aHR 24	M1aHA 22	M1aHB	M1aHC	M1aLR 4	M1aHD	M1aHE	M1aHF	M1aLRd r ² (if < 0.99) 0.97
	0.04			14	А			1		0.93 (lowest range)
	1	25	n.d.	<u>n.d.</u>	n.d.	6	n.d.	n.d.	n.d.	0,96
	3 7	21	n.d. n.d.	n.d. n.d.	n.d. . n.d.	5	n.d. n.d.	n.d. n.d.	n.d. n.d.	0.96
	15	18	n.d.	n.d.	n.d.	7 5	n.d.	n.d.	n.d.	0 902; 0.982
	30	61	n.d.	n.d.	n.d.	6	n.d.	n.d.	n.d.	6 0.938

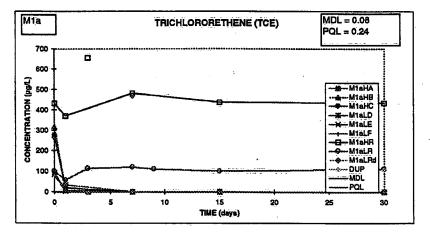

1,1,2- Trichloroethane

Microcosm 1a

Result concentration in µg/L

SITE WATER

Time 0	M1aHR n.d.	M1HA 71	M1HB	M1HC	M1aLR n.d.	M1LD n.d.	M1LE	M1LF	M1aLRd
0.04			n.d.				n.d.		
0.08				n.d.				n.d.	
1	n.d.	n.d .	n.d.	n.d .	n.d.	n.d.	n.d.	n.d.	
- 3	n.d.	n.d .	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	
7	n.d.	n.d.	n.d.	n.d .		n.d.	n.d.	n.d.	
9					n.d.				
15	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	
30	6j	n.d .	n.d.	n.d. 6j		n.d.	n.d.	n.d. 9	9j



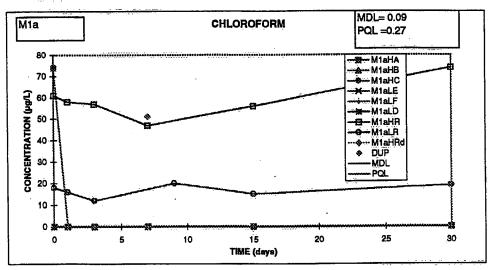
TRICHLORORETHENE (TCE)

Microcosm 1a

Result concentration in µg/L

SITE WATE	R	197				86				
Time 0	M1aHR 432	M1aHA 269	M1aHB	M1aHC	M1aLR 99	M1aLD 85	MiaLE	M1aLF	MiaHRd	M1aLRd r ² (it not 0.99)
0.04			319				93		•	
0.08				276		,		80		
1	371	32	17	18 🛛	57	6	4	3		.88 in calibration range B
3	656	n.d.	n.d.	n.d.	114	n.d.	n.d.	n.d.		
7	479	n.d.	n.d.	n.d.	119	n.d.	n.d.	n.d.	469	
9					110					
15	437	n.d.	n.d.	n.d.	99	n.d.	n.d.	n.d.		
30	434	n.đ.	n,d.	n.d.	111	n.d.	n.d.	n.d.		109

. .

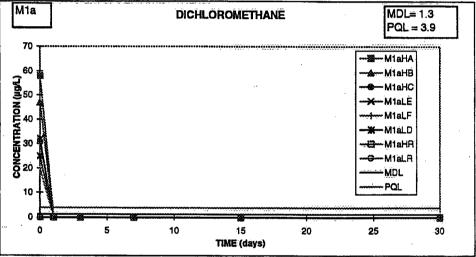

. ?

. .

:

CHLOROFORM

SITE W	ATER		.71				20				
Time	M1a 0	aHR 61	M1aHA 74	M1aHB	M1aHC	M1aLR 18	M1aLD n.d.	M1aLE	M1aLF	M1aHRd	M1aLRd r ² (lf≤0.99) 0.97
0.0)4			0.1				n.d.			
0.0	08				n.d.				n.d.		********
	1	58	n.d.	n.d.	n.d.	16	n.d.	n.d.	n.d.		0.967
	3	57	n.d.	n.d.	n.d.	12	n.d.	n.d .	n.d.		
	7	47	n.d.	n.d.	n.d.		n.d.	n.d.	n.d.	51	
	9					20					
1	15	56	n.d.	n.d.	n.d.	15	n.d.	n.d.	n.d.		0.974
3	30	74	n.d.	n.d.	n.d.	. 19	n.d.	n.d.	n.d.		19 0.979



DICHLOROMETHANE

MAC = 5 µg/L

Result concentration in µg/L

SITE WATE	R	PQL	<pql< th=""></pql<>								
Time	M1aHR	M1aHA	M1aHB	M1aHC	M1aLR	MiaLD	M1aLE	M1aLF			
0	n.d.	58			n.d.	32					
0.04			47				25				
0.08				31				20			
1	<u>n.d</u> .	<u>n.d</u> .	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.			
3	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.			
7	n.d.	ń.d.	n.d.	n.d.		n.d.	n.d.	n.d.			
9	,				n.d.						
15	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.			
30	ñ.d.	<u>n.d.</u>	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.			

.

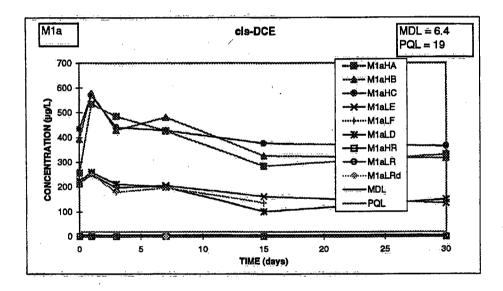
.

. .

• •

cis-DICHLOROETHENE

Microcosm 1a


MAC = 70 µg/L

Result concentration in µg/L

SITE WATE	ER <	< PQL								
Time 0	M1aHR n.d.	M1aHA 257	M1aHB	M1aHC	M1aLR n.d.	M1aLD 224	M1aLE	M1aLF	M1aHRd	M1aLRd
0.04	11.4.	201	392	•	11.4.		215			
0.08				434				223		
1	n.d.	535	580	571	n.d.	260	251	251		
3	n.d.	485	429	440	n.d.	211	196	1 79		
7	n.d.	427	481	428		199	205	196	n.d.	
9					n.d.					
15	n.d.	284	325	376	n.d.	101	161	135		
30	n.d.	331	317	365	n.d.	149	134*	exploded*		n.d.
										n.d.

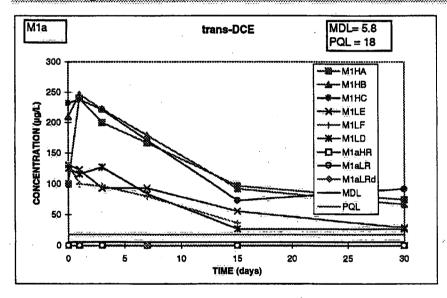
Predicted for day 15 Based on venting day 30 304 333 300 198 147 1.20

•

Trans-DICHLOROETHENE

Microcosm 1a

MAC = 100 µg/L


33

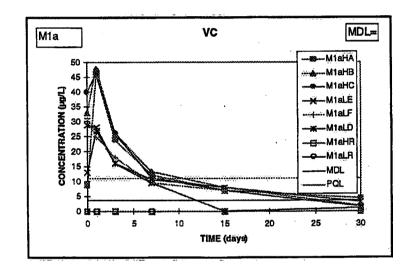
Result concentration in µg/L

SITE WATER <pql< th=""><th colspan="9"><pql< th=""></pql<></th></pql<>			<pql< th=""></pql<>								
Time	M1aHR	M1HA	M1HB	M1HC	M1aLR	M1LD	M1LE	M1LF	M1aHRd		
0	n.d.	100			n.d.	125					
0.04			210				131				
0.08				232				133			
1	< PQL	240	246	238	n.d.	116	123	100			
3	n.d.	200	222	221	n.d.	127	93	96			
7	n.d.	167	179	171		84	93	80	n.d.		
9					n.d.						
15	n.d.	97	92	73	n.d.	27	56	37			
30	n.d.	75	67	92	n.d ,	27	29				

Predicted for day 15 Based on venting

dased on venting 70 68 68 40 87

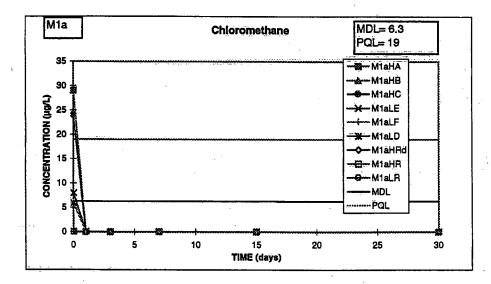
VINYL CHLORIDE (VC)


 $PQL = 11 \mu g/L$

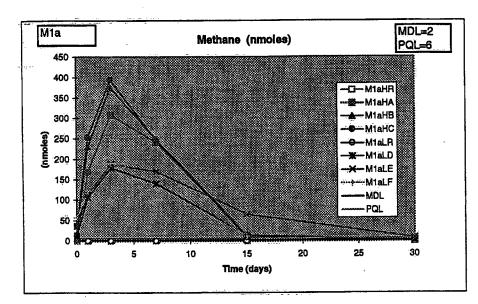
Result concentration in µg/L

SITE WATE	R <	PQL	<pql< th=""></pql<>								
Time 0	M1aHR n.d.	M1aHA 9	M1aHB	M1aHC	M1aLR n.d.	M1aLD 13	M1aLE	MiaLF	M1aHRd		
0.04		•	33			`	29				
0.08				40				31			
1	n.d.	46	48	46	n.d.	27	28	25			
3	n.d.	24	26	26	n.d.	16	16	18			
7	n.d.	12.1	13.3	11.2		9.5j	10.7j	9.5j	n.d .		
9					n.d.						
15	<u>n.d.</u>	7j	8 j	7j	n.d.	n.d.	8 j	7 j			
	nd	4.9							SRUVUL		

Predicted value Day 15


s nd nd nd nd nd nd

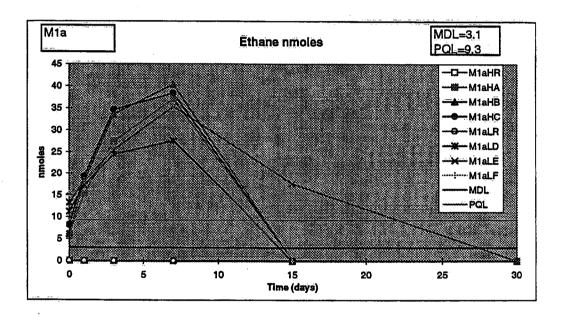
CHLOROMETHANE


Microcosm 1a

SITE WATE	R <	PQL	<pql< th=""></pql<>								
Time	M1aHR	M1aHA	M1aHB	M1aHC	M1aLR	M1aLD	M1aLE	MiaLF			
0	n.d.	29			n.d.	6j -					
0.04			29			•	8j	`			
0.08				24			•	6 j			
1	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.			
3	<u>n.d.</u>	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.			
7	n.d.	n.d.	n.d.	n.d.		🔪 n.d.	n.d.	n.d.			
9					n.d.						
15	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.			
30	n.d.	n.d.	n.d.	n.d.	n.d.	n,d,	n.d <u>.</u>	n.d.			

METHANE		. N	Microcosm 1a								
SITE WATE	R <	PQL			<	PQL					
			F	RESULTS in	n ppmv						
Time	M1aHR	M1aHA	M1aHB	M1aHC	MiaLR	M1aLD	MiaLE	M1aLF	M1aLRd		
0	n.d.	8			2	13					
0.04			18				36				
0.08				35		,		56			
1	n.d.	166	226	249	n.d.	105	113	120			
3	n.d.	303	369	388	n.d	176	185	188			
7	n.d. 🖁	150	191	122	n.d. 🖁	76	125	93	<u>n.d</u> .		
15	n.d.	5j	4j	5j	n.d.	8	55	4j			
28	2j	n.d.	n.d.	n.ď.	n.d.	n.d.	3j				

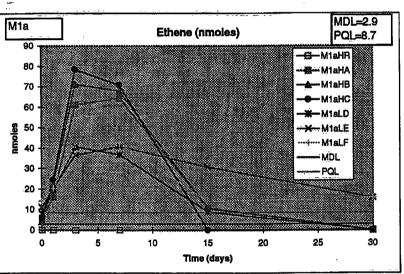
Predicted that all would be removed by venting


۰. . ÷

٤.

1

ETHANE		R	Microcosm 1a									
SITE WATE	R 🗸	<pql< th=""><th></th><th></th><th><</th><th>PQL</th><th></th><th></th><th>·</th></pql<>			<	PQL			·			
		F	Results in p	ppmv								
Time	M1aHR	M1aHA	M1aHB	M1aHC	M1aLR	M1aLD	M1aLE	M1aLF	M1aLRd			
0	n.d.	6			n.d.	11						
0.04			6				13					
0.08				8				15				
1	n.d.	15	18	19	n.d.	17	18	18				
3	n.d.	27	33	· 34	n.d.	24	25	26				
7	n.d.	23	31	19	n.d.	15	26	21	n.d.			
15	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	15	n.d.				
30	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.		xploded*				

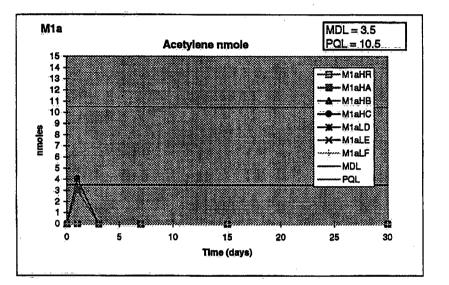

ETHENE

Microcosm 1a

SITE WATE	R <	<pql< th=""><th colspan="9"><pql< th=""></pql<></th></pql<>	<pql< th=""></pql<>								
		1	Results in	ppmv							
Time	MtaHR	M1aHA	M1aHB	M1aHC	M1aLR	M1aLD	M1aLE	M1aLF	M1aLRd		
· 0	n.d.	5			n.d.	8		•	,		
0.04			4				11				
0.08				6				14			
1	n.d.	16	22	24	n.d.	19	20	20			
3	n.d.	60	70	77	n.d	40	-36	41			
7	n.d.		92		n.d. ჽ				n.d.		
15	n.d. 🖱	5j	4j	n.d.	n.d.	5 j	26	5j			
30	<u>n.d.</u>	n.d.	n.d.	n.d.	n.d ,	n.d.	6J*	exploded*			

ncte volume has charged because of decaseing Predicted for day 15 Based on venting n.d. n.d.

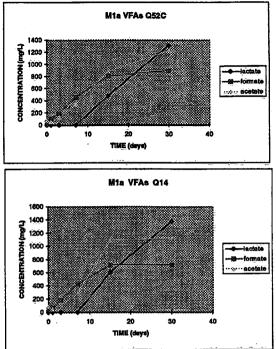
n.d.



n.d.

n.d.

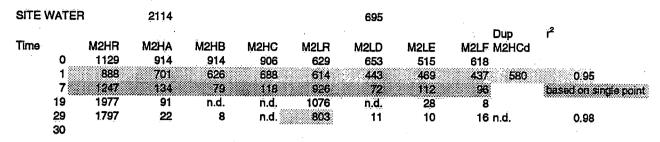
n.d.

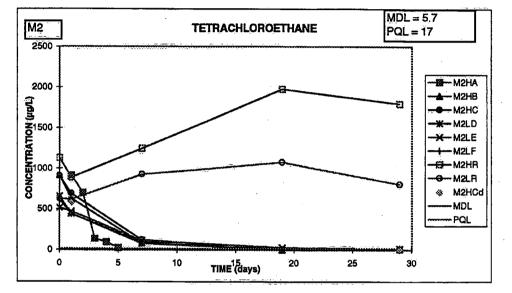

R <	PQL			<	PQL			
		· R	lesuits in p	pmv				
M1aHR	M1HA	M1HB	M1HC	M1aLR	M1LD	M1LE	M1LF	M1aLRd
n.d.	n.d.			n.d.	n.d.			
		n.d.				n.d.		
			n.d.				n.d.	
n.d.	3	4	4	n.d.	n.d .	n.d.	n.d.	
n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	
n.d.	n.d.	n.d ,	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	
n.đ.	ñ.d.	n.d.	<u>n.d</u> .	n.d.	n.d.	n.d.	*expioded*	
	M1aHR n.d. n.d. n.d. n.d. n.d.	M1aHR M1HA n.d. n.d. n.d. 3 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.	F M1aHR M1HA M1HB n.d. n.d. n.d. 3 4 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.	Results in p M1aHR M1HA M1HB M1HC n.d. n.d. n.d. n.d. n.d. n.d. n.d. 3 4 4 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.	Results in ppmv M1aHR M1HA M1HB M1HC M1aLR n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 1.d. n.d. n.d. n.d. 3 4 4 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.	Results in ppmv M1aHR M1HA M1HB M1HC M1aLR M1LD n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 3 4 4 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.	Results in ppmv M1aHR M1HA M1HB M1HC M1aLR M1LD M1LE n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 3 4 4 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.	Results in ppmv M1aHR M1HA M1HB M1HC M1aLR M1LD M1LE M1LF n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 3 4 4 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.

ACETYLENE

Microcosm 1a

Lactate				CONC. (mg/L)		
day		M1aLD	M1aLE	MIaLF	MIaHA	MiaHB	M1aHC
-	0	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	1	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	З	n.d.	n.d.	n.d.	n.d.	n.d.	n.đ
	7	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	15	597	287	555	597	588	631
	30	1501	964	1475	1386	1153	1588
Formate				conc. ((mg/L)		
day		M1aLD	MIaLE	MIaLF	MIaHA	MiaHB	MtaHC
•	0	36	40	39	41	37	37
	1	123	100	92	65	68	71
	Э	190	192	208	171	182	212
	7	427	481	489	420	375	472
	15	649	1086	675	731	700	718
	30	758	1319	618	702	681	782
Acetate				conc.			
day		MiaLD	MIALE	MIaLF	MIaHA	M1aHB	M1aHC
	0	93	n.d.	62	n.d.	85	86
	1	60	53	50	n.d.	50	48
	3	128	114	134	118	118	101
	7	355	298	379	· 309	158	375
	15	1056	637	961	1096	1108	1062
	30	1365	759	1541	1100	1165	1139
Propiona	te			conc.	(mg/L)		
day		MIaLD	MtaLE	MiaLF	MiaHA	M1aHB	MiaHC
	Ö	n.d.	n.d.	n.d.	n.d.	n.d.	n.d
	1	n.d.	n.d.	n.d.	n.d.	n.d.	ņ.d
	3	n.d.	n,d.	n.d.	<u>n.d</u> .	n.d.	<u>n.d</u>
	7	n.d.	n.d.	n.d.	n.d.	n.d.	n.d
	15	n.d.	n.d.	n.d.	n.d.	n.d.	n.d
	30	n.d.	n.d.	n.d.	n.d.	n.d.	n.d

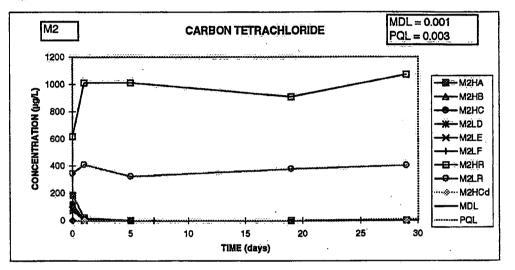


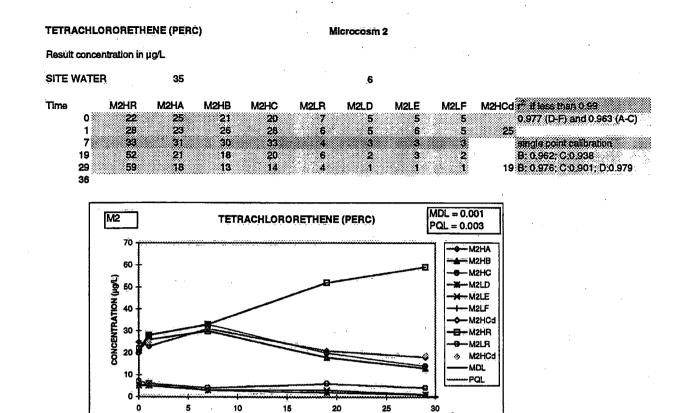

Titanium conc. (mM)									
day		M1aLD	MIaLE	M1aLF	MIaHA	M1aHB	M1aHC	•	
-	0	14.9	15.6	15.3	14.8	15.2	15.0		•
	30	20.9	21.5	-	21.4	21.3	19.9		
								,	
Chloride				conc. (mg/L)				
day		M1aLD	M1aLE	M1aLF	M1aHA	M1aHB	M1aHC	M1aLR	M1aHR
-	0	74.6	76.1	75.6	82.6	87.1	85.3	54.3	57.3
	30	31	85	÷	118	76	78	5	33
Citrate M1a				conc. (ma/l)				
			Maria			N 44 - 1 105	Malló		
day	-	M1aLD	M1aLE	M1aLF	M1aHA	MiaHB	M1aHC		
	0	6846	6682	4400	7774	7925	7670		•
	1	8219	7895	7399	7955	7785	8239	•	
	3	7582	8120	8155	8068	8358	8023		
	7	7007	-7093	7817	7359	7300	7200	· · ·	
	15	6866	6928	6800	7597	7097	6932		
	30	9743	9375	8618	9221	8382	9349		,
						:		•	
Glucose M1a				conc.	(mM)				
day	·	M1aLD	M1aLE	M1aLF	M1aHA	MtaHB	M1aHC	M1aLR	M1aHR
Ţ	0	18.3	18,5	21.0	20.6	21.0	21.1	0.0	0.0
	1	18.9	19.0	19.9	18.2	19.7	19.4		
	3	18,6	18.0	19,7	17.5	18.8	18.5		
	7	14.6	15.0	14.5	12.6	13.7			
	9	10.2	10.2	10.2	8.3	10.3	6.2		
	11	6.2	7.7	5. <u>2</u>	4.2	5.8	2.5		
	14	1.7	5.1	<u>`</u> 1.9	0.8	1.7	0.0		
	16	16.5	21	17.5	19.2	17.6	18.9		
	22	14.4	17.1	13.6	14.6	13.0	13.7	·	
	25	13.4	14.8	13.4	14.0	11.4	12.5		
	28	10.5	11.3	4.3	11.2	8.6	10.6		
	30	12	12.5	0	10.7	9.7	10.3		

N.B. Microcosm M1aLF exploded over weekend, some of culture supernatant saved and transferred. to a 60-mL serum vial (no soil present).

Tetrachloroethane (TeCA)

(titanium citrate + glucose)



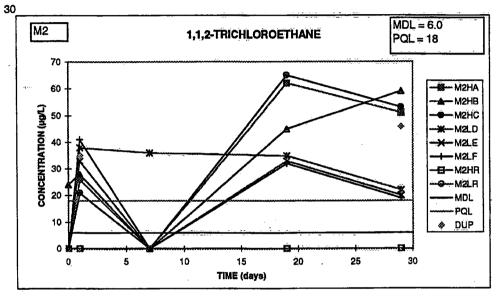


Carbon tetrachloride

Microcosm 2

S	TE WATE	7	904				364			
	Time	M2HR	M2HA	M2HB	M2HC	M2LR	M2LD	M2LE	M2LF	M2HCd 7 ² (if<0.99)
	0	618	186	118	117	344	71	87	74	
	1	1013	18	6	n.d.	408	n.d.	7	ť	n.d. 0.968
	5	1011	n.d.	n.d.	n.d.	321	n.d.	n.d.	n.d.	
	19	908	n.d.	n.d.	n.d.	376	n.d.	n.d.	n.d.	
	29	1072	n.d.	n.d.	n.d.	402	n.d.	n.d.	n.d.	n.d.
	30		•	•						

TIME (days)

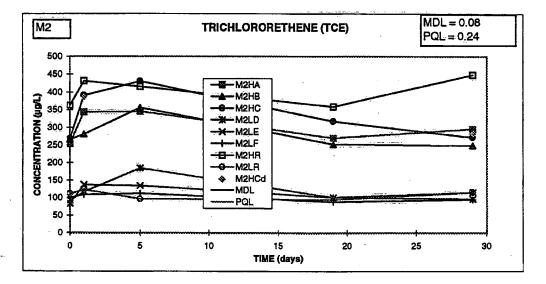

1,1,2- Trichloroethane

Microcosm 2

Result concentration in µg/L

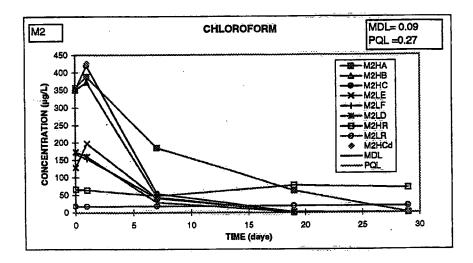
SITE WATER

Time		M2HR	M2HA	M2HB	M2HC	M2LR	M2LD	M2LE	M2LF	DUP
	0	n.d.	n.d.	24	n.d.	'n.d.	ń.d.	n.d.	n.d.	
	1	n.d.	26	28	21	n.d.	38	33	41	35
	7	n.d.	n.d.	n.d.	n.d.	n.d.	36	n.d.	n.d.	
	19	n.d.	62	45	65	n.d.	35	33	32	
	29	n.d.	51	59	53	n.d.	· 22	20	19	46

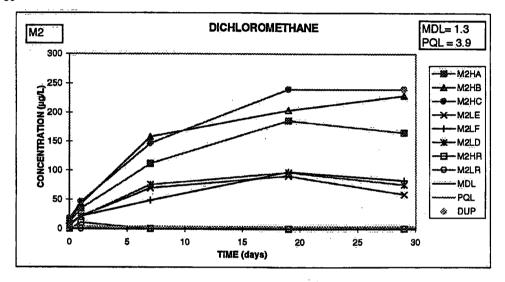

TRICHLORORETHENE (TCE)

Microcosm 2

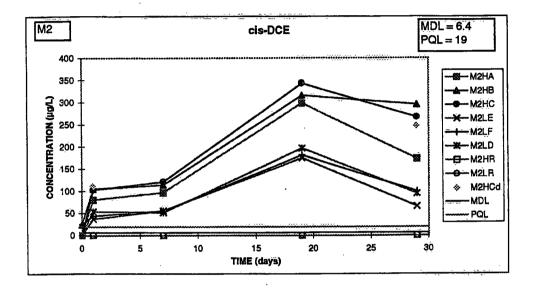
Result concentration in µg/L


Ŧ

SITE WAT	ER	197							
Time	M2HR	M2HA	M2HB	M2HC	M2LR	M2LD	M2LE	M2LF	M2HCd
0	363	254	266	268	111	92	83	100	
1	432	344	281	391	123	117	137	109	387
5	416	346	356	431	97	185	135	113	
19	359	270	253	317	95	101	101	89	
29	449	295	248	271	115	115	97	95	283
30	I								


CHLOROFORM

SITE	VATER	71				20			
Time	M2HR	M2HA	M2HB	M2HC	M2LR	M2LD	M2LE	M2LF	M2HCd F if less than 0.99
	0 66	356	350	351	17	174 160	129 198	167 154	426 0.972
	1 64 7 47	388 185	372 44	420 54	17	29	41	41	single point calibration
	19 78	63	n.d.	1	19	n.d.	2	n.d,	
	29 71	n.d.	n.d.	n.d.	19	n.d.	n.d.	n.d.	n.d. 0.975
	30								

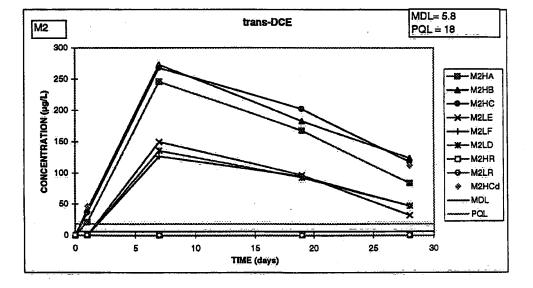


DICHLOROMETHANE

SITEW	ATER	<pql< th=""><th colspan="10"><pql< th=""></pql<></th></pql<>	<pql< th=""></pql<>									
Time	M2HR	M2HA	M2HB	M2HC	M2LR	M2LD	M2LE	M2LF	DUP			
	0 n.d.	11	13	17	n.d.	6	5	8	1			
	1 11	35	43	46	n.d.	21	22	22				
	7 n.d.	112	158	147	n.d.	76	70	49				
1	9 n.d.	186	204	240	n.d.	97	91	98				
	19 n.d. 10	165	229	240	n.d.	76	59	83	239			

cis-DICHLOROETHENE N			Microcosm 2			MAC = 70 μg/L					
Result	concentration in	µg∕L				;					
SITE W	VATER	<pql< th=""><th></th><th>· ·</th><th></th><th></th><th></th></pql<>		· ·							
Time	M2HR	M2HA	M2HB	M2HC	M2LR	M2LD	M2LE	M2LF	M2HCd P2		
	0 n.d.	n.d.	24	n.d.	n.d.	n.d.	n.d.	25			
	1 n.d.	81	1,05	103	n.d. 🖉	54	37	44	111	0.963	
	7 n.d.	97	114	121	nd	52	56	55	sing	le point	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	19 n.d.	299	316	343	n.d.	197	175	181			
	29 ñ.d.	173	295	267	n.d.	· 95	66	100	247		
	30										



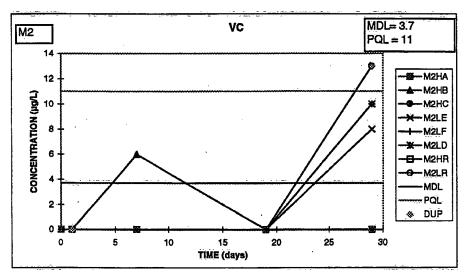

. . . .

Trans-DICHLOROETHENE

MAC = 100 µg/L

Result concentration in µg/L

SITE WATER		R <	PQL	<pql< th=""><th></th><th></th><th></th></pql<>							
Time		M2HR	M2HA	M2HB	M2HC	Malr	M2LD	M2LE	M2LF	M2HCd	
	0	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	<u>n.d.</u>		
	1	n.d.	21	41	36	<u>n.d.</u>	n.d.	n.d.	n.d.	46	
	7	nd	246	273	268	n.d.	136	150	127	single p	xint calibration
	19	n.d.	168	183	202	'n.d.	93	97	95		
	28	n.d.	84	124	118	n.d.	47	32	47	112	
	30										




.

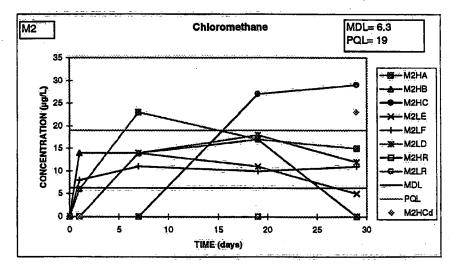
VINYL CHLORIDE (VC)

Microcosm 2

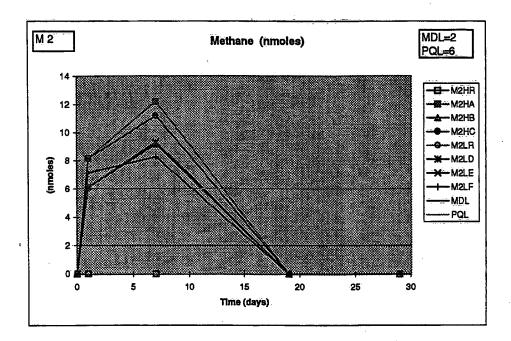
SITE WATER <pql< th=""><th colspan="6"><pql< th=""><th colspan="3"></th></pql<></th></pql<>		<pql< th=""><th colspan="3"></th></pql<>									
Time		M2HR	M2HA	M2HB	M2HC	M2LR	M2LD	M2LE	M2LF	DUP	
	0	- n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.		
	1	n.d.	n.d.	n.d.	n.d.	n.d.	n.đ.	n.d.	n.d.	<b>n.d</b> .	
	7	n.d.	n.d.	6	n.d.	n.d	n.d	n.d.	n.d.	sir	gle point calibration
	19	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.		
	29	n.d.	n.d.	'n.d.	13	n.d.	· 10	· 8	10	13	
	30										



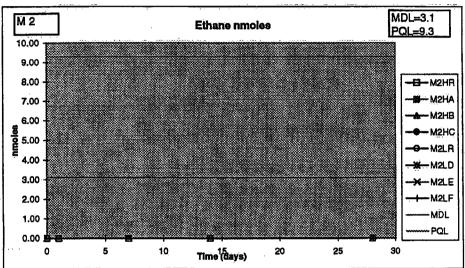
CHLOROMETHANE


Microcosm 2

Result concentration in µg/L


SITE WATER <POL

Time		M2HR	M2HA	M2HB	M2HC	M2LR	M2LD	M2LE	M2LF	M2HCd	
	0	n.d.	<u>n.d</u> .	n.d.	n.d.	n.d.	n.d.	<u>n.d.</u>	n.d.		,
	1	n.d.	6	14	n.d.	n.d.	n.d.	n.d.	8	n.d.	
	7	n.d.	23	14	n.d.	nd.	14	14	11	Şi	ngle point calibra
	19	n.d.	17	17	27	n.d.	18	11	10		
:	29	n.d.	15	n.d.	29	n.d.	12	5	11	23	
	30										


<PQL

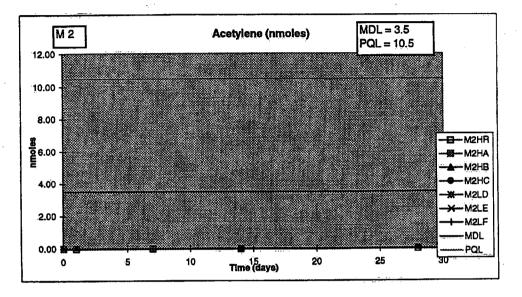


METHANE		N	licrocosm	2					
SITE WATE	:R <	PQL	< PQL						
			nmoles						
Time	M2HR	M2HA	M2HB	M2HC	M2LR	M2LD	M2LE	M2LF	M2HCd
0	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	
1	n.d.	8	6	8	n.d.	6	6	7	7
7	n.d.	12	9	-11	n.d.	8	8	7	
19	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	
29	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	
30									



ETHANE		N	licrocosm	2					
SITE WATE	R <	PQL		<pql< th=""><th></th></pql<>					
			ń	moles		•			
Time	M2HR	M2HA	M2HB	M2HC	M2LR	M2LD	M2LE	M2LF	M2HCd
.0	n.d.	n.d.	n.d.	n.d.	n.d.	'n.d.	n.d.	n.d.	
1	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
7	n.d.	n.d.	n.d.	n.d.	n.d	n.d.	n.d.	n.d.	
19	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	
29	n.d.	n.d.	n.d.	. n.d.	n.d.	n.d.	n.d.	n.d.	
30									




	२ <	<pql< th=""><th colspan="7"><pql< th=""></pql<></th></pql<>		<pql< th=""></pql<>						
Time	M2HR	M2HA	M2HB	M2HC	M2LR	M2LD	M2LE	M2LF	M2HCd	
	n.d.	n.d.	n.d.		n.d.	n.d.	n.d.	n.d.		
Ť	<b>n.d.</b>	• n.d.	n.d.	n.d.	n.đ.	n.d.	n.d.	n.d.	n.d.	
7	n.d.	3	4	3	n.d.	n.d.	n.d.	n.d.		
19	n.d.	n.d.	n.ď.	- n.d.	n.d.	3	n.d.	n.d.		
29	n.d.	n.d.	n.d.	n.d.	ñ.d.	n.d.	n.d.	n.d.		
30							٠			



ETHENE

Microcosm 2

ACETYLEN	E	Microcosm 2									
SITE WATE	R <	PQL		<pql< th=""></pql<>							
			n	moles							
Time	M2HR	M2HA	M2HB	M2HC	M2LR	M2LD	M2LE	M2LF	M2HCd		
0	n.d.	<b>n.d</b> .	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.			
1	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.		
7	n.d.	n.d.	ń.ď.	n.d.	n.d.	n.d.	n.d.	n.d.			
19	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	b.		
29	n.d.	n.d.	n.d.	. n.d.	n.d.	n.d.	n.d.	n.d.			
30											
00											



# Citrate 2

	conc. (mg/L)											
day		M2LD	M2LE	M2LF	M2HA	M2HB	M2HC					
	0	6799	6919	6905	7082	6851	6802					
	1	7334	7092	7182	7522	7098	7531					
	5	7019	7126	6931	7710	7683	7389					
	19	9301	9821	8076	8879	9789	8934					
	29	9565	9575	8874	9376	8992	8730					

Note: Microcosms were amended with Ti(III)citrate-reduced invertose on day 16, hence the increase in glucose and citrate concentrations.

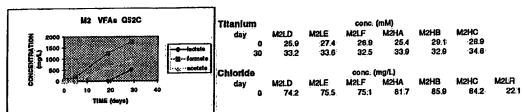
Glucose 2	conc. (mM)								
day	M2LD	M2LE	M2LF	M2HA	M2HB	M2HC			
0	18.5	18.9	17.3	21.3	18.5	19.0			
1	18.1	19.1	17.8	18.0	17.1	19.6			
5	17.6	16.2	17.0	17.7	16.4	17.5			
8	14.0	11.7	12.0	11.0	7.6	11.4			
13	7.8	4.2	5.8	7.4	5.1	6.8			
16	4.6	1.3	2.2	4.7	1.6	2.8			
16	24.9	16.7	21.3	20.0	19.0	19.7			
19	22.7	21.6	18.7	20.1	17.6	18.1			
26	13.9	11.5	12.8	14.1	13.2	14.2			
29	15.2	11.2	11.1	14.0	11.8	1 <u>2.0</u>			

#### Volatile Fatty Acids-M2

Lactate						
						onc. (mg/L)
day	M2LD	MELE	M2LF	M2HA	M2HB	M2HC
· 0	n.d.	n.d.	n:di	n.d.	n.d.	n.d
1.	n.d.	n.d.	n.d:	n.d.	n.d.;	n.d.
5	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
19	n.d.	n d.	n.d:	n.d.	n.d.	n.d.
29	320	872	289	184	289	296

Formate	F	0	TT.	a	te
---------	---	---	-----	---	----

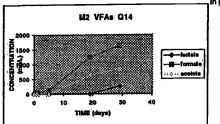
					C	onc. (mg/L)
day	M2LD	M2LE	M2LF	M2HA	M2HB	M2HC
· 0	n:d.	n.d.	n.d.	n.d.	n.d.	n.d.
1	.47	n.d.	44	31	41	46
5	288	126	123	96	144	118
19	1229	1452	1097	1091	1404	1223
29	1745	1895	1632	1659	1684	1578




restant.					0	onc. (mg/L)
day	M2LD	M2LE	M2LF	M2HA	M2HB	M2HC
	n.d.	n.d.	n.d.	n.d.	n.d.	n.đ.
1	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
5	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
19	584	790	516	559	717	617
29	894	1004	841	881	875	852

Propiona	ate					
dav	M2LD	M2LE	M2LF	M2HA	M2HB	M2HC
, 0	n.d.	n.d.	n.d	n:d.	n.d.	n d
1	n.d.	n.d.	n.d.	ก.d.	n.d.	n.d.
5	n.đ.	n.d.	n.d.	n.d.	n.d.	n.d.
19	n.đ.	n.d.	n.d	n.d.	n:d.	n.di:
29	n.d.	n.d.	n.d.	n.d.	n.d.	n.di

Notes: Problems with M2LD5 VFA analysis required a re-analysis of this sample on day 7. Results shown for day 5 are day 7 results.

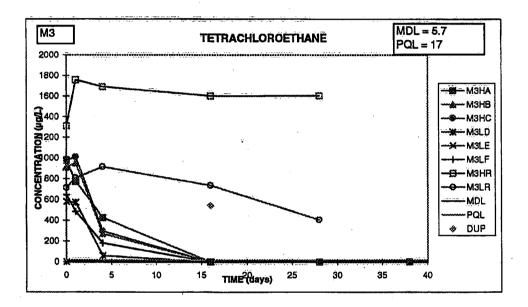

Q52C day		lactate lactate		formate formate	acetate acetate
•	0	0	)	0	-0
	1	0	)	46	0
	5	0	)	179	0
1	9	0	)	1260	630
2	9	494	I	1757	913
Q14		-			
day		lactate		formate	acetate
	0	0	)	0	0
	1	:0	)	-40	-0-
	5	0	)	120	0
	19	0	)	1239	631
	29	256	5	1640	869



Note: Microcosms were amended with Ti(III)citrate-reduced invertose on day 16, hence the increase. In glucose and citrate-concentrations.

M2HR

53.6



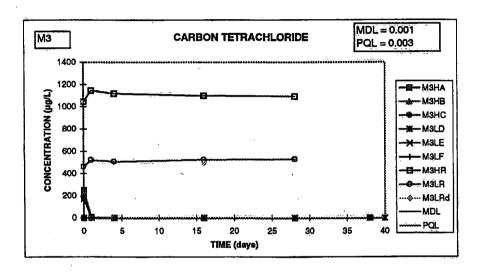

Tetrachloroethane (TeCA)

Microcosm 3

(titanium citrate + yeast extract)

SITE WATER 2114							2			
Time	0	M3HR 1311	M3HA 978	M3HB 912	<u>М</u> ЗНС 978	M3LR 711	M3LD 578	M3LE 582	M3LF 645	
	1 4	1759 1692	773 426	953 273	1008 296	810 914	573 62	495 201	486 183	
	16 28	1604 1607	n.d. n.d.	n.d. n.d.	n.d. n.d.	735 405	n.d. n.d.	n.d. n.d.	7j n.d.	543 B 0.974; C:0.983
	38 40		. <b>n.d.</b>					n.d.		



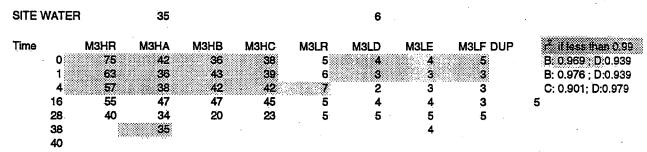

Carbon tetrachioride

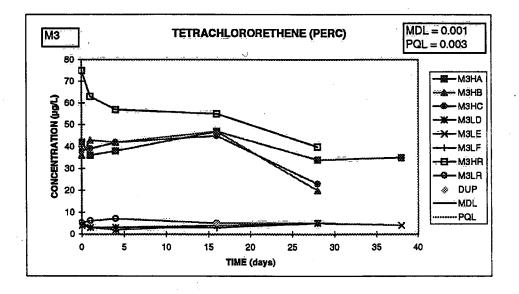
Microcosm 3

(titanium citrate + yeast extract)

Result concentration in µg/L

SITE WATER	7	904				364			
Time	МЗHR	МЗНА	мзнв	мзнс	MSLR	M3LD	M3LE	M3LF M3LRd	2
0	1044	251	210	205	461	195	172	195	
1	1146 🖉	8	8	7	522	n.d.	n.d.	n.d.	0.963
4	1119	n.d.	n.d.	n.d.	507	n:d.	n.d.	n.d.	
16	1099	n.d.	n.d.	n.d.	524	n.d.	n.d.	3j 4	191
28	1093	n.d.	n.d.	n.d.	529	n.d.	n.d.	n.d.	
. 38		n.d.				n.d.			
40									





.

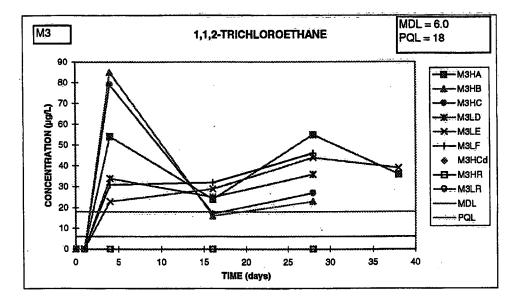
Tetrachloroethene (PERC)

Microcosm 3

(titanium citrate + yeast extract)





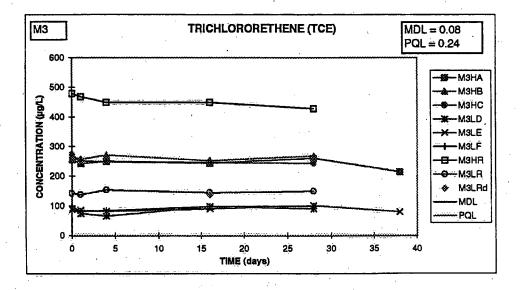

1,1,2- Trichloroethane

(titanium citrate + yeast extract)

Result concentration in µg/L

SITE WATER

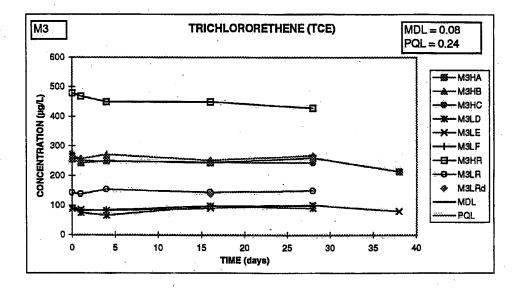
Time		<b>M3HR</b>	M3HA	M3HB	МЗНС	M3LR	M3LD	MBLE	M3LF M3HCd	r²
	0	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	
	1	n.đ.	n.d.							
	4	n.d.	54	85	79		34	23	31	0.964
	16	n.d.	24	16	17	n.d.	25	29	32	
	28	n.d.	55	23	27	n.d.	36	44	46	
	38		36					39		
	40									




.

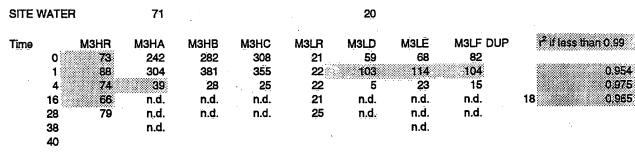
## TRICHLORORETHENE (TCE) Microcosm 3

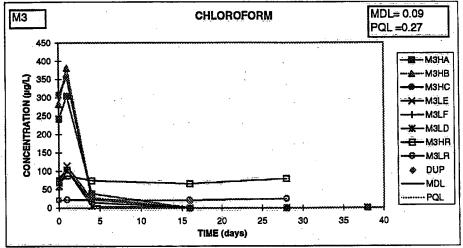
(titanium citrate + yeast extract)


SITEV	VATE	R	197	97 86								
Time		M3HR	МЗНА	МЗНВ	МЗНС	M3LR	M3LD	M3LE	M3LF M	BLRd		
	0	479	255	257	271	142	.90	88	96			
	1	469	243	257 257	251	138	74	85	82			
	4	450	250	271	248	154	66	82	84			
	16	449	244	252	246	144	.97	90	97	139		
	28	428	261	268	244	150	90	101	99			
	38		214					80				
	40		· ·									



TRICHLORORETHENE (TCE) Microcosm 3


(titanium citrate + yeast extract)

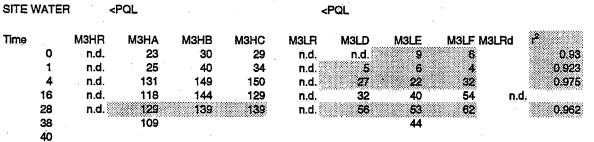

SITE WATER			197			2	86			•
Time		M3HR	МЗНА	МЗНВ	МЗНС	M3LR	MSLD	M3LE	M3LF M	3ĽRd
	0	479	255	257	271	142	90	88	96	
	1	469	243	257	251	138	74	85	82	
	4	450	250	271	248	154	66	82	84	
	16	449	244	252	246	144	97	90	97	139
	28	428	261	268	244	150	· 90	101	99	
	38	,	214					80		
	40							-		

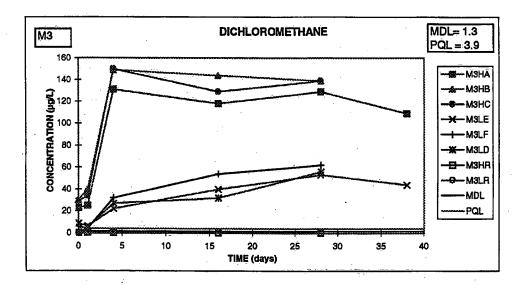


CHLOROFORM

0.954 0.975 0.965



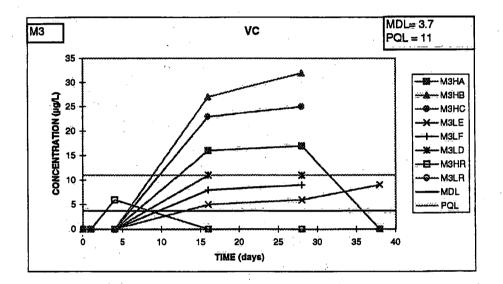




DICHLOROMETHANE

 $MAC = 5 \mu g/L$ 

Result concentration in µg/L

SITE WATER <PQL






VINYL CHLORIDE (VC)

(titanium citrate + yeast extract)

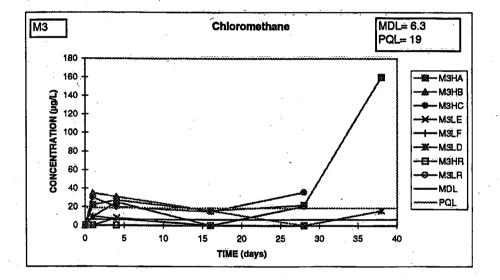
SITE W	/ATE	Ř <	POL							
Time		M3HR	M3HA	МЗНВ	M3HC	MBLR	M3LD	M3LE	M3LF M	3HCd
	0	n.d.								
	. 1	n.d.	n.d.	n.d.	n.d.	n.d.	ņ.d.	n.d.	n.d.	•
	4	6	n.d.	ñ.d.	n.d.	n.d.	n.d.	n.d.	n.d.	
	16	n.d.	16	27	23	n.d.	11	5	8	n.d.
	28	n.d.	17	32	25	n.d.	. 11	6	9	
	38		n.d.					9		
	40						•			



CHLOROMETHANE

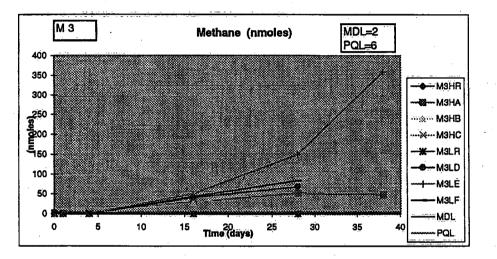
Microcosm 3

(titanium citrate + yeast extract)

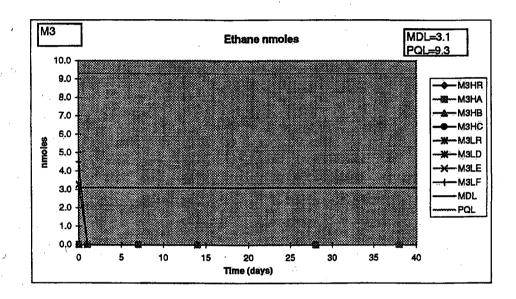

<PQL

Result concentration in µg/L

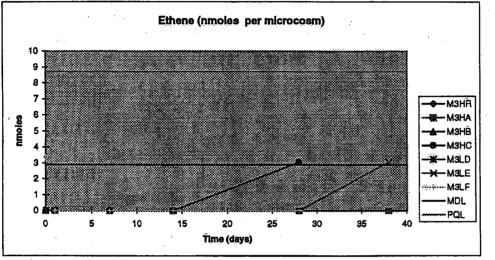
SITE WATER <POL


Time		МЗHR	МЗНА	МЗНВ	МЗНС	M3LR	M3LD	M3LE	M3LF M3	HCd
	0	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	
	1	n.d.	22	35	30	n.d.	9	n.d.	10	
	4	n.d.	27	31	20	n.d.	25	8	7	
	16	n.d.	16	16	15	n.d.	n.d.	n.d.	n.d.	
	28	n.d.	22	n.d.	36	′ n.d.	n.d.	n.d.	21	
	38		160				16			
	40				. •					

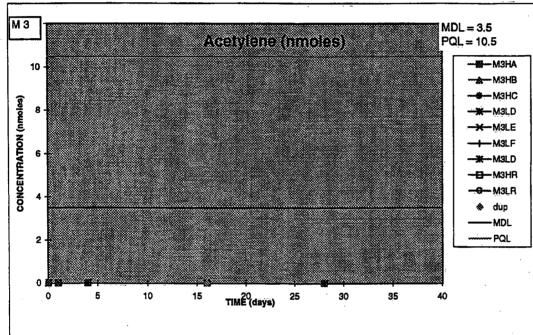
need to confirm by GC/MS that it is indeed chloromethane




METH	ANE		y y	licrocosm	3	(titanium ci	trate + yea	st extract)		
SITE	NATE	Ř <	PQL			· <	PQL			
				'n	moles			,		
Time		M3HR	MSHA	M3HB	МЗНС	M3LR	M3LD	M3LE	M3LF M	3HCd
	0	n.d.	2	n.d.	n.d.	n.d.	. 2	n.d.	3	
	. 1	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	
	4	n.d.	- 2	2	2	n.d.	n.d.	n.d.	n.d.	
	16	n.d.	30	27	50	n.d.	41	50	43	n.c
	28	n.d.	52	71	133	<b>n.d</b> .	67	142	83	
	38		48					353	÷	
	40									
	38	· .	52		133			142		


n.d.




ETHA	NE		N	licrocosm	3	(titanium cit	st extract)		
SITE \	NATE	R .<	PQL	•			PQL		
				n	moles			· .	
Time		MЗHR	МЗНА	МЗНВ	МЗНС	M3LR	M3LD	M3LE	M3LF M3HCd
	Ó	n.d.	n.d.	n.d.	n.d.	n.d.	3	n.d.	4
	1	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	4	<u>n.d</u> .	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	16	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	28	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	38		n.d.	× 1				n.d.	
	40						•		



ETHENE		R	Microcosm :	3 (1	itanium cit	st extract)		
SITE WATE	R <	PQL			<	PQL		· .
Time	M3HR	МЗНА	МЗНВ	мзнс	M3LR	M3LD	M3LE	M3LF M3HCd
0	n.d.	n.d.	n.d.	3	n.d.	n.d.	n.d.	3
1	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
4 -	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
16	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
28	n.d.	n.d.	n.d.	. 3	n.d.	n.d.	n.d.	n.d.
38		n.d.					3	,
40		·		•			·	· · · · · ·



ACETYLENE				licrocosm	3	(titanium ci	trate + yea	st extract)		
SITEV	E WATER <pql< th=""><th></th><th></th><th></th><th>POL</th><th>,</th><th></th><th></th></pql<>						POL	,		
Time		МЗHR	МЗНА	МЗНВ	МЗНС	MSLR	M3LD	M3LE	M3LF dup	
	0	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	
	1	<b>n.d</b> .	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	
	4	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	
	16	n.d.	n.d.	n.d.	n.d.	n.d.	n.d. 1	n.d.	n.d.	n.d.
	28	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	
	38		n.d.					n.d.		
	40						•			



.

Citrate 3

		conc. (mg/L)												
day		M3LD	M3LE	M3LF	МЗНА	M3HB	M3HC							
	Q	6722	6216	6229	6815	6920	7319							
	1	<b>880</b> j	926j	929j	902j	1018j	937j							
	4	n.d.	n.d.	n.d.	n.d	n.d.	n.d.							
	16	938j	n.d.	n.ď.	n.d.	n.d.	n.d.							
	28	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.							

VFAs

## Volatile Fatty Acids-M3

									•	Fitanium			cono	(mM)
actate										day	M3LD	MILE	M3LF	мзна
સલ્વસાઇ					conc. (r					° Q	29.0	28.5	29.0	31.4
day	MISLD	M3LE	M3LF	мэна	мзнв	Манс	r				٦			
Ū 0	n.d.	n.d.	n.d.	n.d.	n.đ.	n.d.	1	M3 VFAs Q5	20		1			
1	n.d.	n.d.	n.d.	n.đ.	n.d.	n.d.	6000							
× 4	n.d.	n.d.	n.d.	n.d.	nd.	nd								
16	n.d.	n.d.	n.d.	n.d. n.d.	n.d. n.d.	n.d. n.d.	2°°° 1000		a a a a a a a a a a a a a a a a a a a	-formale	1			
28	n.d.	n.d.	n.d.	n.a.	11.0.	true.	3 % 1888			- 28 acetate				
							8000 9010 6000 9000			proprionate	11			
ormate				•	conc. (r	na/L)				···· bulycate	11			
daÿ	MILD	M3LE	MOLF	мзна	M3HB	МЗНС	8000				1			
cay 0	78	132	213	64	75	-55	0 ()()()()()				1			
1	859	983	1025	698	1013	957	0 6	10 15 20	25 30		1			
4	982	897	696	917	1058	1025	l.	TIME (days)						
16	n.đ.	650	n.d.	n.d.	nd	350	b				_			
28	n.d.	n.d.	-330	n.d.	228	n.d.							•	
							<b></b>				7			
cetate						••		M3 VFAs Q	14		- E			
		•			conc. (r	115/L)	6008				1			
day	MSLD	M3LE	M3LF	M3HA	MSHB	M3HC	Noos -							
0	307	439	654	381	397	325				tormete	ור			
2 <b>1</b>	3538	3949	4242	3640	-3975 4438	3801 4381				acetate	11			
4	4439	3945	4199	3952 4353	4436	4381				···· proprional	•			
18	5177	5094	5644 5261	4353	5632	5540				····· butyrate	L I			
28	4973	6210	0201	4193	0032	0070	8000							
Propiona	ate						0 6822200							
					conc. (		0 0	10 15 20 TiME (days)	25 3	,	l.			
day	M3LD	M3LE	M3LF	MSHA	MSHB	MSHC	L							
	233	239	235	274	291	n.d.					•:			
.1	263	194	240	263	302	266		•						
. 4	212	168j	228j	254	292	279								
16	414	489	374	223	421	518								
28	425	603	558	429	722	600				1.				
								· ·						
Butyrate	1					meā j								
		Male	MaLF	мзна	cono. ( M3HB	M3HC								
day	Malid		· M3LF n.d.	MISHA n.d.	MORE n.d.	n.d.		-						
0	n.d.	n.d.	n.a. n.d.	n.d.	nd	n.d.								
1	n.d.	n.d. n.d.	n.a. n.d.	n.a. n.d.	n.u.	n.d.								
4	n.d. n.d.	n.a. 1733j	1693	nd	n.d.	1740								
16 28	n.d.	1991j	1969	n.d.	1984]		•							
20	11.0.	100.1	1049		·++ 4									
									-					
								<b>~</b> ~~						
	formate		proprionate					Q14 day farmata	acetate	proprionate	hutvrate			
	formate		proprionate		-	4800	4000	day formate 0 6		277 proprioritate	Dutyrate			
0	141	466	236	0		1733	1693	1 95		277	ŏ			
1	955	3909	239	0		1991	1969	4 99			-			
	926	4195	203	0 1142				16 35		387	580	)		
16 28	650 (330	5305 5481	426 529	1320				26 22	8 5322	584	661.3333	;		

мзнв

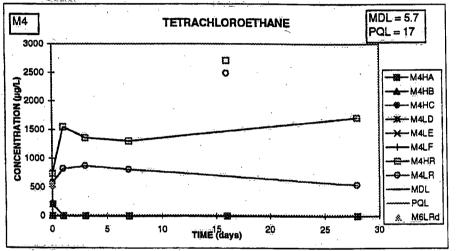
30.6

Mahc

28.7

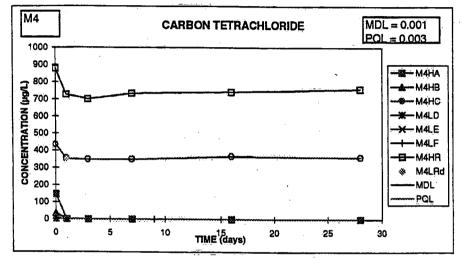
Page 1

## Tetrachioroethane (TeCA)


Microcosm 4 Sterile control

Result concentration in µg/L

SITE WATE	R	2114	`		695			•	· .
Time 0	M4HR 740	M4HA 205	M4HB	M4HC M4LR 579	M4LD n.d.	M4LE	M4LF	M4LR 538	d r ² (if < 0.99 0.98
0.04			n.d.	· · · · · · · · · · · · · · · · · · ·		n.d.			
0.08				n.d.			n.d.		
1	1549	n.d.	n.d.	n.d. 819	n.d.	n.d.	n.d.	881	
3	1358	n.d.	n.d.	n.d. 870	n.d.	n.d.	n.d.		0.955
7	1302	n.d.	. <b>n.d</b> .	n.d. 810	n.d.	n.d.	n.d.		0.955
16	2711*	n.d.	n.d.	n.d. 2492*	n.d.	n.d.	n.d.		• •
28	5128*	n.d.	n.d.	n.d. 541	n.d.	n.d.	n.d.		
Repeat analy	1713								0.982


at day 36

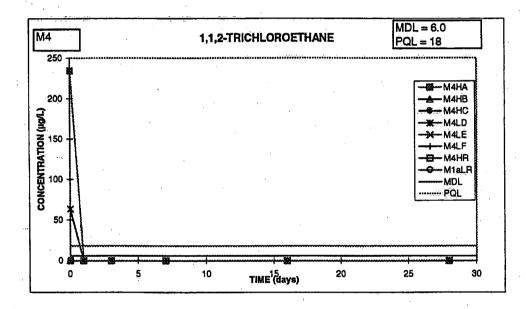
*Outlier



Carbon tetrachloride

SITE WATER	2	904				364			
Time 0	M4HR 877	M4HA 147	M4HB	M4HC	M4LR 433	M4LD n.d.	M4LE	M4LF	M4LRd
0.04			36				n.d.		
0.08			•	9				n.d.	
· 1	727	n.d.	n.d.	n.d.	353	n.d.	n.d.	n.d.	351
3	702	n.d.	n.d.	n.d.	349	<b>n.</b> d.	n.d.	n.d.	
7	736	n.d.	n.d.	n.d.	350	n.d.	n.d.	n.d.	
16	744	n.d.	n.d.	<b>n.d</b> .	368	n.d.	n.d.	n.d.	
28	761	n.ď.	n.d.	n.d.	363	n.d.	n.d.	n.d.	

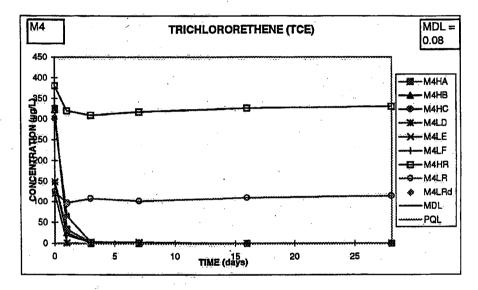



## 1,1,2-Trichloroethane

Microcosm 4 Sterile control

Result concentration in µg/L

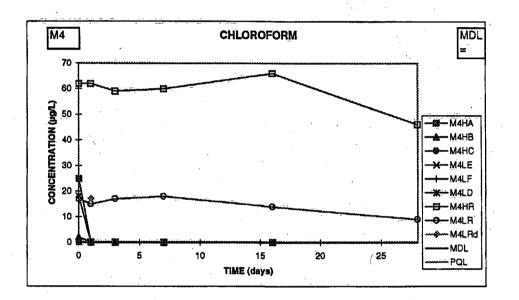
## SITE WATER


Time	M4HR	M4HA	M4HB	M4HC	M4LR	M4LD	M4LE	M4LF	M4LRd
0	n.d.	234			n.d.	63			·
0.04			n.d.				n.d.		
0.08				n.d.				n.d.	
1	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	
3	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	
7	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	. n.d.	
16	n.d.	n.d.	'n.d.	n.d.	n.d.	n.d.	'n.d.	n.d.	
28	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	



## TRICHLORORETHENE (TCE)

Microcosm 4 Sterile control


SITE WATE	R	197				86			• .
Time 0	M4HR 381	M4HA 326	M4HB	M4HC	M4LR 124	M4LD 120	M4LE	M4LF	M4LRd # ² (I not 0.99)
0.04			322				148		
0.08				302				146	
1	320	34	25	65	97	1 💹	39	19	95 0.971
. 3	309	n.d.	n.d.	2J	108	n.d.	3	21	0,969
7	318	n.d.	n.d.	n.d.	102	n.d.	3	<b>2</b> j	
16	327	n.d.	n.d.	n.d.	110	n.d.	n.d.	n.d.	
28	331	n.d.	n.d.	n.d.	114	n.d.	n.d.	n.d.	•



## CHLOROFORM

Microcosm 4 Sterile control

SITE WATER		71 20								
Time	M4HR 0 62	M4HA 25	M4HB	M4HC	M4LR 17	M4LD 18	M4LE	M4LF	M4LRd I ² (II < 0.99) 0.971	
0.0			2				n.d.			
0,0		· .		n.d.				n.d.		
•	1 62	n.d.	n.d.	n.d.	15	<b>n.d.</b> .	<b>n.</b> d.	n.d.	17 0.965	
:	3 59	n.d.	n.d.	n.d.	17	n.d.	n.d.	<b>n.d</b> .	0.965	
•	7 60	n.d.	n.d	n.d.	18	n.d.	n.d.	n.d.		
- 1	6 66	n.ď.	n.d.	n.d.	14	n.d.	n.d.	<u>n.d</u> .	· ·	
2	8 46	n.d.	n.d.	<u>n.d</u> .	9	n.d.	n.d.	n.d.	0.983	



DICHLOROMETHANE

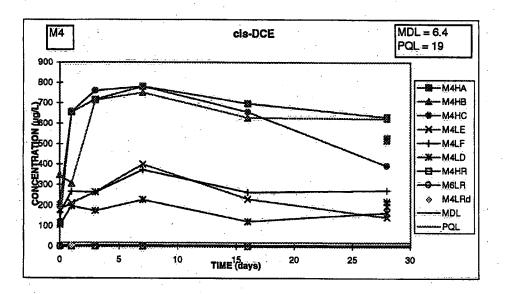
**Microcosm 4 Sterile control** 

 $MAC = 5 \mu g/L$ 


Result concentration in µg/L

<PQL

SITE	WAT	ER
------	-----	----


Time	M4HR	M4HA	M4HB	M4HC	M4LR	M4LD	M4LE	M4LF	M4LRd ²² ((1 < 0.99)
0	n.d.	47			n.d. 🚿	20			n.d. b: 0.936; C. 0.982
0.04			73				18		
0.08				90				19	
1	n.đ.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
3	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	
7	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	· · ·
16	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	
28	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	
									•

<PQL

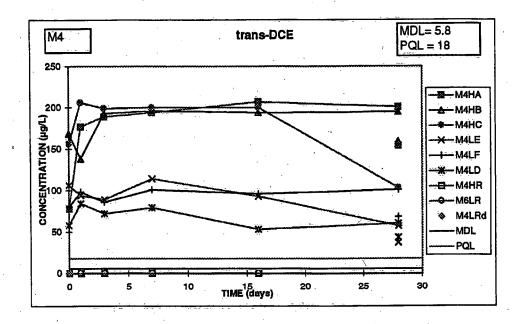


cis-DICHLOI	ROETHEN	E N	licrocosm	4 Sterile c	ontrol		MAC = 70 μg/L				
Result conce	ntration in	µg/L									
SITE WATER <pql< th=""><th></th><th></th><th>&lt;</th><th>PQL</th><th colspan="5"></th></pql<>					<	PQL					
Time	M4HR	M4HA	M4HB	M4HC	M4LR	M4LD	M4LE	M4LF	M4LRd ( ² ((1 < 0.99)		
0	n.d.	119			<u>n.d.</u>	107					
0.04			348				181				
0.08				207				165			
1	n.d. :	655	307	658	n.d.	197	212	268 n	.d. 0,98		
3	n.d.	716	714	759	n.d.	174	265	263			
7	n.d. 🚿	782	750	782	n.d.	228	400	373	0.978		
16	n.d.	698	629	656	n.d.	124	232	265	200000000000000000000000000000000000000		
28	n.d.	632	625	394	n.d.	167	144	274	4 		
FID results		530	519	527		197	219	224			

* suspect poor injection on ECD - results calculated by FID are more consistent and shown for comparison



Trans-DICHLOROETHENE

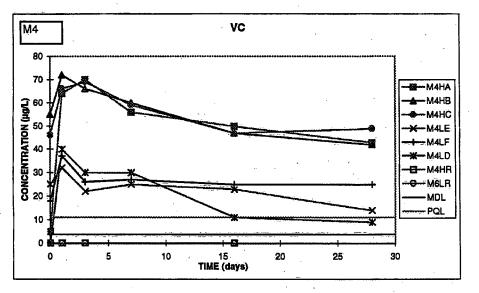

Microcosm 4 Sterile control

 $MAC = 100 \ \mu\text{g/L}$ 

Result concentration in µg/L

SITE WATE	२ <	<pql< th=""><th></th><th>. •</th></pql<>			. •				
Time 0	M4HR n.d.	M4HA 78	M4HB	M4HC	M4LR n.d.	M4LD 58	M4LE	M4LF	M4LRd (* (if < 0.99) n.d.
0.04			168				106		
0.08				156				80	· ·
1	n.d.	177	138	206	n.d.	84	94	98	n.d.
3	n.d.	189	193	199	n.d.	72	89	86	
7	n.d.	194	196	200	n.d.	79	114	101	
16	n.d. 🖄	207	194	200	n.d. 💹	53	93	96	0.973
.28	n.d.	201	195	103	n.d.	60	57	101	
FID		154	159	155		43	37	68	· · · · · · · · · · · · · · · · · · ·

* suspect poor injection on ECD - results calculated by FID are more consistent and shown for comparison



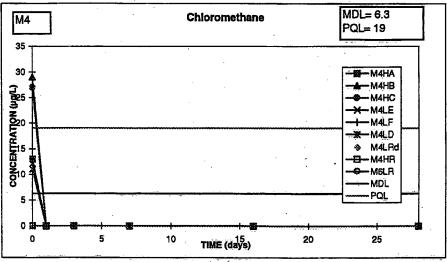

VINYL CHLORIDE (VC)

Microcosm 4 Sterile control

 $PQL = 11 \mu g/L$ 

SITE WATER <pql< th=""><th></th><th></th><th></th><th></th></pql<>									
Time	M4HR	M4HA	M4HB	M4HC	M4LR	M4LD	M4LE	M4LF	M4LRd
0	n.d.	5j			n.d.	<u>n.d.</u>			n.d.
0.04			55				25		
0.08				46				18	
1	<b>n.d</b> .	64	72	66	n.d.	40	32	37	n.d.
3	n.d.	70	66	69	n.d.	30	22	26	
7 ·	n.d.	56	60	59	<b>n.d</b> .	30	25	27	
16	n.d.	50	47	47	n.d.	11	23	25	
28	n.d.	43	42	49	n.d.	. 9j	14 -	25	




## CHLOROMETHANE

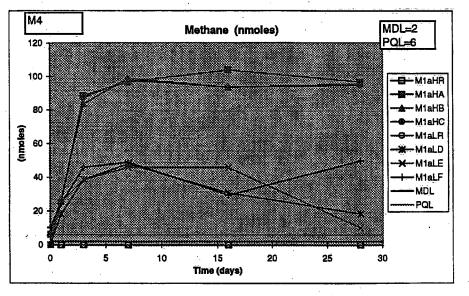
,

## Microcosm 4 Sterile control

Result concentration in µg/L

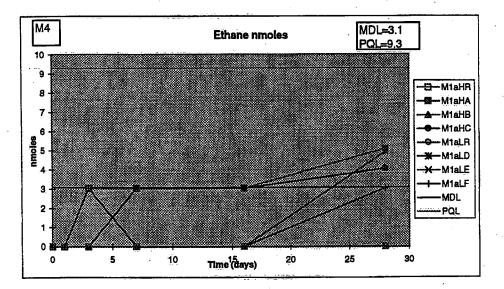
SITE WATER	<pql< th=""><th></th><th>1</th><th>. &lt;</th><th>PQL</th><th colspan="5"></th></pql<>			1	. <	PQL					
Time	M4HR	M4HA	M4HB	M4HC	M4LR	M4LD	M4LE	M4LF	M4LRd		
~ <b>O</b>	n.d.	13j			n.d.	11j					
0.04			- 29				12j	•			
0.08				27		,		13j			
1	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	• <b>n.d</b> ,	n.d.	n.d.		
3	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.			
7	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.			
- 16	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.			
28	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.			




_____

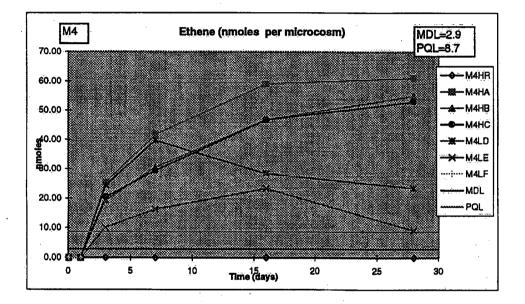
٠.,

## METHANE


Microcosm 4 Sterile control

SITE WATER <pql< th=""><th></th><th></th><th></th></pql<>									
			<pql RESULTS in ppmv</pql 						
Time	M4HR	M4HA	M4HB	M4HC	M4LR	M4LD	M4LE	M4LF	M4LRd
· O	n.d.	n.d.			n.d.	n.d.			
0.04			7				6		
0.08				6				10	
1	n.d.	25	27	25	n.d.	18	25	24	'n.d.
3	n.d.	87	82	86	n.d.	38	38	45	
7	n.d.	95	<b>97</b>	96	n.d.	47	45	48	
16	n.d.	102	92	92	n.d.	25	45	29	
28	n.d.	95	.94	93	n.d.	15	10	49	

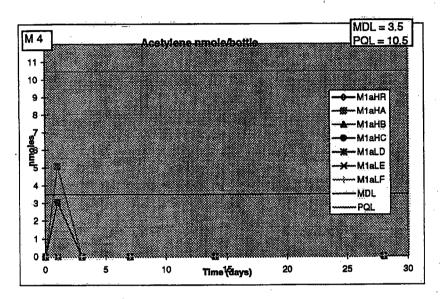



SITE WATER		R <	PQL	<pql< th=""><th></th></pql<>						
			R	Results in ppmv						
٦	Time	M4HR	M4HA	M4HB	M4HC	M4LR	M4LD	M4LE	M4LF	M4LRd
	. 0	n.d.	n.d.			n.d.	n.d.			
	0.04			n.d.				n.d.		
	0.08				n.d.			•	<b>n.d.</b>	
	1	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	3	n.d.	3j	n.d.	n.d.	n.d.	n.d.	n.d.	3j	
	7	n.d.		3j	3j	n.d.	n.d.	n.d.	n.d.	
	16	n.d.	3j 5j	4j	- <b>4</b> j	n.d	- 4j	n.d.	3j	
	28	n.d.	6j	6j	<b>5</b> j	n.d.	n.d.	n.d.	3j	

Microcosm 4 Sterile control



ETHANE


ETHENE	Microcosm 4 Sterile control									
SITE WATE	R <	PQL				·				
		R	Results in ppmv							
Time	M4HR	M4HA	M4HB	M4HC	M4LR	M4LD	M4LE	M4LF	M4LRd	
0	n.d.	n.d.			n.d.	n.d.			··· · = ·	
0.04			n.d.				n.d.			
0.08				n.d.				n.d.		
1	n.d.	3j	3j	3j	n.d.	7j	5j	4j	n.d.	
3	n.d.	25	3j 19	20	n.d.	24	10	13		
7	n.d.	41	30	29	n.d.	39	16	18		
16	n.d.	58	46	46	n.d.	23	23	27		
28	n.d.	60	54	52	n.d.	19	9	28		
30										
÷									<b>N</b>	
		•								



ACETYLENE

Microcosm 4 Sterile control

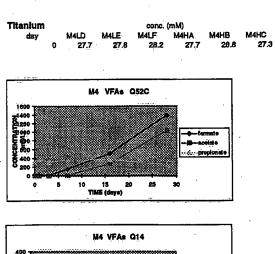
SITE W	ATE	<del>،</del> ۲	PQL			<	PQL		,		
				Results in ppmv							
Time		M4HR	M4HA	M4HB	M4HC	M4LR	M4LD	M4LE	M4LF	M4LRd	
	0	n.d.	<b>n.d.</b> -			n.d.	n.d.	•		n.d.	
0.	.04			n.d.				n.d.			
0	.08				n.d.	•			n.d.		
	1	n.d.	5j	3j	3j	n.d.	3j	n.d.	n.d.	n.d.	
	3	n.d.	n.d.	n.d.	n.d.	ņ.d.	n.d.	n.d.	n.d.		
	7	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	<u>n.d</u> .		
	16	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.		
	28	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.		

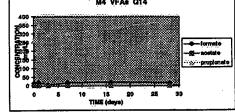


# Citrate

	conc. (mg/L)									
day	M4LD	M4LE	M4LF	M4HA	M4HB	M4HC				
0.	7532	7244	7486	7554	6648	7031				
1	7224	7439	7539	7269	7684	6932				
3	7835	8213	8171	7885	7488	8014				
7	7644	7472	7178	6927	6976	7331				
16	8092	9020	8754	8504	8702	8477				
28	9998	9828	10108	9813	9407	9701				

# Glucose


l


	conc. (mM)									
day	M4LD	M4LE	M4LF	M4HA	M4HB	M4HC				
0	16.8	17.5	16.5	17.3	17.6	15.5				
1	18.4	18.2	19.3	18,1	17.6	17.5				
3	18.1	18.0	18.0	16.8	16.9	16.9				
7	11.9	17.9	18.0	16.1	16.5	17.0				
16	0.0	14.8	15.7	15.3	14.2	14.0				
28	0	0	15.9	15.1	13.7	14.4				

 $\bar{l}_{i}$ 

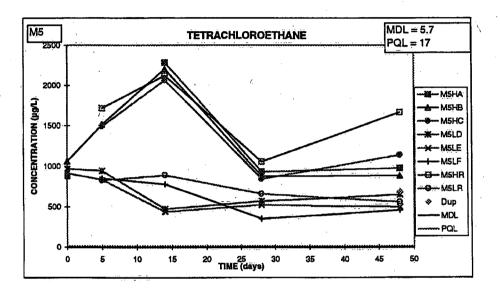
## Volatile Fatty Acids - M4

Lactate									
			conc. (I	ng/L)					
day	M4LD	M4LE	M4LF	M4HA	M4HB	M4HC			
0	n.d.	n.d.	n.d.	ņ.đ.	n.d.	n.d.			
- 1	ņ.d.	n.d.	n.d.	ņ.d.	n.d.	n.d.			
3	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.			
7	ņ.d.	n.d.	n.d.	n.d.	n.d.	n.d.			
18	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.			
28	n.d.	n.d.	n.d.	ņ.d.	ņ.d.	n.d.			
Formate									
( ormale			conc. (	ma/L.)					
day	M4LD	M4LE	M4LF	M4HA	M4HB	M4HC			
0	14	13	12	13	12	12			
1	20	20	19	19	20	19			
3	<b>4</b> j	6j	6j	<b>4</b> j	5j	4j			
7	427	17	17	15	17	16			
16	1477	20	21	18	20	21			
28	2248	1883	19	13	16	16			
Acetate									
			conc. (	mg/L)					
day	M4LD	M4LE	M4LF	M4HA	M4HB	M4HC			
0	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.			
1	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.			
. 3	ŋ.d.	n.d.	n.d.	n.d.	n.d.	n.d.			
. 7	277	n.d.	n.d.	n.d.	n.d.	n.d.			
16	831	n.d.	n.d.	n.d.	n.d.	nd			
28	1684	. 1411	n.d.	n.d.	n.d.	n.d.			
Propionate	•								
•			conc. (		•				
day	M4LD	M4LE	M4LF	M4HA	M4HB	M4HC			
0	346	314	265	277	238j	242			
-1	366	381	´ 359	359	323	349			
. 3	342	359	239	307	305	278			
7	n.d.	384	322	289	302	306			
16	257	449	397	297	350	344			
28	242	n.d.	n.d.	n.d.	397	353			





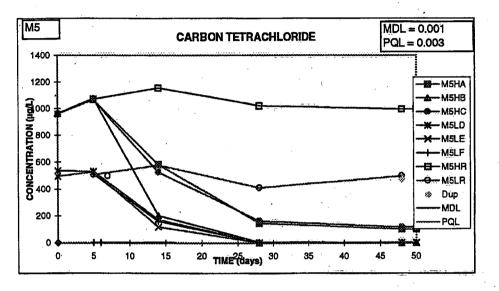
=	rmat	<b>e</b> '				•								
	conc. (mg/L)													
	day	4	M4LD	M4LE	M4LF	M4HA	M4HB	M4HC						
		0	· 14	13	12	13	12	12						
		1	20	20	19	19	20	19						
		3	4	6	6	4	5	4						
		7	427	17	17	15	17	16						
		16	1477	20	21	-18	20	Ž1						
		28	2248	1883	19	13	16	16						

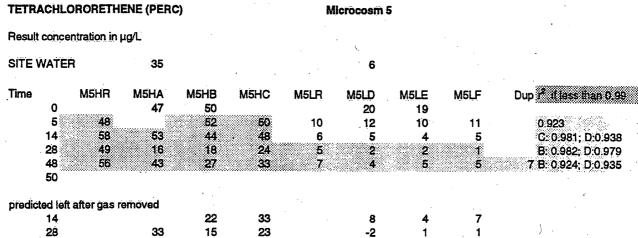

day		formate	acetate	propionate
	0	13	. 0	308
	1	20	0	368
	.3	5	0	313
	7	154	9	353
	16	506	277	368
	28	1383	1031.667	242
	2 <b>77</b>	n.d.		
	831	n.d.		
	684	1411		

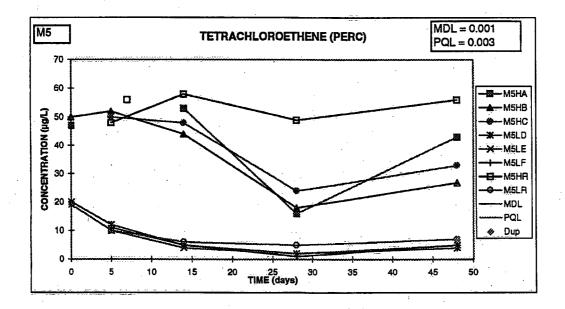
lay	for		acetate	- pi	ropionate
	0	12		0	259
	1	20		0	344
	3.	4		0	296
	7	16		Ó.	299
	16	19		0	330
	28	15		0	375

Tetrachioroethane (TeCA)

Microcosm 5


SITE WAT		2114				695			•	
Time	M5HŘ	M5HA	M5HB	M5HC	M5LR	M5LD	M5LE	M5LF Du	p 🐔 .	
0		885	1061			970	913		single point calibr	ation
5	1716	-	1514	1492	830	945	838	852		
14	2124	2285	2206	2065	893	474	437	780		
28	1060	934	878	845	657	569	524	354	0,955	
48	1667	978	884	1141	560	647	498	458	689 0.982	
50										



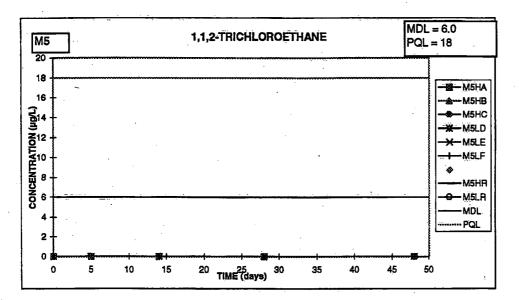


Carbon tetrachloride

Microcosm 5

SITE WATER	۶	904				364			
Time 0	M5HR	M5HA 962	M5HB 963	M5HC	M5LR	M5LD 535	M5LE 494	M5LF	Dup r ²
5	1072	1067	1075	1065	507	533	528	512	
14	1155	582	204	526	576	173	119	160	
28	1021	147	4	164	411	3	n.d.	n.d.	
48	997	102	3	116	498	<b>3</b>	n.d.	3	474
50									



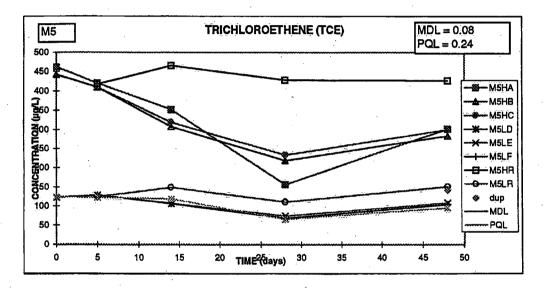





1,1,2- Trichloroethane Microcosm 5

Result concentration in µg/L

SITE WATER


Time		M5HR	M5HA	M5HB	M5HC	M5LR	M5LD	M5LE	M5LF
	0		n.d.						
	5	n.d.		12j	8j	j	17j	n.d.	7j
	14	n.d.							
	28	n.d.							
	48	n.d.							
	50								•



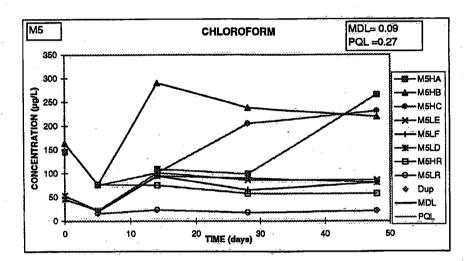
# TRICHLORORETHENE (TCE)

Result concentration in µg/L SITE WATER Time M5HR M5HA M5HB M5HC M5LR M5LD M5LE M5LF dup Predicted left, based on venting 

Microcosm 5



CHLOROFORM


71

Result concentration in µg/L

SITE WATER

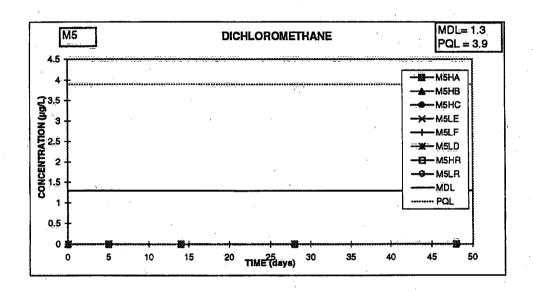
Time	M5HR	M5HA	M5HB	м5нс	M5LR	M5LD	M5LE	M5LF		f less than 0.99 cle point calibration
0		146	164			46	58		SIL	gie point caloration
5	77		76	75	16	22	22	20		
14	75	109	290	101	23	95	101	95		0.979
28	58	99	238	205	18	90	86	65 .		
48	. 57	265	219	231	21	81	86	81	21	
50										
Amount pr	esent based	on venting								
14	•		69	71	16	21	20	19		
28		102	259	93	23	~7 <b>4</b>	91	82		

20



•

	METHANE	

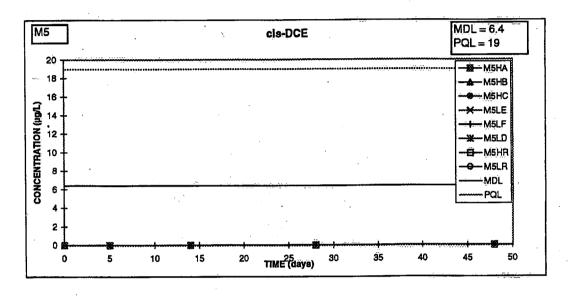

MAC = 5 µg/L

Result concentration in µg/L

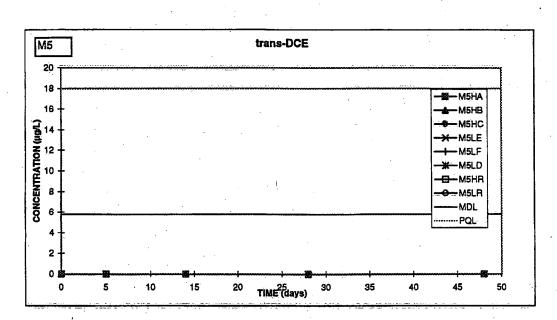
.

-----

SITE	WATE	R <	POL			_ <	PQL				
Time	ė	M5HR	M5HA	M5HB	M5HC	M5LR	M5LD	M5LE	M5LF		<b>P</b>
	0		n.d.	n.d.		n.d.	n.d.			•	
	5	n.d.		n.d.	n.d.	n.d.	n.d.	n.d.	n.d.		single point
	14	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.		
	28	<b>n.d</b> .	n.d.	n.d.	n.d:	n.d.	n.d.	n.d.	n.d. •		
• •	48	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.		
	-50					•			-		· · ·




cis-DICHLOROETHENE MIC


Microcosm 5

MAC = 70 µg/L

SITE V	VATEF	< ۲	PQL			<	PQL			
Time	0	M5HR	M5HA n.d.	M5HB n.d.	M5HC	M5LR	M5LD n.d.	M5LE n.d.	M5LF	2
	5 14	n.d. n.d.								
	28	n.d.								
	48 50	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	' n.d.	n.d.	



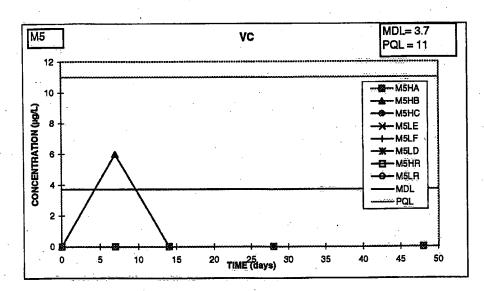
Trans-DICHL	OROETH	ENE	Microcosm	5	M	IAC = 100 I	ıg∕L
Result concer	tration in	µg/L		·			
SITE WATER	<	PQL			<	POL	
Time 0 5 14 28 48 50	M5HR n.d. n.d. n.d. n.d.	M5HA n.d. n.d. n.d. n.d. n.d.	M5HB n.d. n.d. n.d. n.d. n.d.	M5HC n.d. n.d. n.d. n.d.	M5LR n.d. n.d. n.d. n.d.	M5LD n.d. n.d. n.d. n.d. n.d.	M5LE n.d. n.d. n.d. n.d. n.d.



-----

M5LF

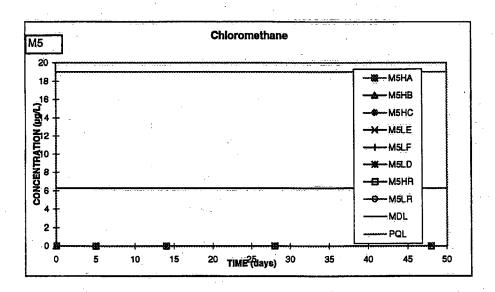
• n.d. n.d.


n.d.

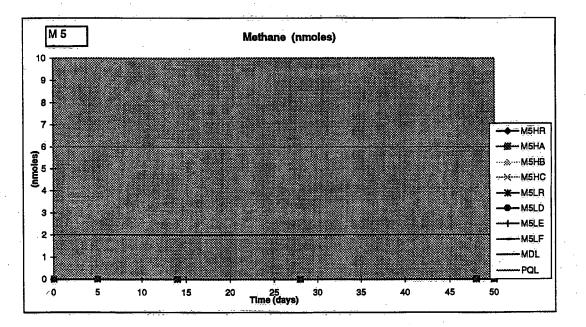
<u>n.d.</u>

VINYL CHLORIDE (VC)

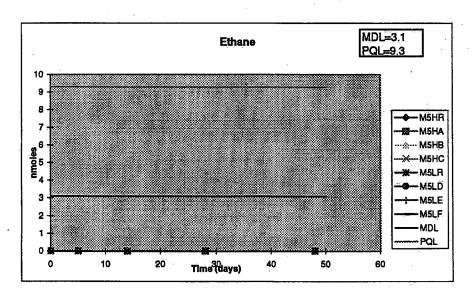
Microcosm 5


SITE	WATER		PQL			<u> </u>	PQL			
Time		M5HR	M5HA	M5HB	M5HC	M5LR	M5LD	M5LE	M5LF	
	0		n.d.	n.d.	•		n.d.	n.d.		
	7	n.d.	n.d	6	n.d.	n.d.	n d.	n.d.	n.d. single point calibration	Š.
	14	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	
	28	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	
	48	n.d.	n.d.	n.d,	n.d.	n.d.	n.d.	n.d.	n.d.	
	50						,			



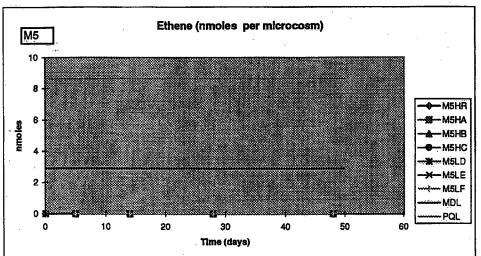

## CHLOROMETHANE

Microcosm 5


SITE WAT	ER <	PQL			<	PQL		
Time 0 5 14	M5HR n.d. n.d.	M5HA n.d. n.d. n.d.	M5HB n.d. n.d. n.d.	M5HC n.d. n.d.	M5LR n.d. n.d.	M5LD n.d. n.d. n.d.	M5LE n.d. n.d. n.d.	M5LF n.d. n.d.
28 48 50	n.d. n.d.	n.d. n.d.	n.d. n.d.	n.d. n.d.	n.d. n.d.	n.d. n.d.	n.d. n.d.	n.d. n.d.

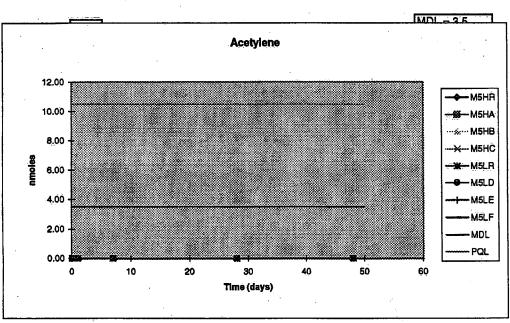


METH	ANE		N	licrocosm	5					
SITEV	VATE	۲ ۲	POL			<	PQL	•		
		· · ·		p	pm/v					
Time		M5HR	M5HA	M5HB	M5HC	M5LR	M5LD	M5LE	M5LF	Dup
	0	<u>n.d</u> .	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	
	5	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	
	14	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	
	28	<b>n.d</b> :	n.d.	n.d.	n.d.	<b>n.d.</b> (	n.d.	n.d.	n.d.	
	48	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	50							· ·	•	




ETHANE		N	licrocosm	5.		• • •		
SITE WAT	ER <	PQL			<	PQL		
			, p	pm/v		•		
Time	M5HR	M5HA	M5HB	M5HC	M5LR	M5LD	M5LE	M5LF
0	•	n.d.	n.d.			n.d.	n.d.	
5	n.d.	n.d.	n.d.	n.d.	n.ď.	n.d.	n.d.	n.d.
14	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
28	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
48	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
50				• • • • •	1 - 242	- 00 07	07 Y	




H

ETHENE		Ņ	licrocosm	5				
SITE WATE	R <	PQL			<	PQL		•
			p	pm/v				
Time	M5HR	M5HA	M5HB	M5HC	M5LR	M5LD	M5LE	M5LF
· 0		n.d.	n.d.			n.d.	n.d.	
5	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
14	n.d.	n.d.	<b>n.d</b> .	n.d.	n.d.	n.d.	n.d.	n.d.
28	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
48	<u>n.d.</u>	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
50								



.

ACETYLEN	E	Ņ	licrocosm	5					
SITE WATE	R <	PQL			<	PQL			
			p	pm/v					
Time	M5HR	M5HA	M5HB	M5HC	M5LR	M5LD	M5LE	M5LF	Dup
0	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	
1	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	
7	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	
28	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	
48	n.d.	'n.d.	n.d.	n.d.	'n.đ.	n.d.	n.d.	n.d.	n.d.
50					· · ·				



H

### **Volatile Fatty Acids-M5**

### Citrate None Added Glucose conc. (mM) Lactate M5LF M5HA M5HC M5HB day M5LD M5LE conc. (mg/L) ISHA M5HB 12.5 11 11.3 12.4 13.4 13.5 M5LF 12.3 M5LE M5HA M5HC n day M5LD 13.4 n.d. 52 10.4 12.1 13.3 12.5 15j 69 1718 12.6 20j 407 n.d. -5 n.d. 8 n.d. 12.8 12:4 10.9 12.3 163 8 12.9 14 28 178 275 10.9 1175 2169 14 10 7.6 11.6 9.9 7.8 1498 1390 2340 1801 2842 411 22.7 24.6 23.8 24.7 2220 15 19.3 19.6 48 607 2035 21.9 19.0 20 15.4 17.0 23:2 22.4 27.0 25.7 28 20.8 19.4 25.2 26.0 25.3 25.2 Formate conc. (mg/L) M5HA M5HB 35 42 48 19.2 19.3 19.5 26:5 24.1 18.8 22.4 24.4 25.6 21.9 M5HC M5LD M5LE M5LF day 13 38 10j 40 56 87 13 44 99 19.1 18.4 24:0 25.7 25.7 21.4 15 57 78 10j 41 61 -11j 8 43 70 14 28 62 79 88

Titanium None added

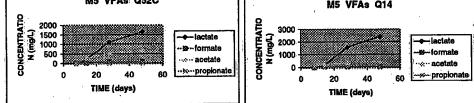
### Acetate

48

101

86

				conc. (	mg/L)	•
day	M5LD	M5LE	M5LF	M5HA	M5HB	M5HC
6	n.d.	n.d.	n.d.	41j	67	53
14	221	353	235	192	348	174
28	569	601	443	372	432	323
48	939	493	558	412	502	366

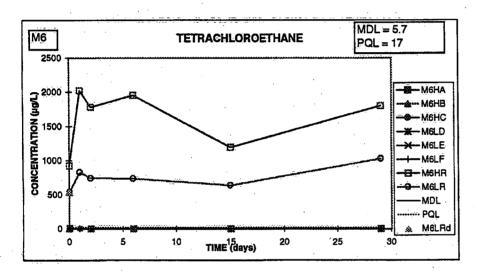

76

### Propionate

•		conc. (mg/L)									
day	MSLD	M5LE	M5LF	M5HA	M5HB	M5HC					
. 8	n.d.	n.d.	n.d.	n.d.	<b>n.d</b> .	n.d.					
14	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.					
-28	n.d.	n.d.	' n.d.	n.d.	n.d.	n.d.					
48	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.					

### This data only for the purposes of graphing

Q52C					·Q14				
day	actate	formate	acetate	propionate	day	lactate	formate	acetate	propionate
8	0	13	0	0	. i	3 12	2 44	54	0
14	205		270	0	14	4 176	6 42	238	0
28					20	3 156	5 75	376	0
48			664	Ó	41	3 2411	i 84	427	· · O
1		M5 \	/FAs: Q5	2C [.]			140	WEAR C	




### Tetrachloroethane (TeCA)

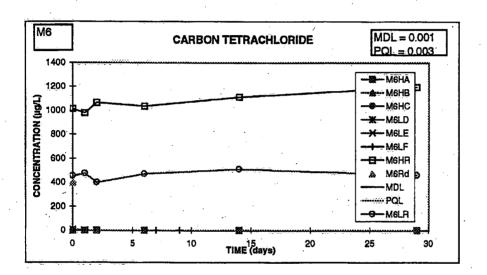
Microcosm 6

Result concentration in µg/L

SITE WATER 2114		2114	695								
Time 0	M6HR 929	M6HA 10j	М6НВ	M6HC M6LR 540	M6LD 3j	M6LE	M6LF	M6LRd r ² ((1<0.99) 538 0.959			
0.04			n.d.			n.d.					
0.08				. n.d.	· · ·		n.d.				
1	2021			831				0.959			
2	1778	, n.d.	n.d.	n.d. 746	n.d.	n.d.	<u>n.d.</u>	0.959			
6	1955	n.d.	n.d.	n.d. 738				dana a sa			
14	1194	n.d.	n.d.	n.d. 639	n.d.	n.d.	'n.d.	0.98			
29	1802	n.d.	. <b>n.d.</b>	n.d. 1030	n.d.	n.d.	n.d.	B: 0.981; C:0.972			



:

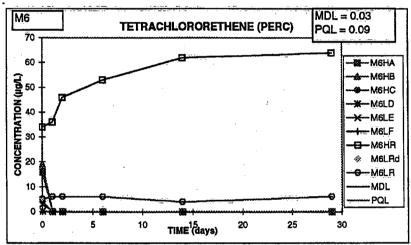

Carbon tetrachloride

Result concentration in µg/L

۲	904		•		364			
M6HR 1014	M6HA 0.3j	M6HB	M6HC	M6LR 454	M6LD	M6LE	M6LF	M6LRd 398
	•	n.d.				3j		
			0.05j			•	0.3j	
980	n.d.	n.d.	n.d.	474	n.d.	n.d.	n.d.	•
1065	n.d.	n.d.	n.d.	397	0.05	0.05	0.05	
1035	n.d.	n.d.	n.d.	472	n.d.	n.d.		
1113	n.d.	n.d.	n.d.	510	n.d.	n.d.	n.d.	
1197	n.d.	n.d.	n.d.	. 460	n.d.	n.d.	n.d.	
	1014 980 1065 1035 1113	M6HR M6HA 1014 0.3j 980 n.d. 1065 n.d. 1035 n.d. 1113 n.d.	M6HR         M6HA         M6HB           1014         0.3j         n.d.           980         n.d.         n.d.           1065         n.d.         n.d.           1035         n.d.         n.d.           1113         n.d.         n.d.	M6HR         M6HA         M6HB         M6HC           1014         0.3j         n.d.         0.05j           980         n.d.         n.d.         n.d.           1065         n.d.         n.d.         n.d.           1035         n.d.         n.d.         n.d.           1113         n.d.         n.d.         n.d.	M6HR         M6HA         M6HB         M6HC         M6LR           1014         0.3j         n.d.         454           n.d.         0.05j         980         n.d.         n.d.         474           1065         n.d.         n.d.         n.d.         397         1035         n.d.         n.d.         472           1113         n.d.         n.d.         n.d.         510	M6HR         M6HA         M6HB         M6HC         M6LR         M6LD           1014         0.3j         n.d.         454         7           n.d.         0.05j         -         -           980         n.d.         n.d.         n.d.         474         n.d.           1065         n.d.         n.d.         n.d.         397         0.05j           1035         n.d.         n.d.         n.d.         472         n.d.           1113         n.d.         n.d.         n.d.         510         n.d.	M6HR         M6HA         M6HB         M6HC         M6LR         M6LD         M6LE           1014         0.3j         n.d.         454         7         3j           n.d.         0.05j         -         3j           980         n.d.         n.d.         474         n.d.         n.d.           1065         n.d.         n.d.         1937         0.05j         0.05j           1035         n.d.         n.d.         n.d.         472         n.d.         n.d.           1113         n.d.         n.d.         n.d.         510         n.d.         n.d.	M6HR         M6HA         M6HB         M6HC         M6LR         M6LD         M6LE         M6LF           1014         0.3j         n.d.         454         7         3j           n.d.         0.05j         0.3j         0.3j         0.3j           980         n.d.         n.d.         474         n.d.         n.d.         n.d.           1065         n.d.         n.d.         397         0.05j         0.05j         0.05j           1035         n.d.         n.d.         n.d.         472         n.d.         n.d.         n.d.           1113         n.d.         n.d.         n.d.         510         n.d.         n.d.         n.d.

 $MAC = 5 \mu g/L$ 

Microcosm 6




# **TETRACHLORORETHENE (PERC)**

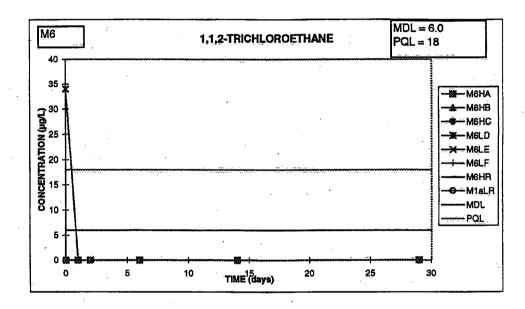
Microcosm 6

Result concentration in µg/L

SITE WATER	35				6			
Time M6HR 0 34	M6HA	M6HB	M6HC	M6LR	M6LD	M6LE	M6LF	M6LRd 7 ² If less than 0.99
0.04 0.08		19	4		<b>ः उ</b>	0.3	n.d.	0.884
1 36	n.d.	n.d.	n.d.	6	n.d.	n.d.	n.d.	
2.46	n.d.	'n.d.	n.d.	6	n.d.	n.d.	n.d.	0.923
6 53	<b>n.d.</b>	n.d.	n.d.	6	n.d.	n.d.	n.d.	0.938
14 62	n.d.	n.d.	n.d.	4	n.d.	n.d.	n.d.	C:0.901; D:0.939
29 64	n.d.	n.d.	n.d.	6	n.d.	n.d.	n.d.	



······


1,1,2-Trichloroethane

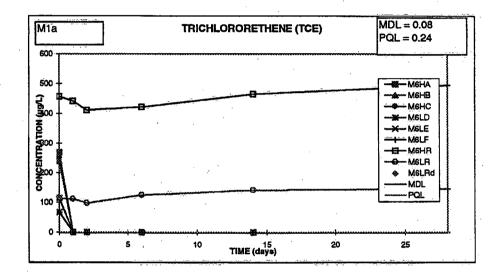
Microcosm 6

Result concentration in µg/L

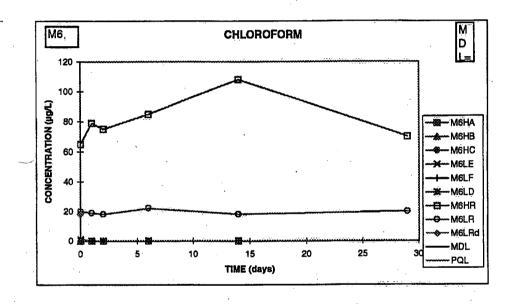
SITE WATER

Tim	Ð	M6HR	M6HA	M6HB	M6HC	M6LR	M6LD	M6LE	M6LF	M6LRd
	0	n.d.	n.d.			n.d.	34			n.d.
	0.04			n.d.				n.d.		
	0.08				n.d.				n.d.	
	1	n.d.	n.d.	n.d.	<b>n.d</b> .	n.d.	n.d.	n.d.	n.d.	
	2	<b>7</b> j	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	
	6	n.d.	n.d.	n.d.	n.d.	n.d.	<u>n.d.</u>	n.d.	n.d.	
	14	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	
	29	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	




### TRICHLORORETHENE (TCE)

Microcosm 6


Result concentration in µg/L

F

SITE WATER		197				86	<i>,</i> .			
Time 0	M6HR 457	M6HA 269	М6НВ	Менс	M6LR 113	M6LD 115	M6LE	M6LF	M6LRd 119	r [#] (If not 0.99)
0.04			240				68			
0.08		•		250			1 <b>.</b>	68		
1	442	n.d.	n.d.	n.d.	112	n.d.	n.d.	n.d.		
2	411	n.d.	n.d.	. n.d.	98	n.d.	n.d.	n.d.	• •	•
6	422	n.d.	n.d.	n.d.	126	n.d.	n.d.	n.d.		•
14	465	n.d.	n.d.	n.d.	142	n.d.	n.d.	n.d.		
29	497	n.d.	n.d.	n.d.	146	n.d,	n.d.	n.d.		



CHLOROFO	RM	M	licrocosm	6		•			
Result conce	ntration in	µg/L					• •		
SITE WATE	R	71				20	· .		
Time 0 0.04	M6HR 65	M6HA n.d.	M6HB	M6HC	M6LR 20	M6LD 1	M6LE n.d.	M6LF	M6LRd ( ² ((f ≪0.99) 18
0.08 1	79	n.d.	n.d. n.d.	n.d. n.d.	19	n.d.	n.d.	n.d. n.d.	0.963 0.963
2 6 14 29	75 85 108 70	n.d. n.d. n.d <u>.</u> n.d	n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d.	18 22 18 20	n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d.	0.975
29 <u></u>		n.d.	(I. <b>u</b> .	n.u.	20	i î, di	11.56	n.u.	



DICHLORON	DICHLOROMETHANE			6.	MAC = 5 µg/L			
Result conce		•						
SITE WATER <pql< th=""><th></th><th></th><th>&lt;</th><th></th><th></th></pql<>					<			
Time 0	M6HR n.d.	M6HA 39	M6HB	M6HC	M6LR n.d.	M6LD 19	M6LE	M6LF
0.04			74	39		••	17	12
1	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.ď.	n.d.
2	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	<u>n.d.</u>
-6	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
14	ń.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
29	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.

M6LRd <mark>P² (# < 0.99)</mark> n.d.

8

0.939

M6	•	DIC	HLOROMETHANE		MDL= 1.3 PQL = 3.9
0	1 <b>88</b> 5	10	<b>SE</b> TIME ¹⁵ (days)	20	25 30

1

.

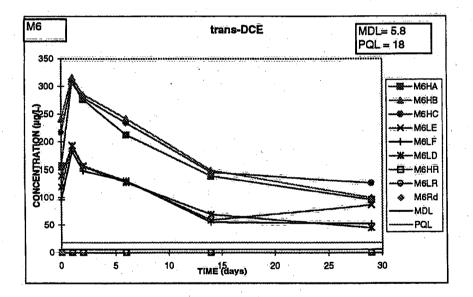
cis-DICHLOROETHENE

SITE WATER	<pql< th=""><th></th><th></th><th>&lt;</th><th></th><th>ъ. ¹</th></pql<>				<		ъ. ¹		
Time	M6HR	M6HA	M6HB	M6HC	M6LR	M6LD	M6LÊ	M6LF	M6LRd ( ² (if < 0,99)
<b>0</b>	n.d.	221			n.d.	191	·		
0.04			401	•			177		
0.08				347				139	
1	n.d.	537	544	547	n.d.	246	252	255	
2	n.d.	546	552	559	n.d.	262	266	256	,
6	n.d.	448	465	484	n.d.	228	228	215	
14	n.d.	429	470	463	n.d. 🕷	186	155	143	0,96
29	n.d.	332	316	352	n.d. 🦳	83	167	56	
Predicted con	centration	Ŀ,			-				
remaining at c	lay 6	403	417	439		205	205	193	
da	y 14	414	449	435		178	150	137	
	AY 29	291	280	349		72	163	55	



Trans-DICHLOROETHENE

Microcosm 6

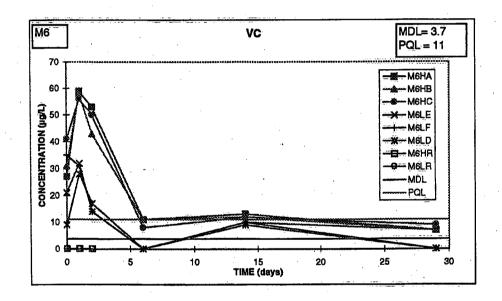

MAC = 100 µg/L

Result concentration in µg/L

÷...

SITE WATE	R <	PQL							
Time 0	M6HR n.d.	M6HA 157	М6НВ	M6HC	M6LR n.d.	M6LD 139	M6LE	M6LF	M6LRd (#<0.99) n.d.
0.04			241				119		
0.08				217		、 、		96	
1	<u>n.d.</u>	308	316	308	n.d.	193	194	184	
2	n.d. 🔇	277	286	280	n.d. 🛞	156	157	148	0.98
6	n.d.	213	242	234	<u>n.d.</u>	127	130	130	
- 14	n.d.	139	149	146	n.d.,	69	59	55	
29	n.d.	96	99	126	n.d.	45	86	52	0.906

Predicted value based or	n amount of	gas remove	ed			
remaining at day 6	170	192	190	101	103	104
day 14	129	136	128	63	55	51
day 29	72	76	124	33	82	49

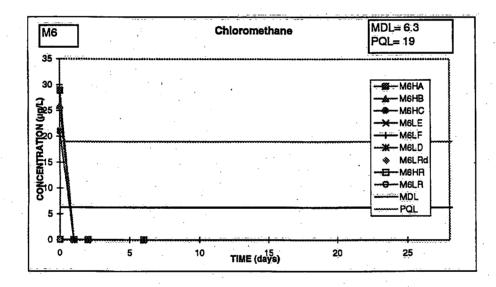



VINYL CHLORIDE (VC)

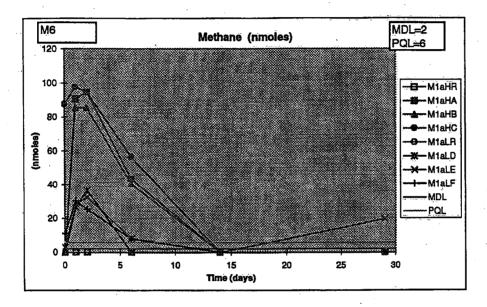
Microcosm 6

PQL = 11 µg/L

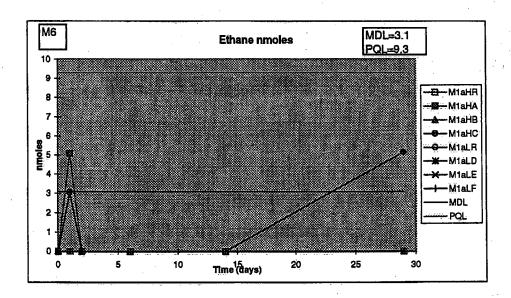
SITE WATE	R <	PQL			<	PQL			
Time 0	M6HR n.d.	M6HA 27	M6HB	M6HC	M6LR n.d.	M6LD 9j	M6LE	M6LF	M6LRd n.d.
0.04			31	· ·			21		
0.08	1.1			41				. 35	
1	n.d.	59	58	56	n.d.	28	32	31	
2	n.d.	53	43	50	n.d.	17	14	14	
6	n.d.	· 11	11	8	n.d.	n.d.	n.d.	n.d.	
14	n.d.	13	<b>ï2</b>	12	n.d.	9j	10j	10j	
29	n.d.	· 7j	7j	<b>9</b> j	n.d.	n.d.	7j	n.d.	



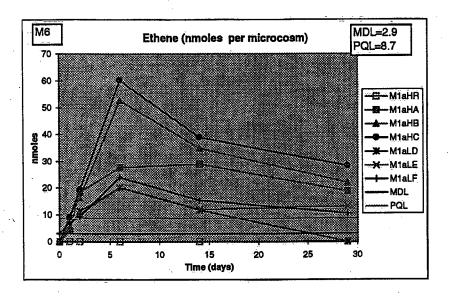

CHLOROMETHANE


Ì

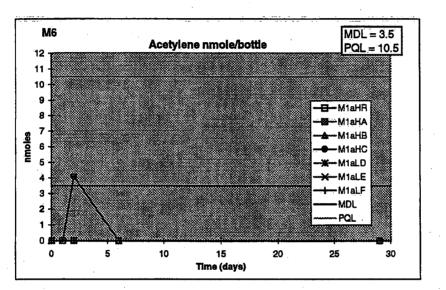
Microcosm 6


SITE WATER	<	PQL		6	<	PQL			
Time	M6HR	M6HA	M6HB	M6HC	M6LR	M6LD	M6LE	MGLF	M6LRd
0	n.d.	29			n.d.	n.d.			n.d.
0.04			26				n.d.		
0.08				21				n.d.	
1	n.d.								
2	n.d.								
6	n.d.								
14	n.d.								
29	n.d.								




METHANE		N	licrocosm	6					·
SITE WATER	. <	PQL			. <	POL			
			F	RESULTS in	ppmv				• .
Time	M6HR	M6HA	M6HB	M6HC	M6LR	M6LD	M6LE	M6LF	M6LRd
. 0	n.d.	n.d.			n.d.	n.d.			` n.d.
0.04			n.d.		,		3j _		
0.08	•	· ·		86			-	11	,
1	n.d.	89	84	96	n.d.	26	28	30	
2	n.d.	93	84	93	n.d.	36	32	25	
6	n.d.	11	10	15	n.d.	n.d.	2	2	
14	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	
29	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	12	n.d.	



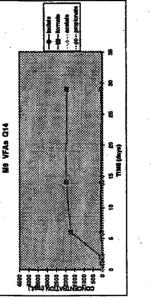

ETHANE		N	licrocosm	6					
SITE WATE	R <	PQL	·		<	PQL	-		
		F	lesults in p	pmv					
Time	M6HR	M6HA	M6HB	M6HC	M6LR	M6LD	M6LE	M6LF	M6LRd
0	<b>n.d</b> .	n.d.			n.d.	n.d.			
0.04			n.d.		-		n.d.		1
0.08				<u>n.d.</u>				n.d.	
1	n.d.	5j	5 5j	3j	n.d.	n.d	n.d.	n.d.	
2	n.d.	. n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	
6	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	1
14	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	
29	n.d.	n.d.	n.d.	4j	n.d.	n.d.	n.d.	n.d.	
			.)						

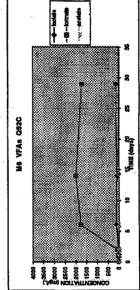


ETHENE		Ň	licrocosm	6			ł	÷	
SITE WATE	R ·	<pql< th=""><th></th><th></th><th>. &lt;</th><th>PQL</th><th></th><th></th><th></th></pql<>			. <	PQL			
		R	lesuits in p	pmv					
Time	M6HR	M6HA	M6HB	M6HC	M6LR	M6LD	M6LE	M6LF	M6LRd
0	n.d.	n.d.			n.d.	n.d.	•		n.d.
0.04			n.d.				n.d.		
0.08				1.			-	3	
1	n.d.	<b>4</b> j	9	9	n.d.	6j	6j	7j	
2	n.d.	18	16	19	n.d.	11	10	9	
6	n.d.	<b>7</b> j	13	16	n.d.	5j	· 5j	<del>6</del> j	
14	n.d.	14	15	14	n.d.	- 5j	6j	7j	
29	n.d.	- <b>4</b> j	5j	22	n.d.	n.d.	8j	- 6j	



ACETYLEN	E	N	licrocosm	6		•			
SITE WATE	R <	POL			<	PQL			
			R	Results in p	pmv	14			
Time	M6HR	M6HA	M6HB	M6HC	M6LR	M6LD	M6LE	M6LF	M6LRd
Ö	n.d.	n.d.		• • •	n.d.	n.d.			n.d.
0.04			n.d.				n.đ.		
0.08				n.d.				n.d.	
1	n.d.	• n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
2	n.d.	n.d.	n.d.	. 4j	n.d.	n.d.	n.d.	n.d.	
6	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	
14	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	
29	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	
						-		-	





## **Microcosm 6**

÷
š
- 24
•
cids
-
2
0
æ
-
- 23
3
- 64
atty
- 64
- 64
- 64
- 64
- 64
- 64
- 64
- 64
- 64
- 64
- 64

						F	•			g																																			
	MeHC	n.d.	n.d.	р'я г	18	8				MeHC	n.d.	£	8	1719	1781			MeHC	n.d.	n.d.	P.C.	810 1045	1237			MeHC	Ъ,		a d	Pr															
	Mehe	'n	n.d.	P	88 8	8	5			MeHB	'nd	8	2	1745	1898			Mehb	Ъ.	'nd	Pe	86/	1049			Mehb	þ.		į	P C															
(T)0	Meha	2	'n.	P.	Ē	5 3	5		(շրնս	M6HA	P.	38	r	1718	2107		- (Jou	MeHA	Ę	P.			1022		(The	MeHA	Ę.			рі т с	2		ensuordord	òo	0	•		142,3333		propionate	0	0 0	>-a	•	2
cona (mg/L)	MGLF	n.d.	P.H	Ę	6	2			cone. (mg/L)	MelF	n.d.	8	8	1738	1832		cono (n	MeLF	Ъ.	Ъ.	p i	898	1548		conc. (n		Ē			n.d.	<b>b</b> 0		acerate p	0	0	921	1098	3382			0	<b>•</b> •	815		2000
	Mele	P	р ц	Pa	Ę∣	La !	JR			Mele	Ъ.	8	7	1738	827			MOLE	P	Ъ.	P 2	828	2666			MOLE	Ę			27	2			2 2 2	2	1764	1993	1609			0	ន្ល ទ	80 C C	0711	
	Meto	-p-u	n.d.	P	8	8	8/1			MeLD	n.d.	8	8	1816	2238			MeLD	ц	Ъ.	P i	£18	1811		9	MeLD	þ			nd: Sec	R.		lactare 1	0	9	8	2	138			Ģ	•••	> a	8 8	2
Lactate	day	•	÷	¢1	<b>co</b> _	*	R	Formate		day	0	جه	CN	æ ;	± 8	Acatala		day	•	-	0	æ .	≄ 8	1	Propionate	day	0	- 0	4 00	¥.{	8.	-			. 01	8	7	58	914	day	•	- (	N a	0.4	5,7

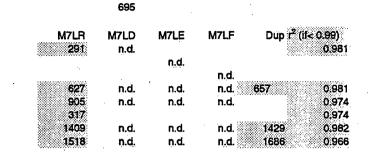
day MeLD M 1 21128 2 7179 2 7179 2 7179 8 8195 8 8195 8 7239 7239 7239 7239 7239 6 Auto MeLD M Addrowe MeLD M	M6LE 6732 6934 69820 69820 6982 5452 5452 5452	conc (mgL) MeLF MeHA 6738 6728 6728 6728 6738 773 7450 8773 7450 8372 8378 9842 6958 7019 843 7019 843 MeLF M6HA	00/L) M6HA 6702 6754 6754 6754 6378 8378 8958 842	MeHB 6751 6648 6648 6509 6941 599	MeHC 6711 6639 6418 6330 6330	
0 0102 1 1170 8 8715 8 8715 29 7334 29 7334 20 8715 20	6054 6054 6054 6082 6082 6452 6452 6452 6452 6452	moct 87739 8773 8372 8372 8372 8372 8372 8372 8372	8754 6754 7450 8378 8958 8958 842	6751 6848 6844 6809 6809 6809	6711 6639 6639 66418 6830 6330	
7175 6 7175 6 716 716 716 716 728 728 728 0 816 0 31.8	6854 6820 6982 5452 5452 5452 5452 6982 6982 6982 6452 5452	6719 8773 8372 6842 7019 7019 7019 MeLF	6754 7450 6378 6958 842 842	6648 7640 6309 6941 6941	6639 6418 6930 6930 6330	
2 7402 6 8715 14 7234 29 729 0 MeLD 0 31.8	6820 6302 6452 5452 5452 5452 5452 6452	8773 8372 6842 7019 7019 conc. (1	7450 6378 6958 842	7640 6509 599	7185 6410 6930 6330	
6 8715 14 7334 29 728 20 728 0 728 0 728 0 728 0 7315 0 8110	6302 6962 5452 MeLE MeLE	6372 6842 7019 conc. (1 M6LF	6378 6958 842j MM)	6509 6941 599	6419 6930 6339	
14 7334 29 728 MeLD 0 31.8 MeLD	6992 5452 MaLE	6942 7019 conc. (1 M6LF	6958 842j MM)	6941 599	6830 6339	
29 728) MeLD 31.8	5452 MeLE	7019 conc. (i MôLF	642j MM)	599	6339	
MeLD 31.8 Mel	MelE	conc. (1 MOLF	(Wu			
0 31.6 Mei D			M6HA	MehB	MeHC	
Mein	<u>8</u> .1	32.3	31.4	31.6	31.5	
MeLD		conc. (	conc. (mM)			
	MOLE	MOLF	Meha	Mete	MeHC	
0 19.5	19.7	19.9	20.5	22.0	19.9	
1 18.2	21.2	18.9	19.4	20.3	21.0	
2 17.8	16.4	17.7	17.7	19.3	18.2	
6 1.4	1.8	1.8	1:9	5	2.0	
1.3	4	1.6	1.7	2.0	1.8	
28 0.0	5	1.2	0.8	0.7	1.3	
						ſ
-	•	M6 VF	N6 VFAs Q14			

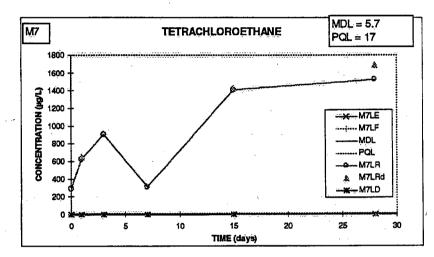




6000						
			CONC.	(Mm)		
tay.	Metco		Melf	MGHA	MeHB	_
°	19.6		19.6	20.5	22.0	
-	18.2	212	18.6	19.4	20.3	21.0
¢,	17.8		17.7	17.7	19.3	
8	1.4		ĩ	1.9	2.1 2.1	
#	1.3		7	1.7	2:0	
8	0.0		2	0.6	0.7	

2.8

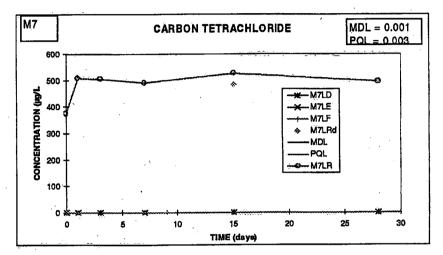

#### **Tetrachloroethane (TeCA)**


Microcosm 7 Alternate chelator

Result concentration in µg/L

#### SITE WATER

Time	
0	
0.04	
0.08	
1	
3	
7	
15	
28	






SITE	WATER
------	-------

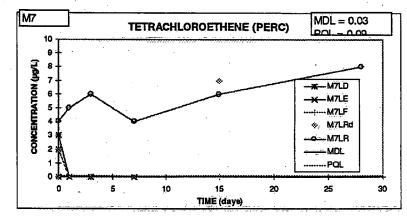
Time
0
0.04
0.08
1
3
7
15
28

		364			
	M7LR	M7LD	M7LE	M7LF	Dup
	. 374	n.d.			
			n.d.		
				n.d.	
	506	ņ.d.	ņ.d.	n.d.	511
	503	n.d.	n.d.	n.d.	
	490	n.d.	n.d.	n.d.	
۰.	526	n.d.	<b>n.d.</b>	n.d.	486
	495	n.d.	n.d.	n.d.	497



### TETRACHLORORETHENE (PERC)

Microcosm 7 Alternate chelator


6

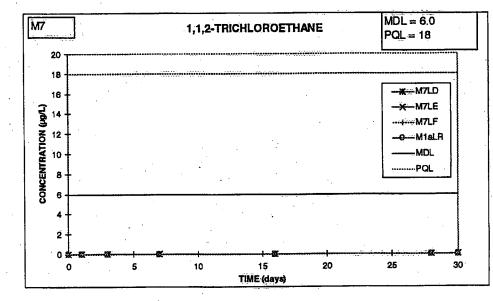
Result concentration in µg/L

#### SITE WATER

Time	
	0
	0.04
	0.08
	1
	3
	7
	15
	28

•	M7LR	M7LD	M7LE	M7LF	Dup ² If les	is than 0.99
	4	. 3				
•			2			
				2		
•	5	n.d.	n.d.	n.d.	5	
	.∕+ <b>6</b>	n.d.	n.d.	n.d.		
	4	n.d.	n.d.	n.d.		
	6	n.d.	n.d.	n.d.	. 7	•
	8	n.d.	n. <b>d</b> .	n.d.	8 .	
	,					

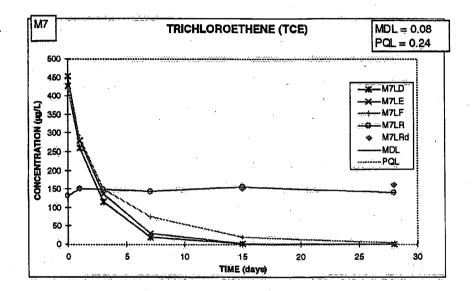



1,1,2- Trichloroethane

Microcosm 7 Alternate chelator

Result concentration in µg/L

### SITE WATER


ne		· .	M7LR	M7LD	M7LE	M7LF	Dup
0	and the second second		n.d.	n.d.			
0.04					n.d.		
0.08						n.d.	
1			n.d.	n.d.	n.d.	n.d.	n.d.
3			n.d.	· n.d.	<b>n.d</b> .	n.d.	•
7			n.d _x	n.d.	n.d.	n.d.	
15			n.d.	n.d.	n.d.	n.d.	n.d.
28			n.d.	n.d.	n.d.	n.d.	<b>n.d</b> .

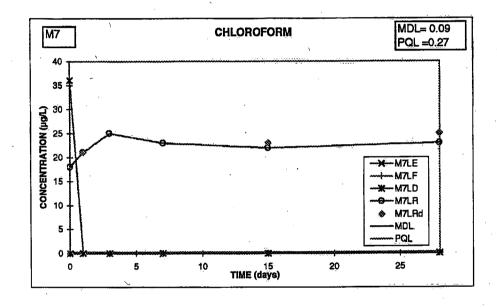


# TRICHLORORETHENE (TCE)

Microcosm 7 Alternate chelator

M7LD 426	M7LE 453	M7LF	Dup
72.0	453		
		419	
261	280	287	151
115	136	149	
20	29	75	
2	2	20	152
n.d	<b>n.d</b> .	. 3	160
	20 2	20 29 2 2	20 29 75 2 2 20



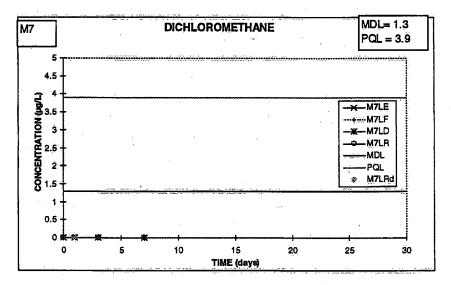

#### CHLOROFORM

Microcosm 7 Alternate chelator

Result concentration in µg/L

SITE WATER			20	
Time 0		M7LR 18	M7LD 36	M7LE
0.04	•	•	· .*	n.d.
0.08		21	n.d.	n.d.
3		25	n.d.	n.d.
7		23	n.d.	n.d.
15		22	<u>n.d</u> .	n.d.
28		23	- n.d.	n.d.

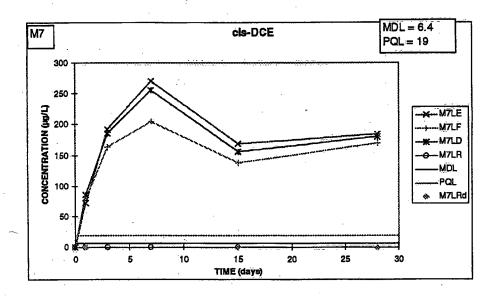
M7LF	Dup ( ² ((  < 0.99)	
n.d.		
n.d.	21 0.976	
n.d.		
n.d.		
n.d.	23	
n.d.	25	




DICHLOROMETHANE

Microcosm 7 Alternate chelator

MAC = 5 µg/L


SITE WATER	<pql< th=""><th colspan="8"><pql <pql<="" th=""></pql></th></pql<>	<pql <pql<="" th=""></pql>							
Time		M7LR	M7LD	M7LE	M7LF	Dup			
0		n.d.	n.d.		•				
0.04				n.d.					
0.08	·		· · ·		n.d.				
1		n.d.	n.d.	n.d.	n.d.	n.d.			
3		n.d.	n.d.	n.d.	n.d.				
7		n.d.	n.d.	. n.d.	n.d.				
15		n.d.	n.d.	n.d.	n.d.				
28		<b>n.d.</b> ,	n.d.	n.d.	n.d.	n.d.			



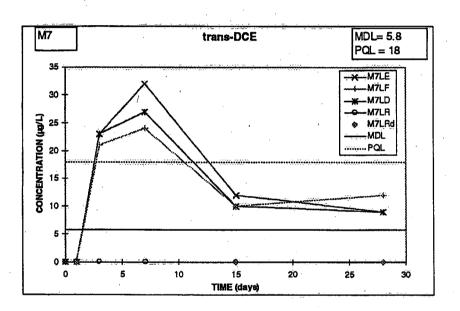
cls-DICHLOROETHENE

Microcosm 7 Alternate chelator

SITE WATER	<pql< th=""><th colspan="3"><pql< th=""><th></th><th colspan="2"></th></pql<></th></pql<>	<pql< th=""><th></th><th colspan="2"></th></pql<>					
Time		M7LR	M7LD	M7LE	M7LF	Dup ( ² (if < 0.99)	
0		n.d.	n.d.				
0.04				<u>n.d.</u>			
0.08				,	n.d.	·	
1		n.d.	86	72	78	n.d. 0.982	
3		n.d.	185	192	163	0.956	
7		n.d.	255	270	205	0.956	
15		n.d.	156	169	138	n.d.	
28		n.d.	180	184	170	n.d.	



#### Trans-DICHLOROETHENE


Microcosm 7 Alternate chelator

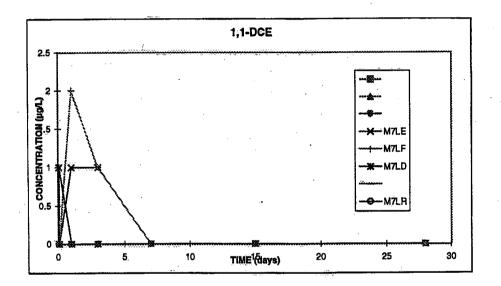
MAC = 100 µg/L

Result concentration in µg/L

____

SITE WATER	<pql< th=""><th colspan="3"><pql< th=""><th>. *</th><th colspan="3"></th></pql<></th></pql<>	<pql< th=""><th>. *</th><th colspan="3"></th></pql<>			. *			
Time 0		M7LR M n.d.	M7LD N n.d.	17LE	M7LF	Dup (f <0.99)		
0.04				n.d.		· .		
0.08 1		n.d.	n.d.	n.d.	n.d. n.d.	n.d.		
3		n.d.	23	23	21	0.973		
15		ń.d. n.d.	27 10	32 12	2 <u>4</u> 10	n.d.		
28		n.d.	9j	9j	12j	n.d.		




1,1_Dichloroethene Microcosm 7 Alternate chelator

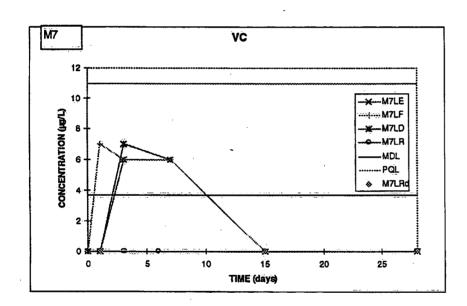
PQL = 11 µg/L

Result concentration in µg/L

SITE WATER	<pql <pql<="" th=""></pql>							
Time			M7LR	M7LD	M7LE	M7LF	Dup	
0								
0.04								
0.08			n.d.	n.d.	n.d.	n.d.		
1			n.đ.	. <b>1</b> -	1	2	. <b>n.d.</b>	
3			n.d.	n.d.	-1	1		
7	•		<b>n.d</b> .	n.d.	n.d.	n.d.		
15			n.d.	n.d.	n.d.	n.d.		
28		· .	n.d.	n.d.	n.d.	n.d.	n.d.	

Note: needs to be confirmed by MS

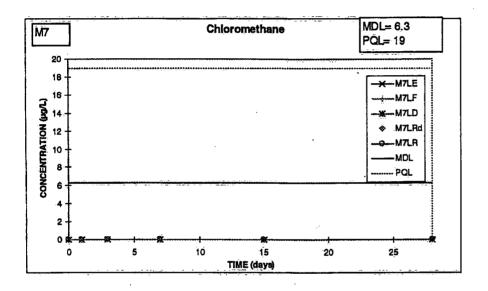



# VINYL CHLORIDE (VC)

Microcosm 7 Alternate chelator

PQL = 11 µg/L

Result concentration in µg/L

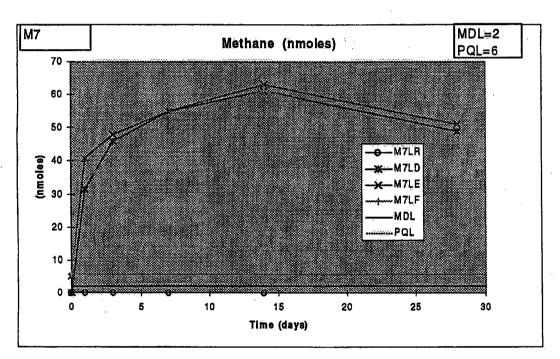

SITE WATER	<pql< th=""><th></th><th></th></pql<>					
Time		M7LR	M7LD	M7LE	M7LF	Dup
0		n.d.	n.d.			
0.04				n.d.		
0.08					n.d.	
1		<u>n.d.</u>	n.d.	n.d.	n.d.	n.d.
3		n.d.	<b>7</b> j	6j	6j	
7		ń.d.	6j	6j	6j	
15		n.d.	n.d.	n.d.	n.d.	n.d.
28		n.d.	n.d.	n.d.	n.d.	n.d.



CHLOROMETHANE

#### Result concentration in µg/L

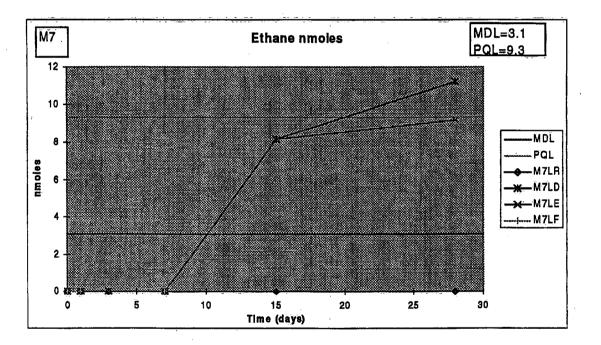
SITE WATER	<pql< th=""><th colspan="6"><pql< th=""></pql<></th></pql<>	<pql< th=""></pql<>					
Time 0		M7LR n.d.	M7LD n.d.	M7LE	M7LF	Dup	
0.04 0.08				n.d.	n.d.		
1		n.d.	n.d.	n.ď.	n.d.	n.d.	
3		n.d.	n.d.	n.d.	n.d.		
7		n.d.	n.d.	n.d.	n.d.		
15		n.d.	n.d.	n.d.	n.d.		
28		n.d.	n.d.	n.d.	n.d.		




.

METHANE

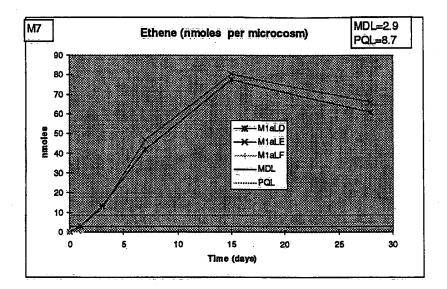
Microcosm 7 Alternate chelator


SITE WATER	<pql< th=""><th colspan="8"><pql< th=""></pql<></th></pql<>	<pql< th=""></pql<>							
		<b>RESULTS in ppmv</b>							
Time		M7LR	M7LD	M7LE	M7LF	Dup			
0		n.d.	<u>n.d.</u>						
0.04				<b>5</b> j					
0.08				-	6				
1		n.d.	31	40	34	n.d.			
3		n.d.	45	47	40				
7		n.d.	54	54	52				
15		n.d.	60	62	60	n.d.			
28		n.d.	48	50	46	n.d.			
					'				



ETHANE

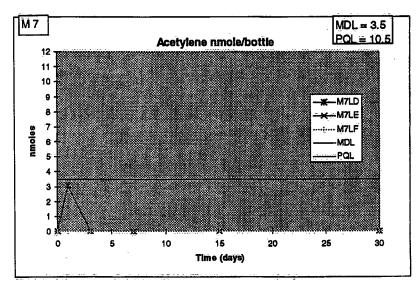
Microcosm 7 Alternate chelator


SITE WATER	<pql< th=""><th></th><th>PQL</th><th colspan="5"></th></pql<>		PQL					
		<b>Results in ppmv</b>						
Time			M7LR	M7LD	M7LE	M7LF	Dup	
Ó			n.d.	n.d.			•	
0.04					n.d.			
0.08						n.d.		
1			n.d.	n.d.	n.d.	n.đ.	n.d.	
3			n.d.	3j	3j	n.d.		
7			n.d.	n.d.	n.d.	n.d.		
15			'n.d.	8j	8j	6j	n.d.	
28			n.d.	11	9	5j	n.d.	



ETI		

Microcosm 7 Alternate chelator


SITE WATER	<pql< th=""><th><b>.</b></th><th>PQL</th><th colspan="5">QL</th></pql<>	<b>.</b>	PQL	QL				
Time		<b>Results in ppmv</b>	M7LR	M7LD	M7LE	M7LF	Dup	
0			n.d.	n.ď.				
0.04					n.d.			
0.08						n.d.		
1			n.d.	3j	<b>3</b> j	n.d.		
3			n.d.	13	12	11		
7			n.d.	41	46	38		
15			n.d.	76	79	72	n.d.	
28			n.d.	60	65	54	n.d.	



ACETYLENE

### Microcosm 7 Alternate chelator

SITE WATER	<pql <pql<="" th=""></pql>							
		Results in ppmv						
Time		M7LŘ	M7LD	M7LE	M7LF	Dup		
0		n.d.	n.d.					
0.04				n.d.				
0.08					n.d.			
1		n.d.	3j	3j	n.d.	n.d.		
3		n.d.	n.d.	n.d.	n.d.			
7		n.d.	n.d.	n.d.	n.d.			
15		n.d.	n.d.	n.d.	n.d.			
28		n.d.	n.d.	n.d.	n.d.			



.

.

.

•

. · ·

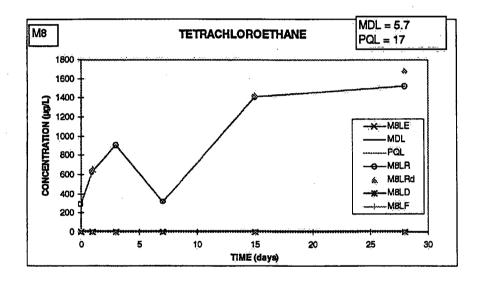
; .

.

# Volatile Fatty Acids - M7

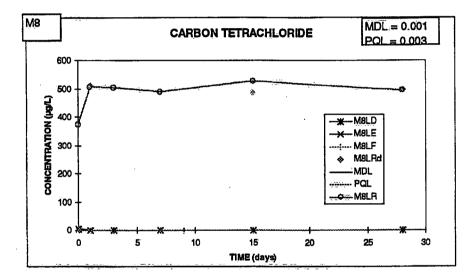
# Citrate

Village					
				conc. (mg/L)	
day	_	M7LD	M7LE	M7LF	
	0	n.d.	n.d.	n.d.	
	1	n.d.	n.d.	n.d.	
	3	n.d.	n.d.	n.d.	
	7	n.d.	<b>n.d</b> .	<u>n.d.</u>	
1	5	n.d.	n.d.	n.d.	
2	8	n.d.	<b>n.d</b> .	n.d.	
Lactate					
				conc. (mg/L)	
day		M7LD	M7LE	M7LF	
•	0	n.d.	n.d.	n.d.	
	1	n.d.	n.d.	n.d.	
:	3	n.d.	n.d.	n.d.	
	7	n.d.	n.d.	n.d.	
1	5	n.d.	n.d.	n.d.	
2	8	n.d.	n.d.	n.d.	
Formate		•			
	`			conc. (mg/L)	
dav		MTLD	M7LE	M7LF	
	0	n.d.	n.d.	n.d.	
	1	n.d.	n.d.	n.d.	
	3	n.d.	n.d.	n.d.	
	7	n.d.	n.d.	n.d.	
	5	n.d.	n.d.	n.d.	
2		31	23	26	
Acetate		0.	L.Y		
Avolute					
dav		M7LD	M7LE	conc. (mg/L) M7LF	
	ò	n.d.	n.d.	n.d.	
	1	n.d.	n.d.	n.d.	
	3	n.d.	n.d.	n.d.	
	3 7	n.d.	n.d.	n.d.	
1		n.d.	n.d.		
2	-	n.d.	n.d.	n.d.	
Propiona		n.u.	11,4.	11.4.	
LIOPIONA	iie				
day		M7LD	M7LE	conc. (mg/L) M7LF	
•	^			,	
	0 1	n.d. n.d.	n.d. n.d.	n.d. n.d.	
	ו 3	n.a. n.d.	n.a. n.d.	n.a. n.d.	
	3 7	n.a. n.d.	n.a. n.d.	n.a. n.d.	
	5	n.d.	n.d.	n.d.	
	8	n.d.	n.d.	n.d.	
<u>e</u>	÷	11.4.	10.46	11.56	


anium day	0	M7LD 25.1	o M7LE 24.8	onc. (mM) M7LF 24.8	
					:
			·		

Titanium

#### Tetrachloroethane (TeCA)


#### Microcosm 8 B12, Ti citrate and yeast extract

SITE WATER		695			
Time 0	M8LR 291	M8LD n.d.	M8LE	M8LF	r² (it< 0.99) 0.981
0.04 0.08	· .		n.d.	n.d.	
1	627 905	n.d.	n.d.	n.d.	0.981
3 7	905 317	n.d. n.d.	n.d. n.d.	n.d. n.d.	0:974 0:974
15	1409	n.d,	n.d.	n.d.	1429 0.982
28	1518	n.d.	n.d.	n.d.	1686 0 966

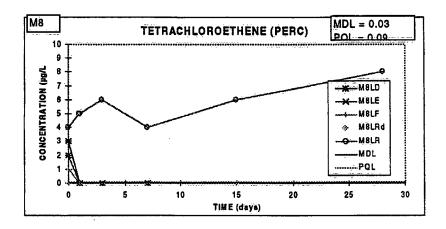


# Microcosm 8 B12, Ti citrate and yeast extract MAC = 5 $\mu g/L$

SITE WATER		364		
Time	MELR	MBLD	M8LE	M8LF
0	374	. 5		
0.04			3j	
0.08				3j
1	506	n.d.	• <b>n.d</b> .	n.d.
3	503	• <b>n.d</b> .	n.d.	n.d.
7	490	n.d.	n.d.	n.d.
15	526	n.d.	n.d.	n.d.
28	495	n.d.	n.d.	n.d.
	·			



#### TETRACHLORORETHENE (PERC)


Microcosm 8 B12, Ti citrate and yeast extract

6

Result concentration in µg/L

#### SITE WATER

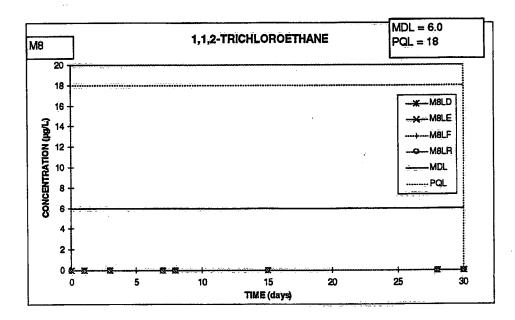
1	MALR	M8LD	M8LE	M8LF
0	4	3		
0.04			2	
0.08				1
1	5	n.d	n.d	n.d
3	6	n.d	n.d	n.d
7	4	n.d	n.d	n.d
15	6	n.d	n.d	n.đ
28	8	n.d	n.d	n.d



5

r² (if <0.99)

8


1,1,2- Trichloroethane

Microcosm 8 B12, Ti citrate and yeast extract

Result concentration in µg/L

#### SITE WATER


Time	M8LŔ	MBLD	MBLE	M8LF
0	n.d.	27		
0.04			n.d.	
0.08				n.d.
Ϋ́,	n.d.	n.d.	n.d.	n.d.
3	n.ď.	n.d.	<b>n.</b> d.	n.d.
7	n.d.	n.d.	'n.ď.	n.d.
15	n.d.	n.d.	n.d.	<u>n.d.</u>
28	n.d.	n.d.	n.d.	'n.d.



#### TRICHLORORETHENE (TCE)

Microcosm 8 B12, Ti citrate and yeast extract

SITE WATER	197	86	
Time 0		M8LR M8LD M8LE M8LF 131 103	r ² (H <0.99)
0.04 0.08		103	
1		97 151 40 34 30 149 36 24 24	0,98
3 7		143 <u>26 21 17</u>	0.915
15 28		155 <u>32</u> 26 20 140 28 21 16	0,953 0,954



#### CHLOROFORM

#### Microcosm 8 B12, Ti citrate and yeast extract

Result concentration in µg/L

SITE WATER		20		
Time 0	M8LR 18	M8LD 12	M8LE	M8LF
0.04	18	12	n.d.	
0.08				n.d.
1	21	n.d.	n.d.	n.d.
3	25	n.d.	n.d.	n.d.
3 7	23	n.d.	n.d.	n.d.
15	22	n.d.	n.d.	n.d.
28	23	n.d.	<u>n.d.</u>	n.d.

MDL= 0.09 PQL =0.27 M8 CHLOROFORM 40 35 **X** -M8LE -** MBLF ۲ MBLD MOLA 0 MDL PQL M8LRd ŵ 5 0 5 10 15 20 0 25 30 TIME (days)

r² (il < 0.99)

0.975


#### DICHLOROMETHANE

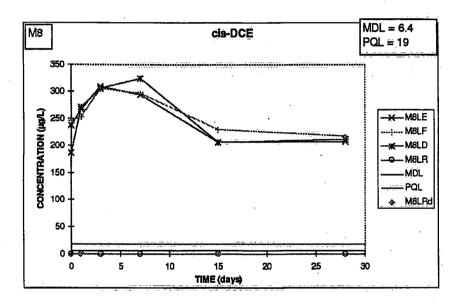
Microcosm 8 B12, TI citrate and yeast extract

Result concentration in µg/L

# MAC = 5 µg/L

SITE WATER	<pql< th=""><th>&lt;</th><th>PQL</th><th></th><th></th></pql<>	<	PQL		
Time 0		M8LR	M8LD	M8LE	M8LF
0.04		n.d.	44	33	
0.08					24
3		n.d.	n.d.	n.d.	n.d.
3 7		n.d. n.d.	n.d. n.d.	n.d. n.d.	n.d. n.d.
15		n.d.	n.d.	n.d.	n.d.
28		n.d.	n.d.	n.d.	n.d.




cis-DICHLOROETHENE

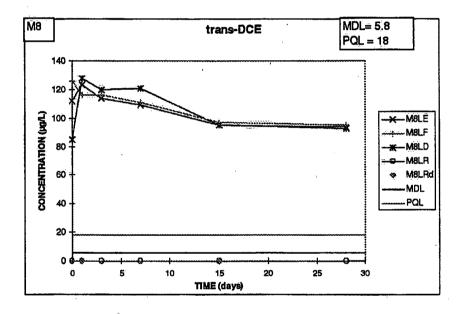
Microcosm 8 B12, Ti citrate and yeast extract

MAC = 70 µg/L

Result concentration in µg/L

SITE WATER	<pql< th=""><th>&lt;</th><th>PQL</th><th></th><th></th></pql<>	<	PQL		
Time 0		MSLR n.d.	M8LD 187	M8LE	M8LF
0.04				237	
0.08					246
1		n.d.	271	267	254
3		n.d.	305	309	306
7		n.d.	324	294	297
15		n.d.	207	207	230
28		n.d.	211	208	218




.

r² ((140,99)

0,956 0,956 Trans-DICHLOROETHENE

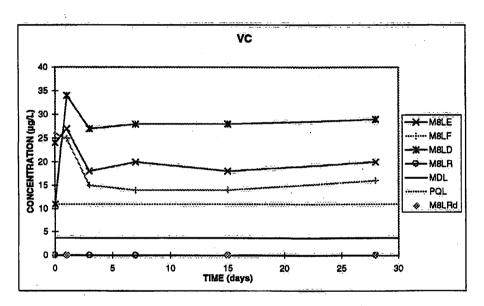
 $MAC = 100 \,\mu g/L$ 

SITE WATER	<pql< th=""><th><pql< th=""><th></th><th></th><th></th><th></th></pql<></th></pql<>	<pql< th=""><th></th><th></th><th></th><th></th></pql<>				
Time				ISLE	M8LF	r ² (if <0.99)
0		n.d.	85			0.975
0.04				112		
0.08					126	
1		n.d.	28	123	116	0.975
3		n.d.	20	114	116	0.973
7	· .	n.d.	21	109	111	
15		n.d.	95	95	97	
28		n.d.	93	94	95	





# VINYL CHLORIDE (VC)


# Microcosm 8 B12, TI citrate and yeast extract PQL = $11 \mu g/L$

<PQL

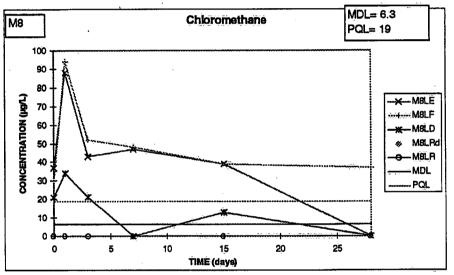
Result concentration in µg/L

# SITE WATER <PQL

Time	M8LR	M8LD	M8LE	M8LÊ
0	n.d.	11		
0.04	•		24	
0.08				26
1	n.d.	34	27	25
3	n.d.	27	18	15
7	n.d.	28	20	14
15	n.d.	28	18	14
28	n.d.	29	20	16



· ·


#### CHLOROMETHANE

#### Microcosm 8 B12, Ti citrate and yeast extract

Result concentration in µg/L

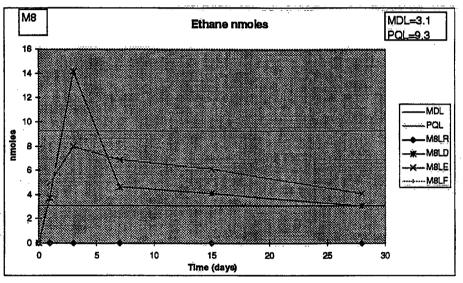
SITE WATER	<pql< th=""><th colspan="3"><pql< th=""><th></th></pql<></th></pql<>	<pql< th=""><th></th></pql<>			
Time		Malr	M8LD 21	M8LE	M8LF
0 0.04		n.d.	21	37	
0.08					30
1		n.d.	34	88	94
3		n.d.	21	43	52
7		n.d.	n.d.	47	48
15		n.d.	13	39	39
28		n.d.	n.d.	n.d.	37
Marb	n not obloromothana - neor	MS confirmation			


May be not chloromethane - need MS confirmation



_____. . METHANE

# Microcosm 8 B12, TI citrate and yeast extract

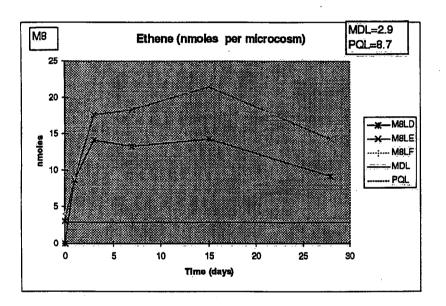

RESULTS in ppmv	
M8LR M8LD M8LE	M8LF
n.d. n.d.	
5	
· · ·	8
n.d. 48 42	43
n.d. 46 42	41
n.d. 48 45	42
n.d. 57 57	45
n.d. 98 74	72
	5 n.d. 48 42 n.d. 46 42 n.d. 48 45 n.d. 57 57



ET	ΉA	NE

#### Microcosm 8 B12, Ti citrate and yeast extract

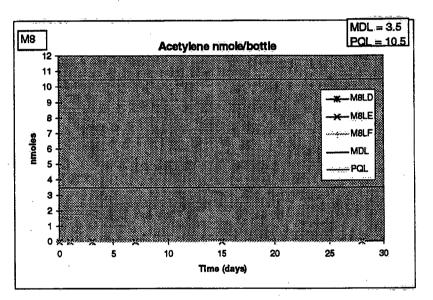
SITE WATER	<pql< th=""><th colspan="4"><pql< th=""><th></th></pql<></th></pql<>	<pql< th=""><th></th></pql<>				
		<b>Results in ppmv</b>				
Time			MALR	M8LD	M8LE	M8LF
0			. n.ď.	n.d.		
0.04					n.d.	
0.08						n.d.
1			n.d.	3j	<b>4</b> j	4j
3	•		<u>n.d</u> .	8j	5	6j
7			n.d.	<b>4</b> j	6j	7j
15			n.d.	4j	6j	7
28			n.d.	3j	4j	5j
				-		•




ETHENE

Microcosm 8

B12, Ti citrate and yeast extract


SITE WATER	<pql< th=""><th colspan="4"></th><th></th></pql<>					
		Results in ppmv	• • • • <b>^</b>			
Time			M8LÂ	M8LD	M8LE	M8LF
0			n.d.	n.d.		
0.04					3j	
0.08						<b>4</b> j
1			n.d.	7j	7j	7j
3			n.d.	- 8j	11	13
7			n.d.	13	18	21
15			n.d.	14	21	20
28			n.d.	9	14	15

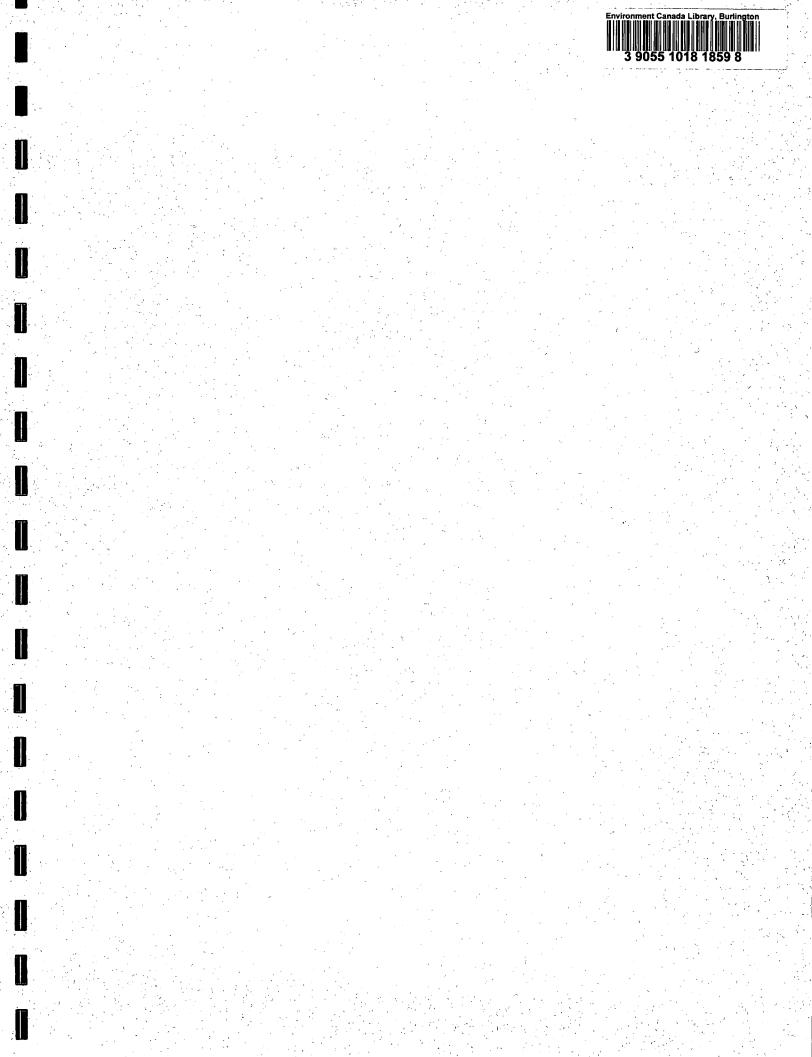


AC	ETY	'LEN	Æ
70		المتراجعة ا	

### Microcosm 8 B12, TI citrate and yeast extract

SITE WATER	<pql< th=""><th colspan="4"><pql< th=""></pql<></th></pql<>	<pql< th=""></pql<>			
Time		Results in ppmy M8LR	M8LD	M8LE	M8LF
0		ñ.d.	n.d.		
0.04				n.d.	
0.08					n.d.
1		n. <u>d</u> .	n.d.	n.d.	n.d.
3		n.d.	n.d.	n.d.	n.d.
7		n.d.	n.d.	n.d.	n.d.
15		n.d.	n.d.	n.d.	n.d.
28		n.d.	n.d.	n.d.	n.d.




# Volatile Fatty Acids - M8

Citrate

	anna (matili		
	conc. (mg/L)		
day	MalD	MBLE	MBLF
0	6679	6474	6678
1	2507	1367	1627
3	n.d.	n.d.	890j
7	n.d.	n.d.	n.d.
15	n.d.	n.d.	n.d.
28	n.d.	n.d.	n.d.
1			
Lactate			
	conc. (mg/L)		
day	MBLD	MSLE	MALF
0	n.d.	n.d.	n.d.
1	n.d.	n.d.	n.d.
3	n.d.	n.d.	n.d.
7	n.d.	n.d.	n.d.
15	n.d.	n.d.	n.d.
28	n.d.	n.d.	n.d.
Formate			
	conc. (mg/L)		
day	MBLD	MBLE	MBLF
. 0	36	50	46
1	603	957	982
3	936	943	1051
7	722	832	961
15	726	743	913
28	309	378	554
Acetate			
	conc. (mg/L)		
day	MalD	MBLE	MBLF
0	344	373	285
1	2554	3642	3679
з	4958	4265	4335
7	4565	5089	4913
15	4444	4992	4768
28	4941	4374	4501
-			
Propionate		( ^{**}	
Propionate			
- data	conc. (mg/L) M8LD	MBLE	MOLF
day 0	MBLU 265	269	,241
0	403	375	359
3	403	3/5	267
37		309	292
	313		310
15	364	370	
28	494	391	408

Titanium conc. (mM) day MBLD MBLE MBLF 0 28.9 29.0 29.2

- 3



National Water Research Institute Environment Canada Canada Centre för Inland Waters P.O. Box 5050 867 Lakeshore Road Burlington, Ontario L7R 4A6 Canada

National Hydrology Research Centre 11 Innovation Boulevard Saskatoon, Saskatchewan S7N 3H5 Canada



RECYCLED PAPER

IR DU PAPIER RECYCLÉ

80

NATIONAL WATER RESEARCH INSTITUTE INSTITUT NATIONAL DE RECHERCHE SUR LES EAUX Institut national de recherche sur les eaux Environnement Canada Centre canadien des eaux intérieures Case postale 5050 867, chemin Lakeshore Burlington, Ontario L7R 4A6. Canada

Centre national de recherche en hydrologie 11, boul. Innovation Saskatoon, Saskatchewan S7N 3H5 Canada





Environment Environnement Canada Canada